/#KYS _SUPIOLEE_

IRIX Kernel Internals

Student Handbook

Part Number: TR-IKI-0.7-6.5-S-SD-W
SGI Proprietary
July 1998

RESTRICTION ON USE

This document is protected by copyright and contains
information proprietary to Silicon Graphics, Inc. Any copying,
adaptation, distribution, public performance, or public display of
this document without the express written consent of Silicon
Graphics, Inc,, is strictly prohibited. The receipt or possession of
this document does not convey the rights to reproduce or
distribute its contents, or to manufacture, use, or sell anything that
it may describe, in whole or in part, without the specific written
consent of Silicon Graphics, Inc.

Copyright© 1998 Silicon Graphics, Inc. All rights reserved. -
U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the data and information
contained in this document by the Government is subject to
restrictions as set forth in FAR 52.227-19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technijcal Data and Computer Software
clause at DFARS 252.227-7013 and /or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Co%yright ws of the
Uruted States. Contractor/manufacturer is Silicon Graphics, Inc.,
2011 N. Shoreline Blvd., P.O. Box 7311, Mountain View, CA 94039-
7311.

The contents of this publication are subject to change without
notice.

PART NUMBER

TR-IKI-0.7-6.5-S-SD-W, July 1998
RECORD OF REVISION

Revision 0.7, Version 6.5, March 16,1998
SGI TRADEMARKS

IRIX, Silicon Graphics, and the SGI logo are registered trademarks
of Silicon Graphics, Inc.

OTHER TRADEMARKS

Other brand ortgroduct names are the trademarks or registered
trademarks of their respective holders

The contents of this publication are subject to change without notice.

IRIX Kernel Intemals July 1998

TR-IKI-0.7-6.5-S-SD-W

IRIX 6.5 Kernel Internals (IKI165)

TR-IKI rev 0.7b SGI Proprietary (22jul1998)

Table of Contents
IKI: IRIX Kernel Internals Home Page
IKI165: IRIX 6.5 Kernel Internals 1
1 Training Materials 1
2 Training Material Utilities 2
IRIX Software Training
1 IRIX Software Training 1-1
1 Contents 1-1
2 Class Materials (SGI Employee Use Only) 1-2
1 I65RU 1-2
2 IKI65 1-2
3 OPET 1-2
4 PESTO 1-2
5 IFO 1-2
3 Reference Materials 1-3
1 Tech Digest links to many useful items ... 1-8
2 Internal Support Tools 1-11
1 Other Internal Support Tools 1-12
4 Cellular IRIX 1-14
5 Mail & Newsgroups 1-15
6 Performance 1-16
7 Performance Co-Pilot (PCP) 1-17
8 Application Programming 1-18
9 Hardware Reference Materials 1-20
10 Other Reference Materials 1-21
Cray Origin2000 Architecture
2 Cray Origin2000 Architecture 2-1
TR-IKI rev 0.7b SGI Proprietary 22jul1998
1 Cray Origin2000 Architecture Module ... 2-2
2 CRAY Origin2000 Multirack System 24
3 Router and Hypercube Connection 2-5
4 Hypercube 2-6
5 Origin2000 redundant paths 2-7
6 Module and Node Block Diagram 2-8
7 Node Board Components 2-9
8 Node Board, XBOW, and Router ... 2-11
9 MIPS ® R10000 Microprocessor (block ... 2-12
10 More About the ® R 10000 Microprocessor 2-13
11 More About Memory 2-14
1 Cache memory systems 2-14
2 Origin2000 Distributed Shared-Memory ... 2-15
3 Origin2000 Memory Hierarchy Diagram 2-16
4 Origin2000 Memory Hierarchy Explanation 2-17
12 More About Cache 2-18
1 Non-Blocking Cache 2-18
2 Cache Types 2-19
1 Primary Data Cache 2-20
2 Primary Instruction Cache 2-22
3 Secondary Cache (for Data and ... 2-23
13 Determining What Hardware the System is ... 2-24
14 Determining What Memory Looks Like 2-25
Memory and Addressing: Pages, TLB’s, ...
3 Memory and Addressing from a Hardware ... 3-1
1 HARDWARE MEMORY 3-2
2 Pages, and TLB’s 3-2
1 Introductory Concepts About Pages 3-2
2 Introductory Concepts About the TLB 3-3
3 Memory Management Philosophies 3-5
1 Real Memory Machines and Swapping 3-5
2 Vinual Memory Machines and Paging 3-6
1 Where Are the Addresses the Process ... 3-7
4 Memory pages 3-8

TR-IKI rev 0.7b SGI Proprietary 22jul1998 i

5 HARDWARE ADDRESSING 3-9
6 All Addresses = (Page Number + Byte ... 3-9
7 Cray Origin2000 Memory Hierarchy and ... 3-10
8 Add Request Seq 3-11
9 TLB Misses 3-13
1 Two Types of "TLB Miss" 3-14

10 TLB Size 3-15
11 Coprocessor 0 and the TLB 3-16
12 Binary, Hexadecimal, and D I... 3-18
13 The 64-Bit Address Space and "Segments” 3-19
14 Illustrations of Segment Types 3-20
15 Segment Characteristics 3-23
16 Segment Types Overview 3-24
17 Table of Cray Origin2000 Segment Types ... 3-25
1 32-Bit Compatibility Areas 3-26

2 Addresses Accessed Based on CPU Mode 3-27

18 Cray Origin2000 Segment Types 3-28
19 Interpreting the Segment Type From the ... ‘ 3-29
1 User Address Area Segment 3-29

1 xkuseg - Virtual User Memory - mapped, ... 3-29

2 Kernel Address Area Segments 3-30

1 xkseg - Virtual Kernel Memory - mapped, ... 3-31

2 xkphys - Physical Kernel Memory 3-32

1 xkphys - unmapped, possibly CACHED 3-32

2 xkphys - unmapped, UNcached 3-32

20 The 64-bit Word and the Virtual Address 3-35
21 A Different View of Memory Segments - ... 3-37
22 "Unmapped" Virtual Address Segment Types ’ 3-41
23 "Mapped"” Virtual Address Segment Types 343
24 xkphys Memory Segments Diagram 345
25 xkphys Memory Segments - Detail 3-46
26 xkseg Memory Segment - Introductory ... 3-48
27 xkuseg M 'y Segn - I ductory ... 3-50
28 xkuseg M y Segr - I duction 3-51
29 xkseg - Detail 3-53
it 22jul1998 TR-IKI rev 0.7b SGI Proprietary
1 xkseg Virtual-to-Physical Address ... 3-53

2 xkseg Virtual Add: Mapped through ... 3-54

3 xkseg Wired Kernel TLB Entrics - Diagram 3-56

4 xkseg Wired Kernel TL.B Entries 3-57

30 Contents of xkseg Kernel Wired Entries 3-59
31 xkuseg - Detail 3-61
1 xkuseg "TLB Hit" - Diagram 3-62

32 Introduction to User Structures Related to ... 3-64
33 TLB Single Miss 3-66
34 Overview of Resolving a TLB Single Miss 3-68
35 Overview of Resolving a TLB Single Miss 3-69
36 Detail of Resolving a TLB Single Miss 3-71
37 Deuail of Resolving a TLB Double Miss 3-72

Kernel Source Tree

4 Kemnel Source Tree 4-1
1 Related On-Line Materials 4-2
2 Operating System Release Project Web ... 4-4
3 Source Code Location 4-5
4 Base Source Code Naming Convention ... 4-6
5 Where Is the Most Recent Version of the ... 4.7
6 Where Is the Most Recent Version of the ... 4-8
7 Sumnmary: Location of Operating System 4-9
8 Kemel Source Tree Location 4-10
9 Kemnel Source Tree Contents 4-11

1 The Difference Between ".h" and ".c" ... 4-12
2 Where to Find ".h" Files 4-13
10 Operating System and Kemel Source Tree ... 4-14
11 Tools Available to Browse Source 4-17
12 Determining What Software the System Is ... 4-18
1 versions - show system software; list ... 4-19
2 uname - show system software ’ 4-20
13 How Do I Know What Crashed My System? 4-21
14 Where Docs the System Put Things When ... 4-22
15 What System Logs Exist? 4-23

