Testing Safety-Critical Software

Testing safety-critical software differs from conventional testing in
that the test design approach must consider the defined and
implied safety of the software at a level as high as the functionality
to be tested, and the test software has to be developed and
validated using the same quality assurance processes as the
software itself.

by Evangelos Nikolaropoulos

Test technology is crucial for successful product development. Inappropriate or late tests, underestimated testing effort, or
wrong test technology choices have often led projects to crisis and frustration. This software crisis results from neglecting
the imbalance between constructive software engineering and analytic quality assurance. In this article we explain the
testing concepts, the testing techniques, and the test technology approach applied to the patient monitors of the HP
OmniCare family.

Patient monitors are electronic medical devices for observing critically ill patients by monitoring their physiological
parameters (ECG, heart rate, blood pressure, respiratory gases, oxygen saturation, and so on) in real time. A monitor can
alert medical personnel when a physiological value exceeds preset limits and can report the patient’s status on a variety of
external devices such as recorders, printers, and computers, or simply send the data to a network. The monitor maintains a
database of the physiological values to show the trends of the patient’s status and enable a variety of calculations of drug
dosage or ventilation and hemodynamic parameters.

Patient monitors are used in hospitals in operating rooms, emergency rooms, and intensive care units and can be configured
for every patient category (adult, pediatric, or neonate). Very often the patient attached to a monitor is unconscious and is
sustained by other medical devices such as ventilators, anesthesia machines, fluid and drug pumps, and so on. These
life-sustaining devices are interfaced with the patient monitor but not controlled from it.

Safety and reliability requirements for medical devices are set very high by industry and regulatory authorities. There is a
variety of international and national standards setting the rules for the development, marketing, and use of medical devices.
The legal requirements for electronic medical devices are, as far as these concern safety, comparable to those for nuclear
plants and aircraft.

In the past, the safety requirements covered mainly the hardware aspects of a device, such as electromagnetic compatibility,
radio interference, electronic parts failure, and so on. The concern for software safety, accentuated by some widely known
software failures leading to patient injury or death, is increasing in the industry and the regulatory bodies. This concern is
addressed in many new standards or directives such as the Medical Device Directive of the European Union or the U.S. Food
and Drug Administration. These legal requirements go beyond a simple validation of the product; they require the
manufacturer to provide all evidence of good engineering practices during development and validation, as well the proof that
all possible hazards from the use of the medical instrument were addressed, resolved, and validated during the development
phases.

The development of the HP OmniCare family of patient monitors started in the mid-1980s. Concern for the testing of the
complex safety-critical software to validate the patient monitors led to the definition of an appropriate testing process based
on the ANSI/IEEE software engineering standards published in the same time frame. The testing process is an integral part
of our quality system and is continuously improved.

The Testing Process

During the specifications phase of a product, extended discussions are held by the crossfunctional team (especially the R&D
and software quality engineering teams) to assess the testing needs. These discussions lead to a first estimation of the test
technology needed in all phases of the development (test technology is understood as the set of all test environments and
test tools). In the case of HP patient monitors the discussion started as early as 1988 and continues with every new revision
of the patient monitor family, refining and in some cases redefining the test technology. Thus, the test environment with all
its components and the tools for the functional, integration, system, and localization testing evolved over a period of seven
years. Fig. 1 illustrates the testing process and the use of the tools.

The test process starts with the test plan, a document describing the scope, approach, resources, and schedule of the
intended test activities. The test plan states the needs for test technology (patient simulators, signal generators, test tools,
etc.). This initiates subprocesses to develop or buy the necessary tools.

Article 12 June 1997 Hewlett-Packard Journal 1

Product

Life Cycle
Phase:
Specifications Test Plan
Test
Technology
Design Test Design
Implementation Prog:tjhres ATP
Validation Eaaiian AutoTest
Test
Evaluation —‘-4 AutoCheck
Test Regression
Documentation Test Package
Shipment

Fig. 1. The software testing process for HP OmniCare patient monitors.

