Verification of the First

Faul t-tol erant VAX System

By WIlliamF. Bruckert, Carlos Al onso and Janes M Melvin

Abstract

The fault-tol erant
character of the VAXft
3000 system required that
pl ans be made early in
t he devel opnent stages

for the verification and
test of the system To
ensure proper test coverage
of the fault-tolerant
features, engineers would
build fault-insertion
points directly into the
system hardware. |In the
verification process,

test engi neers woul d use
hardware and software fault
insertion in directed and
random test forns. A four-
phase verification strategy
was devi sed that woul d
ensure the VAXft system

har dware and software

was fully tested for

error recovery that is
transparent to applications
on the system

I ntroducti on

The VAXft 3000 system
provi des transparent fault
tol erance for applications
that run on the system
Because the 3000 incl udes
fault-tol erant features,

strategy outlined a four-
phase approach whi ch woul d
require hardware to be
built into the system
specifically for test

pur poses.

Thi s paper presents a

bri ef overview of the VAXft
system architecture and

t hen describes the nethods
used to verify the systenis
fault tol erance.

VAXft 3000 Architectura
Overvi ew

The VAXft fault-tolerant
systemis designed to
recover fromany single
poi nt of hardware failure.
Fault tol erance is provided
transparently for al
applications running
under the VMS operating
system This section
reviews the inplenentation
of the systemto provide
background for the
mai n di scussi on of the
verification process.

The system conprises two
duplicate systens, called
zones. Each zone is a fully
functional conputer with
enough el enments to run an

verification of the system
was unlike that ordinarily
conducted on VAX systens.
To facilitate system

test, the verification

Digital Technica

operating system These

two zones, referred to

as zone A and zone B, are
shown in Figure 1, which
illustrates the duplication

of the system conponents.

Journal Vol. 3 No. 1 Wnter 1991

Verification of the First

The two i ndependent zones
are connected by duplicate
cross-link cables. The

cabi net of each zone

al so includes battery,

power regulator, cooling
fans, and AC power input.
Each zone's hardware has
sufficient error checking
to detect all single faults
wi thin that zone.

Figure 2 is a block diagram
of a single zone with
one |/ O adapter. Note
the portions of the zone

| abel ed dual -rail and
single-rail. The dual -

rail portions of the system
have two i ndependent sets

The system perfornms 1/0
operations by sending and
recei ving message packets.
The packets are exchanged
bet ween the CPU and vari ous
servers that include disks,
Et her net, and synchronous
lines. These nessage
packets are forned and
interpreted in the dual -
rail portion of the system
They are protected in the
single-rail portion of
the machi ne by check codes
whi ch are generated and
checked in the dual -rai
portion of the nachine.
Corrupted packets can be
retransmtted through the
sanme or alternate paths.

In the normal node of
fault-tol erant operation,
both zones execute the sane
instruction at the sane
time. The four processors

Faul t-tol erant VAX System

of hardware perform ng the
sanme operations. Correct
operation is verified by
conparison. The fault-

det ecti on nmechani sm for

the single-rail 1/0O nodul es
combi nes checki ng codes and
communi cation protocols.

system A defective CPU
nodul e and its nenory are
automatically renoved from
service by the hardware
and the remai ning CPU

and nmenory continues
processi ng.

(two in each zone) appear
to the operating system
as a single |logical CPU
The hardware supplies the
detection and recovery
facilities for faults
detected in the CPU and
menory portions of the

2 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Verification of the First Fault-tol erant VAX

Error handling for the
I/ O interconnections is
managed di fferently. The
paths to and from /O
adapters are duplicated
for checki ng purposes.

If a fault is detected,

the hardware retries the
operation. If successful
the error is |ogged, and
operation continues wi thout
sof tware assi stance. |f

the retry is unsuccessful
the Fault-tol erant System
Services (FTSS) software
perfornms error recovery.
FTSS is a |l ayer software
product that is utilized
with every VAXft 3000.

It provides the software
necessary to conplete
system error recovery.

