
 Digital Technical Journal
 Volume 6, Number 3

 VTX Version of the KAP Paper

 The KAP Parallelizer for DEC Fortran and DEC C Programs

 by

 Robert H. Kuhn, Bruce Leasure, and Sanjiv M. Shah

ABSTRACT

The KAP preprocessor optimizes DEC Fortran and DEC C programs to
achieve their best performance on Digital Alpha systems. One key
optimization that KAP performs is the parallelization of programs
for Alpha shared memory multiprocessors that use the new
capabilities of the DEC OSF/1 version 3.0 operating system with
DECthreads. The heart of the optimizer is a sophisticated
decision process that selects the best loop to parallelize from
the many loops in a program. The preprocessor implements a robust
data dependence analysis to determine whether a loop is
inherently serial or parallel. In engineering a high-quality
optimizer, the designers specified the KAP software architecture
as a sequence of modular optimization passes. These passes are
designed to restructure the program to resolve many of the
apparent serializations that are artifacts of coding in Fortran
or C. End users can also annotate their DEC Fortran or DEC C
programs with directives or pragmas to guide KAP's decision
process. As an alternative to using KAP's automatic
parallelization capability, end users can explicitly identify
parallelism to KAP using the emerging industry-standard X3H5
directives.

INTRODUCTION

The KAP preprocessor developed by Kuck & Associates, Inc. (KAI)
is used on Digital Alpha systems to increase the performance of
DEC Fortran and DEC C programs. KAP accomplishes this by
restructuring fragments of code that are not efficient for the
Alpha architecture. Essentially a superoptimizer, KAP performs
optimizations at the source code level that augment those
performed by the DEC Fortran or DEC C compilers.[1]

To enhance the performance of DEC Fortran and DEC C programs on
Alpha systems, KAI engineers selected two challenging aspects of
the Alpha architecture as KAP targets: symmetric multiprocessing
(SMP) and cache memory. An additional design goal was to assist
the compiler in optimizing source code for the reduced
instruction set computer (RISC) instruction processing pipeline
and multiple functional units.

This paper discusses how the KAP preprocessor design was adapted
to parallelize programs for SMP systems running under the DEC

OSF/1 version 3.0 operating system. This version of the DEC OSF/1
system contains the DECthreads product, Digital's POSIX-compliant
multithreading library. The first part of the paper describes the
process of mapping parallel programs to DECthreads. The paper
then discusses the key techniques used in the KAP design.
Finally, the paper presents examples of how KAP performs on
actual code and mentions some remaining challenges. Readers with
a compiler background may wish to explore Optimizing
Supercompilers for Supercomputers for more details on KAP's
techniques.[2]

In this paper, the term directive is used interchangeably to mean
directive, when referring to DEC Fortran programs, and pragma,
when referring to DEC C programs. The term processor generally
represents the system component used in parallel processing. In
discussions in which it is significant to distinguish the
operating system component used for parallel processing, the term
thread is used.

THE PARALLELISM MAPPING PROCESS

Figure 1 shows the input modes and major phases of the
compilation process. Parallelism is represented at three levels
in programs using the KAP preprocessor on an Alpha SMP system.
The first two are input to the KAP preprocessor; the third is the
representation of parallelism that KAP generates. The three
levels of parallelism are

 1. Implicit parallelism. Starting from DEC Fortran or DEC C
 programs, KAP automatically detects parallelism.

 2. Explicit high-level parallelism. As an advanced feature,
 users can provide any of three forms: KAP guiding
 directives, KAP assertions, or X3H5 directives. KAP
 guiding directives give KAP hints on which program
 constructs to parallelize. KAP assertions are used to
 convey information about the program that cannot be
 described in the DEC Fortran or DEC C language. This
 information can sometimes be used by KAP to optimize the
 program. Using X3H5 directives, the user can force KAP to
 parallelize the program in a certain way.[3]

 3. Explicit low-level parallelism. KAP translates either of
 the above forms to DECthreads with the help of an SMP
 support library. (The user could specify parallelism
 directly, using DECthreads; however, KAP does not perform
 any optimization of source code with DECthreads.
 Therefore, the user should not mix this form of
 parallelism with the others.)

Figure 1 Parallelism Mapping Process

+----------------------+
+---+
| IMPLICIT PARALLELISM | | EXPLICIT HIGH-LEVEL PARALLELISM
|
| +------------------+ | | +-------------+ +----------------+
+---------------+|
| | ORDINARY DEC | | | | KAP GUIDING | | KAP ASSERTIONS | |X3H5
DIRECTIVES||
| | FORTRAN OR | | | | DIRECTIVES | | | |
||
| | DEC C PROGRAM | | | +------+------+ +--------+-------+
+-------+-------+|
| +----------+-------+ | | | | |
|
+------------|---------+
+--------|-----------------|-----------------|--------+
 | | | |
+------------|--------------------|-----------------|-----------------|-------
-+
| | | | |
|
| +--------V-------+ | | |
|
| | SCANNERS | | | |
|
| +--------+-------+ | | |
|
| | | | |
|
| +--------V-------+ | | |
|
| | KAP SCALAR |<-----------+-----+ | |
|
| | OPTIMIZATIONS | | | | |
|
| +--------+-------+ | | +-------V--------+ |
|
| | | +---| DEPENDENCE | |
|
| +--------V-------+ | +---| ANALYSIS | |
|
| | KAP PARALLELISM|<-----------+ | +----------------+ |
|
| | DETECTION AND | | |
|
| | OPTIMIZATION |<-----------------+ |
|
| +--------+-------+ |
|
| | |

