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Global change researchers, who study phenomena that
include the Greenhouse Effect, ozone depletion,
global climate modeling, and ocean dynamics, have
found serious problems in attempting to use current
information systems to manage and manipulate the
diverse information sources crucial to their research.1

These information sources include remote sensing data
and images from satellites and aircraft, databases of
measurements (e.g., temperature, wind speed, salinity,
and snow depth) from specific geographic locations,
complex vector information such as topographic maps,
and large amounts of text from a variety of sources.
These textual documents range from environmental
impact reports on various regions to journal articles
and technical reports documenting research results. 

The Sequoia 2000 project brought together com-
puter and information scientists from the University 
of California (UC), Digital Equipment Corporation,
and the San Diego Supercomputer Center (SDSC),
and global change researchers from UC campuses to
develop practical solutions to some of these problems.2

One goal of this collaboration was the development of
a large-scale (i.e., multiterabyte) storage system that
would be available to the researchers over high-speed
network links. In addition to storing massive amounts
of data in this system, global change researchers
needed to be able to share its contents, to search for
specific known items in it, and to retrieve relevant
unknown items based on various criteria. This sharing,
searching, and retrieving had to be done efficiently
and effectively, even when the scale of the database
reached the multiterabyte range. 

The goal of the Electronic Repository portion of
the Sequoia 2000 project was to design and evaluate
methods to meet these needs for sharing, searching,
and retrieving database objects (primarily text docu-
ments). The Sequoia 2000 Electronic Repository 
is the precursor of several ongoing projects at 
the University of California, Berkeley, that address 
the development of digital libraries. 

For repository objects to be effectively shared and
retrieved, they must be indexed by content. User inter-
faces must allow researchers to both search for items
based on specific characteristics and browse the repos-
itory for desired information. This paper summarizes
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A major effort in the Sequoia 2000 project was to
build a very large database of earth science infor-
mation. Without providing the means for scien-
tists to efficiently and effectively locate required
information and to browse its contents, how-
ever, this vast database would rapidly become
unmanageable and eventually unusable. The
Sequoia 2000 Electronic Repository addresses
these problems through indexing and retrieval
software that is incorporated into the POSTGRES
database management system. The Electronic
Repository effort involved the design of proba-
bilistic indexing and retrieval for text documents
in POSTGRES, and the development of algo-
rithms for automatic georeferencing of text
documents and segmentation of full texts 
into topically coherent segments for improved
retrieval. Various graphical interfaces support
these retrieval features. 
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the research conducted in these areas by the Sequoia
2000 project participants. In particular, the paper
describes the Lassen text indexing and retrieval meth-
ods developed for the POSTGRES database system,
the GIPSY system for automatic indexing of texts
using geographic coordinates based on locations men-
tioned in the text, and the TextTiling method for
improving access to full-text documents. 

Indexing and Retrieval in the Electronic Repository

The primary engine for information storage and
retrieval in the Sequoia 2000 Electronic Repository 
is the POSTGRES next-generation database man-
agement system (DBMS).3 POSTGRES is the core of
the DBMS-centric Sequoia 2000 system design. All
the data used in the project was stored in POSTGRES,
including complex multidimensional arrays of data,
spatial objects such as raster and vector maps, satellite
images, and sets of measurements, as well as all the
full-text documents available. The POSTGRES DBMS
supports user-defined abstract data types, user-defined
functions, a rules system, and many features of object-
oriented DBMSs, including inheritance and methods,
through functions in both the query language, called
POSTQUEL, and conventional programming lan-
guages. The POSTQUEL query language provides all
the features found in relational query languages like
SQL and also supports the nonrelational features of
POSTGRES. These features give POSTGRES the abil-
ity to support advanced information retrieval methods. 

We used these features of POSTGRES to develop
prototype versions of advanced indexing and retrieval
techniques for the Electronic Repository. We chose
this approach rather than adopting a separate retrieval
system for full-text indexing and retrieval for the fol-
lowing reasons: 

1. Text elements are pervasive in the database, ranging
in size from short descriptions or comments on
other data items to the complete text of large docu-
ments, such as environmental impact reports. 

2. Text elements are often associated with other data
items (e.g., maps, remote sensing measurements,
and aerial photographs), and the system must sup-
port complex queries involving multiple data types
and functions on data. 

3. Many text-only systems lack support for concurrent
access, crash recovery, data integrity, and security of
the database, which are features of the DBMS. 

4. Unlike many text retrieval systems, DBMSs permit
ad hoc querying of any element of the database,
whether or not a predefined index exists for that
element. 

