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ABSTRACT

Mathematical subroutine libraries for science and engineering 
applications are an important tool in high-performance computing. 
By identifying and optimizing frequently used, numerically 
intensive operations, these libraries help in reducing the cost 
of computation, enhancing portability, and improving 
productivity. The Digital eXtended Math Library is a set of 
public domain and Digital proprietary software that has been 
optimized for high performance on Alpha systems. In this paper, 
DXML and the issues related to library software technology are 
described. Specific examples illustrate how algorithms can be 
optimized to take advantage of the architecture of Alpha systems. 
Modern algorithms that effectively exploit the memory hierarchy 
enable DXML routines to provide substantial improvements in 
performance.

INTRODUCTION 

The Digital eXtended Math Library (DXML) is a set of mathematical 
subroutines, optimized for high performance on Alpha systems. 
These subroutines perform numerically intensive subtasks that 
occur frequently in scientific computing. They can therefore be 
used as building blocks for the optimization of various science 
and engineering applications in industries such as chemical, 
aerospace, petroleum, automotive, electronics, finance, and 
transportation.

In this paper, we discuss the role of mathematical software 
libraries, followed by an overview of the contents of the Digital 
eXtended Math Library. DXML includes optimized versions of both 
the standard BLAS and LAPACK libraries as well as libraries 
designed and developed by Digital for signal processing and the 
solution of sparse linear systems of equations. Next, we describe 
various aspects of library software technology, including the 
design and testing of DXML subroutines. Using key routines as 
examples, we illustrate the techniques used in the performance 
optimization of the library. Finally, we present data that 
demonstrates the performance improvement obtained through the use 
of DXML. 

THE ROLE OF MATH LIBRARIES



Early mathematical libraries concentrated on supplementing the 
functionality provided by the Fortran compilers. In addition to 
routines such as sin and exp, which were included in the run-time 
math library, more complicated special functions, linear algebra 
algorithms, and Fourier transform algorithms were included in the 
software layer between the hardware and the user application.

Then, in the early 1970s, there was a concerted effort to produce 
high-quality numerical software, with the aim of providing end 
users with implementations of numerical algorithms that were 
stable, robust, and accurate. This led to the development of 
several math libraries, with the public domain LINPACK and 
EISPACK libraries for the solution of linear and eigen systems, 
setting the standards for future development of math 
software.[1-4]

The late 1970s and early 1980s saw the availability of advanced 
architectures, including vector and parallel computers, as well 
as high-performance workstations. This added another facet to the 
development of math libraries, namely, the implementation of 
algorithms for high efficiency on an underlying architecture.

The effort to produce mathematical software thus became a task of 
building bridges between numerical analysts, who devise 
algorithms, computer architects, who design high-performance 
computer systems, and computer users, who need efficient, 
reliable software for solving their problems. Consequently, these 
libraries embody expert knowledge in applied mathematics, 
numerical analysis, data structures, software engineering, 
compilers, operating systems, and computer architecture and are 
an important programming tool in the use of high-performance 
computers. 

Modern superscalar RISC architectures with floating-point 
pipelines, such as the Alpha, have deep memory hierarchies. These 
include floating-point registers, multiple levels of caches, and 
virtual memory. The significant latency and bandwidth differences 
between these memory levels imply that numerical algorithms have 
to be restructured to make effective use of the data brought into 
any one level. The performance of an algorithm is also 
susceptible to the order in which computations are scheduled as 
well as the higher cost associated with some operations such as 
floating-point square-root and division. 

The architecture of the Alpha systems and the technology of the 
Fortran and C compilers usually provide an efficient computing 
environment with adequate performance. However, there is often 
room for improvement, especially in engineering and science 
applications, where vast amounts of data are processed and 
repeated operations are performed on each data element. One way 
to achieve these improvements is through the use of optimized 
subroutine libraries.



The Digital eXtended Math Library is a collection of routines 
that performs frequently occurring, numerically intensive 
operations. By identifying such operations and optimizing them 
for high performance on Alpha systems, DXML provides several 
benefits to the computational scientist. 

    o It allows definition of functions at a sufficiently high 
        level and therefore optimization beyond the capabilities 
        of the compiler.
    
    o It makes the architecture of the systems more transparent 
        to the user.

    o It improves productivity by providing easy access to 
        highly optimized, efficient code.

    o It enhances the portability of user software through the 
        support of standard libraries and interfaces.

    o It promotes good software engineering practice and avoids 
        duplication of work by identifying and optimizing common 
        functions across several application areas.