|
| +--------V-------+ |
|
| | KAP PARALLELISM|<---+
|
| | TRANSLATION |
|
| +--------+-------+ KAP PREPROCESSOR
|
+------------|--
-+
 +--+
+---------------V----------------+
| EXPLICIT LOW-LEVEL PARALLELISM |
| +---------------+ |
	KAP-OPTIMIZED	
	FORTRAN OR	
	C OUTPUT FILE	
+-------+-------+		
+---------------|----------------+
 |
 +-------V-------+
 | DEC FORTRAN |
 | OR DEC C |
 | COMPILER |
 +-------+-------+
 |
 +-------V-------+ +-----------------+
 | APPLICATION | | KAP SMP SUPPORT |
 | LIBRARY | | LIBRARY |
 +-------+-------+ +--------+--------+
 | |
 +-------V------------------V--------+
 | DEC OSF/1 V3.0 OPERATING SYSTEM |
 | WITH DECTHREADS |
 +-----------------------------------+

Because the user can employ parallelism at any of the three
levels, a discussion of the trade-offs involved with using each
level follows.

From DEC Fortran or DEC C Programs

The KAP preprocessor accepts DEC Fortran and DEC C programs as input. Although
starting with such programs requires the compilers to intelligently utilize a
high-performance SMP system, there are several reasons why this is a natural
point at which to start.

 o Lots of software. Since DEC Fortran and DEC C are de
 facto standards, there exists a large base of
 applications that can be parallelized relatively easily
 and inexpensively.

 o Ease of use. Given the high rate at which hardware costs
 are decreasing, every workstation may soon have multiple
 processors. At that point, it will be critical that
 programming a multiprocessor be as easy as programming a
 single processor.

 o Portability. Many software developers with access to a
 multiprocessor already work in a heterogeneous networking
 environment. Some systems in such an environment do not
 support explicit forms of parallelism (either X3H5 or
 DECthreads). The developers would probably like to have
 one version of their code that runs well on all their
 systems, whether uniprocessor or multiprocessor, and
 using DECthreads would cause their uniprocessors to slow
 down.

 o Maintainability. Using an intricate programming model of
 parallelism such as X3H5 or DECthreads makes it more
 difficult to maintain the software.

KAP produces KAP-optimized DEC Fortran or DEC C as output. This
fact is important for the following reasons:

 o Performance. Users can leverage optimizations from both
 Digital's compilers and KAP.

 o Integration. Users can employ all of Digital's
 performance tools.

 o Ease of use. Expert users like to "tweak" the output of
 KAP to fine-tune the optimizations performed.

With KAP Guiding Directives, KAP Assertions, or X3H5 Directives

Although the automatic detection of parallelism is frequently
within the range of KAP capabilities on SMP systems, in some
cases, as described below, users may wish to specify the
parallelism.

 o In the SMP environment, coarse-grained parallelism is
 sometimes important. The higher in the call tree of a
 program a preprocessor (or compiler, as well) operates,
 the more difficult it is for a preprocessor to
 parallelize automatically. Even though the KAP
 preprocessor performs both inlining and interprocedural
 analysis, the higher in the call tree KAP operates, the
 more likely it is that KAP will conservatively assume
 that the parallelization is invalid.

 o Sometimes information that is available only at run time
 precludes the preprocessor from automatically finding
 parallelism.

 o Occasionally, experts can fine-tune the parallelism to
 get the highest efficiency for programs that are run
 frequently.

 o For software that is more portable between systems, it is
 sometimes important to get repeatable parallel
 performance or to indicate where parallelism has been
 applied. In such cases, explicit parallelism may be
 preferable.

Three mechanisms are available to the user for directing KAP to
parallelism. The first mechanism uses KAP guiding directives to
guide KAP to the preferred way to parallelize the program. The
second mechanism uses KAP assertions. The third mechanism uses
X3H5-compliant directives to directly describe the parallelism.
The first two mechanisms differ significantly from the third.
With the first two, KAP analyzes the program for the feasibility
of parallelism. With the third, KAP assumes that parallelism is
feasible and restricts itself to managing the details of
implementing parallelism. In particular, the user does not have
to be concerned with either the scoping of variables across
processors, i.e., designating which are private and which are
shared, or the synchronization of accesses to shared
variables.[4] KAP guiding directives will not be discussed in
this paper. KAP assertions and how they are implemented are
discussed later in the section Advanced Ways to Affect
Dependences. A description of the X3H5 directives follows.

The X3H5 model of parallelism is well structured; all operations
have a begin operation--end operation format. The parallel region
construct identifies the fork and join points for parallel
processing. Parallel loops identify units of work to be
distributed to the available processors. The critical section and
one processor section constructs are used to synchronize
processors where necessary. Table 1 shows the X3H5 directives as
implemented in KAP.

Table 1 X3H5 Directives As Implemented in KAP

Function X3H5 Directives

To specify regions of parallel execution C*KAP* PARALLEL REGION
 C*KAP* END PARALLEL REGION

To specify parallel loops C*KAP* PARALLEL DO
 C*KAP* END PARALLEL DO

To specify synchronized sections of code C*KAP* BARRIER
such that all processors synchronize

To specify that all processors execute C*KAP* CRITICAL SECTION
sequentially C*KAP* END CRITICAL SECTION

To specify that only the first processor C*KAP* ONE PROCESSOR SECTION
executes C*KAP* END ONE PROCESSOR SECTION

To the DEC OSF/1 Operating System with DECthreads

Although KAP does not optimize programs that use DECthreads directly, there
may be some benefits to specifying parallelism explicitly using DECthreads.

 o DECthreads allows a user to construct almost any model of
 parallel processing fairly efficiently. The high-level
 approaches described above are limited to loop-structured
 parallel processing. Some applications obtain more
 parallelism by using an unstructured model. It can even
 be argued that for some cases, unstructured parallelism
 is easier to understand and maintain.

 o A user who invests the time to analyze exactly where
 parallelism exists in a program may wish to forego the
 benefits mentioned above and to capture the parallelism
 in detail with DECthreads. In that manner, no efficiency
 is lost because the preprocessor misses an optimization.

 o The POSIX threads standard to which DECthreads conforms
 is available on several platforms. Because this standard
 is broadly adopted and language independent, it is only
 slightly less portable than implicit parallelism.

