Providing CAD Object Management
Services through a Base Class Library

HP PE/SolidDesigner’s data structure manager makes it possible to save
a complex 3D solid model and load it from file systems and databases.
Using the concepts of transactions and bulletin boards, it keeps track of
changes to a model, implements an undo operation, and notifies external

applications of changes.

by Claus Brod and Max R. Kublin

A solid 3D model is a highly complex data structure consist-
ing of a large number of objects. The modeling process re-
quires flexible, fast, reliable, and generic means for manipu-
lating this structure. It must be possible to save the data
structure to and load it from file systems and databases.
Furthermore, application suppliers need versatile interfaces
for communication between the modeling kernel and the
applications.

This article describes how the requirements of the solid
modeling process translate into requirements for a CAD ob-
ject manager, and how HP PE/SolidDesigner’s data structure
manager (DSM) is designed to meet these needs.

Besides data abstractions and powerful tools for debugging
networks of data, DSM provides a basic data object, the en-
tity. An entity’s functionality is used by the entity manager
to file, copy, and scan nets of entities. The cluster manager
module adds capabilities for building subnets within the
whole data structure (clusters) and manipulating them. This
makes it possible to slice the model into manageable pack-
ages that can be sent around the world to subcontractors for
distributed modeling. The state manager implements a trans-
action mechanism, which allows the user to browse through
the modeling steps and undo changes to the model at any
time.

The DSM compares quite nicely with today’s object-oriented
databases and implements most of their features without the
overhead that is often associated with them.

Requirements for a CAD Object Manager

A CAD object manager provides the data infrastructure for
the CAD system. It is used by the other components to build
and change the model. At the same time, it is a base class
library for internal and external programmers. It must fulfill
many different user requirements.

It must be able to handle extremely large and complex data
structures. When there is a choice of algorithms, the algo-
rithm with the best behavior for large data sets must be se-
lected.

A typical modeling operation changes many individual ob-
jects and the structure of the model. Each such change in-
volves the object manager, so its operations will be called
very often. Their overhead must be kept at a minimum to

prevent the object manager from becoming the performance
bottleneck of the system.

Because of the large number of objects, it is also essential
that the object manager add only marginal overhead in terms
of additional memory to each object.

In a CAD model, many kinds of connections between ob-
jects are needed. The object manager should allow and sup-
port not only the types of connections that the core product
needs, but also any other kind of connection that third-party
applications or future modules may require.

CAD programs are large projects which are developed over
several years and evolve with the customers’ needs. Not all
of these needs can be anticipated in the original design.
Therefore, the object manager must be flexible enough to
allow later extensions, both unlimited new connectivity and
completely new kinds of objects. The latter requirement is
also essential for third-party applications.

The core solid modeler and its applications operate on the
same model. The object manager must offer both sides a
view of the model and inform external applications about
changes in a generic way. Therefore, the object manager
must offer communication mechanisms and interfaces to
applications.

The object manager’s services are used when building a new
type of object and dealing with it. The developer of such a
new object will appreciate every kind of support that the
object manager can provide, such as debugging tools, handy
utilities for frequent tasks, or a library of commonly needed
basic data structures, such as lists, tables, stacks and nets.

Finally, the object manager must provide generic mecha-
nisms to store objects and whole models to a file system or
database and to load models from there, that is, it has to
make the objects persistent.

The design and the use model of HP PE/SolidDesigner add
some special requirements to those just described. To sup-
port later extensions and the general concept of openness, it
is essential that existing object schemes be able to evolve
while remaining fully compatible with old data. Further-
more, the object manager, or data structure manager (DSM)
in HP PE/SolidDesigner terminology, must support a
transaction concept. Transactions must be freely definable

October 1995 Hewlett-Packard Journal 51

to allow modeling steps that the user perceives as natural.
The data structure manager must record all changes to the
model in a transaction to be able to roll them back in an
undo operation.

The DSM must help to ensure model consistency even if
errors occur internally or in external applications. The trans-
action mechanism can be used to this end.

Concurrent engineering is becoming more and more impor-
tant in computer-aided design. Files have to be exchanged.
Parts of the model are developed independently and assem-
bled later. The data structure manager must support assem-
blies of parts and the exchange of parts.

Design Principles

HP PE/SolidDesigner’s data structure manager was designed
with both the above list of requirements and some architec-
tural principles in mind.

One of HP PE/SolidDesigner’s key principles is to offer a
highly dynamic system with very few static restrictions. The
DSM has to support not only today’s models, but also future
models, so there should be no fixed limits on the size or
number of objects. Additionally, the DSM must offer mecha-
nisms to define new objects and object types at run time.
This is especially important for external applications.

Each object should only know about its direct neighbors, not
about the overall structure of the model. Special data manag-
ers are used to collect the local knowledge and form a
global picture. This reduces interdependencies between ob-
jects which would make later extensions a daunting and
dangerous task.