OVERVIEW OF DXML

DXML contains almost 400 user-callable routines, optimized for 
Alpha systems.[5] This includes both software developed by 
Digital as well as the BLAS and LAPACK libraries. Most routines 
are available in four versions: real single precision, real 
double precision, complex single precision, and complex double 
precision.

DXML is available on both OpenVMS and DEC OSF/1 operating 
systems. Its routines can be called from either Fortran or C, 
provided the difference in array storage between these languages 
is taken into account. DXML is available as a shareable library, 
with a simple interface, enabling easy access to the routines. On 
DEC OSF/1 systems, DXML supports the IEEE floating-point format. 
On OpenVMS systems, either the IEEE floating-point format or the 
VAX F-float/G-float format can be selected.

DXML routines can be broadly categorized into the following four 
areas:

    o BLAS. The Basic Linear Algebra Subroutines include the 
        standard BLAS and Digital enhancements.
  
    o LAPACK. The Linear Algebra PACKage includes linear and 
        eigen-system solvers.

    o Signal processing. This includes fast Fourier transforms 
        (FFTs), convolution, and correlation. 



    o Sparse linear system solvers. These include direct and 
        iterative solvers.

Of these, the signal-processing library and the sparse linear 
system solvers are designed, developed, and optimized by Digital. 
The majority of the BLAS routines and the LAPACK library are 
versions of the public domain standard that were optimized for 
the Alpha architecture. By supporting the industry standard 
interfaces of these libraries, DXML provides both portability of 
user code and high performance of the optimized software.

We next provide a brief description of the functionality provided 
by each subcomponent of DXML. Further details are available in 
the Digital eXtended Math Library Reference Manual.[5]

VLIB

The vector library consists of seven double-precision routines 
that perform operations such as sine, cosine, and natural 
logarithm, on data stored as vectors.

BLAS 1

The Basic Linear Algebra level 1 subprograms perform 
low-granularity operations on vectors that involve one or two 
vectors as input and return either a vector or a scalar as 
output.[6] Examples of BLAS 1 routines include dot product, index 
of the maximum element in a vector, and so on.

BLAS 1 Extensions (BLAS 1E)

Digital has extended the functionality of the BLAS 1 routines by 
including 13 similar operations. These include index of the 
minimum element of a vector, sum of the elements of a vector, and 
so on.

BLAS 1 Sparse (BLAS 1S)

DXML also includes nine routines that are sparse extensions of 
the BLAS 1 routines. Of these, six are from the sparse BLAS 1 
standard and three are enhancements.[7] These routines operate on 
two vectors, one of which is sparse and stored in a compressed 
form. As most of the elements in a sparse vector are zero, both 
computational time and memory are reduced by storing and 
operating on only the nonzeros. BLAS 1S routines include 
construction of a sparse vector from the specified elements of a 
dense vector, dot product, and so on. 

BLAS 2



The BLAS level 2 routines perform operations of a higher 
granularity than the level 1 routines.[8] These include 
matrix-vector operations such as matrix-vector product, rank-one 
and rank-two updates, and solutions of triangular systems of 
equations. Various storage schemes are supported, including 
general, symmetric, banded, and packed. 

BLAS 3

The BLAS level 3 routines perform matrix-matrix operations, which 
are of a higher granularity than the BLAS 2 operations. These 
routines include matrix-matrix product, rank-k updates, solution 
of triangular systems with multiple right-hand sides, and 
multiplication of a matrix by a triangular matrix. Where 
appropriate, these operations are defined for matrices that may 
be general, symmetric, or triangular.[9] The functionality of the  
public domain BLAS 3 library has been enhanced by three 
additional routines for matrix addition, subtraction, and 
transpose.

LAPACK

DXML includes the standard Linear Algebra PACKage, LAPACK, which 
supercedes the LINPACK and EISPACK packages by extending the 
functionality, using algorithms with higher accuracy, and 
improving the performance through the use of the optimized BLAS 
library.[10] LAPACK can be used for solving many common linear 
algebra problems, including solution of linear systems, linear 
least-squares problems, eigenvalue problems, and singular value 
problems. Various storage schemes are supported, including 
general, band, tridiagonal, symmetric positive definite, and so 
on.

