
Introduction

Historically, the limiting factor for the Oracle7 rela-
tional database management system (RDBMS) perfor-
mance on any given platform has been the amount of
computational and I/O resources available on a single
node. Although CPUs have become faster by an order
of magnitude over the last several years, I/O speeds
have not improved commensurately. For instance, the
Alpha CPU clock speed alone has increased four times
since its introduction; during the same time period,
disk access times have improved by a factor of two at
best. The overall throughput of database software is
critically dependent on the speed of access to data.

To overcome the I/O speed limitation and to maxi-
mize performance, the standard Oracle7 database server
already utilizes and is optimized for various paralleliza-
tion techniques in software (e.g., intelligent caching,
data prefetching, and parallel query execution) and in
hardware (e.g., symmetric multiprocessing [SMP] sys-
tems, clusters, and massively parallel processing [MPP]
systems). Given the disparity in latency for data access
between memory (a few tens of nanoseconds) and disk
(a few milliseconds), a common technique for maximiz-
ing performance is to minimize disk I/O. Our project
originated as an investigation into possible additional
performance improvements in the Oracle7 database
server in the context of increased memory addressability
and execution speed provided by the AlphaServer and
DIGITAL UNIX system. Work done as part of this proj-
ect subsequently became the foundation for product
development of the Oracle 64 Bit Option.

Of the memory resource that the Oracle7 database
uses, the largest portion is used to cache the most fre-
quently used data blocks. With hardware and operat-
ing system support for 64-bit memory addresses, new
possibilities have opened up for high-performance
application software to take advantage of large mem-
ory configurations. 

Two of the concepts utilized are hardly new in data-
base development, i.e., improving database server per-
formance by caching more data in memory and
improving I/O subsystem throughput by increasing
data transfer sizes. However, various conflicting fac-
tors contribute to the practical upper bounds on

76 Digital Technical Journal Vol. 8 No. 4 1996

Design of the 64-bit
Option for the Oracle7
Relational Database
Management System 

Vipin V. Gokhale 

Like most database management systems, the
Oracle7 database server uses memory to cache
data in disk files and improve the performance.
In general, larger memory caches result in better
performance. Until recently, the practical limit 
on the amount of memory the Oracle7 server
could use was well under 3 gigabytes on most
32-bit system platforms. Digital Equipment
Corporation’s combination of the 64-bit Alpha
system and the DIGITAL UNIX operating system
differentiates itself from the rest of the com-
puter industry by being the first standards-
compliant UNIX implementation to support
linear 64-bit memory addressing and 64-bit
application programming interfaces, allowing
high-performance applications to directly access
memory in excess of 4 gigabytes. The Oracle7
database server is the first commercial data-
base product in the industry to exploit the per-
formance potential of the very large memory
configurations provided by DIGITAL. This paper
explores aspects of the design and implementa-
tion of the Oracle 64 Bit Option. 



basic unit for I/O and disk space allocation in the
Oracle7 RDBMS. Large block sizes mean greater den-
sity in the rows per block for the data and indexes, and
typically benefit decision-support applications. Large
blocks are also useful to applications that require long,
contiguous rows, for example, applications that store
multimedia data such as images and sound. Rows that
span multiple blocks in Oracle7 require proportion-
ately more I/O transactions to read all the pieces,
resulting in performance degradation. Most platforms
that run the Oracle7 system support a maximum data-
base block size of 8 kilobytes (KB); the DIGITAL
UNIX system supports block sizes of up to 32 KB. 

The shared global area (SGA) is that area of memory
used by Oracle7 processes to hold critical shared data
structures such as process state, structured query lan-
guage (SQL)–level caches, session and transaction
states, and redo buffers. The bulk of the SGA in terms
of size, however, is the database buffer (or block)
cache. Use of the buffer cache means that costly disk
I/O is avoided; therefore, the performance of the
Oracle7 database server relates directly to the amount
of data cached in the buffer cache. LSGA seeks to use
as much memory as possible to cache database blocks.
Ideally, an entire database can be cached in memory
(an “in-memory” database) and avoid almost all I/O
during normal operation.

