User Interaction in HP

PE/SolidDesigner

The HP PE/SolidDesigner user interface is modeled after the successful,
easy-to-use, easy-to-learn interface of earlier HP CAD products. Al
commands are coded as Common Lisp action routines. A user interface
builder helps command programmers by hiding details of the X Window
System and the OSF/Motifl] graphical user interface. Prototyping was
done using a specially developed Lisp-based interface to OSF/Motif

called HCLX.

by Berthold Hug, Gerhard J.Walz, and Markus Kiihl

As the use of CAD systems has become more and more
widespread, two conflicting trends have emerged. On one
hand, the complexity of CAD systems has grown with their
increasing functionality. On the other hand, the typical CAD
system user is no longer a computer hobbyist. Designers and
detailers are busy enough maintaining expertise in their own
areas without having to be computer experts as well. There-
fore, CAD software must be easy to learn and easy to use for
first-time or occasional users without sacrificing flexibility
and effectiveness for more experienced users. The conflict
between the need for simple operation and the increasing
functional complexity can lead not only to less user satisfac-
tion, but also to decreased productivity. As a result, a simple
and consistent user interface has been a long-standing goal
of HP CAD products.

The user interface of HP PE/SolidDesigner is based on the
successful user interface of HP PE/ME10 and PE/ME30. The
key components of this user interface are:

Ease of Use. The product is designed not only for experts,
but also for first-time or occasional users.

Menu Structure. A task-oriented, flat menu structure mini-
mizes menu interaction and the length of cursor movements.
Macro Language. This allows the user to customize the
menu structure. User-defined functions can be set up to
increase productivity by using existing CAD operations and
measure/inquire tools for model interaction.

Online Help System. This provides all relevant information
to the user without using manuals.

The HP PE/SolidDesigner graphical user interface is based
on OSF/Motif and the X Window System, universally ac-
cepted graphical user interface standards for applications
software running on workstation computers. The OSF/Motif
graphical user interface provides standards and tools to en-
sure consistency in appearance and behavior.

The large functionality built into HP PE/SolidDesigner is
accessed by means of a command language with a defined
syntax, referred to as action routines. The user communi-
cates with the command language via the graphical user

14 October 1995 Hewlett-Packard Journal

interface. All prompting, error checking, and graphical feed-
back are controlled by means of the command language. All
CAD functionality is provided in this way, along with a user
interface builder for implementing the graphical user interface.

The action routines are implemented in Common Lisp,
which provides an easy and effective way of prototyping
and implementing user interactions. For the first interactive
prototypes, HCLX, a Lisp-based OSF/Motif interface, was
used.

During the development of HP PE/SolidDesigner, HP me-
chanical engineers spend hundreds of days testing the prod-
uct and providing feedback to tune its user interaction to
meet their needs. They mercilessly complained about any
awkward interactions. They made suggestions and drew
pictures of how they would optimize the system for their
particular tasks. As a result, commands were designed and
redesigned to reflect their needs. The user interface verifica-
tion was also supported by many external customer visits.

User Interface Description

If the user is familiar with other OSF/Motif-based applica-
tions, it’s easy to feel comfortable with HP PE/SolidDesigner
quickly. The mouse, the keyboard, and the knob box or
spaceball are the tools for interaction.

When HP PE/SolidDesigner is started it looks like Fig. 1.
The different areas are:

Viewport (center of the screen). The viewport covers the
main portion of the user interface and consists of the graph-
ics area and the viewport control buttons at the top. In the
graphics area of the viewport, the model is displayed and
the user interacts with the model. Several viewports can
exist, each with its own control buttons. Using more than
one viewport, the user can view a part simultaneously from
different sides and in different modes. Resizing and iconi-
fication of viewports are possible.

Utility Area (top row). In the utility area, the user finds util-
ity tools that support the current task. They do not terminate,
but rather interrupt and support the current command. The
help button at the right end gives access to the general help
menu.

Flir:

¥p Bh Dr

HE:Ip HP PE e e Dot

Laat Tit Redrew uter Dymumic Credle 20 Mudife 20

Mar & Ay MudifeaD
Muchine Creelurm
Labeling Layoul
= Maching
&di Rlateiial
Fatridr: Tnie
lurn
Hrmnve bdoterial
Kl Bz
Hunealy Snbtract
Stamn Inkrraret

Sgaklan

(1K Canerl Hr:Ip

Actve WH el

>

Fig. 1. Main screen of the HP PE/Solid Designer user interface.

