
A Brief History of Fortran

The Fortran (FORmula TRANslating) computer lan-
guage was the result of a project begun by John
Backus at IBM in 1954. The goal of this project was to
provide a way for programmers to express mathemati-
cal formulas through a formalism that computers could
translate into machine instructions. Initially there was
a great deal of skepticism about the efficacy of such
a scheme. “How,’’ the scientists asked, “would anyone
be able to tolerate the inefficiencies that would result
from compiled code?’’ But, as it turned out, the first
compilers were surprisingly good, and programmers
were able, for the first time, to express mathematics in
a high-level computer language.

Fortran has evolved continually over the years in
response to the needs of users, particularly in the areas
of mathematical expressivity, program maintainability,
hardware control (such as I/O), and, of course, code
optimizations. In the meantime, other languages such
as C and C11 have been designed to better meet the
nonmathematical aspects of software design, such as
graphical interfaces and complex logical layouts. These
languages have caught on and have gradually begun to
erode the scientific/engineering Fortran code base.

By the 1980s, pronouncements of the “death of
Fortran” prompted language designers to propose
extensions to Fortran that would incorporate the best
features of other high-level languages and, in addition,
provide new levels of mathematical expressivity popu-
lar on supercomputers such as the CYBER 205 and the
CRAY systems. This language became standardized as
Fortran 90 (ISO/IEC 1539: 1991; ANSI X3.198-
1992). At the present time, Fortran 95, which
includes many of the parallelization features of High
Performance Fortran discussed later in this paper, is in
the final stages of standardization. It is not yet clear
whether the modernization of Fortran can, of itself,
stem the C tide. However, I will demonstrate in this
paper that modern Fortran is a viable mainstream lan-
guage for parallelism. It is true that parallelism is not
yet part of the scientific programming mainstream.
However, it seems likely that, with the scientists’
never-ending thirst for affordable performance, paral-
lelism will become much more common—especially

Digital Technical Journal Vol. 8 No. 3 1996 39

Modern Fortran
Revived as the
Language of Scientific
Parallel Computing

William N. Celmaster

New features of Fortran are changing the way
in which scientists are writing and maintaining
large analytic codes. Further, a number of these
new features make it easier for compilers to
generate highly optimized architecture-specific
codes. Among the most exciting kinds of
architecture-specific optimizations are those
having to do with parallelism. This paper
describes Fortran 90 and the standardized
language extensions for both shared-memory
and distributed-memory parallelism. In par-
ticular, three case studies are examined, show-
ing how the distributed-memory extensions
(High Performance Fortran) are used both for
data parallel algorithms and for single-program–
multiple-data algorithms.

now that appropriate standards have evolved. Just as
early Fortran enabled average scientists and engineers
to program the computers of the 1960s, modern
Fortran may enable average scientists and engineers to
program parallel computers of the next decade.

An Introduction to Fortran 90

Fortran 90 introduces some important capabilities in
mathematical expressivity through a wealth of natural
constructs for manipulating arrays.1 In addition,
Fortran 90 incorporates modern control constructs
and up-to-date features for data abstraction and data
hiding. Some of these constructs, for example, DO
WHILE, although not part of FORTRAN 77, are
already part of the de facto Fortran standard as pro-
vided, for example, with DEC Fortran.

Among the key new features of Fortran 90 are the
following:

■ Inclusion of all of FORTRAN 77, so users can
compile their FORTRAN 77 codes without
modification

■ Permissibility of free-form source code, so pro-
grammers can use long (i.e., meaningful) variable
names and are not restricted to begin statements
in column 7

■ Modern control structures like CASE and DO
WHILE, so programmers can take advantage of
structured programming constructs

■ Extended control of numeric precision, for archi-
tecture independence

■ Array processing extensions, for more easily express-
ing array operations and also for expressing inde-
pendence of element operations

■ Pointers, for more flexible control of data placement
■ Data structures, for data abstraction
■ User-defined types and operators, for data

abstraction
■ Procedures and modules, to help programmers

write reusable code
■ Stream character-oriented input/output features
■ New intrinsic functions

With these new features, a modern Fortran pro-
grammer can not only successfully compile and exe-
cute previous standards-compliant Fortran codes but
also design better codes with

■ Dramatically simplified ways of doing dynamic
memory management

■ Dynamic memory allocation and deallocation for
memory management

■ Better modularity and therefore reusability

■ Better readability
■ Easier program maintenance

Additionally, of course, programmers have the
assurance of complete portability between platforms
and architectures.

