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ABSTRACT

The KAP preprocessor optimzes DEC Fortran and DEC C programs to
achi eve their best performance on Digital Al pha systens. One key
optim zation that KAP perforns is the parallelization of prograns
for Al pha shared nmenory nultiprocessors that use the new
capabilities of the DEC OSF/ 1 version 3.0 operating systemwith
DECt hreads. The heart of the optimizer is a sophisticated
deci si on process that selects the best loop to parallelize from
the many | oops in a program The preprocessor inplenments a robust
dat a dependence anal ysis to determ ne whether a loop is

i nherently serial or parallel. In engineering a high-quality
optim zer, the designers specified the KAP software architecture
as a sequence of nodul ar optim zati on passes. These passes are
designed to restructure the programto resolve many of the
apparent serializations that are artifacts of coding in Fortran
or C. End users can also annotate their DEC Fortran or DEC C
progranms with directives or pragms to gui de KAP' s deci sion
process. As an alternative to using KAP's autonmatic

paral lelization capability, end users can explicitly identify
parallelismto KAP using the energing industry-standard X3H5
directives.

| NTRODUCTI ON

The KAP preprocessor devel oped by Kuck & Associates, Inc. (KAl)
is used on Digital Al pha systens to increase the perfornmance of
DEC Fortran and DEC C prograns. KAP acconplishes this by
restructuring fragments of code that are not efficient for the
Al pha architecture. Essentially a superoptim zer, KAP perforns
optim zations at the source code |evel that augnent those
performed by the DEC Fortran or DEC C conpilers.[1]

To enhance the performance of DEC Fortran and DEC C prograns on

Al pha systenms, KAI engi neers selected two chall engi ng aspects of
the Al pha architecture as KAP targets: synmetric multiprocessing
(SMP) and cache nmenory. An additional design goal was to assist

the conpiler in optinizing source code for the reduced

i nstruction set conputer (RISC) instruction processing pipeline

and multiple functional units.

Thi s paper discusses how the KAP preprocessor design was adapted
to parallelize programs for SMP systens running under the DEC



OSF/ 1 version 3.0 operating system This version of the DEC OSF/ 1
system contai ns the DECt hreads product, Digital's POSI X-conpliant
mul tithreading library. The first part of the paper describes the
process of mapping parallel prograns to DECthreads. The paper
then di scusses the key techniques used in the KAP design

Finally, the paper presents exanpl es of how KAP perforns on
actual code and nentions sone renmining challenges. Readers with
a conpil er background may wi sh to explore Optim zing
Superconpil ers for Superconputers for nore details on KAP' s

t echni ques. [ 2]

In this paper, the termdirective is used interchangeably to nean
directive, when referring to DEC Fortran prograns, and pragng,
when referring to DEC C prograns. The term processor generally
represents the system conponent used in parallel processing. In

di scussions in which it is significant to distinguish the
operating system conmponent used for parallel processing, the term
thread is used.

THE PARALLELI SM MAPPI NG PROCESS

Figure 1 shows the input nodes and mmj or phases of the
conpilation process. Parallelismis represented at three | evels
in prograns using the KAP preprocessor on an Al pha SMP system
The first two are input to the KAP preprocessor; the third is the
representation of parallelismthat KAP generates. The three

| evel s of parallelismare

1. Inplicit parallelism Starting from DEC Fortran or DEC C
programnms, KAP automatically detects parallelism

2. Explicit high-level parallelism As an advanced feature,
users can provide any of three forns: KAP guiding
directives, KAP assertions, or X3H5 directives. KAP
gui ding directives give KAP hints on which program
constructs to parallelize. KAP assertions are used to
convey information about the programthat cannot be
described in the DEC Fortran or DEC C | anguage. This
i nformati on can sonetinmes be used by KAP to optinize the
program Using X3H5 directives, the user can force KAP to
parallelize the programin a certain way.|[ 3]

3. Explicit lowlevel parallelism KAP translates either of
the above forns to DECt hreads with the hel p of an SWP
support library. (The user could specify parallelism
directly, using DECthreads; however, KAP does not perform
any optim zation of source code w th DECthreads.
Therefore, the user should not mix this form of
parallelismw th the others.)



Figure 1 Paral | el i sm Mappi ng Process
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Because the user can enploy parallelismat any of the three
| evel s, a discussion of the trade-offs involved with using each
| evel follows.

From DEC Fortran or DEC C Prograns

The KAP preprocessor accepts DEC Fortran and DEC C prograns as input. Although
starting with such programs requires the conpilers to intelligently utilize a
hi gh- performance SMP system there are several reasons why this is a natura
point at which to start.

o] Lots of software. Since DEC Fortran and DEC C are de
facto standards, there exists a | arge base of
applications that can be parallelized relatively easily
and i nexpensively.



Ease of use. G ven the high rate at which hardware costs
are decreasing, every workstation nay soon have multiple
processors. At that point, it will be critical that
programm ng a multiprocessor be as easy as programrng a
si ngl e processor.

Portability. Many software devel opers with access to a
mul ti processor already work in a heterogeneous networKking
envi ronnent. Sonme systens in such an environnment do not
support explicit forns of parallelism (either X3H5 or
DECt hreads). The devel opers woul d probably like to have
one version of their code that runs well on all their
syst ens, whet her uniprocessor or nultiprocessor, and
usi ng DECt hreads woul d cause their uniprocessors to slow
down.

