Enhancements in Blending Algorithms

This article describes a rounding operation for a 3D CAD boundary
representation (B-Rep) solid model. Complex combinations of convex and
concave edges are handled predictably and reliably. At vertices the
surfaces are smoothly connected by one or more surface patches. An
algorithm for the creation of blending surfaces and their integration into
the model is outlined. The sequence of topological modifications applied
to the solid model is illustrated by examples including some special case

handling.

by Stefan Freitag and Karsten Opitz

Apart from the basic Boolean operations, a modern solid
modeling CAD system needs to provide easy-to-use facilities
for local modifications of the primary model. One of the
most important examples is the blending or rounding of
edges, in which a sharp edge of the model is replaced by a
surface that smoothly joins the two adjacent faces (see

Fig. 1).

Blending surfaces serve several purposes in mechanical
designs, including dissipating stress concentrations and en-
hancing fluid flow properties. In addition, some machining
processes do not permit the manufacture of sharp edges.
Smooth transitions between surfaces are also often required
for aesthetic reasons. Besides functional requirements, edge
blending is conceptually quite a simple operation, which
makes it very popular among designers using CAD systems.

A common characteristic of almost all applications is that the
smoothness of the blend is more important than its exact
shape. For the user this means that it should be possible to
create a blend by specifying only a few parameters. It is then
the system’s task to fill the remaining degrees of freedom in
a meaningful manner.

From an algorithmic point of view, blending one or more
edges of a solid model simultaneously falls into two sub-
tasks. The first is to create a surface that provides the transi-
tion between the adjacent surfaces defining the edge.
Secondly, the surfaces need to be trimmed properly and
integrated into the body such that a valid solid model is

24 October 1995 Hewlett-Packard Journal

maintained. While the first step is a purely geometric prob-
lem, the second one involves both geometric and topologi-
cal operations.

The blending module in HP PE/SolidDesigner was designed
with the goal of allowing blending of a wide variety of com-
plex edge combinations in a robust manner. This is accom-
plished through the use of freeform geometry as blending
surfaces, along with quite involved geometric and topologi-
cal considerations in several phases of the algorithm.

The lack of freeform surfaces was the primary reason for
most of the restrictions concerning edge blending in HP
PE/SolidDesigner’s predecessor, the HP PE/ME30 3D
modeling system. HP PE/ME30’s kernel, the Romulus
geometric modeler, does in fact provide more complex
surfaces,! but these enhanced blends were never imple-
mented in the product.

The current capabilities of HP PE/SolidDesigner’s blending
algorithm go far beyond HP PE/ME30 with respect to the
topological situations that can be handled reliably. Moreover,
the architecture of the algorithm allows the inclusion of
future enhancements in a consistent manner.

It is the aim of this paper to illustrate the basic blending al-
gorithm and to provide the reader with examples that dem-
onstrate the complexity of the geometric and topological
problems that must be solved to integrate one or more blend
surfaces into a solid model. More information on this subject

Fig. 1. (a) A solid model with
sharp edges. (b) Edges
rounded by blending.



can also be found in Woodwark? and the excellent survey of
Vida.3

HP PE/SolidDesigner’s underlying philosophy allows flexible
modifications of the solid model in every stage of the model-
ing process. In the context of edge blending this means that

it should always be possible to remove or modify an existing
blend surface without regard to how it was created.

In the next section, the second section of this article, we
introduce some terminology commonly used in solid model-
ing, in particular in the blending context. The third section
describes the use model of edge blending in HP PE/SolidDe-
signer. An overview of the algorithm is given in the fourth
section, followed by a more detailed discussion of its major
steps. Finally, in the last section, we discuss some perfor-
mance and stability issues.

Blending Module of the HP PE/SolidDesigner Kernel
Currently, the blending operation in the HP PE/SolidDesigner
kernel implements what is commonly known as the rolling
ball blend. This type of blend can easily be visualized as a
ball moving along the edge and touching the adjacent sur-
faces (the primary surfaces) simultaneously. The touching
loci are curves that define the boundaries of the blend
surface. Depending on whether the radius of the ball is
constant or varies while it is moving, we speak of constant-
radius or variable-radius blends.

The geometry module of HP PE/SolidDesigner’s kernel sup-
ports a number of different surface types (Fig. 2). These in-
clude the natural quadrics (planes, spheres, cylinders, and
cones), toruses, and NURBS (nonuniform rational B-spline)
freeform surfaces. All of the surface types are represented
parametrically. The object-oriented design of the kernel
allows the use of generic algorithms for general surfaces as
well as special-case solutions for particular surface types.

