DXM.: A Hi gh-performance Scientific Subroutine Library

by

Chandri ka Kamath, Roy Ho, and Dwi ght P. Manl ey

ABSTRACT

Mat hemati cal subroutine libraries for science and engi neering
applications are an inportant tool in high-performnce conputing.
By identifying and optim zing frequently used, nunerically

i ntensi ve operations, these libraries help in reducing the cost
of conputation, enhancing portability, and inproving
productivity. The Digital eXtended Math Library is a set of
public domain and Digital proprietary software that has been
optim zed for high performance on Al pha systens. In this paper
DXM. and the issues related to library software technol ogy are
descri bed. Specific exanples illustrate how al gorithnms can be
optim zed to take advantage of the architecture of Al pha systens.
Modern al gorithns that effectively exploit the nenory hierarchy
enable DXM. routines to provide substantial inprovenents in

per f or mance.

| NTRODUCTI ON

The Digital eXtended Math Library (DXM.) is a set of mathematica
subroutines, optim zed for high performance on Al pha systens.
These subroutines performnunerically intensive subtasks that
occur frequently in scientific conmputing. They can therefore be
used as building blocks for the optim zation of various science
and engi neering applications in industries such as chem cal
aerospace, petroleum autonotive, electronics, finance, and
transportation.

In this paper, we discuss the role of mathematical software
libraries, followed by an overview of the contents of the Digita
exXtended Math Library. DXM includes optimzed versions of both

t he standard BLAS and LAPACK libraries as well as libraries

desi gned and devel oped by Digital for signal processing and the
sol uti on of sparse linear systens of equations. Next, we describe
various aspects of |ibrary software technol ogy, including the
design and testing of DXM. subroutines. Using key routines as
exanples, we illustrate the techniques used in the performance
optim zation of the library. Finally, we present data that
denonstrates the performance i nprovenent obtained through the use
of DXM..

THE ROLE OF MATH LI BRARI ES

Early mathematical |ibraries concentrated on suppl enenting the
functionality provided by the Fortran conpilers. In addition to
routi nes such as sin and exp, which were included in the run-tine
math |ibrary, nore conplicated special functions, |inear algebra
al gorithnms, and Fourier transformalgorithnms were included in the
software | ayer between the hardware and the user application.

Then, in the early 1970s, there was a concerted effort to produce
hi gh-quality nunerical software, with the aim of providing end
users with inplenmentations of nunerical algorithnms that were
stabl e, robust, and accurate. This led to the devel opnent of
several math libraries, with the public domain LINPACK and

El SPACK |ibraries for the solution of |inear and ei gen systens,
setting the standards for future devel opment of math
software. [1- 4]

The late 1970s and early 1980s saw the availability of advanced
architectures, including vector and parallel conputers, as wel

as hi gh-performance workstations. This added another facet to the
devel opnent of math |ibraries, nanmely, the inplenmentation of
algorithms for high efficiency on an underlying architecture.

The effort to produce nmathematical software thus became a task of
bui l di ng bridges between nunerical analysts, who devise

al gorithms, conputer architects, who design hi gh-perfornmance
conmput er systens, and conputer users, who need efficient,
reliable software for solving their problens. Consequently, these
libraries enbody expert know edge in applied mathematics,
nunerical analysis, data structures, software engi neering,

conpil ers, operating systens, and conputer architecture and are
an inportant programm ng tool in the use of high-perfornmance
comput er s.

Modern superscal ar RI SC architectures with floating-point

pi pel i nes, such as the Al pha, have deep nenory hierarchies. These
i nclude floating-point registers, nultiple levels of caches, and
virtual nmenory. The significant |atency and bandw dth differences
bet ween these nmenory levels inply that numerical al gorithns have
to be restructured to nake effective use of the data brought into
any one level. The performance of an algorithmis also
susceptible to the order in which conmputations are schedul ed as
wel | as the higher cost associated with sone operations such as
fl oati ng-poi nt square-root and division.

The architecture of the Al pha systens and the technol ogy of the
Fortran and C conpilers usually provide an efficient conputing
envi ronnent with adequate perfornmance. However, there is often
room for inprovenent, especially in engineering and science
applications, where vast anobunts of data are processed and
repeated operations are perforned on each data el ement. One way
to achi eve these inprovenents is through the use of optim zed
subroutine libraries.

The Digital eXtended Math Library is a collection of routines
that perfornms frequently occurring, nunerically intensive
operations. By identifying such operations and optim zing them
for high performance on Al pha systens, DXM. provi des severa
benefits to the conputational scientist.

o] It allows definition of functions at a sufficiently high
| evel and therefore optimzation beyond the capabilities
of the conpiler.

o] It makes the architecture of the systems nore transparent
to the user.

o] It inproves productivity by providing easy access to
highly optim zed, efficient code.

o] It enhances the portability of user software through the
support of standard libraries and interfaces.

o] It pronotes good software engineering practice and avoids
duplication of work by identifying and optim zi ng common
functions across several application areas.

OVERVI EW OF DXML

DXM. contai ns al nost 400 user-callable routines, optimzed for
Al pha systenms.[5] This includes both software devel oped by
Digital as well as the BLAS and LAPACK libraries. Mist routines
are available in four versions: real single precision, rea
doubl e precision, conplex single precision, and conpl ex doubl e
preci si on.

DXM. is avail able on both OpenvVMS and DEC OSF/ 1 operating
systems. Its routines can be called fromeither Fortran or C,
provi ded the difference in array storage between these | anguages
is taken into account. DXM. is available as a shareable library,
with a sinple interface, enabling easy access to the routines. On
DEC OSF/ 1 systens, DXM. supports the | EEE fl oating-point format.
On OpenVMS systens, either the | EEE floating-point format or the
VAX F-float/ G float format can be sel ected.

