Common Lisp as an Embedded

Extension Language

A large part of HP PE/SolidDesigner’s user interface is written in
Common Lisp. Common Lisp is also used as a user-accessible extension

language.

by Jens Kilian and Heinz-Peter Arndt

HP’s PE/ME10 and PE/ME30 CAD systems contain an exten-
sion language based on the macro expansion paradigm. The
user’s input (commands and data) is separated into single
tokens, each of which denotes a command, function, vari-
able, macro name, number, string, operator, or other syntac-
tic element. Commands, functions, and arithmetical expres-
sions are evaluated by the language interpreter. Each macro
name is associated with a macro definition, which is another
token sequence (either predefined by the system or defined
by the user). When the language interpreter encounters a
macro name, it substitutes the corresponding token se-
quence (this process is called expanding the macro) and
continues with the first token of the expansion.

Macro expansion languages are easy to implement and have
been used in many applications where one would hardly
expect to find an embedded language. For example, the TgX
typesetting system contains a macro interpreter.

The HP PE/ME10 and PE/ME30 macro language includes
powerful control constructs (such as IF/THEN/ELSE and LOOP/
EXIT_IF/END_LOOP), local variables, and a mechanism for
passing parameters to 2 macro when it is being expanded.
These constructs make it possible to solve general program-
ming problems. Because the HP PE/ME10 and PE/ME30
macro language is interpreted, programs can be developed
in an interactive fashion and modifications can immediately
be tried out. However, the resulting program is slower than a
program written in a compiled language like C. HP PE/ME10
and PE/ME30 macros can be compiled to an intermediate
form which executes faster than the pure interpreted ver-
sion, but which is still slower than an equivalent C program.

One disadvantage of the HP PE/ME10 and PE/ME30 macro
language is that it is nonstandard. No other application uses
the same language, and programs written in it have to be
ported when the user switches to another CAD system.

Common Lisp

Common Lisp was chosen as an extension language for HP
PE/SolidDesigner because it is nonproprietary and widely
used.

Surprising as it may be, Lisp is the second oldest high-level
programming language still in common use. The only older
one is FORTRAN. Lisp is to researchers in artificial intelli-
gence what FORTRAN is to scientists and engineers.

Lisp was invented by John McCarthy in 1956 during the
Dartmouth Summer Research Project on Artificial Intelli-
gence. The first commonly used dialect was Lisp 1.5, but
unlike FORTRAN (or any other imperative language) Lisp is
so easy to modify and extend that over time it acquired
countless different dialects. For a long time, most Lisp sys-
tems belonged to one of two major families, Interlisp and
MacLisp, but still differed in details. In 1981, discussions
about a common Lisp language were begun. The goal was to
define a core language to be used as a base for future Lisp
systems. In 1984, the release of Common Lisp: The Language!
provided a first reference for the new language. An ANSI
Technical Committee (X3J13) began to work on a formal
standardization in 1985 and delivered a draft standard for
Common Lisp in April 1992. This draft standard includes
object-oriented programming features (the Common Lisp
Object System, or CLOS). For a more detailed account on the
evolution of Lisp, see McCarthy? and Steele and Gabriel.3

HCL, the implementation of Common Lisp used in HP PE/
SolidDesigner, is derived from Austin Kyoto Common Lisp
(itself descended from Kyoto Common Lisp). It corresponds
to the version of the language described in reference 1, but
already incorporates some of the extensions from reference
4 and the draft standard.

Applications of Extension Languages

Adding extension languages to large application programs
has become a standard practice. It provides many advan-
tages, some of which may be not as obvious as others. For
the normal user of a system, an embedded programming
language makes it possible to automate repetitive or tedious
tasks. An inexperienced user can set it up as a simple re-
cord/playback mechanism, while “power users” can use it to
create additional functionality. If the extension language has
ties to the application’s user interface, user-defined function-
ality can be integrated as if it were part of the original
application.

