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The Supply Chain Approach to Planning
and Procurement Management

The supply chain approach models stochastic events influencing a
manufacturing organization’s shipment and inventory performance
in the same way that a mechanical engineer models tolerance
buildup in a new product design. The objectives are to minimize
on-hand inventory and optimize supplier response times.

by Gregory A. Kruger

This paper describes the processes and equations behind a reengineering effort begun in 1995 in the planning and
procurement organizations of the Hewlett-Packard Colorado Springs Division. The project was known as the supply chain
project. Its objectives were to provide the planning and procurement organizations with a methodology for setting the best
possible plans, procuring the appropriate amount of material to support those plans, and making up-front business decisions
on the costs of inventory versus supplier response time (SRT),* service level to SRT objectives, future demand uncertainty,
part lead times, and part delivery uncertainty. The statistical modeling assumptions, equations, and equation derivations are
documented here.

Basic Situation

Consider a factory building some arbitrary product to meet anticipated customer demand. Since future demand is always
an uncertainty, planning and procurement must wrestle with the task of setting plans at the right level and procuring the
appropriate material. The organization strives to run the factory between two equally unattractive scenarios: not enough
inventory and long SRTSs, or excessive inventory but meeting SRT goals. In fact, more than one organization has found itself
with the worst of both worlds—huge inventories and poor SRTSs.

The supply chain project focused on characterizing the various stochastic events influencing a manufacturing organization’s
shipment and inventory performance, modeling them analogously to the way a mechanical engineer would model a
tolerance buildup in a new product design.

Problem Formulation

For a particular product, a factory will incur some actual demand each week, that is, it will incur demand D; in week i, for i
=1, 2,3, ... From a planning and procurement perspective, the problem is that looking into the future the Dj are unknown.

Let P; be the plan (or forecast) for week i in the future. Now for each week, the actual demand can be expressed as the
planned demand plus some error: Dj = Pj + e;.

The MRP (material requirements planning) system, running at intervals of R weeks, evaluates whether to order more
material to cover anticipated demand, and if the decision is to order, how much to order. Given a lead time of L weeks to
take delivery of an order placed to a supplier now for some part, the material in the supply pipeline must cover real demand
for the next L + R weeks. By supply pipeline we mean the quantity of the part already on hand at the factory plus the quantity
in orders placed to the supplier and due for delivery over the next L weeks.

For simplicity, assume for the remainder of this discussion that we are dealing with a part unique to one product and used
only once in building the product. We will remove these constraints later but for now it will help to focus on the key
concepts.

Define X to be the unknown but actual demand the factory will experience for this part over the next L + R weeks:

L+R L+R

X = i;Di= > (Pi + ei).

i=1

In statistical terminology, X is a random variable, that is, we cannot say with certainty the value it will take next, but with
some assumptions about the nature of the planning errors (g;), the distribution of X can be characterized. Specifically, we
will make the assumption that the e;j are distributed according to the Gaussian (normal) distribution with mean zero and

In standard terminology, SRT stands for “supplier response time.” In this case, a better term would be “shipment response time,” because the supplier
being referred to is HP and not one of HP’s suppliers. In this paper, we use the standard terminology for SRT, but the word “supplier” in all other contexts
means one of HP's suppliers.
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variance o2 (see Fig. 1). The assumption that the mean of the e; is zero says that our plans are unbiased, that is, the factory is
not consistently overestimating or underestimating future demand. Thus, the average of the differences between the plan
and the actual demand over a reasonable period of time would be about zero. The normal distribution is symmetric, so we
are saying there is equal probability in any week of actual demand being above or below plan. The variance measures how
large the planning errors can get in either direction from zero.

™ =t

—30 Mean = + 30

Fig. 1. Assumed normal distribution of planning errors.

We would like to know both the expected value of X and its variance. Knowing these two values will form the basis for the
ultimate decision rules for replenishment order sizes placed to the supplier for our part.