Most algorithms such as surface/surface intersections or sil-
houette calculations behave considerably more stably and
perform more efficiently when dealing with nonfreeform or
analytic surfaces. Consequently, the blend algorithm tries to
employ analytic surfaces whenever possible. This necessi-
tates several case distinctions during the process of blend
creation, which will be pointed out later.

Depending on the local geometry, that is, the convexity of
the edge, blending an edge may involve adding or removing
material. These operations are sometimes distinguished as

filleting or rounding, respectively. In this article we will
refer to both cases as blends.

If several edges to be blended meet at a common vertex, the
blending surfaces should be joined in a smooth manner. We
call these transitions vertex regions because they replace a
vertex by a set of surfaces. In some special cases, a vertex
region can be defined by a single analytic surface like a
sphere or a torus. In general, however, they are defined by
up to six tangentially connected B-spline freeform surfaces.

HP PE/SolidDesigner belongs to the class of B-Rep (bound-
ary representation) modelers, in which the solid model is
represented internally as a set of vertices, edges, and faces.
In addition, the representation contains information about
how these entities are related to each other—that is, the
topology of the model. B-Rep modelers usually employ a
restricted set of operations to perform topological manipula-
tions of the model. The application of these Euler operators
ensures the topological integrity of the model.

Integrating one or more blend faces into a solid involves
quite a number of topological modifications and different
Euler operators. We will not discuss the underlying concepts
in detail here, but refer the reader to the standard sources.45:6
For our purposes, it suffices to know that the blend algo-
rithm employs these basic operators (for example, ADEV,
ADED, KEV, KE) to create the new topological representation
of the blended body.

The blend module also takes advantage of basic functionality
provided by the geometry module of HP PE/SolidDesigner’s
kernel. Examples are closest-point calculations with respect
to a curve or a surface. We call these operations relaxing a
point on a curve or surface. This applies to curves or sur-
faces of any type. For instance, it is often necessary to relax
an arbitrary point on the intersection curve of two surfaces.
Since these operations are part of the kernel’s generic func-
tionality, we will not go into the details of their implementa-
tion.

Using the Blend Command

Like all of HP PE/SolidDesigner’s commands, the user inter-
face for the blend command is designed to be easy to use
and require as little input as possible from the user. This is
greatly facilitated by some general mechanisms used
throughout HP PE/SolidDesigner’s user interface such as the
selection methods and the labeling feedback.

Fig. 2. Detail from Fig.1 showing
different types of surfaces em-
ployed by the blending algorithm.

October 1995 Hewlett-Packard Journal 25



The blend command distinguishes two modes: the definition
mode and the preview mode. In definition mode, single or
multiple edges can be selected and assigned a radius (of the
rolling ball). Variable-radius blends are specified by start and
end radii to be assigned to the end vertices of the edge.
Since the choice of the start and end vertices is arbitrary, the
vertices of the currently selected edge are marked with
labels. The radius of the rolling ball varies linearly between
the two end vertices of the edge.

An important feature of the blend command is its ability to
handle both types of blends simultaneously. This gives the
user the ability to specify an arbitrary combination of con-
stant and variable radius blends, each with possibly different
radii, in a single blend session.

The blend command uses straightforward radius defaulting.
For example, the constant radius of the active edge carries
over to all subsequently selected edges unless the user
chooses a new radius explicitly.

While processing the selected edges, the algorithm decides
about the inclusion of a vertex region to provide a smooth
transition between the blend surfaces. A vertex region will
be created if all edges adjacent to a particular vertex are to
be blended in the same session. In other words, a vertex
region can easily be suppressed by blending adjacent edges
one after another.

In preview mode, the blend faces are shown using a pre-
view color. Modification of the radius or the edge informa-
tion is not possible in this mode. However, upon returning
to the definition mode, the user can specify further edges to
be blended, modify the blend radius assigned to an edge, or
remove an edge from the list.

There are two ways to terminate every command in HP
PE/SolidDesigner. Canceling the blend command causes the
blends to be discarded, while completing it makes the
blends “real.”

For convenience, the blend menu contains a small number
of options:

The part checker usually run on the blended part can be
switched off to provide a faster, although possibly invalid
result.

The labels attached to edges and faces, which might be
annoying if a large number of edges are selected, can be
turned off.

A chain option allows the user to select all edges connected
tangentially to a given edge by a single pick.

