VLM Capabilities of
the Sybase System 11
SQL Server

Software applications must be enhanced to
take advantage of very large memory (VLM)
system capabilities. The System 11 SQL Server
from Sybase, Inc. has expanded the semantics
of database tables for better use of memory
on DIGITAL 64-bit Alpha microprocessor-based
systems. Database memory management for
the Sybase System 11 SQL Server includes the
ability to partition the physical memory avail-
able to database buffers into multiple caches
and subdivide the named caches into multiple
buffer pools for various 1/0 sizes. The database
management system can bind a database or
one table in a database to any cache. A new
facility on the SQL Server engine provides
nonintrusive checkpoints in a VLM system.

T.K. Rengarajan
Maxwell Berenson
Ganesan Gopal

Bruce McCready
Sapan Panigrahi
Srikant Subramaniam
Marc B. Sugiyama

The advent of the System 11 SQL Server from Sybase,
Inc. coincided with the widespread availability and
use of very large memory (VLM) technology on
DIGITAL’s Alpha microprocessor-based computer
systems. Technological features of the System 11 SQL
Server were used to achieve record results of 14,176
transactions-per-minute C (tpmC) at $198 /tpmC
on the DIGITAL AlphaServer 8400 server product.!
One of these features, the Logical Memory Manager,
provides the ability to fine-tune memory manage-
ment. It is the first step in exploiting the semantics of
database tables for better use of memory in VLM sys-
tems. To partition memory, a database administrator
(DBA) creates multiple named buffer caches. The
DBA then subdivides each named cache into multiple
bufter pools for various I /O sizes. The DBA can bind a
database or one table in a database to any cache.
A new thread in the SQL Server engine, called the
Housekeeper, uses idle cycles to provide free (non-
intrusive) checkpoints in a large memory system.

In this paper, we briefly discuss VLM technology.
Then we describe the capabilities of the Sybase System
11 SQL Server that address the issues of fast access,
checkpoint, and recovery of VLM systems, namely, the
Logical Memory Manager, a VLM query optimizer,
the Housekeeper, and fuzzy checkpoint.

VLM Technology

The term very large memory is subjective, and its
widespread meaning changes with time. By VLM, we
mean systems with more than 4 gigabytes (GB) of
memory. In late 1996, personal computer servers with
4 GB of memory appeared in the marketplace. At $10
per megabyte (MB), 4 GB of memory becomes afford-
able ($40,000) at the departmental level for corpora-
tions. We expect that most of the mid-range and
high-end systems will be built with more memory in
1997. Growth in the amount of system memory is an
ongoing trend. Growth beyond 4 GB, however, is a
significant expansion; 32-bit systems run out of mem-
ory after 4 GB.

DIGITAL developed 64-bit computing with its
Alpha line of microprocessors. Digital is now

Digital Technical Journal Vol.8 No.4 1996

83

84

well-positioned to facilitate the transition from 32-bit
to 64-bit systems. Sybase, Inc. provided one of the first
relational database management systems to use VLM
technology. The Sybase System 11 SQL Server pro-
vides full, native support of 64-bit Alpha microproces-
sors and the 64-bit DIGITAL UNIX operating system.
DIGITAL UNIX is the first operating system to provide
a 64-bit address space for all processes. The System 11
SQL Server uses this large address space primarily to
cache large portions of the database in memory.

VLM technology is appropriate for use with applica-
tions that have stringent response time requirements.
With these applications, for example, call-routing, it
becomes necessary to fit the entire database in mem-
ory.>* The use of VLM systems can also be beneficial
when the price/performance is improved by adding
more memory.*

Main Memory Database Systems

The widespread availability of VLM systems raises
the possibility of building main memory database
(MMDB) systems. Several techniques to improve the
performance of MMDB systems have been discussed
in the database literature. Reference 5 provides an
excellent, detailed survey. We provide a brief discus-
sion in this section.