Mai ntai nability. Using an intricate programi ng nodel of
parallelismsuch as X3H5 or DECthreads nmekes it nore
difficult to maintain the software.

KAP produces KAP-optinized DEC Fortran or DEC C as output. This

fact

is inmportant for the follow ng reasons:

Performance. Users can | everage optim zations from both
Digital's conpilers and KAP

Integration. Users can enploy all of Digital's
performance tools.

Ease of use. Expert users like to "tweak" the output of
KAP to fine-tune the optim zations perforned.

Wth KAP CGuiding Directives, KAP Assertions, or X3H5 Directives

Al t hough the automatic detection of parallelismis frequently
within the range of KAP capabilities on SMP systens, in sone

cases,

as described bel ow, users may wish to specify the

parallelism

(0]

In the SMP environnment, coarse-grained parallelismis
sonmetines inportant. The higher in the call tree of a
program a preprocessor (or compiler, as well) operates,
the nore difficult it is for a preprocessor to
parallelize automatically. Even though the KAP
preprocessor perforns both inlining and interprocedura
anal ysis, the higher in the call tree KAP operates, the
nore likely it is that KAP will conservatively assune
that the parallelization is invalid.

Sonetinmes information that is available only at run tine
precl udes the preprocessor fromautomatically finding
parallelism



o] Occasionally, experts can fine-tune the parallelismto
get the highest efficiency for programs that are run
frequently.

o] For software that is nore portable between systens, it is
sonmetines inportant to get repeatable paralle
performance or to indicate where parallelismhas been
applied. In such cases, explicit parallelismmy be
preferabl e.

Three nechanisns are available to the user for directing KAP to
parallelism The first nechani smuses KAP guiding directives to
gui de KAP to the preferred way to parallelize the program The
second mechani sm uses KAP assertions. The third nechani sm uses
X3H5- conpliant directives to directly describe the parallelism
The first two nechanisns differ significantly fromthe third.
Wth the first two, KAP analyzes the programfor the feasibility
of parallelism Wth the third, KAP assunmes that parallelismis
feasible and restricts itself to managi ng the details of

i mpl ementing parallelism In particular, the user does not have
to be concerned with either the scoping of variables across

processors, i.e., designating which are private and which are
shared, or the synchronization of accesses to shared
variables.[4] KAP guiding directives will not be discussed in

this paper. KAP assertions and how they are inplemented are
di scussed later in the section Advanced Ways to Affect
Dependences. A description of the X3H5 directives foll ows.

The X3H5 nodel of parallelismis well structured; all operations
have a begin operation--end operation format. The parallel region
construct identifies the fork and join points for paralle
processing. Parallel |oops identify units of work to be
distributed to the avail able processors. The critical section and
one processor section constructs are used to synchronize
processors where necessary. Table 1 shows the X3H5 directives as
i mpl emented i n KAP



Table 1 X3H5 Directives As Inplenented i n KAP

Functi on

To specify regions of parallel execution

To specify parallel |oops

To specify synchroni zed sections of code

such that all processors synchronize

To specify that all processors execute
sequentially

To specify that only the first processor
execut es

X3H5 Directives

C KAP*
C KAP*

C KAP*
C KAP*

C KAP*

C KAP*

C KAP*

C KAP*
C KAP*

PARALLEL REG ON
END PARALLEL REG ON

PARALLEL DO
END PARALLEL DO

BARRI ER

CRI TI CAL SECTI ON

END CRI TI CAL SECTI ON

ONE PROCESSOR SECTI ON
END ONE PROCESSOR SECTI ON



To the DEC OSF/ 1 Operating System w th DECt hreads

Al t hough KAP does not optim ze prograns that use DECt hreads directly,

t here

may be sone benefits to specifying parallelismexplicitly using DECthreads.

o] DECt hreads all ows a user to construct al nobst any nodel of
parall el processing fairly efficiently. The high-Ieve
approaches descri bed above are limted to | oop-structured
paral l el processing. Sone applications obtain nore
parallelism by using an unstructured nodel. It can even
be argued that for sone cases, unstructured parallelism
is easier to understand and maintain.

o] A user who invests the tine to anal yze exactly where
parallelismexists in a programmy w sh to forego the
benefits nentioned above and to capture the parallelism
in detail with DECthreads. In that manner, no efficiency
is |lost because the preprocessor misses an optim zation

o] The POSI X threads standard to which DECt hreads conforns
is avail able on several platforns. Because this standard
is broadly adopted and | anguage i ndependent, it is only
slightly less portable than inplicit parallelism

The KAP preprocessor translates a programin which KAP has
detected inplicit parallelismor a programin which the user
explicitly directs parallelismto DECthreads. KAP perfornms this
translation in two steps. First, it translates the interna
representation into calls to a parallel SMP support library.
Second, the support l|ibrary nakes calls to DECthreads.

The SMP support library inplenents various aspects of X3H5
not ati on, as can be seen by conparing Tables 1 and 2.