Moreover, there are a number of interesting
research issues involved in the integration of methods

of text retrieval derived from information retrieval
research with the access methods and facilities of 
a DBMS. Information retrieval has dealt primarily 
with imprecise queries and results that require human
interpretation to determine success or failure based on
some specified notion of relevance. Database systems
have dealt with precise queries and exact matching of
the query specification. Proposals exist to add proba-
bilistic weights to tuples in relations and to extend 
the relational model and query language to deal with
the characteristics of text databases.4,5 Our approach to
designing this prototype was to use the features of the
POSTGRES DBMS to add information retrieval meth-
ods to the existing functionality of the DBMS. This
section describes the processes used in the prototype
version of the Lassen indexing and retrieval system and
also discusses some of the ongoing development work
directed toward generalizing the inclusion of advanced
information retrieval methods in the DBMS.6

Indexing 
The Lassen indexing method operates as a daemon
invoked whenever a new text item is appended to the
database. Several POSTGRES database relations (i.e.,
classes, in POSTGRES terminology) provide support
for the indexing and retrieval processes. Figure 1
shows these classes and their logical linkages. These
classes are intended to be treated as system-level
classes, which are usually not seen by users. 

The wn_index class contains the complete WordNet
dictionary and thesaurus.7 It provides the normalizing
basis for terms used in indexing text elements of the
database. That is, all terms extracted from data elements
in the database are converted to the word form used in
this class. The POSTQUEL statement defining the
class is 

create wn_index ( 
termid = int4,     /* unique term ID */ 
word = text,       /* the term or phrase */ 
pos = char,        /* WordNet part of speech 

information */ 
sense_cnt = int2,  /* number of senses of word */ 
ptruse_cnt = int2, /* types and locations of */ 
offset_cnt = int2, /* related terms in WordNet*/ 
ptruse = int2[] ,  /* database are stored in */ 
offset = int4[])   /* these arrays 

All other references to terms in the indexing process
are actually references to the unique term identifiers
(termid) assigned to words in this class. The wn_index
dictionary contains individual words and common
phrases, although in the prototype implementation,
only single words are used for indexing purposes. The
other parts of the record include WordNet database
information such as the part of speech (pos) and an
array of pointers to the different senses of the word. 

The kw_term_doc_rel class provides a linkage
between a particular text item in any class or text 
large object (we will refer to either as documents) and



The kw_sources class contains information about
the classes and attributes indexed at the class level, as
well as statistics such as the number of items indexed
from any given class. The following POSTQUEL
statement defines this class: 

create kw_sources ( 
relname = char16,    /* name of indexed 

relation */ 
reloid = oid,        /* oid of indexed 

relation */ 
attrname = char16,   /* name of indexed 

attribute */ 
attroid = oid,       /* object ID of indexed 

attribute */ 
attrnum = int2,      /* number of indexed 

attribute */ 
attrtype = int4,     /* attribute type -- large 

object or otherwise */ 
num_indexed = int4,  /* number of items 

indexed */ 
last_tid = oid,      /* oid and time for last */ 
last_time = abstime, /* tuple added */ 
tot_terms = int4,    /* total terms from all 

items */ 
tot_uterms = int4,   /* total unique terms from 

all items */ 
include_pat = text,  /* simple patterns to */ 
exclude_pat = text)  /* match for indexable 

/* items */ 

The other classes shown in Figure 1 relate to the
indexing and retrieval processes. The Lassen prototype
uses the POSTGRES rules system to perform such
tasks as storing the elements of the bibliographic
records in an appropriate normalized form and to trig-
ger the indexing daemon. 

Defining an attribute in the database as indexable
for information retrieval purposes (i.e., by appending 
a new tuple to the kw_sources definition) creates a rule
that appends the class name and attribute name to the
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a particular term from the wn_index class. The
POSTQUEL definition of this class is 

create kw_term_doc_rel ( 
termid = int4,    /* WordNet termid number */ 
synset = int4,    /* WordNet sense number */ 
docid = int4,     /* document ID */ 
termfreq = int4)  /* term frequency within 

the document */ 

The raw frequency of occurrence of the term 
in the document (termfreq) is included in the
kw_term_doc_rel tuple. This information is used in
the retrieval process for calculating the probability of
relevance for each document that contains the term.
The kw_doc_index class stores information on indi-
vidual documents in the database. This information
includes a unique document identifier (docid), the
location of the document (the class, the attribute, and
the tuple in which it is contained), and whether it is 
a simple attribute or a large object (with effectively
unlimited size). The kw_doc_index class also main-
tains additional statistical information, such as the
number of unique terms found in the document. The
POSTQUEL definition is as follows: 

create kw_doc_index ( 
docid = int4,      /* document ID */ 
reloid = oid,      /* oid of relation 

containing it */ 
attroid = oid,     /* attribute definition of 

attr containing it */ 
attrnum = int2,    /* attribute number of attr 

containing it */ 
tupleid = oid,     /* tuple oid of tuple 

containing it */ 
sourcetype = int4, /* type of object -- attribute 

or large object */ 
doc_len = int4,    /* document length in words */ 
doc_ulen = int4)   /* number of unique words in 

document */ 
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KW_DOC_INDEX

WN_INDEX

KW_SOURCES

KW_RETRIEVAL

KW_QUERY

KW_INDEX_FLAGS

ANY CLASS AND

ATTRIBUTE

Figure 1 
The Lassen POSTGRES Classes for Indexing and Their Linkages



kw_index_flags class whenever a new tuple is appended
to the class. Another rule then starts the indexing
process for the newly appended data. Figure 2 shows
this trigger process. 