Signal Processing

The signal-processing subcomponent of DXML includes FFTs, 
convolutions, and correlations. A comprehensive set of Fourier 
transforms is provided, including

    o FFTs in one, two, and three dimensions
    
    o FFTs in forward and inverse directions
  
    o Multiple one-dimensional transforms

There is no limit on the number of elements being transformed, 
though the performance is best when the data length is a power of 
2. Popular storage formats for the input and output data are 
supported, allowing for possible symmetry in the output data and 
consequent reduction in the storage required. Further efficiency 
is provided through the use of the three-step FFT, which 



separates the process of setting up and deallocating the internal 
data structures from the actual application of the FFT. This 
results in significant performance gain when repeated application 
of FFTs is required. 

The convolution and correlation routines in DXML support both 
periodic (circular) and nonperiodic (linear) definition. A 
discrete summing technique is used for calculation. Special 
versions of the routines allow control of output options such as 
the range of coefficients computed, scaling of the output, and 
addition of the output to an array.

All FFT, convolution, and correlation routines are available in 
both single and double precision and support both real and 
complex data.

Sparse Iterative Solvers

DXML includes a set of routines for the iterative solution of 
sparse linear systems of equations using preconditioned, 
conjugate-gradient-like methods.[11,12] A flexible user 
interface, based on a matrix-free formulation of the solver, 
allows a choice among various solvers, storage schemes, and 
preconditioners. This formulation permits the user to define his 
or her own preconditioner and/or storage scheme for the matrix. 
It also allows the user to store the matrix using one of the 
storage schemes defined by DXML and/or use the preconditioners 
provided. A driver routine provides a simple interface to the 
iterative solvers when the DXML storage schemes and 
preconditioners are used.

The different iterative methods provided are (1) conjugate 
gradient, (2) least-squares conjugate gradient, (3) biconjugate 
gradient, (4) conjugate-gradient squared, and (5) generalized 
minimum residual. Each method supports various applications of 
the preconditioner: left, right, split, and no preconditioning. 

The matrix can be stored in the symmetric diagonal storage 
scheme, the unsymmetric diagonal storage scheme or the general 
storage (by rows) scheme. Three preconditioners are provided for 
each storage scheme: diagonal, polynomial (Neumann), and 
incomplete LU with zero diagonals added.

A choice of four stopping criteria is provided, in addition to a 
user-defined stopping criterion. The iteration process can be 
controlled by setting various input parameters such as the 
maximum number of iterations, the degree of polynomial 
preconditioning, the level of output provided, and the tolerance 
for convergence. These solvers are available in real double 
precision only.

Sparse Skyline Solvers



The sparse skyline solver library in DXML includes a set of 
routines for the direct solution of a sparse linear system of 
equations with the matrix stored using the skyline storage 
scheme.[13,14] The following functions are provided.

    o LDU factorization, which includes options for the 
        evaluation of the determinant and inertia, partial 
        factorization, statistics on the matrix, and options for 
        handling small pivots.

    o Solve, which includes multiple right-hand sides and 
        solves systems involving either the matrix or its 
        transpose.

    o Norm evaluation, including 1-norm, infinity-norm, 
        Frobenius norm, and the maximum absolute value of the 
        matrix.

    o Condition number estimation, which includes both the 
        1-norm and the infinity norm.

    o Iterative refinement, including the component-wise 
        relative backward error and the estimated forward error 
        bound for each solution vector.

    o Simple and expert drivers.

This functionality is provided for each of the following storage 
schemes:

    o For symmetric matrices:
       
    - Profile-in storage mode
       
    - Diagonal-out storage mode

    o For unsymmetric matrices:
       
    - Profile-in storage mode
       
    - Diagonal-out storage mode
       
    - Structurally symmetric profile-in storage mode

These solvers are available in real double precision only.
  

SOFTWARE CONSIDERATIONS

As with any software effort, many software engineering issues 
were encountered during the design and development of DXML. Some 
issues were specific to math libraries such as the numerical 
accuracy and stability of the routines, while others were more 
general such as the design of a user interface, testing of the 



software, error checking, ease of use, and portability. We next 
discuss some of these key design issues in further detail.

Designing the Interface

The first task in creating a library was to decide the 
functionality, followed by the design of the interface. This 
included both the naming of the subroutines as well as the design 
of the parameter list. For each subcomponent in DXML, the calling 
sequence was designed to be consistent across all routines in 
that subcomponent. In the case of the BLAS and LAPACK libraries, 
the public domain interface was maintained to enable portability 
of user code. 