22jul1998 TR-IKI rev 0.7b SGI Proprietary

1 System Logs in /var/adm

4-23

2 Description of system logs, ... 4-24
Operating System Overview
5 IRIX Operating System Overview 5-1
1 UNIX (IRIX) philosophy 5-2
2 IRIX system major components (user ... 5-3
3 IRIX system major components (kernel ... 5-4
4 When Does the Kernel Take Control Away ... 5-5
5 Kernel block diagram 5-6
6 Primary Kermnel Activitics 5-7
7 Summary of IRIX Kernel Primary Functions 5-10
Interrupt and Exceptions (Preliminary)
6 Interrupts and Exceptions (Preliminary ... 6-1
1 Processor Operating Modes 6-2
2 Interrupt and Exception Types 6-3
3 How are Interrupts Different From ... 64
4 How are Interrupts Similar to ... 6-5
5 MIPS Processor Exception and Interrupt ... 6-6
6 General Exceptions 6-7
7 Hardware Interrupt Check 6-8
8 Software and Hardware Exception Check 6-9
Process Management Overview
7 Process Management Overview 7-1
1 Process Management Overview 7-2
2 Executable Files and Processes Diagram 7-3
1 Executable Files and Processes Diagram 7-4
3 Executable Files and elfdump(1) 7-5
4 Process Definition Diagram 7-8
1 Process Definition Diagram Explanation 7-9
5 User Stack Diagram 7-10
1 User Stack Diagram Explanation 7-11
TR-IKI rev 0.7b SGI Proprietary 22jul1998 iv
6 Kemel Stack Diagram 7-12
1 Kemel Stack Diagram Explanation 7-13
7 Processes and Kernel Threads 7-14
8 Displaying process memory (gmemusage(1)) 7-15
1 Cray Origin2000 System Workload ... 7-16
2 IRIX Physical Memory gmemusage(l) ... 7-17
3 Process Physical Memory gmemusage(1) ... 7-18
9 Process Control Diagram 7-19
1 Process Control Diagram Explanation 7-20
10 Process Segments or Regions 7-21
11 Kermnel's Region Tables Diagram 7-22
1 Kemel’s Region Tables Diagram ... 7-23
12 Region Sharing Diagram 7-24
1 Region Sharing Diagram Explanation 7-25
13 Multiprocessing 7-26
14 Process Execution Flow Diagram 7-27
1 Process Execution Flow Diagram ... 7-28
15 System Call Interface Diagram 7-29
1 System Call Interface Diagram ... 7-30
IRIX System Calls
8 IRIX System Call Processing 8-1
1 System Call Review 8-2
2 System Call Component Diagram 8-4
3 System Call Overview 8-5
4 System Call Walk Through 8-7
1 User Makes System Call 8-7
2 Sample assembler code for open(2) 8-8
3 Kemel Traps the Interrupt 8-9
4 Syscall() Dispatches the Call 8-10
5 Kernel Performs Specific System Call 8-11
6 Syscall() Resumes Processing 8-12
7 Systrap() Resumes Processing 8-13
8 User Resumes Processing 8-14
5 System Call Argument Processing 8-15
TR-IKI rev 0.7b SGI Proprietary 22jul1998 \Y

1 System Call Argument Processing
2 icrash(1M) Samples

1 Process uthread Display

2 uthread Detail

3 Trace of open(2) System Call

4 Trace Detail (partial)

5 Frame For open()

6 Disassembly Code For open()

7 Frame For copen()

8 Disassembly Code For kernel copen()
3 Register Aliases

Memory Management Overview
9 Memory Management Overview
1 Module Overview
2 Module Objectives
3 Hardware Memory Review
1 Origin2000 distributed-shared memory
2 Origin2000 Memory Hierarchy (in order ...
Hardware Address Sequence Review Diagram
1 Hardware Address Sequence Review ...
Memory Subsystem Introduction
Historical Solutions to Memory ...
Recent Solution to Memory Management ...
User Process Components Review
User Process Virtual Memory Image
User Process Virtual Addresses
Virtual to Physical Address Translation
Translation Lookaside Buffer (TLB)
Translation Lookaside Buffer (TLB) ...
TLB "Hits" and "Misses™
Virtual Addressing Summary
Demand Paging Overview
Demand Paging Page Load Proccdure
D d Paging Ad: and ...

&

bt e b et s et bt Dt
XN A NEVWN=OVRIAW

8-16
8-18
8-18
8-19
8-20
8-21
8-23
8-24
8-25
8-26
8-27

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23

vi 22jul1998 TR-IKI rev 0.7b SGI Proprietary
19 Page Stealing 9-24
20 Page Stealing Page Selection 9-25
21 Page Stealing Page Actions 9.26
22 Page Stealing and Job Classes 9-27
23 Page Cache in IRIX 9-28
24 User Process Space and Swapping 9.29
25 Swap Space Management 9-30
26 The Swapper Process 9-31
27 The Swapper Process in IRIX 9-32
28 The Swapper Process Relationship to ... 9-33
29 Reporting Paging Activity (sar -p) 9-34
30 Reporting System Swapping and Switching ... 9-37
31 Reporting TLB Activity (sar -t) 9-39
32 Process Size (ps -1) 9-41
33 Reporting Memory Statistics (sar -R) 9-42
34 Reporting Unused Memory Pages and Disk ... 9.45
35 Reporting Memory Activity (gr_osview(1)) 9-48
UNIX Filesystem Overview
10 UNIX Filesystem Overview 10-1
1 Sample UNIX FileSystem 10-2
2 Generic UNIX FileSystem 10-3
3 UNIX System V filesystem 104
1 Small UNIX file sample 10-5
2 Small UNIX file 10-6
3 Large UNIX file sample 10-7
4 Large UNIX file 10-8

XFS Filesystem - Structure
11 The Extent Filesystcm (EFS) 11-1
11 xFS: the extension of EFS 11-2
11 A New XFS Filesystem 11-3
11 Allocation Group 11-4
11 Superblock 11-5
11 AGEF: Free Space Block 11-6
vii 22jul1998 TR-IKI rev 0.7b SGI Proprietary

11 A.G. Free Space List 11-7
11 AGFL - Allocation Group Free List 11-8
11 AGI: Inode Btree Control 11-9
11 AGI and Inode Btree 11-10
11 On-disk Inode 11-11
11 On-disk Inode (256 bytes) with local ... 11-12
11 1-block Directory 11-13
11 Btree Directory 11-14
11 Btree Directory - Index Block 11-15
11 Auribute Fork Inside Inode 11-16
11 Auributes Block 11-17
11 Data Fork - Binary Tree 11-18
11 Journaling Log 11-19
1 Sequence for replaying the log when the ... 11-20
11 VO Performance 11-21
11 xfs_db printable block types 11-22
11 Mounted Filesystems 11-23
XFS File Management
12 File System Switch 12-1
12 XFS Code Architecture 12-2
12 Example IRIX read(2) Sequence 12-3
12 System Call Layer - Read 124
12 (XFS) Filesystem Layer -~ Read 12-5
12 System Buffers 12-6
1 detail on the vnode's page hash list 12-7
12 Example IRIX write(2) Sequence 12-8
12 (XFS) Filesystem Layer - Write 12-9
XFS File Management
13 Reference 13-1
1 mmap(2) - Memory Mapping a File 13-2
pfdats
TR-IKI rev 0.7b SGI Proprietary 22jul1998 viii
14 Reference 14-1
1 pfdat's 14-2
2 Address Translation 14-3
3 Table locations 14-4
Disk VO
15 Example IRIX read(2) Sequence 15-1
15 XLV Structure 15-2
15 XLV Driver Layer 15-3
15 ORIGIN module overview 15-4
15 Disk Device Connections to be Pictured ... 15-5
15 Hardware Graph format 15-6
15 Hwgraph Example 15-7
15 HWGraph Information Labels 15-8
15 Disk Driver Layer 15-9
15 SCSI Driver Layer 15-10
15 VO Address Space 15-11
15 Interrupt Processing 15-12
IRIX Dumps - 6.5
16 IRIX Dumps - 6.5 16-1
1 Pump Scenario Diagram 16-2
2 Dump Scenarios 16-3
1 Four causes 16-3
2 Common code 16-5
3 Panic within panic 16-5
3 Processing Activities 16-6
1 Hardware Exception 16-6
2 NMI (Non-Maskable Interrupt) 16-8
3 Assertions 16-10
4 Panics 16-14
4 Common Routines 16-16
1 cmn_err() Panic Processing 16-16
2 icmn_err() Panic Processing 16-17
3 syncreboot() Processing 16-19
TR-IKI rev 0.7b SGI Proprietary 22jul1998 ix

4 dumpsys() Processing 16-20
5 dump ore() Pr ing 16-21
5 Dump Level Configuration 16-23
1 Dump Level 16-23
2 Dump level meanings 16-24
Bibliography
17 Bibliography 17-1
1 BOOKS BY SGI EMPLOYEES (former or ... 17-2
2 BOOKS 17-3
3 ON-LINE DOCUMENTS 17-4
4 TOOLS 17-5
5 TRAINING MATERIALS WEB PAGES 17-6
6 INSTRUCTOR WEB PAGES (links to their ... 17-7
7 ENGINEER WEB PAGES 17-8
Appendix A: Origin2000 Support ...
A Origin2000 Support Processes For High ... Appendix A-1
1 Purpose A-2
2 Getting Help A-3
3 Getting Cray domain accounts A4
4 Site Planning A-5
5 Installation Planning A-6
6 System Registration A-7
1 System Serial Number A-8
7 Installation Reporting A-9
1 Initial Mainframe Hardware Install ... A-10
2 Initial Mainframe Software Install ... A-11
3 Hardware & Software Installation Defects A-12
8 System Failure Reporting A-13
9 Problem Escalation A-14
1 GTS’s Hotlist A-15
2 U.S. Escalation Model A-16
3 International Escalation Model A-17
10 Problem Reporting A-18
X 22jul1998 TR-IKI rev 0.7b SGI Proprietary
1 Software Problem Reporting A-19
11 C C ication A-20
1 Pipeline A-21
2 Cray Inform (CRInform) A-22
3 Field Notices and FYIS/FIBs/NPIs A-23
12 Related Information A-24
Appendix B: CPU R10000 Overview
B MIPS ® R10000 Microprocessor Overview Appendix B-1
1 Instruction prefetch B-2
2 Out-of-order execution B-3
3 Queuing structures B4
4 Integer Queue B-5
5 Floating Point Queune B-6
6 Address Queue B-7
7 Execution Units B-8
8 Integer ALUs B-9
9 Floating-Point units B-10
10 Load/Store unit and the TLB B-11
11 Secondary Cache Controller B-12
12 System Interface B-13
13 R10000 Branch Unit B-14
1 Branch instruction problem B-15
2 Branch prediction B-16
Appendix C: region.c source file
C region.c source file (excerpt) Appendix C-1
Appendix D: sbd.h
Appendix E: kidir.h header file - has ...
E kldir.h header file (excerpt) Appendix E-1

xi

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Appendix F: IRIX 6.5 Kernel Values
F IRIX 6.5 Kemel Values
1 Kernel Value Table
2 Column Meanings
3 Kemel Value Table
4 Sample "kerninfo” output
1 Live Indy Workstation (IRIX 6.5 beta)
2 02000 system dump (IRIX 6.5 beta)
3 02000 live system (flurry; IRIX 6.5 ...

