Boolean Set Operations with Solid

Models

The Boolean engine of HP PE/SolidDesigner applies standard and
nonstandard Boolean set operations to solid models to perform an
impressive variety of machining operations. Parallel calculation boosts

performance, especially with multiprocessor hardware.

by Peter H. Ernst

Machining operations like punch, bore, and others play an
important role in the function set of contemporary CAD sys-
tems. In HP PE/SolidDesigner, the impressive variety of ma-
chining commands are driven by a single topology engine,
often referred to as the Boolean engine.

It might seem that the algorithm used by the Boolean engine
would be extremely complex and esoteric, and this is indeed
true in some respects. The underlying principles, however,
are simple.! Most of this article demonstrates this by taking a
fairly intuitive look at the internal machinery. This will pro-
vide a road map for the second, more technical part of the
article, in which some key algorithms are explained in
greater depth. Finally, some unusual applications of the
Boolean engine are briefly mentioned.

Different Flavors of Solids

Before exploring the internals of the Boolean engine, let’s
take a look at the objects that it works on. These objects are
called solids, or simply bodies. Solids, in our terms, are
mathematical boundary representation (B-Rep) models of
geometric objects. Fig. 1 shows a B-Rep model of a cylinder.

Usually several categories of solids are distinguished based
on their manifold characteristics. For our purposes we just
need to know that manifold solids represent real objects and

Face-1 Face-2

Loop-1 Loop-2
I
Coedge-2

Loop-3a
I

LOTp-3b

Coedge-1 Coedge-2a Coedge-2b

Edge-1 Edge-2

Vertex-1 Vertex-2

Fig. 1. A boundary representation (B-Rep) model of a cylinder.

74 October 1995 Hewlett-Packard Journal

Fig. 2. A screwdriver representing the class of manufacturable
bodies.

nonmanifold solids are impossible in some way. Manifold
bodies are of general interest, since they can be manufac-
tured. Fig. 2 shows a screwdriver representing the class of
manufacturable bodies.

The class of nonmanifold bodies is the realm of the impossi-
ble bodies. These bodies cannot be manufactured because
the material thickness goes to zero (that the thickness goes
to zero is a consequence, not a cause of the nonmanifold-
ness). Nevertheless, they have have some importance as
conceptual abstractions or simplifications of real (manifold)
solids. Nonmanifold solids sometimes are (conveniently)
generated as an intermediate step in the design process.
They are also important to various simulation applications,
and sometimes to finite-element analysis and NC machining.
Fig. 3 shows a selection of nonmanifold bodies. To the left is

Fig. 3. Bodies that are nonmanufacturable because of (left) zero
thickness in general, (center) zero thickness at edges, and (right)
zero thickness at vertices.

a sheet, which has zero thickness in general. The middle
solid is edge nonmanifold, having zero thickness at edges,
and the right solid is vertex nonmanifold, having zero thick-
ness at vertices.

The Boolean engine in its different guises is used to change
bodies by the rules of Boolean set operations. In other
words, it is able to combine two volumes using one of the
three standard operators: subtract, unite, or intersect. The
operation is performed on solids in the same way as on the
sets of mathematical set theory. The effects of the standard
operations on sets and volumes are illustrated in Fig. 4. The
two bodies at the top of the picture are combined in three
ways, using the three standard Boolean operations. The
result of each Boolean operation is shown at the bottom.

An Intuitive Approach to the Boolean Engine

Now that we are equipped with the right background, we
can explore the various stages of the Boolean algorithms. To
do this we will use a thought experiment (such experiments
are widely acknowledged as safe and cheap). To perform

this experiment we only need some paint, a sharp knife, and

some imagination.

Coloring. In the first stage both solids participating in the
Boolean operation are filled with different colors, let’s say
yellow for one and blue for the other. Fig. 5 shows two
bodies that have been set up for a Boolean operation and
colored according to our rule. Let’s assume that, unlike real
solids, they can permeate each other without problems.
Since the Boolean operation hasn’t been performed yet the
picture still shows two disjoint solids that just happen to
overlap. To show what’s going on inside the bodies, the
yellow body has been made transparent.

Now we mark the lines where the two bodies permeate
each other, let’s say with red color. The red lines in Fig. 6
are called the intersection graph. The two solids are still
disjoint.

Intersection

Subtraction

Fig. 4. Results of applying the standard Boolean set operations
to two solid bodies.

Fig. 5. Two disjoint solids that happen to overlap.