Table 2 KAP SMP Support

C Entry Point

Name
__kmp_enter_csec nppecs
__knp_exit_csec Nppxcs

pt hr ead_mut ex_unl ock

__knmp_fork nppf rk
pthread_attr_create,

__knp_fork_active nppf kd
__knp_end nppend

__knp_enter_onepsec nppbop
pt hr ead_mut ex_unl ock
__knp_exit_onepsec nppeop

pt hr ead_mut ex_unl ock

__knp_barrier nppbar

pt hr ead_mut ex_unl ock

Name Fortran

Li brary

Functi on

To enter a critical section
To exit a critical section
To fork to several threads

To inquire if already
paral |l e

To join threads

To enter a single processor
section

To exit a single processor
section

To execute a barrier wait

OSF/ 1 DECt hr eads
Subr outi nes Used

pt hread_mut ex_I ock

pt hread_create
(none)

pt hread_j oi n,

t hread_det ach

pt hread_mut ex_I ock

pt hread_mut ex_I ock

pt hread_mut ex_I ock
pt hread_cond_wai t,



In the parallelismtranslation phase, KAP significantly
restructures a program by noving the code in a parallel region to
a separate subroutine. A call to the SMP support |ibrary replaces
the parallel region. This call references the new subroutine. KAP
exam nes the scope of each variable used in the parallel region
and, if possible, converts each variable to a |ocal variable of
the new subroutine. Otherw se, the variable beconmes an argunent
to the subroutine so that it can be passed back out of the
parall el region.

Converting variables to |ocal variables nmakes accessing these
variables nore efficient. A variable that is referenced outside
the parallel region cannot be made | ocal and nust be passed as an
argument .

Shared Menory Ml tiprocessor Architecture Concerns

G ven its parallelismnodel, the KAP preprocessor requires
operating system and hardware support fromthe system for

ef ficient parallel execution. There are three areas of concern:
thread creation and scheduling, synchronization between threads,
and data caching and system bus bandw dt h.

Thread Creation and Scheduling. Thread creation is the nost
expensi ve operation. The X3H5 standard m nim zes the need for
creating threads through the use of parallel regions. The SWP
support library goes further by reusing threads fromone paralle
region to the next. The SMP support |ibrary exam nes the val ue of
an environment variable to deternine how many threads to use. The
appropriate scheduling of threads onto hardware processors is
extrenely inportant for efficient execution. The support library
relies on the DECt hreads inplenentation to achieve this. For the
nost efficient operation, the |library should schedul e at npst one
t hread per processor.

Synchroni zati on between Threads. |In the KAP nodel of
parallelism threads can synchronize at
o] A point where loop iterations are schedul ed

o] A point where data passes between iterations (for
col l ection of local reduction variables only)

o] A barrier point |eaving a work-sharing construct
o] Si ngl e processor sections

Two versions of the SMP support library have been devel oped: one



with spin | ocks for a single-user environment and the second with
nmut ex | ocks for a nmultiuser environnment. Either library works in
ei ther environnment; however, using the spin lock version in a
si ngl e-user environment yields the nost efficient parallelism

Using spin locks in a nmultiuser environment nay waste processor
cycles when there are other users who could use them Using nutex
| ocks for a single-user environment creates unnecessary operating
system overhead. |In practice, however, a systemmy shift from
single-user to nmultiuser and back again in the course of a single
run of a large program Therefore, KAP supports al

| ock-envi ronment combi nati ons.

Dat a Cachi ng and System Bus Bandwi dth. Ml tiprocessor Al pha
systenms support coherent caches between processors.[5] To use
these caches efficiently, as a policy, KAP localizes data as much
as possible, keeping repeated references within the sane
processor. Localizing data reduces the |load on the system bus and
reduces the chances of cache thrashing.

When all the processors sinmultaneously request data fromthe
menory, system bus bandwi dth can limt SWMP performance. |f
optim zati ons enhance cache locality, |ess system bus bandwi dth
is used, and therefore SMP performance is less likely to be
[imted.

KAP TECHNOLOGY

This section covers the issues of data dependence anal ysis,
preprocessor architecture, and the selection of |oops to
parallelize

Dat a Dependence Anal ysis---The Kernel of ParallelismDetection

DEC Fortran and DEC C have standard rules for the order of
execution of statenents and expressions. These rules are based on
a serial nodel of program execution. Data dependence anal ysis
allows a conpiler to see where this serial order of execution can
be nmodified without changi ng the neani ng of the program

Types of Dependence. KAP works with the four basic types of
dependence: [ 6]

1. Flow dependence, i.e., when a programwites a variable
before it reads the variable

2. Antidependence, i.e., when a programreads a variable
before it wites the variable

3. Qutput dependence, i.e., when a programwites the sane



variable tw ce

4. Control dependence, i.e., when a program statenment
depends on a previous conditiona

Because dependences involve two actions on the sanme variable, for
exanple, a wite and then a read, KAP uses the term dependence
arc to represent information flow, in this exanple fromthe wite
to the read.

Si nce these dependences can prevent parallelization, KAP uses
various optim zations to elimnate the different dependences. For
exanpl e, an optim zation called scalar renam ng renoves sonme but
not all antidependences.

Loop-rel ated Dependences. When dependences occur within a | oop
the control flow relations are captured with direction vector
synmbol s tagged to each dependence arc.[2] The transformations
that can be applied to a | oop depend on what dependence direction
vectors exist for that |oop. The synbols used in KAP and their
nmeani ngs are

= The dependence occurs within the sane |oop iteration.