DXM. routines can be broadly categorized into the follow ng four
ar eas:

o] BLAS. The Basic Linear Al gebra Subroutines include the
standard BLAS and Digital enhancenents.

o] LAPACK. The Linear Al gebra PACKage includes |inear and
ei gen-system sol vers.

o] Si gnal processing. This includes fast Fourier transfornms
(FFTs), convolution, and correl ation.

o] Sparse |inear system solvers. These include direct and
iterative solvers.

O these, the signal-processing library and the sparse |inear
system sol vers are desi gned, devel oped, and optim zed by Digital
The majority of the BLAS routines and the LAPACK library are
versions of the public donmain standard that were optim zed for
the Al pha architecture. By supporting the industry standard
interfaces of these libraries, DXM. provides both portability of
user code and high performance of the optinized software.

We next provide a brief description of the functionality provided
by each subconponent of DXM.. Further details are available in
the Digital eXtended Math Library Reference Manual . [5]

VLI B

The vector library consists of seven doubl e-precision routines
t hat perform operations such as sine, cosine, and natura
| ogarithm on data stored as vectors.

BLAS 1

The Basic Linear Al gebra |level 1 subprogranms perform

| ow-granul arity operations on vectors that involve one or two
vectors as input and return either a vector or a scalar as
output.[6] Exanples of BLAS 1 routines include dot product, index
of the maxi mum el enent in a vector, and so on.

BLAS 1 Extensions (BLAS 1E)

Digital has extended the functionality of the BLAS 1 routines by
including 13 sinmilar operations. These include index of the

m ni mum el ement of a vector, sum of the elenments of a vector, and
so on.

BLAS 1 Sparse (BLAS 1S)

DXM. al so i ncludes nine routines that are sparse extensions of
the BLAS 1 routines. OF these, six are fromthe sparse BLAS 1
standard and three are enhancenments.[7] These routines operate on
two vectors, one of which is sparse and stored in a conpressed
form As nost of the elenents in a sparse vector are zero, both
conput ational time and nmenory are reduced by storing and
operating on only the nonzeros. BLAS 1S routines include
construction of a sparse vector fromthe specified elenents of a
dense vector, dot product, and so on

BLAS 2

The BLAS |l evel 2 routines perform operations of a higher
granularity than the level 1 routines.[8] These include

mat ri x-vector operations such as matrix-vector product, rank-one
and rank-two updates, and solutions of triangular systens of
equations. Various storage schenmes are supported, including
general, synmmetric, banded, and packed.

BLAS 3

The BLAS |l evel 3 routines performmatrix-nmatrix operations, which
are of a higher granularity than the BLAS 2 operations. These
routines include matrix-matrix product, rank-k updates, solution
of triangular systems with nmultiple right-hand sides, and
multiplication of a matrix by a triangular matrix. Were
appropriate, these operations are defined for matrices that may
be general, symetric, or triangular.[9] The functionality of the
public domain BLAS 3 library has been enhanced by three
additional routines for matrix addition, subtraction, and
transpose.

LAPACK

DXM. includes the standard Li near Al gebra PACKage, LAPACK, which
supercedes the LI NPACK and El SPACK packages by extending the
functionality, using algorithns with higher accuracy, and

i mprovi ng the performance through the use of the optimzed BLAS
library.[10] LAPACK can be used for solving many common |i near

al gebra probl enms, including solution of linear systens, |inear

| east - squares probl ens, eigenval ue probl ens, and singul ar val ue
probl ems. Various storage schenes are supported, including
general , band, tridiagonal, synmetric positive definite, and so
on.

Si ghal Processing

The signal - processi ng subconmponent of DXM includes FFTs,
convol utions, and correlations. A conprehensive set of Fourier
transforns i s provided, including

0] FFTs in one, two, and three dinensions
0] FFTs in forward and i nverse directions
o] Mul ti pl e one-di nensi onal transforns

There is no limt on the nunber of elenments being transforned,

t hough the performance is best when the data length is a power of
2. Popul ar storage formats for the input and output data are
supported, allow ng for possible synmetry in the output data and
consequent reduction in the storage required. Further efficiency
is provided through the use of the three-step FFT, which

separates the process of setting up and deallocating the interna
data structures fromthe actual application of the FFT. This
results in significant performance gain when repeated application
of FFTs is required.

The convol ution and correlation routines in DXM. support both
periodic (circular) and nonperiodic (linear) definition. A

di screte sunmm ng technique is used for cal cul ation. Specia
versions of the routines allow control of output options such as
the range of coefficients computed, scaling of the output, and
addition of the output to an array.

Al'l FFT, convolution, and correlation routines are available in
bot h single and doubl e precision and support both real and
conpl ex dat a.

Sparse Iterative Solvers

DXM. i ncludes a set of routines for the iterative solution of
sparse |linear systems of equations using preconditioned,

conj ugate-gradient-1ike nethods.[11, 12] A flexible user
interface, based on a matrix-free formul ati on of the solver,
all ows a choice anmong various solvers, storage schenes, and
preconditioners. This fornulation pernmits the user to define his
or her own preconditioner and/or storage schene for the matrix.
It also allows the user to store the matri x using one of the
storage schenes defined by DXM. and/or use the preconditioners
provi ded. A driver routine provides a sinple interface to the
iterative solvers when the DXM. storage schenes and

precondi tioners are used.