If the application provides an API for adding extensions on a
lower level, the extension language can itself be extended.
This enables makers of value-added software to integrate
their products seamlessly into the main application. As an
example, the HP PE/SheetAdvisor application has been im-
plemented within HP PE/ME30, offering a user interface
consistent with the rest of the program.

October 1995 Hewlett-Packard Journal 69

As a final step, portions of the application can themselves be
implemented in the embedded language. An example would
be the popular GNU Emacs text editor, a large part of which
is written in its embedded Lisp dialect.

A large part of HP PE/SolidDesigner, too, is written in its
own extension language—about 30 percent at the time of
writing. Most of this 30 percent is in HP PE/SolidDesigner’s
user interface.

Lisp in HP PE/SolidDesigner

Fig. 1 shows the major components of HP PE/SolidDesigner.
The Lisp subsystem is at the very core, together with the
Frame (operating system interface) and DSM (data structure
manager, see article, page 51) modules. All other compo-
nents including Frame and DSM are embedded into the Lisp
subsystem. This indicates that each component provides an
interface through which its operations can be accessed by
Lisp programs.

The introduction of new functionality into HP PE/SolidDe-
signer is usually done in the following steps:

Implement new data structures and operations in C++
Add Lisp primitives (C++ functions callable from Lisp) for
accessing the new operations

Add action routines to implement new user-visible
commands, using the Lisp interface to carry out the actual
operations

Add menus, dialog boxes, or other graphical user interface
objects to access the new commands.

As long as the Lisp interface—the primitive functions—is
agreed to in advance, this process can be parallelized. A user
interface specialist can work on the action routines and
menus, calling dummy versions of the interface functions.

User Interface

Advanced
Blending

Advanced Local
Operations

Fig. 1. HP PE/SolidDesigner system architecture. HCL is the
Common Lisp subsystem. All components including Frame
(operating system interface) and DSM (data structure manager)
have interfaces to Lisp. K2 is the solid modeling kernel. PPG is
the planar profile generator.

70 October 1995 Hewlett-Packard Journal

The article on page 14 describes, from a user interface de-
veloper’s perspective, how action routines are written and
how menus and dialogs are created. The mechanisms used
there are not part of the Common Lisp standard but are
extensions provided by the HCL dialect.

Action Routines

Action routines implement the commands that a user types
or issues via user interface elements to HP PE/SolidDesigner.
Commands are identified by their names, which are Lisp
symbols evaluated in a special manner (similar to the SYM-
BOL-MACROLET facility in the Common Lisp Object System).
Each action routine is actually an interpreter for a small lan-
guage, similar in syntax to the command language used in
HP PE/ME10 and PE/ME30. Like HP PE/ME10 and PE/ME30
commands, action routines can be described by their syntax
diagrams. Fig. 2 contains the syntax diagram for a simplified
version of HP PE/SolidDesigner’s exit command. Below the
syntax diagram is a state transition graph which shows how
the command will be processed.

The definition of an action routine corresponds closely to its
syntax diagram. The defining Lisp expression, when evalu-
ated, generates a normal Lisp function that will traverse the
transition graph of the state machine when the action rou-
tine is run. For example, the following is an action routine
corresponding to the syntax diagram of Fig. 2:

(defaction simple_exit

(flag)
(; state descriptions

: local variable

(start nil

“Terminate PE/SolidDesigner?”

il

(yes (setqflagt) answer-yes end)

(;no (setq flag nil) answer-no end)

(otherwise (display_error “Enter either :YES or :NO.") nil start))
(end (do-it)

il

nil))

(; local functions

(do-it ()
(when flag
(quit)))

As can be seen in this example, an action routine can have
local variables and functions. Local variables serve to carry
information from state to state. Local functions can reduce
the amount of code present in the state descriptions,
enhancing readability.

When HCL translates this action routine definition, it pro-
duces a Lisp function which, when run, traverses the state
transition graph shown in Fig. 2b. If a state description con-
tains a prompt string, as in the start state in the example, the
translator automatically adds code for issuing the prompt
and reading user input. Effectively, the translator converts
the simple syntax diagram into the more detailed form.

simple_exit t: YES —p
NO —p

@)

:YES
setflag=t
issue prompt wait for
input

:NO

set flag = nil

other input
issue error message

(b)

Fig. 2. (a) Simplified syntax of the exit command. (b) State
transition diagram for the exit command.