Appendix G: How to get a core dump from ...
G How to get a core dump from your Indy ...

Figures
Figure A-O: Critical Problem Escalation
Figure A-1: Cray Origin 2000 U.S. ...
Figure A-2: Cray Origin 2000 U.S. Field’s ...
Figure A-3: Cray Origin 2000 International ...
Tables

Table 3-0: Segment Types and Characteristics for ...
Table A-1: Site Planning Materials

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Appendix F-1
F-2
F-3
F-4
F-5
F-6
F-7
F-8

Appendix G-1

A-14
A-16
A-16
A-17

3-25
A-5

IKI: IRIX Kernel Internals Home Page

IKI165: IRIX 6.5 Kernel Internals

Training Materials

@ SPT course description
® Day 1: Introductory Lessons (with separate or merged TOC window)

9@ IRIX source browsing (cscope(1) and dwar faump(1)) FRE

@ Introduction to Dump Analysis (showcase) (html) (Matt Robinson) &%

@ icrash(1M) Tutorial Draft 1.0
@ Dump Analysis Draft 1.0

@ Day 2: Lessons (with separate or merged TOC window)

@ Process Memory Study (lab 0)
© User Virtual Address Study (lab 1)

® Day 3: File System Lessons (with separate or merged TOC window)

9 filesystem structure
@ file management

® Day 4: Input/Output Lessons (with separate or merged TOC window)
@ 1/O layer
® Day 5: Lessons (with separate or merged TOC window)

9 Dump Analysis

1 22jul1998

CRAY
PRIVATE

TR-IKI rev 0.7b SGI Proprietary

Training Material Ultilities

® Request CrayRealm and Training domain accounts
@ Search training materials:

@ Search training glossary:

2 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Module 1: IRIX Softwa\re'Training
Ny

N

ice Publications & Traini

IRIX Software Training

PRIVATE

||Request CrayRealm and Training domain accounts |I

Contents

. Class Materials

Reference Materials

Cellular IRIX

Mail & Newsgroups
Performance

Performance Co-Pilot (PCP)

. Application Programming

. Hardware Reference Materials
. Other Reference Materials

PRNAU AW

@ Search training materials:

@ Search training glossary:

1-1 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Class Materials (SGI Employee Use Only)

I65RU: IRIX 6.5 Release Update
SPT course description & class materials (HTML) F5&%

IKI65: IRIX Kernel Internals (IRIX 6.5/Kudzu)
SPT course description & class materials (HTML & PostScript) 258

OPET: 02000 Performance Evaluation And Tuning
SPT course description & class materials

PESTO: Performance Evaluation and System Tuning for Origin2000 and Onyx2
Customer Education course description & class materials (same as OPET)

IFO: IRIX Functional Overview ﬁ
Customer Education Project Plan (Working Draft)

@ Hardware & IRIX Operating System Overviews (Working Draft)
@ File, /O, Memory & Process Management (Working Draft)

@ Interprocess Communication (Working Draft)

@ Security Features (Working Draft)

@ Data Migration Facility (DMF) (Working Draft)

@ Domain Name Service (DNS) (Working Draft)

@ Network File System (NFS) (Working Draft)

@ Network Information Service (NIS) (Working Draft)

@ TCP/IP (Working Draft)

@ Unified Name Service (UNS) (Working Draft)

1-2 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Reference Materials

@ Origin 2000 Support Processes and Tools (lesson) | (slides only: PostScript | Showcase)

@ Origin 2000 picture, Cray Origin 2000 picture, news items, and hardware Options/Enhancements milestones SrayReaim
@ JRIX Source & Object code location and descriptions (lesson)

@ Advanced Systems Division’s Home for High Performance Computing

An internal SGI resource supporting the technical marketing and development of high-end compute products.

© HPCxchange newsletter at the new HPC Web Site

@ Silicon Sales: Hardware, Software, Services & Support

@ ASD Marketing System Administration Team provides HW and SW support for ASD’s Technical Compute Division and the
Graphics Division.

@ Origin2000 training material and presentation slides

@ ORIGIN-LINKS

@ Origin Benchmark Resources (MV & Eagan)

9 How to reconfigure an Origin 2000 to 180MHz 1MB Cache system

TR-IKI rev 0.7b SGI Proprietary 22jul1998 1-3
-~ ¥ webDSODIFF
L J < : Kusms Bvary symoot.
O % [y —
. . » Irix 6.5 - Kudzu
Irix 6.4 - Ficus Features by Number, Category
SPR Query § Exceptioned Features, SPR Query
ojectVision (PV) viewer and process
ugWorks: Web PV database interface
wx: command line PV database interface
IgatchWorks: patch database interface (for IRIX 6.4.1)
atch Process FAQ, patch types, tools, colors, PV+ Tool, browsers
InfoWorks ISoftware Development & Release Information
ISGI Universi Software Engineering slides and videotapes
TR-IKI rev 0.7b SGI Proprietary 22jul1998 1-4

@ SGI's Top, Kudzu’s, comp. sys . sgi’ s, and Matthias Fouquet-Lapar’s Frequently Asked Questions (FAQs)
@ Origin 128 detailed issues and problem information and individual responsibilities ©* 4y Realm
@ To obtain Uncle Art’s Big Book of IRIX:
1. telnet dist.engr as user guest and no password
2. cd /sgi/doc/swdev/BigIrixBook
3. £tp the postscript (* . out) files from that location.
Alternately, (may not work for you):

1. Install the handbook utilities: inst -f dist.engr:/sgi/infotools
2. Enter: handbook -s dist.engr:/sgi/doc/swdev/BigIrixBook

@ Automating IRIX 6.5 Miniroot Installs with Robolnst

1-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Legend: ® = Very useful, ® = Somewhat useful, @ = Not rated
® IRIX Kernel Development Information Index (John Hesterberg & Tom Cox)

Information Index of IRIX Kemnel Development Process at Cray; How to set up accounts, scan source code using cscope(8) and other tools. Has details
down to building kernels and testing your code.

1-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

o INEOSEARCH [l [rrpimes

Keyword search:

Content for:

Select an item below to restrict your search:

[® Online Books [® Man Pages (@ Rel

TR-IKI rev 0.7b SGI Proprietary 22jul1998

® Tech Digest links to many useful items for Field Analysts

TECH.Digest: | Overview [Collections] FAQ | search [Feedback] 1nternal: sityunc 1 sniff 1 1ntSites
Views:] Home | Comm | Gfx | HA | Hdw | Lang | MMed | Unix External: Sil.Surf | TechCtr | FTP
Bugs Bulletins | CMSInfo |CSE.Lab | DTbox |FTPInfo |HWDevBk InstLoc License
Matrices ManPages Oasis Parts Patches] Pipeline | PriceBook {PubDomSW |QNADocs
RelNotes Security STbox |TechMail |TechPubs -- Videos FAQS: Top | SWEngr

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Universal manpage:

‘Top SGI FAQ:

. SGI Technical Support Information:
Oasis Easy way to search bugs, calls, source, etc.

Technical Publications

The IRIX section of the On-Line Technical Publications Library is an important resource for obtaining information about IRIX as well as all SGI software
products. It has books for developers, system administrators, and end users, as well as a collection of books related to SGI hardware.

& fres
15 Origir : descriptions of available 02000s systems and other information
@ Understanding and debugging Problems on the Origin2000 and Onyx2 Systems

@ JRIX Device Driver Programmer’s Guide (007-0911-060)

Documents the execution environment for kemei-level and user-level device drivers in IRIX. Covers development tools and methods used to create device
drivers.

® Dean Roehrich’s SGI/IRIX Testing GrabBag includes how to install Ficus on Drive 2 of your Indy

22jul1998 TR-IKI rev 0.7b SGI Proprietary

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Internal Support Tools

(IST) Group products, distribution center, and information center

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Tool Description G‘fxsifi.; T;;";:g Reference Manual
AvailMon JAvailability Monitor (PS | PDF) |(ShowCase) (PDF)

FRU Field Replaceable Unit Analyzer | (PS | PDF) |[(ShowCase) (PDF)
ICRASH JIrix Crash Analyzer (PS | PDF) {(ShowCase) (PDF)

IPM Installation Planning ManaEer
[_MDK [Micro-diagnostic kernel (PS | (PDF)

POD OriéinZOOO Power-on Diagnostics (PDF) l
F RAT Remote Access Tool (PS 1| PDF) j(ShowCase) (PDF)

SVP System Verification Program (postscrigt) (ShowCase) (PDF)
NOTE: The PDF format is readable by the Adobe Acrobat Reader. If you do not have a copy, please download the.

atest version.

@ Other Internal Support Tools:

Diagnostic Roadmap for Origin2000 and Onyx2 (preliminary)
What Tool to use, and when (general)

Pre-installation / Upgrade Support

Installation / Upgrade Support

Repair Support

Preventive Support

TR-IKI rev 0.7b SGI Proprietary 22jul1998

1-13 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Cellular IRIX

@ Cellular IRIX Plans; G. Broner (30jan97) and time estimates (27jan97)

Discusses Cellular IRIX's overall long-term design direction. Describes i diate deliverabl ded to meet Enterprise and HPC computer market
short term needs.

@ Cellular IRIX Documentation Navigator
® Common Operating System Plan for SN1 (28Jun96)
Discusses OS direction for SN1 and transition from SNO and T3E in support of SN1 Common OS plan.
® Cellular IRIX and Nexus OS Infrastructure
© Presentations
@ Nexus Architecture and Infrastructure
® Cellular IRIX Subsystems

@ Cellular IRIX Related Lego Design Documents
@ Cellular IRIX Project Planning and Product Specification page (03feb97)

@ Cellular IRIX 6.4 Technical Report

1-14 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Mail & Newsgroups

i MAILMAN: web interface to the Majordomo mailing list manager.