We will use the following notation: E(x) represents the expected value of the random variable x, and V(x) represents the
variance of the random variable x.

Before launching into the derivation of the expected value of the real demand over the next L + R weeks, note that L
itself is a random variable. When an order is placed with the supplier, delivery does not always come exactly on the
acknowledgment date. There is some uncertainty associated with when the replenishment order will arrive. Like the
planning errors, we will assume that the delivery errors are normally distributed about zero. Thus:

E(L)+R

E(X) = E(Lig(Pi + ei)) = > E(Pi+e)

i=1

+

w +R w +R

= (E(Pi) + E(ei)) = i; Pi.

i=1

The result will be precisely correct when the P; are stationary (that is, the plan is a constant run rate) and will serve as an
approximation when the P; are nonstationary.

Determining the variance of X is more involved because the limit of the summation, L +R, is a random variable. The
derivation can be be found in Appendix I. The result is:

B2
V(X) = (u + R)oZ + P}, rof.

where o, is the standard deviation of the errors ej, o, is the standard deviation of L, and P| , g is the average of the plan over
L + R weeks.

The standard deviation of demand is the square root of this result. In practice, we estimate the standard deviation of demand
by:

Ox = \/(E + Rjshe + PL o rsfe
where L is the average lead time from the supplier of this part, R is the review period, sdg is the variance of the difference

between the weekly plan and the actual weekly demand, and sEE is the variance of the difference between the date
requested and the date received. Lee, Billington, and Carter! give the same result when modeling the demand at a
distribution center within a supply chain.

Knowing the variance of the demand uncertainty over L + R weeks, we can develop a decision rule for determining the
amount of inventory to carry to meet the actual demand the desired percent of the time.
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We define the order-up-to level as:

L+R
Order-up-to Level = Z P + Z1-40x,
i=1

where Z1_,is the standard normal value corresponding to a probability o of stocking out. Z;_,0x is called the safety stock.
We define the inventory position as follows:

Inventory Position = On-Hand Quantity
+ On-Order Quantity
— Back-Ordered Quantity.

The purchase order size decision rule each R weeks for replenishment of this part becomes:

New Order Quantity = Order-up-to Level
— Inventory Position.

We are simply trying to keep the order-up-to level of material in the supply pipeline over the next L + R weeks, knowing we
have a probability a of stocking out.

As you can see, the basic idea behind the statistical calculation of safety stock is straightforward. In practice, a number of
complicating factors must be accounted for before we can make this technology operational. The list of issues includes:
e The chosen frame of reference for defining and measuring future demand uncertainty
e The impact of SRT objectives on inventory requirements
e The translation from part service level to finished product service level
e Appropriate estimates for demand and supply uncertainty upon which to base the safety stock calculations
e Purchasing constraints when buying from suppliers
e The hidden effect of review period on service level performance
e The definition of service level.
There are significant business outcomes from managing inventory with the statistical calculation of safety stock. These
include the ability to:
e Predict average on-hand inventory and the range over which physical inventory can be expected to vary
Trade off service level and inventory
Trade off SRT and inventory
Plot order aging curves so that you can see how long customers may have to wait when stock-outs do occur
Measure the impact of reducing lead times, forecasting error, and delivery uncertainty
Measure the impact of changing review periods and minimum order quantities to the supplier
Stabilize the orders placed to suppliers so that they are not being subjected to undue uncertainties
Reduce procurement overhead required for manipulating orders.

Turning off the Production Plan Overdrive

Many manufacturing planning organizations have traditionally handled the uncertainties of future demand by intentionally
putting a near-term overdrive into the production plan (see Fig. 2). By driving the material requirements plan (MRP) higher
than expected orders, a buffer of additional material is brought into the factory to guard against the inevitable differences
between forecast and actual demand. In effect, this overdrive, or front loading, functions as safety stock, although it is never
called that by the materials system.