The sequence in which DSM’s algorithms traverse the model
is not fixed. Since the objects cannot and do not rely on
fixed sequences, DSM can also employ parallel algorithms if
they are needed and are supported by the hardware and
operating system.

Problems in the data structure or in object behavior must be
detected as early as possible. In its debug version, DSM
checks the consistency of the model thoroughly and offers
advanced debugging mechanisms to support the program-
mer. In the version shipped to the customer (the production
version), DSM still employs robust algorithms, but relin-
quishes debug messages and the more elaborate tests for
optimum performance.

Basic Data Abstractions

One way to look at the data structure manager is as a pro-
grammer’s toolbox. As such, it provides all common building
block classes:

Dynamic arrays

Lists including ring lists

Stacks

Hash tables

Dictionaries such as string tables and address translation
tables

Bit sets

Vectors, matrices, and transformations

Events

General networks of objects.

52 October 1995 Hewlett-Packard Journal

These building blocks can be combined to form real-world
programming objects. They share basic functionality to stan-
dardize their manipulation, such as functions to load and
store them, or to scan the data structure and apply a method
to each of its elements.

The most important data structure in HP PE/SolidDesigner is
the general network. DSM provides net node objects and a
net manager class. Each node maintains a list of neighbors in
the net. To obtain information about the network as a
whole, the net manager visits each individual node, calls its
local scan function to retrieve a list of neighbors, and pro-
ceeds with the neighbors until all nodes in the net have
been visited.

DSM Object Management

The core of DSM is formed by the definition of a generic
object, or entity, and manager classes that deal with various
aspects of entity administration, delivering higher-level ser-
vices. In the following, we will outline the DSM entity ser-
vices, beginning with the definition of an entity.

Entities are nodes in a complex network. As such, they use
the network functionality described earlier. Additionally,
specific entity functions deliver the basic services for transac-
tion handling, filing, object copying, run-time type informa-
tion, and others.

To benefit from the DSM services, a programmer simply
derives a new object from the entity base classes and fills in
a few obligatory functions. Almost every object in an HP PE/
SolidDesigner model is an entity.

Entities provide a method for inquiring their type at run
time. The type can be used to check if certain operations are
legal or necessary for a given entity. Object-oriented soft-
ware should try to minimize these cases, but it cannot com-
pletely do without them. An HP PE/SolidDesigner model is
an inhomogeneous network of entities. When scanning the
net, one finds all kinds of entities. The algorithm that in-
spects the net often applies to specific types of entities and
ignores others. But to ignore entities that we are not inter-
ested in, we must be able to check each entity’s type.

In an ideal world, type checks could be avoided by using
virtual functions. However, to provide these in the base
class, it would be necessary to anticipate the functionality of
derived classes before they have been created, including
those that come from third parties as add-ons to the product.

Run-time type information has been under discussion for a
long time in the C++ community, and is only now becoming
part of the standard. Therefore, we had to develop our own
run-time type system with the following features:

No memory overhead for the individual object

Very fast type check

Checks for both identical and derived types

Registration of new entity types at run time.

A pure entity is a very useful thing, but certain types of enti-
ties are needed so often that we implemented not only one
base class, but also a set of standard entities which offer
certain additional functionality.

Standard Entity Types

The three most important standard entities are attributes,
relations, and refcount entities. Attributes are attached to
other entities and maintain bidirectional links to them auto-
matically, so they save the user a lot of housekeeping work.
For any given type of attribute, only one instance can be
attached to an entity. A typical example is the face color
attribute. If a face already has been marked as green by a
color attribute, attaching another color attribute, say red, will
automatically delete the old attribute.

Relations are like attributes, but without the “one instance of
each type” restriction. One of the many applications is for
annotation texts.

Attributes and relations often are the entity types of choice
for a third-party module. They can be attached to entities in
the HP/PE SolidDesigner core, and even though the core
doesn’t have the faintest idea what their purpose is, the con-
nectivity will be maintained correctly through all kinds of
entity and entity manager operations. We also use this tech-
nique in HP/PE SolidDesigner itself. The 3D graphics mod-
ule, for example, calculates the graphical representation for
the kernel model and then attaches the result to the kernel
model as attributes.

Refcount entities maintain a reference counter. Other entities
that have a reference or pointer to a refcount entity “acquire”
it. Only after the last owner of a refcount entity is deleted is
the refcount entity destroyed. (You can think of refcount
entities as the equivalent of a hard link in a file system.)
Refcount entities can be used to share entities in the entity
network to improve memory utilization and performance.
We use this type of entity extensively for HP/PE SolidDe-
signer’s geometry.

Nearly all objects in HP PE/SolidDesigner are entities, de-
rived from a common base class. Currently, there are more
than 600 different entity types in HP PE/SolidDesigner. Being
derived from a common base class, they inherit a set of ge-
neric functions which can be applied to any of these 600
different entity types. The most important of these functions
are create, delete, copy, store, load, and scan.