Il Newsgroup Name Actions

I SNO Applications/Performance jsnappl.engr.sgi.com
SNO OS sn0.csd.sgi.com

Subscribe | Unsubscribe

ISubscribe | Post | Unsubscribe
echMail Archives see TechMail Overview |Sort Archive by Group/Month
Search Archive by string
PS Majordomo News Groups jQuick Reference ist all | List subscribed

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Performance

@ Availability Monitor (AvailMon and IRS AudivKPM) home page and training slides

@ Miser: User level program that generates a non-conflicting schedule of jobs with known time and space requirements.

@ OPET: 02000 Performance Evaluation And Tuning class

@ Origin2000/0rigin200/Onyx2 Quick Reference Single-Processor Tuning (PostScript | PDF)
@ Origin 2000 Performance Report (20May97: postscript, html, frame) and slides

@ Origin 200 Performance Report (17mar97: (postscript, html, frame)

@ Performance analysis tools

@ Process Activity Reporter (par) (par for dummies)
@ kernel function profiling (prfpr)
@ System monitoring: gr_osview(1l), sar(l), osview(1l)
@ Performance Tuning Optimization for Origin2000 and Onyx2 (007-3430-001)

(summary | manual | glossary)

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Performance Co-Pilot (PCP)

PCP provides a range of services designed to help monitor and system perfor

@ Origin Topology and Monitoring

@ PCP engineering and marketing home pages

® PCP is developed and maintained within the EBU Performance Tools Group (PTG)
® PTG’s projects and future PCP product releases.

@ Installation, Licenses and Test Drive Instructions

1-17 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Application Programming
® Compiler Group:
@ Mongoose Compiler 7.2 Project
@ Project Caribou
® Compiler-related environment variables
@ Irix 6.5 pthreads

@ CPS: Support Planning Operations (SPO) 7.2 Compiler status

Schedule and Dependencies, F Pre-Release Test Program, Customer Impact, Manufacturing Release (MR) Status

® SGI/CRAY Supercomputing Application Programming Interface (API) (004-2211-001: HTML | other)

Describes supercomputing API. Defines programming environment el including compilers, } libraries, sys! libraries, envirc
variables, system calls, and a few associated utilities.

@ PIPELINE ARTICLE 19960405: Programming Tips for IRIX

Contains information on useful IRIX system utilities, programming interfaces, and large memory allocation troubleshooting techniques that may be of value
to developers writing IRIX applications.

® Topics and IRIX Programming manual

® Programming on Silicon Graphics Computer Systems: An Overview manual
@ Power Fortran Accelerator User’s Guide manual

@ Origin and Onyx2 Programmer’s Reference Manual (007-3410-001)

Describes memory maps, and physical and virtual add P including Hub Special, YO, Memory Special, and Uncached spaces.

1-18 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® NCSA & Boston University’s Silicon Graphics Origin2000 Supercomputer Repository

NCSA and Boston U jointly announced this web site at the CUG Origin 2000 in Minneapolis Oct '97. It’s intended to be a public repository for Origin2000

information, and a catalyst for discussion.

@ Links to National Computational Science Alliance and other Origin2000 Sites

@ Partial List of Origin 2000 Scientific Applications (Scalability & Performance charts)
@ LANL’s Preliminary Performance Study of the SGI Origin2000

@ Performance of Fortran 90 Array Intrinsic Functions on the SGI Origin2000

TR-IKI rev 0.7b SGI Proprietary 22jul1998 1-19

Hardware Reference Materials

@ High End Engineering MFG Test Engineering pages contain very useful HW reference materials.
@ Info Tools for High End Production

@ Technical Overview of the Origin Family

Introduction

Origin2000 Components

‘What Makes Origin2000 Different

Scalability and Modularity

Systems Interconnections

Crossbar

Distributed Shared Address Space(Memory and I/O)
System Bandwidth

@ CRAY Origin 2000 64 Processor Beta Information 5858

@ Origin 2000 system part numbers, descriptions, and quantities

® I ego Design Document Index

@ USFO Sales Tools listed and documented

® Origin & Onyx2 World-Wide Service Support Tools project page and tool descriptions

® Remote Access Tool (RAT) User’s Guide for curses tool that talks to the System Controllers.
@ Origin & Onyx2 Theory of Operations Manual: (007-3439-001)

TOC, architecture overview, boards, ASICs, glossary
® JP27prom Technical Reference Manual
Covers usage of the IP27prom to boot or debug an Origin2000 system:
® Module System Controller (MSC) including commands
MSC was formerly known as ELSC (Entry-Level System Controller)
® Multi-Module System Controller (MMSC) including debug switches

MMSC was formerly known as FFSC (Full-Featured System Controller)
® CrayLink Interconnect Topology Primer

TR-IKI rev 0.7b SGI Proprietary 22jul1998 1-20

® IP27prom Operation including booting
® JP27prom Command Set
® IP27prom debugging including LED error codes and log messages

Includes sufficient background Origin2000 infor ion to minimize the ber of d ired to use the IP27prom.

q

@ Multi-Module System Controller (MMSC)
commands, security, flashing MMSC Firmware
Flashing: reloading a PROM’s firmware image.

@ MIPS R10000 Superscalar Microprocessor
@ MIPS Programming Manuals:

® MIPSpro Compiling and Performance Tuning Guide
® MIPSpro 64-bit Porting and Transition Guide

® MIPSpro Assembly Language Programmer’s Guide
® MIPSpro N32 ABI Handbook

1-20.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Other Reference Materials
@ CUG Papers, San Jose, May 1997:

@ Examples of Various Approaches to High-Performance Computing through Scalable Systems <ravRenimn
@ A Comparison of Application Performance Across Cray Product Lines C*3yReaim

® CPS: Support Planning Operations
for O2, Octane, Onyx2, Origin 200, SGI & Cray Origin 2000, TPU, IRIX 6.5

Project status, Planning dc ion & mi Service Readi Review (SRR), Service requirements, and systems

@ IRIX 6.5 Support Readiness Information
Chandler Lai - Support Planning
Presentations done by engineering groups which are planned to be available as videos on demand from servinfo
@ CPS IRIX 6.5 (Kudzu) Project
@ SSE System Administration class
@ SSE Network Administration class
@ IRIX 6.5 New Features and Differences class

@ Server Central: Origin 2000 & IRIX Product Information

@ Advanced Server & Workstation Environments Product MR Status

@ Trusted Irix, IRIX 6.2! 6.3} 6.41 6.5, XFS, DMF DCE/DFS

@ Origin 2000 Configuration Guide (PS | PDF), Data Sheet, & Product Guide
@ Cray Origin 2000 System Descriptions (PDF),

® Cray Software Engineering Technical Forums: previous and planned

@ CRAY Scalable Node and Origin 2000 project home pages and their list of SN-related links.

® JRIX 6.5 Public Technology Focus & Roadmap & Archives

® Kudzu Early Access Delivery List by Linda Conroy

@ Kudzu 128P test plan by Bill Roske

@ Silicon Sales: Presentations on Demand (POD) Origin 2000 Presentation Overview & Features

1-21 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® Technical resources referenced in an SGI Pipeline article on Cellular Irix
® The Magic Garden Explained by Bernard Goodheart and James Cox

Authoritative, in-depth description of internal working and programmatic interfaces to UNIX System V Release 4 OS. Explains various techni
algorithms, and structures within UNIX SVR4 kemnel.

® Wind River Systems VxWorks R/T OS

TR-IKI rev 0.7b SGI Proprietary 22jul1998 1-21.a

Module 2: Cray Origin2000 Architecture

Cray Origin2000 Architecture

2-1 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Cray Origin2000 Architecture Module Overview

This section provides a hardware overview of the Cray Origin2000 architecture.

By the end of this section, the student should be able to describe each of the below:

o Hypercube Structure

® Module Architecture

® Router Connections

® Node Board, XBOX, and Router Relationship
® R10000 Chip Architecture

® Cache Memory Systems

® Non-Blocking Cache

® Cray Origin2000 Cache Types

2-2 22jul1998

TR-IKI rev 0.7b SGI Proprietary

CRAY Origin2000 Multirack System

The CRAY Origin2000 system is a multirack system that can interconnect up to a maximum of 128 CPUS in 9 racks (8
server racks and 1 CRAY router rack) that are arranged as 4 cubes of 32 processors each. The router rack interconnects

the processors with CrayLink cables.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-4
Router and Hypercube Connection
Upper Module
%4 ve
Ve
va v7 Va
Ve
Cube D
Racks 6, 7 Racks 8,9
v4
ve G—‘ e
vs '
‘ .
v2 v b
®
V1 2]
Cube A Cube B
Racks 1. Racks 3,4
Lower Module
B
KEY
node TE node 1 =~ Craylink Cable
\l ’ node node 7—.— Midplan e Connection
Q/ CRAY router Cable
(X
TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-5

The above diagram presents a conceptual view of the nine rack, four cube, 128 CPU system pictured in the previous
illustration. Each "hypercube” has a variety of pathways to connect router vertices (V1, V2, etc.). A "module” is made up
of a pair of routers (R1 and R2). Each module is made up of two node boards. Each node board (usually) contains two
CPU’s (Central Processing Units), also known as PE’s (Processing Elements).

2-5.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Hypercube

The above diagram focuses on a single hypercube and its router connections, as well as the module configuration. Two
router vertices and their four nodes are considered a module. Every module contains eight CPU’s.

Each of the eight router vertices connects to two nodes. Since each node contains two CPU’s, a single hypercube
contains:
(8 x2x2)=32CPU’s.

