PPA Printer Software Driver Design

The software driver for the HP DeskJet 820C printer performs many
functions that were formerly performed in the printer, including
swath cutting, data formatting, and communications. The driver
also includes a PCL emulation module for DOS application support.

by David M. Hall, Lee W. Jackson, Katrina Heiles, Karen E. Van der Veer, and Thomas J. Halpenny

The software driver for the new HP DeskJet 820C printer includes many new functions that need to be performed on the
host computer because of the printer’s Printing Performance Architecture (PPA). In older PCL (Printer Control Language)
printers, these functions were performed in the printer. Fig. 1 shows the differences. These functions include:

e Swath cutting

e Data formatting

e PPA communications

e PCL emulation for DOS application support.

This article provides an overview of the changes necessary for supporting PPA and then discusses each of the functions
listed above in more detail.

Driver Overview

Under the Windows™ operating system, printer drivers are responsible for supporting a specific API (application
programming interface) known as the DDI (Device Driver Interface). This interface gives the driver fairly high-level drawing
commands. It is up to the driver to take those commands and produce a bitmap that can be encapsulated in a language and
sent to the printer.

Typically, within a Windows printer driver, a rendering engine takes the DDl commands and produces a rendered bitmap.
A halftoning algorithm is performed on the rendered bitmap and a halftoned bitmap is produced. This halftoned bitmap is
typically in a format that can be encapsulated in a language such as PCL and then given to the printer.

For the HP DeskJet 820C, this halftoned bitmap has to be put through additional processing as shown in Fig. 1 to create data
that is ready to be printed by the printer’s electronics directly. This additional processing includes swath cutting and sweep
formatting.

Since the HP DeskJet 820C does not understand PCL (Printer Control Language), a PCL emulation module is necessary to
provide support for DOS applications. The DOS application data stream is captured by a DOS redirector and passed to the
PCL emulator, which produces a halftoned bitmap ready for swath cutting.

PCL versus PPA

Fig. 2 shows the printing model for PCL printers. For PCL printers, the process of encapsulating the halftoned bitmap is
fairly straightforward. Raster data from the halftoned bitmap is compressed, PCL wrapped, and then sent to the 1/0 module.
The reason that this is a simple process is that PCL printers are designed to receive data in the same format as the halftoned
bitmap. PCL printers unwrap the data into an internal buffer and perform the necessary swath cutting and data formatting
internally.

Fig. 3 shows the printing model for PPA printers. For the HP DeskJet 820C, the PCL encapsulator is replaced with an SCP
data encapsulator. SCP (Sleek Command Protocol) is an HP-proprietary command language. This module contains swath
cutting functionality, data formatting, SCP language encapsulation, and printer status management.

Raster data from the halftoned bitmap comes into the SCP data encapsulator, goes through the SCP manager, and eventually
arrives at a raster block within the swath manager. The swath cutting state machine examines the data and determines the
appropriate sweep to generate. A sweep is a collection of rasters appropriate for the printer mechanism to print while it
sweeps the printhead over the paper.

Once the sweep is generated, it is given to the sweep formatter. The sweep formatter is responsible for taking the sweep
data and putting it into the appropriate format for the HP DeskJet 820C internal hardware. Then the data is compressed,
wrapped in SCP, and handed off to the 1/O layer.

The 1/0 layer is responsible for communicating with the printer by wrapping the data stream in VLink and IEEE 1284
protocols. VLink is an HP-proprietary link-level protocol and IEEE 1284 is an industry-standard physical-layer protocol.

Article 2 June 1997 Hewlett-Packard Journal 1

DOS
Application

Application Windows

DDI Commands PCL Data Stream

Rendering Printer PCL DOS
Engine Driver Emulator Redirector

Rendered Halftoni Halftoned
Bitmap alitoning Bitmap

Compression

Sweep
Formatting

New

Current PCL PCL q PPA
Data Path Encapsulation CaE= Data
Path

SCP
Encapsulation

MLC
Protocol
110 Layer

VLink
Protocol
1/0 Layer

IEEE 1284

Printer

Fig. 1. Printer driver functional block diagram, showing differences between PCL and PPA data paths.

Performing Swath Cutting on the Host

Swath cutting is the process of taking a page of halftoned raster data and producing sweep data appropriate for the carriage
electronics to print as the printhead is sweeping across the page. Swath cutting has historically been part of printer
firmware, but in the HP DeskJet 820C printer, it is part of the software driver running on the host computer. Typically, a
swath manager encapsulates a swath cutting engine and receives as input a bitmap representation of the page to be printed.
The swath manager is responsible for determining how the pens and paper should be moved and when and how the pens
should be fired to produce the printed page. The swath manager must balance the often conflicting goals of printing with the
highest possible print quality and printing as fast as possible. The swath manager must be aware of certain printer-specific
attributes such as printhead alignment and strategies to minimize line feed error. In PPA, swath management is performed on
the host computer.

