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ABSTRACT

The GIGAswitch system is a high-performance packet-switching 
platform built on a 36-port 100 Mb/s crossbar switching fabric. 
The crossbar is data link independent and is capable of making 
6.25 million connections per second. Digital's first GIGAswitch 
system product uses 2-port FDDI line cards to construct a 22-port 
IEEE 802.1d FDDI bridge. The FDDI bridge implements distributed 
forwarding in hardware to yield forwarding rates in excess of 
200,000 packets per second per port. The GIGAswitch system is 
highly available and provides robust operation in the presence of 
overload.

INTRODUCTION

The GIGAswitch system is a multiport packet-switching platform 
that combines distributed forwarding hardware and crossbar 
switching to attain very high network performance. When a packet 
is received, the receiving line card decides where to forward the 
packet autonomously. The ports on a GIGAswitch system are fully 
interconnected with a custom-designed, very large-scale 
integration (VLSI) crossbar that permits up to 36 simultaneous 
conversations. Data flows through 100 megabits per second (Mb/s) 
point-to-point connections, rather than through any shared media. 
Movement of unicast packets through the GIGAswitch system is 
accomplished completely by hardware.

The GIGAswitch system can be used to eliminate network hierarchy 
and concomitant delay. It can aggregate traffic from local area 
networks (LANs) and be used to construct workstation farms. The 
use of LAN and wide area network (WAN) line cards make the 
GIGAswitch system suitable for building, campus, and metropolitan 
interconnects. The GIGAswitch system provides robustness and 
availability features useful in high-availability applications 
like financial networks and enterprise backbones.

In this paper, we present an overview of the switch architecture 
and discuss the principles influencing its design. We then 
describe the implementation of an FDDI bridge on the GIGAswitch 
system platform and conclude with the results of performance 
measurements made during system test.

GIGAswitch SYSTEM ARCHITECTURE



The GIGAswitch system implements Digital's architecture for 
switched packet networks. The architecture allows fast, simple 
forwarding by mapping 48-bit addresses to a short address when a 
packet enters the switch, and then forwarding packets based on 
the short address. A header containing the short address, the 
time the packet was received, where it entered the switch, and 
other information is prepended to a packet when it enters the 
switch. When a packet leaves the switch, the header is removed, 
leaving the original packet. The architecture also defines 
forwarding across multiple GIGAswitch systems and specifies an 
algorithm for rapidly and efficiently arbitrating for crossbar 
output ports. This arbitration algorithm is implemented in the 
VLSI, custom-designed GIGAswitch port interface (GPI) chip.

HARDWARE OVERVIEW

Digital's first product to use the GIGAswitch platform is a 
modular IEEE 802.1d fiber distributed data interface (FDDI) 
bridge with up to 22 ports.[1] The product consists of four 
module types: the FDDI line card (FGL), the switch control 
processor (SCP), the clock card, and the crossbar 
interconnection. The modules plug into a backplane in a 19-inch, 
rack-mountable cabinet, which is shown in Figure 1. The power and 
cooling systems provide N+1 redundancy, with 
provision for battery operation.

[Figure 1 (The GIGAswitch System) is not available in ASCII 
format.]

The first line card implemented for the GIGAswitch system is a 
two-port FDDI line card (FGL-2). A four-port version (FGL-4) is 
currently under design, as is a multifunction asynchronous 
transfer mode (ATM) line card. FGL-2 provides connection to a 
number of different FDDI physical media using media-specific 
daughter cards. Each port has a lookup table for network 
addresses and associated hardware lookup engine and queue 
manager. The SCP provides a number of centralized functions, 
including 

    o Implementation of protocols (Internet protocol [IP],  
        simple network management protocol [SNMP], and IEEE 
        802.1d spanning tree) above the media access control 
        (MAC) layer

    o Learning addresses in cooperation with the line cards 

    o Maintaining loosely consistent line card address 
        databases

    o Forwarding multicast packets and packets to unknown 
        destinations



    o Switch configuration

    o Network management through both the SNMP and the 
        GIGAswitch system out-of-band management port

The clock card provides system clocking and storage for 
management parameters, and the crossbar switch module contains 
the crossbar proper. The power system controller in the power 
subsystem monitors the power supply front-end units, fans, and 
cabinet temperature.

DESIGN ISSUES

Building a large high-performance system requires a seemingly 
endless series of design decisions and trade-offs. In this 
section, we discuss some of the major issues in the design and 
implementation of the GIGAswitch system. 

Multicasting

Although very high packet-forwarding rates for unicast packets 
are required to prevent network bottlenecks, considerably lower 
rates achieve the same result for multicast packets in extended 
LANs. Processing multicast packets on a host is often done in 
software. Since a high rate of multicast traffic on a LAN can 
render the connected hosts useless, network managers usually 
restrict the extent of multicast packets in a LAN with filters. 
Measuring extended LAN backbones yields little multicast traffic.

The GIGAswitch system forwards unicast traffic in a distributed 
fashion. Its multicast forwarding implementation, however, is 
centralized, and software forwards most of the multicast traffic. 
The GIGAswitch system can also limit the rate of multicast 
traffic emitted by the switch. The reduced rate of traffic 
prevents lower-speed LANs attached to the switch through bridges 
from being rendered inoperable by high multicast rates.

Badly behaved algorithms using multicast protocols can render an 
extended LAN useless. Therefore, the GIGAswitch system allocates 
internal resources so that forward progress can be made in a LAN 
with badly behaved traffic. 