A four hypercube configuration contains 128 processors (4 x 32).

2-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Origin2000 redundant paths

The interconnection fabric provides a minimum of two separate paths to every pair of Origin2000 nodes (and their total
of four CPU’s). The above diagram illustrates three different paths from node R1 to node R6. This redundancy allows the
system to bypass failing routers or broken interconnection fabric links. Each fabric link is additionally protected by a
CRC code and a link-level protocol, which retry any corrupted transmissions and provide fault tolerance for transient
erTors.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-7

Module and Node Block Diagram

There are four nodes in a module. Each node contains two CPU’s, for a total of eight processors per module.

Each Origin2000 node board is a "system on a board”. The Origin2000 has a number of processing nodes linked together
by an interconnection fabric. Each processing node contains:

® 1-2 R10000 processors

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-8

® A portion of shared memory (64 MB to 4 GB)
® A directory for cache coherence
® Two interfaces:

O a connection to I/O devices
O aconnection of all the system nodes through the interconnection fabric.

2-8.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Node Board Components

The Origin2000 central node board can be viewed as a system controller from which all other system components radiate.
Primary Origin2000 components are as follows:

® Processor

Origin2000 system uses the MIPS ® R10000, a high-performance 64-bit superscalar processor which supports
dynamic scheduling. Some of the important attributes of the R10000 are its large memory address space, together
with a capacity for heavy overlapping of memory transactions (up to twelve per processor in Origin2000).

Memory

Each node board added to Origin2000 is another independent bank of memory, and each bank is capable of
supporting up to 4 GB of memory. Up to 64 nodes can be configured in a system, which implies a maximum
memory capacity of 256 GB.

/O Controllers

Origin2000 supports a number of high-speed /O interfaces, including Fast, Wide SCSI, Fibrechannel,
100BASE-Tx, ATM, and HIPPI-Serial. Internally, these controllers are added through XIO cards, which have an
embedded PCI-32 or PCI-64 bus. Origin2000 I/O performance is added one bus at a time.

CrayLink Interconnect

This is a collection of very high speed links and routers that is responsible for tying together the set of hubs that

make up the system. The important attributes of CrayLink Interconnect are its low latency, scalable bandwidth,
modaularity, and fault tolerance.

22jul19938 TR-IKI rev 0.7b SGI Proprietary

® XIO and Crossbow (XBOW)

These are the internal /O interfaces originating in each Hub and terminating on the targeted I/O controller. XIO uses
the same physical link technology as CrayLink Interconnect, but uses a protocol optimized for I/O traffic. The
Crossbow ASIC is a crossbar routing chip responsible for connecting two nodes to up to six I/O controllers.

e Hub

This ASIC is the distributed shared-memory controller. It is responsible for providing all of the processors and I/O
devices a transparent access to all of distributed memory in a cache-coherent manner.

® Directory Memory

This supplementary memory is controlled by the Hub. The directory on each node keeps information about the cache
status of its assigned subset of physical memory. ’

For every physical page in a node’s local memory, there is a bit which indicates whether that page is in any
processor’s primary instruction cache, primary data cache, or secondary cache, and whether the data is "dirty” (needs
to be written to disk) or "clean” (an unchanged copy of disk data).

This status information is used to provide scalable cache coherence, and to migrate data to a node that accesses it
more frequently than the present node.

On architectures with the capacity for 32 or less CPU’s, the directory memory uses part of the local memory
assigned to the node. On architectures with the capacity for 33 or more CPU’s, the directory memory is on a separate
"Dual In-Line Memory Module”, or "DIMM" plugged into the node board.

The main memory DIMM holds 16 bits of directory memory. The extended directory DIMMs hold an additional 32
bits of directory memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-10

Each block of memory has a directory table that indicates the cached state of the block:

© Unowned: (uncached) the memory block is not cached anywhere in the system

© Exclusive: only one readable/writable copy exists in the system Shared: zero or more read-only copies of the
memory block may exist in the system. Bit vectors point to any cached location(s) of the memory block.

C Busy states: Busy Shared, Busy Exclusive, Wait. These three transient states handle situations in which
multiple requests are pending for a given memory location.

© Poisoned: page has been migrated to another node. Any access to the directory entry causes a bus error,
indicating the virtual-to-physical address translation in the TLLB must be updated.

The Hub ASIC is responsible for determining the state of the memory page during any memory request. The
protocol is implemented completely in hardware.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-10.a

/0 &

; Méin Mefnory Graphics

Directory 'i

Other
Node
Boards

The Hub, XBOW, and Router are ASICs (Application-Specific Integrated Circuit) which act as switches to provide the
interconnectivity of the Origin2000 components. The Hub is responsible for providing all of the processors and I/O
devices a transparent access to all of the Origin2000 distributed memory. The XBOW (Crossbow) is responsible for
connecting two nodes to up to six /O controllers. The Router is responsible for connecting a pair of nodes to other node
boards on the system.

2-11 22jul1998 TR-IKI rev 0.7b SGI Proprietary

MIPS ® R10000 Microprocessor (block diagram)

> Upto 4 A10000 MicTTErnCassors may be diractly connactea. -+ Speondary Cache

§
g‘..
2

E —— Syszam Interteco
i-g TR
< 2 Instruction Cache
= B 32 Koytes
Eg & 2-way Set Associalve oaa
¥alx
= 18-mcro blocks - 10
2_ % UNJNGNes acoRes 128+ E
3l lae rermerne el | —
o fo O P S i s
k- - : syemm.
3 Gsrmla
2 -Mbyte cache requires
2 = “mzsa«:;u g
£ F
=l |&[|s2
= Q
2]|&%
cE
o
125
gllee |
§ -
L2
R10000

2-12 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The R10000 Microprocessor implements the MIPS @ IV instruction set architecture. The R10000 Microprocessor

delivers performance of 800 MIPS at a frequency of 200 MHz, with a peak data transfer rate of 3.2 GBytes/second to

secondary cache.

TR-IKI rev 0.7b SGI Proprietary 22jul1998

2-12.a

More About the ® R10000 Microprocessor
Instruction prefetch

e Out-of-order execution
e Queuing structures
e Integer Queue
e Floating Point Queue
e Address Queue
e Execution Units
o Integer AL Us
o Floating-Point units
c Load/Store unit and the TLB
e Secondary Cache Controller
e System Interface
e R10000 Branch Unit
¢ Branch Instruction Problem
¢ Branch Prediction

The contents of the above links can be found in the appendix : "MIPS ® R10000 Microprocessor Overview".

TR-IKI rev 0.7b SGI Proprietary 22jul1998

More About Memory

Cache memory systems

A cache memory system is comprised of a small amount of memory which contains a block of memory addresses
comprising a small section of main memory. Cache memory has much faster access times and can deliver data to the
processor at a much higher rate than main memory.

On-chip cache memory systems can greatly improve processor performance because they allow accesses to be completed
often times in one cycle. On-chip cache contains a range of addresses which comprise a subset of those addresses in the

secondary cache. In turn, the secondary cache contains a range of addresses which comprise a subset of those addresses in
main memory.

Main Memory
On-Chip Cache

H-64 KDy s

Typical} Seconda
— Cache 4

. 32--256 KBytes
cru (Typical) / 1-64 MBytes
(Lypical)
In ing M 1 > >

The above picture should be correct to show a secondary cache size range of from 512 Kbytes to 16 Mbytes.

2-14 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Origin2000 Distributed Shared-Memory (DSM) and I/O

Origin2000 memory is located in a single shared address space but is physically dispersed throughout the system for
faster processor access over the interconnection fabric. This differs from former systems, in which memory is centrally
located on and only accessible over a single shared bus.

Page migration hardware moves data into memory closer to a processor that frequently uses it. This page migration
scheme reduces memory latency-- the time it takes to retrieve data from memory. Although main memory is distributed, it
is universally accessible and shared between all the processors in the system.

Similarly, I/O devices are distributed among the nodes, and each device is accessible to every processor in the system.

The Origin2000 divides main memory into two classes: local and remote. Memory on, or assigned to the same node as
the processor is labeled local, with all other memory in the system labeled remote. Despite this distribution, all memory
remains globally addressable.

To a processor, main memory appears as a single addressable space containing many blocks, or pages. Each node is
allotted a static portion of the address space. This means there is a gap if a node is removed. The illustration below shows
an address space in which each node is allocated 4 GB of address space, and Node 2 is removed, leaving a hole from
address space 4G to 8G.

2-15 22jul1998 TR-IKI rev 0.7b SGI Proprietary

A
Increasing
Address
Node 1
\va [. f"“'\y \:‘x (k‘,//
' ’ ‘.)
R NobE-
T e
\ (AL s
\
TR-IKI rev 0.7b SGI Proprietary 22jul1998

Node 4

Node 3

Base address 12Q

e PR

\1‘. P - S L\.tb
Lo s e
v oy
i ’l.?‘
A , N\ 2-15.2
IR Cooe

Origin2000 Memory Hierarchy Diagram

g
i
g
oy i
E
3

Local Memory aasigned
fo. thia . Node ...

Kpedes eiep Buisveioy

TR-IKI rev 0.7b SGI Proprietary 22jul1998

Origin2000 Memory Hierarchy Explanation

Memory in Origin2000 systems is organized into the following hierarchy:

® Processor Registers
® Local Caches

® Memory

® Remote Caches

Processor Registers

The registers are closest to the processor making the memory request, which is the processor labeled PO in the diagram.
Since registers are physically on the chip they have the lowest latency, that is, they have the fastest access times.

Local Caches

The primary and secondary caches located on PO are shown above (processor P1 has identical architecture, which is not
involved in this scenario). Caches have the next lowest latency after the registers, since they are also on the R10000 chip
(primary cache) or tightly-coupled to its processor on a daughterboard (secondary cache).