The following code fragment illustrates the simplic-
ity of dynamic memory allocation with Fortran 90. It
also includes some of the new syntax for declaring vari-
ables, some examples of array manipulations, and an
example of how to use the new intrinsic matrix multi-
plication function. In addition, the exclamation mark,
which is used to begin comment statements, is a new
Fortran 90 feature that was widely used in the past as
an extension to FORTRAN 77.

Some of the new features of Fortran 90 were intro-
duced not only for simplified programming but also
to permit better hardware-specific optimizations.
For example, in Fortran 90, one can write the array
assignment

A = B + C

which in FORTRAN 77 would be written as

DO 100 J = 1,N

DO 200 I = 1,M

A(I,J) = B(I,J) + C(I,J)

200 END DO

100 END DO

The Fortran 90 array assignment not only is more
elegant but also permits the compiler to easily recog-
nize that the individual element assignments are inde-
pendent of one another. If the compiler were targeting
a vector or parallel computer, it could generate code
that exploits the architecture by taking advantage of
this independence between iterations.

Of course, the particular DO loop shown above is
simple enough that many compilers would recognize
the independence of iterations and could therefore
perform the architecture-specific optimizations with-
out the aid of Fortran 90’s new array constructs. But
in general, many of the new features of Fortran 90
help compilers to perform architecture-specific opti-
mizations. More important, these features help pro-
grammers express basic numerical algorithms in ways
inherently more amenable to optimizations that take
advantage of multiple arithmetic units.

40 Digital Technical Journal Vol. 8 No. 3 1996

REAL, DIMENSION(:,:,:), ! NEW DECLARATION SYNTAX

& ALLOCATABLE :: GRID ! DYNAMIC STORAGE

REAL*8 A(4,4),B(4,4),C(4,4) ! OLD DECLARATION SYNTAX

READ *, N ! READ IN THE DIMENSION

ALLOCATE(GRID(N+2,N+2,2)) ! ALLOCATE THE STORAGE

GRID(:,:,1) = 1.0 ! ASSIGN PART OF ARRAY

GRID(:,:,2) = 2.0 ! ASSIGN REST OF ARRAY

A = GRID(1:4,1:4,1) ! ASSIGNMENT

B = GRID(2:5,1:4,2) ! ASSIGNMENT

C = MATMUL(A,B) ! MATRIX MULTIPLICATION

A Brief History of Parallel Fortran: PCF and HPF

During the past ten years, two significant efforts have
been undertaken to standardize parallel extensions to
Fortran. The first of these was under the auspices of
the Parallel Computing Forum (PCF) and targeted
global-shared-memory architectures. The PCF effort
was directed to control parallelism, with little atten-
tion to language features for managing data locality.
The 1991 PCF standard established an approach to
shared-memory extensions of Fortran and also estab-
lished an interim syntax. These extensions were later
somewhat modified and incorporated in the standard
extensions now known as ANSI X3H5.

At about the time the ANSI X3H5 standard
was adopted, another standardization committee
began work on extending Fortran 90 for distributed-
memory architectures, with the goal of providing
a language suitable for scalable computing. This
committee became known as the High Performance
Fortran Forum and produced in 1993 the High
Performance Fortran (HPF) language specification.2

The HPF programming-model target was data paral-
lelism, and many data placement directives are pro-
vided for the programmer to optimize data locality. In
addition, HPF includes ways to specify a more general
style of single-program–multiple-data (SPMD) execu-
tion in which separate processors can independently
work on different parts of the code. This SPMD speci-
fication is formalized in such a way as to make the
resulting code far more maintainable than previous
message-passing-library ways of specifying SPMD dis-
tributed parallelism.