The indexing process extracts each unique keyword
from the indexed attributes of the database and stores
it along with pointers to its source document and its
frequency of occurrence in kw_term_doc_rel. This
process is shown in Figure 3. The indexing daemon
and the rules system maintain other global frequency
information. For example, the overall frequency of
occurrence of terms in the database and the total num-
ber of indexed items are maintained for retrieval pro-
cessing. The indexing daemon attempts to perform
any outstanding indexing tasks before it shuts down. It
also updates the kw_doc_index tuple for a given index-
able class and attribute with a time stamp for the last
item indexed (last_tid and last_time). This permits
ongoing incremental indexing without having to
reindex older tuples. 

Retrieval 
The prototype version of Lassen provides ranked
retrieval of the documents indexed by the indexing
daemon using a probabilistic retrieval algorithm. This
algorithm estimates the probability of relevance for
each document based on statistical information on
term usage in a user’s natural language query and in
the database. The algorithm used in the prototype is
based on the staged logistic regression method.8

A POSTGRES user-defined function invokes ranked
retrieval processing. That is, from a user’s perspective,
ranked retrieval is performed by a simple function 
call (kwsearch) in a POSTQUEL query language
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statement. Information from the classes created and
maintained by the indexing daemon are used to esti-
mate the probability of relevance for each indexed doc-
ument. (Note that the full power of the POSTQUEL
query language can also be used to perform conven-
tional Boolean retrieval using the classes created by the
indexing process and to combine the results of ranked
retrieval with other search criteria.) Figure 4 shows the
process involved in the probabilistic ranked retrieval
from the repository database. 

The actual query to the Lassen ranked retrieval
process consists simply of a natural language statement
of the searcher’s interests. The query goes through the
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Figure 2 
The Lassen Indexing Trigger Process 
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same processing steps as documents in the indexing
process. The individual words of the query are
extracted and located in the wn_index dictionary
(after removing common words or “stopwords”). The
termids for matching words from wn_index are then
used to retrieve all the tuples in kw_term_doc_rel that
contain the term. For each unique document identifier
in this list of tuples, the matching kw_doc_index tuple
is retrieved. With the frequency information contained
in kw_term_doc_rel and kw_doc_index, the estimated
probability of relevance is calculated for each docu-
ment that contains at least one term in common with
the query. The formulae used in the calculation are
based on experiments with full-text retrieval.8 The
basic equation for the probabilistic model used in
Lassen states the following: The probability of the
event that a document is relevant R, given that there 
is a set of N “clues” associated with that document, Ai
for i = 1, 2, …, N, is 

where for any events E and E 9, the odds O(E |E 9) is 
P(E |E9)/P(E– |E 9), i.e., a simple transformation of the
probabilities. Because there is not enough information
to compute the exact probability of relevance for any
user and any document, an estimation is derived based
on logistic regression of a set of clues (usually terms or
words) contained in some sample of queries and the
documents previously judged to be relevant to those
queries. For a set of M terms that occur in both a query
and a given document, the regression equation is of
the form 

where there are K retrieval variables Xm,K used to
characterize each term or clue, and the ci coefficients 
are constant for a given training set of queries and
documents. The coefficients used in the prototype
were derived from analysis of full-text documents log O (R |A1,...,AN) 5 log O (R) 1 ([log O(R |Ai)

2 log O (R)], (1)

N

i 5 1

log O (R |A1,...,AM) ' c0 1 c1 • f (M ) (Xm,1 1 • • •

1 cK • f (M) (Xm,K 1 cK11M 1cK12M
2, (2)

M

1M

1

RETRIEVE USING

KWSEARCH

FUNCTION CALL

KW_

STOPWORDS

NORMALIZE WORD

FORM USING WORDNET

MORPHING AND GET

TERMID

WN_

EXCLUSION

WN_INDEX

RETRIEVE EACH

KW_TERM_DOC_REL

TUPLE USING TERMID

KW_TERM_

DOC_REL

RETRIEVE EACH

KW_DOC_INDEX

TUPLE USING DOCID

KW_DOC_

INDEX

CALCULATE PROBABILITY

OF RELEVANCE USING

STAGED LOGISTIC

REGRESSION FORMULA

APPEND ENTRIES TO

KW_RETRIEVAL AND

KW_QUERY

KW_

RETRIEVAL

KW_QUERY

RETURN

QUERYID

Figure 4 
The Lassen Retrieval Process



and queries (with relevance judgments) from the
TIPSTER information retrieval test collection.9 The
derivation of this formula is given in “Probabilistic
Retrieval Based on Staged Logistic Regression.”8 The
full retrieval equation used for the prototype version of
retrieval described in this section is 

where 
Xm,1 is the quotient of the number of times the mth

term occurs in the query and the sum of the total
number of terms in the query plus 35; 

Xm,2 is the logarithm of the quotient arrived at by
dividing the number of times the m th term occurs in
the document by the sum of the total number of terms
in the document plus 80; 

Xm,3 is the logarithm of the quotient arrived at by
dividing the number of times the mth term occurs in
the database (i.e., in all documents) by the total num-
ber of terms in the collection; 

M is the number of terms held in common by the
query and the document. 