Each CPU has a primary instruction cache, a primary data cache, and a secondary cache which is used to hold both
instructions and data.

Memory
Memory can be either local or remote. The access is local if the address of the memory reference is to an address in that
piece of memory space assigned to the node the processor is on. The access is remote if the address of the memory

reference is to anywhere else in memory, all of which has been assigned to other nodes. In the diagram, local memory is
the section of main memory assigned to Node 1, which means this area of memory is local to Processor O (and Processor

2-17 22jul1998 TR-IKI rev 0.7b SGI Proprietary

1).
Remote caches

Remote caches may be holding copies of a given memory block. If the requesting processor is writing, all other cache
copies must be invalidated. None of this is a memory latency issue for the processor doing the writing.

If the requesting processor is reading, memory latency will be an issue only if some other processor has the most
up-to-date copy of the requested location. If this is true, then that other processor’s cached copy of the information must
first be written to disk, before the requesting processor can access that information for reading. In the diagram, the blocks
labeled "cache” on Nodes 2 and 3 are remote to Node 1 (as are all the rest of the caches on any module in the machine).

Caches are used to reduce the amount of time it takes to access memory (also known as a memory’s latency) by moving
faster memory physically close to, or even onto, the processor.

While data only exists in either local or remote memory, copies of the data can exist in various processor caches. Keeping

these copies consistent is the responsibility of the logic of the various hubs. This logic is collectively referred to as a
cache-coherence protocol.

2-17.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

More About Cache
Non-Blocking Cache

In a typical implementation, the processor executes out of the cache until a cache miss is taken. A number of cycles
elapse before data is returned to the processor and placed in the on-chip cache, allowing execution to resume. This type
of implementation is referred to as a blocking cache because the cache cannot be accessed again until the cache miss is
resolved.

Non-blocking caches allow subsequent cache accesses to continue even though a cache miss has occurred. Locating
cache misses as early as possible and performing the required steps to solve them is crucial in increasing overall cache
system performance.

The major advantage of a non-blocking cache is the ability to stack memory references by queuing up multiple cache

misses and servicing them simultaneously. The sooner the hardware can begin servicing the cache miss, the sooner data
can be returned.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-18

Cache Types

e Primary Data Cache
e Primary Instruction Cache
e Secondary Cache (For Both Data and Instructions)

The Primary Caches for data and instructions are a subset of the larger Secondary Cache which can contain both. All
three caches use a least-recently-used (LRU) replacement algorithm.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-19

Primary Data Cache

The primary data cache of the R10000 microprocessor is 32K bytes in size and is arranged as two identical 16K-byte
banks. The cache is two-way interleaved, allowing memory accesses to be overlapped. Each of the two banks is two-way
set associative (that is, two cache blocks are assigned to each set). Cache line size is 32 bytes. The data cache uses a fixed
block size of 8 words.

The data cache uses a write back protocol, which means a cache store writes data into the cache instead of writing it
directly to memory. Sometime later this data is independently written to memory.

Write back from the primary data cache goes to the secondary cache, and write back from the secondary cache goes to
main memory, through the system interface. The primary data cache is written back to the secondary cache before the
secondary cache is written back to the system interface.

The data cache is indexed with a virtual address and tagged with a physical address. Each primary cache block is in one
of the following four states:

o Invalid
@ CleanExclusive
® DirtyExclusive
® Shared

A primary data cache block is said to be Inconsistent when the data in the primary cache has been modified from the
corresponding data in the secondary cache. The primary data cache is maintained as a subset of the secondary cache
where the state of a block in the primary data cache always matches the state of the corresponding block in the secondary
cache.

2-20 22jul1998 TR-IKI rev 0.7b SGI Proprietary

A data cache block can be changed from one state to another as a result of any one of the following events:

primary data cache read/write miss
primary data cache write hit

subset enforcement

a CACHE instruction

external intervention shared request
intervention exclusive request
invalidate request

2-21 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Primary Instruction Cache

The instruction cache is 32K Bytes and is two-way set associative. Instructions are partially decoded before being placed
in the instruction cache. Four extra bits are appended to each instruction to identify which execution unit the instruction
will be dispatched to. The instruction cache line size is 64 bytes. The instruction cache has a fixed block size of 16 words
and is two-way set associative.

The instruction cache is indexed with a virtual address and tagged with a physical address.
Each instruction cache block is in one of the following two states:

o Invalid
® Valid

An instruction cache block can be changed from one state to the other as a result of any one of the following events:

® a primary instruction cache read miss

® subset property enforcement

® any of various CACHE instructions

® external intervention exclusive and invalidate requests

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-22

Secondary Cache (for Data and Instructions)

The R10000 processor must have an external secondary cache, ranging in size from 512 Kbytes to 16 Mbytes, in powers
of 2, as set by the SCSize mode bit. The SCB1kSize mode bit selects a block size of either 16 or 32 words. Secondary
cache line size is programmable at either 64 or 128 bytes.

The secondary cache interface of the R10000 microprocessor provides a 128-bit data bus which can operate at a
maximum of 200 MHz, yielding a peak data transfer rate of 3.2 GBytes/second. The secondary cache is two-way set
associative (that is, two cache blocks are assigned to each set).

Each secondary cache block is in one of the following four states:

o Invalid
® CleanExclusive
e DirtyExclusive
® Shared

A secondary cache block can be changed from one state to another as a result of any of the following events:

® primary cache read/write miss

® primary cache write hit to a Shared or CleanExclusive block

® secondary cache read miss

® secondary cache write hit to a Shared or CleanExclusive block
® a CACHE instruction

o external intervention shared request

® intervention exclusive request

® invalidate request

TR-IKI rev 0.7b SGI Proprietary 22jul1998 2-23

Determining What Hardware the System is Running

hinv - Hardware inventory command

The "hinv" command displays the contents of the system hardware inventory table. This table is created each time the
system is booted and contains entries describing various pieces of hardware in the system. The items in the table include
main memory size, cache sizes, floating point unit, and disk drives. Without arguments, the hinv command displays a one
line description of each entry in the table.

2-24 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Determining What Memory Looks Like

The following are useful for determining how memory is being used, how much is "userland”, how much is
"systemland”, how much was the default allocation for cache, how much cache is there now, what’s in it, etc. Do a "man”
or see web pages for these:

® ps

® top

® gr_top

® osview

® /usr/sbin/osview

® gr_osview

® gmemusage (originally called "bloatview")

2-25 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module 3: Memory and Addressing: Pages, TLB’s, and
Addressing, From a Hardware Perspective

Memory and Addressing from a Hardware Perspective

Since IRIX systems are virtual memory systems, that is, an entire process need not be completely in memory to run, there
are special hardware and software considerations involved in translating and calculating a process’s actual address in
physical memory, and determining if the requested address is something which needs to be brought in from disk before
the process can continue.

This section provides information about how the Cray Origin2000 hardware references memory and handles addressing.

By the end of this section, the student should be able to:

3-1

Explain how virtual memory systems differ from physical memory systems
Explain the concept of memory divided into pages

Describe the function of the TLB

Describe the sequence of events involved in satisfying a memory request
Desribe the four important memory segment types for 64-bit architectures
Interpret the segment type from a virtual address

22jul1998 TR-IKI rev 0.7b SGI Proprietary

HARDWARE MEMORY
Pages, and TLB’s

Introductory Concepts About Pages

Memory is managed in pages

With IRIX, memory is managed in amounts called "pages”. Pages are typically 16Kbytes in size, although the size
can vary. To a processor, main memory appears as a single addressable space containing many pages.

IRIX is a virtual memory operating system

While there are only so many actual physical pages of memory on a machine, the IRIX operating system uses a
methodology of "virtual memory", which allows the memory requirements of all the processes on the machine to
add up to more actual pages than the physical machine contains.

A process does not need all of its pages in physical memory

Each process is assigned to a range of virtual addresses, some of which are mapped to physical memory pages with
actual data when the process is first created. The system requires only those pages a process is actually referencing
to be physically present in memory, while unreferenced pages can remain as "virtual” addresses, that is, no physical
page of memory has been allocated for this page, or contains this page’s data.

Process pages do not need to be contiguous in physical memory
If the process never references a virtual page, then a physical page will never be assigned for it. If and when a
process needs to reference a "virtual” page, then that page will be mapped to a physical page and the data will be

brought into main memory. Although the physical pages of a process do not need to be contiguous in physical
memory, the operating system will organize the virtual process addresses into a contiguous virtual process image.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-2.a

Introductory Concepts About the TLB
e "TLB" - Translation Lookaside Buffer

The Cray Origin2000 R10000 MIPS processor chip hardware contains an array of 128 Translation Lookaside Buffer
(TLB) entries. The R4000 and R5000 chips hold 64 TLB register entries.

e The TLB translates virtual addresses to physical addresses

The function of the TLB is to translate virtual addresses to physical addresses.

The TLB is a virtual cache. The "data" cached by each TLB entry is the physical page number and page access
permissions that matches a particular virtual page address.

e "TLB Hit" - the physical page reference is in the TLB already

When a processor wants to reference one of a process’s virtual addresses, it looks first in its TLB to calculate what
physical page matches the virtual address reference. If the process has already referenced this virtual page, and the
matching physical page reference is still loaded in the TLB, then the physical offset into this page address can be
calculated immediately, and the data can be accessed quickly, and passed along to the CPU’s secondary and primary
caches.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-3

® "TLB Miss" - virtual page reference does not match a TLB entry

When a processor wants to reference a process’s virtual address and does not find a matching TLB entry, the CPU
must do a context switch to the operating system kernel code.The kernel will check to see if there is an existing
physical page loaded with process data which matches the virtual address.

O If the physical page is currently loaded in memory...