For the example action routine, the translator produces a
Lisp function definition much like the following:

;; Declarations of some external functions, for more efficient calling

(proclaim '(function get-parameter (tt) t))
(proclaim '(function match-otherwise (t) t))
(proclaim '(function trigger-action-state-transition-event (t &optional t)

)
;; Transformed action routine

(defun simple_exit (&rest argument-list &aux input)

(let (flag)

(labels ((do-it ()~ ;; local function
(when flag

(quit))))

(block nil
(taghody

;» local variable

., label for state “start”
1

;; prompting in state “start”
(setq input (get-parameter argument-list “Terminate HP PE/
SolidDesigner?"))

;» pattern matching in state “start”
(cond ((equal input :yes)

(setqflagt) ;; action taken
(trigger-action-state-transition-event ‘answer-yes)

(9o 0))

((equal input :no)

;» transition to “end” state

(setq flag nil) ;; action taken
(trigger-action-state-transition-event 'answer-no)

(go0))

((match-otherwise input)

;; transition to “end” state

(display_error “Enter either :YES or :NO.")
(go 1))

., label for state "end”
0

;; transition to “start” state

;; initial action for state “end”
(do-it)

;; exit from action routine

(returm))))

Transitions in the state machine are transformed into goto
statements within the function’s body. The conditional con-
struct cond represents decisions, like the three-way branch in
state start. Before each state transition, the code can trigger
an external event to enable graphical feedback in menus or
dialogs.

The actual translation is somewhat more complicated be-
cause errors and other exceptional events must be taken into
account. The translator also adds code to support debugging
and profiling of an action routine. This code is stripped out
when building a production version of HP PE/SolidDesigner.

Compiling Lisp Programs

It has often been said that Lisp is inherently slow and cannot
be applied to application programming (one common joke is
that the language’s name is an acronym for “Large and
Incredibly Slow Programs”). This is not true. Even very early
versions of Lisp had compilers.3 Lisp systems have even
beaten FORTRAN running on the same machine in terms of
numerical performance.

In HCL, the Lisp compiler takes a Common Lisp program
and translates it into an intermediate C++ program, which is
then compiled by the same C++ compiler that is used to
translate the nonLisp components of HP PE/SolidDesigner.
This approach has several advantages:

The Lisp compiler can be kept small and simple (only
12,500 noncomment lines of code, less than 5% of the total
amount of Lisp code)

The Lisp compiler does not need to be retargeted when
porting to a different machine architecture

The Lisp compiler does not need to fully optimize the
generated code; this task can be left to the C++ compiler
The generated code is fully call and link compatible with the
rest of the system

The generated code can be converted to a shared library
and dynamically loaded into a running HP PE/SolidDesigner.

The Lisp compiler is itself written in Lisp. Bootstrapping a
new compiler version is easy because an interpreter is
available.

The calling conventions for compiled Lisp functions are such
that interpreted and compiled functions can transparently
call each other. This allows keeping most of the Lisp code in
compiled form, even when using the interpreter to develop
new programs.

Continuing the above example, here is the C++ code that the
Lisp compiler produces for the simplified translated action
routine (reformatted for better readability):

Il Header file declaring standard Lisp data structures and functions
Il (for example, LOBJP is the type of a generic pointer-to-Lisp-object)

#include <cmpinclude.h>

/I Declarations for the compiled code (normally written to a separate file,
Il'included here for clarity)

static void L1(...); Il Functions defined in this file

static void L2(LOBJP¥);