* Main Menu (right side). The main menu buttons appear in
the right column below the application name. This is also
called the main task area. All the functionality is grouped
into task-oriented logical areas. By selecting a main task
button, the user opens a set of subtasks or a command
dialog menu with buttons for all stages in the modeling
sequence.

* Prompt Lines and General Entry Field (bottom left). The
two-line prompt area is used for general system feedback,
messages, or user guidance. The general entry field is used
for entering commands, general expressions, and the like.

* Global Control Buttons (bottom right). The buttons at the
bottom are always available. The select button is only active
when the system is prompting the user to select something.
The buttons and display fields inside the scrolled windows
display general system settings like the active workplane or
part, units, and catch information.*The other buttons are
commands that the user needs frequently. They are always
available.

*Depending on the current command, the catch setting indicates how a pick in the graphics
area (viewport) is processed to identify an element. For example, “catch vertex on current
workplane” means that if the user picks near the end of a straight line, the resulting pick point
will exactly match the endpoint of the line. The catch radius is customizable.

- Part

Cateh Allin

Delele 20 Delelea0

Cancel Ml Urla Caneel

Command and Option Dialogs

Command dialog boxes (see Fig. 2) are accessed either from
the main task area or the utility area. The current command
dialog box is replaced by the new selected one. If the de-
fault home position of the command dialog box is inside the
drawing area, the dialog box is closed upon completion of
the operation (this is typical for command dialogs from the
utility area). With this behavior the user always has optimal
use of the screen space.

Nevertheless, sometimes the user wants to have parallel ac-
cess to different dialog menus at the same time (flat struc-
ture). This can be achieved by pinning the command dialog
to the screen using the small icon in the upper left corner.
Pinned command dialog boxes are helpful whenever the
user is using several menus constantly. The user can keep as
many or as few dialog boxes open as desired and arrange
them on the screen to suit the present task. Fig. 2 shows two
pinned dialog boxes and one unpinned dialog box.

Activation of a command by a mouse click or by typing in a
command in the general entry field leads to the same behav-
ior. The command button snaps into pressed mode. If there

exist a number of additional controls of the command, a

October 1995 Hewlett-Packard Journal 15

]

Circular Straight
+ Geometry

Line

+ Geometry Construct Construct

Circle

Ctr & Rad Concentric 2 Pos

Fix Radius Fix Center Horizontal Yertical

3 Pos Diameter Parallel to Perpend to

Tan & Cen Tan &2 Pos | Atan Angle RefAngle

Tan by 2 Tan by 3 Tangentto Tan by?2

Arc Poly Lines

Generic Coneentric Polygon Rectangle

Smooth Center

Help

3 Pos Diameter

Change Circle

Radius

subdialog is attached at the bottom of the command dialog
box (see extrude box in Fig. 3). The command becomes
interactive and a prompt asks for further input. The dialog
box gets a yellow border, a signal that this dialog box is
active. If the action is suspended by an interrupt action, the
border changes to red. Thus, the user never loses track of
what is active and what is not.

The subdialog provides options in the form of buttons, data
entry fields, and check boxes for further control of the com-
mand. The system provides good defaults to minimize the
required user input. All options can be manipulated in any
appropriate order; the command supplies a parallel syntax.
All settings are displayed in the dialog box. Required data
fields are highlighted in yellow, meaning that the user must
define a value.

The help buttons of the command dialog boxes give access
to context-sensitive help.

Context-Sensitive Help

Help messages relating directly to the task the user is per-
forming can be accessed immediately by pressing the help
button located in the currently active menu or dialog box.
The help information appears in its own dialog box, which
can be positioned anywhere on the screen and resized for
convenience (see Fig. 4).

Words used in help text are directly linked to other defini-
tions or explanations. The user need not go back to indexes
to look up further words to aid in understanding the help

Workplane

Create
Mew Parallel

Copy Inclined

Share Last WP
Modify
Position Mame

Unshare Owner

Settings Slide Origin
Create New
Mame w2

Owner

Parto Face PtPtPt

Par to WP Pt Dir

Iorm to WP

Mext

OK Cancel Help

Fig. 2. Command dialog boxes
with pin icons in the upper left
corner. Two boxes are pinned to
the screen and one is not.