Lock contention is low in MMDB systems since the
data resides in memory. Hence, the granularity of con-
currency control can be increased to minimize the
overhead of lock operations. The lock manager data
structures can be combined with the database objects
to reduce memory usage. Specialized, stable memory
hardware can be used to minimize latency of logging.
Early release of transaction locks and group commit
during commit processing can be used to increase
concurrency and throughput. Since random access is
fast in MMDBs, access methods can be developed with
no key values in the index but only pointers to data
rows in memory.® Query optimizers need to consider
CPU costs, not 1/0 costs, when comparing various
alternative plans for a query. In an MMDB, check-
pointing and failure recovery are the only reasons for
performing disk operations. A checkpoint process can
be made “fuzzy” with low impact on transaction
throughput. After a system failure, incremental recov-
ery processing allows transaction processing to resume
before the recovery is complete.”

As memory sizes increase with VLM systems, data-
base sizes are also increasing. In general, we expect
that databases will not fit in memory in the next
decade. Therefore, for most of the databases, MMDB
techniques can be exploited only for those parts of the
database that do fit in memory.®

In addition to the capability of caching the entire
database in buffers, the Sybase System 11 SQL Server

Digital Technical Journal Vol.8 No.4 1996

provides technological advances that take advantage of
VLM systems. These are the Logical Memory
Manager, VLM query optimization, the Housekeeper
thread, and fuzzy checkpoints. We discuss the signifi-
cance of these advances in the remaining sections of
this paper.

Logical Memory Manager

The Sybase SQL Server consists of several DIGITAL
UNIX processes, called engines. The DBA configures
the number of engines. As shown in Figure 1, each
engine is permanently dedicated to one CPU of a sym-
metric multiprocessing (SMP) machine. The Sybase
engines share virtual memory, which has been sized to
include the SQL Server executable. The virtual mem-
ory is locked to physical memory. As a result, there is
never any operating system paging for the Sybase
memory. This shared memory region also uses large
operating system pages to minimize translation look-
aside bufter (TLB) entries for the CPU.* The shared
memory holds the database buffers, stored procedure
cache, sort buffers, and other dynamic memory. This
memory is managed exclusively by the SQL Server.
One SQL Server usually processes transactions on
multiple databases. Each database has its own log.
Transactions can span databases using two-phase com-
mit. For further details on the SQL Server architec-
ture, please see reference 9.

The Logical Memory Manager (LMM) provides the
ability for a DBA to partition the physical memory
available to database buffers. The DBA can partition
the memory used for the database buffers into multi-
ple caches. The DBA needs to specify a size and a name
for each cache. After all named caches have been
defined, the system defines the remaining memory as
the default cache. Once the DBA partitions the mem-
ory, it can then bind database entities to a particular
cache. The database entity is one of the following: an

CPU CPU

SYBASE
ENGINE

SYBASE
ENGINE

SECOND-LEVEL SECOND-LEVEL

CACHE CACHE
< >
N L4
BUS
MEMORY
Figure 1

SQL Server on an SMP System

entire database, one table in a database, or one index
on one table in a database. There is no limit to the
number of such entities that can be bound to a cache.
This cache binding directs the SQL Server to use only
that cache for the pages that belong to the entity.
Thus, the DBA can bind a small database to one cache.
In a VLM system, if the cache were sized to be larger
than the database, an MMDB would result.

Figure 2 shows the table bindings to named caches
with the LMM. The procedure cache is used only
for keeping compiled stored procedures in memory
and is shown for completeness. The item cache is a
small cache of 1 GB in size and is used for storing
a small read-only table (item) in memory. The default
cache holds the remaining tables. Figure 2 shows one
table bound to the item cache and the other tables
bound to the default cache. By being able to partition
the use of memory for the item table separately, the
SQL Server is now able to take advantage of MMDB
techniques for only the item cache.

Each named cache can be larger than 4 GB. The size
is limited only by the amount of memory present in
the system. Although we do not expect such a need,
it is also possible to have hundreds of named caches;
64-bit pointers are used throughout the SQL Server
to address large memory spaces.

The LMM enables the DBA to fine-tune the use of
memory. The LMM also allows for the introduction
of specific MMDB algorithms in the SQL Server based
on the semantics of database entities and the size of
named caches. For example, in the future, it becomes
possible for a DBA to express the fact that most of one
table fits in one named cache in memory, so that SQL
Server can use clock buffer replacement.