A transaction whose data request is satisfied from
the database buffer cache executes an order of magni-
tude faster than a transaction that must read its data
from disk. The difference in performance is a direct
consequence of the disparity in access times for main
memory and disk storage. A database block found in
the buffer cache is termed a “cache hit.” A cache miss,
in contrast, is the single largest contributor to degra-
dation in transaction latency. Both BOB and LSGA use
memory to avoid cache misses. The Oracle7 buffer
cache implementation is the same as that of a typical
write-back cache. As such, a cache miss, in addition to
resulting in a costly disk I/O, can have secondary
effects. For instance, one or more of the least recently
used buffers may be evicted from the buffer cache if no
free buffers are available, and additional I/O transac-
tions may be incurred if the evicted block has been
modified since the last time it was read from the disk.
Oracle7 buffer cache management algorithms already
implement aggressive and intelligent caching schemes
and seek to avoid disk I/O. Although cache-miss
penalties apply with or without the 64-bit option,
“cache thrashing” that results from constrained cache
sizes and large data sets can be reduced with the
option to the benefit of many existing applications. 

The Oracle7 buffer cache is specifically designed
and optimized for Oracle’s multi-versioning read-
consistency transactional model. (Oracle7 buffer
cache is independent of the DIGITAL UNIX unified
buffer cache, or UBC.) Since Oracle7 can manage its

Digital Technical Journal Vol. 8 No. 4 1996 77

performance improvement. These factors include
CPU architectures; memory addressability; operating
system features; cost; and product requirements for
portability, compatibility, and time-to-market. An
additional design challenge for the Oracle 64 Bit
Option project was a requirement for significant per-
formance increases for a broad class of existing data-
base applications that use an open, general-purpose
operating system and database software. 

This paper provides an overview of the Oracle 64
Bit Option, factors that influenced its design and
implementation, and performance implications for
some database application areas. In-depth information
on Oracle7 RDBMS architecture, administrative com-
mands, and tuning guidelines can be found in the
Oracle7 Server Documentation Set.1 Detailed analysis,
database server, and application-tuning issues are
deferred to the references cited. Overall observations
and conclusions from experiments, rather than specific
details and data points, are used in this paper except
where such data is publicly available. 

Oracle 64 Bit Option Goals

The goals for the Oracle 64 Bit Option project were as
follows: 

■ Demonstrate a clearly identifiable performance
increase for Oracle7 running on DIGITAL UNIX
systems across two commonly used classes of data-
base applications: decision support systems (DSS)
and online transaction processing (OLTP).

■ Ensure that 64-bit addressability and large memory
configurations are the only two control variables
that influence overall application performance.

■ Break the 1- to 2-GB barrier on the amount 
of directly accessible memory that can practically 
be used for typical Oracle7 database cache
implementations.

■ Add scalability and performance features that com-
plement, rather than replace, current Oracle7
server SMP and cluster offerings. 

■ Implement all of the above goals without signifi-
cantly rewriting Oracle7 code or introducing appli-
cation incompatibilities across any of the other
platforms on which the Oracle7 system runs. 

Oracle 64 Bit Option Components

Two major components make up the Oracle 64 Bit
Option: big Oracle blocks (BOB) and large shared
global area (LSGA). They are briefly described in this
section. 

The BOB component takes advantage of large
memory by making individual database blocks larger
than those on 32-bit platforms. A database block is a



own buffer cache more effectively than file system
buffer caches, it is often recommended that the file
system cache size be reduced in favor of a larger
Oracle7 buffer cache when the database resides on 
a file system. Reducing file system cache size also mini-
mizes redundant caching of data at the file system
level. For this reason, we rejected early on the obvious
design solution of using the DIGITAL UNIX file sys-
tem as a large cache for taking advantage of large
memory configurations—even though it had the
appeal of complete transparency and no code changes
to the Oracle7 system. 

Background and Rationale for Design Decisions

The primary impetus for this project was to evaluate
the impact on the Oracle7 database server of emerging
64-bit platforms, such as the AlphaServer system and
DIGITAL UNIX operating system. Goals set forth 
for this project and subsequent design considerations
therefore excluded any performance and functionality
enhancements in the Oracle7 RDBMS that could not
be attributed to the benefits offered by a typical 64-bit
platform or otherwise encapsulated within platform-
specific layers of the database server code or the oper-
ating system itself.