HP PE/SolidDesigner allows loading third-party modules at
run time. Completely new entity classes can be integrated
into the system dynamically. Thus, third-party applications
can implement their own entity classes. Entities in external
modules are not restricted in any way compared to entities
in the HP PE/SolidDesigner kernel. External entities integrate
seamlessly into the existing entity network and share all the
entity services provided by DSM.

The Entity Manager

In HP PE/SolidDesigner, entities can have any type of con-
nection to other entities. A 3D body, for example, is a very
complex network consisting of dozens of entity types. In the
entity network of a body, there are substructures such as
lists, ring lists, and trees of entities.

An assembly in HP PE/SolidDesigner is a network of other
assemblies or subassemblies and 3D solids (parts). This
creates another level of structure, in this case a directed,
acyclic graph of entity networks.

Suppose we want to copy a part. To do that, we (1) find all
entities that belong to the part, (2) copy each single entity,
and (3) fix up any pointers in the copied entities. Fig. 1
shows what happens to two entities E1 and E2 that have
pointers to each other. First, the entities are copied. In a
separate step, the connectivity is fixed. This must be a sepa-
rate step because when Elc is created (assuming that E1 is
copied first), we do not know yet where (at which address)
the copy E2c of E2 will be.

Copying a network of entities in HP PE/SolidDesigner is a
recurring, nontrivial task. One has to be aware that we deal
with dynamic and inhomogeneous networks with entities in
them that we might never have seen before because they
have been added to the system by a third-party module.

For copying and other entity network services, HP PE/Solid-
Designer uses manager classes. The entity manager class is
an example of a manager class.

Copying an Entity Network

How does an entity manager implement the three steps in
copying a part? Step 1 (see Fig. 1) is to find all entities that
belong to the part or network. The entity manager only
knows that it deals with an inhomogeneous network of arbi-
trary entities (potentially of unknown type). To find all the
entities in a network, the entity manager needs some infor-
mation about the structure of the network. It collects this
information by asking each entity about its direct neighbors
in the structure. Suppose the entity manager starts with en-
tity E1. E1 will tell it, “My neighbor is E2.” The entity man-
ager will then ask E2 the same question, and the answer will
be, “My neighbor is E1.” Then—oops, we had better stop
here or we will fall into an endless loop! So we see that the
entity manager also has to remember which entities in the
network it already has visited.

How can the entity manager ask an entity a question, and
how can the entity give an answer? The entity manager calls
a function (method) called scan. Each entity class in

HP PE/SolidDesigner provides such a function. We also
call this function a local scanner. The philosophy behind this
is that each entity has a local context, that is, it knows its
direct neighbors since it has pointers to them. The entity
manager uses this local knowledge of the entities to move
forward in a network of entities from one entity to the other,
at the same time making sure that each entity will be visited

@ (b) ©

Fig. 1. Steps in copying two entities that have pointers to each other.
(a) Before copying. (b) After copying. (¢) After pointer conversion.

October 1995 Hewlett-Packard Journal 53

only once. This we call global scanning, and it is imple-
mented in the entity manager’s scan function.

The restriction that each entity in the network is only visited
once becomes really important only if a certain operation
has to be executed on each entity. Therefore, the entity
manager’s scan function not only receives a start node (the
entry point into the network), but also a task function,
which is called for each node that is visited in the network.

With the knowledge gained from scanning the network, we
can move to step 2, copying each entity. The task function
that is passed as a parameter to the entity manager’s scan
method solves this part of the problem by calling the copy
method of each entity. This is another method that every
entity in the system provides.

While in step 2, we have to make provisions for the next
step. We record in a table where each entity has been
copied to. For each entity, the task function creates an entry
of the form [old entity address, address of the copy] in this
table. Actually, this table is a hash table that can be accessed
using the old entity address as the key. Address translation
tables like this are used in many other places in HP PE/So-
lidDesigner, so DSM offers a special pointer dictionary class
for this purpose.

After step 2, we have a copy of each entity and we have
built an address translation dictionary. Now we’re ready for
step 3. For each entity in our dictionary, or more precisely
for each entity recorded in the right side of a dictionary
entry, we call another method, convert pointers. By calling
the convert pointers method, we request that the entity con-
vert all the pointers it has local knowledge of. In the case of
the entity Elc (the copy of E1), for example, this means,

“I have an old pointer to E2, and I need to know where the
copy of E2 (E2¢) is.” This question can be answered using
the address translation dictionary built in step 2 since it has
an entry of the form [E2, E2¢] in it. After we have called the
convert pointers method for each copied entity, we are
finished. We have copied a network of entities without
knowing any of these entities!

So far, so good. Now we know how to copy a network of
entities in main memory. At some point, the entities will
have to wander from main memory to permanent storage.
Therefore, let us examine next how we store and load a
network of entities into and from a file.

Storing and Loading an Entity Network
Storing and loading, like copying, are operations on a net-
work of entities. Therefore, the entity manager provides
these functions. Storing a network of entities works like this:
(1) Open a file.
(2) Find all entities that belong to the network.
(3) For each entity:

(a) write an entity header

(b) store the entity

(c) write an entity trailer.
(4) Close the file.