VLM Query Optimization

The SQL Server query optimizer computes the cost
of query plans in terms of CPU as well as I/O. Both

PROCEDURE CACHE, 0.5 GB

ITEM CACHE, 1 GB

i
e

DEFAULT CACHE,
45 GB

Figure 2

Table Bindings to Named Caches with Logical
Memory Manager

costs are reduced to an estimate of time. Since the
number of I/O operations depends on the amount of
memory available, the optimizer uses the size of the
cache in the cost calculations. With LMM, the opti-
mizer uses the size of the named cache to which a cer-
tain table is bound. Therefore, in the case of a database
that completely fits in memory in a VLM system, the
optimizer choices are made purely on the basis of CPU
cost. In particular, the I/O cost is zero, when a table
or an index fits in a named cache.

The Sybase System 11 SQL Server introduced the
notion of the fetch-and-discard buffer replacement
policy. This strategy indicates that a buffer read from
disk will not be used in the near future and hence is
a good candidate to be replaced from the cache. The
buffer management algorithms leave this buffer close
to the least-recently-used end of the buffer chain. In
the simplest example, a sequential scan of a table uses
this strategy. With VLM, this strategy is turned off
if the table can be completely cached in memory. The
fetch-and-discard strategy can also be tuned by appli-
cation developers and DBAs if necessary.

Housekeeper

One of the motivations for developing VLM was the
extremely quick response time requirements for trans-
actions. These environments also require high avail-
ability of systems. A key component in achieving high
availability is the recovery time. Database systems
write dirty pages to disk primarily for page replace-
ment. The checkpoint procedure writes dirty pages to
disk to minimize recovery time.

The Sybase System 11 SQL Server introduces a new
thread called the Housekeeper that runs only at idle
time for the system and does useful work. This thread
is the basis for lazy processing in the SQL Server for
now and the future. In System 11, the Housekeeper
writes dirty pages to disk. At first, it writes pages to
disk from the least-recently-used bufter. In this sense,
it helps page replacement. In addition to ensuring that
there are enough clean buffers, the Housekeeper also
attempts to minimize both the checkpoint time and
the recovery time. If the system becomes idle at any
time during transaction processing, even for a few mil-
liseconds, the Housekeeper keeps the disks (as many as
possible) busy by writing dirty pages to disk. It also
makes sure that none of the disks is overloaded, thus
preventing an undue delay if transaction processing
resumes. In the best case, the Housekeeper automati-
cally generates a free checkpoint for the system,
thereby reducing the performance impact of the
checkpoint during transaction processing. In steady
state, the Housekeeper continuously writes dirty pages
to disk, while minimizing the number of extra writes
incurred by premature writes to disk."

Digital Technical Journal Vol.8 No.4 1996

85

86

Checkpoint and Recovery

As the size of memory increases, the following two
factors increase as well: (1) the number of writes to
disk during the checkpoint and (2) the number of
disk I/0s to be done during recovery. The Sybase
System 11 SQL Server allows the DBA to tune the
amount of buffers that will be kept clean all the time.
This is called the wash region. In essence, the wash
region represents the amount of memory that is always
clean (or strictly, in the process of being written to
disk). For example, if the total amount of memory for
database buffers is 6 GB and the wash region is 2 GB,
then at any time, only 4 GB of memory can be in an
updated state (dirty). The ability to tune the wash
region reduces the load on the checkpoint procedure,
as well as recovery.

The Sybase System 11 SQL Server has implemented
a fuzzy checkpoint that allows transactions to proceed
even during a checkpoint operation. Transactions
are stalled only when they try to update a database
page that is being written to disk by the checkpoint.
Even in that case, the stall lasts only for the time
it takes the disk write to complete. In addition, in
the SQL Server, the checkpoint process can keep mul-
tiple disks busy by issuing a large number of asynchro-
nous writes one after another. During the time of
the checkpoint, the Housekeeper often becomes
active due to extra idle time created by the checkpoint.
The Housekeeper is self-pacing; it does not swamp the
storage system with writes.