Common areas of potential benefit for a typical 
64-bit platform (when compared to its 32-bit coun-
terpart) are (a) increased direct memory addressability,
and (b) the potential for configuring systems with
greater than 4 GB of memory. As noted above, appli-
cation performance of the Oracle7 database server
depends on whether or not data are found in the data-
base buffer cache. A 64-bit platform provides the
opportunity to expand the database buffer cache in
Oracle7 to sizes well beyond those of a 32-bit plat-
form. BOB and LSGA reflect the only logical design
choices available in Oracle7 to take advantage of this
extended addressability and meet the project goals.
Implementation of these components focused on
ensuring scalability and maximizing the effectiveness
of available memory resources.

BOB: Decisions Relevant to On-disk Database Size
Larger database blocks consume proportionately
larger amounts of memory when the data contained in
those blocks are read from the disk into the database
buffer cache. Consequently, the size of the buffer
cache itself must be increased if an application requires
a greater number of these larger blocks to be cached.
For any given size of database buffer cache, Oracle7
database administrators of 32-bit platforms have 
had to choose between the size of each database block
and the number of database blocks that must be in 
the cache to minimize disk I/O, the choice depending
on data access patterns of the applications. Memory
available for the database buffer cache is further con-

strained by the fact that this resource is also shared by
many other critical data structures in the SGA besides
the buffer cache and the memory needed by the oper-
ating system. By eliminating the need to choose
between the size of the database blocks and buffer
cache, Oracle7 on a 64-bit platform can run a greater
application mix without sacrificing performance.

Despite the codependency and the common goal 
of reducing costly disk I/O, BOB and LSGA address
two different dimensions of database scalability: BOB
addresses on-disk database size, and the LSGA addresses
in-memory database size. Application developers and
database administrators have complete flexibility to
favor one over the other or to use them in combination.

In Oracle7, the on-disk data structures that locate 
a row of data in the database use a block-address–
byte-offset tuple. The data block address (DBA) is a
32-bit quantity, which is further broken up into file
number and block offset within that file. The byte off-
set within a block is a 16-bit quantity. Although the
number of bits in the DBA used for file number and
block offset are platform dependent (10 bits for the file
number and 22 bits for the block offset is a common
format), there exists a theoretical upper limit to the
size of an Oracle7 database. With some exceptions,
most 32-bit platforms support a maximum data block
size of 8 KB, with 2 KB as the default. For example,
using a 2-KB block size, the upper limit for the size 
of the database on DIGITAL UNIX is slightly under 
8 terabytes (TB); whereas a 32-KB block size raises
that limit to slightly under 128 TB. The ability to sup-
port buffer cache sizes well beyond those of 32-bit
platforms was a critical prerequisite to enabling larger
sized data blocks and consequently larger sized data-
bases. Some 32-bit platforms are also constrained by
the fact that each data file cannot exceed a size of 4 GB
(especially if the data file is a file system managed
object) and therefore may not be able to use all of the
available block offset range in the existing DBA for-
mat. The largest database size that can be supported in
such a case is even smaller. Addressing the perceived
limits on the size of an Oracle7 database was an impor-
tant consideration. Design alternatives that required
changes to the layout or an interpretation of DBA for-
mat were rejected, at least in this project, because such
changes would have introduced incompatibilities in
on-disk data structures.

It should be pointed out that on current Alpha
processors using an 8-KB page size, a 32-KB data
block spans four memory pages, and I/O code paths
in the operating system need to lock/unlock four
times as many pages when performing an I/O trans-
action. The larger transfer size also adds to the total
time taken to perform an I/O. For instance, four
pages of memory that contain the 32-KB data block
may not be physically contiguous, and a scatter-gather
operation may be required. Although the Oracle7

78 Digital Technical Journal Vol. 8 No. 4 1996



database supports row-level locking for maximum
concurrency in cases where unrelated transactions may
be accessing different rows within a given data block,
access to the data block is serialized as each individual
change (a transaction-level change is broken down
into multiple, smaller units of change) is applied to the
data block. Larger data blocks accommodate more
rows of data and consequently increase the probability
of contention at the data block level if applications
change (insert, update, delete) data and have a locality
of reference. Experiments have shown, however, that
this added cost is only marginal relative to the overall
performance gains and can be offset easily by carefully
tuning the application. Moreover, applications that
mostly query the data rather than modify it (e.g., DSS
applications) greatly benefit from larger block sizes
since in this case access to the data block need not be
serialized. Subtle costs such as the ones mentioned
above nevertheless help explain why some applications
may not necessarily see, for example, a fourfold per-
formance increase when the change is made from an
8-KB block size to a 32-KB block size.