The different iterative nethods provided are (1) conjugate
gradient, (2) |east-squares conjugate gradient, (3) biconjugate
gradient, (4) conjugate-gradi ent squared, and (5) generalized
m ni mum r esi dual . Each net hod supports various applications of
the preconditioner: left, right, split, and no preconditioning.

The matrix can be stored in the symmetric diagonal storage
schenme, the unsynmetric di agonal storage schene or the genera
storage (by rows) schene. Three preconditioners are provided for
each storage schenme: diagonal, polynom al (Neumann), and
inconplete LU with zero diagonal s added.

A choice of four stopping criteria is provided, in addition to a
user-defined stopping criterion. The iteration process can be
controlled by setting various input paraneters such as the
maxi mum nunber of iterations, the degree of polynoni al

precondi tioning, the level of output provided, and the tol erance
for convergence. These solvers are available in real double
preci sion only.

Sparse Skyline Sol vers

The sparse skyline solver library in DXM. includes a set of
routines for the direct solution of a sparse linear system of
equations with the matri x stored using the skyline storage
schene. [13,14] The follow ng functions are provided.

o] LDU factorization, which includes options for the
eval uation of the determinant and inertia, partia
factorization, statistics on the matrix, and options for
handling smal | pivots.

o] Sol ve, which includes nultiple right-hand sides and
sol ves systens involving either the matrix or its
transpose.

o] Nor m eval uation, including 1-norm infinity-norm
Frobeni us norm and the maxi num absol ute val ue of the
matri x.

0] Condi ti on nunber estimation, which includes both the
1-normand the infinity norm

o] Iterative refinement, including the conponent-w se
rel ati ve backward error and the estimted forward error
bound for each solution vector

o] Si npl e and expert drivers.

This functionality is provided for each of the follow ng storage
schenes:

o] For symmetric matrices:
- Profile-in storage node
- Di agonal -out storage node
o] For unsymmetric matrices:
- Profile-in storage node
- Di agonal -out storage node
- Structurally symmetric profile-in storage node

These sol vers are available in real double precision only.

SOFTWARE CONSI DERATI ONS

As with any software effort, nmany software engi neering issues
were encountered during the design and devel opnent of DXM.. Sone
i ssues were specific to math libraries such as the nunerica
accuracy and stability of the routines, while others were nore
general such as the design of a user interface, testing of the

software, error checking, ease of use, and portability. W next
di scuss sonme of these key design issues in further detail

Designing the Interface

The first task in creating a library was to decide the
functionality, followed by the design of the interface. This

i ncluded both the nam ng of the subroutines as well as the design
of the paranmeter list. For each subconponent in DXM., the calling
sequence was designed to be consistent across all routines in

t hat subconponent. In the case of the BLAS and LAPACK |i braries,
the public domain interface was nmaintained to enable portability
of user code.

For the routines added by Digital, the routine names were chosen
to indicate the function being perforned as well as the precision
of the data. Furthernore, the paraneter lists were chosen to
provide a sinple interface, yet allow flexibility for the

sophi sticated user. For exanple, the sparse solvers require
various real and integer paraneters. By using arrays instead of
scal ar variables, a nore concise interface that did not vary from
routine to routine was obtained. In addition, all solver routines
have argunents for real and integer work arrays, even if these
are not used in the code. This not only provides a uniform
interface but also acts as a pl acehol der for work arrays, should
they be required in the future.

Accur acy

The nunerical accuracy of the routines in DXM. is dependent on
the problemsize as well as the algorithmused, which nay vary
within a routine. Since performance optim zation often changes
the order in which a conputation is performed, identical results
between the DXM. routines and the public domain BLAS and LAPACK
routi nes may not occur. The accuracy of the results obtained is
checked by ensuring that the optim zed versions of the BLAS and
LAPACK routines pass the public donmain tests to within the

speci fied tol erance.

Error Processing

Most of the routines in DXM.L trap usage errors and provide
sufficient infornmation so that the user can identify and fix the
probl em The |owI|evel, fine-grained conputational routines, such
as the BLAS level 1, do not provide this function because the
overhead of testing and error trapping would seriously degrade

t he perfornmance.

In the case of BLAS 2, BLAS 3, and LAPACK, the public donain
error-reporting nechani sm has been maintained. If an input
argunment is invalid, such as a negative value for the order of

the matrix, the routine prints out an error nessage and stops. |f
a failure occurs in the course of the algorithm such as a matrix
bei ng singular to working precision, an error flag is set and
control is returned to the calling program

The signal -processing routines report success or failure using a
status function value. Further information on the error can be
obtai ned by using a user-callable routine that prints out an
error nmessage and an error flag. The user docunentation indicates
the actions to be taken to recover fromthe error

In the case of the sparse solvers, error is indicated by setting
an error flag and printing an appropriate nessage if the printing
option is enabled. Control is always returned to the calling
program

Testing

DXM. routines are tested for correctness and accuracy using a
regression test suite. This includes both test code devel oped by
Digital, as well as the public domain test codes for BLAS and
LAPACK. These codes are used not only during the inplenmentation
and performance optim zation of the routines, but also during the
buil ding of the conplete library fromeach of the subconponents.

The test codes check each routine extensively, including checks
for error exits, accuracy of the results obtained, invariance of
read-only data and the correctness of all paths through the code.
As the conplete regression tests take over 20 hours to execute,
two input data sets are used: a short one that tests each routine
and can be used to meke a quick check that all subconponents
conpiled and built correctly, and a | ong data set that tests each
path through a routine and is thus nmore exhaustive.