For the routines added by Digital, the routine names were chosen 
to indicate the function being performed as well as the precision 
of the data. Furthermore, the parameter lists were chosen to 
provide a simple interface, yet allow flexibility for the 
sophisticated user. For example, the sparse solvers require 
various real and integer parameters. By using arrays instead of 
scalar variables, a more concise interface that did not vary from 
routine to routine was obtained. In addition, all solver routines 
have arguments for real and integer work arrays, even if these 
are not used in the code. This not only provides a uniform 
interface but also acts as a placeholder for work arrays, should 
they be required in the future.

Accuracy

The numerical accuracy of the routines in DXML is dependent on 
the problem size as well as the algorithm used, which may vary 
within a routine. Since performance optimization often changes 
the order in which a computation is performed, identical results 
between the DXML routines and the public domain BLAS and LAPACK 
routines may not occur. The accuracy of the results obtained is 
checked by ensuring that the optimized versions of the BLAS and 
LAPACK routines pass the public domain tests to within the 
specified tolerance.

Error Processing

Most of the routines in DXML trap usage errors and provide 
sufficient information so that the user can identify and fix the 
problem. The low-level, fine-grained computational routines, such 
as the BLAS level 1, do not provide this function because the 
overhead of testing and error trapping would seriously degrade 
the performance.

In the case of BLAS 2, BLAS 3, and LAPACK, the public domain 
error-reporting mechanism has been maintained. If an input 
argument is invalid, such as a negative value for the order of 



the matrix, the routine prints out an error message and stops. If 
a failure occurs in the course of the algorithm, such as a matrix 
being singular to working precision, an error flag is set and 
control is returned to the calling program.

The signal-processing routines report success or failure using a 
status function value. Further information on the error can be 
obtained by using a user-callable routine that prints out an 
error message and an error flag. The user documentation indicates 
the actions to be taken to recover from the error.

In the case of the sparse solvers, error is indicated by setting 
an error flag and printing an appropriate message if the printing 
option is enabled. Control is always returned to the calling 
program.

Testing

DXML routines are tested for correctness and accuracy using a 
regression test suite. This includes both test code developed by 
Digital, as well as the public domain test codes for BLAS and 
LAPACK. These codes are used not only during the implementation 
and performance optimization of the routines, but also during the 
building of the complete library from each of the subcomponents.

The test codes check each routine extensively, including checks 
for error exits, accuracy of the results obtained, invariance of 
read-only data and the correctness of all paths through the code. 
As the complete regression tests take over 20 hours to execute, 
two input data sets are used: a short one that tests each routine 
and can be used to make a quick check that all subcomponents 
compiled and built correctly, and a long data set that tests each 
path through a routine and is thus more exhaustive.

Many of the routines, such as the FFTs and BLAS 3, are tested 
using random input data. However, some routines, such as the 
sparse solvers, operate on specific data structures or matrices 
with specific properties. These have been tested using matrices 
generated from the finite difference discretization of partial 
differential equations or using the matrices in the 
Harwell-Boeing test suite.[15]

Another aspect to the DXML regression test package is the 
inclusion of a performance test gauge. This software tests the 
performance of key routines in each component of DXML and is used 
to ensure that the performance of DXML routines is not adversely 
affected by changes in compilers or the operating systems.

Performance Trade-offs

The design and optimization of the routines in DXML often 
prompted a trade-off between performance on one hand, and 



accuracy and generality on the other. Although every effort has 
been made not to sacrifice accuracy for performance, the 
reordering of computations during performance optimization may 
lead to results before optimization that are not bit-for-bit 
identical to the results after optimization. In other cases, 
performance has been sacrificed to ensure generality of a 
routine. For example, although the matrix-free formulation of the 
iterative solvers permits the use of any sparse matrix storage 
scheme, it could result in a slight degradation in performance 
due to less efficient use of the instruction cache and the 
inability to reuse some of the data in the registers.

PERFORMANCE OPTIMIZATION

DXML routines have been designed to provide high performance on 
the Alpha systems.[16] These routines are tailored to take 
advantage of the system characteristics such as the number of 
floating-point registers, the size of the primary and secondary 
data caches, and the page size. This optimization involves 
changes to data structures and the use of new algorithms as well 
as the restructuring of computation to effectively manage the 
memory hierarchy.