Because of the complexity of the operation, blending one or
multiple edges sometimes fails. While some problems are
easily detected, others are caused by topological or geomet-
rical restrictions rooted at a relatively low level. A typical
example for the first kind of problem is the case where the
blend radius is chosen too large. In any case, a failure is
reported to the user by displaying an error message and
highlighting the edge that is causing the problem.

How the Blending Algorithm Works

As noted above, the rolling ball blend provides us with a
very intuitive way to define a blend surface. While moving
along the edge, the ball sweeps out a certain volume. The
blend surface is simply a part of the surface bounding this

26 October 1995 Hewlett-Packard Journal

volume. In mathematics, surfaces that are swept out by fami-
lies of moving spheres are called canal surfaces.” The cylin-
der and the torus are the most obvious examples.

A number of blending problems can be handled by inserting
surfaces of these types. We will refer to these cases as ana-
Iytic blends. In other than the simple cases, however, the
explicit representation of a canal surface takes on quite a
complicated form. Therefore, an approximation of the ideal
blending surfaces by freeform blends is constructed. In par-
ticular, we use Cl-continuous B-spline surfaces.

The general algorithm is divided into a number of smaller
modules. Each of these modules typically scans over all
edges to be blended and performs a certain task. However,
care is taken that the result is symmetric, that is, it does not
depend on the order in which the edges are operated on.

The task of the first module is to filter out all cases where an
analytic solution exists and flag the corresponding edges
accordingly. In the second step, the touching curves of the
ball with the primary surfaces are calculated. While this is
straightforward for analytic blends, the boundaries of free-
form blends must be computed numerically. This is accom-
plished by a marching algorithm.

Having calculated the boundaries of the blend surface, we
determine their intersection points with other edges. It is
often necessary to remove edges from the model to find
useful intersection points. This is the first step that possibly
involves topological modifications of the original body.

Other major changes to the model are done in the next two
modules, which represent the blend face topologically. The
first module performs the zipping of the original edge, that
is, it replaces this edge by two new ones connected to the
same end vertices. Secondly, the appropriate topology at the
end vertices is inserted.

From a topological point of view, the model containing the
primary blends is now complete. However, several topologi-
cal entities are still without geometry. The surfaces corre-
sponding to the blend faces, for instance, are not yet de-
fined. These are computed in the next module based on the
already available boundary data.

Furthermore, the surfaces need to be trimmed at the end
vertices of the original edges. The trimming curves of the
surface are, in general, computed by intersecting them with
adjacent surfaces. However, it might also be necessary to
intersect two adjacent blend surfaces created in the same
session. The intersection curves are then “hung” under the
corresponding edges.

Finally, the last major module performs the inclusion of ver-
tex regions, both topologically and geometrically. These
steps will be described in more detail later.

Analytic or Freeform Blends

It is not difficult to list all cases where a cylindrical or toro-
dial surface fits as a blend between the two primary sur-
faces. The simplest case is the one in which two intersecting
planes blended by a cylindrical surface. A torus can be used
when blending the edge between a conical and a planar
surface as shown in Fig. 3. In a first pass over all involved
edges, the algorithm tries to match one of the cases where



Fig. 3. A torus provides a smooth blending of the edge between
a conical surface and a planar surface.

such a solution exists. The corresponding edges are then
flagged as analytic.

The decision about when to employ analytic or freeform
blends, however, is also dependent on other, more global
factors. For example, suppose that three cylindrical blends
with different radii meet at a common vertex (Fig. 4). This
necessitates the inclusion of a freeform vertex region. De-
pending on the numerical tolerance used in the system, this
might lead to very expensive B-spline surfaces in terms of
data generated (the B-spline boundaries of the vertex region

must lie—within some tolerance—on the adjacent cylinders).

Therefore, it is often necessary to use freeform blends rather
than analytic ones at a subset of the edges for the benefit of
reducing overall data size. The corresponding checks are
done in a second pass over the edges.

As a side-effect of switching from an analytic to a freeform
blend for a particular edge, other edges adjacent to this one
might be affected. This is also taken care of in the second
pass.

The results of these operations are flags attached to all in-
volved edges and their end vertices which provide informa-
tion to all following modules about the types of surfaces to
be used.

Blend Boundary Creation

The task of the second module is to compute the blend
boundaries and tangency information along these curves.
This information will be used later for the construction of
the blend surfaces. The calculation of the boundaries for
cylindrical and torodial blends is a straightforward exercise
in analytic geometry and will not be described here. More

Fig. 4. Three cylindrical blends with different radii connected
by a freeform vertex region.

involved and computationally more expensive is the general
case, which will be the main topic of this section.