For systemrecovery from

a failed IO device, an
alternate path or device
is used. Al recoverable
faults have an associ ated
maxi mum t hreshol d val ue. |f
this threshold is exceeded,
FTSS perforns appropriate
devi ce reconfiguration.

Verification of a
Faul t-tol erant VAX System

This section entails a

di scussi on of the types

of systemtests and the
fault-insertion techni ques
used to ensure the correct
operation of the VAXft
system In addition, the
four-phase verification
strategy and the procedures
i nvol ved in each phase are

frequently in conputer
system verification

and follow a strict

test sequence. Conpl ex
systens, however, cannot

be conpletely verified in

a directed fashion. [1]

As a case in point, an
operating system runni ng on
a processor has innunerable
states. Directed tests
verify functional operation
under a particular set of
conditions. They mmy not,
however, be used to verify
that same functionality
under all possible system
condi tions.

I n conparison, random
testing allows multiple
test processes to interact
in a pseudo-random or
random fashi on. In random
testing, test coverage is
i ncreased with additiona
run-time. Thus, once the
proper test processes
are in place, the need to
devel op additional tests in
order to increase coverage
is elimnated. This type

of testing also reduces the
effects of the biases of

t he engi neers generating
the tests. While directed
testing can provide only a
limted | evel of coverage,
this coverage | evel can

be wel | understood.

Random testing offers

a potentially unbounded

| evel of coverage; however,
quantifying this coverage
is difficult if not

revi ened.

There are two types of
systemtests: directed

and random Directed
tests, which test specific
hardware or software
features, are used npst

Digital Technica

i mpossi bl e.

To achi eve the proper |evel
of verification, the VAXft
verification utilized a
bal ance of directed and
random testing. Directed
testing was used to achieve
a certain base |evel of

Journal Vol. 3 No. 1 Wnter 1991

Verification of the First

functionality, and random
testing was used to expand
the | evel of coverage.

To permt testing of
system fault tolerance

in a practical amunt of
time, some formof fault
insertion is required. The
reliability of conponents
used in conmputer systens
has been i nproving, and
nore inmportantly, the
nunber of conmponents used

to i nplenment any function
has been dramatically
decreasi ng. These

factors have produced a
correspondi ng reduction

in systemfailure rates.

G ven the high reliability
of today's machines, it

is not practical froma
verification standpoint to
verify a systemby letting
it run until failures
occur.

Conceptual ly, faults can
be inserted in two ways.
First, nmenory |ocations and
regi sters can be corrupted
to mmc the results of
gate-level faults (software
fault insertion). Second,
gate-level faults may be
inserted directly into
t he hardware (hardware
fault insertion). There
are advantages to both
t echni ques. One advant age
of software-inpl emented
fault insertion is that
no enbedded hardware
support is required.[2]
The advant age of hardware
fault insertion, on the

Faul t-tol erant VAX System

i nsertion, a nechani sm nust
ei ther be designed into

the system or an external

i nsertion device nust be
devel oped once the hardware
is available. Gven the
physi cal feature size of

t he conponents used today,
it is virtually inpossible
to achi eve adequate fault-

i nsertion coverage through
an external fault-insertion
mechani sm

The error detection

and recovery nechani sm
determ nes which fault

i nsertion technique

is suitable for each
conponent. Sone exanpl es
illustrate this point.
For the | ockstep portion
of the VAXft 3000 CPUs,
software fault insertion
is not suitable because
the |l ockstep functionality
prevents corruption of
menory or registers when
faults occur. Therefore,
har dwar e faults cannot

be m m cked by nodifying
menory contents. However,
the software fault-

i nsertion techni que was
suitable to test the I/0O
adapters since the system
handl es faults in the
adapters by detecting
the corruption of data.
Har dware fault insertion
was not suitabl e because
the I/ O adapters were

i mpl emented with standard
conmponents that did not
support hardware fault

i nsertion.

other hand, is that faults Because the verification

are nore representative strategy for the 3000 was
of actual hardware consi dered a fundament al
failures and can reveal part of the system
unantici pated side effects devel opnent effort, fault
froma gate-level failure. insertion points were

To utilize hardware fault built directly into the

4 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Verification of the First Fault-tol erant VAX
System

system hardware. The anpunt
of logic necessary to

i mpl ement fault insertion
is relatively snmall.