While this practice has helped many factories meet shipment demands, it has also caused frustrations with nonoptimal
inventory levels. Biasing the build plan high across all products does not consider that it is unlikely that all of the products
will be simultaneously above their respective forecasts. Therefore, inventories on parts common to several products tend to
be excessive. Also, this approach treats all parts the same regardless of part lead times, rather than allocating safety stock
inventory based upon each part’s procurement lead time. The factory can easily end up with inventories too high on short
lead time parts and too low on longer lead time parts. Finally, the practice of building a front-end overdrive into the plan can
lead to conflict between the procurement and production planning departments. Wanting to ensure sufficient material to
meet customer demand, the planning department’s natural desire is to add a comfortable pad to the production plan.
Procurement, aware of the built-in overdrive in the plan and under pressure to reduce inventories, may elect to second-guess
the MRP system and order fewer parts than suggested. Should planning become aware that the intended safety pad is not
really there, it can lead to an escalating battle between the two organizations.
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“Front Loading”
(Functions as Safety Stock)

Material Requirements Plan (MRP)

Time

Fig. 2. Many manufacturing planning organizations handle the uncertainties of future demand
by intentionally driving the material requirements plan (MRP) higher than expected orders.

Frame of Reference

Fundamental to the use of the statistical safety stock methods outlined in this paper is how one chooses to measure demand
uncertainty, or in other words, what is the point of reference. The two alternative views are (see Fig. 3):

e Demand uncertainty is the difference between part consumption in the factory and planned consumption.
e Demand uncertainty is the difference between real-time customer demand and the forecast.

Variability of Actual versus
Forecast Orders Factory Production

Variability of Actual versus
Planned Part Consumption

Measuring demand variation here addresses the Measuring demand variation here addresses
problem of how much material should be ordered the problem of how much material should be
to support the uncertainty of actual customer ordered to support the production plan.

demand about the order forecast.

Fig. 3. Frames of reference for measuring demand uncertainty. These two measures can be very
different in a factory dedicated to steady build rates according to a build plan. In a factory
fluctuating its production is response to actual orders, these two measures are more alike.

Consider using part consumption within the factory versus build plan as the frame of reference. The function of statistical
safety stocks here is to provide confidence that material is available to support the production plan. A factory with a
steady-rate build plan would carry relatively little safety stock because there are only small fluctuations in actual part
consumption. Of course, actual order fulfillment performance would depend upon finished goods inventory and the
appropriateness of the plan. In this environment, the organization’s SRT objective has no direct bearing on the safety stock
calculations. The factors influencing the estimate of demand uncertainty and hence safety stock are fluctuations in actual
builds from the planned build, part yield loss, and part use for reasons other than production.

If the point of reference calls for measuring demand uncertainty as the deviation between the forecast and real-time
incoming customer orders, safety stock becomes a tool to provide sufficient material to meet customer demand. This factory
is not running steady-state production but rather building what is required. Now the SRT objective should be included in the
safety stock calculations since production does not have to build exactly to real-time demand if the SRT objective is not
zero. From this perspective, statistical safety stocks, projected on-hand inventory, SRT, and service levels are all tied

together, giving a picture of the investments necessary to handle marketplace uncertainty and still achieve order fulfillment
goals.

In choosing between these two frames of reference for the definition of demand uncertainty it comes down to an analysis of
factory complexity and timing. If factory cycle times are relatively short so that production is not far removed from customer
orders, then demand uncertainty can be measured as real-time orders versus forecast. However, if factory cycle times are
long so that production timing is well-removed from incoming orders, then demand uncertainty would best be measured as
part consumption versus build plan.
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SRT in Safety Stock Calculations

Appendix IV documents the mathematics for incorporating SRT objectives into the safety stock calculations. As has been
discussed, using the SRT mathematics would be appropriate when measuring demand uncertainty as deviations of real-time
customer orders from forecast. It is critical, however, that we understand how production cycle times affect the factory’s
actual SRT performance.