> The dependence crosses one or several iterations.

< The dependence goes to a preceding iteration of the | oop

* The dependence rel ati on between iterations is not clear
or a conbination of the above, for exanple,

<> The dependence is known not to be on the sane iteration.
When a dependence occurs in a nested | oop, KAP uses one synbol
for each level in the | oop nest. A dependence is said to be
carried by a loop if the corresponding direction vector synbol

for that | oop includes <, > or *.

In the foll ow ng program segnment

1 for (i=1; i<=n; i++) {
2 temp = a[i];

3 a[i] = b[i];

4 b{i] = temp; }

there is a fl ow dependence from statenent 2 to statenent 4.

There is an antidependence from statenent 2 to statenent 3 and
fromstatenent 3 to statenent 4. There are control dependences
fromstatenent 1 to statenents 2, 3, and 4 because executing 2,

3, and 4 depends on the i<=n condition. Al these dependences are
on the sane loop iteration; their direction vector is =



Some dependences in this programcross |loop iterations. Because
tenmp is reused on each iteration, there is an output dependence
fromstatenent 2 to statenment 2, and there is an anti dependence
fromstatenent 4 to statenment 2. These two dependences are
carried by the loop in the program segnment and have the direction
vector >.

Dat a Dependence Analysis. The purpose of dependence analysis is
to build a dependence graph, i.e., the collection of all the
dependence arcs in the program KAP builds the dependence graph
in two stages. First, it builds the best possible conservative
dependence graph.[7] Then, it applies filters that identify and
renove dependences that are known to be conservative, based on
speci al circunstances.

What does the phrase "best possible conservative dependence
graph" nean? Because the values of a program s variables are not
known at preprocessing tine, in sone situations it may not be

cl ear whet her a dependence actually exists. KAP reflects this
situation in terns of assuned dependences based on i nperfect

i nformati on. Therefore, a dependence graph nust be conservative
so that KAP does not optimze a programincorrectly. On the other
hand, a dependence graph that is too conservative results in

i nsufficient optimzation.

In building the best possible dependence graph, KAP uses the
following optim zations: constant propagation, variable forward
substitution, and scal ar expansi on. KAP does not, however, |eave
the programoptimzed in this manner unless the optim zations
wi |l inprove performance

Advanced Ways to Affect Dependences. When there are assuned
dependences in the program KAP nay not have enough i nfornmation
to decide on parallelismopportunities. KAP inplenments two
techniques to nitigate the effects of inperfect information at
preprocessing tinme: assertions and alternate code sequences.

Assertions, which are simlar to directives in syntax, are used
to provide information not otherwi se known at preprocessing tine.
KAP supports many assertions that have the effect of renoving
assunmed dependences. Table 3 shows KAP assertions and their
effects.[8,9] Wien the user specifies an assertion, the

i nformati on contained in the assertion is saved by a data
abstraction called the oracle. Wien an optim zation requests that
a data dependence graph be built for a |oop, the dependence

anal yzer inquires whether the oracle has any information about
certain arcs that it wants to renove.



Table 3 KAP Assertions

Assertion

[ NO ARCGUMENT ALI ASI NG

[ NO BOUNDS VI OLATI ONS

CONCURRENT CALL
DO (<specifier>)
DO PREFER
(<specifier>)

[NO| EQUI VALENCE
HAZARD

[NO LAST VALUE
NEEDED ( <speci fi er>)
PERMUTATI ON
(<specifier>)

NO RECURRENCE
(<specifier>)

RELATI ON( <speci fier>)

NO SYNC

Specifiers

SERI AL, CONCURRENT

SERI AL, CONCURRENT

Vari abl e names for
whi ch [no] | ast
val ue i s needed

Names of permutation
vari abl es

Names of
vari abl es

recurrence

Rel ati on | oop i ndex
known to be true

Primary Effect

Renmoves assuned dependence arcs
Renmoves assuned dependence arcs
Renmoves assuned dependence arcs
Gui des sel ection of |oop order
strongly

Gui des sel ection of |oop order

| oosel y

Renmoves assuned dependence arcs
(Fortran only)

Tunes the parallel code and
sonmeti nes renoves assuned
dependences

Renmoves assunmed dependence arcs

Renmoves assunmed dependence arcs

Renmoves assunmed dependence arcs

Tunes the parallel code which

i s produced



When accurate information is not known at conpile tine, a few KAP
optim zati ons generate two versions of the source program | oop
one assunes that the assunmed dependence exists; the other assunes
that it does not exist. In the latter case, KAP can apply
subsequent optim zations, such as parallelizing the |oop. KAP
applies the two-version | oop optim zations selectively to avoid
dramatically increasing the size of the program However, the
payback of parallelizing a frequently executed | oop warrants

t heir use.

For exanple, the KAP C pointer disanbiguation optimnization is
enpl oyed in cases in which C pointers are used as a base address
and then increnmented in a | oop. Neither the base address of a

poi nter nor how many tinmes the pointer will be increnmented is
usual ly known at conpile tinme. At run tine, however, they can be
conputed in ternms of a |oop index. KAP generates code that checks
the range of the pointer references at the tail and at the head
of a dependence. If the two ranges do not overlap, the dependence
does not exist and the optim zed code is executed.