Note that the M 2 term called for in Equation 2 was
not found to provide any significant difference in the
results and was omitted from Equation 3. The con-
stants 35 and 80, which were used in Xm,1 and Xm,2,
are arbitrary but appear to offer the best results when
set to the average size of a query and the average size
of a document for the particular database. The
sequence of operations performed to calculate the
probability of relevance is shown in Figure 5. Note
that in the figure, k1, …, k5 represent the constants 
of Equation 3. 

The probability of relevance is calculated for each
document (by converting the logarithmic odds to a
probability) and is stored along with a unique query
identifier, the document identifier, and some location
information in the kw_retrieval class. The query itself
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and its unique identifier are stored in the kw_query
class. To see the results of the retrieval operation, the
query identifier is used to retrieve the appropriate
kw_retrieval tuples, ranked in order according to the
estimated probability of relevance. The kw_retrieval
and kw_query classes have the following POSTQUEL
definitions: 

create kw_query ( 
query_id = int4,        /* ID number */ 
query_user = char16,    /* POSTGRES user name */ 
query_text = text)      /* the actual query */ 

create kw_retrieval ( 
query_id = int4,        /* link to the query */ 
doc_id = int4,          /* document ID number */
rel_oid = oid,          /* location of doc */
attr_oid = oid, 
attr_num = int2, 
tuple_id = oid, 
doc_len = int4,         /* size of document */ 
doc_match_terms = int4, /* number of query terms 

in the document */ 
doc_prob_rel = float8)  /* estimated probability 

of relevance */ 

The algorithm used for ranked retrieval in the
Lassen prototype was tested against a number of other
systems and algorithms as part of the TREC competi-
tion and provided excellent retrieval performance.10

We have found that the retrieval coefficients used in
the formula derived from analysis of the TIPSTER col-
lection appear to work well for a variety of document
types. In principle, the staged logistic regression
retrieval coefficients should be adapted to the particu-
lar characteristics of the database by collecting rele-
vance judgments from actual users and reapplying the
staged logistic regression analysis to derive new coeffi-
cients. This activity has not been performed for this
prototype implementation. 

The primary contribution of the Lassen prototype
has been as a proof-of-concept for the integration of
full-text indexing and ranked retrieval operations in 
a relational database management system. The proto-
type implementation that we have described in this
section has a number of problems. For example, in the
prototype design for indexing and retrieval operations,
all the information used is visible in user-accessible
classes in the database. Also, the overhead is fairly
high, in terms of storage and processing time, for
maintaining the indexing and retrieval information in
this way. For example, POSTGRES allocates 40 bytes
of system information for each tuple in a class, and
indexing can take several seconds per document. 

Currently, we are investigating a class of new access
methods to support indexing and retrieval in a more
efficient fashion. The class of methods involves declar-
ing some POSTGRES functions that can extract
subelements of a given type of attribute (such as words
in a text document) and generate indexes for each of
the subelements extracted. Other types of data might

also benefit from this class of access methods. For
example, functions that extract subelements like geo-
metric shapes from images might be used to generate
subelement indexes of image collections. Particular
index element extraction methods can be of great
value in providing access to the sort of information
stored in the Sequoia 2000 Electronic Repository. The
following section describes one such index extraction
method developed for the special needs of Sequoia
2000 data. 

GIPSY: Automatic Georeferencing of Text

Environmental Impact Reports (EIRs), journal arti-
cles, technical reports, and myriad other text items
related to global change research that might be
included in the Sequoia 2000 database are examples of
a class of documents that discuss or refer to particular
places or regions. A common retrieval task is to find
the items that refer to or concentrate on a specific geo-
graphic region. Although it is possible to have a
human catalog each item for location, one goal of the
Electronic Repository was to make all indexing and
retrieval automatic, thus eliminating the requirement
for human analysis and classification of documents in
the database. Therefore, part of our research involved
developing methods to perform automatic georefer-
encing of text documents, that is, to automatically
index and retrieve a document according to the geo-
graphic locations discussed or displayed in or other-
wise associated with its content. 

In Lassen and most other full-text information
retrieval systems, searches with a geographical compo-
nent, such as “Find all documents whose contents per-
tain to location X,” are not supported directly by
indexing, query, or display functions. Instead, these
searches work only by references to named places,
essentially as side effects of keyword indexing. Whereas
human indexers are usually able to understand and
apply correct references to a document, the costs in
time and money of using geographically trained human
indexers to read and index the entire contents of a large
full-text collection are prohibitive. Even in cases where
a document is meticulously indexed manually, geo-
graphic index terms consisting of keywords (text
strings) have several well-documented problems with
ambiguity, synonymy, and name changes over time.11,12

Advantages of the GIPSY Model 
To deal with these problems, we developed a new
model for supporting geographically based access to
text.13 In this model, words and phrases that contain
geographic place names or geographic characteristics
are extracted from documents and used as input to
certain database functions. These functions use spatial
reasoning and statistical methods to approximate the



geographic position being referenced in the text. The
actual index terms assigned to a document are a set of
coordinate polygons that describe an area on the
earth’s surface in a standard geographical projection
system. Using coordinates instead of names for the
place or geographic characteristic offers a number of
advantages. 