Can HPF and PCF extensions be used together in
the same Fortran 90 code? Sure. But the PCF specifi-
cation has lots of “user-beware” warnings about the
correct usage of the PARALLEL REGION construct,
and the HPF specification has lots of warnings about
the correct usage of the EXTRINSIC(HPF_LOCAL)
construct. So as you can see, there are times when
a programmer had better be very knowledgeable if she
or he wants to write a mixed HPF/PCF code. Digital’s
products support both the PCF and HPF extensions.
The HPF extensions are supported as part of the DEC
Fortran 90 compiler, and the PCF extensions are sup-
ported through Digital’s KAP Fortran optimizer.3,4

Shared Memory Fortran Parallelism

The traditional discussions of parallel computing focus
rather heavily on what is known as control parallelism.
Namely, the application is analyzed in terms of the
opportunities for parallel execution of various threads
of control. The canonical example is a DO loop in
which the individual iterations operate on inde-
pendent data. Each iteration could, in principle, be

executed simultaneously (provided of course that the
hardware allows simultaneous access to instructions
and data). Technology has evolved to the point at
which compilers are often able to detect these kinds
of parallelization opportunities and automatically
decompose codes. Even when the compiler is not able
to make this analysis, the programmer often is able to
do so, perhaps after performing a few algorithmic
modifications. It is then relatively easy to provide lan-
guage constructs that the user can add to the program
as parallelization hints to the compiler.

This kind of analysis is all well and good, provided
that data can be accessed democratically and quickly by
all processors. With modern hardware clocked at about
300 megahertz, this amounts to saying that memory
latencies are lower than 100 nanoseconds, and memory
bandwidths are greater than 100 megabytes per sec-
ond. This characterizes today’s single and symmetric
multiprocessing (SMP) computers such as Digital’s
AlphaServer 8400 system, which comes with twelve
600-megaflop processors on a backplane with a band-
width of close to 2 gigabytes per second.

In summary, the beauty of shared-memory paral-
lelism is that the programmer does not need to worry
too much about where the data is and can concentrate
instead on the easier problem of control parallelism. In
the simplest cases, the compiler can automatically
decompose the problem without requiring any code
modifications. For example, automatic decomposition
for SMP systems of a code called, for example, cfd.f,
can be done trivially with Digital’s KAP optimizer by
using the command line

kf90 -fkapargs=‘-conc’ cfd.f -o cfd.exe

As an example of guided automatic decomposition,
the following shows how a KAP parallelization asser-
tion can be included in the code. (Actually, the code
segment below is so simple that the compiler can auto-
matically detect the parallelism without the help of the
assertion.)

C*$* ASSERT DO (CONCURRENT)

DO 100 I = 4,N

A(I) = B(I) + C(I)

END DO

For explicit control of the parallelism, PCF direc-
tives can be used. In the example that follows, the KAP
preprocessor form of the PCF directives are used to
parallelize a loop.

C*KAP*PARALLEL REGION

C*KAP*&SHARED(A,B,C) LOCAL(I)

C*KAP*PARALLEL DO

DO 10 I = 1,N

A(I) = B(I) + C(I)

10 CONTINUE

C*KAP*END PARALLEL REGION

Digital Technical Journal Vol. 8 No. 3 1996 41

Cluster Fortran Parallelism

High Performance Fortran V1.1 is currently the only
language standard for distributed-memory parallel
computing. The most significant way in which HPF
extends Fortran 90 is through a rich family of data
placement directives. There are also library routines
and some extensions for control parallelism. HPF
is the simplest way of parallelizing data-parallel appli-
cations on clusters (also known as “farms”) of work-
stations and servers. Other methods of cluster
parallelism, such as message passing, require more
bookkeeping and are therefore less easy to express and
less easy to maintain. In addition, during the past year,
HPF has become widely available and is supported on
the platforms of all major vendors.

HPF is often considered to be a data parallel lan-
guage. That is, it facilitates parallelization of array-
based algorithms in which the instruction stream can
be described as a sequence of array manipulations,
each of which is inherently parallel. What is less well
known is that HPF also provides a powerful way of
expressing the more general SPMD parallelism men-
tioned earlier. This kind of parallelism, often expressed
with message-passing libraries such as MPI,5 is one in
which individual processors can operate simultane-
ously on independent instruction streams and gener-
ally exchange data either by explicitly sharing memory
or by exchanging messages. Three case studies follow
which illustrate the data parallel and the SPMD styles
of programming.