54 October 1995 Hewlett-Packard Journal

Besides opening and closing the file, storing essentially
means writing each entity in the network into a file. This
sounds simple enough. To solve the problem, we can even
use existing functionality. The entity manager’s scan method
will help us find all entities in a network, just as it did for
copying.

All we have to do is to provide a new task function which
executes step 3 for each entity. In 3a and 3¢ we write ad-
ministrative information that we will need for loading. For 3b
we need a way to store an entity generically. Of course, we
want not only to store, but also to load entities. Therefore,
each entity has a store method and a load method. The store
method is an ordinary member function of the object. The
load method, however, is a static member function since it
creates the object out of the blue (well, actually, from the
information in the file) and then returns it.

When everything is stored, the file contains entities in a form
that is equivalent to the situation in step 2 in the entity copy
operation. All pointers between entities are invalid, and they
have to be fixed when the file is loaded again.

Loading a file is also a task for the entity manager, since it
deals with a whole network of entities. Loading works as
follows:
(1) Open the file.
(2) While not at the end of the file:

(a) read the entity header

(b) call the entity’s load method (a new entity is

created in main memory)

(o) enter the entity information into a dictionary

(d) read the entity trailer.
(3) Close the file.
(4) For each entity in the dictionary, call the convert pointers
method.

Reading the Entity Header. The entity header contains two im-
portant data items: the entity type and a virtual address. The
entity manager uses the entity type to decide which of the
600 or more different load functions is to be called. When
storing an entity, the object exists and its store method can
be called. When loading entities, a different approach must
be taken. The entity manager maintains an entity type table
which can be added to dynamically. For each entity, the
table contains, among other things, a load function.

Note that an entity type translates into a class in C++. All
objects of a class have the same type (for example, face).

The second data item in the header is the virtual entity
addpress. The virtual address is a unique entity ID which is
used to represent pointers between entities in the file. When
storing an entity, the entity does not know where a neighbor
entity that it points to will be placed when the file is loaded
again. Therefore, all pointers between entities in the file are
virtual pointers and have to be converted after loading the
file.

Calling the Load Method. The entity manager detects the type
of the entity from the entity header. It will then call the

Exception Handling and Development Support

DSM has its roots in the late eighties—the early days of C++. Compilers didn't
support exception handling then. Conventional error handling by passing error
codes up the return stack is a prohibitively code-intensive approach in a large
software project with many nested procedural levels such as HP PE/SolidDe-
signer. Therefore, we had to implement our own exception handling mechanism
which is very similar to what has been implemented in today’s C++ compilers.

HP PE/SolidDesigner’s code is divided into code modules. Each module has its
own module information object containing module-specific error codes and mes-
sages. In case of an error condition inside a module, the code triggers the excep-
tion mechanism by throwing a pointer to the module information object.

Code that wants to catch an exception inspects the module information object
returned by the exception mechanism and acts accordingly. If it has already allo-
cated resources, they are cleaned up and returned. The exception can then be
ignored (and suppressed), or it can be escalated to the next code level.

The listing below shows a code example for this. You may notice the similarities to
the exception handling mechanism introduced with C++ 3.0. Now that the throw/
catch mechanism is finally available in many C++ compilers on various platforms,
we will be able to adopt it with only a few changes in the code.

int process_file(const char *const fname)
{

int words = 0;

FILE *file = 0;

TRY
file = open_file(fname);
words = count_words(file);
close_file(file);
file = 0;
RECOVER
if (file) {
close_file(file);
file = 0;
}

/I handle specific exceptions
if (dsm_exception_code == F2_CORE::info_ptr) {
switch(F2_CORE::errno) {
case F2_CORE::BREAK_RECEIVED: // User has cancelled processing
/I We won't escalate this “soft” exception.
handle_break();
break;
case F2_CORE::MEM_OVL: /I Out of memory
/I Free memory blocks allocated here, then escalate the problem.
free_my_mem();
ESCAPE(dsm_exception_code);
break;
default:
break;

}

/I clean up resources

/Il “throw” in C++ 3.0

}else {
/I Pass up all other exceptions.
ESCAPE(dsm_exception_code);
}

END_TRY

return words;

}

Development Support

To find problems proactively, DSM stresses the importance of checking precondi-
tions, invariants, and postconditions. It offers convenient assertion macros and a
context dependent run-time debugging system which uses debug module objects.

These debug module objects hold their current debug level which can be checked
using macros and set during run time. A debug module is associated with a certain
code area. This allows fine-grained control for debug checks and messages. We
think this control is important for the acceptance of a debug system; the program-
mer will ignore debug messages if there are too many, and won't find the system
useful if it doesn't deliver enough detail where needed.