Several general techniques are used across all DXML subcomponents 
to improve the performance.[17] These include the following 
techniques:

    o Unrolling loops to make better use of the floating-point 
        pipelines
  
    o Reusing data in registers and caches whenever possible

    o Managing the data caches effectively so that the cache 
        hit ratio is maximized

    o Accessing data using stride-1 computation

    o Using algorithms that exploit the memory hierarchy 
        effectively
  
    o Reordering computations to minimize cache and translation 
        buffer thrashing

Although many of these optimizations are done by the compiler, 
occasionally, for example in the case of the skyline solver, the 
data structures or the implementation of the algorithm are such 
that they do not lend themselves to optimization by the compiler. 
In these cases, explicit reordering of the computations is 
required.

We next discuss these optimization techniques as used in specific 
examples. All performance data is for the DEC 3000 Model 900 
system using the DEC OSF/1 version 3.0 operating system. This 



workstation uses the Alpha 21064A chip, running at 275 megahertz 
(MHz). The on-chip data and instruction caches are each 16 
kilobytes (KB) in size, and the secondary cache is 2 megabytes 
(MB) in size.
 
In the next section, we compare the performance of DXML BLAS and 
LAPACK routines with the corresponding public domain routines. 
Both versions are written in standard Fortran and compiled using 
identical compiler options.

Optimization of BLAS 1

BLAS 1 routines operate on vector and scalar data only. As the 
operations and data structures are simple, there is little 
opportunity to use advanced data blocking and register reuse 
techniques. Nevertheless, as the plots in Figure 1 demonstrate, 
it is possible to optimize the BLAS 1 routines by careful coding 
that takes advantage of the data prefetch features of the Alpha 
21064A chip and avoids data-path-related stalls.[16,18] 

Generally, the DXML routines are 10 percent to 15 percent faster 
than the corresponding public domain routines. Occasionally, as 
in the case of DDOT for very short, cache-resident vectors, the 
benefits can be much greater.

The shapes of the plots in Figure 1 rather dramatically 
demonstrate the benefits of data caches. Each plot shows very 
high performance for short vectors that reside in the 16-KB, 
on-chip data cache, much lower performance for data vectors that 
reside in the 2-MB, on-board secondary data cache, and even lower 
performance when the vectors reside completely in memory.

[Figure 1 (Performance of BLAS 1 Routines DDOT and DAXPY) is not 
available in ASCII format.]

Optimization of BLAS 2 

BLAS 2 routines operate on matrix, vector, and scalar data. The 
data structures are larger and more complex than the BLAS 1 data 
structures and the operations more complicated. Accordingly, 
these routines lend themselves to more sophisticated optimization 
techniques.

Optimized DXML BLAS 2 routines are typically 20 percent to 100 
percent faster than the public domain routines. Figure 2 
illustrates this performance improvement for the matrix-vector 
multiply routine, DGEMV, and the triangular solve routine, 
DTRSV.[8] 

[Figure 2 (Performance of BLAS 2 Routines DGEMV and DTRSV) is not 
available in ASCII format.]



The DXML DGEMV uses a data-blocking technique that asymptotically 
performs two floating-point operations for each memory access, 
compared to the public domain version, which performs two 
floating-point operations for every three memory accesses.[19] 
This technique is designed to minimize translation buffer and 
data cache misses and maximize the use of floating-point 
registers.[16,18,20] The same data prefetch considerations used 
on the BLAS 1 routines are also used on the BLAS 2 routines.

The DXML version of the DTRSV routine partitions the problem such 
that a small triangular solve operation is performed. The result 
of this solve operation is then used in a DGEMV operation to 
update the remainder of the vector. The process is repeated until 
the final triangular update completes the operation. Thus the 
DTRSV routine relies heavily on the optimizations used in the 
DGEMV routine.

As with BLAS 1 routines, BLAS 2 routines benefit greatly from 
data cache. Although the effect is less dramatic for the BLAS 2 
routines, Figure 2 clearly shows the three-step profile observed 
in Figure 1. Best performance is achieved when both matrix and 
vector fit in the primary cache. Performance is lower but flat 
over the region where the data fits on the secondary board level 
cache. The final performance plateau is reached when data resides 
entirely in memory.

Optimization of BLAS 3 

BLAS 3 routines operate primarily on matrices. The operations and 
data structures are more complicated that those of BLAS 1 and 
BLAS 2 routines. Typically, BLAS 3 routines perform many 
computations on each data element. These routines exhibit a great 
deal of data reuse and thus naturally lend themselves to 
sophisticated optimization techniques.