The kernel will do the calculations to translate the virtual process address to a physical memory page. If there is a
valid translation, then the kernel will load a TLB entry to describe that page, and restart the instruction. This time,
when the CPU tries to match the process’s virtual address request with a TLB entry, the process gets a "TLB hit",
and is able to reference the requested address.

© If the physical page is NOT currently loaded in memory... (Vel gers ¢ E A

In this case the kernel determines that there is no physical page loaded with process data, that matches the virtual
address the process now wants to reference. This is called a page fault. At this point, the kernel must calculate the
disk location of the page containing the address the process wants to reference, and then move that page of disk
information into a physical memory page. Once this is accomplished, the kernel can calculate a valid
physical-to-virtual address translation, and load the TLB with a description of that page. When the process
instruction is restarted, the process (finally) gets a "TLB hit”, and is able to reference the requested address.

’ Foe (
el
A
VT LY
. ’ ; Cod
T8 ’ S Pt
S~ ik LA
& N Y
T VIR (L
N ; {
| S ﬂ - ;
3-4 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Memory Management Philosophies
Real Memory Machines and Swapping

One of the major concerns for the operating system is how it manages the finite amount of physical memory installed in
the system hardware. The aggregate amount of memory needed by all active processes on the system is constantly
changing and generally is far greater than available physical memory.

On "real” memory machines, a process must be entirely located in physical machine memory, in order to run.

Earlier versions of UNIX used a method called swapping to manage main memory. With this method, whole processes
were swapped from memory to disk to make room for other processes that needed to run. Swapping was done by a
special process called the swapper or sched (short for scheduler), which always had a PID=0.

"Swapper" is still the first process created on most UNIX-based systems. When the system first comes up, the first

process, PID(0) does a lot of system initialization. When process 0 is finished, it renames itself "sched" and jumps into a
loop of code which is the process swapping routine. This routine sleeps, and wakes up when there is work to do.

In [/5) SUYe =2 r VS yLowd O

\\ m' J %&, -+ n {¢a (tx

3-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Virtual Memory Machines and Paging

UNIX System V Release 4 adopted a concept referred to as virtual memory. A virtual machine allows programmers to
ignore the physical layout and size of machine memory. A program is written to reference virtual addresses for both
instructions and data, thus relieving the programmer from concern as to where things are physically located in memory.

On IRIX, an entire process does nor have to be completely in memory to run. Instead, only those pieces, or "pages"”, of
the process needed to execute are required to be physically in machine memory.

Virtual memory systems:
® Give the illusion that there is more memory available than physically installed on machine.
® Can run programs that are larger than physical memory.
® Do not require the process to be entirely in physical memory to run.

® Require a translation mechanism to convert virtual memory addresses to physical addresses at run time.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-6

Where Are the Addresses the Process Isn’t Using?

Virtual memory is implemented using a hierarchical-storage scheme, as shown below. The parts of a process which are
not being used and which will not fit in memory are held on secondary storage devices such as disk or remote disks
accessible over the network.

Faster devices primary cache |

secondary cache

Slower devices

The subsystems of the kernel and the hardware that cooperate to translate virtual to physical addresses comprise the
memory management subsystem.

This section focuses on the hardware aspects.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-7

Memory pages

IRIX implements a memory management architecture based upon pages. The kernel divides all of physical memory into
a set of equal-sized blocks called pages. The size of each page is defined by the hardware, For IRIX-based systems a
page is a multiple of 4 KB, and typically is 16 KB in size.

The syscon£(1l) command, using an argument of either PAGESIZE or PAGE_SIZE, can be used to display the definition of
page size on an IRIX system.

Below is an example of a 64 GB Origin2000 system and a calculation showing the number of memory pages defined on
the system.

1
1 KB = 1,024 bytes =2 bytes
20
1 MB = 1,048,576 bytes =2 bytes
IGB-Z:”bytes

Origin2000 (exampie)
memory size ~ 64 GB 64° 2:.
memory size _ - a=2
pages = SRepage - 42 4194,304 pages
16*2
3-8 22jul1998 TR-IKI rev 0.7b SGI Proprietary

HARDWARE ADDRESSING
All Addresses = (Page Number + Byte Offset)

Every addressable location in physical memory is contained in a memory page. Therefore, every memory location (byte)
can be addressed by a pair of values: (page number, byte offset on page)

PFN

He Cotrme. numlat? =

Each byte of ical mem L B
addreszg)le Bym oy ﬂ’\\(L ;’&i«
N ;
{page number, byte offset on page) ; v
ST N PN ;
~ g A LI + e ‘;{f':‘:,@,, i
(AYEE SIS i o J o !

3-9 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Cray Origin2000 Memory Hierarchy and Latency

Page migration hardware moves data into memory closer to a processor that frequently uses it, in order to reduce memory
latency, that is, how long it takes for a processor to access memory contents.

Remember from the Cray Origin2000 Architecture lesson which contained the memory latency hierarchy explanation and
diagram, that memory contents are accessed, in order of increasing memory latency (increasingly slow access), as
follows:

® Processor registers for this CPU

® Primary Cache for this CPU

e Secondary Cache for this CPU

® Local Memory (the memory assigned to this node)

e Remote Memory (the rest of the system’s memory)

® Remote Caches of other CPU’s (the condition of the data in another CPU’s cache could require time-consuming
operations, such as a write, before this CPU can access the data)

Much of the rest of this section overviews how an address is found.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-10

Address Request Sequence

Execution unit 2nd CPU module on llode
and registers

MIPS R4X00;
RS5000, R8000 or R10000

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-11

A CPU examines an instruction, and isolates that part of it which represents the address of the page, and the offset into
that page, of the data that the CPU needs. This address might be something like the address of an instruction to fetch, or
the address of an operand of an instruction. Then the CPU goes through the following steps in order to find that address.

1.

The virtual ‘address of the needed data is formed in the processor execution or instruction-fetch unit. Most addresses
are then mapped from virtual to real through the Translation Lookaside Buffer (TLB). This process may have had a
"TLB miss" if the virtual-to-physical mapping was not already in the TLB. At that point, the CPU had to exchange
into kernel context in order to determine the physical address and then load it into the TLB. One way or another, at
this point the TL.B has a virtual-to-physical address mapping of the address the process wants, and the CPU 'knows’
what physical page of memory it must access.

. Most addresses are presented to the primary instruction or primary data caches, depending on what is being

addressed. These caches are in the processor chip. If a copy of the data with that address is found, it is returned
immediately.

- When the primary cache does not contain the data, the address is presented to the secondary cache, which is used to

hold both data and instructions. If the secondary cache contains a copy of the data, the data is returned immediately.

. When the secondary cache does not contain the data, the physical address reference is placed on the system bus and

handed over to the HUB chip. The HUB knows which areas of memory have been assigned to which nodes, which
area of memory has been assigned as "local” to this node, and which nodes are attached to which router connections.
The HUB acts as a switch, and directs the request either to this node chip’s local memory, or whatever remote
memory address is appropriate.

. When the HUB chip recognizes that local memory does not contain the data, the address passes out through the

"connection fabric", that is, through router connections to other nodes on this, or other hypercubes in the system, to a
memory module in another node, from which the data is returned.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

TLB Misses

Each TLB entry on an R10000 chip describes two pages whose virtual addresses are adjacent, and maps each to the
actual physical page of real memory containing the data. Remember that, although the virtual addresses are contiguous,
the two corresponding physical pages probably are not. On an R4000 or RS000 chip, a TLB entry describes only a single
page of memory. When a CPU tries to execute something relating to a process’s address, it is using a virtual address. If
the address falls in a page described by 2 TLB entry, the TLB supplies the physical memory address for that page. The
translated address, now physical instead of virtual, is passed on to the secondary cache.

‘When the input address is not covered by any active TLB entry, the MIPS processor generates a "TLB miss” exception,
which means that the CPU stops executing user code, and changes its context to execute IRIX kernel code, in order to
handle this TLB-related situation. The kernel inspects the address. When the address has a valid translation to some page
in the address space, the kernel loads a TLB entry to describe that page, and restarts the original instruction.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Two Types of ""TLB Miss"'

There are two kinds of "TLB miss” situations.

In one case, the CPU examines the TLB, and does not find a physical page reference because the page has never been
loaded into memory to begin with.

In the second kind of TLB miss, the page is in physical memory, but isn’t in the TLB for some reason, for example, that
reference may have been loaded in the TL.B earlier, but eventually stopped being referenced, aged, and was overwritten.

The TLB is hardware. Handling a TLB miss is solved with software. There is more detail on how the kernel handles each
of these two TLB miss situations in a later section.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-14

TLB Size

The size of the TL.B is important for performance. As long as the CPU finds virtual-to-physical address mappings readily
convenient in the TLB, the process can continue to execute (until some other even forces a context switch).

The TLB associated with the R10000 chip holds 128 entries. The TLB associated with the R4000 and R5000 chips hold

64 entries. N
At é/ :
O N -

) He o> o _ et
TN . s " oA e
o gen o CEelEed Do 7
! . “" > ’
' \J / \ ‘t'
-y : \ _
- \ R
i i
\ L ‘; o (“\ﬂ
: N L
\ i i.! [(VX - \f\“\:"‘j/
_- ‘! %‘ \ip \!\{\?
= Q‘ | : {\X\O
, A \ o,
ik ' LN
¢ &}5 v - v (7/!
i » . L
TR-IKI rev 0.7b SGI Proprietary 22jul1998 o - A 3-15 g/

Coprocessor 0 and the TLB

Coprocessors are alternate execution units, with register files separate from the CPU.

The MIPS architecture provides an abstraction for up to 4 coprocessor units, numbered O to 3. Each architecture level

defines some of these coprocessors. Coprocessor 1 is used for the floating-point unit. Coprocessor 0 is always used for
system control. Other coprocessors are architecturally valid, but do not have a reserved use. Some coprocessors are not
defined and their opcodes are either reserved or used for other purposes.