A major advantage of the rolling-ball blend is that its defini-
tion can be put into mathematical terms quite precisely. Sup-
pose a ball with radius r moves along the edge between the
primary surfaces. The curves where the ball touches the sur-
faces will be the boundaries of the blend surface to be in-
serted. The center of the ball moves along a third curve, the
spine of the canal surface. If the radius of the ball changes
while rolling, the curves touching the surfaces will define a
variable-radius blend surface. In HP PE/SolidDesigner a gen-
eral B-spline curve is used to define the radius function.

The spine lies entirely on a surface with constant distance r
from the original surface. This is called the offset surface.
This applies to both primary surfaces. Therefore, we can
calculate the spine as the intersection curve of the two offset
surfaces (Fig. 5).

Computing surface/surface intersections is a ubiquitous
problem in solid modeling and many algorithms have been
devised for its solution. Very popular are the marching algo-
rithms, which trace out the intersection curve starting from a
given point in its interior. In our blending algorithm, we get
such a starting point by taking the midpoint of the original
edge and relaxing it onto the spine. The entire curve is then
computed by marching the intersection of the two surfaces
in both directions. The marching stops when the curve
leaves a certain 3D box provided by the calling routine. The
boxes are chosen such that the resulting blend surfaces are
large enough to fit into the model.

The particular strategy we employ for the marching is to
reformulate the problem as one of solving a differential
equation in several unknowns. The solution is then com-
puted by a modified Euler method.

Fig. 5. The center of the rolling ball moves on the intersection
curve between the two offset surfaces.

October 1995 Hewlett-Packard Journal 27



A common problem in marching algorithms is the choice of
an appropriate step size. Choosing the step size too big
might lead the algorithm astray. On the other hand, very
small steps usually guarantee convergence of the method
but might generate too much data. Therefore, we use an
adaptive technique based upon the curvature of the intersec-
tion curve: a small curvature indicates that the intersection
curve behaves almost like a straight line. This means that we
can proceed with a large step. On the other hand, if the
curve bends sharply, that is, its curvature is large, we use
very small steps to capture all of its turns.

The result of these computations is a set of isolated points
lying exactly on both offset surfaces and thus on the spine.
Conceptually, the corresponding points on the blend bound-
aries can be determined by projecting these points onto the
original surfaces (Fig. 6). In fact, for parametric surfaces this
operation is trivial because the offset surface inherits its pa-
rameterization from the underlying surface. This means that
we simply have to evaluate the primary surfaces at the
parameter values of the points on the spine.

The blend boundaries are now created by constructing cubic
Hermitian segments between the given points. However, we
still have to check whether the entire segment lies on the
surface, within a given tolerance. In cases where it doesn’t,
we use a fast bisection method for “pulling” the curve seg-
ment onto the surface.

While the intersection curve—and thus the blend bound-
aries—are traced out, we also collect tangential information
along the boundaries. This information is used in the surface
creation step to construct smooth transitions between the
primary surfaces and the blend surface. The same bisection
and representation techniques as for the boundary curves
are used for these cross-tangent curves.

Before we conclude this section, we still have to address the
question of singularities, which are critical for every march-
ing algorithm. In our context, we have to deal with two
types of singularities: those of the surfaces to be marched
and those of their intersection.

Fig. 6. The blend boundaries (red) are created by mapping the
spine (black) onto the primary surfaces.

28 October 1995 Hewlett-Packard Journal

The first problem is illustrated in Fig. 7. While a small offset
leads to well-behaved curves, larger distances result in offset
curves with cusps or self-intersections. Analogously, we
might have degenerate offsets of the primary surfaces if the
distance (radius of the blend) is chosen too large. For too
large a radius, a rolling ball blend is not possible. When
such a situation is detected the marching stops, the entire
blend algorithm stops, and the user is advised to try the
operation again with a smaller radius.

The second type of singularity occurs if the primary surfaces
and consequently their offsets possess a common tangent
plane (Fig. 8). These tangential intersections typically create
the biggest problems for marching algorithms. Loosely
speaking, it is very difficult to find where to go at these
points. However, a rolling ball blend is still well-defined.
The touching curves of the ball are identical with the origi-
nal edge, and the blend surface degenerates to one with
zero width. HP/PE SolidDesigner’s kernel enforces the rule
that these extraordinary points may only occur at the end-
points of an edge. This considerably eases the task for the
blending algorithm. It is quite simple to check whether the
intersection curve degenerates at its endpoints. This informa-
tion is provided to the routine that performs the marching.
Since the algorithm starts at the midpoint of the intersection
curve, the occurrence of a singular point of this type indi-
cates that we have reached one of the endpoints of the
edge.