DXML BLAS 3 routines are generally two to ten times faster than 
their public domain counterparts. The plots in Figure 3 show 
these performance differences for the matrix-matrix multiply 
routine, DGEMM, and the triangular solve routine with multiple 
right-hand sides, DTRSM.[9]

[Figure 3 (Performance of BLAS 3 Routines DGEMM and DTRSM) is not 
available in ASCII format.]

All performance optimization techniques used for the DXML BLAS 1 
and BLAS 2 routines are used on the DXML BLAS 3 routines. In 
particular, data-blocking techniques are used extensively. 
Portions of matrices are copied to page-aligned work areas where 
secondary cache and translation buffer misses are eliminated and 
primary cache misses are absolutely minimized.

As an example, within the primary compute loop of the DXML DGEMM 
routine, there are no translation buffer misses, no secondary 



cache misses, and, on average, only one primary cache miss for 
every 42 floating-point operations. Performance within this key 
loop is also enhanced by carefully using floating-point registers 
so that four floating-point operations are performed for each 
memory read access. Much of the DXML BLAS 3 performance advantage 
over the public domain routines is a direct consequence of a 
greatly improved ratio of floating-point operations per memory 
access.

The DXML DTRSM routine is optimized in a manner similar to its 
BLAS 2 counterpart, DTRSV. A small triangular system is solved. 
The resulting matrix is then used by DGEMM to update the 
remainder of the right-hand-side matrix. Consequently, most of 
the DXML DTRSM performance is directly attributable to the DXML 
DGEMM routine. In fact, the techniques used in DGEMM pervade DXML 
BLAS 3 routines.

Figure 3 illustrates a key feature of DXML BLAS 3 routines. 
Whereas the performance of public domain routines degrades 
significantly as the matrices become too large to fit in caches, 
DXML routines are relatively insensitive to array size, shape, or 
orientation.[5,9] The performance of a DXML BLAS 3 routine 
typically reaches an asymptote and remains there regardless of 
problem size.

Optimization of LAPACK

The LAPACK subroutine library derives a large part of its high 
performance by using the optimized BLAS as building blocks.[10] 
The DXML version of LAPACK is largely unmodified from the public 
domain version. However, in the case of the factorization routine 
for general matrices, DGETRF, we have introduced changes to the 
algorithm to improve the performance on Alpha systems.

For example, while the original public domain DGETRF routine uses 
Crout's method to factor a matrix, the DXML version uses a 
left-looking method.[11] Left-looking methods make better use of 
the secondary cache and translation buffers than the Crout 
method. Furthermore, the public domain version of the DLASWP 
routine swaps a single matrix row across an entire matrix. This 
is a very bad technique for RISC machines; it causes severe cache 
and translation buffer thrashing. To avoid this, the DXML version 
of DLASWP performs all swaps within columns, which makes much 
better use of the caches and the translation buffer and results 
in a much improved performance of the DXML DGETRF routine.

The DGETRS routine was not modified. Its performance is solely 
attributable to use of optimized DXML routines.

Figure 4 shows the benefits of the optimizations made to DGETRF 
and the BLAS routines. DGETRF makes extensive use of the BLAS 3 
DGEMM and DTRSM routines. The performance of DXML DGETRF improves 
with increasing problem size largely because DXML BLAS 3 routines 



do not degrade in the face of larger problems. 

The plots of Figure 4 also show the performance of DGETRS when 
processing a single right-hand-side vector. In this case, DTRSV 
is the dominant BLAS routine, and the performance differences 
between the public domain and DXML DGETRS routines reflect the 
performance of the respective DTRSV routines. Finally, although 
not shown, we note that the performance of DXML DGETRS is much 
better than the public domain version when many right-hand sides 
are used and DTRSM becomes the dominant BLAS routine.

[Figure 4 Performance of LAPACK Routines DGETRF and DGETRS (LDA = 
N+1) is not available in ASCII format.]

Optimization of the Signal-processing Routines

We illustrate the techniques used in optimizing the 
signal-processing routines using the one-dimensional, power-of-2, 
complex FFT.[21] The algorithm used is a version of Stockham's 
autosorting algorithm, which was originally designed for vector 
computers but works well, with a few modifications, on a RISC 
architecture such as Alpha.[22,23]

The main advantage in using an autosorting algorithm is that it 
avoids the initial bit-reversal permutation stage characteristic 
of the Cooley-Tukey algorithm or the Sande-Tukey algorithm. This 
stage is implemented by either precalculating and loading the 
permutation indices or calculating them on-the-fly. In either 
case, substantial amounts of integer multiplications are needed. 
By avoiding these multiplications, the autosorting algorithm 
provides better performance on Alpha systems.