Many of the routines, such as the FFTs and BLAS 3, are tested
usi ng random i nput data. However, sone routines, such as the
sparse solvers, operate on specific data structures or matrices
with specific properties. These have been tested using matrices
generated fromthe finite difference discretization of partia
differential equations or using the matrices in the
Harwel | - Boei ng test suite.[15]

Anot her aspect to the DXM. regression test package is the

i nclusion of a performance test gauge. This software tests the
performance of key routines in each conponent of DXM. and is used
to ensure that the performance of DXM. routines is not adversely
af fected by changes in conpilers or the operating systens.

Per f or mance Trade-offs

The design and optim zation of the routines in DXM. often
pronmpted a trade-off between performance on one hand, and

accuracy and generality on the other. Although every effort has
been made not to sacrifice accuracy for perfornmance, the
reordering of conputations during perfornmance optimn zati on may
lead to results before optimization that are not bit-for-bit
identical to the results after optim zation. In other cases,
performance has been sacrificed to ensure generality of a

routi ne. For exanple, although the matrix-free formulation of the
iterative solvers pernits the use of any sparse matri x storage
schenme, it could result in a slight degradation in performance
due to less efficient use of the instruction cache and the
inability to reuse sone of the data in the registers.

PERFORMANCE OPTI M ZATI ON

DXM. routines have been designed to provide high perfornmance on
the Al pha systens.[16] These routines are tailored to take
advant age of the system characteristics such as the nunber of
floating-point registers, the size of the primary and secondary
data caches, and the page size. This optim zation involves
changes to data structures and the use of new algorithnms as wel
as the restructuring of conputation to effectively nanage the
menory hi erarchy.

Several general techniques are used across all DXM. subconponents
to inprove the performance.[17] These include the follow ng
t echni ques:

o] Unrolling | oops to nake better use of the floating-point
pi pel i nes

o] Reusing data in registers and caches whenever possible

o] Managi ng the data caches effectively so that the cache
hit ratio is maxinzed

o] Accessing data using stride-1 conputation

o] Using algorithnms that exploit the nenory hierarchy
effectively

o] Reordering conputations to mnimnze cache and translation
buffer thrashing

Al t hough many of these optinizations are done by the conpiler,
occasionally, for exanple in the case of the skyline solver, the
data structures or the inplenentation of the algorithmare such
that they do not lend thenmselves to optim zation by the conpiler
In these cases, explicit reordering of the computations is
required.

We next discuss these optim zation techniques as used in specific
exanples. Al performance data is for the DEC 3000 Mbdel 900
system usi ng the DEC OSF/ 1 version 3.0 operating system This

wor kst ati on uses the Al pha 21064A chip, running at 275 nmegahertz
(MHz). The on-chip data and instruction caches are each 16

kil obytes (KB) in size, and the secondary cache is 2 negabytes
(MB) in size.

In the next section, we conpare the performance of DXM. BLAS and
LAPACK routines with the correspondi ng public domain routines.
Both versions are witten in standard Fortran and conpil ed using
i dentical conpiler options.

Optim zation of BLAS 1

BLAS 1 routines operate on vector and scalar data only. As the
operations and data structures are sinple, there is little
opportunity to use advanced data bl ocki ng and register reuse
techni ques. Nevertheless, as the plots in Figure 1 denonstrate,
it is possible to optim ze the BLAS 1 routines by careful coding
that takes advantage of the data prefetch features of the Alpha
21064A chip and avoi ds data-path-related stalls.[16, 18]

Generally, the DXM. routines are 10 percent to 15 percent faster
than the correspondi ng public domain routines. Occasionally, as
in the case of DDOT for very short, cache-resident vectors, the
benefits can be much greater

The shapes of the plots in Figure 1 rather dramatically
denonstrate the benefits of data caches. Each plot shows very
hi gh performance for short vectors that reside in the 16-KB
on-chi p data cache, nmuch | ower performance for data vectors that
reside in the 2-MB, on-board secondary data cache, and even | ower
performance when the vectors reside conpletely in menory.

[Figure 1 (Performance of BLAS 1 Routines DDOT and DAXPY) is not
available in ASCI| format.]

Optim zati on of BLAS 2

BLAS 2 routines operate on matrix, vector, and scal ar data. The
data structures are |larger and nore conplex than the BLAS 1 data
structures and the operations nmore conplicated. Accordingly,
these routines lend thenselves to nore sophisticated optin zation
t echni ques.

Optim zed DXM. BLAS 2 routines are typically 20 percent to 100
percent faster than the public domain routines. Figure 2
illustrates this performance i nprovenent for the matrix-vector
mul tiply routine, DGEWMV, and the triangular solve routine,
DTRSV. [8]

[Figure 2 (Performance of BLAS 2 Routines DGEMWV and DTRSV) is not
available in ASCI| format.]

The DXM. DGEMV uses a dat a-bl ocki ng techni que that asynptotically
performs two floating-point operations for each nmenory access,
conpared to the public domain version, which perforns two

fl oati ng-point operations for every three nenory accesses. [19]
This technique is designed to mininmize translation buffer and
data cache nisses and nmaxi m ze the use of floating-point

regi sters.[16,18,20] The same data prefetch considerations used
on the BLAS 1 routines are also used on the BLAS 2 routines.

The DXM. version of the DTRSV routine partitions the problem such
that a small triangular solve operation is performed. The result
of this solve operation is then used in a DGEMV operation to
updat e the renmni nder of the vector. The process is repeated unti
the final triangular update conpletes the operation. Thus the
DTRSV routine relies heavily on the optim zations used in the
DGEMV routi ne.