Making Soap Bubbles—Cellular Bodies. In the second stage we
knit both solids together using the intersection graph. A
structure very similar to those formed by soap bubbles is
created, as shown in Fig. 7. The two solids now hang to-
gether at the intersection graph. In the space where both
bodies overlap a green color can be seen. This is the mix-
ture of yellow and blue. To get a better vision of the geo-
metric situation some faces have been made transparent.

Fig. 6. Intersection graph (red).

October 1995 Hewlett-Packard Journal 75

Fig. 7. Result of knitting the two bodies together at the intersection
graph. Choosing a Boolean operation is now equivalent to deciding
which colors to keep and which to delete.

Getting Rid of the Wrong Colors. In the third and last stage of
our imaginary process not much is left to do. Up to now we
have not said which kind of Boolean operation (union, sub-
traction, or intersection) we wanted. Now is the time to
decide.

To get the desired result we simply pick the appropriate
color and get rid of all volumes of a different color than the
one we picked. Initially we chose two colors—blue and yel-
low—so we will find three colors in our soap bubble cluster:
blue, yellow, and green. In regions where blue and yellow
volumes overlap we get green. The table below shows
which colors will be kept or deleted from the body depend-
ing on the particular type of Boolean operation we choose.

Keep Delete
Union blue and yellow green
Subtraction yellow green and blue
Intersection green blue and yellow

Easy, isn’t it? Pat yourself on the back (and clean up the
mess of paint and chipped-off pieces).

Technical Talk: The Boolean Algorithm

In the preceding example we only had to mark the lines
where the color changes to obtain the intersection graph.
The Boolean engine algorithm that does this is a bit more
complex. To understand it we must again look at the mathe-
matical representation of a solid. In Fig. 1 we have seen the
general data structure layout of a cylinder. That sketch, how-
ever, lacks any explicit references to geometry. In HP PE/
SolidDesigner’s B-Rep structure, three base classes of geom-
etries are used: points, curves, and surfaces. The last two
have several subclasses. For example, a curve can be a

76 October 1995 Hewlett-Packard Journal

straight line, circle, ellipse, or spline. In the following discus-
sion the geometric subclasses are used for illustration pur-
poses, but the Boolean algorithm itself does not depend on
any specific geometry types, since it is implemented in a
generic way.

Each geometry class has a corresponding topological carrier
that puts it into perspective in the context of a solid model.
The table below shows this relationship:

Topology Geometry

Vertex < Point
Edge < Curve
Face < Surface

The topological entities face and edge are smart carriers
because they not only hold their geometries, but also bound
or trim them. To understand what this means we must real-
ize that most geometries are of infinite extent, and even if
they are finite only a small segment might be of interest.

Fig. 8 exemplifies the relationship between topology and
geometry. Looking at the cylinder (sf3), notice that only a
segment of the otherwise infinite cylindrical surface is used.
This segment is called a face (fa3). Likewise, only two circu-
lar regions of the otherwise infinite planes sfl and sf3 are
used to close the cylinder. The circular regions are face fal
and face fa2. (Note: The top and bottom faces of the cylin-
der have been lifted off a bit for better demonstration. The
double yellow edges coincide in reality.)

The concept of trimmed surfaces is essential for the next
section, because it introduces some unexpected complica-
tions when constructing the intersection graph.

Constructing the Intersection Graph. Earlier we simply used an
excellent pattern recognizer called the human brain to find
the lines where the color changes. Teaching this ability to a
computer involves a considerable amount of mathematics.

Fig. 9 shows the construction of one segment of an intersec-
tion graph (a graph edge). The drawing shows two intersect-
ing surfaces sfl and sf2 carrying two faces fal and fa2. To
construct the graph edge (the piece of the intersection track
inside both faces) the following steps are required:

e The two unbounded surfaces sf1 and sf2 are intersected,
giving the intersection track (track).

! sf3
— (Cylinder) ———

fa2

l sf;l('ﬂéné)'f_;’_ \\sz(Plane)
SN AR X

Fig. 8. An example of the relationship between topology and
geometry. Faces and edges bound or trim their geometries,
which consist of infinite curves and surfaces.

sfl

Graph -

Edge I

fa2

N
fal /
s
Track / 7 i
sf2 |\// /B3

Fig. 9. Construction of one segment of an intersection graph
(a graph edge).

The edges of fal are intersected with surface sf2 to yield the
edge/surface intersection points il and i2. Similarly, the
edges of fa2 are intersected with sfl giving the intersection
points i3 and i4.

The intersection points are ordered along the track.