This algorithm does have the disadvantage that it cannot be done 
in-place, resulting in the use of a temporary work space, which 
makes more demands on the cache than an algorithm that can be 
done in-place. However, this disadvantage is more than offset by 
the avoidance of the bit-reversal stage.

The implementation of the FFT on the Alpha makes effective use of 
the hierarchical memory of the system, specifically, the 31 
usable floating-point registers, which are at the lowest, and 
therefore the fastest, level of this hierarchy. These registers 
are utilized as much as possible, and any data brought into these 
registers is reused to the extent possible. To accomplish this, 
the FFT routines implement the largest radices possible for all 
stages of the power-of-2 FFT calculation. Radix-8 was used for 
all stages except the first, utilizing 16 registers for the data 
and 14 for the twiddle factors.[21] For the first stage, as all 
twiddle factors are 1, radix-16 was used.

Figure 5 illustrates the performance of this algorithm for 
various sizes. Although the performance is very good for small 
data sizes that fit into the primary, 16-KB data cache, it drops 



off quickly as the data exceeds the primary cache. To remedy 
this, a blocking algorithm was used to better utilize the primary 
cache.

[Figure 5 (Performance of 1-D Complex FFT) is not available in 
ASCII format.]

The blocking algorithm, which was developed for computers with 
hierarchical memory systems, decomposes a large FFT into two sets 
of smaller FFTs.[24] The algorithm is implemented using four 
steps:

    1. Compute N1 sets of FFTs of size N2

    2. Apply twiddle factors
  
    3. Compute N2 sets of FFTs of size N1
  
    4. Transpose the N1 by N2 matrix into an N2 by N1 matrix

In the above, N = N1 X N2. Steps (1) and (3), use the autosorting 
algorithm for small sizes. In step (2), instead of precomputing 
all N twiddle factors, a table of selected twiddle factors is 
computed and the rest calculated using trigonometric identities. 

Figure 5 compares the performance of the blocking algorithm with 
the autosorting algorithm. Due to the added cost of steps (2) and 
(4), the maximum computation speed for the blocking algorithm 
(115 million floating-point operations per second [Mflops] at 
N=2**12) is lower than the maximum computation speed of the 
autosorting algorithm (192 Mflops at N = 2**9). The crossover 
point between the two algorithms is at a size of approximately 
2K, with the autosorting algorithm performing better at smaller 
sizes. Based on the length of the FFT, the DXML routine 
automatically picks the faster algorithm. Note that at N=2**16, 
as the size of the data and workspace exceeds the 2-MB secondary 
cache, the performance of the blocking algorithm drops off.

Optimization of the Skyline Solvers

A skyline matrix (Figure 6) is one where only the elements within 
the envelope of the sparse matrix are stored. This storage scheme 
exploits the fact that zeros that occur before the first nonzero 
element in a row or column of the matrix, remain zero during the 
factorization of the matrix, provided no row or column 
interchanges are made.[14] Thus, by storing the envelope of the 
matrix, no additional storage is required for the fill-in that 
occurs during the factorization. Though the skyline storage 
scheme does not exploit the sparsity within the envelope, it 
allows for a static data structure, and is therefore a reasonable 
compromise between organizational simplicity and computational 
efficiency.



[Figure 6 (Skyline Column Storage of a Symmetric Matrix) is not 
available in ASCII format.]

In the skyline solver, the system, Ax = b, where A is an N by N 
matrix, and b and x are N-vectors, is solved by first factorizing 
A as A = LDU, where L and U are unit lower and upper triangular 
matrices, and D is a diagonal matrix. The solution x is then 
calculated by solving in order, Ly = b, Dz = y, and Ux = z, where 
y and z are N-vectors.

In our discussion of performance optimization, we concentrate on 
the factorization routine as it is often the most time-consuming 
part of an application. The algorithm implemented in DXML uses a 
technique that generates a column (or row) of the factorization 
using an inner product formulation. Specifically, for a symmetric 
matrix A, let

[Equation 1 is not available in ASCII format.]

where the symmetric factorization of the leading (N-1) by (N-1) 
leading principal submatrix M has already been obtained as

[Equation 2 is not available in ASCII format.]