Macros are provided to reduce typing and #ifdef constructs:

bool compare(const char *s1, const char *s2)
{

ME_MODULE_STOPWATCH(“compare”, foo); /I for run-time profiling

/I trace program flow
if (DEBUG_LEVEL (foo) >= DEBUG_CALLS) {
fprintf(DEBUG_STREAM(), “compare called”);
}

DSM_ASSERT(s1 && s2); /I check precondition

/I Now calculate the result

DSM_ASSERT(some_condition);
return TRUE;
}

DSM also defines special debug modules to switch on sophisticated debugging
tools. There are tools to find memory leaks, to calculate checksums for objects
(allowing us to detect illegal changes), and to create run-time profiles for the code.

/I check post-condition

In a software package as large as HP PE/SolidDesigner, the common UNIX profil-
ing tools were not applicable. Therefore, we had to build our own set of versatile,
efficient and highly precise utilities. You can define a stopwatch for any function
that might need profiling, and you start and stop the stopwatch using the debug
module mechanism. The results can be analyzed, producing a hierarchical call
graph that shows what portion of the run time was spent in the individual functions.
We can also find out the amount of memory allocated for a function at run time
using these tools.

right load function, using the information in its type table.
This transfers the control to the entity’s load method which
is responsible for creating a new entity from the data in the
file. The new entity is returned to the entity manager. Creat-
ing an entity from a given type implements a virtual
constructor function, which is missing as a language element
in C++.

Entering the New Entity into a Dictionary. Here we create an
entry in a dictionary that contains the virtual entity address

in the file and the new real address in main memory. These
values will be used in pointer conversion.

Reading the Entity Trailer. When the entity is loaded, the entity
manager resumes control by reading the entity trailer. This
might appear to be an artificial overhead operation, but it
makes sense when we consider the dynamic nature of the
system. We mentioned earlier that new entity types can be
created and registered dynamically, for example by a third-
party module. When storing an entity network, these entities

October 1995 Hewlett-Packard Journal 55

are also stored. A user might try to load such a file into an
HP PE/SolidDesigner system that does not know about these
entities because the third-party module has not been
installed. When the entity manager loads such a file, it will
encounter entity headers of entity types for which a load
function has not been announced. Here’s where the entity
trailer helps. The entity manager simply skips all following
data in the file until it finds the entity trailer. Thus, HP PE/
SolidDesigner ignores unknown entities in a file, but it can
still load the rest of the file.

Converting Pointers. After loading, all pointers between enti-
ties are virtual and have to be converted into real memory
addresses. For each entity in the dictionary, that is, for each
entity that has been loaded, its convert pointers method is
called. We have already discussed this method for copying
networks of entities. Each entity knows its pointers to other
entities, and it asks the entity manager, “Now I have a virtual
pointer to entity E1, so please tell me where E1 is in main
memory.” For each pointer, the entity calls the entity manag-
er’s convert pointer service function. This function is passed
a virtual entity address and returns the real memory address
of the loaded entity. The dictionary built while loading the
file contains the necessary information.

When all entities have been converted, we have written a
network of entities into a file and loaded it from there with-
out knowing any of the entities in detail. The analogy to the
copy operation does not come by chance, but is the result of
careful design. For copying or storing and loading entity
networks, DSM employs the same functionality wherever
possible. In theory, we could have built the copy operation
completely on a store and a subsequent load operation.

Entity Revisions

As the CAD system evolves, the need arises for changes in
entity layout, either by adding a new data field or by chang-
ing the meaning of an existing one. In object database terms,
this is known as the schema evolution problem. The load
function of a DSM entity can check the revision of the entity
in the file before actually loading the contents of the entity.
Depending on the entity revision, the load function will then
know what data fields are to be expected in the input. This
means that the load function is prepared for any revision of
the entity. The same holds true for the store function, which
can write different revisions of an entity depending on the
given storage revision.

This feature ensures upward compatibility of HP PE/Solid-
Designer files. All new versions automatically know about
the old object revisions, and no converters are necessary. In
database language, our object database can be inhomoge-
neous with respect to entity revisions. From a pure DSM
point of view, even downward compatibility is possible,
since you can set the storage revision to a previous level and
then save a model, as long as the new revision did not intro-
duce new entities that are essential for the overall consis-
tency of the model in the new scheme.

The Cluster Manager

From the entity manager’s point of view, the current HP PE/
SolidDesigner data model is one coherent network of enti-
ties. Each and every entity will be reached when the entity

56 October 1995 Hewlett-Packard Journal

manager’s global scan method is used. The user’s point of
view, however, is different. The user works with well-
defined objects such as parts, workplanes, assemblies,work-
plane sets, layouts and so on, which can be arranged in a
hierarchy. An assembly is like a directory in a file system,
and a part is like a regular file. Assemblies can have sub-
assemblies just as directories can have subdirectories, and
parts and assemblies can be shared just as directories and
files can be linked in a file system.

The cluster manager closes this gap between the entity
world and the user’s perception. It creates facilities to define
a cluster of entities—for example, all entities that belong to a
part. There is no hard-coded knowledge about cluster struc-
tures in the cluster manager, however. Instead, the entities in
the network themselves define what the cluster is. Because
of this flexibility, the cluster manager can offer its services
for any kind of entity network.