Commit Processing

The SQL Server uses the group commit algorithm to
improve throughput.®" The group commit algorithm
collects the log records of multiple transactions and
writes them to the disk in one I/O. This allows higher
transaction throughput due to the amortization of
disk I/O costs, as well as committing more and more
transactions in each disk write to the log file. The SQL
Server does not use a timer, however, to improve the
grouping of transactions. Instead, the duration of the
previous log I/0 is used to collect transactions to be
committed in the next batch. The size of the batch is
determined by the number of transactions that reach
commit processing during one rotation of the log
disk. This self-tuning algorithm adapts itself to various
speeds of disks. For the same transaction processing
system, the grouping occurs more often with slower
disks than with faster disks.

Consider, for example, a system performing 1,000
transactions per second. Let us assume the log disk is
rated at 7,200 rpm. Each rotation of the disk takes
8 milliseconds. Within this duration, we expect (on

Digital Technical Journal Vol. 8 No.4 1996

the average) 8 transactions to complete, assuming uni-
form arrival rates at commit point. This indicates a nat-
ural grouping of 8 transactions per log write. For the
same system, if the log disk is rated at 3,600 rpm, the
same calculation yields 16 transactions per log write.

The group commit algorithm used by the SQL
Server also takes advantage of disk arrays by initiating
multiple asynchronous writes to different members of
the disk array. The SQL Server is also able to issue up
to 16 kilobytes in one write to a single disk. Together,
the group commit algorithm, large writes, and the
ability to drive multiple disks in a disk array eliminate
the log bottleneck for high-throughput systems.

Future Work

When a VLM system fails, the large number of data-
base buffers in memory that are dirty need to be
recovered. Therefore, database recovery time grows
with the size of memory in the VLM system, at least
for all database systems that use log-based recovery.
In addition, since there are a large number of dirty
buffers in memory, the performance impact of check-
point on transactions also increases with memory size.
To minimize the recovery time, one may increase the
checkpoint frequency. The checkpoints have a higher
impact, however, and need to be done infrequently.
These conflicting requirements need to be addressed
for VLM systems.

When a database fits in memory, the buffer replace-
ment algorithm can be eliminated. For example, for
a single table that fits in one named cache, this opti-
mization can be done with the LMM. In addition, if
a table is read-only, it is possible to minimize the syn-
chronization necessary to access the buffers in mem-
ory. These optimizations require syntax for the DBA
to specify properties (for example, read-only) of tables,
as well as properties of named caches (for example,
buffer replacement algorithms).

These two areas as well as other MMDB techniques
will be explored by the SQL Server developers for
incorporation in future releases.

Summary

The Sybase System 11 SQL Server supports VLM
systems built and sold by DIGITAL. The SQL Server
can completely cache parts of a database in memory.
It can also cache the entire database in memory if
the database size is smaller than the amount of mem-
ory. System 11 has facilities that address issues of
fast access, checkpoint, and recovery of VLM systems;
these facilities are the Logical Memory Manager, the
VLM query optimizer, the Housekeeper, and fuzzy
checkpoint. The SQL Server product achieved

SMP TPC performance of 14,176 tpmC at
$198 /tpmC on a DIGITAL VLM system. The tech-
nology developed in System 11 lays the groundwork
for further implementation of MMDB techniques in
the SQL Server.

Acknowledgments

We gratefully acknowledge the various members of
the SQL Server development team who contributed to
the VLM capabilities described in this paper.

References and Notes

1. For more information about audited tpmC measure-
ments, see the Transaction Processing Performance
Council home page on the World Wide Web,
http:/ /www.tpc.org.

2. S.-O. Hvasshovd, O. Torbjornsen, S. Bratsberg, and
P. Holager, “The ClustRa Telecom Database: High
Availability, High Throughput, and Real-Time
Response,” Proceedings of the 21st Very Large
Database Conference, Zurich, Switzerland, 1995.

3. H. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz,
and S. Sudharshan, “Dali: A High Performance Main
Memory Storage Manager,” Proceedings of the 20th
Very Large Database Conference Conference,
Santiago, Chile, 1994.

4. M. Heytens, S. Listgarten, M.-A. Neimat, and
K. Wilkinson, “Smallbase: A Main-Memory DBMS
for High-Performance Applications” (1995).