Since the vector v, of length (N-1), and the scalar s are known, 
the vector w, of length (N-1) and the scalar d can be determined 
as 

[Equation 3 is not available in ASCII format.]

and 

[Equation 4 is not available in ASCII format.]

The definition of w indicates that a column of the factorization 
is obtained by taking the inner product of the appropriate 
segment of that column with one of the previous columns that has 
already been calculated. Referring to Figure 7, the value of the 
element in location (i,j) is calculated by taking the inner 
product of the elements in column j above the element in location 
(i,j) with the corresponding elements in column i. The entire 
column j is thus calculated starting with the first nonzero 
element in the column and moving down to the diagonal entry.

[Figure 7 (Unoptimized Skyline Computational Kernel) is not 
available in ASCII format.]

The optimization of the skyline factorization is based on the 
following two observations [25,26]:

    o The elements of column j, used in the evaluation of the 
        element in location (i,j), are also used in the 
        evaluation of the element in location (i+1,j).
 



    o The elements of column i, used in the evaluation of the 
        element in location (i,j), are also used in the 
        evaluation of the element in location (i,j+1).

Therefore, by unrolling both the inner loop on i and the outer 
loop on j, twice, we can generate the entries in locations (i,j), 
(i+1,j), (i,j+1), (i+1,j+1) at the same time, as shown in Figure 
8. These four elements are generated using only half the memory 
references made by the standard algorithm. The memory references 
can be reduced further by increasing the level of unrolling. This 
is, however, limited by two factors:

    o The number of floating-point registers required to store 
        the elements being calculated and the elements in the 
        columns.
  
    o The length of consecutive columns in the matrix, which 
        should be close to each other to derive full benefit from 
        the unrolling.

Based on these factors, we have unrolled to a depth of 4, 
generating 16 elements at a time.

A similar technique is used in optimizing the forward elimination 
and the backward substitution.

[Figure 8 (Optimized Skyline Computational Kernel) is not 
available in ASCII format.]

Table 1 gives the performance improvements obtained with the 
above techniques for a symmetric and an unsymmetric matrix from 
the Harwell-Boeing collection.[15] The characteristics of the 
matrix are generated using DXML routines and were included 
because the performance is dependent on the profile of the 
skyline. The data presented is for a single right-hand side, 
which has been generated using a known random solution vector.

The results show that for the matrices under consideration, the 
technique of reducing memory references by unrolling loops at two 
levels leads to a factor of 2 improvement in performance.

Table 1 Performance Improvement in the Solution of Ax = b, Using the
          Skyline Solver on the DEC 3000 Model 900 System

 
---------------------------------------------------------------------------
                                    Example 1            Example 2
---------------------------------------------------------------------------

  Harwell-Boeing matrix[15]         BCSSTK24             ORSREG1

  Description                       Stiffness matrix of  Jacobian from a
                                    the Calgary Olympic  model of an oil



                                    Saddledome Arena     reservoir

  Storage scheme                    Symmetric         Unsymmetric
                                    diagonal-out       profile-in

  Matrix characteristics

     Order                          3562                 2205

     Type                           Symmetric            Unsymmetric with
                                                         structural 
          symmetry

     Condition number estimate      6.37E+11             1.54E+4

     Number of nonzeros             81736                14133
 
     Size of skyline                2031722              1575733

     Sparsity of skyline            95.98%               99.10%

     Maximum row (column) height    3334                 442 (442)

     Average row (column) height    570.39               357.81 (357.81)

     RMS row (column) height        1135.69              395.45 (395.45)

  Factorization time (in seconds)

     Before optimization            66.80                23.12

     After optimization             35.02                13.02

  Solution time (in seconds)

     Before optimization            0.82                 0.32

     After optimization             0.43                 0.17

                   
  Maximum component-wise relative   0.16E-5              0.50E-10
  error in solution (See equation 
  below.)

                _
       | x(i) - x(i) |
  max  --------------- , where x(i) is the i-th component of the true
   i        | x(i) |

                   _
     solution, and x(i) is the i-th component of the calculated solution.

SUMMARY



In this paper, we have shown that optimized mathematical 
subroutine libraries can be a useful tool in improving the 
performance of science and engineering applications on Alpha 
systems. We have described the functionality provided by DXML, 
discussed various software engineering issues and illustrated 
techniques used in performance optimization.

Future enhancements to DXML include symmetric multiprocessing 
support for key routines, enhancements in the areas of signal 
processing and sparse solvers, as well as further optimization of 
routines as warranted by changes in hardware and system software.
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