Switch Fabric

The core of the GIGAswitch system is a 100 Mb/s full-duplex 
crossbar with 36 input ports and 36 output ports, each with a 
6-bit data path (36 X 36 X 6). The crossbar is formed from 
three 36 X 36 X 2 custom VLSI crossbar chips. Each crossbar 
input is paired with a corresponding output to form a 
dual-simplex data path. The GIGAswitch system line cards and SCP 
are fully interconnected through the crossbar. Data between 
modules and the crossbar can flow in both directions 



simultaneously. 

Using a crossbar as the switch connection (rather than, say, a 
high-speed bus) allows cut-through forwarding: a packet can be 
sent through the crossbar as soon as enough of it has been 
received to make a forwarding decision. The crossbar allows an 
input port to be connected to multiple output ports 
simultaneously; this property is used to implement multicast. The 
6-bit data path through the crossbar provides a raw data-path 
speed of 150 Mb/s using a 25 megahertz (MHz) clock. (Five bits 
are used to encode each 4-bit symbol; an additional bit provides 
parity.) 

Each crossbar chip has about 87,000 gates and is implemented 
using complementary metal-oxide semiconductor (CMOS) technology. 
The crossbar was designed to complement the FDDI data rate; 
higher data rates can be accommodated through the use of hunt 
groups, which are explained later in this section. The maximum 
connection rate for the crossbar depends on the switching 
overhead, i.e., the efficiency of the crossbar output port 
arbitration and the connection setup and tear-down mechanisms.

Crossbar ports in the GIGAswitch system have both physical and 
logical addresses. Physical port addresses derive from the 
backplane wiring and are a function of the backplane slot in 
which a card resides. Logical port addresses are assigned by the 
SCP, which constructs a logical-to-physical address mapping when 
a line card is initialized. Some of the logical port number space 
is reserved; logical port 0, for example, is always associated 
with the current SCP.

Arbitration Algorithm. With the exception of some maintenance 
functions, crossbar output port arbitration uses logical 
addresses. The arbitration mechanism, called take-a-ticket, is 
similar to the system used in delicatessens. A line card that has 
a packet to send to a particular output port obtains a ticket 
from that port indicating its position in line. By observing the 
service of those before it, the line card can determine when its 
turn has arrived and instruct the crossbar to make a connection 
to the output port. 

The distributed arbitration algorithm is implemented by GPI chips 
on the line cards and SCP. The GPI is a custom-designed CMOS VLSI 
chip with approximately 85,000 transistors. Ticket and connection 
information are communicated among GPIs over a bus in the switch 
backplane. Although it is necessary to use backplane bus cycles 
for crossbar connection setup, an explicit connection tear down 
is not performed. This reduces the connection setup overhead and 
doubles the connection rate. As a result, the GIGAswitch system 
is capable of making 6.25 million connections per second.

Hunt Groups. The GPI allows the same logical address to be 
assigned to many physical ports, which together form a hunt 
group. To a sender, a hunt group appears to be a single 



high-bandwidth port. There are no restrictions on the size and 
membership of a hunt group; the members of a hunt group can be 
distributed across different line cards in the switch. When 
sending to a hunt group, the take-a-ticket arbitration mechanism 
dynamically distributes traffic across the physical ports 
comprising the group, and connection is made to the first free 
port. No extra time is required to perform this arbitration and 
traffic distribution. A chain of packets traversing a hunt group 
may arrive out of order. Since some protocols are intolerant of 
out-of-order delivery, the arbitration mechanism has provisions 
to force all packets of a particular protocol type to take a 
single path through the hunt group. 

Hunt groups are similar to the channel groups described by 
Pattavina, but without restrictions on group membership.[2] Hunt 
groups in the GIGAswitch system also differ from channel groups 
in that their use introduces no additional switching overhead. 
Hardware support for hunt groups is included in the first version 
of the GIGAswitch system; software for hunt groups is in 
development at this writing. 

Address Lookup

A properly operating bridge must be able to receive every packet 
on every port, look up several fields in the packet, and decide 
whether to forward or filter (drop) that packet. The worst-case 
packet arrival rate on FDDI is over 440,000 packets per second 
per port. Since three fields are looked up per packet, the FDDI 
line card needs to perform approximately 1.3 million lookups per 
second per port; 880,000 of these are for 48-bit quantities. The 
48-bit lookups must be done in a table containing 16K entries in 
order to accommodate large LANs. The lookup function is 
replicated per port, so the requisite performance must be 
obtained in a manner that minimizes cost and board area. The 
approach used to look up the fields in the received packet 
depends upon the number of values in the field.

Content addressable memory (CAM) technology currently provides 
approximately 1K entries per CAM chip. This makes them 
impractical for implementing the 16K address lookup table but 
suitable for the smaller protocol field lookup. Earlier Digital 
bridge products use a hardware binary search engine to look up 
48-bit addresses. Binary search requires on average 13 reads for 
a 16K address set; fast, expensive random access memory (RAM) 
would be needed for the lookup tables to minimize the forwarding 
latency.

To meet our lookup performance goals at reasonable cost, the 
FDDI-to-GIGAswitch network controller (FGC) chip on the line 
cards implements a highly optimized hash algorithm to look up the 
destination and source address fields. This lookup makes at most 
four reads from the off-chip static RAM chips that are also used 
for packet buffering.



The hash function treats each 48-bit address as a 47-degree 
polynomial in the Galois field of order 2, GF(2).[3] The hashed 
address is obtained by the equation:

                     M(X) X A(X) mod G(X)

where G(X) is the irreducible polynomial, X**48 + X**36 + X**25 +
X**10 + 1; M(X) is a nonzero, 47-degree programmable hash multiplier
with coefficients in GF(2); and A(X) is the address expressed as a
47-degree polynomial with coefficients in GF(2). 