The KAP preprocessor translates a program in which KAP has
detected implicit parallelism or a program in which the user
explicitly directs parallelism to DECthreads. KAP performs this
translation in two steps. First, it translates the internal
representation into calls to a parallel SMP support library.
Second, the support library makes calls to DECthreads.

The SMP support library implements various aspects of X3H5
notation, as can be seen by comparing Tables 1 and 2.

Table 2 KAP SMP Support Library

C Entry Point Name Fortran Function OSF/1 DECthreads
 Name Subroutines Used

__kmp_enter_csec mppecs To enter a critical section pthread_mutex_lock

__kmp_exit_csec mppxcs To exit a critical section
pthread_mutex_unlock

__kmp_fork mppfrk To fork to several threads
pthread_attr_create,
 pthread_create

__kmp_fork_active mppfkd To inquire if already (none)
 parallel

__kmp_end mppend To join threads pthread_join,
 thread_detach

__kmp_enter_onepsec mppbop To enter a single processor pthread_mutex_lock,
 section

pthread_mutex_unlock

__kmp_exit_onepsec mppeop To exit a single processor pthread_mutex_lock,
 section

pthread_mutex_unlock

__kmp_barrier mppbar To execute a barrier wait pthread_mutex_lock,
 pthread_cond_wait,

pthread_mutex_unlock

In the parallelism translation phase, KAP significantly
restructures a program by moving the code in a parallel region to
a separate subroutine. A call to the SMP support library replaces
the parallel region. This call references the new subroutine. KAP
examines the scope of each variable used in the parallel region
and, if possible, converts each variable to a local variable of
the new subroutine. Otherwise, the variable becomes an argument
to the subroutine so that it can be passed back out of the
parallel region.

Converting variables to local variables makes accessing these
variables more efficient. A variable that is referenced outside
the parallel region cannot be made local and must be passed as an
argument.

Shared Memory Multiprocessor Architecture Concerns

Given its parallelism model, the KAP preprocessor requires
operating system and hardware support from the system for
efficient parallel execution. There are three areas of concern:
thread creation and scheduling, synchronization between threads,
and data caching and system bus bandwidth.

Thread Creation and Scheduling. Thread creation is the most
expensive operation. The X3H5 standard minimizes the need for
creating threads through the use of parallel regions. The SMP
support library goes further by reusing threads from one parallel
region to the next. The SMP support library examines the value of
an environment variable to determine how many threads to use. The
appropriate scheduling of threads onto hardware processors is
extremely important for efficient execution. The support library
relies on the DECthreads implementation to achieve this. For the
most efficient operation, the library should schedule at most one
thread per processor.

Synchronization between Threads. In the KAP model of
parallelism, threads can synchronize at

 o A point where loop iterations are scheduled

 o A point where data passes between iterations (for
 collection of local reduction variables only)

 o A barrier point leaving a work-sharing construct

 o Single processor sections

Two versions of the SMP support library have been developed: one

with spin locks for a single-user environment and the second with
mutex locks for a multiuser environment. Either library works in
either environment; however, using the spin lock version in a
single-user environment yields the most efficient parallelism.

Using spin locks in a multiuser environment may waste processor
cycles when there are other users who could use them. Using mutex
locks for a single-user environment creates unnecessary operating
system overhead. In practice, however, a system may shift from
single-user to multiuser and back again in the course of a single
run of a large program. Therefore, KAP supports all
lock-environment combinations.

Data Caching and System Bus Bandwidth. Multiprocessor Alpha
systems support coherent caches between processors.[5] To use
these caches efficiently, as a policy, KAP localizes data as much
as possible, keeping repeated references within the same
processor. Localizing data reduces the load on the system bus and
reduces the chances of cache thrashing.

When all the processors simultaneously request data from the
memory, system bus bandwidth can limit SMP performance. If
optimizations enhance cache locality, less system bus bandwidth
is used, and therefore SMP performance is less likely to be
limited.

KAP TECHNOLOGY

This section covers the issues of data dependence analysis,
preprocessor architecture, and the selection of loops to
parallelize.

Data Dependence Analysis---The Kernel of Parallelism Detection

DEC Fortran and DEC C have standard rules for the order of
execution of statements and expressions. These rules are based on
a serial model of program execution. Data dependence analysis
allows a compiler to see where this serial order of execution can
be modified without changing the meaning of the program.

Types of Dependence. KAP works with the four basic types of
dependence:[6]

 1. Flow dependence, i.e., when a program writes a variable
 before it reads the variable

 2. Antidependence, i.e., when a program reads a variable
 before it writes the variable

 3. Output dependence, i.e., when a program writes the same

 variable twice

 4. Control dependence, i.e., when a program statement
 depends on a previous conditional

Because dependences involve two actions on the same variable, for
example, a write and then a read, KAP uses the term dependence
arc to represent information flow, in this example from the write
to the read.

Since these dependences can prevent parallelization, KAP uses
various optimizations to eliminate the different dependences. For
example, an optimization called scalar renaming removes some but
not all antidependences.