The process of swath cutting can be readily modeled using a state machine. Consider the example shown in Fig. 4. A state
machine capable of processing this page would need to contain five states: Top of Page, Blank Skipping, Black Text Printing, Color
Graphic Printing, and End of Page. Thus, we can create the state machine shown in Fig. 5. A particular instance of a state machine
exists for each print mode the swath manager supports. For example, there could be a print mode for pages that only have

Article 2 June 1997 Hewlett-Packard Journal 2

Halftoned

Bitmap

Raster Data

Compression

PCL Wrap

Datacomm

PCL Status

MLC
Protocol

External Status

S IEEE1284 User Interface

PCL Printer

Fig. 2. PCL printing model.

black text on them, another print mode for pages with black and color, and yet another print mode for pages with complex
graphic images.

As the state machine begins to examine the data on the page, it starts in the Top of Page state. The first data it comes to is a
series of blanks. This would cause it to move to the Blank Skipping state. During this transition the swath manager would
typically load the page. While in the Blank Skipping state, the swath manager would advance the paper. Next, it would
encounter a black text region and move to the Black Text Printing state. Depending upon the type of printing being done at that
time, this transition may produce a sweep.

Assume that for this print mode, the data on the page is being printed by making two sweeps for each line. Thus, in making
the transition from Blank Skipping to Black Text Printing the printer could print the first pass of the black text region with the
bottom half of the printhead, advance the paper half a printhead height, and then enter the Black Text Printing state. During the
next sweep generated, the Black Text Printing state would finish the lines that were printed during the transition and continue
printing the black text region (see Fig. 6). The data on the page would continue to be consumed and transitions made
between states until the End of Page state is reached.

Obviously, this example is a simple one. The number of states and the number of transitions to consume data for a real page
can be quite large. Using PPA we have the opportunity to perform the resource-intensive task of swath cutting on the host.
This allows greater flexibility in developing machines with unique print modes, which provides the opportunity for higher
print quality and throughput as well as reduced mechanism costs.

PPA Data Formatting

The HP DeskJet 820’s Printer Performance Architecture requires the host to perform the majority of the data manipulation.
The data that is sent to the printer must be in a format that is very close to the final form used to fire the printheads. The
main difficulty in formatting the data for the printhead lies in the fact that the data doesn’t come out of one position on the
carriage mechanism. Instead, there are two columns for each of the four pen colors. Each column is at a different vertical
and horizontal offset from a relative zero carriage position. To minimize the cost and complexity of the electronics in the
printer mechanism, the data sent from the host to the printer must be ordered so that it is ready to go directly into these
offset printheads in the appropriate order so that it is fired at the correct locations on the page. This ordering is based on:

Article 2 June 1997 Hewlett-Packard Journal 3

Halftoned
Bitmap

SCP Manager

Swath Manager
Factory

Creates

Swath Cutting
State Machine

Sweep
Formatter

Raster Block

Compression

SCP Wrap

Control and

Status SCP Status
“

1/0 Manager
Datacomm

External Status
User Interface

HP DeskJet
820C Printer

Fig. 3. PPA printing model.

e The starting page position of each color

e The servant architecture in the printer hardware (described later)

e The printhead (see Fig. 7).
To print a page, it is necessary for the carriage mechanism to move back and forth across the page, firing drops of ink as it
moves. Each movement of the carriage across the page is called a print sweep. When the driver receives a page to print from

some application, it renders the page into a halftoned bitmap. At this point, a PCL printer driver would send compressed and
encapsulated PCL data directly to the printer. The PPA printer driver uses the swath cutting state machine to generate a

Article 2 June 1997 Hewlett-Packard Journal 4

Top of Page to
Blank Transition

Blank to Black
Text Transition

Black Text Region

Black Text to
Blank Transition

Blank to Color
Graphic Transition

Color Graphic Region
Color Graphic to
Black Text Transition

Black Text Region

Black Text to End
of Page Transition

Fig. 4. Swath cutting state machine transitions for a typical page.

Top of Page

Black Text Color Graphic
Printing Printing

Blank
Skipping

End of Page

Fig. 5. Swath cutting state machine.