Test design is the documentation specifying the details of the test approach and identifying the associated tests. We follow
three major categories of test design for the generation of test cases (one can consider them as the main directions of the
testing approach): white box, black box, and risk and hazard analysis.

The white box test design method is for design test, unit test, and integration tests. This test design is totally logic-driven and
aims mainly at path and decision coverage. Input for the test cases comes from external and internal specifications (design
documents). The test design for algorithm validation (proof of physiological measurement algorithms) follows the white box
method, although sometimes this is very difficult, especially for purchased algorithms.

The black box test design method is for functional and system test. This test design is data-driven and aims at the discovery
of functionality flaws by using exhaustive input testing. Input for the test cases comes from the external specifications (as
perceived by the customer) and the intended use in a medical environment.

Risk and hazard analysis is actually a gray box method that tries to identify the possible hazards from the intended and
unintended use of the product that may be potential sources of harm for the patient or the user, and to suggest safeguards to
avoid such hazards. Consider, for instance, a noninvasive blood pressure measurement device that may overpump. Hazard
analysis is applied to both hardware (electronic and mechanical) and software, which interoperate and influence each other.
The analysis of events and conditions leading to a potential hazard (the method used is the fault tree, a cause-and-effect
graph) goes through all possible states of the hardware and software. The risk level is estimated (the risk spectrum goes
from catastrophic to negligible) by combining the probability of occurrence and the impact on health. For all states with a
risk level higher than negligible, appropriate safeguards are designed. The safeguards can be hard or soft (or in most cases,
a combination of both). The test cases derived from a hazard analysis aim to test the effectiveness of the safeguards or to
prove that a hazardous event cannot occur.

Test cases consist of descriptions of actions and situations, input data, and the expected output from the object under test
according to its specifications.

Test procedures are the detailed instructions for the setup, execution, and evaluation of results for one or more test cases.
Inputs for their development are the test cases (which are always environment independent) and the test environment as
defined and designed in the previous phases. One can compare the generation and testing of the test procedures to the
implementation phase of code development.

Testing or test execution consists of operating a system or component under specified conditions and recording the results.
The notion of testing is actually much broader and can start very early in the product development life cycle with
specification inspections, design reviews, and so on. For this paper we limit the notion of testing to the testing of code.

Test evaluation is the reporting of the contents and results of testing and incidents that occurred during testing that need
further investigation and debugging (defect tracking).

Article 12 June 1997 Hewlett-Packard Journal 2

While test design and the derivation of test procedures are done only once (with some feedback and rework from the testing
in early phases, which is also a test of the test), testing and test evaluation are repeatable steps usually carried out several
times until the software reaches its release criteria.

Various steps of the testing process also produce test documentation, which describes all the plans for and results of testing.
Test or validation results are very important for documenting the quality of medical products and are required by regulatory
authorities all over the world before the product can be marketed.

The regression test package is a collection of test procedures that can be used for selective retesting of a system or
component to verify that modifications have not caused unintended effects and that the system or component still complies
with its specified product and legal requirements.

From the Test Plan to the Testware

Ten or fifteen years ago it was perhaps enough to give a medical instrument to some experts for clinical trials, algorithm
validation, and test. The instrument had a simple display, information placement was not configurable, and the human
interface was restricted to a few buttons and knobs. All the attention was on the technical realization of the medical solution
(such as ECG monitoring), and software, mainly written by the electrical engineers who designed the hardware, was limited
to a few hundred statements of low-level languages.

Today the medical instruments are highly sophisticated open-architecture systems, with many hundreds of thousands lines
of code. They are equipped with complex interfaces to other instruments and the world (imagine monitoring a patient over
the Internet—a nightmare and a challenge at the same time). They are networked and can be remotely operated. This
complexity and connectivity requires totally new testing approaches, which in many cases, are not feasible without the
appropriate tooling, that is, the testware.