October 1995 Hewlett-Packard Journal 71

/I Data for communication with the Lisp
I loader

static char *Cstart;

static int Csize;
static LOBJP Cdata;

static LOBJP VV[14]; I Run-time Lisp objects

static void LnkT13() ;

static void (*Lnk13)() = LnkT13;
static void LnkT11() ;

static void (*Lnk11)() = LnkT11;
static LOBJP LnkTLI10(LOBJP) ;
static LOBJP (*LnkLI10)(LOBJP) = LnkTLI10;

static LOBJP LnkTLI9(int narg, ...) ;

static LOBJP (*LnkLI9)(int narg, ...) = LnkTLI9;

static LOBJP LnkTLI8(LOBJP, LOBJP);

static LOBJP (*LnkLI8)(LOBJP, LOBJP) = LnkTLI8;

I/ Links to external Lisp functions
Il (see below for an explanation)

I/ Initialization function, called immediately after the file is loaded

void example_initialize(char *start, int size, LOBJP data)

{

Il Reserve space on the Lisp stack

register LOBJP* base=vs_top;
register LOBJP* sup=base+0;
vs_top=sup;

vs_check;

I/ Store data supplied by the loader, including Lisp objects
Il that were extracted from the original source code and that
[I'will be needed at run-time (e.g., strings and symbols).

Cstart=start;
Csize=size,;
Cdata=data;
set_VV_data(VV,14,data,start,size);

I Link the compiled function “L1" to the Lisp symbol stored in V/V[6],
Il'which is "SIMPLE_EXIT".

MFnew(VV[6],(void(*)())L1,data);//
Il Restore Lisp stack

vs_top=vs_base_mod=base;

}
Il Compiled function SIMPLE_EXIT

static void L1(...)

{
register LOBJP*base=vs_base; // Reserve space on the Lisp stack
register LOBJP*sup=hase+3;
vs_check;

{LOBJP V1;
I stack
vs_top[0]=Cnil;
{ LOBJP *p=vs_top;
for(;p>vs_base;p--)p[-1]=MMcons(p[-1],p[0]);
}
V1=(base[0]);
vs_top=sup;
{LOBJP V2;
V2= _Cnil;
base[1]= Cnil;
T3; Il Label “1" in TAGBODY

Il Set up variables INPUT and FLAG

V2= (H(LnkLI8))((V1),W[O]); // (GET-PARAMETER ARGUMENT-LIST *...")

72 October 1995 Hewlett-Packard Journal

Il Fetch ARGUMENT-LIST from the Lisp

if(!(equal((V2),VV[1])){ I First clause of COND construct

goto T8;
1
base[1]= Ct II(SETQ FLAGT)
(void)((*(LnkLI9))(L,VV[2])); /l (TRIGGER-...-EVENT 'ANSWER-YES)
goto T4; (GO 0)
T8:; Il Second clause of COND construct
if({(equal((V2),VVI))K
goto T14,
}
base[1]= Cnil; Il (SETQ FLAG NIL)
(void)((*(LnkLI9))(1,VV[4))); Il (TRIGGER-...-EVENT 'ANSWER-NO)
goto T4; 11(GO 0)
T14:; /I Third clause of COND construct
if(((*(LnkLI10))((V2)))==Cnil){
goto T4;
}

base[2]= VV[5];
vs_top=(vs_base=base+2)+1;

/I (DISPLAY-ERROR “...")

(void) (*Lnk11)();
vs_top=sup;
goto T3; I1(GO 1)

T4:; Il Label “0” in TAGBODY
vs_base=vs_top; /I Call (DO-IT), passing a pointer to
L2(base); I the lexical variables of SIMPLE_EXIT
vs_top=sup;
base[2]= Cnil; Il Return from SIMPLE_EXIT
vs_top=(vs_base=base+2)+1;
return;

}

}

}

/I Compiled local function DO-IT

static void L2(LOBJP*base0)

{
register LOBJP*hase=vs_base; // Reserve space on the Lisp stack
register LOBJP*sup=base+1;
vs_check;
vs_top=sup;
if((base0[1])==Cnil){

goto T26;

}
vs_base=vs_top; I1(QUIT)
(void) (*Lnk13)();
return;

T26:;
base[0]= Cnil;
vs_top=(vs_base=base+0)+1;
return;

}

II'Links to external functions. These functions are called indirectly, via
/I C++ function pointers. At the first call, the corresponding compiled

I/ function is looked up and stored in the function pointer, thus avoid-

Il'ing the Lisp calling overhead on subsequent calls.