As stated in Appendix 1V, if factory cycle time is considered to be zero, the SRT mathematics ensures that material sufficient
to match customer orders will arrive no later than the desired number of weeks after the customer’s order. Clearly, time
must be allocated to allow the factory to build and test the completed product. In this paper, this production time is not the
cycle time for building one unit but for building a week’s worth of demand.

Care must be taken when using the SRT mathematics. Consider that the practice of booking customer orders inside the SRT
window will place demands on material earlier than expected from the mathematical model given in Appendix IV. In
practice, one should be conservative and use perhaps no more than half of the stated SRT as input to the safety stock model.

Part versus Product Service Level

The statistical mathematics behind the safety stock calculations are actually ensuring a service level for parts availability
and not for completed product availability. This is true regardless of whether the chosen frame of reference for measuring
demand uncertainty is part-level consumption or product-level orders. Since production needs a complete set of parts to
build the product the question arises as to what the appropriate part service level should be to support the organization’s
product service level goals. Unfortunately, there is not a simple algebraic solution to this problem.

The exact answer is subject to the interdependencies among the probabilities of stocking out of any of the individual parts in
the bill of materials. If we assume that the probabilities of stocking out of different parts are statistically independent, then
the situation looks bleak indeed. For example, if we have a 99% chance of having each of 100 parts needed to build a finished
product, independence would suggest only a 0.99190 = 36.6% chance of having all the parts. Clearly the chance of stocking
out of one part is not totally independent of stocking out of another. For example, if customer demand is below plan there is
less chance of stocking out of any of the parts required. Just as clearly, there is not total dependence among parts. One
supplier may be late on delivery, causing a stock-out on one part number while there are adequate supplies of other parts on
the bill of materials. In the example mentioned, the truth about product service level lies between the two extremes, that is,
somewhere between 0.99100 and 0.99.

As an operational rule of thumb, individual part service levels should be kept at 99% or greater. Of course, the procurement
organization may choose to run inexpensive parts at a 99.9% or even higher service level so as never to run out. Then the
service level on expensive parts can be lowered such that the factory gets the highest return on its inventory dollar. For
example, a factory may run a critical, expensive part at a 95% service level while maintaining a 99.9% service level on
cheaper components to achieve a product level goal of a 95% service level to the SRT objective.

Parts Common to Multiple Products

In the problem formulation section it was assumed that we were dealing with a part unique to a single product and used only
once to build that product. First, recognize that the situation in which a part is unique to a single product, but happens to be
used more than once to build the product, is trivial. If the product uses a part k times then the forecasted part demand is
simply k times the forecast for the product. Similarly, the standard deviation of the forecast error for the part is simply k
times the standard deviation of the forecast error for the product.

The more interesting situation arises when a part is common to multiple products. We will look at two alternative
approaches to handling common parts, the second method being superior to the first. In the first approach, we will assume
that the forecasting errors for the products using the common part are independent of one another. Since the total
forecasting error for the part can be written as the sum of the forecasting errors for each of the products using the part, the
standard deviation of the part forecasting uncertainty can be easily determined.

Consider a part used in j products and used kj times in product i, wherei = 1, 2, ..., j. Let DE represent the forecasting or
demand error. Then:

DEpart = leEproductl + kZDEproductz + k3DEproduct3
+ ... + KiDEproductj
2 — k2~2 22
ODEpart = klODEproductl + kZGDEproductz

2.2 22
+ K30Bgproducts + - + K{0BEproductj-

The big problem with this approach is the assumption of independence of forecasting errors among all the products using
the part. If, for example, when one product is over its forecast there is a tendency for one or more of the others to be over
their forecasts, the variance calculated as given here will underestimate the true variability in part demand uncertainty.
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The second approach to estimating forecasting uncertainty for common parts is to explode product-level forecasts into
part-level forecasts and product-level customer demand into part-level demand and measure the demand uncertainty directly
at the part level. For a part common to j products we simply measure the forecast error once as the difference between the
part forecast and actual part demand instead of measuring the forecast errors for the individual products and algebraically
combining them as before. Any covariances between product forecasting uncertainties will be picked up in the direct
measurement of the part-level forecasting errors. Clearly, this is the preferred approach to estimating part demand
uncertainty, since it avoids making the assumption of forecast error independence among products using the part.