As with Oracle7 implementations on other platforms,
database block size with the 64-bit option is determined
at database creation time using db_block_size con-
figuration parameter.1 It cannot be changed dynamically
at a later time.

LSGA: Decisions Relevant to In-memory Database Size
The focus for the LSGA effort was to identify and elim-
inate any constraints in Oracle7 on the sizes to which
the database buffer cache could grow. DIGITAL UNIX
memory allocation application programming interfaces
(APIs) and process address space layout make it fairly
straightforward to allocate and manage System V
shared memory segments. Although the size of each
shared memory segment is limited to a maximum of 
2 GB (due to the requirement to comply with UNIX
standards), multiple segments can be used to work
around this restriction. The memory management
layer in Oracle7 code therefore was the initial area of
focus. Much of the Oracle7 code is written and archi-
tected to make it highly portable across a diverse range
of platforms, including memory-constrained 16-bit
desktop platforms. A particularly interesting aspect of
16-bit platforms with respect to memory management
is that these platforms cannot support contiguous
memory allocations beyond 64 KB. Users are forced
to resort to a segmented memory model such that
each individual segment does not exceed 64 KB in
size. Although such restrictions are somewhat con-
straining (and perhaps irrelevant) for most 32-bit
platforms—more so for 64-bit platforms—which can
easily handle contiguous memory allocations well 
in excess of 64 KB, memory management layers in
Oracle7 code are designed to be sensitive and cautious
about large contiguous memory allocations and

would use segmented allocations if the size of 
the memory allocation request exceeds a platform-
dependent threshold. In particular, the size in bytes
for each memory allocation request (a platform-
dependent value) was assumed to be well under 4 GB,
which was a correct assumption for all 32-bit plat-
forms (and even for a 64-bit platform without LSGA).
Internal data structures used 32-bit integers to repre-
sent the size of a memory allocation request.

For each buffer in the buffer cache, SGA also
contains an additional data structure (buffer header)
to hold all the metadata associated with that buf-
fer. Although memory for the buffer cache itself was
allocated using a special interface into the memory
management layer, memory allocation for buffer
headers used conventional interfaces. A different
allocation scheme was needed to allocate memory 
for buffer headers. The buffer header is the only 
major data structure in Oracle7 code whose size
requirements are directly dependent on the number of
buffers in the buffer cache. Existing memory man-
agement interfaces and algorithms used prior to LSGA
work were adequate until the number of buffers in 
the buffer cache exceeded approximately 700,000 
(or buffer cache size of approximately 6.5 GB). Minor
code changes were necessary in memory manage-
ment algorithms to accommodate bigger allocation
requests possible with existing high-end and future
AlphaServer configurations.

The AlphaServer 8400 platform can support mem-
ory configurations ranging from 2 to 14 GB, using 
2-GB memory modules. Some existing 32-bit plat-
forms can support physical memory configurations
that exceed their 4-GB addressing limit by way of seg-
mentation, such that only 4 GB of that memory is
directly accessible at any time. Programming complex-
ity associated with such segmented memory models
precluded any serious consideration in the design
process to extend LSGA work to such platforms.
Significantly rewriting the Oracle7 code was specifi-
cally identified as a goal not to be pursued by this proj-
ect. The Alpha processor and DIGITAL UNIX system
provides a flat 64-bit virtual address space model to
the applications. DIGITAL UNIX extends standard
UNIX APIs into a 64-bit programming environment.
Our choice of the AlphaServer and DIGITAL UNIX as
a development platform for this project was a fairly
simple one from a time-to-market perspective because
it allowed us to keep code changes to a minimum.

Efficiently managing a buffer cache of, for example,
8 or 10 GB in size was an interesting challenge. More
than five million buffers can be accommodated in a
10-GB cache, with a 2-KB block size. That number of
buffers is already an order of magnitude greater than
what we were able to experiment with prior to the
LSGA work. The Oracle7 buffer cache is organized as
an associative write-back cache. The mechanism for

Digital Technical Journal Vol. 8 No. 4 1996 79



locating a data block of interest in this cache is supported
by common algorithms and data structures such as hash
functions and linked lists. In many cases, traversing criti-
cal linked lists is serialized among contending threads of
execution to maintain the integrity of the lists themselves
and secondary data structures managed by these lists. As
a result, the size of such critical lists, for example, has an
impact on overall concurrency. The larger buffer count
now possible in LSGA configurations had the net effect
of reduced concurrency because the size of these lists is
proportionately larger. LSGA provided a framework to
test contributions from other unrelated projects that
addressed such potential bottlenecks to concurrency, as
it could realistically simulate relatively more stringent
boundary conditions than before.