The goals of the fault-

i nsertion hardware were

to

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Verification of the First

o Elimnate any corruption
of the environnent
under test that could
result fromfault
i nsertion. For exanple,
if a certain type of
system wite operation
is required to insert a
fault, then every test
case will be done on
a systemthat is in a
"post fault-insertion"
state.

o Enable the user to
distribute faults
random y across the
system

o Allowinsertion of

faults during system
operation

o Enable testing of
transi ent and solid
faults

The fault-insertion

poi nts are accessed

through a separate seria

interface bus that is

i solated fromthe operating

har dware. This separate

i nterface ensures that

t he environnment under

test is unbiased by fault

i nsertion.

Even with hardware support
for fault insertion, only
a small nunber of fault-

i nsertion points can be
i mpl enented relative to
the total nunber possible.
VWere the number of fault-
insertion points is snall,

Faul t-tol erant VAX System

was consi dered sufficient
for data path coverage.
Since a significant
portion of the chip area
is consunmed by data paths,
a high level of coverage
of each chip was achieved
with relatively few fault-
i nsertion points. The
remai ning fault-insertion
poi nts could then be
applied to the contro
| ogi c. Coverage of this

| ogi ¢ was inportant because
control logic faults result
in error nodes that are
nor e unpredi ct abl e t han

data path failures.

The effect that a given
fault has on the system

depends on the current
system operation and when
in that operation the
fault was inserted. In

t he 3000, for exanple,

a failure of bit 3 in

a data path will have
significantly different
behavi or dependi ng upon
whet her the data bit

was incorrect during

t he address transni ssion
portion of a cycle or
during the succeeding

data portion. Therefore,
the timng of the fault

i nsertion was pseudo-
random The choice of
pseudo-random i nserti on was
based on the fact that the
fault-insertion hardware
operat ed asynchronously to

6 Digita

the sel ection of the
fault-insertion points

is inmportant to achieve

a random di stri buti on.
Fault-insertion points were
designed into nost of the
custom chips in the VAXft
system Wen choosing the
fault-insertion points, a
single bit of a data path

Techni cal Journa

Vol .

3

No.

the system under test. This
meant that faults could

be inserted at any tine,

wi t hout correlation to

the activity of the system

under test.

1 Wnter 1991

Verification of the First Fault-tol erant VAX

Faults may be transient or
solid in nature. For design
purposes, a solid fault
was defined as a failure
that will be present on
retry of an operation.

A transient fault was
defined as a fault that
will not be present on
retry of the operation.
Transient faults do not
require the renmoval of the
devi ce that experienced
the fault; solid faults

do require device renoval .
Since the systemreacts
differently to transient
and hard faults, both
types of faults had to

be verified in the VAXft
system Therefore, it was
required that the fault-

i nsertion hardware be
capabl e of inserting solid
or transient faults. Solid
faults were inserted by
continually applying the
fault-insertion signal
Transient faults were

i nserted by applying the
fault-insertion signal only
until the machi ne detected
an error.

As noted earlier, the
verification strategy
utilized both hardware and
software fault insertion.
The hardware fault-

i nsertion mechani snms
allowed faults to be
inserted into any system
envi ronnent, including

di agnostics, exercisers,
and the VMS operating

Each of the four
verification phases built
upon the previous phases.
1. Hardware verification

under simul ation

2. Hardware verification
Wi th system exerciser
and fault insertion

3. System software
verification with fault
i nsertion

4. System application
verification with fault
i nsertion
Figure 3 shows the
functional |ayers of
the VAXft 3000 system
inrelation to the
verification phases.
The nunbered brackets to
the right of the diagram
correlate to the testing
coverage of each | ayer.
For exanple, the system
software verification,
phase 3, verified the VMS
system Fault-tol erant
System Servi ces (FTSS), and
the hardware pl atform

system As such, it

was used for initial
verification as well as
regression testing of the
system The verification
strategy for the 3000

i nvol ved a nul ti phase
effort.