Loop-related Dependences. When dependences occur within a loop,
the control flow relations are captured with direction vector
symbols tagged to each dependence arc.[2] The transformations
that can be applied to a loop depend on what dependence direction
vectors exist for that loop. The symbols used in KAP and their
meanings are

 = The dependence occurs within the same loop iteration.

 > The dependence crosses one or several iterations.

 < The dependence goes to a preceding iteration of the loop.

 * The dependence relation between iterations is not clear.

or a combination of the above, for example,

 <> The dependence is known not to be on the same iteration.

When a dependence occurs in a nested loop, KAP uses one symbol
for each level in the loop nest. A dependence is said to be
carried by a loop if the corresponding direction vector symbol
for that loop includes <, >, or *.

In the following program segment

 1 for (i=1; i<=n; i++) {
 2 temp = a[i];
 3 a[i] = b[i];
 4 b[i] = temp; }

there is a flow dependence from statement 2 to statement 4.
There is an antidependence from statement 2 to statement 3 and
from statement 3 to statement 4. There are control dependences
from statement 1 to statements 2, 3, and 4 because executing 2,
3, and 4 depends on the i<=n condition. All these dependences are
on the same loop iteration; their direction vector is =.

Some dependences in this program cross loop iterations. Because
temp is reused on each iteration, there is an output dependence
from statement 2 to statement 2, and there is an antidependence
from statement 4 to statement 2. These two dependences are
carried by the loop in the program segment and have the direction
vector >.

Data Dependence Analysis. The purpose of dependence analysis is
to build a dependence graph, i.e., the collection of all the
dependence arcs in the program. KAP builds the dependence graph
in two stages. First, it builds the best possible conservative
dependence graph.[7] Then, it applies filters that identify and
remove dependences that are known to be conservative, based on
special circumstances.

What does the phrase "best possible conservative dependence
graph" mean? Because the values of a program's variables are not
known at preprocessing time, in some situations it may not be
clear whether a dependence actually exists. KAP reflects this
situation in terms of assumed dependences based on imperfect
information. Therefore, a dependence graph must be conservative
so that KAP does not optimize a program incorrectly. On the other
hand, a dependence graph that is too conservative results in
insufficient optimization.

In building the best possible dependence graph, KAP uses the
following optimizations: constant propagation, variable forward
substitution, and scalar expansion. KAP does not, however, leave
the program optimized in this manner unless the optimizations
will improve performance.

Advanced Ways to Affect Dependences. When there are assumed
dependences in the program, KAP may not have enough information
to decide on parallelism opportunities. KAP implements two
techniques to mitigate the effects of imperfect information at
preprocessing time: assertions and alternate code sequences.

Assertions, which are similar to directives in syntax, are used
to provide information not otherwise known at preprocessing time.
KAP supports many assertions that have the effect of removing
assumed dependences. Table 3 shows KAP assertions and their
effects.[8,9] When the user specifies an assertion, the
information contained in the assertion is saved by a data
abstraction called the oracle. When an optimization requests that
a data dependence graph be built for a loop, the dependence
analyzer inquires whether the oracle has any information about
certain arcs that it wants to remove.

Table 3 KAP Assertions

Assertion Specifiers Primary Effect

[NO] ARGUMENT ALIASING Removes assumed dependence arcs

[NO] BOUNDS VIOLATIONS Removes assumed dependence arcs

CONCURRENT CALL Removes assumed dependence arcs

DO (<specifier>) SERIAL, CONCURRENT Guides selection of loop order
 strongly

DO PREFER SERIAL, CONCURRENT Guides selection of loop order
(<specifier>) loosely

[NO] EQUIVALENCE Removes assumed dependence arcs
HAZARD (Fortran only)

[NO] LAST VALUE Variable names for Tunes the parallel code and
NEEDED (<specifier>) which [no] last sometimes removes assumed

 value is needed dependences

PERMUTATION Names of permutation Removes assumed dependence arcs
(<specifier>) variables

NO RECURRENCE Names of recurrence Removes assumed dependence arcs
(<specifier>) variables

RELATION(<specifier>) Relation loop index Removes assumed dependence arcs

 known to be true
NO SYNC Tunes the parallel code which

 is produced

When accurate information is not known at compile time, a few KAP
optimizations generate two versions of the source program loop:
one assumes that the assumed dependence exists; the other assumes
that it does not exist. In the latter case, KAP can apply
subsequent optimizations, such as parallelizing the loop. KAP
applies the two-version loop optimizations selectively to avoid
dramatically increasing the size of the program. However, the
payback of parallelizing a frequently executed loop warrants
their use.

For example, the KAP C pointer disambiguation optimization is
employed in cases in which C pointers are used as a base address
and then incremented in a loop. Neither the base address of a
pointer nor how many times the pointer will be incremented is
usually known at compile time. At run time, however, they can be
computed in terms of a loop index. KAP generates code that checks
the range of the pointer references at the tail and at the head
of a dependence. If the two ranges do not overlap, the dependence
does not exist and the optimized code is executed.

KAP Preprocessor Architecture

A controversial control architecture decision in KAP is to
organize the preprocessor as a sequence of passes, generally one
for each optimization performed. This design decision was
controversial because of the following concerns:

 o Run-time inefficiency would occur in processing programs
 because each pass would sweep through the intermediate
 representation for the program being processed, causing
 some amount of virtual memory thrashing.

 o Added software development cost would be incurred because
 the KAP code that loops through the intermediate
 representation would be repeated in each pass.

The second concern has been dispelled. The added modularity of
KAP, provided by its multipass structure, has saved development
time as KAP has grown from a moderately complex piece of code to
an extremely complex piece of code.