Scalability Issues
Engineering teams at Oracle have worked very closely
with their counterparts in the DIGITAL UNIX operat-
ing system group throughout this project. The data
collected in the course of the project was useful in ana-
lyzing and addressing the scalability issues in the base
operating system as well as in the Oracle7 product.
Examples of this work are in the base operating system
granularity hint regions and in the shared page tables.2,3

For every page of physical and virtual memory, an
operating system must maintain various data structures
such as page tables, data structures to track regions of
memory with certain attributes (such as System V shared
memory regions, or text and data segments), or data
structures that track processes which have references to
these memory regions. Ancillary operating system data
structures such as page tables grow in size pro-
portionately to the size of physical memory. Changes
to page table management associated with System V
shared memory regions were made such that processes
that mapped the shared memory regions could share
page tables in addition to the data pages themselves.
Prior to this change, each process mapping the shared
memory region used a copy of associated page tables. 
A change like this reduced physical memory consump-
tion by the operating system. For example, on an Alpha
CPU supporting an 8-KB page size, it would take 8 KB
in page table entries to map 8 MB of physical memory.
For an SGA of 8 GB, it would take 1 MB in page table
entries. It is not uncommon in the Oracle7 system for
hundreds of processes to connect to the database, and
therefore map the 8 GB of SGA. Without shared page
tables, 100 such processes would have consumed 100
MB of physical memory by maintaining a per-process
copy of page tables. 

A granularity hint region is a region of physically con-
tiguous pages of memory that share virtual and physical
mappings between all the processes that map them.
Such a memory layout allows DIGITAL UNIX to take
advantage of the granularity hint feature supported by
Alpha processors. Granularity hint bits in a page table

80 Digital Technical Journal Vol. 8 No. 4 1996

entry allow the Alpha CPU to use a single translation
look-aside buffer (TLB) entry to map a 512K physical
memory space. Using one TLB entry to map larger
physical memory has the potential to reduce processor
stalls during TLB misses and refills. Also, because of the
requirement that the granularity hint region be both
virtually and physically contiguous, it is allocated at sys-
tem startup time and is not subject to normal virtual
memory management; for example, it is never paged in
or out, and subsequently the cost of a page fault is mini-
mal. Since pages in granularity hint regions are physi-
cally contiguous, any I/O done from this region of
memory is relatively more efficient because it need not
go through the scatter-gather phase.

Summary of Test Results

One of the project goals was to demonstrate clear
performance benefits for two common classes of data-
base applications, DSS and OLTP. The Transaction
Processing Council (TPC) provides an industry-
standard benchmark suite for both applications, that
is, TPC-C for OLTP and TPC-D for DSS. An industry-
standard benchmark would have been a logical choice
for a workload that would demonstrate performance
benefits. However, the enormous time, resources, and
effort required to stage an audited TPC benchmark
and the strict guidelines for any direct comparison of
published benchmark results were major factors in 
the decision to develop a workload for this project 
that matched the spirit of the TPC benchmark but not
necessarily the letter.

In late 1995, Oracle Corporation ran a series of per-
formance tests for a DSS-class workload of the Oracle7
system, with and without the 64-bit option on the
AlphaServer 8400 system running the DIGITAL UNIX
operating system with 8 GB of physical memory. A
detailed report on this test is published and available
from Oracle Corporation.4 These results, shown in
Figure 1, clearly demonstrate the benefits of a large
amount of physical memory in a configuration with
the 64-bit option. A summary of the tests conducted is
presented here along with some data points and key
observations.