■ Uniqueness. Place names are not unique, e.g.,
Venice, California, and Venice, Italy, are not appar-
ently different without the qualifying larger region
to differentiate them. Using coordinates removes
this ambiguity. 

■ Immunity to spatial boundary changes. Political
boundaries change over time, leading to confusion
about the precise area being referred to. Coordi-
nates do not depend on political boundaries. 

■ Immunity to name changes. Geographic names
change over time, making it difficult for a user to
retrieve all information that has been written about
an area during any extended time period. Coordi-
nates remove this ambiguity. 

■ Immunity to spatial, naming, and spelling varia-
tion. Names and terms vary not only over time but
also in contemporary usage. Geographic names
vary in spelling over time and by language. Areas of
interest to the user will often be given place names
designated only in the context of a specific docu-
ment or project. Such variations occur frequently
for studies done in oceanic locations. Names associ-
ated with these studies are unknown to most users.
Coordinates are not subject to these kinds of verbal
variations. 

Indexing texts and other objects (e.g., photographs,
videos, and remote sensing data sets) by coordinates
also permits the use of a graphical interface to the
information in the database, where representations of
the objects are plotted on a map. A map-based graphi-
cal interface has several advantages over one that uses
text terms or one that simply uses numerical access to
coordinates. As Furnas suggests, humans use different
cognitive structures for graphical information than for
verbal information, and spatial queries cannot be fully
simulated by verbal queries.14 Because many geo-
graphical queries are inherently spatial, a graphical
model is more intuitive. This is supported by Morris’
observation that users given the choice between menu
and graphical interfaces to a geographic database pre-
ferred the graphical mode.15 A graphical interface,
such as a map, also allows for a dense presentation of
information.16

To address the needs of global change scientists, the
Sequoia 2000 project team proposed a new browser
paradigm.17 This system, called Tioga, displays infor-
mation topologically according to continuous charac-
teristics that are attributes of the data.18 For example,

documents may be displayed on a map according to
their latitude and longitude. Documents may also be
displayed according to the time at which they were
generated and the time to which they refer, as well as
by more abstract functions such as the reading level of
the document and the author’s attitudes as expressed
in the document. A prototype of the geographical
browsing component was included in the Lassen
Geographic Browser, which is shown in Figure 6. 

This browser allows any georeferenced object in the
database to be indicated by an icon on the map. The
user employs the mouse to center the map on any
location and to zoom in or out for more or less map
detail. Icons can be made to appear at any coordinates
and for any range of magnification values. When an
icon is selected by the user, a menu of the objects geo-
referenced at the icon coordinates and detail level are
displayed for selection. 

An Algorithm to Georeference Text 
The advantages of georeferencing are apparent. Not so
apparent is how to perform such a task automatically.
We developed the following three-part thesaurus-
based algorithm to explore this task; the algorithm pro-
vides the basis for georeferencing in GIPSY.19

1. Identify geographic place names and phrases. This
step attempts to recognize all relevant content-
bearing geographic words and phrases. The parser
for this step must “understand” how to identify
geographic terminology of two types: 
a. Terms that match objects or attributes in the

data set. This step requires a large thesaurus of
geographic names and terms, partially hand built
and partially automatically generated. 

b. Lexical constructs that contain spatial informa-
tion, e.g., “adjacent to the coast,” “south of the
delta,” and “between the river and the highway.” 

To implement this part of the algorithm, a list of
the most commonly occurring constructs must be
created and integrated into a thesaurus. 

2. Locate pertinent data. The output of the parser is
passed to a function that retrieves geographic coor-
dinate data pertinent to the extracted terms and
phrases. Spatially indexed data used in this step can
include, for example, name, size, and location of
cities and states; name and location of endangered
species; and name, location, and bioregional char-
acteristics of different climatic regions. The system
must identify the spatial locations that most closely
match the geographic terms extracted by the parser
and, when geographic modifiers are used, heuristi-
cally modify the area of coverage. For example, the
phrase “south of Lake Tahoe” will map to the area
south of Lake Tahoe, covering approximately the
same volume. This spatial representation is, by
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necessity, the result of an arbitrary assumption 
of size, but its purpose is to provide only partial
evidence to be used in determining locations as
described below. 
Since geopositional data for land use (e.g., cities,
schools, and industrial areas) and habitats (e.g.,
wetlands, rivers, forests, and indigenous species) 
is also available, extracted keywords and phrases for
these types of data must be recognized. The the-
saurus entries for this data should incorporate sev-
eral other types of information, such as synonymy
(e.g., Latin and common names of species) and
membership (e.g., wetlands contain cattails, but
geopositional data on cattails may not exist, so we
must use their mention as weak evidence of a dis-
cussion of wetlands and use that data instead). 
For our implementation of GIPSY, we used two pri-
mary data sets to construct the thesaurus. The first
was a subset of the United States Geological
Survey’s Geographic Names Information System
(GNIS).20 This data set contains latitude/longitude
point coordinates associated with over 60,000 geo-
graphic place names in California. To facilitate

comparison with other data sets, the GNIS
latitude/longitude coordinates were converted to
the Lambert-Azimuthal projection. Examples of
place names with associated points include 
University of California Davis: –1867878 –471379