As with BLAS 1 routines, BLAS 2 routines benefit greatly from
data cache. Although the effect is less dramatic for the BLAS 2
routines, Figure 2 clearly shows the three-step profile observed
in Figure 1. Best performance is achieved when both matri x and
vector fit in the primry cache. Performance is |ower but flat
over the region where the data fits on the secondary board | eve
cache. The final performance plateau is reached when data resides
entirely in menory.

Optim zati on of BLAS 3

BLAS 3 routines operate primarily on matrices. The operations and
data structures are nore conplicated that those of BLAS 1 and
BLAS 2 routines. Typically, BLAS 3 routines perform many
conput ati ons on each data el enment. These routines exhibit a great
deal of data reuse and thus naturally I end thenselves to

sophi sticated optinization techniques.

DXM. BLAS 3 routines are generally two to ten tinmes faster than
their public domain counterparts. The plots in Figure 3 show
these performance differences for the matrix-matrix multiply
routi ne, DGEMM and the triangular solve routine with multiple
ri ght-hand sides, DTRSM [9]

[Figure 3 (Performance of BLAS 3 Routines DGEMM and DTRSM) is not
available in ASCI| format.]

Al |l performance optimn zation techni ques used for the DXML BLAS 1
and BLAS 2 routines are used on the DXM. BLAS 3 routines. In
particul ar, data-blocking techniques are used extensively.
Portions of matrices are copied to page-aligned work areas where
secondary cache and transl ation buffer nisses are elimnated and
primry cache m sses are absolutely nmininzed.

As an exanple, within the primary conpute | oop of the DXM. DGEMM
routine, there are no translation buffer misses, no secondary

cache m sses, and, on average, only one primary cache mss for
every 42 floating-point operations. Performance within this key

|l oop is al so enhanced by carefully using floating-point registers
so that four floating-point operations are perfornmed for each
menory read access. Mich of the DXM. BLAS 3 performance advant age
over the public domain routines is a direct consequence of a
greatly inproved ratio of floating-point operations per nmenory
access.

The DXM. DTRSM routine is optimized in a manner simlar to its
BLAS 2 counterpart, DTRSV. A small triangular systemis solved.
The resulting matrix is then used by DGEMM t o update the

remai nder of the right-hand-side matri x. Consequently, nobst of
the DXM. DTRSM performance is directly attributable to the DXM
DGEMM routine. In fact, the techni ques used in DGEMM pervade DXM
BLAS 3 routines.

Figure 3 illustrates a key feature of DXM. BLAS 3 routines.
Whereas the performance of public domain routines degrades
significantly as the matrices become too large to fit in caches,
DXM. routines are relatively insensitive to array size, shape, or
orientation.[5,9] The performance of a DXM. BLAS 3 routine
typically reaches an asynptote and renmins there regardl ess of
probl em si ze

Optim zati on of LAPACK

The LAPACK subroutine library derives a large part of its high
performance by using the optim zed BLAS as buil di ng bl ocks. [10]
The DXM. version of LAPACK is largely unnodified fromthe public
domai n version. However, in the case of the factorization routine
for general matrices, DGETRF, we have introduced changes to the
algorithmto inprove the performance on Al pha systens.

For exanple, while the original public domain DGETRF routine uses
Crout's method to factor a matrix, the DXM. version uses a

| eft-1ooking nethod.[11] Left-Iooking nethods nake better use of
the secondary cache and transl ation buffers than the Crout

nmet hod. Furthernore, the public domain version of the DLASWP
routine swaps a single matrix row across an entire matrix. This
is a very bad technique for R SC nmachines; it causes severe cache
and translation buffer thrashing. To avoid this, the DXM. version
of DLASWP perfornms all swaps within colums, which nakes nuch
better use of the caches and the translation buffer and results
in a much i nproved performance of the DXM. DGETRF routi ne.

The DGETRS routine was not nodified. Its performance is solely
attributable to use of optim zed DXM. routi nes.

Figure 4 shows the benefits of the optim zati ons made to DGETRF
and the BLAS routines. DGETRF nakes extensive use of the BLAS 3
DGEMM and DTRSM routines. The performance of DXM. DGETRF i nproves
Wi th increasing problemsize |argely because DXML BLAS 3 routines

do not degrade in the face of |arger problens.

The plots of Figure 4 also show the performance of DGETRS when
processing a single right-hand-side vector. In this case, DTRSV
is the dom nant BLAS routine, and the performance differences
bet ween the public domain and DXM. DGETRS routines reflect the
performance of the respective DTRSV routines. Finally, although
not shown, we note that the performance of DXM. DGETRS is much
better than the public domain version when many right-hand sides
are used and DTRSM becones the dom nant BLAS routine.

[Figure 4 Performance of LAPACK Routines DGETRF and DGETRS (LDA =
N+1) is not available in ASCII format.]

Optim zation of the Signal-processing Routines

We illustrate the techniques used in optimnzing the

si gnal - processi ng routines using the one-di nensi onal, power-of-2,
conpl ex FFT.[21] The algorithmused is a version of Stockhan s
autosorting algorithm which was originally designed for vector
conmputers but works well, with a few nodifications, on a RI SC
architecture such as Al pha.[22, 23]

The main advantage in using an autosorting algorithmis that it
avoids the initial bit-reversal pernutation stage characteristic
of the Cool ey-Tukey al gorithm or the Sande-Tukey algorithm This
stage is inplenented by either precal culating and | oading the
permutation indices or calculating themon-the-fly. In either
case, substantial amounts of integer nultiplications are needed.
By avoiding these nmultiplications, the autosorting algorithm
provi des better performance on Al pha systens.