Machine
Add Material

Extrude

Turn

Unite

Reflect

Remove hMaterial

il
Punch
Stamp

Section

Bore
Subtract

Intersect

Extrude

Part

Workplane

+ Distance
To Part

Reverse Dir

B Keep WP

oK

Cancel

ipt

Help

information.

16

October 1995 Hewlett-Packard Journal

Fig. 3. If a command has controls in addition to the basic ones, a
subdialog box is attached to the command dialog box. The extrude
command is an example of this behavior.

In addition to the context-sensitive help, the help system
provides a task-based index with search facility, a command-
based index with search facility, an overview of HP PE/Solid-
Designer, information on HP PE/SolidDesigner’s concepts,
filters, and displays of user-typed keywords, version informa-
tion, and help on help. The help system can be used in a
standalone mode without running HP PE/SolidDesigner.

Task-Sensitive Tools and Feedback

Whenever the user has to enter a value for a command, the
system provides the appropriate tool for data entry. For in-
stance, if the user has to enter a direction, the direction tool
(Fig. 5) pops up. The user can extract the information di-
rectly out of the model with a minimum of effort by accessing
parts of the model such as edges and faces. The result is
displayed either textually or graphically as part of the model.

These task-sensitive tools are implemented as subactions so
that all commands (action routines) have access to the same
tools. Using these tools guarantees consistent system behav-
ior, for example in specifying directions.

Browsers

Browsers (see Fig. 6) display lists of files, workplanes, parts,
and assemblies, and allow selection of items for use in com-
mands without typing in names. Even complex assemblies
become easy to understand and manipulate when browsers
are used.

Customizing the User Interface

HP PE/SolidDesigner provides different facilities for chang-
ing its user interface. The following customization capabili-
ties exist:

Welcome ta PE/SolidDesigner 3.0

Helcome to PE/SclidDesigner 3.8

Commands

t—PaGkard

Overview

Howle!

* Flattening the Menu Structure. This facility is provided by
allowing the user to pin command boxes to the screen.
When the environment is saved, pinning and location infor-
mation is stored for later access.
Toolbox. The toolbox (Fig. 7) allows the user to build a
custom command dialog box. The user can put any com-
mand into the toolbox, and can put the most-used com-
mands together in one area for easy access. The toolbox can
be left open like a command dialog box. If a command be-
comes interactive, the original subdialogs are attached at the
bottom of the toolbox dialog.
¢ Lisp. The user can write Lisp functions, which can contain
action routine calls. Thus, the user can combine Lisp with
CAD functionality to optimize the system for particular needs.
* Key Button Bindings. HP PE/SolidDesigner commands or
Lisp functions can be accessed via X translations. Function
keys, mouse buttons, or any key sequence can be defined
for accessing any given functionality. This tool allows the
expert user to accelerate the use of the system.
Record/Playback. The record/playback feature allows the
user to record a series of command picks to be used later to
duplicate the action, like a macro. The information is stored
in a file for playback. The file contains the command syntax,
so it can be used to support writing user-defined Lisp
functions.

Action Routines and Personality

This section describes the user interaction in HP PE/SolidDe-
signer in more detail. It explains the basic technology under-
lying the concepts that were described in the preceding
section. A simplified extrude example is used to clarify the
explanation.

: Creating a loft (FM)

Example: Creating a loft (FM)

In this example, you will create a loft (loftl) using

the workplanes and profiles shown.

Print

After creating the workplanes and profiles:

Back Print Commands

* Freeform
Loft Tools
Create ML Tweak ML
Rotate ML
Insert WP Remove WP
Add Tan Remove Tan
Add Material
J Loft
Remove Material
Loft
Loft Add
Part ftest_part
Fig. 4. Context-sensitive help in-
formation appears in its own dia-
log box, which can be positioned
anywhere on the screen and re-

sized for convenience.