Redding: –1863339 –234894

Data for land use and habitat data was derived in
the United States Geological Survey’s Geographic
Information Retrieval and Analysis System
(GIRAS).21

Each identified name, phrase, or region description
is associated with one or more polygons that may
be the place discussed in the text. Weights can be
assigned to each of these polygons based on the fre-
quency of use of its associated term or phrase in the
text being indexed and in the thesaurus. Many rele-
vant terms do not exactly match place names or the
feature and land use types listed above. For exam-
ple, alfalfa is a crop grown in California and should
be associated with the crop data from the GIRAS
land use data set. The thesaurus was therefore
extended, both manually and by extraction of
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Figure 6 
Screen from the Lassen Geographic Browser
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relationships from the WordNet thesaurus, to
include the following types of terms:7

synonymy 
= : = synonym 

kind-of relationships 
~ : = hyponym (maple is a ~ of tree) 
@ : = hypernym (tree is a @ of maple) 

part-of relationships 
# : = meronym (finger is a # of hand) 
% : = holonym (hand is a % of finger) 
& : = evidonym (pine is a & of shortleaf

pine) 
3. Overlay polygons to estimate approximate loca-

tions. The objective of this step is to combine the
evidence accumulated in the preceding step and
infer a set of polygons that provides a reasonable
approximation of the geographical locations men-
tioned in the text. Each geophrase, weight, polygon
tuple can be represented as a three-dimensional
“extruded” polygon whose base is in the plane of
the x- and z-axes and whose height extends upward
on the y-axis a distance proportional to its weight
(see Figure 7a). As new polygons are added, several
cases may arise. 
a. If the base of a polygon being added does not

intersect with the base of any other polygons, it
is simply laid on the base map beginning at y = 0
(see Figure 7b). 

b. If the polygon being added is completely con-
tained within a polygon that already exists on the
geopositional skyline, it is laid on top of that
extruded polygon, i.e., its base plane is posi-
tioned higher on the y-axis (see Figure 7c). 

c. If the polygon being added intersects but is not
wholly contained by one or more polygons, the
polygon being added is split. The intersecting
portion is laid on top of the existing polygon and
the nonintersecting portion is positioned at a
lower level (i.e., at y = 0). To minimize fragmen-
tation in this case, polygons are sorted by size
prior to being positioned on the skyline (see
Figure 7d). 

In effect, the extruded polygons, when laid
together, are “summed” by weight to form a geoposi-
tional skyline whose peaks approximate the geograph-
ical locations being referenced in the text. The
geographic coordinates assigned to the text segment
being indexed are determined by choosing a threshold
of elevation z in the skyline, taking the x-z plane at z,
and using the polygons at the selected elevation.
Raising the elevation of the threshold will tend to
increase the accuracy of the retrieval, whereas lowering
the elevation tends to include other similar regions. 

To see the results of this process in the GIPSY proto-
type, consider the following text from a publication of
the California Department of Water Resources: 

The proposed project is the construction of a new
State Water Project (SWP) facility, the Coastal Branch,
Phase II, by the Department of Water Resources
(DWR) and a local distribution facility, the Mission
Hills Extension, by water purveyors of northern Santa
Barbara County. This proposed buried pipeline 
would deliver 25,000 acre-feet per year (AF/YR) of
SWP water to San Luis Obispo County Flood Control
and Water Conservation District (SLOCFCWCD) and
27,723 AF/YR to Santa Barbara County Flood Control
and Water Conservation District (SBCFCWCD).... 
This extension would serve the South Coast and
Upper Santa Ynez Valley. DWR and the Santa Barbara
Water Purveyors Agency are jointly producing an 
EIR for the Santa Ynez Extension. The Santa 
Ynez Extension Draft EIR is scheduled for release in
spring 1991.22

The resulting surface plot appears in Figure 8. The
figure contains a gridded representation of the state of
California, which is elevated to distinguish it from the
base of the grid. The northern part of the state is on
the left-hand side of the image. The towers rising over
the state’s shape represent polygons in the skyline
generated by GIPSY’s interpretation of the text. The
largest towers occur in the area referred to by the text,
primarily centered on Santa Barbara County, San Luis
Obispo, and the Santa Ynez Valley area. 

The surface plots generated in this fashion can also
be used for browsing and retrieval. For example, the
two-dimensional base of a polygon with a thickness
above a certain threshold can be assigned as a coordi-
nate index to a document. These two-dimensional
polygons might then be displayed as icons on a map
browser such as the one shown in Figure 6. 