The ordered points are examined for their approach values.
The approach values simply tell if a face is entered or left
when passing a particular point. This information can be
used to deduce the containment of a segment of the inter-
section graph with respect to its generating faces. The
approach and containment values for the intersection points
in the previous drawing are:

Point Containment with respect to:
Approach fal fa2

outside outside
il entering fal

inside outside
i2 entering fa2

inside inside
i3 leaving fal

outside inside
i4 leaving fa2

outside outside

The segments of the intersection graph inside both faces are
used to create the graph edge(s) of a particular intersection.
In this example only the segment bounded by i2 and i3
fulfills this condition.

Parallelism. The complete intersection graph of two bodies is
obtained by pairwise intersection of faces selected from both
solids. The number of required face/face intersections de-
pends on the number of faces in both solids:

i=nm,

where i is the number of intersections, n is the number of
faces in one body, and m is the number of faces in the other
body.

The number of required intersections grows rapidly (qua-
dratically) with the complexity (number of faces) of the
solids. Fortunately the different face/face intersections can
be easily performed in parallel. The algorithm is structured
such that it can create a cascade of threads (a sort of subpro-
cess). For each pair of faces a subprocess is launched that
splits itself to calculate the surface/surface intersections and
the edge/surface intersections in parallel. With the availabil-
ity of multiprocessor hardware the advantages of this algo-
rithmic structure are seen as increased performance of the
Boolean operations.

Imprinting and Coloring. In the intuitive approach, coloring the
faces, that is, determining which pieces are inside or outside,
was no problem because it could easily be seen. On the
machine level other means are required.

Intersection tracks split surfaces and faces into left and right
halves. Additionally, surfaces split space into halves called
balf spaces. We can classify each piece of the split face to a
half space with respect to the other surface. This procedure
is demonstrated in Fig. 10.

Classification is done with respect to the surface normals
(colored arrows) of both surfaces (sf1 and sf2) and the inter-
section track.

Unusual Boolean Applications

It is easy to see that the Boolean engine is driving most ma-
chining operations. Here are some applications in which it is
not so obvious.

Partial Booleans. Regular Boolean operations attempt to calcu-
late all intersection tracks between bodies. In contrast, partial
Boolean operations calculate only one intersection track.
Which one depends on the particular application. One ex-
ample of a partial Boolean operation in HP PE/SolidDesigner
is wrapped into the extrude-to-part command. It fires a pro-
file defined in a workplane onto a body as shown in Fig. 11.
The picture shows a body and a profile set up for the

—»
Intersection
| Track
sfl
Outside / 4
sf2 v
/
sf2 4
Inside Outside
sfl sfl
Inside
sf2

Fig. 10. Surfaces split space into halves called half spaces (inside
and outside along surface normals). Each piece of a split surface
can be classified as belonging to a half space with respect to the
other surface.

October 1995 Hewlett-Packard Journal 77

Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust

The robustness of Boolean operations between solids is crucial for the usability of
a solid modeler like HP PE/SolidDesigner. Unfortunately, geometric modeling is
like shoveling sand. With every shovel you pick up a bit of dirt. The numerically
imperfect nature of geometric algorithms can challenge HP PE/SolidDesigner’s
Boolean engine with contradictions and inconsistencies. The Boolean engine uses
a perturbation method!2 to push the frontier of robustness. This article explains
the notion of model consistency and demonstrates what can go wrong inside a
Boolean operation and what can be done to come up with a correct result anyway.

Consistency of a Solid

Looking at a solid we usually believe that it is mathematically correct, that is, that
the edges are exactly on their adjacent faces and the edges meet exactly at their
common vertices. In reality, however, the limited floating-point accuracy of a com-
puter introduces errors. On the microscopic level there are gaps and holes every-
where (see Fig. 1).

The tolerable amount of error is specified by the modeling resolution. The system
will ignore gaps and holes smaller than the resolution. However, some geometric
algorithms, such as the various intersection calculations, tend to magnify errors in

7 /Y

Fig. 1. In solid models edges seem to be exactly on their adjacent faces and meet exactly
at their common vertices. In reality, because of the limited floating-point accuracy of a
computer, on the microscopic level there are gaps and holes everywhere.

certain geometric configurations. This means that given an input where all errors
are within limits, the result can be inconsistent in the context of the solid and pro-
hibit the successful completion of the requested Boolean operation.

Solving the Numerical Puzzle

One area in the Boolean operation that is particularly vulnerable to numerical
inconsistencies is the intersection graph construction. The graph construction
assumes that all intersections of curves defined on one of two intersecting sur-
faces are also on the intersection track (here the term on means closer than the
resolution). This is no problem if the surfaces are reasonably orthogonal. However,
for intersections between tangential or almost tangential surfaces, a small error in
the orthogonal direction of a surface implies a larger error in the direction of the
surface, and this assumption becomes false.