Digital Technical Journal Vol. 3 No.

1 Wnter

1991

Verification of the First

The foll owi ng sections
briefly describe the
four phases of the VAXft

verification.
Har dware Verification under
Si mul ati on

Functi onal design
verification using software
simulation is inherently
slow in a design as |arge
as the VAXft 3000 system
To use resources nost
efficiently, a verification
effort nust incorporate
a nunber of different
nodel i ng | evel s, which
means trading off detail to
achi eve ot her goals such as
speed. [3]

VAXft 3000 sinmulation
occurred at two |evels:

t he nodul e | evel and the
system | evel . Mdul e-1eve
simul ation verified the
base functionality of

each nodule. Once this
verification was conpl ete,
a systeml evel nodel was
produced to validate the

i ntermodul e functionality.
The system | evel node
consi sted of a full dual -
rail, dual -zone system
with an 1/0O adapter in each
zone. At the final stage,
full systemtesting was
per f or med.

Over 500 directed

error test cases were
devel oped for gate-

| evel system sinulation.
For each test, the test
envi ronnment was set up

Faul t-tol erant VAX System

The sinul ation controller
provi ded the follow ng
control over the testing:

o Initialization of all
menory el ements and
certain systemregisters
to reduce test tine

o Setup of all nmenory data
buffers to be used in
testing

o Autonated test execution

o Autonmated checking of
test results
0 Log of test results

For each test case,
the test environnent
was selected fromthe
foll owi ng: nmenory testing,
I/ O register access,
di rect nenory access (DMA)
traffic, and interrupt
cycles. In any given test
case, any nunber of the
previ ous tests could be
run. These environnents
could be run with or
wi thout faults inserted. In
addi ti on, each environnent
consi sted of nultiple
test cases. In an error
handl i ng test case, the
proper system environment
required for the test was
set, and then the fault was
inserted into the system
The | ogi c sinulator used
was designed to verify
| ogi ¢ design. When an
illegal logic condition
was detected, it produced
an error response. \Wen a
fault insertion resulted in
an illegal logic condition,

on a fully operationa
syst em nodel and then

the fault was inserted.

A sinulation controller

was devel oped to coordi nate
the system operations in
the sinmulati on environnent.

8 Digital Technical Journal Vol.

3

No.

the sinmul ator responded
by invalidating the test.
Because of this, a great
deal of time was spent to
ensure that faults were
inserted in a way that
woul d not generate illega

1 Wnter 1991

Verification of the First Fault-tol erant VAX

conditions. Each test case
was consi dered successfu
only when the system error
regi sters contained the
correct data and the system
had the ability to continue
operation after the fault.
Hardware Verification with
System Exerci ser and Faul t

I nsertion

After the prototypes

were avail able, the
verification effort shifted
fromsimulation to fault

i nsertion on the hardware.
The goal was to insert
faults using an exerciser
that i nduced stressful
reproduci bl e hardware
activity and that all owed
us to anal yze and debug the
fault easily.

Exerci ser test cases
wer e devel oped to stress
the vari ous hardware
functions. The tests were
designed to create maxi mum
interrupt and data transfer
activity between the CPU
and the |/ 0O adapters.
These functions could

be tested individually
or sinultaneously. The
exerci ser schedul er

provi ded a degree of
randomess such that the

i nteraction of functions
was representative of a
real operating system The
fault-insertion hardware
was used to achieve a
random di stri bution
of fault cases across

suite of tests worked
correctly, fault insertion
was performed while

the system continually
swi t ched between al
functions. This testing
was nore representative of
actual faults in custoner
envi ronnents, but was | ess
r epr oduci bl e.