The following algorithm collects all entities belonging to a
given cluster X:
(1) Start with a representative of the cluster and look for all
direct neighbor entities.
(2) Ask each entity found during the scanning process to
which cluster it belongs.
(a) If the entity’s answer is “I belong to cluster X,”
continue the search with the entity’s neighbors.
(b) If the entity answers “I belong to cluster Y,” the
global search has arrived at a cluster boundary.
The entity is excluded and the search will not be
continued from this point.

The entity manager’s scan method helps with (1), and the
cluster manager provides a task function for (2). The task
function’s return value controls how the entity manager navi-
gates through the network of entities. It is the entity manag-
er’s job to find the neighbors for each entity and to ensure
that nodes are visited at most once.

There are implications for the topology of a cluster: it must
be possible to reach any entity in the cluster using a path
that is completely within the cluster. Figs. 2 and 3 show
examples of correct and malformed clusters.

How can an entity tell to which cluster it belongs? Actually,
this is asking too much of a mere entity. What we can
expect from an entity, however, is that it can point us in the
direction of another entity that is one step closer to the rep-
resentative of the cluster. Each entity has a local master
method for this purpose.

In most cases, the entity chooses one of its neighbors as its
local master, but this is not obligatory. By following the trace
laid out by the individual local master functions, we will
eventually find the main representative of the cluster (which
is special in that it points to itself when asked for its local
master). We call this special entity the cluster master.

Note that this is another case in which we build global
knowledge from local knowledge at the individual entities.
This is how we can define a cluster structure in a complex
network. The highlights of this method are:

The entity manager’s global scanning services are used.
The entities need local context only.

* Only one additional method, local master, is needed for

each entity.

Cluster Master

Cluster
Boundary

.

@ Entity
— Pointer to an Entity

Fig. 2. A correct cluster.

The approach is fully object-oriented. The objects them-
selves determine the size, structure, and shape of the cluster.
Completely new entities can be integrated into the cluster in
the future, and completely new clusters can be built.

The cluster manager offers services for storing, loading, and
copying clusters. It implements these by using the entity
manager’s basic services. The entity manager is controlled by
cluster manager task functions, which determine the (cluster)
scope of each operation.

The cluster manager services can be used to handle an
individual part or a workplane. The cluster manager also
supports hierarchical structures such as assemblies and
workplane sets.

Fig. 4 shows two types of screwdrivers. They share the shaft;
only the blades are different. The parts browser shows the
part hierarchy. The notation “(P :2)” indicates a shared part
and the backward arrow “<-" indicates the active part

A

Error:
No path to entity Y inside

Error: the cluster boundary.

Isolated subnet not
reachable from
cluster master.
Would be OK if
X were master.

Cluster Master

The DSM user
intended this to be /
the cluster boundary.

"

(which is also highlighted in green). The shaft part is con-
tained in both assemblies. When using standard parts, we
will in fact by default have many instances of the same part
(or even whole assemblies) in multiple assemblies. If we
now change something in the shared part (in this case the
shaft), we expect the changes to be reflected in both assem-
blies, since both assemblies have a reference to the same
part. This we call sharing parts and assemblies. Workplanes
can also be shared by using them in different workplane
sets.

Fig. 3. An illegal cluster.

In the base version, HP PE/SolidDesigner stores the model
data to files in the regular file system. To ensure that the
sharing is preserved when storing and loading models, the
following rules apply:

Every object that can be shared in HP PE/SolidDesigner has
its own file in the file system.

Part Browser

Assembly

Parts [Assemblies
phillips (A)

ph-blade (P}
shaft (P :2)
screwdriver (A)
blade (P} <-
shaft (P :2)

Selection

Assy Close

Apply

Fig. 4. Two assemblies with
shared parts.

October 1995 Hewlett-Packard Journal 57

For a shared object, exactly one file exists, regardless of
how many owners the object has. This makes sure that
whenever the shared object changes, all instances will be
changed as well.

When storing an assembly, all objects below the assembly
have to be stored as well. This ensures that the data in the
file system is complete, so that another HP PE/SolidDesigner
system can pick it up immediately.

A file contains exactly those entities that correspond to one
cluster.

Suppose we want to store the screwdriver assembly. We
expect that three files will be created: one for the assembly,
one for the blade, and one for the shaft. The cluster manager
will do this for us; we just tell it to store the screwdriver
assembly. It will find the parts and any subassemblies of the
assembly on its own. Since the cluster manager must work
with an arbitrary network, it needs another entity method,
scan child clusters, to build on. This method is implemented
by those (few) entities that take over the role of a cluster
master. The scan method of each entity would not help us
here since it just gives us access to all direct neighbors with-
out helping us determine a direction.

The cluster manager uses the scan child clusters method to
find the children of a cluster in a generic way. Applying the
method recursively, all objects within the assembly can be
found. It is possible that a child will be reached more than
once (for instance, a standard screw within a motor assem-
bly). The cluster manager keeps track of the clusters that
have already been visited to prevent a cluster from being
stored twice.