Estimation of Demand and Part Delivery Uncertainty

The whole approach to safety stocks and inventory management outlined here is dependent upon the basic premise behind
any statistical sampling theory—namely, that future events can be modeled by a sample of past events. Future demand
uncertainty is assumed to behave like past demand uncertainty. Future delivery uncertainty is assumed to behave like the
supplier’s historical track record. This raises two issues when estimating the critical inputs to the safety stock equations:
robust estimation and business judgment. Both of these issues are extremely dependent upon the chosen frame of reference,
that is, whether we are measuring real-time customer demand or part-level consumption on the factory floor.

From a sample size perspective we would like to have as much data as possible to estimate both demand and delivery
uncertainty. However, in a rapidly changing business climate we may distrust data older than, say, six months or so. If | am
measuring demand uncertainty as the deviations between real-time customer orders and the forecast, do | want to filter
certain events so they do not influence the standard deviation of demand uncertainty and hence safety stocks? It may be
good business practice not to allow big deals to inflate the standard deviation of demand uncertainty if those customers

are willing to negotiate SRT. In statistical jargon, we want our estimates going into the safety stock equation to be robust

to outliers. Naturally, if the demand uncertainty is measured as part consumption on the factory floor versus planned
consumption, data filtering is not an issue. It is possible that an unusual event affecting parts delivery from a supplier may
be best filtered from the data so that the factory is not holding inventory to guard against supply variability that is artificially
inflated.

A common situation is the introduction of a new product. Suppose the chosen point of reference is measuring demand
uncertainty as real-time customer orders versus forecast. How do we manage a new product introduction? A viable option
is to use collective business judgment to set the demand uncertainty even though there is technically a sample size of zero
before introduction. Prior product introductions or a stated business objective of being able to handle demand falling within
+ A of the plan during the early sales months can be used to establish safety stocks. In fact, the organization can compare
the inventory costs associated with different assumptions about the nature of the demand volatility. Estimates of average
inventory investment versus assumed demand uncertainty obtained from the statistical models can help the business team
select an introduction strategy.

Effect of Minimum Buy Quantities and Desired Delivery Intervals

In most cases, there are constraints on the order sizes we place to our suppliers, such that replenishment orders are not
exactly the difference between the theoretical order-up-to level and the inventory position. These constraints may be driven
by the supplier in the form of minimum buy quantities or ourselves in the form of economic order quantities or desired
delivery frequencies. The net effect of all such constraints on order sizes is to reduce the periods of exposure to stock-outs.

For example, suppose the factory’s plans predict needing 100 units of some part per week. Further suppose that the ordering
constraint is that we order 1000 units at a time determined by either the supplier's minimum or our economic order quantity.
This order quantity represents ten weeks of anticipated demand. Once the shipment of parts arrives from the supplier, there
is virtually no chance of stocking out for several weeks until just before the arrival of the next shipment. Given this
observation we see that safety stock requirements actually decrease as purchase quantity constraints increase (see
Appendix V).

Although safety stocks decrease, average on-hand inventory and the standard deviation of on-hand inventory both increase.
See Appendix I11 for formula derivations of the average and the standard deviation of on-hand inventory.