/I Condition: lexical variable FLAG

/I Return from DO-IT

static void LnkT13 ()

{11 QUIT; called via normal Lisp calling conventions
call_or_link(VV[13],(int ¥)&Lnk13);

}

static void LnkT11()
{ /I DISPLAY-ERROR; called via normal Lisp calling conventions

call_or_link(VV[11],(int *)&Lnk11);
}

static LOBJP LnkTLI10(LOBJP arg0)
{ /I MATCH-OTHERWISE; declared to take exactly one parameter, which
Il can be passed without using the Lisp stack.

return(LOBJP)call_fproc(VV[10],(int*)&LnkLI10,1,arg0);
}

static LOBJP LnkTLI9(int narg, ...)

{ /I TRIGGER-ACTION-STATE-TRANSITION-EVENT; declared to take one
Il fixed and one optional parameter, which can be passed without using
Il the Lisp stack.

va_list ap;

va_start(ap, narg);

LOBJP result=(LOBJP)call_vproc(VV[9],(int*)&LnkLI9,narg,ap);
va_end(ap);

return result;

}

static LOBJP LnkTLI8(LOBJP arg0, LOBJP argl)
{ 1l GET-PARAMETER; declared to take exactly two parameters, which
Il can be passed without using the Lisp stack.

return(LOBJP)call_fproc(VV[8],(int*)&LnkLI8,2,arg0,argl);
}

This example illustrates several important properties of com-
piled Lisp code. First, the C++ code still has to access Lisp
data present in the original program; for example, it has to
attach a compiled function to a Lisp symbol naming that
function. Second, parameter passing for Lisp functions is
usually done via a separate stack, but the overhead for this
can be avoided by declaring external functions. In a similar
way (not shown here), the overhead of using Lisp data struc-
tures for arithmetic can be avoided by introducing type dec-
larations (which are not compulsory as in C++). Third, some

Lisp constructs (e.g., lexical nesting of function definitions)
have no direct C++ equivalent.

Compiling a Lisp program can have quite a dramatic impact
on its performance. HP PE/SolidDesigner takes about one
half to two minutes to start on an HP 9000 Series 700 work-
station. If all the Lisp files are loaded in uncompiled form,
start time increases to between one half and one hour.

Conclusion

A large part of HP PE/SolidDesigner is written in Common
Lisp. To the developers, this approach offered a very flex-
ible, interactive mode of programming. The finished pro-
grams can be compiled to eliminate the speed penalty for
end users.

Common Lisp is also used as a user-accessible extension
language for HP PE/SolidDesigner. It is a standardized, open
programming language, not a proprietary one as in HP
PE/ME10 and PE/ME30, and the developers of HP PE/Solid-
Designer believe that this will prove to be an immense
advantage.

References

1. G.L. Steele, Jr., S.E. Fahlman, R.P. Gabriel, D.A. Moon, and

D.L. Weinreb, Common Lisp: The Language, Digital Press, 1984.

2. J. McCarthy, “History of LISP,” in R.L. Wexelblat, ed., History of
Programming Languages, ACM Monograph Series, Academic Press,
1981. (Final published version of the Proceedings of the ACM SIG-
PLAN History of Programming Languages Conference, Los Angeles,
California, June 1978.)

3. G.L. Steele, Jr. and R.P. Gabriel, “The Evolution of Lisp,” Proceed-
ings of the Second ACM SIGPLAN History of Programming Languages
Conference, Cambridge, Massachusetts, April 1993. pp. 231-270.

4. G.L. Steele, Jr., S.E. Fahlman, R.P. Gabriel, D.A. Moon,

D.L. Weinreb, D.G. Bobrow, L.G. DeMichiel, S.E. Keene, G.Kiczales,
C. Perdue, K.M. Pitman, R.C. Waters, and J.L. White, Common Lisp:
The Language, Second Edition, Digital Press, 1990.

October 1995 Hewlett-Packard Journal 73