A One-dimensional Finite-difference Algorithm
Consider a simple one-dimensional grid problem—
the most mind-bogglingly simple illustration of HPF
in action—in which each grid value is updated as a lin-
ear combination of its (previous) nearest neighbors.

For each interior grid index i, the update algorithm is

Y(i) = X(i 21) 1 X(i 1 1) 2 2 3 X(i)

In Fortran 90, the resulting DO loop can be
expressed as a single array assignment. How would
this be parallelized? The simplest way to imagine paral-
lelization would be to partition the X and Y arrays into
equal-size chunks, with one chunk on each processor.
Each iteration could proceed simultaneously, and at
the chunk boundaries, some communication would
occur between processors. The HPF implementation
of this idea is simply to add the Fortran 90 code to two
data placement statements. One of these declares that
the X array should be distributed into chunks, or
blocks. The other declares that the Y array should be
distributed such that the elements align to the same
processors as the corresponding elements of the X
array. The resultant code for arrays with 1,000 ele-
ments is as follows:

!HPF$ DISTRIBUTE X(BLOCK)

!HPF$ ALIGN Y WITH X

REAL*8 X(1000), Y(1000)

<initialize x>

Y(2:999) = X(1:998) + X(3:1000) - 2 * X(2:999)

<check the answer>

END

The HPF compiler is responsible for generating all of
the boundary-element communication code. The com-
piler is also responsible for determining the most even
distribution of arrays. (If, for example, there were 13
processors, some chunks would be bigger than others.)

This simple example is useful not only as an illustra-
tion of the power of HPF but also as a way of pointing
to one of the hazards of parallel algorithm develop-
ment. Each of the element-updates involves three
floating-point operations—an addition, a subtraction,
and a multiplication. So, as an example, on a four-
processor system, each processor would operate on
250 elements with 750 floating-point operations. In
addition, each processor would be required to com-
municate one word of data for each of the two chunk
boundaries. The time that each of these communica-
tions takes is known as the communications latency.
Typical transmission control protocol/internet proto-
col (TCP/IP) network latencies are twenty thousand
times (or more) longer than the time it typically takes
a high-performance system to perform a floating-
point operation. Thus even 750 floating-point opera-
tions are negligible compared with the time taken to
communicate. In the above example, network paral-
lelism would be a net loss, since the total execution
time would be totally swamped by the network
latency.

Of course, some communication mechanisms are of
lower latency than TCP/IP networks. As an example,
Digital’s implementation of MEMORY CHANNEL
cluster interconnect reduces the latency to less than
1000 floating-point operations (relative to the perfor-
mance of, say, Digital’s AlphaStation 600 5/300 sys-
tem). For SMP, the latency is even smaller. In both
cases, there may be a benefit to parallelism.

A Three-dimensional Red–Black Poisson
Equation Solver
The example of a one-dimensional algorithm in the
previous section can be easily generalized to a more
realistic three-dimensional algorithm for solving
the Poisson equation using a relaxation technique
commonly known as the red–black method. The
grid is partitioned into two colors, following a two-
dimensional checkerboard arrangement. Each red
grid element is updated based on the values of neigh-
boring black elements. A similar array assignment can

42 Digital Technical Journal Vol. 8 No. 3 1996

be written as in the previous example or, as shown in
the partial code segment below, alternatively can use
the HPF FORALL construct to express the assign-
ments in a style similar to that for serial DO loops.

!HPF$ DISTRIBUTE(*,BLOCK,BLOCK) :: U,V

<other stuff>

FORALL (I=2:NX-1,J=2:NY-1:2,K=2:NZ-1:2)

U(I,J,K) = FACTOR*(HSQ*F(I,J,K) + &

U(I-1,J,K) + U(I+1,J,K) + &

The distribution directive lays out the array so that
the first dimension is completely contained within
a processor, with the other two dimensions block-
distributed across processors in rectangular chunks.
The red–black checkerboarding is performed along
the second and third dimensions. Note also the
Fortran 90 free-form syntax employed here, in which
the ampersand is used as an end-of- line continuation
statement.