Printhead

Printhead

||

(b) -

Fig. 6. (@) In making the transition from Blank Skipping t0 Black Text Printing, the printer prints the first pass of the black text
region with the bottom half of the printhead, advances the paper half a printhead height, and then enters the Black Text
printing state. (b) During the next sweep generated, the Black Text Printing state finishes the lines that were printed during

the transition and continues printing the black text region.

swath of data that can be printed by a single pass of the pen carriage. The resulting swath of data is passed on to the sweep
formatter, which manipulates the data into a buffer that can be copied directly to the printheads. The print sweep formatter
uses knowledge of the pen carriage, hardware, and firmware architecture to prepare and reformat the data into a print
sweep.
The number of print sweeps required on a given page is dependent upon:

e The amount of data on the page (text or dense graphics)

Article 2 June 1997 Hewlett-Packard Journal 5

Paper in Printer

Pen Cartridge
Color Pen Printhead
Motion
—

1]

T T T Motion
T L vellow
Black Magenta

Cyan

Fig. 7. HP DeskJet 820C print cartridge layout. The lines correspond to nozzle
columns and their general configuration on the printer carriage.

e The print mode selected by the user (best, normal, or econofast)

e The paper type (plain, glossy, transparency, or special).
For each print sweep, the host sends two pieces of information to the printer. The first is the PRINT_SWEEP data, a buffer of
image data sent before the PRINT_SWEEP command, which contains an entire sweep of swing buffer data blocks in the correct
order. The second piece of information is the PRINT_SWEEP command, the mechanism by which the driver tells the printer
where and how to place the print sweep data on the page. A PRINT_SWEEP command contains minimum and maximum
positions for each pen column, the print direction, print speeds, and NEXT_PRINT_SWEEP information.
The PRINT_SWEEP command information is calculated by the printer driver based upon:

e Which pens are active (black, cyan, magenta, yellow)

e The starting and ending locations on the page for each pen color

e The direction of the print sweep

e The servant architecture:

O The distances between pens
O The distances between odd and even columns within a pen
© The 0,0 position in relation to the pen columns.

Servant Architecture
The servant hardware (see Article 4) is composed of a pair of buffers, called swing buffers, for each column of the
printhead (two columns per color). To build a print sweep, the driver must:

e Separate the image into CMY planes, or primitive data blocks
e Separate the primitive data blocks into swing buffer data blocks
e Order the swing buffer data blocks into a servant image.
A primitive data block (a bitmap image of each plane for each color) is created by the driver. Each primitive data block

needs to be split into two separate swing buffer data blocks: an odd block and an even block. This is necessary because of
the pen design, which consists of two offset columns, as pictured in Fig. 8.

Cyan Pen

Even

w
® O 0o
e o o
S

32 Rows

63 | @

® s

Fig. 8. Each color pen has two offset columns of nozzles.

Article 2 June 1997 Hewlett-Packard Journal 6

http://www.hp.com/hpj/97jun/ju97a4.htm

Each column on the color pen has 32 nozzles. The color pen has a height of 64/300 inch. For any given column of data, rows
1,3,5, ..., 63 will be part of the odd column and rows 2, 4, 6, ..., 64 will be part of the even column.

The even and odd swing buffer data blocks are each 8 bits wide, the width of servant RAM, and each is the height of a
printhead nozzle column. Swing buffer data blocks are cut for each primitive color and for either the even or odd nozzle
column. Thus, each swing buffer data block contains every other row from the primitive data block.

Fig. 9 shows a simplified example of a primitive data block. Each byte is a buffer of data that is one byte (8 pixels) wide by N
rows high, where N is the number of nozzles in a printhead column. For the example in Fig. 9, N is 6, while N is 32 for the HP
DeskJet 820C color printheads.

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Fig. 9. Primitive data block organization for a printhead that has two columns of six nozzles per color.
Byte n (n=0, 1, 2, 3, 4, 5) is a buffer of data 8 pixels wide by 6 rows (nozzles) high. The HP DeskJet
820C printheads have two 32-nozzle columns per color, as shown in Fig. 8.

Each column of the primitive data block in Fig. 9 is divided into four swing buffer data blocks with bytes relocated to the
positions shown in Fig. 10. Only the cyan pen is shown, and only two of the swing buffer data blocks for each column of
Fig. 9 are shown. The drawing would be similar for the magenta and yellow pens.

Swing Buffer Data Swing Buffer Data
Blocks, Byte 0 Blocks, Byte 1

CO:0 CE:0 CO:1 CE:1

CO:x= Cyan Odd Printhead Column: Primitive Data Block #
CE:x = Cyan Even Printhead Column: Primitive Data Block #

Fig. 10. Swing buffer data blocks for the example primitive data block shown in Fig. 9.