Thi s al gorithm does have the di sadvantage that it cannot be done
in-place, resulting in the use of a tenporary work space, which
makes nmore demands on the cache than an algorithmthat can be
done in-place. However, this disadvantage is nore than offset by
t he avoi dance of the bit-reversal stage

The inmpl ementation of the FFT on the Al pha nakes effective use of
the hierarchical nmenory of the system specifically, the 31
usabl e fl oati ng-point registers, which are at the | owest, and
therefore the fastest, level of this hierarchy. These registers
are utilized as nmuch as possible, and any data brought into these
registers is reused to the extent possible. To acconplish this,
the FFT routines inplenment the | argest radices possible for al
stages of the power-of-2 FFT cal cul ati on. Radi x-8 was used for
all stages except the first, utilizing 16 registers for the data
and 14 for the twiddle factors.[21] For the first stage, as al
twi ddle factors are 1, radi x-16 was used.

Figure 5 illustrates the performance of this algorithmfor
various sizes. Although the performance is very good for snall
data sizes that fit into the primary, 16-KB data cache, it drops

of f quickly as the data exceeds the primry cache. To renedy
this, a blocking algorithmwas used to better utilize the primary
cache.

[Figure 5 (Performance of 1-D Conplex FFT) is not available in
ASClI | format.]

The bl ocki ng al gorithm which was devel oped for conputers with

hi erarchi cal nenory systens, deconposes a large FFT into two sets
of smaller FFTs.[24] The algorithmis inplenented using four

st eps:

1. Compute N1 sets of FFTs of size N2

2. Apply twiddle factors

3. Conmpute N2 sets of FFTs of size N1

4. Transpose the N1 by N2 matrix into an N2 by NI matri x

In the above, N = N1 X N2. Steps (1) and (3), use the autosorting
algorithmfor small sizes. In step (2), instead of preconputing
all Ntwiddl e factors, a table of selected twiddle factors is
conput ed and the rest calculated using trigononmetric identities.

Figure 5 conpares the performance of the blocking algorithmwth
the autosorting algorithm Due to the added cost of steps (2) and
(4), the maxi mum conput ation speed for the blocking al gorithm
(115 million floating-point operations per second [M| ops] at
N=2**12) is |ower than the maxi mum conputati on speed of the
autosorting algorithm (192 Mlops at N = 2**9). The crossover
poi nt between the two algorithns is at a size of approxi mately
2K, with the autosorting algorithmperform ng better at smaller
sizes. Based on the length of the FFT, the DXM. routine
automatically picks the faster algorithm Note that at N=2**16,
as the size of the data and workspace exceeds the 2-MB secondary
cache, the performance of the blocking algorithmdrops off.

Optim zation of the Skyline Sol vers

A skyline matrix (Figure 6) is one where only the elenments within
the envel ope of the sparse matrix are stored. This storage schene
exploits the fact that zeros that occur before the first nonzero
element in a row or columm of the matrix, remain zero during the
factorization of the matrix, provided no row or colum

i nterchanges are nade.[14] Thus, by storing the envel ope of the
matri x, no additional storage is required for the fill-in that
occurs during the factorization. Though the skyline storage
schenme does not exploit the sparsity within the envel ope, it
allows for a static data structure, and is therefore a reasonable
conprom se between organi zational sinmplicity and conputationa

ef ficiency.

[Figure 6 (Skyline Colum Storage of a Symetric Matrix) is not
available in ASCI| format.]

In the skyline solver, the system Ax = b, where Ais an N by N
matri x, and b and x are N-vectors, is solved by first factorizing
A as A = LDU, where L and U are unit | ower and upper triangul ar
matrices, and D is a diagonal matrix. The solution x is then
calculated by solving in order, Ly = b, Dz =y, and W = z, where
y and z are N-vectors.

In our discussion of performance optinization, we concentrate on
the factorization routine as it is often the nost tine-consuning
part of an application. The algorithminplenmented in DXML uses a
techni que that generates a colum (or row) of the factorization
usi ng an inner product formulation. Specifically, for a symmetric
matrix A |et

[Equation 1 is not available in ASCII format.]

where the symetric factorization of the leading (N-1) by (N-1)
| eadi ng principal submatrix M has already been obtained as

[Equation 2 is not available in ASCI|I format.]

Since the vector v, of length (N-1), and the scalar s are known,
the vector w, of length (N-1) and the scalar d can be determ ned
as

[Equation 3 is not available in ASCII format.]
and
[Equation 4 is not available in ASCI|I format.]

The definition of windicates that a colum of the factorization
is obtained by taking the inner product of the appropriate
segnment of that columm with one of the previous colums that has
al ready been cal cul ated. Referring to Figure 7, the value of the
elenment in location (i,j) is calculated by taking the inner
product of the elenments in colum j above the elenent in |ocation
(i,j) with the corresponding elenents in colum i. The entire
colum j is thus calculated starting with the first nonzero

el enment in the colum and noving down to the diagonal entry.

[Figure 7 (Unoptim zed Skyline Computational Kernel) is not
available in ASCI| format.]

The optim zation of the skyline factorization is based on the
foll owing two observations [25, 26]:

o] The el ements of columm j, used in the evaluation of the
el enment in location (i,j), are also used in the
eval uation of the element in location (i+1,j).

o] The el ements of columm i, used in the evaluation of the
el enment in location (i,j), are also used in the
eval uation of the element in location (i,j+1).