KAP Preprocessor Architecture

A controversial control architecture decision in KAP is to
organi ze the preprocessor as a sequence of passes, generally one
for each optim zation performed. This design decision was
controversi al because of the foll ow ng concerns:

o] Run-time inefficiency would occur in processing prograns
because each pass woul d sweep through the internediate
representation for the program bei ng processed, causing
some anount of virtual nmenory thrashing.

o] Added software devel opnment cost woul d be incurred because
the KAP code that | oops through the internediate
representation would be repeated in each pass.

The second concern has been dispelled. The added nodul arity of
KAP, provided by its nultipass structure, has saved devel opnent
time as KAP has grown from a noderately conpl ex piece of code to
an extrenely conpl ex piece of code.

The KAP preprocessor uses nore than 50 najor optimzations. The
pass structure has hel ped to organize them In sone cases, such
as cache nmamnagenent, one optim zation is broken into severa
passes. KAP perforns sone basic optimzations, e.g., deadcode
elimnation, nore than once in different ways. In sone cases,
such as scal ar expansion, KAP perforns an optim zation to uncover
ot her optim zations and then perfornms the reverse optim zation to
tighten up the program again.



The run-tine efficiency issue is still of interest. There is
al ways sone benefit to meking the preprocessor smaller and
faster.

Sel ecting Loops to Parallelize

Parallelizing a |l oop can greatly enhance the performance of the
program Testing whether a | oop can be parallelized is actually
quite sinple, given the data dependence anal ysis that KAP
perfornms. A loop can be parallelized if there are no dependence
arcs carried by that |oop. The situation, however, can be nore
conplicated. If the program contains several nested |loops, it is
i mportant to pick the best |loop to parallelize. Additionally, it
may be possible not only to parallelize the |oop but also to
optim ze the | oop to enhance its performnce. Mreover, the | oops
in a program can be nested in very conplex structures so that
there are many different ways to parallelize the same program In
fact, the best option nmay be to |l eave all the |oops seria

because the overhead of parallel execution rmay outwei gh the
performance i nprovenent of using multiple processors.

The KAP preprocessor optimzes prograns for parallelism by
searching for the optimum programin a set of possible
configurations, i.e., ways in which the original program can be
transforned for parallel execution. (In this regard, KAP

optim zes prograns froma classical definition of nunerica

optim zation.) There is an objective function for evaluating each
configuration. Each nenber of the set of configurations is called
a loop order. The optimum programis the | oop order whose

obj ective function has the highest performnce score, as

di scussed later in this section.

Descriptions of |loop orders, the role of dependence analysis, and

the objective function, i.e., how each programis scored, follow

Loop Orders. A loop order is a conbination of |oop
transformations that the KAP preprocessor has performed on the
program The |oop transformations that KAP performs while
searching for the optimal parallel formare

o] Loop distribution

o] Loop fusion

o] Loop interchange
Loop distribution splits a loop into two or nore | oops. Loop
fusion merges two | oops. Loop fusion is used to conbine |oops to
i ncrease the size of the parallel tasks and to reduce | oop

over head.

Loop i nterchange occurs between a pair of |oops. This



transformation takes the inner |oop outside the outer |oop
reversing their relation. If aloop is triply nested, there are
three factorial (3!), i.e., six, different ways to interchange
the | oops. Each order is arrived at by a sequence of pairw se

i nt er changes.

To increase the opportunities to interchange | oops, KAP tries to
make a | oop nest into one that is perfectly nested. This neans
that there are no executabl e statenments between nested | oop
statements. Loop distribution is used to create perfectly nested
| oops.

KAP exam nes all possible |oop orders for each | oop nest. Each
| oop nest is treated independently because no transfornations
bet ween | oop nests occur at this phase of optimn zation.

For exanple, an LU factorization program consists of one

| oop nest that is three deep and not perfectly nested. Figure 2
shows the | oop orders. Loop order (a) is the original LU program
The KAP preprocessor first distributes the outer loop in |oop
orders (b) and (c). Next, KAP performs a |oop interchange on the
second | oop nest which is two deep, as shown in |oop order (d).
Then, KAP interchanges the third |oop nest in |loop orders (e)
through (i). Note that KAP elimnates sonme | oop orders, (i) for
exanpl e, when the | oop-bound expressi ons cannot be interchanged.
As expl ai ned above, there are six different |oop orders because
the nest is triply nested. Since the |oop nest in (d) was
originally nested with the triply nested |oop at the outernost do
| oop, KAP will reexam ne these six |oop orders after the

i nterchange in (d).