The KAP preprocessor uses more than 50 major optimizations. The
pass structure has helped to organize them. In some cases, such
as cache management, one optimization is broken into several
passes. KAP performs some basic optimizations, e.g., deadcode
elimination, more than once in different ways. In some cases,
such as scalar expansion, KAP performs an optimization to uncover
other optimizations and then performs the reverse optimization to
tighten up the program again.

The run-time efficiency issue is still of interest. There is
always some benefit to making the preprocessor smaller and
faster.

Selecting Loops to Parallelize

Parallelizing a loop can greatly enhance the performance of the
program. Testing whether a loop can be parallelized is actually
quite simple, given the data dependence analysis that KAP
performs. A loop can be parallelized if there are no dependence
arcs carried by that loop. The situation, however, can be more
complicated. If the program contains several nested loops, it is
important to pick the best loop to parallelize. Additionally, it
may be possible not only to parallelize the loop but also to
optimize the loop to enhance its performance. Moreover, the loops
in a program can be nested in very complex structures so that
there are many different ways to parallelize the same program. In
fact, the best option may be to leave all the loops serial
because the overhead of parallel execution may outweigh the
performance improvement of using multiple processors.

The KAP preprocessor optimizes programs for parallelism by
searching for the optimum program in a set of possible
configurations, i.e., ways in which the original program can be
transformed for parallel execution. (In this regard, KAP
optimizes programs from a classical definition of numerical
optimization.) There is an objective function for evaluating each
configuration. Each member of the set of configurations is called
a loop order. The optimum program is the loop order whose
objective function has the highest performance score, as
discussed later in this section.

Descriptions of loop orders, the role of dependence analysis, and
the objective function, i.e., how each program is scored, follow.

Loop Orders. A loop order is a combination of loop
transformations that the KAP preprocessor has performed on the
program. The loop transformations that KAP performs while
searching for the optimal parallel form are

 o Loop distribution

 o Loop fusion

 o Loop interchange

Loop distribution splits a loop into two or more loops. Loop
fusion merges two loops. Loop fusion is used to combine loops to
increase the size of the parallel tasks and to reduce loop
overhead.

Loop interchange occurs between a pair of loops. This

transformation takes the inner loop outside the outer loop,
reversing their relation. If a loop is triply nested, there are
three factorial (3!), i.e., six, different ways to interchange
the loops. Each order is arrived at by a sequence of pairwise
interchanges.

To increase the opportunities to interchange loops, KAP tries to
make a loop nest into one that is perfectly nested. This means
that there are no executable statements between nested loop
statements. Loop distribution is used to create perfectly nested
loops.

KAP examines all possible loop orders for each loop nest. Each
loop nest is treated independently because no transformations
between loop nests occur at this phase of optimization.

For example, an LU factorization program consists of one
loop nest that is three deep and not perfectly nested. Figure 2
shows the loop orders. Loop order (a) is the original LU program.
The KAP preprocessor first distributes the outer loop in loop
orders (b) and (c). Next, KAP performs a loop interchange on the
second loop nest which is two deep, as shown in loop order (d).
Then, KAP interchanges the third loop nest in loop orders (e)
through (i). Note that KAP eliminates some loop orders, (i) for
example, when the loop-bound expressions cannot be interchanged.
As explained above, there are six different loop orders because
the nest is triply nested. Since the loop nest in (d) was
originally nested with the triply nested loop at the outermost do
loop, KAP will reexamine these six loop orders after the
interchange in (d).

Figure 2 Loop Orders for LU Factorization

+-----------------------------+ +-------------------------------+
(a) ORIGINAL LU (OUTLINED):		(b) DISTRIBUTED do i LOOP:
do i=1,n		do i=1,n
/*Invert Eliminator*/		/*Invert Eliminator*/
...		enddo
do k=i+1,n		do i=1,n
/*Compute Multipliers*/		do k=i+1,n
... +-->	/*Compute Multipliers*/	
enddo		enddo
do j=i+1,n		do j=i+1,n
do k=i+1,n		do k=i+1,n
/*Update Matrix*/		/*Update Matrix*/
...		enddo
enddo		enddo
enddo		enddo
enddo		
+-----------------------------+ +---------------+---------------+
 |
+-----------------------------+ +---------------V---------------+
(d) FOR 2ND NEST INTERCHANGE		(c) DISTRIBUTE do i LOOP AGAIN:
2ND do i LOOP:		do i=1,n
do k=1,n	-->	/*Invert Eliminator*/
do i=1,k-1		do i=1,n
/*Compute Multipliers*/		do k=i+1,n
...		/*Compute Multipliers*/
+-------+--------------+------+ |do i=1,n |
 | | | do j=i+1,n |
 +----V--------------V---+ | do k=i+1,n |
 | REEXAMINE LOOP ORDERS | | /*Update Matrix*/ |
 | (e) THROUGH (i) | | ... |
 +-----------------------+ +--+---------------+------------+
 | |
 +---------------------------V-+ +-----------V-----------------+
 |(e) FOR 3RD NEST INTERCHANGE | |(g) FOR 3RD NEST INTERCHANGE |
 | do i AND do j: | | do j AND do k: |
 |do j=1,n | |do i=1,n |
 | do i=1,j-1 | | do k=i+1,n |
 | do k=i+1,n | | do j=i+1,n |
 | /*Update Matrix*/ | | /*Update Matrix*/ |
 | ... | | ... |
 +-------+---------------------+ +-----------+-----------------+
 | |
+----------------V------------+ +-----------V-----------------+
(f) FOR 3RD NEST INTERCHANGE		(h) FOR 3RD NEST INTERCHANGE
do i AND do k:		do i AND do k:
Loop Order Rejected --		do k=1,n
New bounds split loop.		do i=1,k-1
do j=1,n		do j=i+1,n
do k=2,j		/*Update Matrix*/
do i=1,k-1		...
/*Update Matrix*/	+--------+--------------------+	

| do k=j,n | |
| do i=1,j-1 | +-----------V-----------------+
| /*Update Matrix*/| |(i) FOR 3RD NEST INTERCHANGE |
| ... | | do i AND do j: |
+-----------------------------+ |Loop Order Rejected -- |
 |New bounds split loop. |
 |do k=1,n |
 | do j=2,k |
 | do i=1,k-1 |
 | /*Update Matrix*/ |
 | do j=k,n |
 | do i=1,k-1 |
 | /*Update Matrix*/ |
 | ... |
 +-----------------------------+