Fig. 2 shows a shallow intersection between the two surfaces sf1 and sf2 and the
intersection with sf2 of a curve (cv) contained in sfl. The curve/surface intersec-
tion point (small colored triangle) has, because of the small distance (epsilon)
between cv and its containing surface sf1, moved farther away from the surface/sur-
face intersection track (colored line) than the resolution permits. The smaller the angle
[the larger the distance d from the intersection track and hence the larger the
inconsistency.

epsilon

sfl n sf2

sin B

. B
_ epsilon
sfl X

sf2_ _ ——

L 2=

Fig. 2. A shallow intersection between the two surfaces sf1 and sf2 and the
intersection with sf2 of a curve (cv) contained in sf1.

Fig. 11. A body and a profile set up for an extrude-to-part
operation. To the right is the result of the operation.

78 October 1995 Hewlett-Packard Journal

extrude-to-part operation. Only the intersection graph where
the extruded profile hits the body is used to build the result.
To the right is the result of the operation.

Usually the extruded profile would exit the body at the
bottom, producing a second intersection graph.

Reflection of Solids. Another unusual Boolean application is
the reflection of solids at a plane. Fig. 12 shows a body with
a green reflection plane set up. At the right is the result of
the reflect operation.

This operation can be simulated with regular Boolean opera-
tions by copying, mirroring, and uniting the left body. How-
ever, this would burden the Boolean engine with difficult
tangential intersections. Instead, the reflect command inter-
sects the left body with the reflection plane to obtain an
intersection graph which can be used to glue the left body

Fortunately, there is a method called perturbation than can come to the rescue in
situations like this. It solves the inconsistency by moving the curve/surface inter-
section point along the curve until it is closer than the resolution to the surface/sur-
face intersection track. In Fig. 2 the point will be moved to the left. When the inter-
section point is moved, a new error is introduced because the point is moved away
from sf2. However, the overall error is reduced so that it no longer exceeds the
resolution.

The perturbation method can be applied to similar situations in which even the
number of intersections has to be corrected. The difference in number is a result
the freedom algorithms have below the resolution. They may return anything in the
range of the resolution.

Two Curve/Surface Intersection Points with One Surface/Sur-

face Intersection Track. Fig. 3 shows a geometric configuration in which the
intersection between sf1 and sf2 yields one intersection track (colored line) but the
intersection of the curve contained in sf1 with sf2 gives two intersection points
(colored triangles) which are farther than the resolution away from the track. The

//____ N
/7 evnsf2 \/”/
/ cv N sf2
/4___\ — A 4—/
epsilon /
/
/

sfl N sf2 /
~/

Fig. 3. A geometric configuration in which the intersection between sfl and sf2 yields
one intersection track (colored line) but the intersection of the curve contained in sf1 with
sf2 gives two intersection points (colored triangles) which are farther than the resolu-
tion away from the track.

perturbation algorithm moves both points inwards (horizontal arrows) and con-
tracts them into a single point (black triangle) which is closer than the resolution to
the intersection track (colored line).

Two Surface/Surface Intersection Tracks with One Curve/Sur-

face Intersection Point. Fig. 4 shows a geometric configuration in which the
intersection between sfl and sf2 yields two intersection tracks (colored lines) but
the intersection of the curve contained in sf1 with sf2 gives one intersection point
(colored triangle) which is farther than the resolution away from the tracks. The
perturbation algorithm splits the single intersection into two and moves them out-
wards (horizontal arrows) until both are closer than the resolution to an intersec-
tion track (colored line).

References

1. H. Edelsbrunner and E. Mucke, “Simulation of simplicity: A technique to cope with degener-
ate cases in geometric algorithms,” Proceedings of the 4th ACM Symposium on Computational
Geometry, June 1988, pp. 118-133.

2. C. K. Yap, “A geometric consistency theorem for a symbolic perturbation theorem,” ibid,

pp. 134-142.

sfl n sf2

Fig. 4. A geometric configuration in which the intersection between sfl and sf2 yields
two intersection tracks (colored lines) but the intersection of the curve contained in sfl with
sf2 gives one intersection point (colored triangle) which is farther than the resolution
away from the tracks.

Fig. 12. A body with a green reflection plane set up and, at right,
the result of the reflect operation.

and its mirrored copy together. The intersection with the
mirror plane is nicely orthogonal and relatively easy to per-
form compared to the tangential intersections.

Acknowledgments

The development of the Boolean algorithms involved many
people. Special thanks to former kernel development team
members Hermann Kellerman and Steve Hull and project
manager Ernst Gschwind.

Reference
1. M. Mantyla, An Introduction to Solid Modeling, Computer Science
Press.

October 1995 Hewlett-Packard Journal 79