Once the data is in the form of even and odd swing buffer data blocks, the blocks must be ordered and sent to the printer.
This ordering is done with knowledge of the column spacing on the printhead and knowledge of the order in which the
servant architecture will require the data. The printer driver controls the order in which the columns will trigger via fields in
the PRINT_SWEEP command. The ordered swing buffer data blocks are then sent down as PRINT_SWEEP data ready to be loaded
into the primitive swing buffers in the printhead.

Each primitive swing buffer consists of two 8-bit columns, separated by a swing trigger point. While the servant print
process is unloading one side of the odd column swing buffer, the other side of the odd column swing buffer is being loaded
by the servant load process. Once the byte is loaded, the servant print process fires one bit by 32 rows at a time for each pen
column in the color pen. When the servant print process has unloaded all eight bits, it crosses a swing trigger point, and the

Article 2 June 1997 Hewlett-Packard Journal 7

servant print process switches to the other swing buffer and triggers the servant load process to load the empty swing buffer.
The pen fires one bit by 32 rows at a time for each pen column. The servant (printer) is responsible for any complexity
involved below the byte level.

When all of the swing buffer data blocks have been consumed by the printhead, the carriage mechanism uses the
NEXT_PRINT_SWEEP information to position itself for the start of the next print sweep.

Because the PPA printer relies upon the driver to format the data appropriately, the architecture does not require the printer
firmware to have any knowledge of the operations just described. Thus, the cost and complexity of the electronics in the
printer mechanism are significantly reduced.

PPA Communication

One of the goals of the HP DeskJet 820C printer is to provide continuous feedback to the user during any printing operation,
and to guide the user during problem solving. To accomplish this, the driver requires a mechanism to ask the printer for
information and to allow the printer to notify the driver whenever something happens (the printer is out of paper, the user
opened the cover, etc.). The mechanism used by the PPA driver to communicate with the printer is called status messaging.

To notify the user to align the print cartridges when a print cartridge has been changed, that the top cover is open, or that
something else needs attention, a bidirectional link with the printer is required. Two new HP-proprietary protocols allow the
driver to communicate bidirectionally with the HP DeskJet 820C: VLink packet protocol and Sleek Command Protocol
(SCP). Previous HP DeskJet printers used an 1/0 packetizing protocol called MLC (Multiple Logical Channel) and a
proprietary HP printer command protocol. For PPA, VLink replaces MLC, and SCP replaces both PCL and the old printer
command protocol.

While giving users error messages might seem to be a luxury they could do without, the real reason to have a protocol like
VLink is that it is useful to figure out what is wrong when, for example, the printer’s input buffer fills up, the printer stops
accepting data, and the host is unable to send even one more byte. This often happens and is temporary, but in the days
before bidirectional protocols, the driver would sometimes wait and wait to be allowed to send again, and it didn’t know
whether the delay was because the top cover had been opened, a print cartridge had failed, or a fatal error had occurred. It
is helpful to know whether to abort the job or ask the user to insert a print cartridge or close the door. With a bidirectional
protocol, the printer tells the driver exactly what the problem is, and the driver can decide what action to take next.

A bidirectional link is not required for printing or to have limited status feedback from the printer. However, unlike PCL
printers, which can accept either PCL data wrapped in MLC or raw PCL data, PPA printers can only interpret data wrapped
in VLink and SCP. Thus, while MLC is an option that can be added when a bidirectional link exists, VLink must handle
printing with and without a bidirectional link as well as printing to a file.

Based on VLink’s channelization features, there are two paths the data can take to the printer. One is for image data (the dots
that will go on the page), and the other is for command data. Command data includes commands sent to the printer, such as
“Print this sweep,” requests for information, or queries, such as “What print cartridges are installed?”, and status information,
termed autostatus, such as “The top cover is open.” Sending image data is easy from an /O standpoint—if the printer has
room in its buffer, the driver will send the data. Since command data must be sent and also received (autostatus may come in
at any time), it is by nature a more complex affair.

As shown in Fig. 11, data that comes in from the front end of the driver goes through the data encapsulator, like PCL printer
drivers, but from there it goes through several new objects. The SCP manager wraps the data in SCP and sends it to the I1/0
manager, which provides an interface to the datacomm objects. The VLink layer wraps the data in the VLink protocol and
sends it to the IEEE 1284 layer and out to the printer.

Data that is sent by the printer, such as notifications that something is wrong, are put in the printer’s output buffer. The
driver spawns a hidden executable at the beginning of each print job called the port sniffer, which checks the port every half
second to determine if the printer has sent any data. If so, the data is routed through the IEEE 1284 layer to the VLink layer,
which then posts a message to the 1/0 manager’s hidden status window.