Dependence Analysis for Loop Orders. Before a loop order can be
evaluated for efficiency, KAP determines the validity of the loop
order. A loop order is valid if the resulting program would
produce equivalent behavior. KAP tests validity by examining the
dependences in the dependence graph according to the
transformation being applied.

For example, the test for loop interchange validity involves
searching for dependence direction vectors of a certain type. The
direction vector (<,>) indicates that a loop interchange is
invalid. The direction vectors (<,*), (*,>), or (*,*), if
present, also indicate that the loop interchange may be invalid.

Evaluation of a Loop Order. After the KAP preprocessor
determines that a loop order is valid, it scores the loop order
for performance. KAP considers two major factors: (1) the amount
of work that will be performed in parallel and (2) the memory
reference efficiency.

The memory reference efficiency of a loop order can degrade
performance so much that it outweighs the performance gained by
executing a loop in parallel. On an SMP, if a processor
references one word on a cache line, it should reference all the
words contiguously on that line. In Fortran, a two-dimensional
array reference, A(i,j), should be parallelized so that the j
loop is parallel and each processor references contiguous columns
of memory. If a loop order indicated that the i loop is parallel,
this reference would score low. If a loop order indicated that
the j loop is parallel, it would score high. The score for the
loop order is the sum of the scores for all the references, and
the highest-scoring loop order is preferred.

The score for a loop order depends on which loops in the order
can be parallelized. For a given loop nest, there may be several
(or no) loops that can be parallelized. The first step is to
determine if any loops can be parallelized. If multiple loops can
be parallelized, KAP selects the best one. KAP chooses at most
one loop for parallel execution.

KAP tests loops to determine whether they can be executed in
parallel by analyzing both the statements in the loop and the
dependence graph. The loop may contain certain statements that
block concurrentization. I/O statements or a call to a function
or subroutine are examples. (Users can code KAP assertions to
flag these statements as parallelizable.) Second, data dependence
conditions may preclude parallelization. In general, a loop that
carries a dependence is not parallelizable. (In some cases, the
user may override the data dependence condition by allowing
synchronization between loop iterations.) Finally, the user may
give assertions that indicate a preference for making a loop
parallel or for keeping it serial.

Barring data dependence conditions that would prevent
parallelization, the amount of work that will be performed in
parallel determines the score of parallelizing a loop. (The user
can also specify with a directive that loops should not be
parallelized unless they score greater than a specified value.)
In this manner, KAP prefers to parallelize outer loops or loops
that are interchanged to the outside because they contain the
most work to amortize the overhead of creating threads for
parallelism.

The actual parallelization process is even more complex than this
discussion indicates. KAP applies a number of optimizations to
improve the quality of the parallel code. If there is a reduction
operation across a loop, KAP parallelizes the loop. Too much loop
distribution can decrease program efficiency, so loop fusion is
run to try to coalesce loops.

PERFORMANCE ANALYSIS

How does the KAP preprocessor perform on real applications? The
answer is as complex as the software written for these
applications. Consider the real-world example, DYNA3D, which
demonstrates some KAP strengths and weaknesses.

DYNA3D is nonlinear structural dynamics code that uses the finite
element analysis method. The code was developed by the Lawrence
Livermore National Laboratory Methods Development Group and has
been used extensively for a broad range of structural analysis
problems. DYNA3D contains about 70,000 lines of Fortran code in
more than 700 subroutines.

When KAP is being used on a large program, it is sometimes
preferable to concentrate on the compute-intensive kernels. For
example, KAP developers ran six of the standard benchmarks for
DYNA3D through a performance profiling tool and isolated two
groups of three subroutines that account for approximately 75
percent of the run time in these cases. This data is shown in
Table 4.

Table 4 Performance Profiles of Six DYNA3D Problems

Problem Profile (First Two Initials of the Key Call
 Subroutine and Percent of Run Time) Sequences*

NIKE2D ST 19%, FO 15%, FE 12%, PR 10%, HG 7%, HR 5% (a) and (b)
Example

Cylinder Drop ST 20%, FO 15%, FE 11%, PR 10%, HG 7%, HR 5% (a) and (b)

Bar Impact WR 17%, ST 7%, FE 6% None of
interest

Impacted Plate SH 22%, TN 16%, TA 16%, YH 14%, BL 7% (c)

Single Contact YH 24%, SH 21%, TN 7%, TA 7%, BL 6% (c)

Clamped Beam EL 12%, SH 12%, TN 8%, TA 8%, BL 6% (c)

*Call Sequences

(a) ST is called; ST calls PR; and then FE is called.
(b) HR is called; HR calls HG; and then FO is called.
(c) BL calls SH, then TA, and then TN.

KAP's performance on some of these key subroutines appears in
Table 5. KAP parallelized all the loops in these subroutines.
Since DYNA3D was designed for a CRAY-1 vector processor, it is
perhaps to be expected that the KAP preprocessor would perform
well. KAP, however, is intended for a shared memory
multiprocessor rather than for a vector machine. For this reason,
KAP does more than parallelize the loops. The entries in the
column labeled "Number of Loops after Fusion" show how KAP
reduced loop overhead by fusing as many loops together as it
could. KAP fused the five loops in subroutine STRAIN into three
loops and fused all nine loops in subroutine PRTAL.