Discussion of the test plan starts relatively early in the product life cycle and is an exit criterion for the specifications phase.
One of the major tasks of the testing approach is the assessment of the testing technology needed. The term technology is
used here in its narrow meaning of process plus hardware and software tools.

The testing technology is refined in the next phases (design and implementation) and grows and matures as the product
under development takes shape. On the other hand, the testing tools must be in place before the product meets its
implementation criteria. This means that they should be implemented and validated before the product (or subproduct)
is submitted for validation. This requirement illustrates why the test technology discussion should start very early in the
product life cycle, and why the testware has a “phase shift to the left” with respect to the product validation phase (see
Fig. 2).

o | e [| w e |4 e

Product Requirements Definition Specification Paper Design | Implementation | Implementation Validation Production
Phase of Prototype and Initial
Shipments
Testware Requirements Specification Prototype, Validation Production
Phase and Design and and
Definition Implementation Corrections

Fig. 2. Relationship of product to testware development phases.

Test Tool (Testware) Development
Testware development follows the same product life cycle as the product under development. The phases are:

e Requirements and Definition Phase. The test needs are explained according to the test plan and the high-level
test design. Alternatives are discussed and one is selected by the software quality team.

e Specifications Phase. The tool is described in as much detail as possible to enable the testers to start work
with their test cases and test procedures as if the tool were already available. These specifications are
reviewed (or formally inspected) by the product development and test teams, approved, and put under revision
control.

e Design and Implementation Phase. Emphasis is on the rapid development of engineering prototypes of the
tools, which again are the object of review. These prototypes are used by the test team for low-level test design
and first test trials.

Article 12 June 1997 Hewlett-Packard Journal 3

e Validation Phase. The test tool is validated against its specifications. The most up-to-date revision of the patient
monitor under development is used as a test bed for the tool’s validation. Notice the inversion of roles: the
product is used to test the test tool! Our experience shows that this is the most fruitful period for finding bugs
in both the tool and the product. A regression package for future changes is created. First hardware
construction is started if hardware is involved.

e Production Phase. The tool is officially released, hardware is produced (or bought), and the tool is used in the
test environment. After some period of time, when the tool’s maturity for the test purposes has been assessed,
the tool is made public for use by other test departments, by marketing for demos, by support, and so on.

Fig. 2 demonstrates the main difficulty of testware development: the test tool specifications can be created after the product
specifications, but from this point on, all of the testware development phases should be earlier than the product
development phases if the product is to be validated in a timely manner.

Besides the shift of the development phases, there is also the testware dilemma: as the progress of the product’s design and
the test design leads to new perceptions of how the product can be tested, new opportunities or limitations appear that were
previously unknown, and influence the scope of the testware. The resulting changes in the testware must then be made very
quickly, more quickly than the changes in the product. Only the application of good hardware and software engineering
processes (the tester is also a developer) can avoid having the wrong test tool for the product.

AutoTest

The test technology assessment for the patient monitors led us to the development of a number of tools that could not be
found on the market. This make instead of buy decision was based mainly upon the nature of the patient monitors, which
have many CPUs, proprietary operating systems and networks, proprietary human interfaces, true real-time behavior, a lot of
firmware, and a low-level, close-to-the-machine programming style. Testing should not be allowed to influence the internal
timing of the product, and invasive testing (having the tests and the objects under test on the same computer) had to be
avoided.

The first tool developed was AutoTest,! which addressed the need for a tool able to (1) simulate the patient’s situation by
driving a number of programmable patient simulators, (2) simulate user interactions by driving a programmable keypusher,
and (3) log the reaction of the instrument under test (alarms, physiological values, waves, recordings, etc.) by taking, on
demand, snapshots of the information to send to the medical network in a structured manner.