The bottom 16 bits of the hashed address is then used as an index 
into a 64K-entry hash table. Each hash table entry can be empty 
or can hold a pointer to another table plus a size between 1 to 
7, indicating the number of addresses that collide in this hash 
table entry (i.e., addresses whose bottom 16 bits of their hash 
are equal). In the case of a size of 1, either the pointer points 
to the lookup record associated with this address, or the address 
is not in the tables but happens to collide with a known address. 
To determine which is true, the remaining upper 32 bits of the 
hashed address is compared to the previously computed upper 32 
bits of the hash of the known address stored in the lookup 
record. One of the properties of this hash function is that it is 
a one-to-one and onto mapping from the set of 48-bit values to 
the same set. As long as the lookup table records are not shared 
by different hash buckets, comparing the upper 32 bits is 
sufficient and leaves an additional 16 bits of information to be 
associated with this known address.

In the case where 1<size<7, the pointer stored in 
the hash bucket points to the first entry in a balanced binary 
tree of depth 1, 2, or 3. This binary tree is an array sorted by 
the upper 32 hash remainder bits. No more than three memory reads 
are required to find the lookup record associated with this 
address, or to determine that the address is not in the database.

When more than seven addresses collide in the same hash bucket--a 
very rare occurrence--the overflow addresses are stored in the 
GIGAswitch content-addressable memory (GCAM). If several dozen 
overflow addresses are added to the GCAM, the system determines 
that it has a poor choice of hash multipliers. It then initiates 
a re-hashing operation, whereby the SCP module selects a better 
48-bit hash multiplier and distributes it to the FGLs. The FGLs 
then rebuild their hash table and lookup tables using this new 
hash multiplier value. The new hash multiplier is stored in 
nonvolatile memory. 

Packet Buffering

The FDDI line card provides both input and output packet 
buffering for each FDDI port. Output buffering stores packets 
when the outgoing FDDI link is busy. Input buffering stores 
packets during switch arbitration for the desired destination 



port. Both input and output buffers are divided into separate 
first-in, first-out (FIFO) queues for different traffic types.

Switches that have a single FIFO queue per input port are subject 
to the phenomenon known as head-of-line blocking. Head-of-line 
blocking occurs when the packet at the front of the queue is 
destined for a port that is busy, and packets deeper in the queue 
are destined for ports that are not busy.

The effect of head-of-line blocking for fixed-size packets that 
have uniformly distributed output port destinations can be 
closely estimated by a simple probability model based on 
independent trials. This model gives a maximum achievable mean 
utilization, U ~ 1 -- 1/e = 63.2 percent, for switches with more 
than 20 duplex ports. Utilization increases for smaller switches 
(or for smaller active parts of larger switches) and is approximately 
75 percent for 2 active ports. The independent trial assumption has 
been removed, and the actual mean utilization has been computed.[4] 
It is approximately 60 percent for large numbers of active ports.

Hunt groups also affect utilization. The benefits of hunt groups 
on head-of-line blocking can be seen by extending the simple 
independent-trial analysis. The estimated mean utilization is

[Equation here. Please see postscript version.]

where n is the number of groups, and g is the hunt group size. 
In other words, all groups are the same size in this model, and 
the total number of switch ports is (n X g). This result is plotted 
in Figure 2 along with simulation results that remove the independent 
trial assumption. The simulation results agree with the analysis above 
for the case of only one link in each hunt group. Note that adding a 
link to a hunt group increases the efficiency of each member of the 
group in addition to adding bandwidth. These analytical and simulation 
results, documented in January 1988, also agree with the simulation 
results reported by Pattavina.[2] 

[Figure 2 (Effect of Hunt Groups on Utilization) is not available in 
ASCII format.]

The most important factor in head-of-line blocking is the 
distribution of traffic within the switch. When all traffic is 
concentrated to a single output, there is zero head-of-line 
blocking because traffic behind the head of the line cannot move 
any more easily than the head of the line can move. To study this 
effect, we extended the simple independent-trial model. We 
estimated the utilization when the traffic from a larger set of 
inputs (for example, a larger set of workstations) is uniformly 
distributed to a smaller set of outputs (for example, a smaller 
set of file servers). The result is

[Equation here. Please see postscript version.]

where c is the mean concentration factor of input ports to output 



ports, and n is the number of outputs. This yields a utilization 
of 86 percent when an average of two inputs send to each output, 
and a utilization of 95 percent when three inputs send to each 
output. Note that utilization increases further for smaller 
numbers of active ports or if hunt groups are used.

Other important factors in head-of-line blocking are the nature 
of the links and the traffic distribution on the links. Standard 
FDDI is a simplex link. Simulation studies of a GIGAswitch system 
model were conducted to determine the mean utilization of a set 
of standard FDDI links. They have shown that utilization reaches 
100 percent, despite head-of-line blocking, when approximately 50 
Mb/s of fixed-size packets traffic, uniformly distributed to all 
FDDI links in the set, is sent into the switch from each FDDI. 
The reason is that almost 50 percent of the FDDI bandwidth is 
needed to sink data from the switch; hence the switch data path 
is only at 50 percent of capacity when the FDDI links are 100 
percent utilized. This result also applies to duplex T3 (45 Mb/s) 
and all slower links. In these situations, the switch operates at 
well below capacity, with little internal queuing.