The status window uses a callback to call into the SCP manager, which translates the status information, and if the message
is something that should be displayed to the user, puts it on the event list. The event list prioritizes the messages on it so that
the most important message gets sent to the HP Toolbox, which displays the dialog box to the user. If the message is an
error, it may get resolved (for example, the user puts paper in the printer and presses the Resume button). The message is
then routed up through the same path and deleted from the event list. The Toolbox takes the dialog box down and displays
the next most important message, if there is one.

Article 2 June 1997 Hewlett-Packard Journal 8

From Driver
Front End

|

Data Encapsulator
. HP DeskJet
SCP Manager S L 820C Toolbox

1/0 Manager

Datacomm

Check for

, Messages
Port Sniffer

HP DeskJet
I 820C Printer
Bidirectional
Link

IEEE 1284

Fig. 11. PPA status messaging architecture.

Internal Objects in PPA Status Messaging

PPA status messaging involves several high-level modules and objects: the SCP (Sleek Command Protocol) manager, the 1/O
manager, the VLink module, and the event list (see Fig. 12).

SCP Translator. The function of the SCP translator object in the SCP manager is to encode data into the SCP format and
decode messages received in the SCP format from the printer into query replies and event information. The SCP translator
does not send SCP data directly to the I/0 manager, since memory management for the data buffers is done in the SCP
translator’s clients, which are the swath manager and the status manager. The client of the SCP translator passes in a pointer
to the data, an empty buffer, and the maximum data length. Once the data has been packaged, if the SCP translator finds that
the data is larger than the buffer, it will return an error. Otherwise, it will pass back the actual SCP data length. The goal in
designing the SCP translator was to encapsulate the Sleek Command Protocol so that changes in SCP in the firmware affect
clients of this module as little as possible.

Commands in SCP use the format shown in Fig. 13. The command specifier field identifies the SCP command. The length
field indicates the number of bytes in the data field. The data field does not exist for every command.

Priorities. Priorities allow the printer to execute commands in a different order than received. This may be necessary when a
command cannot complete execution and it is desirable for the printer to process queries so the driver can find out what the
problem is. Priority levels are defined in the SCP translator and the clients can set whatever priorities they like. Standard
priority levels are defined as shown in Table I.

Article 2 June 1997 Hewlett-Packard Journal 9

From Front End

Register and
Unregister
—~

-

—

Event
Swath Translator

Manager

—

—
~ Event
" Messages
Status
Send SCP Manager _
Data Translator - ~
SCP Data
Enable ',
// and
_ Disable '
/0 ," Send
Manager _ - Command
SCPData/Read
\

SCP Data\

// Post Message
(Event Notify)

Query Path
— — — — Event Path
General Path

IEEE 1284

Fig. 12. Calls between status messaging objects.

Command
Reference
Number

Command
Specifier

Data (Optional)

Priority

Fig. 13. SCP command format.

Table |
Command Priorities

Command Priority
Printing Commands Low
Queries Medium
Initializing and Deinitializing the 1/0 Link High
Recovering from Errors Recover
Canceling Cancel
Restarting the Printer Restart

It is assumed that the swath manager will send all of its printing commands (LOAD_MEDIA, PRINT_SWEEP, EJECT_MEDIA) at the
lowest priority. Any queries it needs to make will call into the status manager. All queries should be at the same priority and
higher than printing commands. It is up to the clients to set priorities.

Status Manager. The status manager manages messages to and from the printer. These messages can be broken into two
categories: events and queries. Events are unsolicited notifications by the printer (i.e., autostatus) that something has
occurred to change the state of the printer, such as “the door is open.” Queries are requests for information made by the
driver to the printer, such as the pen IDs of the installed pens. The status manager tracks the state of the printer and creates

Article 2

June 1997 Hewlett-Packard Journal 10

events when state changes occur. For example, when the Resume button is pressed, an internal state change occurs. This
state change is recognized by the status manager and reported as an event to the event translator.

When the status manager receives notification of an event, it determines what has changed and whether the event is
something the event translator has requested to know about. If it is, a callback in the event translator is called.

Upon starting a print job, the status manager queries the printer to get the current state of events. No event notification will
be received until an event occurs in the printer.