Therefore, by unrolling both the inner |oop on i and the outer
loop on j, twice, we can generate the entries in locations (i,]j),
(i+1,j), (i,j+1), (i+1,j+1) at the sane tinme, as shown in Figure
8. These four elements are generated using only half the nenory
references made by the standard al gorithm The nmenory references
can be reduced further by increasing the level of unrolling. This
is, however, linmted by two factors:

o] The nunber of floating-point registers required to store
the el ements being calculated and the el enents in the
col ums.

o] The |l ength of consecutive colums in the matrix, which
shoul d be close to each other to derive full benefit from
the unrolling.

Based on these factors, we have unrolled to a depth of 4,
generating 16 elements at a tine.

A similar technique is used in optimzing the forward elim nation
and the backward substitution.

[Figure 8 (Optimzed Skyline Computational Kernel) is not
available in ASCI| format.]

Tabl e 1 gives the performance inprovenents obtained with the
above techniques for a symmetric and an unsymetric matrix from
the Harwel | - Boei ng coll ection.[15] The characteristics of the
matri x are generated using DXM. routines and were included
because the performance i s dependent on the profile of the
skyline. The data presented is for a single right-hand side,

whi ch has been generated using a known random sol ution vector.

The results show that for the matrices under consideration, the

t echni que of reducing nenory references by unrolling | oops at two
levels leads to a factor of 2 inprovenent in perfornmnce.

Tabl e 1 Performance | nprovenent in the Solution of Ax = b, Using the
Skyl i ne Solver on the DEC 3000 Mbdel 900 System

Example 1 Exanmpl e 2
Har wel | - Boei ng mat ri x[15] BCSSTK24 ORSREGL
Description Stiffness matrix of Jacobian froma

the Calgary O ynpic nodel of an oi

Saddl edone Arena reservoir

St orage schene Symetric Unsynmretric
di agonal - out profile-in

Matri x characteristics

Or der 3562 2205

Type Symmetric Unsymretric with
structura
symmetry

Condi ti on number estimate 6. 37E+11 1. 54E+4

Nurmber of nonzeros 81736 14133

Si ze of skyline 2031722 1575733

Sparsity of skyline 95. 98% 99. 10%

Maxi mum row (col umm) hei ght 3334 442 (442)

Average row (col um) hei ght 570. 39 357.81 (357.81)

RMS row (col um) hei ght 1135. 69 395. 45 (395. 45)

Factorization tinme (in seconds)
Before optim zation 66. 80 23.12
After optim zation 35.02 13.02

Solution tine (in seconds)

Before optim zation 0. 82 0. 32

After optim zation 0. 43 0.17
Maxi mum component -wi se rel ative 0. 16E-5 0. 50E-10
error in solution (See equation
bel ow.)

| x(i) - x(i) |

MaX --------------- , Where x(i) is the i-th conponent of the true
i | x(i) |

sol ution, and ;(i) is the i-th conmponent of the cal cul ated sol ution.

SUMVARY

In this paper, we have shown that optim zed nmat hematica
subroutine libraries can be a useful tool in inmproving the
performance of science and engi neering applications on Al pha
systenms. We have described the functionality provided by DXM,
di scussed various software engineering issues and illustrated
techni ques used in performance optim zation.

Fut ure enhancenents to DXM. include symretric nultiprocessing
support for key routines, enhancenents in the areas of signa
processi ng and sparse solvers, as well as further optim zation of
routi nes as warranted by changes in hardware and system software.

ACKNOW.EDGVENT

DXM. is the joint effort of a nunber of individuals over the past
several years. W would |ike to acknowl edge the contributions of
our col |l eagues, both past and present. The engi neers: Luca
Broglio, Richard Chase, Claudio Deiro, Laura Farinetti, Leo
Lavin, Ping-Charng Lue, Joe O Connor, Mark Schure, Linda Tell a,
Si sira Weeratunga and John W1son; the technical witers: Cheryl
Bar abani, Barbara Hi ggins, Marll MDonal d, Barbara Schott and

Ri chard Wbl anske; and the managenent: Ned Anderson, Carl os

Bar adel | o, Geral d Hai gh, Buren Hoffrman, Tonas Lofgren, Vehb
Tasar and David Velten. We would also like to thank Roger Grines
at Boeing Computer Services for nmaking the Harwel | - Boei ng
matrices so readily avail abl e.

REFERENCES

1. W Cowell, ed., Sources and Devel opnent of Mathematica
Software (Englewood Cliffs, NJ: Prentice-Hall, 1984).

2. D. Jacobs, ed., Nunmerical Software -- Needs and
Avail ability (New York: Acadenic Press, 1978).

3. J. Dongarra, J. Bunch, C. Mler, and G Stewart,
LI NPACK Users' Guide (Phil adel phia: Society for Industria
and Applied Mathematics [SIAM, 1979)

4, B. Smith et al., Matrix Ei gensystem Routines -- ElI SPACK
Gui de (Berlin: Springer-Verlag, 1976).

5. Digital eXtended Math Library Reference Manual (Maynard, NA:
Di gi tal Equi pnent Corporation, Oder No. AA- QOMBB-TE for VMS
and AA- QONHB- TE for OSF/ 1).

6. C. Lawson, R Hanson, D. Kincaid, and F. Krogh, "Basic Linear
Al gebra Subprograns for Fortran Usage," ACM Transactions on
Mat hemati cal Software, vol. 5, no. 3 (Septenber 1979):
308-323.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Dodson, R Grines, and J. Lewis, "Sparse Extensions to the
FORTRAN Basi ¢ Li near Al gebra Subprograns,” ACM Transactions
on Mat hermatical Software, vol. 17, no. 2 (June 1991):
253-263.