A number of techniques can be used to reduce the effect of 
head-of-line blocking on link efficiency. These include 
increasing the speed of the switching fabric and using more 
complicated queuing mechanisms such as per-port output queues or 
adding lookahead to the queue service. All these techniques raise 
the cost and complexity of the switch; some of them can actually 
reduce performance for normal traffic. Since our studies led us 
to believe that head-of-line blocking occurs rarely in a 
GIGAswitch system, and if it does, hunt groups are an effective 
means for reducing head-of-line blocking, we chose not to 
implement more costly and complex solutions.

Robustness under Overload

The network must remain stable even when the GIGAswitch system is 
severely stressed. Stability requires timely participation in the 
802.1d spanning tree when the packet forwarding loads approach 
the worst-case maximum. The techniques used to guarantee forward 
progress on activities like the spanning tree include 
preallocation of memory to databases and packets, queuing 
methods, operating system design, and scheduling techniques. 
Solutions that provide only robustness are insufficient; they 
must also preserve high throughput in the region of overload.

Switch Control Processor Queuing and Quota Strategies. The SCP is 
the focal point for many packets, including (1) packets to be 
flooded, (2) 802.1d control packets, (3) intrabox intercard 
command (ICC) packets, and (4) SNMP packets.[5] Some of these 
packets must be processed in a timely manner. The 802.1d control 
packets are part of the 802.1d algorithms and maintain a stable 
network topology. The ICCs ensure correct forwarding and 
filtering of packets by collecting and distributing information 



to the various line cards. The SNMP packets provide monitoring 
and control of the GIGAswitch system. 

Important packets must be distinguished and processed even when 
the GIGAswitch system is heavily loaded. The aggregate forwarding 
rate for a GIGAswitch system fully populated with FGL-2 line 
cards is about 4 million packets per second.  This is too great a 
load for the SCP CPU to handle on its own. The FDDI line cards 
place important packets in a separate queue for expedient 
processing. Special hardware on the SCP is used to avoid loss of 
important packets.

The crossbar access control (XAC) hardware on the SCP is designed 
to avoid the loss of any important packet under overload. To 
distinguish the packets, the XAC parses each incoming packet. By 
preallocating buffer memory to each packet type, and by having 
the hardware and software cooperate to maintain a strict 
accounting of the buffers used by each packet type, the SCP can 
guarantee reception of each packet type.

Arriving packets allocated to an exhausted buffer quota are 
dropped by the XAC. For instance, packets to be flooded arrive 
due to external events and are not rate limited before they reach 
the SCP. These packets may be dropped if the SCP is overloaded. 
Some buffer quotas, such as those for ICC packets, can be sized 
so that packets are never dropped. Since software is not involved 
in the decision to preserve important packets or to drop 
excessive loads, high throughput is maintained during periods of 
overload. In practice, when the network topology is stable, the 
SCP is not overloaded and packets passing through the SCP for 
bridging are not dropped, even on networks with thousands of 
stations. This feature is most important during power-up or 
topology-change transients, to ensure the network progresses to 
the stable state.

If the SCP simply processed packets in FIFO order, reception of 
each packet type would be ensured, but timely processing of 
important packets might not. Therefore, the first step in any 
packet processing is to enqueue the packet for later processing. 
(Packets may be fully processed and the buffers reclaimed if the 
amount of work to do is no greater than the enqueue/dequeue 
overhead.) Since the operating system scheduler services each 
queue in turn, splitting into multiple queues allows the 
important packets to bypass the less important packets.

Multiple queues are also used on the output port of the SCP. 
These software output queues are serviced to produce a hardware 
output queue that is long enough to amortize device driver entry 
overheads, yet short enough to bound the service time for the 
last packet inserted. Bounding the hardware queue service time 
ensures that the important 802.1d control packets convey timely 
information for the distributed spanning tree algorithms. These 
considerations yield the queuing diagram shown in Figure 3.



[Figure 3 (Packet Queuing on the SCP) is not available in 
ASCII format.]

At time t1, packets arriving in nonempty quotas are transferred 
by direct memory access (DMA) into dynamic RAM. They enter the 
hardware-received packet queue. At time t2, software processes 
the received packet queue, limiting the per-packet processing to 
simple actions like the enqueuing of the packet to a task or 
process. At time t3, the packet contents are examined and the 
proper protocol actions executed. This may involve the forwarding 
of the arriving packet or the generation of new packets. At time 
t4, packets are moved from the software output queues to the 
short hardware output queue. At time t5, the packet is 
transferred by DMA into the crossbar.

Limiting Malicious Influences. Using packet types and buffer 
quotas, the SCP can distinguish important traffic, like bridge 
control messages, when it is subjected to an overload of bridge 
control, unknown destination addresses, and multicast messages. 
Such simple distinctions would not, however, prevent a malicious 
station from consuming all the buffers for multicast packets and 
allowing starvation of multicast-based protocols.  Some of these 
protocols, like the IP address resolution protocol (ARP), become 
important when they are not allowed to function.[6]

To address this problem, the SCP also uses the incoming port to 
classify packets. A malicious station can wreak havoc on its own 
LAN whether or not the GIGAswitch system is present. By 
classifying packets by incoming port, we guarantee some buffers 
for each of the other interfaces and thus ensure communication 
among them. The malicious station is reduced to increasing the 
load of nuisance background traffic. Region t4 of Figure 3 
contains the layer of flooding output queues that sort flooded 
packets by source port. When forwarding is done by the SCP bridge 
code, packets from well-behaved networks can bypass those from 
poorly behaved networks.