In a final step, the segments of the boundaries and the cross-
tangent curves are merged into Cl-continuous B-splines. The
overall result of this module consists of four Cl-continuous
curves with a common parameterization describing the
boundary curves and tangency information of the blend
surface.

Trimming the Blend Boundaries

After creating the blend boundaries we need to integrate the
boundaries into the body. Most important, we have to find
the position where the boundaries are to be trimmed. Fig. 9
shows a particularly simple example.

The six points shown in blue can be calculated by intersect-
ing the blend boundaries with the adjacent edges at the end

Fig. 7. When the blend radius is chosen too big, the blend boundary
will have a cusp (red curve) or even be self-intersecting (black
curve).



Fig. 8. If the primary surfaces have the same normal along the
edge, the blend surface (blue) degenerates.

vertices. However, usually the set of edges to be blended
with possibly different radii is not limited to one edge but
may contain several edges or even all of them. This means
that while the boundaries of a given blend face are being
trimmed they must be intersected with other blend bound-
aries created in the same session (red points).

Intersecting a blend boundary with an existing edge of the
solid model may have three results:

One intersection point found. This is the general case.

No intersection found. The edge is too short to be inter-
sected by the blend boundary. In this case the edge will be
removed from the model. The edge newly attached to the
vertex will now be intersected by the blend boundary. Re-
peating this procedure guarantees the existence of at least
one intersection point.

Multiple intersection points found. Such a situation might
occur, for instance, if the adjacent edge is part of a B-spline
curve “wiggling” around the blend boundary. In this case,
the most valuable intersection point has to be chosen. A
valuable point in this context is the one that produces the
most predictable and expected result.

Fig. 9. The blend boundaries are trimmed at points where they
intersect adjacent edges (blue) or another blend boundary (red).

Fig. 10. Selecting the correct intersection point between a
blend boundary and an adjacent edge also depends on the
local surrounding geometry.

In fact, very often there are several possible solutions and all
of them result in a valid solid model. Several different crite-
ria are used to select the best intersection point. Fig. 10
shows two examples. The remaining intersection points are
ignored.

Creating the Topology of the Blend Face

Having computed the trimming points of the blend bound-
aries, we build up the topology of the blend face. The first
step is similar to opening a zipper: the original edge of the
body is replaced by two new ones connected to the same
vertices. The new face is then extended at its end vertices.
More precisely, four new edges—two at each end—are
added. In addition, the adjacent edges are split at the four
trimming points (Fig. 11).

Blend Surface Creation

Now the face is ready for the inclusion of the blend surface.
There are two possibilities. In the first case, analytic surfaces
are inserted based on the decision made in the first module.
Possible surface types are cylinders, cones, and toruses only
(Fig. 12). In all other cases a freeform surface is created. We
use Cl-continuous B-spline surfaces. This surface is defined
by the blend boundaries created by the marching algorithm,
the tangency information along these boundaries repre-
sented by cross tangent curves, and the fact that the blend
surface should have circular cross sections. Using this
knowledge the surface can be created very easily. The circu-
lar cross section is approximated by a single cubic B-spline
segment. Although not precise, this approximation is suffi-
ciently good for practical purposes. In fact, given the input

Fig. 11. Creating the topology of a blend face.

October 1995 Hewlett-Packard Journal 29



Fig. 12. A model containing only analytic blend surfaces:
cylinder, cones, and toruses.

data for the cross section—boundary points and tangent
directions—we use an optimal approximation based on a
method described by Dokken.8 The boundary curve infor-
mation and parameterization transfer directly to the surface

(Fig. 13).

Trimming the Blend Surfaces

The last step in integrating the blend surface into the solid
model is to trim it at the ends. The goal is to keep the trim
area as simple as possible.

Unfortunately, the authors of many edge-blend algorithms
assume that they are dealing with a trimmed-face surface

model and they offer no suggestion about what to do at the

ends of the edge to be blended. The topological and geo-

metrical issues are quite complex, especially when multiple

edges meet at a common vertex.

Fig. 13. Creating the geometry of a freeform blend surface: the
control polygon of the blend boundaries (left) and the resulting
blend surface (right).

30 October 1995 Hewlett-Packard Journal

The simplest type of termination issue arises when there is
only one edge to be blended. Both boundaries must be
joined at the ends of the blend face. The easiest way to do
this is to intersect the blend face with all edges and faces
connected to its end (Fig.14). Intersecting the blend face
with these edges creates intersection points which are to be
connected to form the boundary of the blend face.