Table 5 KAP's Performance on Key Subroutines

Subroutine Number of Number of Loops Maximum Number of
Loops

 Loops Parallelized Nest Depth after Fusion

STRAIN 5 5 1 3
PRTAL 9 9 1 1
FELEN 6 6 1 1
FORCE 9 9 2 2
HRGMD 5 5 1 3
HGX 4 4 1 1

Another example of KAP's optimization for an SMP system is that
in the doubly nested loop cases, such as subroutine FORCE (see
Figure 3), the KAP preprocessor automatically selects the outer
loop for parallel execution. In contrast, a vector machine such
as the CRAY-1 prefers the inner loop.

Figure 3 Parallel Loop Selection

 subroutine FORCE / OUTER LOOP PARALLIZED
 ... /
 do 60 n = 1,nnc <--------------+
 lcn = lczc + n + nh12 - 1
 i0 = ia(lnc)
 i1 = ia(lcn + 1) - 1
 cdir$ ivdep
 do 50 i = i0,i1
 e(1,ix(i)) =
 e(1,ix1(i)) + ep11(i)
 ...
 50 continue
 ...
 60 continue

Because the kernels of DYNA3D code span multiple subroutines,
cross compilation optimization is suggested. There are three ways
to do this: inlining, interprocedural analysis, and directives
specifying that the inner subroutines can be concurrentized.
Using KAP's inlining capability gives KAP the most freedom to
optimize the program because in this manner KAP can restructure
code across subroutines.

Figure 4 shows part of the call sequence of subroutine SOLDE.
(Subroutine SOLDE contains call sequence (b) of Table 4.)
Subroutine SOLDE calls subroutine HRGMD which calls subroutine
HGX. Then subroutine SOLDE calls subroutine FORCE. KAP supports
inlining to an arbitrary depth. Inlining in KAP can be automatic
or controlled from the command line. In this case, we did not
want to enable inlining automatically to depth two of subroutine
SOLDE because it contains calls to many other subroutines that
are not in the kernel. Here, the user specified the subroutines
to inline on the command line. When the user specified inlining,
KAP fused all the loops in subroutines HRGMD, HGX, and FORCE to
minimize loop overhead, and then it parallelized the fused loop.

Figure 4 Inlining a Kernel

 subroutine SOLDE
 ...
 call HRGMD <--------+
 subroutine HRGMD | WHOLE CALL
 ... | SEQUENCE
 call HGX <-------+ INLINED
 ... |
 call FORCE <--------+
 ...

In some cases, the user can make simple restructuring changes
that improve KAP's optimizations. Figure 5 shows a case in which
fusion was blocked by two scalar statements between a pair of
loops. The first loop does not assign any values to the variables
used to create these scalars, so the user can move the
assignments above the loop to enable KAP to fuse them.

Figure 5 Assisted Loop Fusion

 subroutine STRAIN subroutine STRAIN
 do 5 i = lft,llt MOVE UP +---> {dt1d2 = .5 * dt1
 ... STATEMENTS +---> {crho - .0625 * rho(lft)
 enddo | do 5 i = lft,llt
 dt1d2 = .5 * dt1} --------------+ ...
 crho = .0625 * rho(lft)} -------+ enddo
 do 6 i = lft,llt do 6 i = lft,llt

 enddo enddo

Finally, the user can elect to specify the parallelism directly.
Figure 6 shows subroutine STRAIN with X3H5 directives used to
describe the parallelism. In this case, the user elected to keep
the same unfused loop structure as in the original code. This
case is not dramatically less efficient than the fused version
because the parallel region causes KAP to fork threads only once.

Figure 6 X3H5 Explicit Parallelism

 subroutine STRAIN
 c*kap* parallel region
 c*kap*& shared(dxy,dyx,d1)
 c*kap*& local(i,dt1d2)
 c*kap* parallel do
 do 5 i = lft,llt
 dyx(i) = ...
 ALL c*kap* STATEMENTS 5 continue
 ARE X3H5 EXPLICIT c*kap* end parallel do
 PARALLEL DIRECIVES. c*kap* barrier
 dt1d2 = ...
 c*kap* parallel do
 do 6 i = lft,llt
 d1 = dt1d2 * (dxy(i) + dyx(i))
 6 continue
 c*kap* end parallel do
 c*kap* end parallel region

A very sophisticated example of KAP usage occurs when a user
inputs a program to KAP that has already been optimized by KAP.
This is an advantage of a preprocessor that does not apply to a
compiler because a preprocessor produces source code output. In
this case, the statements shown in Figure 6 were generated by KAP
to illustrate X3H5 parallelism. A user may want to perform some
hand optimization on this output, such as removing the barrier
statement, and then optimize the modified program with KAP again.

CHALLENGES THAT REMAIN

Although the KAP preprocessor is a robust tool that performs well
in a production software development environment, several
challenges remain. Among them are adding new languages, further
enhancing the optimization technology, and improving KAP's
everyday usability.

As the popular programming languages evolve, KAP evolves also.
KAI will soon extend KAP support for DEC Fortran to Fortran 90
and is developing C++ optimization capabilities.

In optimization technology, KAI's goal is to make an SMP server
as easy to use as a single-processor workstation is today.
"Automatic Detection of Parallelism: A Grand Challenge for
High-Performance Computing" contains a leading-edge analysis of
parallelization technology.[10] The research reported shows that
further developing current techniques can improve optimization
technology. These techniques frequently involve the grand
challenge of compiler optimization---whole program analysis.