WP Set

Preview B Check Part|

H Keep Set Closed

OK Cancel Help

October 1995 Hewlett-Packard Journal 17

Fiy |

Peoint 2D
Point 3D
VYector 3D

Distance

Measure H

Direction 3D
Axis 3D

Angle

Mass Properties

Part & Assy Face

Direction 3D QOutput

Fig. 8 is a simplified diagram of the action routine/personal-
ity communication model of HP PE/SolidDesigner. The com-
munication model is divided into three parts. On the left side
are the action routines and on the right side are the user
interface objects. Bidirectional communication between the
action routines and the user interface is the task of the
personality, which is shown in the middle of Fig. 8. This
division into three separate components allows the imple-
mentor of an HP PE/SolidDesigner command to change the
user interface and its behavior without changing the com-
mand syntax. It is also possible to switch off the user inter-
face for certain commands.

The action routine concept is used to implement the com-
mand language of HP PE/SolidDesigner. A command is
coded as a state machine with several states and transitions
between these states. The term personality refers to the in-
formation coded in the GUI update table shown in Fig. 8.

HP PE/SolidDesigner distinguishes three types of action
routines:

Terminate Actions. Terminate actions terminate every other
running action routine negatively (i.e., they cancel them). At
any time there can only be one active or suspended termi-
nate action. All action routines that modify the solid model
must be defined as terminate actions.

Interrupt Actions. Interrupt actions interrupt the current run-
ning action routine. When the interrupt action is finished,
the interrupted (suspended) action routine continues from
where it was interrupted. There is no limit on the stacking
of interrupt actions. Interrupt actions must not modify the
solid model. They are only allowed to inquire about model
data. A measure command is an example of an interrupt
action.

18 October 1995 Hewlett-Packard Journal

Direction 3D

KLY £ || =5]=X =2

Can
Ref WP

u v w

Aot

-U v W

Wp Dir -Vp Dir

Face Mormal -Face Mormal

Two Points
Edge Tangent Surface Axis

Fig. 5. When the user has to en-
ter a value for a command, the
system provides the appropriate
tools for data entry. The result is
displayed either textually or
graphically as part of the model.

¥ Part Browser
Assembly
£

Parts f Assemblies

al (A)
accdoor (P)
chassis (P)
tc_doskpd (P)
az (A)
carbase (P)
enc_cover (P)
outrigger (P)
radii11 (P)
a3 (A)
outcover 2 (A)
outecover (P)
outecover.1 (P)
outcover.2 (P)
outtray (P)
papsled (P)
wingleft (P)
wingright {(P)

Selection

Assy Close Help

Apply

Fig. 6. Browsers make complex assemblies easy to understand and
manipulate.

SolidDesigner

Viewport Toolbox Measure WP-Browser
Toolbox
Recorder C-line ¥

Reset WPL by face

Start ME10 Extrude

C-line H Move face
Extrude

Part JIpli

Workplane Wik

+ Distance
To Part

Reverse Dir

B Keep WP

OK Cancel

Help

Fig. 7. The toolbox allows the user to build a custom command
dialog box containing often-used commands.

Subactions. Subactions are used to implement frequently
used menus so that they can be reused in other action rou-
tines. This avoids code duplication, allows better mainte-
nance, and improves usability. Subactions can only be called
from within other action routines. This means that the user
cannot call a subaction directly. Some typical examples of
subactions are:

O Select

O Measure axis, direction, point

O Color editor

O Part positioning.

Callbacks and Put Buffer °

Basic Action Routine Structure

As mentioned above, the user interface in HP PE/SolidDe-
signer is Lisp-based. Therefore, the implementation of an HP
PE/SolidDesigner command using the action routine concept
is a kind of Lisp programming. The following is a schematic
representation of a terminate action:

(defaction name
() List of local variables (with or without initialization)
(;; action description

(statename (state_form)
(state_prompt)
help-index-symbol
(transitionpattern (transition_form) pers-update-symbol next_state

... ;; more transitions

... ;; more states
) ;; end of action description
(;; local functions

(local-fun ()

..;; more local functions

) ;; end of local function definitions

The structure of an interrupt action or subaction is equiva-
lent to that of the terminate action shown above except that
an interrupt action is defined using the keyword defiaction
and a subaction is defined using the keyword defsaction. The
second parameter of the action routine definition is the

GUI Update Table

Personality | LISP Form
Index

Prompt, Usan
Iintjtr Interface
Mop . Builder
ou and Tools
Picks

Status
Display
and
Update

Motif

Objects

Fig. 8. In the HP PE/SolidDe-
signer user interface communica-
tion model, the action routines
representing the commands com-
municate with the user interface
objects through the personality.