As previously mentioned,
the hardware fault-
insertion tool allowed the
i nsertion of both transient
and solid failures. The
VAXft 3000 hardware
recovers fromtransient
failures and utilizes
software recovery for hard
failures. Since the goa
of phase 2 testing was to
verify the hardware, the
focus was on transient
fault insertion. Two
criteria for each error
case determ ned the success
of the test. First and
forenost, the system nust
continue to run and to
produce correct results.
Second, the error data
that the system captures
nmust be correct based
on the fault that was
i nserted. Correct error
data is inportant because
it is used to identify the
failing conponent both for
software recovery and for
servi ci ng.

Al t hough the simulation
envi ronnent of phase 1
was substantially sl ower
t han phase 2, it provided

the system Because it
was possible to insert
initial faults while
speci fic functions were
performed, a great degree
of reproducibility was
achi eved that ai ded debug
efforts. Once the ful

Digital Technica

the designers with nore

i nformati on. Therefore when
probl ems were di scovered

on the prototypes used

in phase 2, the failing
case was transferred

to the sinulator for
further debug. The hardware

Journal Vol. 3 No. 1 Wnter 1991

Verification of the First

verification also validated
t he nodel s and test
procedures used in the

si nmul ati on environnent.

Syst em Sof t war e
Verification with Fault
I nsertion

In parallel with hardware
verification, the VAXft
3000 system software error
handl i ng capabilities
were tested. This phase
represented the next higher
| evel of testing. The
goal was to verify the VAX
functionality of the 3000
as well as the software
recovery nechani sns.

Digital has produced
various test packages to
verify VAX functionality.
Since the VAXft 3000 system
i ncorporates a VAX chip
set used in the VAX 6000
series, it was possible to
use several standard test
packages that had been used
to verify that system|[1]

Faul t -t ol er ant
verification, however, was
not addressed by any of the
exi sting test packages.
Therefore, additiona
tests were devel oped by
combi ni ng the existing
functional test suite
with the hardware fault-
insertion tool and software
fault-insertion routines.
Test cases used included
cache failure, clock
failure, menory failure

Faul t-tol erant VAX System

was runni ng. The conpl etion
criteria for tests included
the foll ow ng:

o0 Detection of the fault

o Isolation of the failed
har dwar e
o Continuation of the

test processes without
i nterruption
System Application
Verification with Fault
I nsertion

The goal for the fina
phase of the VAXft 3000
verification was to
run an application with
fault insertion and to

denonstrate that any
system fault recovery
action had no effect on
the process integrity

and data integrity of

the application. The
application used in the
testing was based on

the standard DebitCredit
banki ng benchmark and

was i npl ement ed using the
DECi ntact | ayered product.
The bank has 10 branches,
100 tellers, and 3,600
custoner accounts (10
tellers and 360 accounts
per branch). Traffic on
the system was sinmul at ed
using term nal erul ation
process (VAX RTE) scripts
representing bank teller
activity. The transaction
rate was initially 1
transacti on per second
(TPS) and was varied up

i nterconnect failures, to the maxi mum TPS rate to
and disk failures. These stress the system | oad.
failures were applied

to the system during

various system operations.

In addition, servicing

errors were also tested

by renmovi ng cabl es and

nodul es while the system

10 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

System

Verification of the First Fault-tol erant VAX

The general test process
can be described as

foll ows:

1. Started application

execution. The term na
enmul ation processes
enul ati ng the bank
tellers were started
and continued until the
system was operating at
the desired TPS rating.

2. Invoked fault-insertion.

A fault was sel ected at
random from a tabl e of
har dwar e and software
faults. The term na
enul ation process
submtted stinmuli to
the application before,
during, and after fault
i nsertion.

3. Stopped term nal
enul ation process. The
application was run
until a qui escent state
was reached.

4. Perforned result
val idation. The
process integrity
and data integrity of
the application was
val i dat ed.

All of the meani ngful

events were | ogged and

ti me-stanped during the
experiments. Process
integrity was proved by
verifying continuity of
transacti on processing
through failures. The tine
stanps on the transaction

The proof of Data Integrity
consi sted of using the
foll owi ng consi stency rul es
for transactions:

1. The sum of the account
bal ances is equal to
the sumof the teller
bal ances, which is equa
to the sum of the branch
bal ances.