(Readers interested in performance characteristics of
an audited industry-standard OLTP benchmark are
referred to the Digital Technical Journal, Volume 8,
Number 3. Two papers present performance character-
istics of Oracle7 Parallel Server release 7.3 using 5.0 GB
SGA, and a TPC-C workload on a four-node cluster.5)

The test database consisted of five tables, represent-
ing approximately 6 GB of data. The tests included
two separate configurations: 

■ A “standard” configuration with a 128-MB SGA
with a 2-KB database block size

■ A 64-bit option-enabled configuration with a 7-GB
SGA and 32-KB database block size



The evaluation included running six separate trans-
action types against these two configurations: 

1. Full table scan against a table with 42 million rows
(without the Parallel Query Option) 

2. Full table scan against a table with 42 million rows
(with the Parallel Query Option) 

3. Set of ad hoc queries against a table with 
42 million rows 

4. Set of ad hoc queries involving a join against 
three tables with 10.5 million, 1.4 million, and 
42 million rows, respectively

5. Set of ad hoc queries involving a join against four
tables with 1 million, 10.5 million, 1.4 million, and
42 million rows, respectively

6. Set of ad hoc queries involving a join against 
five tables with 70,000, 1 million, 10.5 million, 
1.4 million, and 42 million rows, respectively

Each bar in Figure 1 represents a ratio of execution
time (elapsed) between a large SGA (64-bit option)
and a small SGA (“standard” configuration) for each
of the six transaction types. In every case, the configu-
ration with the 64-bit option enabled consistently out-
performed a “standard” configuration. In some cases,
the performance increase with the option enabled was
over 200 times that of the standard configuration.

The transaction mix chosen for this test represents
database operations commonly used in DSS-class
applications (e.g., full table scans, sort/merge, and
joins). The test also uses a characteristically large data
set. Transaction types 1 and 2 are identical except for the
use of the Parallel Query Option. The Parallel Query
Option in Oracle7 breaks up some database operations
such as table scans and sorts/merge into smaller work
units, and executes them concurrently. By default, these
operations are executed serially, using only one thread
of execution. The Parallel Query Option (independent

Digital Technical Journal Vol. 8 No. 4 1996 81

of the 64-bit option) is a standard offering in the
Oracle7 database server product since release 7.1. Use
of parallel query in this test illustrates the effect of the
64-bit option enhancements on preexisting mecha-
nisms for database performance improvement.

All other things being equal, if the only difference
between a standard configuration and a 64-bit-
option–enabled configuration is that the entire data set
is cached in memory in the latter configuration and that
typical times for main memory accesses are a few tens of
nanoseconds whereas times for disk accesses are a few
milliseconds, only the six to seven times performance
increase in transaction type 1 would seem far below
expectation. For a full table scan operation, the Oracle7
server is already optimized to use aggressive data
prefetch. Before the server begins processing data in 
a given data block, it launches a read operation for 
the next block. This technique significantly reduces
application-visible disk access latencies by overlapping
computation and I/O. Disparity in access time for main
memory and disk is still large enough to cause the com-
putation to stall while waiting for the read-ahead I/O to
finish. When data is cached in memory, this remaining
stall point in the query processing is eliminated. 

It is also important to note that a full table scan
operation tends to access the disk sequentially. It is
typical for disk access times to be better by a factor of
at least two in sequential access as compared with ran-
dom access. Keeping block size and disk and main
memory access times the same as before in this equa-
tion, a faster Alpha CPU would yield better ratios in
this test because it would finish computation propor-
tionately faster and would wait longer for the read-
ahead I/O to finish. Follow-on tests with faster CPUs
supported this observation. Overlapping computation
and I/O as in a table scan operation may not be possi-
ble in an index lookup operation. The sequence of
operations for accessing a row of data using a B-tree
index, in the best case, involves an I/O to read the
index block matching the key value first, followed by
another I/O to read the data block; a second I/O can-
not be launched until the first finishes because the
address of the data block to be read can only be deter-
mined by examining the contents of the index block
read in the previous operation. Unlike table scans,
these I/Os are nonsequential. Latencies of the disk
I/O for an index lookup, as seen from the application
perspective, are consequently greater than latencies for
a table scan. Minimizing or eliminating I/Os in the
index lookup, therefore, has the potential for even
greater increases in speed. Index lookups are typical in
OLTP workloads.

The test using transaction type 2 illustrates a cumu-
lative effect because performance benefits for a single
thread of execution extend to all the threads when the
workload is parallelized.