5. H. Garcia-Molina and K. Salem, “Main Memory
Database Systems: An Overview,” IEEE Transactions
on Knowledge and Data Engineering, vol. 4, no. 6
(1992): 509-516.

6. D. Gawlick and D. Kinkade, “Varieties of Concurrency
Control in IMS/VS Fast Path,” Database Engineer-
ing Bulletin, vol. 8, no. 2 (1985): 3-10.

7. E. Levy and A. Silberschatz, Incremental Recovery
in Main Memory Database Systems (University of
Texas at Austin, Technical Report TR-92-01, January
1992).

8. J. Hennessy and D. Patterson, Computer Architec-
ture: A Quantitative Approach, Second Edition (San
Francisco: Morgan Kaufmann Publishers, Inc., 1995).

9. S. Roy and M. Sugiyama, Sybase Performance
Tuning (Upper Saddle River, N.J.: Prentice Hall
Professional Technical Reference, 1996).

10. Sybase System 11 SQL Server Documentation Set
(Emeryville, Calif.: Sybase, Inc., 1996).

11. D. Spiro, A. Joshi, and T. Rengarajan, “Designing
an Optimized Transaction Commit Protocol,” Digital
Technical Journal, vol. 3, no. 1 (Winter 1991):
70-78.

Biographies

T.K. Rengarajan

T. K. Rengarajan has been building high-performance
database systems for the past 10 years. He now leads the
Server Performance Engineering and Development (SPeeD)
Group in SQL Server Engineering at Sybase, Inc. His most
recent focus has been System 11 scalability and self-tuning
algorithms. Prior to joining Sybase, he contributed to the
DEC Rdb system at DIGITAL in the areas of buffer man-
agement, high availability, OLTP performance on Alpha
systems, and multimedia databases. He holds M.S. degrees
in computer-aided design and computer science from the
University of Kentucky and the University of Wisconsin,
respectively.

Maxwell Berenson

Max Berenson is a staff software engineer in the Server
Performance Engineering and Development Group in SQL
Server Engineering at Sybase, Inc. During his four years at
Sybase, Max has developed the Logical Memory Manager
for System 11 and has made many buffer manager modifi-
cations to improve SMP scalability. Prior to joining Sybase,
Max worked at DIGITAL, where he developed a relational
database engine.

Ganesan Gopal

Ganesan Gopal is a senior member of the Server Perform-
ance Engineering and Development Group at Sybase, Inc.
He was a member of the team that implemented the House-
keeper in System 11. In addition, he has worked on a num-
ber of projects that have enhanced the performance and
scaling of the Sybase SQL Server. At present, he is working
on a performance feature for an upcoming release. He
holds bachelor degrees in advanced physics and in elec-
tronics and communication engineering from the Indian
Institute of Science, Bangalore, India.

Digital Technical Journal Vol.8 No.4 1996

87

88

Bruce McCready

Bruce McCready is an SQL Server performance engineer
in the Server Performance Engineering and Development
Group at Sybase, Inc. Bruce received a B.S. in computer
science from the University of California at Berkeley in 1989.

Sapan Panigrahi

A senior performance engineer, Sapan Panigrahi works in
the Server Performance Engineering and Development
Group at Sybase, Inc. He was responsible for TPC bench-
marks and performance analysis for the Sybase SQL Server.

Srikant Subramaniam

A member of the Server Performance Engineering and
Development Group at Sybase, Inc., Srikant Subramaniam
was involved in the design and implementation of the VLM
support in the Sybase SQL Server. He was a member of
the team that implemented the Logical Memory Manager
in System 11. In addition, he has worked on projects that
have enhanced the performance and scaling of the Sybase
SQL Server. At present, he is working on performance
optimizations for an upcoming release. He holds an M.S.
in computer science from the University of Saskatchewan,
Canada. His specialty area was the performance of shared-
memory multiprocessor systems.

Marc B. Sugiyama

Marc Sugiyama is a staff software engineer in the SQL
Server Performance Engineering and Development Group
at Sybase, Inc. He was the technical lead for the original
port of Sybase SQL Server to the DIGITAL Alpha OSF/1
system. He is coauthor of Sybase Performance Tuning,
published by Prentice Hall, 1996.

Digital Technical Journal Vol. 8 No.4 1996