Figure 2 Loop Orders for

LU Factori zation

o e e e e e e e e e e e oo - + o e m e e e e e e e e e e oo - +
| (a) ORIG NAL LU (OUTLI NED): | | (b) DI STRI BUTED do i LOOP: |
|do i=1,n | |do i=1,n |
| /[*Invert Elimnator*/ | | /[*Invert Elimnator*/ |
| . | | enddo |
| do k=i +1,n | |do i=1,n |
| /*Conpute Multipliers*/| | do k=i +1,n |
| . +-->| [*Conpute Multipliers*/ |
| enddo | | enddo |
| do j=i+l,n | | do j=i+l,n |
| do k=i +1,n | | do k=i +1,n |
| /*Update Matrix*/ | | /*Update Matrix*/ |
| . | | enddo |
| enddo | | enddo |
| enddo | | enddo |
| enddo | | |
o e e e e e e e e e e e oo - + e e e e oo oo - e e e e oo oo - +
I
R T i + I I Ve m e e e e ee e +
| (d) FOR 2ND NEST | NTERCHANGE | | (c) DI STRIBUTE do i LOOP AGAI N:
| 2ND do i LOOP: | |do i=1,n |
| do k=1, n | -->| /[*Invert Elimnator*/ |
| do i=1,k-1 | |do i=1,n |
| /*Conpute Multipliers*/| | do k=i +1,n |
| . | | [*Conpute Multipliers*/ |
Fomem- - R +o-m-- + |do i=1,n |
I I | do j=i+l,n I
Foee e Ve V---+ | do k=i+1,n
| REEXAM NE LOOP ORDERS | | /*Update Matrix*/ |
| (e) THROUGH (i) | -
o e e e e e e Fom e e e e oo oo S +
I
o e e e e e e e i i V-t deommm e Vem s e e a oo - +
| (e) FOR 3RD NEST | NTERCHANGE | |(g) FOR 3RD NEST | NTERCHANGE
| do i AND do j: | | do j AND do k:
|do j=1,n | |do i=1,n
| do i=1,j-1 | ] do k=i+1,n
| do k=i +1,n | | do j=i+l,n
| /*Update Matrix*/ | | /*Update Matrix*/ |
| - | ] - |
Fomm - o e e e e e oo oo - B S SRS o e e e
I I
o e e e e oo Vemme e - + S Vem s e e a oo - +
| (f) FOR 3RD NEST | NTERCHANGE | | (h) FOR 3RD NEST | NTERCHANGE
| do i AND do k: | | do i AND do k:
| Loop Order Rejected -- | | do k=1, n
| New bounds split | oop. | | do i=1,k-1
|do j=1,n | | do j=i+l,n
| do k=2, ] | | /*Update Matrix*/ |
| do i=1,k-1 | | - |
| /*Update Matrix*/ | Foeme - R L



do k=j,n
do i=1,j-1
/*Update Matrix*/

| (i) FOR 3RD NEST | NTERCHANGE
| do i AND do j:

| Loop Order Rejected --

| New bounds split | oop.

| do k=1, n

| do j=2,k

| do i=1,k-1

| /*Update Matrix*/
| do j=k,n

| do i=1,k-1

| /*Update Matrix*/
|



Dependence Analysis for Loop Orders. Before a |oop order can be
eval uated for efficiency, KAP determnes the validity of the | oop
order. A loop order is valid if the resulting program woul d
produce equival ent behavior. KAP tests validity by exam ning the
dependences in the dependence graph according to the
transformati on being appli ed.

For exanple, the test for |loop interchange validity involves
searching for dependence direction vectors of a certain type. The
direction vector (<,>) indicates that a | oop interchange is
invalid. The direction vectors (<,*), (*,>), or (*,*), if

present, also indicate that the |oop interchange may be invalid.

Eval uation of a Loop Order. After the KAP preprocessor
deternmines that a |loop order is valid, it scores the | oop order
for performance. KAP considers two najor factors: (1) the anmount
of work that will be performed in parallel and (2) the nenory
reference efficiency.

The nmenory reference efficiency of a | oop order can degrade
performance so nuch that it outwei ghs the performance gai ned by
executing a loop in parallel. On an SMP, if a processor

ref erences one word on a cache line, it should reference all the
words contiguously on that line. In Fortran, a two-dinmensiona
array reference, A(i,j), should be parallelized so that the j

|l oop is parallel and each processor references conti guous col ums

of menory. If a loop order indicated that the i loop is parallel
this reference would score low. If a | oop order indicated that
the j loop is parallel, it would score high. The score for the

| oop order is the sum of the scores for all the references, and
t he hi ghest-scoring | oop order is preferred.

The score for a | oop order depends on which |loops in the order
can be parallelized. For a given |loop nest, there may be severa
(or no) loops that can be parallelized. The first step is to
deternmine if any | oops can be parallelized. If nultiple |oops can
be parallelized, KAP selects the best one. KAP chooses at npst
one loop for parallel execution.

KAP tests | oops to determ ne whether they can be executed in
paral l el by analyzing both the statenents in the |oop and the
dependence graph. The |oop may contain certain statenents that
bl ock concurrentization. |I/O statenents or a call to a function
or subroutine are exanples. (Users can code KAP assertions to
flag these statenents as parallelizable.) Second, data dependence
conditions may preclude parallelization. In general, a |oop that
carries a dependence is not parallelizable. (In sonme cases, the
user may override the data dependence condition by allow ng
synchroni zati on between loop iterations.) Finally, the user may
gi ve assertions that indicate a preference for making a | oop
parallel or for keeping it serial



Barring data dependence conditions that woul d prevent
paral l elization, the amount of work that will be performed in
parall el determ nes the score of parallelizing a |oop. (The user
can also specify with a directive that |oops should not be
parallelized unless they score greater than a specified val ue.)
In this manner, KAP prefers to parallelize outer |oops or |oops
that are interchanged to the outside because they contain the
nost work to anortize the overhead of creating threads for
parallelism

The actual parallelization process is even nore conplex than this
di scussion indicates. KAP applies a number of optimzations to

i mprove the quality of the parallel code. If there is a reduction
operation across a | oop, KAP parallelizes the | oop. Too nuch | oop
di stribution can decrease program efficiency, so | oop fusion is
run to try to coal esce | oops.