Fragmentation of resources introduced by the fine-grained packet 
classification could lead to small buffer quotas and unnecessary 
packet loss. To compensate for these possibilities, we provided 
shared resource pools of buffers and high-throughput, low-latency 
packet forwarding in the SCP.

Guaranteeing Forward Progress. If an interrupt-driven activity is 
offered unlimited load and is allowed to attempt to process the 
unlimited load, a "livelock" condition, where only that activity 
executes, can result. Limiting the rate of interrupts allows the 
operating system scheduler access to the CPU, so that all parts 
of the system can make forward progress in a timely manner.

On the SCP, limiting the interrupt rate is accomplished in two 
ways. One is to mask the propagation of an interrupt by combining 
it with a software-specified pulse. After an interrupt is 



serviced, it is inhibited for the specified time by triggering 
the start of the pulse. At the cost of hardware complexity, 
software is given a method for quick, single-instruction, 
fine-grained rate limiting. Another method, suitable for less 
frequently executed code paths like error handling, is to use 
software timers and interrupt mask registers to limit the 
frequency of an interrupt. Limiting the interrupt rate also has 
the beneficial effect of amortizing interrupt overhead across the 
events aggregated behind each interrupt.

Noninterrupt software inhibits interrupts as part of critical 
section processing. If software inhibits interrupts for too long, 
interrupt service code cannot make forward progress. By 
convention, interrupts are inhibited for a limited time.

Interrupt servicing can be divided into two types. In the first 
type, a fixed sequence of actions is taken, and limiting the 
interrupt rate is sufficient to limit interrupt execution time. 
Most error processing falls into this category. In the second 
type, for all practical purposes, an unbounded response is 
required. For example, if packets arrive faster than driver 
software can process them, then interrupt execution time can 
easily become unacceptable. Therefore, we need a mechanism to 
bound the service time. In the packet I/O interrupt example, the 
device driver polls the microsecond clock to measure service time 
and thereby terminate device driver processing when a bound is 
reached. If service is prematurely terminated, then the hardware 
continues to post the interrupt, and service is renewed when the 
rate-limiting mechanism allows the next service period to begin.

Interrupt rate limiting can lead to lower system throughput if 
the CPU is sometimes idle. This can be avoided by augmenting 
interrupt processing with polled processing when idle cycles 
remain after all activities have had some minimal fair share of 
the CPU.

Reliability and Availability

Network downtime due to switch failures, repairs, or upgrades of 
the GIGAswitch system is low. Components in the GIGAswitch system 
that could be single points of failure are simple and thus more 
reliable. Complex functions (logic and firmware) are placed on 
modules that were made redundant. A second SCP, for example, 
takes control if the first SCP in the GIGAswitch system fails. If 
a LAN is connected to ports on two different FDDI line cards, the 
802.1d spanning tree places one of the ports in backup state; 
failure of the operational port causes the backup port to come 
on-line.

The GIGAswitch system allows one to "hot-swap" (i.e., insert or 
remove without turning off power) the line cards, SCP, power 
supply front-ends, and fans. The GIGAswitch system may be powered 
from station batteries, as is telephone equipment, to remove 
dependency on the AC mains.



MODULE DETAILS

In the next section, we describe the functions of the clock card, 
the switch control processor, and the FDDI line card.

Clock Card

The clock card generates the system clocks for the modules and 
contains a number of centralized system functions. These 
functions were placed on the clock card, rather than the 
backplane, to ensure that the backplane, which is difficult to 
replace, is passive and thus more reliable. These functions 
include storing the set of 48-bit IEEE 802 addresses used by the 
switch and arbitration of the backplane bus that is used for 
connection setup.

Management parameters are placed in a stable store in flash 
electrically erasable programmable read-only memory (EEPROM) on 
the clock card, rather than on SCP modules. This simplifies the 
task of coordinating updates to the management parameters among 
the SCP modules. The SCP module controlling the box is selected 
by the clock card, rather than by a distributed (and more 
complex) election algorithm run by the SCPs. 

The clock card maintains and distributes the system-wide time, 
communicated to the SCP and line cards through shared-memory 
mailboxes on their GPI chips. Module insertion and removal are 
discovered by the clock card, which polls the slots in the 
backplane over the module identification bus interconnecting the 
slots. The clock card controls whether power is applied to or 
removed from a given slot, usually under command of the SCP. The 
clock card also provides a location for the out-of-band 
management RS-232 port, although the out-of-band management code 
executes on the SCP. 

Placing this set of functionality on the clock card does not 
dramatically increase complexity of that module or reduce its 
reliability. It does, however, significantly reduce the 
complexity and increase the reliability of the system as a whole.

Switch Control Processor

The SCP module contains a MIPS R3000A CPU with 64-kilobyte (kB) 
instruction and data caches, write buffer, 16-megabyte (MB) DRAM, 
2-MB flash memory, and crossbar access control hardware. Figure 4 
shows a diagram of the SCP. The large DRAM provides buffering for 
packets forwarded by the SCP and contains the switch address 
databases. The XAC provides robust operation in the face of 
overload and an efficient packet flooding mechanism for highly 
populated GIGAswitch systems. The XAC is implemented using two 
field-programmable gate arrays with auxiliary RAM and support 
logic. A major impetus for choosing the MIPS processor was 



software development and simulation tools available at the time.

[Figure 4 (Switch Control Processor) is not available in 
ASCII format.]