October 1995 Hewlett-Packard Journal 19

name of the command that is coded through the action rou-
tine. For an extrude command this would be extrude. Follow-
ing the command name is a list of local action variables.
These variables can only be accessed from within this action
routine. Action routine local functions and each state and
transition form have access to them. They are used to store
user-entered command parameters and as variables to
control the execution of the command.

Next comes a description of the state machine. The states
are those defined by the railroad of the command plus in-
ternal administrative states. The railroad of a command is a
structure used to describe the syntax of an HP PE/SolidDe-
signer command for the user. Fig. 9 shows the simplified
railroad of the extrude command (a few options have been
omitted for clarity). The railroad reflects the concept of par-
allel command syntax. Each keyword (:part, :wp, :distance)
can be given at any time and the command loops until the
user completes or cancels it.

A distinction is made between prompting and nonprompting
states. A prompting or prompt state requires the input of a
token (a keyword or parameter value) from the user. This
token is read from the input stream, which is filled either
interactively by the user (hitting an option button, entering a
number, selecting a part, etc.) or from a file (such as the
recorder file). As many tokens as desired can be entered into
the input buffer. Entered tokens are processed by the action
routine handler. Processing stops as soon as an error Occurs
(such as an unknown keyword) or the input buffer becomes
empty. HP PE/SolidDesigner then becomes interactive and
requires more input from the user. A prompt state with an
empty input buffer displays the prompt coded in its state.

init end

(init) (doer)

otherwisei

.l (:part) — |select part| -
(:wp) — |select workplane|

(:distance) — |length|

Fig. 9. Simplified railroad giving the high-level syntax of the extrude
command.

After the user has entered a token, the action routine han-
dler tries to match the input with one of the state transitions.
If a match is found the action routine handler processes this
transition and jumps to the next state. A nonprompting state
(administrative state) takes the result of its state form to find
a match with the coded transitions of this state. If the action
routine handler was not able to find a match in the transi-
tions and no “otherwise” transition was coded, it signals an
invalid input error.

Implementation of the extrude railroad leads to the state
machine shown in Fig. 10. As the extrude command starts,
the first state is init. In this state the local variables are initial-
ized and filled with useful defaults such as the current part
and the current workplane with a valid profile. Since init is a
nonprompting state and only one “otherwise” transition is
coded the action routine handler goes on to the next state,
top-prompt. This prompt state and the nonprompting dispatch
state top-opt are the central states of this example command.
The top-opt state takes the input of the previous state (top-
prompt or any extract or check state) and tries to match its
transitions. The states select-part and select-wp call on their
only “otherwise” transition, the select subaction, as their
transition form, with the specific select focus of part or

T:error (display_error. . .)

P otherwise
otherwise o <
gl top:prompt otherwise
]

‘part otherwise :part
:distance :distance
Wi Wi
P » top-opt < P

:distance
—» (last_state_input)
part ‘part
:distance wp
wp
select-part
otherwisei|se|ectsubaction| otherwise | | select subaction | :Iengthi
extract-part extract-wp chk-distance
——— (extract-part) (extract-wp) (chk-distance)
Legend:
Prompt State
transition pattern | transition form
Nonprompting
State
State-Name
(state form)

20 October 1995 Hewlett-Packard Journal

Fig. 10. State machine for the
extrude command.

workplane, respectively. These states prompt through the
select subaction. The extract states take the result of the
transition form (select subaction call) and process the result
of the select operation. The distance state has a special key-
word—:length—as its transition pattern. For this keyword an
input conversion is involved. The transition pattern will
match any entered number, whereupon a units converter
will be called automatically. A user can work in length units
of millimeters or inches, and the units converter converts the
length into the internal units (here mm). There are also other
converters such as the angle converter which converts the user
input (e.g., degrees) into internal units (here radians).

The extrude command loops until the user completes or
cancels the command. In both cases the action routine han-
dler jumps into the separated state end. Depending on a
positive (complete) or negative (cancel) termination of the
command, the software that actually performs the action will
be called with the parameters that were collected by the
action routine.