In this example, the parallelism is similar to that
of the one-dimensional finite-difference example.
However, communication now occurs along the two-
dimensional boundaries between blocks. The HPF
compiler is responsible for these communications.
Digital’s Fortran 90 compiler performs several opti-
mizations of those communications. First, it pack-
ages up all of the data that must be communicated
into long vectors so that the start-up latency is effec-
tively hidden. Second, the compiler creates so-called
shadow edges (processor-local copies of nonlocal
boundary edges) for the local arrays so as to minimize
the effect of buffering of neighbor values. These kinds
of optimizations can be extremely tedious to message-
passing programmers, and one of the virtues of a high-
level language like HPF is that the compiler can take
care of the bookkeeping. Also, since the compiler
can reliably do buffer-management bookkeeping (for
example, ensuring that communication buffers do not
overflow), the communications runtime library can
be optimized to a far greater extent than one would
normally expect from a user-safe message library.
Indeed, Digital’s HPF communications are performed
using a proprietary optimized communications library,
Digital’s Parallel Software Environment.6

Communications and SPMD Programming with HPF
Since HPF can be used to place data, it stands to
reason that communication can be forced between
processors. The beauty of HPF is that all of this can be
done in the context of mathematics rather than in the
context of distributed parallel programming. The
code fragment in Figure 1 illustrates how this is done.

On two processors, the two columns of the U and V
arrays are each on different processors; thus the array
assignment causes one of those columns to be moved
to the other processor. This kind of an operation begins
to provide programmers with explicit ways to control
data communication and therefore to more explicitly
manage the association of data and operations to
processors. Notice that the programmer need not be
explicit about the parallelism. In fact, scientists and
engineers rarely want to express parallelism. In typical
message-passing programs, the messages often express
communication of vector and array information.

However, despite the fervent hopes of programmers,
there are times when a parallel algorithm can be
expressed most simply as a collection of individual
instruction streams operating on local data. This SPMD
style of programming can be expressed in HPF with the
EXTRINSIC(HPF_LOCAL) declaration, as illustrated
by continuing the above code segment as shown in
Figure 2.

Because the subroutine CFD is declared to be
EXTRINSIC(HPF_LOCAL), the HPF compiler exe-
cutes that routine independently on each processor (or
more generally, the execution is done once per peer
process), operating on routine-local data. As for the
array argument, V, which is passed to the CFD routine,
each processor operates only on its local slice of that
array. In the specific example above on two processors,
the first one operates on the first column of V and the
second one operates on the second column of V.

It is important to mention here that, although HPF
permits—and even encourages—SPMD program-
ming, the more popular method at this time is the
message-passing technique embodied in, for example,
the PVM7 and MPI5 libraries. These libraries can be
invoked from Fortran, and can also be used in conjunc-
tion with EXTRINSIC(HPF_LOCAL) subroutines.

Digital Technical Journal Vol. 8 No. 3 1996 43

Figure 1
Code Example Showing Control of Data Communication without Expression of Parallelism

!HPF$ DISTRIBUTE(*,BLOCK) :: U

!HPF$ ALIGN V WITH U

REAL*8 U(N,2),V(N,2)

<initialize arrays>

V(:,1) = U(:,2) ! MOVE A VECTOR BETWEEN PROCESSORS

Clusters of SMP Systems
During these last few years of the second millennium,
we are witnessing the emergence of systems that con-
sist of clusters of shared-memory SMP computers.
This exciting development is the logical result of the
exponential increase in performance of mid-priced
($100K to $1000K) systems.

There are two natural ways of writing parallel
Fortran programs for clusters of SMP systems. The
easiest way is to use HPF and to target the total num-
ber of processors. So, for example, if there were two
SMP systems, each with four processors, one would
compile the HPF program for eight processors (more
generally, for eight peers). If the program contained,
for instance, block-distribution directives, the affected
arrays would be split up into eight chunks of contigu-
ous array sections.

The second way of writing parallel Fortran pro-
grams for clustered SMP systems is to use HPF to
target the total number of SMP machines and then
to use PCF (or more generally, shared-memory exten-
sions) to achieve parallelism locally on each of the SMP
machines. For example, one might write

!HPF$ DISTRIBUTE (*,BLOCK) :: V

<stuff>

EXTRINSIC(HPF_LOCAL) SUBROUTINE CFD(V)

<stuff>

C*KAP*PARALLEL REGION

If the target system consisted of two SMP systems,
each with four processors, and the above program was
compiled for two peers, then the V array would be dis-
tributed into two chunks of columns—one chunk
per SMP system. Then the routine, CFD, would be
executed once per SMP system; and the PCF directives
would, on each system, cause parallelism on four
threads of execution.