Event Translator. This module exists between the event list, which is Windows-specific, and the status manager. The event
translator translates the bit-field data, which is returned to the status manager by the printer in autostatus, into events. New
events are added to the event list by the status manager, and events that are no longer valid (e.g., the door was open but the
user shut it) are removed from the list. The event list orders the events reported to it according to their importance to the
user, and tells the status monitor which dialog box to display. From most important (1) to least important (10), the following
event priorities are used: (1) I/0 errors, (2) paper jam, carriage stall, or maximum thermal limit, (3) pen failure, (4) wrong
pen, (5) low or out of ink, (6) pen missing, (7) out of paper, (8) cover open, (9) dry timer, (10) new pen.

I/0 Manager. This module is intended to glue the VLink module, which is Windows-specific, to the SCP manager, which is
shared. Handling for events, queries, and buffer management must be performed by the 1/0 manager in addition to sending
data to the printer as quickly as possible.

Events. The I/0O manager creates a hidden window so that when the printer sends unsolicited event notification, Windows
messages to that effect can be posted to this window by the VLink module. When the 1/O manager processes this window
message, it will read the SCP data buffered by VLink and call a callback in the status manager, passing in the SCP data.

Queries. To get replies to queries, the inquiring module calls VLink, specifying a buffer in which to place the reply. VLink
checks this query reply buffer to see if anything has been returned in response to the query. If so, it immediately returns with
the SCP data. If not, it polls the incoming channels for a specified timeout period to attempt to retrieve the reply. If a reply is
received before the timeout period expires, the SCP data is passed through to the status manager.

Datacomm Paths. The image and command datacomm paths send data to the printer as long as there is space in the buffer.
If space runs out, the command datacomm path waits until more space becomes available. The image data is handled
differently. If space runs out while sending image data, the image datacomm path returns to the caller, allowing it to render
more swaths until more space becomes free in the printer.

VLink. The VLink module must package data in a protocol the printer recognizes, and send only as much data as the printer
can take, as quickly as possible. VLink must also unwrap data from the printer and route the messages to the appropriate
clients.

The VLink protocol replaces MLC (Multiple Logical Channels) for the HP DeskJet 820C. Like MLC, VLink's intent is to
provide a way for the host and the peripheral to exchange data. Unlike MLC, VLink is not optional. All data going to the
printer must be wrapped in its protocol. In addition, VLink is streamlined or “sleek,” and doesn’t have many of MLC’s
features. MLC supported multiple logical channels, while VLink supports two outgoing and three incoming channels.

Outgoing Channels. The printer accepts data in either its input buffer or its command buffer. The VLink module specifies
which type of data it is sending through a field in the VLink packet header. A template of a VLink packet is shown in Fig. 14.

Start of

Packet | Channel
()

Fig. 14. VLink packet format.

Image data is sent to the printer’s input buffer on the image data output channel. Commands and queries are sent to the
command buffer on the command data output channel.

Incoming Channels. Since a bidirectional link cannot be guaranteed, all incoming data is optional. This is necessary for file
dumps and bad cables, and miscellaneous communication problems.

The printer periodically notifies the host how much buffer space is left in the printer. This is known as credit, and the printer
sends notification for both the command and input buffers on the credit input channel. The VLink module will not send more
data than the available credit.

VLink accepts two types of data packets from the printer in addition to credit packets: query replies, which are expected on
the status input channel, and a collection of bundled items regarding printer status (such as out of paper), called autostatus
messages. Autostatus messages ultimately map to events.

Article 2 June 1997 Hewlett-Packard Journal 11

An autostatus message from the printer consists of a bit collection of several long words representing the current state of
the printer. For example, when the door is opened, the door open bit in the collection is set to true. A report is generated
on the autostatus input channel when any of these bits are toggled.

When the VLink layer receives some data, the data is identified as either credit, a query reply, or an autostatus message.
Credit is interpreted and handled within the VLink module. A query reply or an autostatus message is buffered internally
so that the clients can read it later.

If a received message is an autostatus message, the VLink layer posts a Windows message to the I/O manager indicating that
an autostatus message is waiting to be read. When the 1/0 manager processes the Windows message, it reads the buffered
autostatus message. Posting a message is hecessary so that VLink can be free to poll the data lines for more incoming data
from the printer.

Once the buffered message has been read, it is deleted. Only one query reply and one autostatus message can be buffered at
a time. If a new message comes in before the original message can be read, the new message replaces the old one. It is for
this reason that no additional printer queries should be made while waiting for a reply. No harm is done if a new autostatus
message overwrites the old message because the same information is contained in each message and the newest message is
the most relevant.

PCL Emulation for DOS Application Support

The development period of the HP DeskJet 820C coincided with most users rapidly transitioning away from DOS
applications towards Windows applications. While we expected that most users would use the printer in its optimized design
center, we recognized that we needed an adequate bridge to the few DOS applications that would continue to be used.