2. For each branch, the sum

of the teller bal ances
is equal to the branch
bal ance.

3. For each transaction
processed a new record
must be added to the
history file.

Application verification
under fault insertion
served as the final
| evel of fault-tolerant
val i dati on. Whereas
t he previous phases
ensured that the various
conmponents required for
fault tol erance operated
properly, the system
application verification
denonstrated that these
conmponents coul d operate
together to provide a fully
fault-tol erant system

Concl usi ons

The process of verifying
fault tol erance requires
a well architected test
pl an. This plan nust be
devel oped early in the
desi gn cycl e because

executions and the system
error logs allowed these
two i ndependent processes
to be correl ated.

Digital Technica

har dwar e support for
testing may be required.
The verification plan nust
denonstrate cogni zance

of the capabilities and
limtations at each phase
of the devel opnent cycle.
For exanple, the speed
of sinmulation prohibits

Journal Vol. 3 No. 1 Wnter 1991

Verification of the First

verification of software
error recovery in a
simul ati on environnent .

Al so, when a systemis

i mpl emented with VLSI
technol ogy, the ability

to physically insert

faults into the system

by means of an external
mechani cal nechani sm may
not be adequate to properly
verify the correct system
error recovery. These

and ot her issues nust

be addressed before the
chips are fabricated or
adequate error recovery
verification my not be
possi bl e. | nadequate error
recovery verification
directly increases the
risk of real, unrecoverable
faults resulting in system
out ages.

The verification plan

for the VAXft 3000 system
consi sted of the follow ng
phases and obj ecti ves:

0 Hardware sinmulation with
fault insertion verified
error detection,
har dwar e recovery, and
error data capture.

0 System exerciser with
fault insertion enhanced
the coverage of the
hardwar e sinul ati on
effort.

0 Systemsoftware with
fault insertion verified
software error recovery
and reporting.

0 System software

Faul t-tol erant VAX System

The test of any fault

tol erant systemis to
survive a real fault
whil e running a custoner
application. Although

pul ling a nmodul e out

of a machine may seem

i mpressi ve, machines

rarely fail as a result

of nodules falling out

of the backpl ane. The
intitial test effort of the
VAXft 3000 showed that the
system survi ved npost of the
faults introduced. However,
probl enms were found which
woul d have resulted in

a systemoutages if

| eft uncorrected. System
enhancenents were made

both in the area of system
recovery actions and the
repair call out. Wile sone
of the problens were sinple
coding errors, others
were errors in carefully
revi ewed and docunented
algorithms. Sinply put, the
col l ective wi sdom of the
desi gners was not al ways
sufficient to reach the
degree of accuracy desired
for this fault tol erant
system

As the VAXft product fanmily
evol ves, performance and
functional enhancements
will be avail able. The
test processes described in

this paper will remain in
use, so that every future
rel ease of software will

be better than the previous
version. The conbination of

verification with fault
insertion verified the
transparency of the
systemerror recovery to
the application running
on the system

12 Digital Technical Journal Vol.

hardware and software fault
i nsertion, coupled with
physi cal system di sruption
allows testing to occur at
such a greatly accel erated
rate, that all testing
performed will be repeated
for every new rel ease

1 Wnter 1991

System

Verification of the First Fault-tol erant VAX

Ref erences

1

J. Croll, L. Camlli,
and A. Vaccaro, "Test
and Qualification of
t he VAX 6000 Mode
400 System " Digita
Techni cal Jour nal

vol .2, no.2 (Spring
1990): 73-83.

2.

J. Barton, E. Czeck,
Z. Segall, and D

Si ewi orek, "Fault

I njection Experinents
Usi ng FI AT (Fault

I nj ecti on-based

Aut onat ed Testing)"

| EEE Transactions on

Comput ers vol . 39, no.

(April 1990).

R. Cal cagni and W
Sherwood, "VAX 6000
Mbdel 400 CPU Chip
Set Functional Design
Verification, Digita

Techni cal Journal, vol
2, no. 2 (Spring 1990):

64-72.

4

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Copyright 1991 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