0.0

50.0

100.0

150.0

200.0

250.0
226.2

95.4

222.8

251.9

17.3
8.7

TRANSACTION TYPE

P
E

R
F

O
R

M
A

N
C

E
 R

AT
IO

1 2 3 4 5 6

PERFORMANCE RATIOS OF LSGA TO SGA

Figure 1
Performance Improvements for a DSS-class Workload,
Ratios of LSGA to SGA



Unlike full table scans, the sort/merge operation
generates intermediate results. Depending on the size
of these partial results, they may be stored in main
memory if an adequate amount of memory is avail-
able; or they may be written back to temporary storage
space in the database. The latter operation results in
additional I/Os, proportionately more in number as
inputs to the sort/merge grow in size or count. The
64-bit option makes it possible to eliminate these I/Os
as well, as illustrated in transaction types 4 through 6.
Performance improvements are greater as the com-
plexity of queries increases.

Conclusion

The disparity between memory speeds and disk speeds
is likely to continue for the foreseeable future. Large
memory configurations represent an opportunity to
overcome this disparity and to increase application
performance by caching a large amount of data in
memory. Even though the Oracle 64 Bit Option
improves database performance—two orders of mag-
nitude in some cases—specific application characteris-
tics must be evaluated to determine the best means for
maximizing overall performance and to balance the
significant increase in hardware cost for the large
amount of memory. The Oracle 64 Bit Option com-
plements existing Oracle7 features and functionality.
The exact extent of the increases in speed with the 
64-bit option varies based on the type of database
operation. Faster CPUs and denser memory allow 
for even more performance improvements than have
been demonstrated. Factors of importance to new 
or existing applications, particularly those sensitive to
response time, are an order of magnitude performance
in terms of speed increases and the ability to utilize
memory configurations much larger than previously
possible in Oracle7 or for applications that use
moderate-size data sets. With sufficient physical mem-
ory, the databases used by these response-time–
sensitive applications can now be entirely cached in
memory, eliminating virtually all disk I/O, which is
often a major constraint to response time. In-memory
(or fully cached) Oracle7 databases do not compro-
mise transactional integrity in any way; nor do such
configurations require special hardware (for example,
nonvolatile random access memory [RAM]). 

Because a 64-bit AlphaServer and DIGITAL UNIX
operating system transparently extends existing 32-bit
APIs into a 64-bit programming model, applications
can take advantage of added addressability without
using specialized APIs or making significant code
changes. Performance levels equal to or better than
previously possible with specialized hardware and soft-
ware can now be achieved with industry-standard,
open, general-purpose platforms. 

82 Digital Technical Journal Vol. 8 No. 4 1996

Acknowledgments

Many people within several groups and disciplines at both
Oracle and DIGITAL have contributed to the success of this
project. I would like to thank the following individuals from
Oracle: Walter Battistella, Saar Maoz, Jef Kennedy and
David Irwin of the DIGITAL System Business Unit; 
and from DIGITAL: Jim Woodward, Paula Long, Darrell
Dunnuck, and Dave Winchell of the DIGITAL UNIX
Engineering group. Members of the Computer Systems
Division’s Performance Group at DIGITAL have also con-
tributed to this project.

References

1. Oracle7 Server Documentation Set (Redwood Shores,
Calif.: Oracle Corporation).

2. DIGITAL UNIX V4.0 Release Notes (Maynard, Mass.:
Digital Equipment Corporation, 1996). 

3. R. Sites and R. Witek, eds., Alpha Architecture Refer-
ence Manual (Newton, Mass.: Digital Press, 1995).

4. Oracle 64 Bit Option Performance Report on Digital
UNIX (Redwood Shores, Calif.: Oracle Corporation,
part number C10430, 1996).

5. J. Piantedosi, A. Sathaye, and D. Shakshober, “Perfor-
mance Measurement of TruCluster Systems under the
TPC-C Benchmark,” and T. Kawaf, D. Shakshober, and
D. Stanley, “Performance Analysis Using Very Large
Memory on the 64-bit AlphaServer System,” Digital
Technical Journal, vol. 8, no. 3 (1996): 46–65.

Biography

Vipin V. Gokhale
Vipin Gokhale is a Consulting Software Engineer at Oracle
Corporation in the DIGITAL System Business Unit where
he has contributed to porting, optimization, and platform-
specific features and functionality extensions to Oracle’s
database server on DIGITAL’s operating systems and ser-
vers. He was responsible for delivering the first Oracle7
port to the DIGITAL UNIX platform. Prior to joining
Oracle in 1990, Vipin was a Senior Software Engineer 
in India, developing telecommunications software. He
received a B.Tech. in Electronics and Telecommunica-
tions from the Institute of Technology, Banaras Hindu
University, India, in 1985.