In a much more pragmatic direction, the KAP preprocessor should
be integrated with Digital's compiler technology at the
intermediate representation level. Such integration would
increase processing efficiency because the compiler would not
have to reparse the source code. In addition, integration would
increase the coordination between KAP and the compiler to improve
performance for the end user.

Increasing the usability of the KAP preprocessor, however,
benefits the end user directly. KAP engineers frequently talk to
beta users and encourage feedback. The following are examples of
user comments:

 o Optimizing programs is difficult when no subroutine in
 the program takes more than a few percent of the run
 time. As its usability in this area improves, KAP will
 become a substantial productivity aid. If a program is
 generally slow, optimizing repeated usage patterns will
 allow the programmer to use a comfortable programming
 style and still expect peak system performance.

 o Increasing feedback to the user would improve KAP's
 usability. When KAP cannot perform an optimization, often
 the user can help in several ways (e.g., by providing
 more information at compile time, by changing the options
 or directives, or by making small changes to the source
 code). KAP does not always make it clear to the user what
 needs to be done. Providing such feedback would improve
 KAP's usability.

 o Integration with other performance tools would be useful.
 Alpha systems have a good set of performance monitoring
 tools that can provide clues about what to optimize in a
 program and how. The next release of the KAP preprocessor
 will provide some simple tools that a user can employ to
 integrate KAP with tools like prof and to track down
 performance differences.

On a final note, the fact that KAP does not speed up a program
should not always be cause for disappointment. Some programs
already run as fast as possible without the benefit of a KAP
preprocessor.

ACKNOWLEDGMENTS

We wish to acknowledge the Lawrence Livermore National Laboratory
Methods Development Group and other users for providing
applications that give us insight into how to improve the KAP
preprocessor. We would like to thank those at Digital who have
been instrumental in helping us deliver KAP on the DEC OSF/1
platform, especially Karen DeGregory, John Shakshober, Dwight
Manley, and Dave Velten. Everyone at Kuck & Associates
participated in the making of this product but of special note
are Mark Byler, Debbie Carr, Ken Crawford, Steve Healey, David
Nelson, and Sree Simhadri.

REFERENCES

 1. D. Blickstein et al., "The GEM Optimizing Compiler System,"
 Digital Technical Journal, vol. 4, no. 4 (Special Issue
 1992): 121-136.

 2. M. Wolfe, Optimizing Supercompilers for Supercomputers
 (Cambridge, MA: MIT Press, 1989).

 3. Parallel Processing Model for High Level Programming
 Languages, ANSI X3H5 Document Number X3H5/94-SD2, 1994.

 4. P. Tu and D. Padua, "Automatic Array Privatization,"
 Proceedings of the Sixth Workshop on Languages and Compilers
 for Parallel Computing, vol. 768 of Lecture Notes in Computer
 Science (New York: Springer-Verlag, 1993): 500-521.

 5. B. Maskas et al., "Design and Performance of the DEC 4000 AXP
 Departmental Server Computing System," Digital Technical
 Journal, vol. 4, no. 4 (Special Issue 1992): 82-99.

 6. R. Allen and K. Kennedy, "Automatic Translation of FORTRAN
 Programs to Vector Form," ACM Transactions on Programming
 Languages and Systems, vol. 9, no. 4 (October 1987): 491-542.

 7. U. Banerjee, Dependence Analysis for Supercomputing (Norwell,
 MA: Kluwer Academic Publishers, 1988).

 8. KAP for DEC Fortran for DEC OSF/1 AXP User Guide (Maynard,
 MA: Digital Equipment Corporation, 1994).

 9. KAP for C for DEC OSF/1 AXP User Guide (Maynard, MA: Digital
 Equipment Corporation, 1994).

10. W. Blume et al., "Automatic Detection of Parallelism: A Grand
 Challenge for High-Performance Computing," CSRD Report No.
 1348 (Urbana, IL: Center for Supercomputing Research and
 Development, University of Illinois at Urbana-Champaign,
 1994).

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
DEC, DEC Fortran, DEC OSF/1, DECthreads, and Digital.

CRAY-1 is a registered trademark of Cray Research, Inc.
KAP is a trademark of Kuck & Associates, Inc.

BIOGRAPHIES

Robert H. Kuhn Robert Kuhn joined Kuck & Associates as the
Director of Products in 1992. His functions are to formulate
technical business strategy and to manage product deliveries.
From 1987 to 1992, he worked at Alliant Computer Systems, where
he managed compiler development and application software for
parallel processing. Bob received his Ph.D. in computer science
from the University of Illinois at Champaign-Urbana in 1980. He
is the author of several technical publications and has
participated in organizing various technical conferences.

Sanjiv M. Shah Sanjiv Shah received a B.S. in computer science
and mathematics (1986) and an M.S. in computer science and
engineering (1988) from the University of Michigan. In 1988, he
joined Kuck & Associates' KAP development group as a research
programmer. He has since been involved in researching and
developing the KAP Fortran and C products and managing the KAP
development group. Currently, Sanjiv leads the research and
development for parallel KAP performance.

Bruce Leasure Bruce Leasure, one of three founders of Kuck &
Associates in 1979, serves as Vice President of Technology and is
the chief scientist for the company. As a charter member and
executive director of the Parallel Computing Forum (PCF), a
standards-setting consortium, he was a leader in efforts to
standardize basic forms of parallelism. The PCF subsequently
became the ANSI X3H5 committee for Parallel Program Constructs
for High-level Languages, which he chaired. Bruce received B.S.
and M.S. degrees in computer science from the University of
Illinois at Champaign-Urbana.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