Personality

As explained earlier, the task of the personality is bidirec-
tional communication between the action routine and the
user interface objects. The core of the personality is the GUI
update table shown in Fig. 8. This table stores all of the
actions to be performed when an action routine executes,
and it also receives data from the user. It guarantees that the
user interface is in sync with the action routine state when-
ever HP PE/SolidDesigner requires data from the user.

The GUI update table is realized as a hash table with the
pers-update-symbol (see action routine representation, page
19) as key and a Lisp form as entry. As soon as the action
routine handler finds a match in the transition pattern of the
current state it performs the transition form and triggers the
user interface update using the third parameter of the transi-
tion definition as value. The action routine handler looks up
whether a Lisp form is coded for the pers-update-symbol and
evaluates it if found. The Lisp form can contain things like
set-toggle of a command option or update-toggle-data to show
the value the user has entered. This mechanism reflects the
state of the action routine and its values at any time in the
user interface.

There are special personality keywords for every action rou-
tine:

action_name_ENTRY

"action_name_EXIT

'(action_name action-interrupt-by-iaction)

'(action_name action-continue-from-iaction).

"action_name_ENTRY is triggered as soon as the action rou-
tine starts. Normally the Lisp form coded for this entry en-
sures the display of the command options filled with all de-
fault values. " action_name_EXIT cleans up the user interface
for this command and removes the options from the screen.
The other two keys are triggered when the command is in-
terrupted or when it resumes its work after an interrupt ac-
tion. In this case the coded Lisp form normally deactivates
and reactivates the command options, since they are not
valid for the interrupt action.

Delayed Update. A sequence of action routine calls (e.g., from
the recorder file) or the input of several tokens into the

input buffer should not cause constant updating of the user
interface. Delayed update means that the user interface will
not keep track of the action routine until the action routine
becomes interactive, that is, until it requires data input from
the user. At that time the user interface of the interactive
command will reflect its state and values exactly.

A completely parameterized action routine does not cause
any reaction on the user interface. If a command changes
any status information (e.g., current part), this information
will be updated. These updates bypass the GUI update table
using the event mechanism.

The delayed update mechanism is implemented using a per-
sonality entry stack. Each trigger of a pers-update-symbol
through the action routine handler will not lead to a direct
execution of the Lisp form. All triggers are kept on the per-
sonality entry stack until the action routine becomes interac-
tive. If an action routine doesn’t require data from the user,
all entries between and including ’ action_name_ENTRY and ’
action_name_EXIT are removed from the stack. As an action
routine becomes interactive all Lisp forms belonging to the
personality entries on the stack are performed until the stack
is empty. The user interface is again in sync with the action
routine state.

A problem came up with fully parameterized action routines
behind a command toggle. Normally the ' action_name_EXIT
trigger cleans up the command user interface, but with a
fully parameterized action routine no personality trigger oc-
curs. To solve this problem the system triggers two addi-
tional personality entries which are called in either delayed
or undelayed update mode. These are ’action_name_PRE_
ENTRY and ' action_name_POST_EXIT. The release of the
command toggle is coded in ’action_name_POST_EXIT. The
need for ' action_name_PRE_ENTRY is discussed below.

Personality Context. One requirement for the user interface of
HP PE/SolidDesigner was that a command should be call-
able from other locations as well as from the default loca-
tion. The motivation was the toolbox, which can be filled by
the user with often-used commands. The main requirement
was that a command’s behavior in another context should be
equivalent to its behavior in the default context. A user who
calls the extrude command out of the toolbox expects the
extrude options in the toolbox and not those in the default
menu. The toolbox concept is based on the assumption that
a command context is specified by:

A calling button

A dialog shell, in which the calling button resides

A communication form where the command options are
shown

A shell position where the command options are shown if
they are realized in a separate dialog shell.

All other things are command-specific and independent of
the context.

The default context of a command is coded in ’ ac-
tion_name_PRE_ENTRY. Here the programmer of the com-
mand’s personality defines the context in which the com-
mand should awake as the user types it in. This context can
be overridden when the command is called out of, for exam-
ple, the toolbox. Context dependent calls of the command
personality have to check the current context settings

October 1995 Hewlett-Packard Journal 21

instead of having this behavior hardcoded in the default
context. This concept also makes it possible to program a
totally different personality for a command or to switch off
the user interface of a command.