The HP DeskJet 550C printer was the final printer to be supported by most DOS applications, so the solution had to be
functionally compatible with this printer and provide equally good print quality. We chose to provide compatibility with the
HP DeskJet 660C printer, which was a contemporary printer that satisfied these requirements and provided an internal
interface that enabled us to separate the PCL personality from the printer engine firmware. We planned to port the PCL
personality functions to the HP DeskJet 820C printer driver, encapsulating them in a PCL emulator module. The required
printer-engine functions would then be supplied by the rest of the HP DeskJet 820C driver. In this way, we could minimize
design changes and maximize the chances of identical compatibility. If a DOS application is run from an MS-DOS prompt
window, also referred to as a DOS box, the printer driver can intercept the PCL data stream that the DOS application sends
to the PC’s parallel port and redirect the data stream to the PCL emulator.

The HP DeskJet 820C PCL emulator encapsulates the HP DeskJet 660C formatter and text engine code. The design of the
HP DeskJet 660C firmware was such that all interfacing to the external mechanism was done through a well-defined API
internally known as the Ed Interface (see Fig. 15).

The Ed Interface resides between the formatter and font manager and the rest of the firmware. It is a collection of function
calls to the support code in the firmware. Since we reused the formatter and font manager code, we provided the equivalent
firmware functionality by mapping the Ed Interface calls into HP DeskJet 820C support objects.

The functions of the formatter and text engine firmware code were written in C, and as such are functions in the PCL
emulator application (Fig. 16). The PCL emulator application provides C++ objects that encapsulate the functionality
expected by the Ed Interface.

The PCL emulator application is designed to receive a file name that contains the PCL data to operate on. Interfacing
between the internal PCL emulator object and the external driver is provided through a PCL personality object.

The PCL emulator is implemented as an executable application because the original firmware code expects to be a separate
task, and this implementation allows almost direct porting of the HP DeskJet 660C firmware code. The PCL personality
provides the handler functions and the external interface for receiving the PCL file name.

To allow DOS applications to print to the HP DeskJet 820C, it is necessary to capture the data generated by the DOS
applications. This process is referred to as DOS box redirection. Essentially, it is necessary to capture the bytes intended for
the parallel port and put them into a file so that the PCL emulator can properly interpret the data.

Under Windows 3.1, DOS box redirection is not part of the operating system, so it was necessary for us to provide a
redirection solution. This functionality is provided by a redirector VxD (virtual device driver), a redirector DLL (dynamic
link library), and a redirector EXE (executable), as shown in Fig. 17. These three pieces capture the data stream and put it
into a temporary file. This file is then handed to the driver, and the driver hands it to the PCL emulator.

Under Windows 95 (Fig. 18), DOS box redirection is provided by the Windows printing system, so our redirector solution is
not necessary for spooling to work under Windows 95. PCL printers essentially get DOS box redirection free. PPA printers
need to intercept and perform PCL emulation on the DOS data stream. Microsoft provides a replaceable module called a
language monitor where the data stream can be intercepted. The language monitor is a 32-bit DLL called directly by the
spooling subsystem. The language monitor takes the incoming buffers, writes them to a temporary file, and passes the file
name to the driver.

Article 2 June 1997 Hewlett-Packard Journal 12

Article 2

Font
Manager

Support
Objects

Ed Interface

Ed_Init_Formatter
Ed_Start_Formatter
Ed_Kill_Formatter

Formatter
Support

Ed_Get_Char_Timeout
Ed_Unget_Char 110
Ed_Get_Block Support
Ed_Put_Block

Ed_Media_Find Media

Ed_Open_Page
Ed_Close_Page Support

Ed_Plane_Alloc Image
Ed_Page_Swath Support

Ed_Create_Pool
Ed_Delete_Pool
Ed_Create_Partition Memory
Ed_Delete_Partition Support
Ed_Get_Buf
Ed_Ret_Buf

Ed_Default_Query
Ed_Default_Update
Ed_No_Mem_Update Device
Ed_Form_Feed_Waiting Support
Ed_Pen_Request
Ed_Error_Trap

Ed_Parser_At_Top_Level
Ed_Page_Marked

Font Interface

Font
Support

Read_Next_Entity

Fig. 15. PCL emulation is provided in the HP DeskJet 820C printer by mapping
the existing Ed Interface calls to DeskJet 820C support objects.