We input address traces from simulations of the SCP software to a 
cache simulation that also understood the access cost for the 
various parts of the memory hierarchy beyond the cache. Using the 
execution time predicted by the cache simulation, we were able to 
evaluate design trade-offs. For compiler-generated code, loads 
and stores accounted for about half the executed instructions; 
therefore cache size and write buffer depth are important. For 
example, some integrated versions of the MIPS R3000 processor 
would not perform well in our application. Simulation also 
revealed that avoiding stale data in the cache by triggering 
cache refills accounted for more than one third of the data cache 
misses. Consequently, an efficient mechanism to update the cache 
memory is important. It is not important, however, that all DMA 
input activity updates the cache. A bridge can forward a packet 
by looking at only small portions of it in low-level network 
headers.

Cache simulation results were also used to optimize software 
components. Layers of software were removed from the typical 
packet-processing code paths, and some commonly performed 
operations were recoded in assembly language, which yielded 
tighter code and fewer memory references.

The conventional MIPS method for forcing the cache to be updated 
from memory incurs three steps of overhead.[7] One step is linear 
in the amount of data to be accessed, and the other two are 
inefficient for small amounts of data. During the linear time 
step, the information to be invalidated is specified using a 
memory operation per tag while the cache is isolated from memory. 
This overhead is avoided on the SCP by tag-bit manipulations that 
cause read memory operations to update the cache from DRAM. No 
additional instructions are required to access up-to-date 
information, and the method is optimal for any amount of data. 

FDDI Line Card

The FGL contains one FDDI port subsystem per port (two for FGL-2 
and four for FGL-4) and a processor subsystem. The FDDI port 
systems, shown in Figure 5, are completely independent. The 
process for sending a packet from one FDDI LAN to another is the 
same, whether or not the two FDDI ports are on the same FGL 
module or not. The processor subsystem consists of a Motorola 
68302 microprocessor with 1 MB of DRAM, 512 kB of read-only 
memory (ROM), and 256 kB of flash memory. The processor subsystem 
is used for initial configuration and setup, diagnostics, error 
logging, and firmware functions. The FGL reused much firmware 
from other network products, including the DECNIS 600 FDDI line 
card firmware; station management functions are provided by the 
Common Node Software.[8]



[Figure 5 (FDDI Line Card for Two Ports) is not available in 
ASCII format.]

The FGL uses daughter cards, called ModPMDs, to implement a 
variety of physical media attachments, including single- and 
multiple-mode fiber usable for distances of up to 2 and 20 
kilometers, respectively, and unshielded, twisted-pair (UTP) 
copper wire, usable up to 100 meters. Both the FGL-2 and the 
FGL-4 can support four ModPMDs. The FGL-2 can support one or two 
attachments per FDDI LAN and appear as a single attachment 
station (SAS), dual attachment station (DAS), or M-port, 
depending upon the number of ModPMD cards present and management 
settings. The FGL-4 supports only SAS configurations. The Digital 
VLSI FDDI chip set was used to implement the protocols for the 
FDDI physical layer and MAC layer. Each FDDI LAN can be either an 
ANSI standard 100 Mb/s ring or a full-duplex (200 Mb/s) 
point-to-point link, using Digital's full-duplex FDDI 
extensions.[9]

The heart of the FGL is the bridge forwarding component, which 
consists of two chips designed by Digital: the FDDI-to-GIGAswitch 
network controller (FGC) chip and the GIGAswitch content 
addressable memory (GCAM) chip. It also contains a set of 
medium-speed static RAM chips used for packet storage and lookup 
tables.

The GCAM provides a 256-entry associative memory for looking up 
various packet fields. It is used to match 1-byte FDDI packet 
control fields, 6-byte destination and source addresses, 1-byte 
destination service access point (DSAP) fields, and 5-byte 
subnetwork access protocol service access point (SNAP SAP) 
protocol identifiers. The GCAM chip has two data interfaces: a 
16-bit interface used by the processor and an 8-bit, read-only 
interface that is used for on-the-fly matching of packet fields. 
The FGC can initiate a new lookup in GCAM every 80 nanoseconds.

The FGC chip is a large (approximately 250,000 transistors), 
240-pin, 1.0-micrometer gate array that provides all the 
high-performance packet queuing and forwarding functions on an 
FGL. It also controls the packet flow to and from the crossbar 
and to and from the FDDI data link chip set. It queues inbound 
and outbound packets, splitting them by type into queues of a 
size determined by firmware at start-up time. The FGC looks up 
various FDDI packet fields (1) to determine whether or not to 
forward a packet and which port to use, (2) to determine whether 
the packet contains a new source address and to note when each 
source address was last heard, and (3) to map packet types to 
classes used for filtering. It also provides a number of packet 
and byte counters. The FGC chip is also used in the FDDI line 
card for the DECNIS multiprotocol router.

FDDI BRIDGE IMPLEMENTATION



In the next section, we describe the implementation of an FDDI 
bridge on the GIGAswitch system platform. 

Packet Flow

Figure 6 shows the interconnection of modules in a GIGAswitch 
system. Only one port of each FDDI line card is shown; hardware 
is replicated for other ports. Note that the line cards and SCP 
each have dual-simplex 100 Mb/s connections to the crossbar; 
traffic can flow in both directions simultaneously.

[Figure 6 (GIGAswitch System Modules) is not available in 
ASCII format.]