Stacked Personality. The possibility of invoking the same in-
terrupt action several times makes it necessary to provide a
method of creating independent incarnations of the interrupt
action user interface. This is done by separating the building
instructions of the command option user interface into a Lisp
function. As an interrupt action is called a second time (or
third, etc.) after an initial invocation, the widgets of the latest
command option block are renamed to save the state and
contents. Then a new incarnation of the option block is
created using the building instruction function. When the
most recent interrupt action terminates its execution the user
interface incarnation is destroyed and the widgets of the
saved option block are renamed again to become valid once
more. One incarnation of the option menu of a command is
always kept. All other necessary incarnations are created and
destroyed at run time.

User Interface Development Tools

To speed up the user interface development process a proto-
typing tool was required that would allow modifications to
be made quickly. Since the command language of HP PE/So-
lidDesigner is Lisp-based and the commands are intended to
interact closely with the graphical user interface (GUI), stan-
dard C/C++-based user interface builders could not be used
as prototyping tools. Such tools would have required the
standard edit/compile/link/test cycle, which slows down the
prototyping process heavily. They also didn’t offer Lisp inter-
faces or facilities to change the GUI of the CAD system at
run time, a required feature.

In 1989 only a few Lisp interfaces to the X and OSF/Motif
toolkits were available. Because none of these had all of the
features we needed, we decided to produce our own. Called
HCLX, it is a Common Lisp interface to the X11 Xlib, the X
toolkit intrinsics, and OSF/Motif widgets (Fig. 11). It provides
Lisp functions for all the functions available in 1ibX11, libXt
and libXm, as well as all the constants and resources in the
X11 .h files. It provides functions to create, access, and mod-
ify all the structures used by the X toolkit and Xlib. Widget
class variables are also defined, and Common Lisp functions
can be used as callback routines in widgets and as functions
for translations.

Although it is possible to do all X and OSF/Motif-related
coding in HCLX, experience during the development process
showed that certain low-level X programming should be
done in C++. This includes such things as initialization, color
maps, and the color button.

Color Maps. The use of a graphics library like HP StarBase
and the demand for high-quality shaded solid models imply
the need for a private color map within the graphics win-
dows of HP PE/SolidDesigner. When the graphics window
or its top-level shell window is focused, the graphics color
map is installed (copied into the display hardware) by the X
window manager. On displays that support only one color
map in hardware (most of the low-end and old displays),
everything on the entire screen is displayed using the
installed color map. When a private color map is installed,
all windows using the default color map take random colors.

22 October 1995 Hewlett-Packard Journal

User Interface Conversion Functions

User Interface Builder

MOTIF

X Toolkit
Xlib

CIC++ Lisp

Fig. 11. Tools used to develop HP PE/SolidDesigner’s user interface.
HCLX is a specially created Common Lisp interface to Xlib, the X
toolkit, and OSF/Motif widgets.

As soon as a window using the default color map gains the
focus, the default color map is reinstalled, and the graphics
windows with their private color map will have random
colors. As the current color map switches back and forth
from default to private, the user sees color flashing. To avoid
this for the user interface of HP PE/SolidDesigner, a private
color map is used for the user interface windows that has
the same entries as the color map used for graphics. Along
with the color map, a color converter is installed that for a
given X or OSF/Motif color specification tries to find the best
matching color within the color map.

Color Button. For the light settings commands, a color editor
is required to give the user feedback on the colors used in
the graphics windows. Therefore, a color button widget was
inherited from OSF/Motif’s drawn button. The color button
has a small StarBase window in which colors are rendered in
the same way as in the graphics windows.

User Interface Builder

HP PE/SolidDesigner’s user interface builder was created
using HCLX. During the prototyping phase for the user inter-
face it became obvious that it is too expensive to train every
application engineer in the basics of the X Window System
and OSF/Motif. The user interface builder hides X and OSF/
Motif details from the application engineer and offers facili-
ties to create a subset of the OSF/Motif widgets.