Given these methods, we can describe how an assembly
(actually, any kind of cluster structure) is stored:

Start with the given cluster and find all children recursively.
For each child cluster, use the entity manager’s store method
to store the entities of the cluster into a separate file. The
entity manager is controlled by a cluster manager task func-
tion that makes sure that only those entities belonging to the
cluster are stored. A special store pointer function is respon-
sible for storing pointers to entities.

The store pointer function deserves a discussion of its own.
When storing clusters into several separate files, we will en-
counter pointers that point from one cluster (file) to another.
In the case of the screwdriver assembly, we will have at
least two pointers to the external clusters representing the
blade and the shaft. Since the entity manager’s store function
by default stores all entities in the network into one file, the
problem doesn’t arise there. By providing a special store
pointer function, the cluster manager extends the entity
manager so that pointers are classified as external (pointing
to another file) or internal when they are stored.

When loading an assembly, the cluster managers goes
through the following procedure:

(1) Open the file.

(2) Use the entity manager’s load method (with the special
load pointers function) to load all entities in the file.

(3) Close the file.

(4) While there are external references to other clusters left,
open the corresponding file and proceed with (2).

58 October 1995 Hewlett-Packard Journal

An external reference is a pointer to an entity in a different
cluster. To make sure that external pointers are unambigu-
ous, we developed a scheme for unique entity IDs. An entity
is assigned such an ID when it is created, and it keeps it as
long as it exists. External pointers refer to these unique IDs.

The algorithm above is analogous to linking relocatable ob-
ject files in the HP-UX* operating system. When loading the
file into HP PE/SolidDesigner, it is the special load pointer
method’s job to detect external references. In step (4), the
cluster manager behaves quite similarly to an object file
linker. Where the linker needs one or more libraries, which
it searches for objects to satisfy open references, the cluster
manager uses the UNIX" file system or a database as its
library.

The State Manager

The state manager introduces a notion of transaction han-
dling into HP PE/SolidDesigner. Model changes can be
grouped together to form a single transaction. In database
technology, a transaction has the following properties:
Atomicity. The transaction is atomic. It must either be closed
completely or undone.

Consistency. Transactions transform a given consistent state
of the model into a new state which again must be consis-
tent in itself.

Isolation. Transactions do not influence each other.
Durability. The changes made by a transaction cannot be
cancelled by the system except by special undo transactions.

Transactions in HP PE/SolidDesigner have these properties.
They are not only used for ensuring data integrity, however.
Their main purposes in HP PE/SolidDesigner are to notify
kernel applications about changes in the model at defined
intervals (when a transaction is completed) and to allow
interactive undo operations.

The general model of an HP PE/SolidDesigner transaction is
shown in Fig. 5. A transaction T12 transforms a given consis-
tent model state S1 into a new consistent state S2. A rollback
to S1 is possible. As Fig. 5 shows, it is also possible to roll
forward, that is, move towards the modeling “future” after an
undo operation.

Bulletin Board

DSM introduces a special mechanism to record changes to
the model, which is the bulletin board. Information about all
changes within a transaction are collected in one bulletin

Transaction
T23

Transaction

Rollback (Undo)

Roll Forward

Fig. 5. HP PE/SolidDesigner transaction model. A transaction
transforms one state into another. A transaction can be rolled
back or rolled forward.

board. In other words, the bulletin board describes the trans-
action completely, so that we sometimes use “bulletin board”
and “transaction” interchangeably.

A bulletin board is a collection of individual bulletins. A bul-
letin describes a change of state of a model entity, that is, it
contains delta information. At the beginning of a transaction,
the bulletin board is empty. Each change to an entity creates
a bulletin describing the change, so at the end of the trans-
action, the bulletin board contains all of the changes that
happened during the transaction.

When a transaction completes, a special event, the transac-
tion end event, is triggered. Update handlers subscribe to this
event. When they are called, they receive as a parameter a
pointer to the bulletin board created in the transaction. They
can then inspect the contents of the bulletin board to look
for changes that they have to act upon. The 3D graphics
module, for example, which, slightly simplifying things, is
just an update handler, checks for the creation or changes of
3D bodies. It then creates a faceted graphics model from the
change information that is suitable for sending to a graphics
library. Since it only deals with the delta information, the 3D
graphics handler will in general complete its job more
quickly than if it regenerated the whole graphics model after
each transaction.

An update handler may also choose to ignore the bulletin
board information. It will then use the transaction end event
as a regular opportunity for cleanup tasks or to rescan the
model. Most update handlers, however, use the information
in the bulletin board to optimize their work.

Changes

The DSM’s state manager module uses basic entity services
to create bulletin board information. To provide systemwide
transaction handling and the undo mechanism, each entity
has to follow a few simple conventions. The most important
of these conventions is that before any kind of change to
itself, an entity has to announce the change. It does so by
calling a special log change method, which is provided by
the entity base classes.