The intersection points are calculated by curve/surface inter-
sections between the blend surface and the curves of the
edges at the end of the blend face. In general, a curve/sur-
face intersection will result in multiple intersection points. In
this case, the one chosen is the one closest to the vertex of
the edge to be blended at this end.

If there is no intersection point of the blend face and an
edge this edge is removed from the model using the Euler
operator KEV. If this edge is the last one of its face, the face
is removed using the Euler operator KBFV. Removing an
edge means disconnecting it from its vertices and filling the
gap by connecting other edges to these vertices. The newly
connected edges have to be intersected with the blend face,
too. However, if one of these edges is also to be blended, an
intersection between its blend boundaries and the blend face
is calculated. The intersection points are then connected by
intersection tracks of the blend surface and the adjacent
ones. In general, the result of this surface/surface intersec-
tion calculation is a set of intersection tracks. Tracks that do
not contain the intersection points described above are fil-
tered because they are not needed. The remaining tracks are
sorted by the distance between two intersection points. The
shortest arc is the one chosen because it minimizes the trim
area at this end.

Fig. 14. Trimming a blend surface involves a number of
curve/surface intersections (red points) and surface/surface
intersections (blue curves). Note how the faces marked dark
red are “eaten up” by the blend face.



Fig. 15. When more than two edges to be blended meet at a
common vertex, a vertex region is inserted to connect the blends
smoothly.

Vertex Regions

A totally different situation occurs when more than two
edges meet at a common vertex. In this case a set of addi-
tional faces and surfaces must be created to build a transi-
tion patch that smoothly connects all of the blend faces
meeting there. This set of faces is called a vertex region
(Fig. 15).

In some special cases a vertex region has only one face,
which is an analytic surface (sphere or torus). In general,
however, a vertex region will contain three or more faces. In
HP PE/SolidDesigner the number of faces in a vertex region
is currently limited to six.

Topology of Freeform Vertex Regions. At a vertex where five
edges to be blended meet each other, the topology shown in
Fig. 16a arises after extending the blend faces as described
above. The blending algorithm transforms this topological
situation by integrating five faces, each having four edges, as
shown in Fig. 16b. Transforming the topology requires the
use of the Euler operators KEV, ADEV, and ADED to kill an
edge, add an edge, and add a whole face. Fig. 17 shows the
sequence of Euler operators.

Topology of Analytic Vertex Regions. When a sphere or torus
fits a vertex region the topology is changed in another way.
Instead of the “star” where the blend faces meet, a single
face will be created using KEV and ADED, as shown in Fig.
18. Fig. 19 illustrates the algorithm, showing the transforma-
tion step by step.

Geometry of Freeform Vertex Regions. After creating the topol-
ogy of a vertex region, the corresponding geometry must be
constructed and integrated. To provide a smooth transition,

@ (b)

Fig. 16. (a) Topology of a vertex region where five faces
meet after extending the edges. (b) Topology created for the
representation of the vertex region.

ESESEISE/SS
T
T

Fig. 17. Sequence of Euler operators used to transform the topology
of Fig. 16a to the one of Fig. 16b .

the surfaces must satisfy two constraints. First, their bound-
aries must match the ones of the adjacent surfaces. Secondly,
the vertex regions and the blend surfaces should possess the
same tangent planes along their common boundaries. The
construction of vertex regions satisfying those constraints is a
classical problem in geometric modeling.? Among the many
solutions, we mention the one proposed by Charrot and
Gregory.10 They fill a vertex region by a procedurally de-
fined surface, that is, a surface that does not have an analytic
mathematical representation but rather is defined by a
method of generating it. Since the geometry kernel of HP
PE/SolidDesigner does not support this type of surface, we
employ an algorithm that generates a set of four-sided B-
spline surfaces. More precisely, for filling an n-sided hole,
we use n B-spline surfaces of polynomial degree 6 in both
parameter directions.

Geometry of Analytic Vertex Regions. From the geometrical
point of view analytic vertex regions are quite easy to com-
pute because only one surface is needed and the surface
type will be either a sphere or a torus.

Transition Curves. When large radii are combined with very
small radii, a vertex region can look very strange, deformed,
or even self-intersecting, like the left solid in Fig. 20. In such
cases, instead of a three-sided vertex region, a four-sided
one is used, giving a result like the right solid in Fig. 20. In
general, an (n+1)-sided region is used instead of an n-sided
region. This is done by introducing a transition curve be-
tween two boundaries sharing the same face. The transition
curve is used whenever an intersection of two boundaries is

@ (b)

Fig. 18. When part of a sphere fits as a vertex region, a single face
is created.