Unique Naming. OSE/Motif widget creation procedures return
a unique ID for a widget, which must be used whenever a
widget is modified or referenced by some other procedure.
The user interface builder changes this. Widgets are identi-
fied by unique names. These names can be specified or
created automatically. The user interface builder ensures the
uniqueness of the names.

Properties. For every widget only a small subset of its original
resources are made available. To distinguish these resources
from the full set of resources, they are called properties. A
user interface builder property consists of a name and a cor-
responding value. The name is derived from the original
OSF/Motif resource name by removing the prefix XmN. For
example, XmNforeground becomes foreground. Some of the
widget’s callbacks are offered as properties. Callback proper-
ties have as a value a Lisp form, which will be evaluated
when the callback is triggered. The user interface builder

Machine

Add Material
Extrude Unite
Turn Reflect
Remove haterial
Mill Bore
Punch Subtract

Intersect

Stamp

Section

Fig. 12. Command dialog box created with a call to create-right-
menu-dialog.

ensures that Lisp errors within these forms are trapped and
handled gracefully. After a property has been specified for a
widget, its value can be queried and the user interface
builder will return the Lisp form that was used for the speci-
fication. This means that specifying red or #FF0000 as a value
for the property background will result in a return of red or
#FF0000 and not just a pixel value as in OSF/Motif.

User Interface Builder Action Routines. All user interface builder
commands are offered as action routines. They make heavy
use of the property decoders to detect input errors such as
wrong property names or values. There are user interface
builder commands to create widgets, modify and query
widget properties, display, hide, and position widgets, and
access the graphics widgets.

User Interface Convenience Functions

The user interface convenience function level is located on
top of the the user interface builder level (see Fig. 11). While
all the user interface builder functions are closely related to
OSF/Motif, the user interface convenience functions are
more abstract and not related to any window system. This
level allows the programmer of a new command a fast and
easy-to-use implementation of the command’s user interface.
The functions guarantee that the new command fits the look
and feel of HP PE/SolidDesigner’s user interface.

The function create-right-menu-dialog is used to create stan-
dard HP PE/SolidDesigner menus which generally appear on
the right side of the user interface. The base of every right-
menu dialog is a dialog shell. This allows moving and posi-
tioning these menus anywhere on the screen. A right-menu
dialog can be constructed top-down with various elements.
Only its width is limited to the size of two standard buttons.
Fig. 12 shows a typical HP PE/SolidDesigner command dia-
log constructed with a call to create-right-menu-dialog.

With the function create-options-block, typical HP PE/SolidDe-
signer user interface objects for command options can be

created. An option block can never be without a parent wid-
get. This means that the function create-options-block doesn’t

¥ Dialog Example =
Group Title
Command 1 | Command 2
Command 1 Options
Filename ftmpffoo.rec
Color
Line Style
[| Faces
Subtitle
Toggle 1 Toggle 2
4 Opt1 Opt2 Opt3

Left Toggle

X 42.0815

Wide Toggle
123|456 |7 8|9

Cancel

Compl. Help

Fig. 13. Some heterogeneous option types that can be created with
create-options-block.

create a dialog shell as a basis, but a form widget, which is
realized in a parent widget (generally an empty form widget,
also called a communication form in this article). Fig. 13
shows some of the possibilities out of which a heteroge-
neous option block can be constructed. Each option block
has an optional title, a main part underneath the optional
title, and an optional suboption form, an empty form widget
below the main part as a placeholder for suboption blocks.

The function create-dialog-shell creates an empty HP PE/So-
lidDesigner standard dialog shell in any size. Possible ele-
ments are pin, title, close, OK, cancel, and help buttons. The
empty main form can be filled with any user interface ob-
jects, which can be created using standard user interface
builder calls. This function is used to create nonstandard
menus such as browsers, the color editor, and so on.

Conclusion

The effort put into the development of HP PE/SolidDesign-
er’s user interface was a good investment. The user interface
is one of our key competitive differentiators. Customers like
the clear structure, ease of use, and ease of learning. The
Lisp-based implementation allows broad customization pos-
sibilities. The powerful concepts of HP PE/SolidDesigner’s
user interface and its technology provide a firm foundation
for future developments.

OSF/Motif is a trademark of the Open Software Foundation in the U.S.A. and other countries.

October 1995 Hewlett-Packard Journal 23