The FGC hardware on the GIGAswitch system line card looks up the 
source address, destination addresses, and protocol type (which 
may include the frame control [FC], DSAP, SNAP SAP, etc. fields) 
of each packet received. The result of the lookup may cause the 
packet to be filtered or dropped. If the packet is to be 
forwarded, a small header is prepended and the packet is placed 
on a queue of packets destined for the crossbar. Buffers for 
bridge control traffic are allocated from a separate pool so that 
bridge control traffic cannot be starved by data traffic. Bridge 
control traffic is placed in a separate queue for expedient 
processing. 

Most packets travel through the crossbar to another line card, 
which transmits the packet on the appropriate FDDI ring. If the 
output port is free, the GIGAswitch system will forward a packet 
as soon as enough of the packet has been received to make a 
forwarding decision. This technique, referred to as cut-through 
forwarding, significantly reduces the latency of the GIGAswitch 
system.

Some packets are destined for the SCP. These are network 
management packets, multicast (and broadcast) packets, and 
packets with unknown destination addresses. The SCP is 
responsible for coordinating the switch-wide resources necessary 
to forward multicast and unknown destination address packets. 

Learning and Aging

A transparent bridge receives all packets on every LAN connected 
to it and notes the bridge port on which each source address was 
seen. In this way, the  bridge learns the 48-bit MAC addresses of 
nodes in a network. The SCP and line cards cooperate to build a 
master table of 48-bit address-to-port mappings on the SCP. They 
maintain a loose consistency between the master address table on 
the SCP and the per-port translation tables on the line cards.

When a line card receives a packet from a source address that is 
not in its translation table, it forwards a copy of the packet to 
the SCP. The SCP stores the mapping between the received port and 



the 48-bit address in the master address table and informs all 
the line cards of the new address. The SCP also polls the line 
cards at regular intervals to learn new addresses, since it is 
possible for the packet copy to be dropped on arrival at the SCP. 
The FGC hardware on the line card notes when an address has been 
seen by setting a source-seen bit in the addresses' translation 
table entry.

Since stations in an extended LAN may move, bridges remove 
addresses from their forwarding tables if the address has not 
been heard from for a management-specified time through a process 
called aging. In the GIGAswitch system, the line card connected 
to a LAN containing an address is responsible for aging the 
address. Firmware on FGL scans the translation table and 
time-stamps entries that have the source-seen bit set. A second 
firmware task scans the table, placing addresses that have not 
been seen for a specified time on a list that is retrieved at 
regular intervals by the SCP. Aged addresses are marked but not 
removed from the table unless it is full; this reduces the 
overhead if the address appears again.

The GIGAswitch system should respond quickly when an address 
moves from one port of the switch to another. Many addresses may 
move nearly simultaneously if the LAN topology changes. The fact 
that an address is now noticed on a new port can be used to 
optimize the address aging process. A firmware task on FGL scans 
the translation table for addresses that have been seen but are 
not owned by this port and places them on a list. The SCP then 
retrieves the list and quickly causes the address to be owned by 
the new port.

Multicast to Multiple Interfaces

The SCP, rather than the line cards, sends a packet out multiple 
ports. This simplifies the line cards and provides centralized 
information about packet flooding in order to avoid overloading 
remote lower-speed LANs with flooded packets. The SCP allows 
network management to specify rate limits for unknown 
destinations and for multicast destination traffic.

Flooding a packet requires replicating the packet and 
transmitting the replicas on a set of ports. During the design of 
the flooding mechanism, we needed to decide whether the 
replication would take place on the SCP, in hardware or software, 
or on the line cards. The design criteria included (1) the amount 
of crossbar bandwidth that is consumed by the flooding and (2) 
the effect of the flooding implementation on the forwarding 
performance of unicast packets.

The size of the switch and the filters that are specified also 
affected this decision. If the typical switch is fully populated 
with line cards and has no filters set, then one incoming 
multicast packet is flooded out a large number of ports. If a 



switch has few cards and filters are used to isolate the LANs, 
then an incoming multicast packet may not have to be sent out any 
port.

Since the crossbar design allows many outputs to be connected to 
a single input, a single copy of a packet sent into the crossbar 
can be received by multiple FDDI ports simultaneously. This 
improves the effective bandwidth of the SCP connection to the 
crossbar since fewer iterations of information are required. The 
queuing mechanisms used to send multicast connection information 
over the backplane allow each line card port using the multicast 
crossbar facility to receive a copy no more than one packet time 
after it is ready to do so.

We decided to implement flooding using special hardware on the 
SCP. The DMA transfers the packet once into a private memory, and 
all iterations proceed from that memory, thus removing contention 
at the SCP's DRAM. The multicast hardware repeatedly transmits 
the packet into the crossbar until the backplane queuing 
mechanisms signal that all relevant ports have received a copy.

INTEGRATION AND TEST

GIGAswitch system software development and test were performed in 
parallel with hardware development. Most of the SCP software was 
developed before reliable SCP hardware was available and before 
integration of the various modules could proceed in a GIGAswitch 
system. The simulation of hardware included the SCP's complete 
memory map, a simplified backplane, a simplified clock card, and 
FDDI line cards. At run time, the programmer could choose between 
line card models connected to real networks or real GIGAswitch 
system FGLs. Instruction and data address references were 
extracted from the instruction interpreter that understood the 
SCP memory map.

FGL testing initially proceeded in standalone mode without other 
GIGAswitch system modules. The FGL firmware provided a test 
mechanism that allowed ICC packets to be received and transmitted 
over a serial port on the module. This facility was used to test 
ICC processing by sending ICC packets from a host computer over a 
serial line. The next level of testing used pairs of FGLs in a 
GIGAswitch system backplane. To emulate the SCP hardware, one FGL 
ran debug code that sent ICC packets through the crossbar.