October 1995 Hewlett-Packard Journal 31



7YY
NI

Fig. 19. Sequence of Euler operators used to create the face
of Fig. 18.

“behind” the direct connection of its neighboring intersection
points.

Geometrically, the transition curve is a B-spline curve de-
fined at its endpoints by tangency conditions to both bound-
aries and in between by a tangency condition to the corre-
sponding face. This curve is created using an adaptive
curvature-controlled bisection algorithm similar to the one
used to create the blend boundaries. The endpoints of the
transition curves are constructed such that the cross section
of the resulting blend surface is an isoparametric of this sur-
face. In certain cases it is also necessary to insert a transition
curve to smoothly connect two nonintersecting adjacent
blend boundaries. Fig. 21 shows an example.

Special Cases

A reliable blending algorithm must be able to handle various
topological and geometrical special cases predictably. Four
major special cases are tangential intersections, apex cre-
ation, a singularity at the end of a blend surface, and closed
curves.

Tangential Intersections. Real-life solid models often contain
edges connected tangentially at a vertex to another edge.
Blending these edges will result in very complex and time-
consuming surface/surface intersections in the process of
trimming the blend faces at the common vertex, especially
when their radii differ only slightly.

Fig. 20. When the vertex region would be too badly deformed,
an additional transition curve is inserted to provide a smoother
transition.

32 October 1995 Hewlett-Packard Journal

S0

Fig. 21. A transition curve (lower edge of the vertex region) is also
inserted when two adjacent blend boundaries around a vertex
region don’t intersect.

If two boundaries are tangential to others, the intersection
point calculation is numerically very unreliable and expen-
sive. In addition, both blend surfaces share a common
region of partial coincidence, so the intersection track cal-
culation is even more expensive than the intersection point
calculation.

To avoid these problems, two edges to be blended are han-
dled in a totally different way. No curve/surface or surface/
surface intersections need to be calculated. Rather, an addi-
tional face is created that smoothly connects the two
surfaces (Fig. 22).

Apex Creation. If an edge to be blended is concave, material
is added to the solid model. This means that other edges
become longer and faces become larger, and sometimes a
singular point moves into a face. HP PE/SolidDesigner re-
quires a topological entity, a vertex, right at the apex in this
case. Therefore, after creating the blend face the required
vertex is added (Fig. 23).

Singularity at the End of a Blend Surface. Sometimes at an end-
point of the edge to be blended the surface normals of the
adjacent surfaces are equal—for example, two cylinders with
the same radius intersected orthogonally (Fig. 24). In this
case both boundaries of the blend surface meet at a com-
mon point where both surface normals are equal. There is

Fig. 22. Additional faces (red) are inserted where adjacent blends
are tangentially connected.



Mo

Fig. 23. When material is added by blending an edge, an apex
might move from the boundary to the interior of a face.

no need to execute the trimming part of the blend algorithm
because the solid is already closed at that end.

However, from the geometrical point of view, the blend sur-
face is degenerate. One side or in this case both sides of the
blend surface are degenerate isoparametric boundaries. This
means that evaluating any parameter space point at this sur-
face boundary results in the same object space point. This
object space point is the position where both blend bound-
aries meet and the adjacent surfaces have the same surface
normal.

Data Size and Performance versus Accuracy

The size of the data structures that represent freeform geom-
etry mainly depends on the number of control points defin-
ing the curve or surface. In practice, curves can have hun-
dreds of control points and surfaces many more. As an
example, let’s consider a medium-size surface with 500 con-
trol points with three coordinates each. In double-precision
format, such a surface requires 3 X 8 x 500 bytes or approxi-
mately 12K bytes of memory. In fact, a real-life model may
contain many freeform surfaces. It is therefore quite impor-
tant to reduce both the number of such surfaces and the
number of control points used to represent them.

-
-~

E

Fig. 24. Another example of two adjacent surfaces that have the
same normal at an endpoint of an edge to be blended. The trimming
part of the algorithm is not needed.

The size of a freeform blend surface is basically determined
by the complexity of its boundaries. Boundaries with n con-
trol points lead to surfaces with 4n control points. Conse-
quently, it is critical to generate approximations of the “true”
blend boundaries with a minimal amount of data. On the
other hand, the creation of the blend boundaries is one of
the major factors determining the algorithm’s overall perfor-
mance. Finding an acceptable compromise between the con-
flicting requirements of speed and quality of the solution is
an important design decision in the algorithm.