J. Dongarra, J. DuCroz, S. Hammarling, and R Hanson, "An
Ext ended Set of FORTRAN Basic Linear Al gebra Subprograns,"
ACM Transactions on Mathematical Software, vol. 14, no. 1
(March 1988): 1-17.

J. Dongarra, J. DuCroz, S. Hammarling, and |I. Duff, "A Set of
Level 3 Basic Linear Al gebra Subprograns," ACM Transactions
on Mat hematical Software, vol. 16, no. 1 (March 1990):

1-17.

E. Anderson et al., LAPACK Users' Guide (Phil adel phia:
Society for Industrial and Applied Mathematics [SIAM, 1992).

J. Dongarra, |. Duff, D. Sorensen, and H. van der Vorst,
Sol vi ng Linear Systens on Vector and Shared Menory

Comput ers (Phil adel phia: Society for Industrial and Applied
Mat hematics [SIAM, 1991).

R Barrett et al., Tenplates for the Solution of Linear
Systens: Building Blocks for Iterative Methods (Phil adel phi a:
Society for Industrial and Applied Mathematics [SIAM, 1993).

C. Felippa, "Solution of Linear Equations with Skyline Stored
Symmetric Matrix," Conmputer and Structures, vol. 5, no. 1
(April 1975): 13-29.

I. Duff, A Erisman, and J. Reid, Direct Methods for Sparse
Matrices (New York: Oxford University Press, 1986).

. Duff, R Ginmes, and J. Lewis, "Sparse Matrix Test
Probl ens," ACM Transactions on Mathematical Software, vol.
15, no. 1 (March 1989): 1-14.

Al pha AXP Architecture and Systens, Digital Technical
Journal, vol. 4, no. 4 (Special |ssue 1992).

K. Dowd, Hi gh Performance Conputing (Sebastopol, CA: OReilly
& Associates, Inc., 1993).

DECchi p 21064- AA M croprocessor -- Hardware Reference Manual
(Maynard, MA: Digital Equi prment Corporation, Order No.
EC- N0O079- 72, October 1992).

J. Dongarra and S. Eisenstat, "Squeezing the Mdst Qut of an
Al gorithmin CRAY FORTRAN," ACM Transacti ons on Mt henati cal
Software, vol. 10, no. 3 (Septenber 1984): 219-230.

R Sites, ed., Alpha Architecture Reference Manual
(Burlington, MA: Digital Press, 1992).

21. H. Nussbauner, Fast Fourier Transforns and Convol ution
Al gorithns, Second Edition (New York: Springer Verlag, 1982).

22. D. Bailey, "A Hi gh-performance FFT Al gorithm for Vector
Superconputers, " The International Journal of Superconputer
Applications, vol. 2, no. 1 (Spring 1988): 82-87.

23. P. Swarztrauber, "FFT Algorithms for Vector Conputers,"”
Paral l el Conputing, vol. 1, no. 1 (August 1984): 45-63.

24. D. Bailey, "FFTs in External or H erarchical Menory,"
The Journal of Superconputing, vol. 4, no. 1 (March 1990):
23- 35.

25. O Storaasli, D. Nguyen, and T. Agarwal, "Parallel-Vector
Sol ution of Large-Scale Structural Analysis Problens on
Superconputers, " Anerican Institute of Aeronautics and
Astronautics (Al AA) Journal, vol. 28, no. 7 (July 1990):
1211-1216.

26. H. Sanukawa, "A Proposal of Level 3 Interface for Band and
Skyline Matrix Factorization Subroutine," Proceedi ngs of the
1993 ACM I nternational Conference on Super Conputing, Tokyo
Japan (July 1993): 397-406.

Bl OGRAPHI ES

Chandri ka Kamath Chandri ka Kanmath is a nmenber of the Applied
Conput ati onal Mathematics Group. She has designed and inpl ement ed
the sparse linear solver packages that are included in DXM.. She
has al so optim zed custonmer benchmarks for Al pha systens.
Chandri ka hol ds a Bachel or of Technology in electrical

engi neering (1981) fromthe Indian Institute of Technol ogy, an
MS. in computer science (1984) and a Ph.D. in conmputer science
(1986), both fromthe University of Illinois at Urbana-Chanpai gn
She has published several papers on nunerical algorithnms for
paral l el conputers.

Roy Ho As a principal software engineer in Digital's High

Per f ormance Conputing Group, Roy Ho devel oped the

si gnal - processing routines used in DXM.. Prior to this work, he
was a nenber of the Hi gh Perfornmance Conputing Technol ogy Group.
There he designed the clock distribution systemfor the VAX fault
tol erant system and the delay estinmation software package for the
VAX 9000 system boards. Roy has B.S. (1985) and M S. (1987)
degrees in electrical engineering fromthe Renssel aer Pol ytechnic
Institute. He joined Digital in 1987.

Dwi ght P. Manley Dwight Manley is a consulting software engi neer
in the Applied Conputational Mathematics Group. He joined the
DXML Group at its inception in 1989 and continues to support and
enhance the DXM. and KAPF products. Since joining Digital in

1979, he has worked on system neasurenent and nodeling projects
and was responsible for all performance nodeling of the VAX 9000
CPU design. He is listed as a coinventor on 11 patents and as a
coaut hor of a paper on matrix conputation theory. Dwi ght has a
B.S. in mathematics fromthe University of Massachusetts and an
M'S. in operations research from Northeastern University.

Copyright 1994 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