Initial testing of SCP/FGL interaction used the FGL's serial ICC 
interface to connect an FGL to SCP software emulated on 
workstations. This interface allowed SCP and FGL firmware to 
communicate with ICC packets and permitted testing of SCP and FGL 
interactions before the SCP hardware was ready.

NETWORK MANAGEMENT



The GIGAswitch system is manageable via the SNMP protocol. SNMP 
uses get and get-next messages to examine and traverse the 
manageable objects in the GIGAswitch system. SNMP uses set 
messages to control the GIGAswitch system.

A single SNMP set message can manipulate multiple objects in the 
GIGAswitch system. The objects should change atomically as a 
group, with all of them modified or none of them modified from 
the viewpoint of the management station. If the management 
station indicates that the GIGAswitch system reported an error, 
there are no dangling side effects. This is most advantageous if 
the management station maps a single form or command line to a 
single SNMP set message.

The SCP software achieves atomicity by checking individual object 
values, cross-checking object values, modifying object values 
with logging, and recording commit/abort transactional boundaries 
in a phased process. As each object value is modified, the new 
value is logged. If all modifications succeed, a commit boundary 
is recorded and the SNMP reply is sent. If any modification 
fails, all preceding modifications for this set operation are 
rolled back, an abort boundary is recorded, and the SNMP reply is 
sent.

MEASURED PERFORMANCE

Measuring the performance of a GIGAswitch system requires a 
significant amount of specialized equipment. We made our 
performance measurements using proprietary FDDI testers 
constructed at Digital. Under the control of a workstation, the 
testers can send, receive, and compare packets at the full FDDI 
line rate. We used 21 testers in conjunction with commercial LAN 
analyzers to measure performance of the GIGAswitch system.

The forwarding rate was measured by injecting a stream of 
minimum-size packets from a single input port to a single output 
port. This test yields a forwarding rate of 227,000 packets per 
second. The forwarding rate in this test is limited because 
connection requests are serialized when the (single) output port 
is busy. The arbitration mechanism allows connections to ports 
that are not busy to be established in parallel with ongoing 
packet transmissions. Modifying the test so that one input port 
sends packets to three output ports increases the aggregate 
forwarding rate to 270,000 packets per second. We also measured 
the aggregate forwarding rate of a 22-port GIGAswitch system to 
be approximately 3.8 million minimum-sized FDDI packets per 
second. At very high packet rates, small differences in internal 
timing due to synchronization or traffic distribution can 
exaggerate differences in the forwarding rate. The difference 
between 270,000 packets per second and 227,000 packets per second 
is less than 9 byte times per packet at 100 Mb/s.

For the GIGAswitch system, the forwarding latency is measured 



from first bit in to first bit out of the box. Forwarding latency 
is often measured from last bit in to first bit out, but that 
method hides any delays associated with packet reception. The 
forwarding latency was measured by injecting a stream of small 
packets into the switch at a low rate, evenly spaced in time. The 
forwarding latency was determined to be approximately 14 
microseconds, or approximately 175 byte times at 100 Mb/s. This 
measurement illustrates the result of applying distributed, 
dedicated hardware to the forwarding path. It includes two 48-bit 
addresses and a protocol type lookup on the incoming line card, 
the output filtering decision on the outbound line card, and the 
delays due to connection latency, data movement, and 
synchronization.

The GIGAswitch system filters minimum-sized packets from a 
multiple-access FDDI ring at the line rate, which is 
approximately 440,000 packets per second per port. Filtering is 
necessary to reject traffic that should not be forwarded through 
the switch.

By design, the GIGAswitch system flooding rate is lower than the 
rate for unicast traffic. We measured the flooding rate to be 
2,700 packets per second. Note that a multicast rate of 
r implies transmission of (s X r) packets by the switch, where s is 
the number of ports currently on the bridge spanning tree. 

Measurement of GIGAswitch system flooding rates on real networks 
within Digital and at field test sites indicates that the switch 
is not a bottleneck for multicast traffic.

CONCLUSIONS

The GIGAswitch system is a general-purpose, packet-switching 
platform that is data link independent. Many issues were 
considered and techniques were used in its design to achieve 
robustness and high performance. The performance of the switch is 
among the highest in the industry. A peak switching rate of 6.25 
million variable-size packets per second includes support for 
large hunt groups with no loss in performance. Digital's first 
product to include a GIGAswitch system was a 22-port IEEE 802.1d 
FDDI bridge. Shipment to general customers started in June 1993. 
A four-port FDDI line card (FGL-4) is in development. A two-port 
GIGAswitch system line card (AGL-2) using ATM is planned for 
shipment in May 1994. This card uses modular daughter cards to 
provide interfaces to synchronous optical network (SONET) STS-3c, 
synchronous digital hierarchy (SDH) STM-1, DS-3, or E3 
transmission media.
   
The GIGAswitch system can be extended to include other data links 
such as high-speed serial interface (HSSI), fast Ethernet, and 
Fibre Channel. High-performance routing is also possible.

The GIGAswitch system has been used successfully in a wide 



variety of application areas, including workstation farms, 
high-energy physics, and both LAN and metropolitan area network 
(MAN) backbones. One or more GIGAswitch systems can be used to 
construct a large-scale WAN backbone that is surrounded by 
routers to isolate individual LANs from the WAN backbone. A 
GIGAswitch system network can be configured to provide the 
bandwidth needed to support thousands of conventional LAN users 
as well as emerging applications such as large-scale video 
conferencing, multimedia, and distributed computing.
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