The same applies to the surfaces used for filling the vertex
regions. The size of such a surface is quadratically depen-
dent on the size of its boundary curves. Let’s again consider
an example. Assume that the boundary curves of a three-
sided vertex region are general intersection curves between
the primary blend surfaces and planes. It is not uncommon
for approximations of those curves to contain 50 control
points (HP PE/SolidDesigner works with an accuracy of up
to 1079). This would lead to a vertex region of 3 x 25 x 25
= 1875 control points (three surface patches of 25 x 25 con-
trol points each), requiring 3 X 8 x 1875 bytes or approxi-
mately 44K bytes of data. Clearly, this is unacceptable for
nontrivial models.

There are several possibilities for reducing the amount of
data. The most critical factor is the approximation tolerance
used in the system. For example, reducing the accuracy from
1076 to 103 typically reduces the size of freeform data
structures by a factor of ten. Not only are the geometric cal-
culations speeded up considerably when using a lower accu-
racy but also the overall performance of the system is im-
proved because of the reduced demand for memory
management. HP PE/SolidDesigner offers the user the ability
to select the accuracy in a range of 102 to 10 ~0. This
allows the user to choose between high-precision modeling
and a faster but less precise approach.

Secondly, the handling of special cases can reduce the
amount of data significantly. Let's again take a look at free-
form vertex regions. If the primary blend surfaces are
created such that the boundaries of the vertex regions are
isoparametric curves of the primary blends (the procedure
for doing this is beyond the scope of this article), the 50
control points can be reduced to 4. The vertex region will
then contain 3 x 7 X 7 = 147 control points (the additional
control points along the boundaries—seven rather than
four—are the result of the mathematical construction), for a
total of approximately 3.5K bytes.

Another example is the trimming of a blend face. In this step
a number of surface/surface intersections must be calculated.
In general, an intersection of two surfaces will result in not
only one curve, but several intersection points, curves, or
even surfaces. However, in the blending context there is
important knowledge about the blend surface and the face it
intersects. At least one and in some cases two points on the
intersection track are known from the preceding curve/sur-
face intersections. Providing these points as “seeds” to the
intersection routines increases both the speed and the reli-
ability significantly. In addition, boxes in the parameter
space of the surface are used to limit the calculation of inter-
section information to regions that are of interest.

October 1995 Hewlett-Packard Journal 33



From these examples we see that the good overall perfor-
mance of the algorithm is mainly guaranteed by appropriate
special case handling at critical points. In fact, a large por-
tion of the code in the blending module was developed to
deal with these situations.

Acknowledgments

The development and implementation of the blending algo-
rithm in its early versions was largely conducted by our for-
mer colleagues Hermann Kellermann and Steve Hull. A part
of the code was developed at SI/Sintef in Oslo, Norway.

References

1. A. Rockwood and J. Owen, “Blending Surfaces in Solid Model-
ing,” in Geometric Modeling: Algorithms and New Trends, G. Farin,
ed., SIAM, 1987, pp. 367-384.

2. J.R. Woodwark, “Blends in Geometric Modeling,” in The Mathe-
matics of Surfaces 1, R.R. Martin, ed., Oxford University Press, 1987,
pp. 255-297.

34 October 1995 Hewlett-Packard Journal

3.J. Vida, R.R. Martin, and T. Varady, “A survey of blending methods
that use parametric surfaces,” Computer-Aided Design, Vol. 5, no. 5,
1994, pp. 341-305.

4. B. Baumgart, Geometric Modeling for Computer Vision, PhD The-
sis, Stanford University, 1974.

5. L. Braid, R.C. Hillyard, and L.A. Stroud, “Stepwise Construction of
Polyhedra in Geometric Modeling,” in Mathematical Methods in
Computer Graphics and Design, K.W. Brodlie, ed., Academic Press,
London, 1980, pp. 123-141.

6. M. Mantyla, An Introduction to Solid Modeling, Computer Science
Press, Rockville, 1988.

7. W. Boehm and H. Prautzsch, Geometric Concepts for Geometric
Design, AK Peters, Willesley, 1994.

8. T. Dokken, M. Daehlen, T. Lyche, and M. Morken, “Good approx-
imation of circles by curvature continuous Bezier curves,” Computer-
Aided Geometric Design, Vol. 7, 1990, pp. 30-41.

9. J. Hoschek and D. Lasser, Fundamentals of Computer-Aided Geo-
metric Design, AK Peters, Willesley, 1993.

10. J.A. Gregory, “N-sided surface patches,” in The Mathematics of
Surfaces, J.A. Gregory, ed., Clarendon Press, 1986, pp. 217-232.