PERFORMANCE ANALYSI S

How does the KAP preprocessor performon real applications? The
answer is as conplex as the software witten for these
applications. Consider the real-world exanple, DYNA3D, which
denonstrates sonme KAP strengths and weaknesses.

DYNA3D i s nonlinear structural dynam cs code that uses the finite
el enment anal ysis nmethod. The code was devel oped by the Lawrence
Li vernore National Laboratory Methods Devel opment Group and has
been used extensively for a broad range of structural analysis
probl enms. DYNA3D cont ai ns about 70,000 lines of Fortran code in
nore than 700 subroutines.

When KAP is being used on a large program it is sonetines
preferable to concentrate on the conpute-intensive kernels. For
exanpl e, KAP devel opers ran six of the standard benchmarks for
DYNA3D t hrough a performance profiling tool and isolated two
groups of three subroutines that account for approximtely 75
percent of the run tine in these cases. This data is shown in
Tabl e 4.



Table 4 Performance Profiles of Six DYNA3D Probl ens

Pr obl em
NI KE2D

Exanpl e
Cyl i nder Drop

Bar | npact
i nt erest

| npacted Pl ate
Si ngl e Cont act

Cl anped Beam

*Cal | Sequences

Profile (First Two Initials of the
Subroutine and Percent of Run Tine)

ST 19% FO 15% FE 12% PR 10% HG 7% HR 5%

ST 20% FO 15% FE 11% PR 10% HG 7% HR 5%

WR 17% ST 7% FE 6%

SH 22% TN 16% TA 16% YH 14% BL 7%

YH 24% SH 21% TN 7% TA 7% BL 6%

EL 12% SH 12% TN 8% TA 8% BL 6%

(a) ST is called; ST calls PR, and then FE is call ed.
(b) HRis called; HR calls HG and then FOis called.

(c) BL calls SH

then TA, and then TN

Key Cal
Sequences*

(a) and (b)

(a) and (b)

None of

(¢)
(¢)
(¢)



KAP' s performance on sone of these key subroutines appears in
Table 5. KAP parallelized all the loops in these subroutines.

Si nce DYNA3D was designed for a CRAY-1 vector processor, it is
perhaps to be expected that the KAP preprocessor would perform
wel | . KAP, however, is intended for a shared nmenory

nmul ti processor rather than for a vector nmachine. For this reason,
KAP does nore than parallelize the |oops. The entries in the
colum | abel ed "Nunber of Loops after Fusion" show how KAP
reduced | oop overhead by fusing as many | oops together as it
could. KAP fused the five |oops in subroutine STRAIN into three
| oops and fused all nine | oops in subroutine PRTAL.



Table 5 KAP's Performance on Key Subroutines

Subrouti ne Nunber of Nunmber of Loops Maxi mum Nunber of
Loops
Loops Parallelized Nest Depth after Fusion

STRAI'N 5 5 1 3

PRTAL 9 9 1 1

FELEN 6 6 1 1

FORCE 9 9 2 2

HRGVD 5 5 1 3

HGX 4 4 1 1



Anot her exanple of KAP's optinization for an SMP systemis that
in the doubly nested | oop cases, such as subroutine FORCE (see
Figure 3), the KAP preprocessor automatically selects the outer
| oop for parallel execution. In contrast, a vector nmachine such
as the CRAY-1 prefers the inner |oop.



Figure 3 Paral l el Loop Sel ection

subrouti ne FORCE / OUTER LOOP PARALLI ZED
. /
do 60 n = 1,NnNC <-------------- +

lcn =1lczc + n + nhl12 - 1

i0 =1ia(lnc)

il =ia(lcn +1) - 1
cdir$ ivdep

do50i =i0,i1

e(l,ix(i)) =

e(1,ix1(i)) + eplli(i)
50 conti nue

60 conti nue



Because the kernels of DYNA3D code span nultiple subroutines,
cross conpilation optim zation is suggested. There are three ways
to do this: inlining, interprocedural analysis, and directives
speci fying that the inner subroutines can be concurrentized.
Using KAP's inlining capability gives KAP the npst freedomto
optim ze the program because in this manner KAP can restructure
code across subroutines.