Effect of Review Period

Analysis of the equation for the standard deviation of demand uncertainty given above shows that as the review period R
increases, oy increases, thereby driving up safety stock. This makes sense because the safety stock is there to provide the
desired confidence of making it through R weeks without a stock-out. However, note that the service level metric itself is
changing. For R=1, the service level gives the probability of making it through each week without a stock-out. For R=2,
the service level gives the probability of making it through two weeks, for R =3, three weeks, and so on. Increasing review
period therefore has an effect similar to that of minimum buy quantities. When operating at longer review periods, purchase
quantities to the supplier are larger, since we are procuring to cover R weeks of future demand and not just one week of
future demand. To keep the average weekly service level at the desired goal, safety stock would actually have to be throttled
back as the review period increases because of less frequent periods of exposure.
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Service Level Metric

Throughout this paper, service level has been defined as the probability of not stocking out over a period of time, usually on
a weekly basis. There is another commonly used service level metric called the line item fill rate (LIFR). With the LIFR the
issue is not whether stock-outs occur but rather whether there is at least the desired percentage of the required items
available. For example, suppose in a week of factory production, demand for a part is 100 units but there are only 95
available. Measured in terms of LIFR, the service level is 95%.

Proponents of LIFR argue that the metric gives appropriate credit for having at least some of what is required, whereas the
probability of stock-out metric counts a week in which there was 95% of the required quantity of a particular part as a
stock-out.

When calculating safety stocks to a LIFR metric rather than multiplying the standard deviation of demand over the lead time
plus the review period by a standard normal value, solve for k in the following approximation formula:2

OX (_p9o— _ 2
LIFRgoat = 1 — Ee( 0.92-1.19k—0.37k?)
where up is the average weekly demand. Then the safety stock is koy.

Inventory versus Service Level Exchange Curves

A useful graphical output from the statistical inventory mathematics is the inventory versus service level exchange curve as
shown in Fig. 4.
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Fig. 4. Average inventory as a function of service level.

Such graphs demonstrate the nonlinear relationship between increasing inventory and service level given the constraints on
the factory. The curve represents the operating objective. (Johnson and Davis?® refer to this curve as the “efficient frontier.”)
By comparing historical inventory and service levels to the performance levels possible as indicated in Fig. 4, a factory can
gauge how much room it has for improvement. In addition, procurement can determine where on the curve they should be
operating based upon their cost for expediting orders. As can be seen in Fig. 4, a factory operating in the 90% service level
range would get a lot of leverage from inventory money invested to move them to 95% service. However, moving from 95% to
99% service level requires more money and moving from 99% to 99.9% requires more yet. By comparing the cost (and success
rate) of expediting parts to avoid stock-outs with the cost of holding inventory, the organization can determine the most
cost-effective operating point.

Order Aging Curves

Another useful graphical output is the order aging curve. This curve in a sense tells the rest of the story about material
availability to meet the SRT and service level objectives. More specifically, the curve demonstrates what type of service can
be expected for SRTs shorter than the objective and how long customers can be expected to wait when you are unable to
meet your SRT objective. Fig. 5 shows a family of order aging curves, each corresponding to a certain safety stock value
determined by the stated SRT goal. We see, for example, that a factory holding safety stocks to support a 99% service level
on a two-week SRT goal could, in fact, support a one-week SRT with a service level better than 90%. That same factory will
almost surely have all orders filled no later than four weeks from receipt of customer order.
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Fig. 5. Order aging curves for differing SRT (supplier response time) goals.

Theory versus Practice

Ultimately, the actual performance the factory experiences in the key metrics of service level to the SRT objectives and
average on-hand inventory will depend upon whether the supply chain performs according to the inputs provided to the
statistical model. All of the estimates are predicated upon the future supply chain parameters fluctuating within the
estimated boundaries. As depicted in Fig. 6, we have built up a set of assumptions about the nature of the various
uncertainties within our supply chain. If one or more of these building blocks proves to be inaccurate, the factory will
realize neither the service level nor the inventory projected.

Fig. 6. Supply chain inputs. The accuracy of the estimates of service level and
on-hand inventory are dependent on the validity of the inputs.
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