Future Work 
Research remains to be done on several extensions to
the existing GIPSY implementation. Because a geo-
graphic knowledge base and spatial reasoning are fun-
damental to the georeferencing process, they have
been the focus of initial research efforts. 

The existing prototype can be complemented by
the addition of more sophisticated natural language
processing. For example, spatial reasoning and geo-
graphic data could be combined with parsing tech-
niques to develop semantic representations of the 
text. Adjacency indicators, such as “south of ” or
“between,” should be recognized by a parser. Also,
the work on document segmentation described below
could be used to explore the locality of reference to
geographic entities within full-text documents.
GIPSY’s technique may be most effective when
applied to a paragraph or section level of a text instead
of to the entire document. 
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(a)   The “weight” of a polygon, indicated by the

        vertical arrow, is interpreted as “thickness.”

(b)   Two adjacent polygons do not affect each other;

        each is merely assigned its appropriate “thickness.”

(c)   When one polygon subsumes another, their

       “thicknesses” in the area of overlap are summed.

(d)   When two polygons intersect, their “thicknesses”

        are summed in the area of overlap.

Figure 7 
Overlaying Polygons to Estimate Approximate Locations



TextTiling: Enhancing Retrieval through
Automatic Subtopic Identification

Full-length documents have only recently become
available on-line in large quantities, although technical
abstracts, short newswire texts, and legal documents
have been accessible for many years.23 The large major-
ity of on-line information has been bibliographic (e.g.,
authors, titles, and abstracts) instead of the full text of
the document. For this reason, most information
retrieval methods are better suited for accessing
abstracts than for accessing longer documents. Part of
the repository research was an exploration of new
approaches to information retrieval particularly suited
to full-length texts, such as those expected in the
Sequoia 2000 database. 

A problem with applying traditional information
retrieval methods to full-length text documents is that
the structure of full-length documents is quite differ-
ent from that of abstracts. (In this paper, “full-length
document” refers to expository text of any length.
Typical examples are a short magazine article and 
a 50-page technical report. We exclude documents
composed of headlines, short advertisements, and any
other disjointed texts of whatever length. We also
assume that the document does not have detailed
orthographically marked structure. Croft, Krovetz,
and Turtle describe work that takes advantage of this
kind of information.24) One way to view an expository
text is as a sequence of subtopics set against a backdrop
of one or two main topics. A long text comprises many
different subtopics that may be related to one another
and to the backdrop in many different ways. The main
topics of a text are discussed in its abstract, if one
exists, but subtopics are usually not mentioned.
Therefore, instead of querying against the entire
content of a document, a user should be able to issue a

query about a coherent subpart, or subtopic, of a full-
length document, and that subtopic should be specifi-
able with respect to the document’s main topic(s). 

Consider a Discover magazine article about the
Magellan space probe’s exploration of Venus.25

A reader divided this 23-paragraph article into the fol-
lowing segments with the labels shown, where the
numbers indicate paragraph numbers: 

1–2 Intro to Magellan space probe 
3–4 Intro to Venus 
5–7 Lack of craters 
8–11 Evidence of volcanic action 

12–15 River Styx 
16–18Crustal spreading 
19–21 Recent volcanism 
22–23 Future of Magellan 

Assume that the topic of volcanic activity is of
interest to a user. Crucial to a system’s decision to
retrieve this document is the knowledge that a dense
discussion of volcanic activity, rather than a passing ref-
erence, appears. Since volcanism is not one of the
text’s two main topics, the number of references to
this term will probably not dominate the statistics of
term frequency. On the other hand, document selec-
tion should not necessarily be based on the number of
references to the target terms. 

The goal should be to determine whether or not 
a relevant discussion of a concept or topic appears. 
A simple approach to distinguishing between a true
discussion and a passing reference is to determine the
locality of the references. In the computer science
operating systems literature, locality refers to the fact
that over time, memory access patterns tend to con-
centrate in localized clusters rather than be distributed
evenly throughout memory. Similarly, in full-length
texts, the close proximity of members of a set of
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Figure 8 
Surface Plot Produced from the State Water Project Text



to form peaks, whereas low similarity values, which
indicate a potential boundary between tiles, create val-
leys. Figure 9 shows such a graph for the Discover
magazine article mentioned earlier. The vertical lines
indicate where human judges thought the topic
boundaries should be placed. The graph shows the
computed similarity of adjacent blocks of text. Peaks
indicate coherency, and valleys indicate potential
breaks between tiles. 

The one adjustable parameter is the size of the block
used for comparison. This value, k, varies slightly from
text to text. As a heuristic, it is assigned the average
paragraph length (in sentences), although the block
size that best matches the human judgment data is
sometimes one sentence greater or smaller. Actual
paragraphs are not used because their lengths can be
highly irregular, leading to unbalanced comparisons. 