Figure 4 shows part of the call sequence of subroutine SOLDE
(Subroutine SOLDE contains call sequence (b) of Table 4.)
Subroutine SOLDE cal |l s subroutine HRGVD whi ch calls subroutine
HGX. Then subroutine SOLDE calls subroutine FORCE. KAP supports
inlining to an arbitrary depth. Inlining in KAP can be automatic
or controlled fromthe command line. In this case, we did not
want to enable inlining automatically to depth two of subroutine
SOLDE because it contains calls to many ot her subroutines that
are not in the kernel. Here, the user specified the subroutines
to inline on the comand |ine. Wen the user specified inlining,
KAP fused all the loops in subroutines HRGVD, HGX, and FORCE to
mnimze | oop overhead, and then it parallelized the fused | oop



Figure 4 Inlining a Kernel

subrouti ne SOLDE

call HRGWD <-------- +

subrouti ne HRGWD | WHOLE CALL
- | SEQUENCE
cal | HGX <------- + 1 NLI NED

call FORCE <-------- +



In some cases, the user can nmake sinple restructuring changes
that inprove KAP's optim zations. Figure 5 shows a case in which
fusi on was bl ocked by two scal ar statenments between a pair of

| oops. The first | oop does not assign any values to the variables
used to create these scalars, so the user can nove the

assi gnments above the |oop to enable KAP to fuse them



Figure 5 Assi sted Loop Fusion

subroutine STRAIN

do5i =1Ift,Ilt MOVE UP
enddo
dt1d2 = .5 * dt1l} --------------
crho = .0625 * rho(lft)} -------
do 6 i =1Ift,IIt

enddo

subroutine STRAI N

+---> {dt1d2 = .5 * dt1
STATEMENTS +---> {crho - .0625 * rho(lft)

do5i =1ft,IIt
enddo
do 6 i =1ft,IIt
enddo



Finally, the user can elect to specify the parallelismdirectly.
Figure 6 shows subroutine STRAIN with X3H5 directives used to
describe the parallelism In this case, the user elected to keep
the sanme unfused | oop structure as in the original code. This
case is not dramatically less efficient than the fused version
because the parallel region causes KAP to fork threads only once.



Figure 6 X3H5 Explicit Parallelism

subroutine STRAIN

c*kap* parallel region
c*kap*& shared(dxy, dyx, d1)
c*kap*& |l ocal (i, dt1d2)
c*kap* parallel do

do 5i =1ft,Ilt

dyx(i) = ..
ALL c*kap* STATEMENTS 5 conti nue
ARE X3H5 EXPLICIT c*kap* end parallel do
PARALLEL DI RECI VES. c*kap* barrier

dt1d2 = ...

c*kap* parallel do
do 6 i =1ft,IIt

dl = dt1d2 * (dxy(i) + dyx(i))
6 continue
c*kap* end parallel do
c*kap* end parallel region



A very sophisticated exanpl e of KAP usage occurs when a user

i nputs a programto KAP that has al ready been optim zed by KAP
This is an advantage of a preprocessor that does not apply to a
conpi | er because a preprocessor produces source code output. In
this case, the statenents shown in Figure 6 were generated by KAP
to illustrate X3H5 parallelism A user nay want to perform sone
hand optim zation on this output, such as renoving the barrier
statement, and then optim ze the nodified programw th KAP agai n.

CHALLENGES THAT REMAI N

Al t hough the KAP preprocessor is a robust tool that performnms wel
in a production software devel opnent environnent, severa
chal I enges remai n. Anpbng them are addi ng new | anguages, further
enhancing the optim zation technol ogy, and inproving KAP' s
everyday usability.

As the popul ar progranmm ng | anguages evol ve, KAP evol ves al so.
KAl wi Il soon extend KAP support for DEC Fortran to Fortran 90
and is devel oping C++ optinization capabilities.

In optimzation technol ogy, KAI's goal is to make an SMP server
as easy to use as a single-processor workstation is today.
"Automatic Detection of Parallelism A G and Challenge for

Hi gh- Perf ormance Conputing" contains a | eadi ng-edge anal ysis of
paral l elization technology.[10] The research reported shows that
further devel oping current techni ques can inprove optim zation
technol ogy. These techni ques frequently involve the grand
chal I enge of conpiler optimzation---whole program anal ysis.

In a much nore pragmatic direction, the KAP preprocessor should
be integrated with Digital's conpiler technol ogy at the

i nternmedi ate representation |level. Such integration would

i ncrease processing efficiency because the conpiler would not
have to reparse the source code. In addition, integration would

i ncrease the coordination between KAP and the compiler to inprove
performance for the end user

Increasing the usability of the KAP preprocessor, however,
benefits the end user directly. KAP engineers frequently talk to
beta users and encourage feedback. The follow ng are exanpl es of
user comments:

o] Optim zing progranms is difficult when no subroutine in
the programtakes nore than a few percent of the run
time. As its usability in this area inproves, KAP will
become a substantial productivity aid. If a programis
generally slow, optimzing repeated usage patterns will
allow the programrer to use a confortable programming
style and still expect peak system perfornmance.



o] I ncreasing feedback to the user would inprove KAP' s
usability. Wen KAP cannot perform an optinization, often
the user can help in several ways (e.g., by providing
nore information at conpile tinme, by changing the options
or directives, or by meking small changes to the source
code). KAP does not always nmake it clear to the user what
needs to be done. Providing such feedback woul d i nprove
KAP's usability.

o] Integration with other perfornmance tools would be useful
Al pha systenms have a good set of performance nonitoring
tools that can provide clues about what to optimize in a
program and how. The next rel ease of the KAP preprocessor
will provide sone sinple tools that a user can enploy to
integrate KAP with tools like prof and to track down
performance differences.

On a final note, the fact that KAP does not speed up a program
shoul d not al ways be cause for di sappoi ntnent. Some prograns

al ready run as fast as possible without the benefit of a KAP
pr eprocessor.
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