The log change method does a lot of things. First, it creates
a bulletin in the bulletin board. The log change method is
passed a change type from the caller which it also records in
the bulletin. Using the change type, the changes are classi-
fied, and update handlers can ignore changes of types they
are not interested in. They can also ignore changes to certain
entity types. Using these two restriction types, update han-
dlers can narrow down the search to a few bulletins even if
the transaction is very large.

After building the bulletin, the state manager uses the enti-
ty’s generic copy method to create a backup copy of the
entity. Note that the entity is still in the original state since
the log change method has to be called before any change
takes place. (To ensure that the convention is followed, we
have built extensive debugging tools that detect changes that
are not announced properly.)

Pointers to both the entity in its current state and the backup
copy of the entity are maintained in the bulletin board. This
gives the update handlers a chance to compare the data in
an entity before and after the change, making it possible for

an update handler to trigger on changes to individual data
items in the entity.

So far, we have only discussed changes to an entity. The
bulletin board also records creation and deletion information
for entities. The entity base classes, together with the state
manager, take care of this.

In an undo operation, all changes to entities are reversed.
An entity that has been reported as deleted will be recre-
ated, and new entities will be marked as deleted. (They will
continue to exist in the system so that it is possible to roll
forward again.) If an entity has changes during a transaction,
its backup copy will be used to restore the original state.
Again, we use the generic copy function in the entity base
classes for this purpose.

Relation to Action Routines

The action routines (see article, page 14) define when a
transaction starts and ends. When the user selects an opera-
tion in the user interface, an action routine will be triggered
that guides the user through the selection and specification
process. A transaction is started at the beginning of such an
action routine. After each significant model change, the ac-
tion routine completes the transaction, thus triggering the
transaction end event and giving update handlers a chance
to react to the changes.

When an action routine terminates without error, all transac-
tions generated within the action routine are usually merged
into one large transaction. Thus, the user can undo the effect
of the action routine in one step. If an error occurs within an
action routine, all changes in the action routine will be un-
done using the generic rollback mechanism and the informa-
tion in the bulletin boards.

Some action routines also implement minisessions. After
collecting all the options and values, the operation itself can
be triggered and its effect previewed. If the effect is not
what the user thought it should be, it can be undone within
the action routine. The minisession will then use the rollback
mechanism internally. The user changes parameters, triggers
the operation again, and finally accepts the outcome when it
fits the expectations. An example of this in HP PE/SolidDe-
signer is the blend action routine.

In general, however, operations can be undone using the
interactive undo mechanism. At any point, the user can
choose to roll back to a previous state. For this purpose,
HP PE/SolidDesigner keeps the last n states (or bulletin
boards) in memory where n is a user-configurable value.
The user can also move forward again along the line of
states that was created in the modeling session.

Fig. 6 shows HP PE/SolidDesigner’s user interface for undo
operations.

As discussed earlier, HP PE/SolidDesigner’s transaction
mechanism also offers an interface to external applications,
that is, the transaction end event. Third-party applications
subscribe to the event, and from then on, they can monitor
all changes to the model. One example of an “external”
application is the 3D graphics module. Parts browsers, which
also have to react to changes of the model, are another
example. Finite-element generators can also hook into the

October 1995 Hewlett-Packard Journal 59

4+ Backward
Forward
Mext N Expand
History
Max Back 7
Max Forward 1

Limit

[| Steps 30

OK Cancel

Help

Fig. 6. User interface for undo operations.

transaction end event to keep track of the model. Another
possible external application is one that provides the current
volume properties of given bodies. (HP PE/SolidDesigner
provides volume calculations, but they have to be triggered
explicitly from the user interface.) The bulletin board is the
door-opener for external applications, making it one of the
most important interfaces within HP PE/SolidDesigner.

Conclusion

This article can only give a very high-level overview of what
DSM is all about. Much of what really makes DSM usable,
effective, and efficient is beyond the scope of this discus-
sion. We are confident that the data structure manager is a

60 October 1995 Hewlett-Packard Journal

strong and robust building block for any kind of application
that has to deal with complex data networks. We have found
that DSM deals with a lot of problems that are typical for
object databases:

Data abstraction (through a set of base classes)

Object persistence (storing and loading objects)

Object schema evolution (changes in object layouts)

Object clustering (bundling low-level objects to user-level
objects such as parts and assemblies)

Exchange of clustered objects, fully maintaining connectivity
through unique object IDs)

Transaction concept with undo.

By solving all of these problems, DSM enables HP PE/
SolidDesigner to support typical modeling operations on
user-level objects (parts, workplanes, etc.). In other words, it
makes HP PE/SolidDesigner speak in terms that the user can
easily understand. The support for object exchange is the
basis for modeling workflow solutions. Apart from this, the
data structure manager can serve as a general framework for
any kind of object-oriented application.

Acknowledgments

The data structure manager was initially designed and devel-
oped by Peter Ernst. He is still our sparring partner for dis-
cussing new ideas and the general direction of development
for DSM.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX
93 branded products.

UNIXE is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Openlis a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.