AutoTest was further developed to accept more simulators of various parameters and external non-HP devices such as
ventilators and special measurement devices attached to the HP patient monitor. AutoTest now can access all information
traveling in the internal bus of the instrument (over a serial port with the medical computer interface) or additional
information sent to external applications (see Article 14).

AutoTest is now able to:

e Read a test procedure and interpret the instructions to special electronic devices or PCs simulating
physiological signals

e Allow user input for up to 12 patient monitors simultaneously over different keypushers (12 is the maximum
number of RS-232 interfaces in a PC)

e Allow user input with context-sensitive keypushing (first search for the existence and position of an item in a
menu selection and then activate it)

e Maintain defined delays and time dependencies between various actions and simulate power failure conditions

e Read the reaction of the device under test (alarms, physiological values and waves with all their attributes,
window contents, data packages sent to the network, overall status of the device, etc.)

e Drive from one PC simultaneously the tests of up to four patient monitors that interact with each other and
exchange measurement modules physically (over a switch box)

e Execute batch files with any combination of test procedures

e \Write to protocol files all actions (user), simulator commands for physiological signals (patient), and results
(device under test) with the appropriate time stamps (with one-second resolution).

AutoCheck
The success of AutoTest and the huge amount of data produced as a result of testing quickly led to the demand for an
automated evaluation tool. The first thoughts and desires were for an expert system that (1) would represent explicitly the
specifications of the instrument under test and the rules of the test evaluation, and (2) would have an adaptive knowledge
base. This solution was abandoned early for a more versatile procedural solution named AutoCheck (see Article 14). By
using existing compiler-building knowledge we built a tool that:
e Enables the definition of the expected results of a test case in a formal manner using a high-level language.
These formalized expected results are part of the test procedure and document at the same time the pass-fail
criteria.

e Reads the output of AutoTest containing the expected and actual results of a test.

Article 12 June 1997 Hewlett-Packard Journal 4

http://www.hp.com/hpj/97jun/ju97a14.htm
http://www.hp.com/hpj/97jun/ju97a14.htm

e Compares the expected with the actual results.

e Classifies and reports the differences according to given criteria and conditions in error files similar to
compiler error files.

AutoCheck has created totally new and remarkable possibilities for the evaluation of tests. Huge amounts of test data in
protocol files (as much as 100 megabytes per day) can be evaluated in minutes where previously many engineering hours
were spent. The danger of overlooking something in lengthy protocols full of numbers and messages is eliminated.
AutoCheck provides a much more productive approach for regression and local language tests. For local language tests, it
even enables automatic translation of the formalized pass-fail criteria during run time before comparison with the localized
test results (see Article 15).

ATP

The next step was the development of a sort of test generator that would:
e Be able to write complex test procedures by keeping the test design at the highest possible level of abstraction
e Enable greater test coverage by being able to alter the entry conditions for each test case

e Eliminate the debugging effort for new test procedures by using a library of validated test primitives and
functions

e Take account of the particularities and configurations of the monitors under test by automatic selection of the
test primitives for each configuration

e Produce (at the same time as the test setup and the entry conditions) the necessary instructions for automated
evaluation by AutoCheck.

The resulting tool is called ATP (Automated Test Processor, see Article 13). Like AutoCheck, ATP was developed by using
compiler-building technology.

Results

Good test design can produce good and reliable manual tests. The industry has had very good experience with sound manual
tests in the hands of experienced testers. However, there is no chance for manual testing in certain areas of functionality
such as interprocess communication, network communication, CPU load, system load, and so on, which can only be tested
with the help of tools. Our process now leaves the most tedious, repetitive, and resource-intensive parts of the testing
process for the automated testware:

e ATP for the generation of test procedures in a variety of configurations and settings based on a high-level test
design

e AutoTest for test execution, 24 hours a day, 7 days a week with unlimited combinations of tests and repetitions

e AutoCheck for the automated evaluation of huge amounts of test protocol data.