PCL File Name

PCL Personality PCL Emulator
Font

Startup Code Initializes Formatter Manager

CreateBackEnd

SpoolFile() Creates Spool File

Ed
Interface

Handlers Passed

Support
Objects

Raster and
Control Data

Legend:

Drivers

Data Fl
Object/Code . DataFlow @

Fig. 16. The PCL emulator application provides C++ objects that
encapsulate the functionality expected by the Ed Interface.

June 1997 Hewlett-Packard Journal

13

Windows95
Printing
Subsystem

Stream Data Stream Data

Stream Data

Windows95
Redirector

Redirector [SIUEEMIPE] Redirector
VxD DLL

Data
Stream

Stream
Data

Language
Monitor
(32-Bit DLL)

Stream Data Redirector Stream Data

EXE

Temporary
Spool File

Temporary
Spool File

Windows .
Driver

Driver

PCL
Emulator

PCL
Emulator

Fig. 17. DOS box redirection for Windows 3.1. Fig. 18. DOS box redirection for Windows 95.

Porting the Firmware

The process of porting the C-language code from the HP DeskJet 660C presented several challenges. The original firmware
was developed for a Motorola 68000 processor, while the printer driver runs on the Intel 80x86 processor in Windows 16-bit
mode.

These two hardware platforms have conflicting ways of addressing memory for data types larger than a byte—the former
is big endian (the most significant byte comes first) and the latter is little endian. As long as a data element is consistently
accessed with the same data type, there is no problem. However, there are places in which a data type is written as several
single bytes, then read as 2-byte or 4-byte quantities. We needed to identify and change the code in these places.

The original font data that described the glyph (shape) information for the text engine was a single block of 250K bytes of
read-only data. This block was mapped to five blocks of resource data, since each block had to be less than 64K bytes for
Windows 16-bit mode. These blocks are discardable, meaning that the operating system can load them when it needs to read
some data, but to load other code or resource blocks when Windows has run out of memory, they can be replaced by other
blocks.

The original firmware’s text engine depended on a special hardware component that rotated font glyph data from horizontal
to vertical orientation, could double the size of the data, and smoothed the edges of a glyph using several rules for HP
Resolution Enhancement technology (REt). Since this hardware was not available to the printer driver, we were able to
simulate the first and second of these functions in software. We determined that the print quality would still be better than
the HP DeskJet 550C even if we did not simulate the REt rules. The resulting software simulation executes more slowly, but
the orginal firmware design included a font cache, which minimizes the the number of times that we need to execute this
function.

Some further syntax modifications were necessary. The printer driver is capable of supporting more than one of the same
printer, for example, a printer on the LPT1 port and another on the LPT2 port, and these printers can be printing at the same
time. For Windows to be able to execute multiple instances of the PCL emulator, the code must be compiled in the Windows
medium-memory model. This required that many C-language pointer variables be designated far pointers rather than the
more efficient near pointers. Also, some subtle syntax correction was necessary because an integer data type is 32 bits for
the 68000, but 16 bits for the 80x86.

The PCL emulation implementation was accomplished in a staged development process. Two months before the first printer
driver components to support the HP DeskJet 820C became available, we were able to build a DOS application that was
totally decoupled from a printer driver. It would accept a test input stream of PCL data and map the input to an output file of
raster data, which could be printed on the HP DeskJet 850C, which was mechanically identical to the target HP DeskJet
820C. Using our test center’s extensive suite of input test files, we were able to stabilize the porting implementation, within
the limits of the DOS application. For example, we noticed that the DOS memory allocation algorithm would fragment
memory that was being continually allocated and freed, so that eventually a memory allocation request would fail. However,
when we moved on to a subsequent stage in which we depended on the Windows memory manager, we found that this
memory fragmentation no longer occurred. Once the DOS port was stabilized, we integrated the PCL personality into the
printer driver, using the HP DeskJet 850C output target path, while still providing an input file of PCL. Next we introduced

Article 2 June 1997 Hewlett-Packard Journal 14

and stabilized the DOS redirector input path. When the HP DeskJet 820C output target path finally became available, we
were able to switch to it cleanly, and the PCL emulator became an effective tool to help stabilize the new output target path.
Finally, we completed the target functionality, always building upon a stable base.

To summarize, by reusing original firmware code we were able to provide identical PCL functionality for PPA printers.
Providing support for the Ed Interface API allowed the firmware code to be reused with little design modification.

Windows is a U.S. registered trademark of Microsoft Corporation.

» Go to Next Article
» Go to Journal Home Page

Article 2 June 1997 Hewlett-Packard Journal 15

http://www.hp.com/hpj/97jun/ju97a3.htm
http://www.hp.com/hpj/journal.html