Similarity is measured by using a variation of the
tf.idf (term frequency times inverse document fre-
quency) measurement.30 In standard tf.idf, terms that
are frequent in an individual document but relatively
infrequent throughout the corpus are considered to
be good distinguishers of the contents of the individ-
ual document. In TextTiling, each block of k sen-
tences is treated as a unit, and the frequency of a term
within each block is compared to its frequency in the
entire document. (Note that the algorithm uses a large
stop list; i.e., closed class words and other very fre-
quent terms are omitted from the calculation.) This
approach helps bring out a distinction between local
and global extent of terms. A term that is discussed fre-
quently within a localized cluster (thus indicating 
a cohesive passage) will be weighted more heavily than
a term that appears frequently but scattered evenly
throughout the entire document, or infrequently
within one block. Thus if adjacent blocks share many
terms, and those shared terms are weighted heavily,
there is strong evidence that the adjacent blocks
cohere with one another. 
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references to a particular concept is a good indicator of
topicality. For example, the term volcanism occurs 5
times in the Magellan article, the first four instances of
which occur in four adjacent paragraphs, along with
accompanying discussion. In contrast, the term scien-
tists, which is not a valid subtopic, occurs 13 times, dis-
tributed somewhat evenly throughout. By its very
nature, a subtopic will not be discussed throughout an
entire text. Similarly, true subtopics are not indicated
by only passing references. The term belly dancer
occurs only once, and its related terms are confined to
the one sentence it appears in. As its usage is only 
a passing reference, belly dancing is not a true subtopic
of this text. 

Our solution to the problem of retaining valid
subtopical discussions while at the same time avoid-
ing being fooled by passing references is to make 
use of locality information and to partition docu-
ments according to their subtopical structure. This
approach’s capacity for improving a standard informa-
tion retrieval task has been verified by information
retrieval experiments using full-text test collections
from the TIPSTER database.26,27

One way to get an approximation of the subtopic
structure is to break the document into paragraphs, or
for very long documents, sections. In both cases, this
entails using the orthographic marking supplied by the
author to determine topic boundaries. 

Another way to approximate local structure in long
documents is to divide the documents into even-sized
pieces, without regard for any boundaries. This
approach is not practical, however, because we are
interested in exploring the performance of motivated
segmentation, i.e., segmentation that reflects the
text’s true underlying subtopic structure, which often
spans paragraph boundaries. 

Toward this end, we have developed TextTiling, 
a method for partitioning full-length text documents
into coherent multiparagraph units called tiles.26,28,29

TextTiling approximates the subtopic structure of 
a document by using patterns of lexical connectivity to
find coherent subdiscussions. The layout of the tiles is
meant to reflect the pattern of subtopics contained in
an expository text. The approach uses quantitative lex-
ical analyses to determine the extent of the tiles and to
classify them with respect to a general knowledge base.
The tiles have been found to correspond well to
human judgments of the major subtopic boundaries of
science magazine articles. 

The algorithm is a two-step process. First, all pairs of
adjacent blocks of text (where blocks are usually three
to five sentences long) are compared and assigned 
a similarity value. Second, the resulting sequence of
similarity values, after being graphed and smoothed, is
examined for peaks and valleys. High similarity values,
which imply that the adjacent blocks cohere well, tend
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Results of TextTiling a 77-sentence Science Article
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Similarity between blocks is calculated by the follow-
ing cosine measure: Given two text blocks b1 and b2, 

where t ranges over all the terms in the document, and
wt,b1 is the tf.idf weight assigned to term t in block b1.
Thus, if the similarity score between two blocks is
high, then not only do the blocks have terms in com-
mon, but the common terms are relatively rare with
respect to the rest of the document. The evidence in
the reverse is not as conclusive. If adjacent blocks have
a low similarity measure, this does not necessarily
mean that the blocks cohere. In practice, however, this
negative evidence is often justified. 

The graph is then smoothed using a discrete convo-
lution31 of the similarity function with the function
hk (.), where 

is very important and will produce considerable
improvement in retrieval effectiveness over most exist-
ing similarity-based techniques. 

Conclusion

The Sequoia 2000 Electronic Repository project has
provided a test bed for developing and evaluating tech-
nologies required for effective and efficient access to
the digital libraries of the future. We can expect that as
digital libraries proliferate and include vast databases of
information linked together by high-bandwidth net-
works, they must support all current and future media
in an easily accessible and content-addressable fashion. 

The work begun on the Sequoia 2000 Electronic
Repository is continuing under UC Berkeley’s digital
library project sponsored jointly by the National
Science Foundation (NSF), the National Aeronautics
and Space Administration (NASA), and the Defense
Advanced Research Projects Agency (DARPA).
Digital libraries are a fledgling technology with no
firm standards, architectures, or even consensus
notions of what they are and how they are to work.
Our goal in this ongoing research is to develop the
means of placing the contents of this developing
global virtual library at the fingertips of a worldwide
clientele. Achieving this goal will require the applica-
tion of advanced techniques for information retrieval,
information filtering, resource discovery, and the
application of new techniques for automatically ana-
lyzing and characterizing data sources ranging from
texts to videos. Much of the work needed to enable
our vision of these new technologies was pioneered in
the Sequoia 2000 Electronic Repository project. 
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