One of the most interesting facets is the ability of these tools to self-document their output with comments, time stamps, and
so on. Their output can be used without any filtering to document the test generation with pass-fail criteria, test execution
with all execution details (test log), and test evaluation with a classification of the discrepancies (warnings, errors, range
violations, validity errors, etc.).

Automated testware provides us with reliable, efficient, and economical testing of different configurations or different
localized versions of a product using the same test environment and the same test procedures. By following the two
directions of (1) automated testware for functional, system, and regression tests (for better test coverage), and (2)
inspection of all design, test design, and critical code (as identified by the hazard analysis), we have achieved some
remarkable results, as shown in Fig. 3.

Through the years the patient monitor software has become more and more complex as new measurements and interfaces
were added to meet increased customer needs for better and more efficient healthcare. Although the software size has
grown by a factor of three in six years (and with it the testing needs), the testing effort, expressed as the number of test
cycles times the test cycle duration, has dropped dramatically. The number of test cycles has dropped or remained stable
from release to release.

The predictability of the release date, or the length of the validation phase, has improved significantly. There has been no
slippage of the shipment release date with the last four releases.

The ratio of automated to manual tests is constantly improving. A single exception confirms the rule: for one revision, lack of
automated testware for the new functionality—a module to transfer a patient database from one monitor to another—forced
us to do all tests for this function manually.

The test coverage and the coverage of the regression testing has improved over the years even though the percentage of
regression testing in the total testing effort has constantly increased.

See Subarticle 12a: Processor and System Verification.

Article 12 June 1997 Hewlett-Packard Journal 5

http://www.hp.com/hpj/97jun/ju97a15.htm
http://www.hp.com/hpj/97jun/ju97a13.htm
http://www.hp.com/hpj/97jun/ju97a12a.pdf

Code Size —\

Testing Effort

Ratio of Automatic

/— to Manual Testing

e o [— — -
T T T -t L -t -t

Defects Found
after Release

April October May December February August March July December
1989 1989 1990 1990 1993 1994 1995 1995 1995
AT AT AT AT 1.0 AT 2.0 AT 3.0 AT 3. AT 3x AT 3.97
AC AC AC AC AC
Insp. ATP ATP ATP
Insp. Insp. Insp.

Tools in Place: AT = AutoTest
AC = AutoCheck
ATP = Automated Test Processor
Insp. = Inspections

Fig. 3. Trends of testing metrics for patient monitors.

Conclusion

Software quality does not start and surely does not end with testing. Because testing, as the term is used in this article, is
applied to the final products of a development phase, defect discovery through testing always happens too late in each phase
of product development. All the experience gained shows that defect prevention activities (by applying the appropriate
constructive software engineering methods during product development in all phases) is more productive than any analytic
quality assurance at the end of the development process.

Nevertheless, testing is the ultimate sentinel of a quality assurance system before a product reaches the next phase in its life
cycle. Nothing can replace good, effective testing in the validation phase before the product leaves R&D to go to
manufacturing (and to our customers). Even if this is the only and unique test cycle in this phase (if the defect prevention
activities produced an error-free product, which is still a vision), it has to be prepared very carefully and be well
documented. This is especially true for safety-critical software, for which, in addition to functionality, the effectiveness of all
safeguards under all possible failure conditions has to be tested.

In this effort, automated testware is crucial to ensuring reliability (the testware is correct, validated, and does not produce
false negative results), efficiency (no test reruns because of testware problems), and economy (optimization of resources,
especially human resources).

Reference

1. D. Goring, “An Automated Test Environment for a Medical Patient Monitoring System,” Hewlett-Packard
Journal, Vol. 42, no. 4, October 1991, pp. 49-52.

» Go to Subarticle 12a
» Go to Next Article
» Go to Journal Home Page

Article 12 June 1997 Hewlett-Packard Journal 6

http://www.hp.com/hpj/97jun/ju97a12a.pdf
http://www.hp.com/hpj/97jun/ju97a13.htm
http://www.hp.com/hpj/journal.html