It is unclear at this time whether there would ever
be a practical reason for using a mix of HPF and PCF
extensions. It might be tempting to think that there
would be performance advantages associated with the
local use of shared-memory parallelism. However,
experience has shown that program performance
tends to be restricted by the weakest link in the perfor-
mance chain (an observation that has been enshrined

as “Amdahl’s Law’’). In the case of clustered SMP sys-
tems, the weak link would be the inter-SMP commu-
nication and not the intra-SMP (shared-memory)
communication. This casts some doubt on the worth
of local communications optimizations. Experimenta-
tion will be necessary.

Whatever else one might say about parallelism, one
thing is certain: The future will not be boring.

Summary

Fortran was developed and has continued to evolve as
a computer language that is particularly suited to
expressing mathematical formulas. Among the recent
extensions to Fortran are a variety of constructs for
the high-level manipulation of arrays. These constructs
are especially amenable to parallel optimization. In
addition, there are extensions (PCF) for explicit
shared-memory parallelization and also data-parallel
extensions (HPF) for cluster parallelism. The Digital
Fortran compiler performs many interesting optimiza-
tions of codes written using HPF. These HPF codes
are able to hide—without sacrificing performance—
much of the tedium that otherwise accompanies clus-
ter programming. Today, the most exciting frontier
for Fortran is that of SMP clusters and other
nonuniform-memory-access (NUMA) systems.

References

1. J. Adams et al., Fortran 90 Handbook (New York:
McGraw-Hill, Inc., 1992).

2. “High Performance Fortran language specification,”
Scientific Programming, vol. 2: 1–170 (New York:
John Wiley and Sons, Inc., 1993), and C. Koelbel et al.,
The High Performance Fortran Handbook (Boston:
MIT Press, 1994).

3. J. Harris et al., “Compiling High Performance Fortran
for Distributed-memory Systems,’’ Digital Technical
Journal, vol. 7, no. 3 (1995): 5–23.

4. R. Kuhn, B. Leasure, and S. Shah, “The KAP Parallelizer
for DEC Fortran and DEC C Programs,’’ Digital
Technical Journal, vol. 6, no. 3 (1994): 57–70.

44 Digital Technical Journal Vol. 8 No. 3 1996

Figure 2
Code Example of Parallel Algorithm Expressed as Collection of Instruction Streams

CALL CFD(V) ! DO LOCAL WORK ON THE LOCAL PART OF V

<finish the main program>

EXTRINSIC(HPF_LOCAL) SUBROUTINE CFD(VLOCAL)

REAL*8, DIMENSION(:,:) :: VLOCAL

!HPF$ DISTRIBUTE *(*,BLOCK) :: VLOCAL

<do arbitrarily complex work with vlocal>

END

5. For example see Proceedings of Supercomputing ’93
(IEEE, November 1993): 878–883, and W. Gropp,
E. Lusk, and A. Skjellum, Using MPI (Boston: MIT
Press, 1994).

6. E. Benson et al., “Design of Digital’s Parallel Software
Environment,” Digital Technical Journal, vol. 7, no. 3
(1995): 24–38.

7. For example see A. Geist et al., PVM: Parallel Virtual
Machine. A Users’ Guide and Tutorial for Network
Parallel Computing (Boston: MIT Press, 1994).

Biography

Digital Technical Journal Vol. 8 No. 3 1996 45

William N. Celmaster
Bill Celmaster has long been involved with high-performance
computing, both as a scientist and as a computing consul-
tant. Joining Digital from BBN in 1991, Bill managed the
porting of major scientific and engineering applications to
the DECmpp 12000 system. Now a member of Digital’s
High Performance Computing Expertise Center, he is
responsible for parallel software demonstrations and per-
formance characterization of Digital’s high-performance
systems. He has published numerous papers on parallel
computing methods, as well as on topics in the field of
physics. Bill received a bachelor of science degree in mathe-
matics and physics from the University of British Columbia
and a Ph.D. in physics from Harvard University.