Many of the coprocessor O registers are related to the TLB and exception processing, as shown below.

3-16 22jul1998 TR-IKI rev 0.7b SGI Proprietary
Register No. Register Name Descxiption

0 rdex Frogrammable register to select 11D erfry for Teadin.g or wriirg

1 Rardorm Fseudo-rardom courter for TLB replacemert

2 BrtryLoD Low half of TLB ertry for ever. VEN (Fhysical page rumber)

3 Brtrylol Low half of TLB ertry for odd VEN (Fhysical page rimmber)

4 Cortext Foirter to kerrel virtual FTE table ir. 32-bit addressirg mode

5 Fage Mask Mask that sets the TLD page size

6 Wired Number of wired TLB ertries (lowest TLD er.tries rot used for rardor

replacerert)

7 Undefined Undefined

8 BadVAddr Bad virtual address

9 Count Timer court

10 Briryrli High half of TLB ertry (Virtual page rumber ar.d ASiD)

11 Compare Timer compare

12 Status Frocessor Status Register

13 Cause Cause of the last exceptior. taker.

14 EFC Exceptior. Frogram Courter

15 FRid FProcessor Revisior. Ider tifier

16 Corfig Corfiguratior: Register (secor.dary cache size, etc.)

17 LLAddr Load Lirked memory address

18 Watchio Memcry refererce trap address (Jlow bits Adri39:32])

19 WatchHi Memory refererce trap address Chigh bits Adr!31:3))
20 XCor.text Foirter to kerrel virtual FTE table ir. 64-bit addressirg mode
21 rrameMask Mask the physical addresses of ertries which are writter irto the TLB
22 BrDiag Brarch Diagrostic register
23 Undefined Undefined -
23 Undefined Undefined
25 FC Ferformarce Courters
26 ECC Secordary cache ECC ard primary cache parity
27 CacheErr Cache Error ard Status register
28 Tagio Cache Tag register - low bits
29 Tagtli Cache Tag register - }d&‘\ bits
30 ErrorEFC Error Exceptior. Frogram Cour.ter

3-17 22jul1998 TR-IKI rev 0.7b SGI Proprietary

1//,\; B, \ﬂ'}{;, i ~
d) o /T
o) XeX=XoXe
) o J O ’ l) | -
y o b
Cn cvoshke te g el N
{ Y i ¢ ! [4 ’:‘} ;‘4’;,.‘./ 12
/ -
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-17.a
Binary, Hexadecimal, and Decimal Address Conversions
Below is a brief reminder of the bit pattern significance for hexadecimal addressing.
Binary | Hex | Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-18

The 64-Bit Address Space and ''Segments'’
The 64-bit mode is an upward extension of 32-bit mode. All MIPS processors from the R4000 on support 64-bit mode.

There are four bits to one nibble, and two nibbles to one (eight-bit) byte.

There are eight bytes to one (sixty-four bit) word.

The MIPS hardware divides the address space of system memory into segments based on the most significant bits, and
treats each segment differently. The ranges are shown graphically, below.

These major segments define only a fraction of the 64-bit space. Most of the possible addresses are undefined and cause
an addressing exception (segmentation fault) if used.

‘When operating in 64-bit mode, the MIPS architecture uses addresses that are 64-bit unsigned integers from
(hexadecimal):
0x0000 0000 0000 0000 to OxFFFF FFFF FFFF FFFF.

This is an immense span of numbers - if it were drawn to a scale of 1 millimeter per terabyte, the drawing would be 16.8
kilometers long (just over 10 miles).

3-19 22jul1998 TR-IKI rev 0.7b SGI Proprietary

INlustrations of Segment Types

Both of the next two illustrations show memory divided into the various segment types. The illustration on the left shows
a better representation of the segment types. The illustration on the right gives a better representation of which
hexadecimal addresses map to those segment types.

These illustrations are a good starting point for understanding the different segment types, but some of what is shown is
somewhat confusing. See the explanation of segment types and characteristics, which follows.

3-20 22jul1998 TR-IKI rev 0.7b SGI Proprietary

64-bit

(KSU = 00orEXL = 1 or ERL = 1)
and KX = 1

T 320K k0g, Kregl, kaegT, K30G2, notto scale Ox FFFF FFFF FFPP FFFF 0.5 Gbytas
i Mapped ckseg3
Ox FFFF FFFF E000 0000
Ox FFFF FFFF DFFF FFFF 05 Qb
Unused aqdresses R ytes
OX FFFr rrrr Cooo COOO Mlppﬂd Cb%
ox FFFF FFFF BFFF FFFF[0.5 Gbytes
Unmapped cksegl
ks 0g - 16 TB kamel virtual space, ox FFFF FFFF A000 oooo| Uncached
mapped and cached Ox FFFF FFFF 9FFF FFFF 0.5 Qby'..
Unmapped ckseg0
0x FFFF FFFF 8000 0000 Cached
ox FFFF FFFF 7FFF FFFF Addr
o33
Xiphys - Unmappea, cache controled ox CDOO OFFF 0000 0000 Error
Ty access Nx CNNN NFFR FFFF FFFF
xicseg
0x CDOO D0OO DOOD 5000
Ox BFFF FFFF FFFF FFFF
Unused acdreases Unma
pped xkphys
0x 8000 0000 0000 0000
Ox 7FFF FFFF FFFF FFFF Addrass
Address Error if SXa0
Xicseg - 16 TB supervisor-mode Ox 4000 1L0DO DDOO 0000 Error
virual space, mapped 0X 4000 OFFF FFFF FFFF
and cec hed (not used) Tb
16 ytes
Mapped xksseg
0x 4000 0DOD 0DOO 000D
Unused addresses Ox 3FFF FFFF FFFF FFFF Fop
ress
Error Address Error if UXu0
Ox 5ODO 1000 DOOD DOOO or EAL = 1
Ox 0000 OFPP FFFF FFFF|
xicuseg - 16 TB user process
s 2z 0238 3038 3p0p saget - gToven I s
#and cached (See Nots beiow)
32-0k suseg, notto scale Ox 0DOD DODO 0000 DOOO
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-21
TR-IKI rev 0.7b SGI Proprietary 22jul1998 -2l.a

Below is a simplified version of the earlier pair of illustrations, which summarizes the possible memory segment types for

a Cray Origin2000 architecture.

64-BIT ADDRESS NEMORY SEGMENT TYPES
S (Cxay ‘Oxigin2000)

co.... ")
towards high virtual
memory addresses

\-exocept foxr
acoessibility

mode
(user vs kernel)

.towards low virtual
memory addresses

3-22

22jul1998 TR-IKI rev 0.7b SGI Proprietary

3-22.a

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Segment Characteristics

There are a number of different segment types shown in the previous illustrations. These segments differ, depending on
two major characteristics:

® whether or not the address must be translated, or "mapped"”, from a virtual reference to a physical memory reference
by the translation lookaside buffer (TLB).
® whether an address can be accessed when the CPU is operating in user mode or in kernel mode.
And there is an additional difference which is not segment-specific, but address-specific:
® whether this particular address will be cached or not.
For all segment types, each address is potentially cacheable, so whether this is something to be considered about this
particular address (or not) must be checked. This last difference does not distinguish segments types, it is a distinction

about the handling of each specific address, regardless of segment type. Whether to cache an address or not, is
determined by bit settings (explained below).

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-23

Segment Types Overview
The simplified diagram of memory segment areas attempts to display these essential concepts:

® 64-bit machines are compatible with 32-bit machines
O (probably) ignore these segments
® Memory access is divided into kernel and user areas, based on CPU mode
O Type is determined by the high-order bit (bit 63)
m O = user
m 1 = kernel
© Four possible areas (segment types)
© Ignore supervisory mode related references [xksseg)
® User area:
O xKkuseg - virtual user memory
® Virtual to physical address translation done through TLB ("mapped")
m High order bits 63:56 = "00"
m Might be cached
® Kernel areas :
© xkseg - virtual kernel memory
m Virtual to physical address translation done through TLB ("mapped")
® High order bits 63:56 = "C0"
= Might be cached
© xKkphys - physical kernel memory
m Low-order 44 bits used as direct physical address ("unmapped”) (no TLB)
® Six subdivisions based on caching algorithms
®m only two used, ignore the rest
= If high order byte (bits 63:56) = "A8", xkphys address might be cached
= If high order byte (bits 63:56) = "96", xkphys address will never be cached

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-24

Table of Cray Origin2000 Segment Types and Characteristics

The table below is a summation of the bit patterns, and mapping methodology, and caching characteristics, of the four
memory segment areas of most interest on a 64-bit machine.

The "6" in the uncached xkphys sgement high bits "96" is the only part of this segment addressing scheme that is
Origin2000 specific. The interpretation of the bits, and the implementation of these characteristics, is heavily influenced
by the CPU and also a little by the general SNO architecture.

Table 3-0: Segment Types and Characteristics for Cray Origin2000 Architecture

High Two |Map ped IU I
iSegment Address Hiltgh Order Sei:::ond Highest (Bxlbglse:} 56) |Address ser Kernel [Cache Algorithm
Space Type BIT63) |(BIT 62) HEX - T({hg))ugh JAccessible |Accessible |Determined By:
BINARY:
xkseg
(k2seg) 1 1 Co
kernel, mapped, | (kernel) | (mapped) 1100 0000 YES No YES TLB
poss. cached
’(‘l":g:‘e’:) ; 0 as BITS 6159
1010 NO NO YES (bits indicate this
kemél,Aunmapped, (kernel) (unmapped) 61:59 address will be cached)
xkphys 96 BITS 61:59
(k1seg) 1 0 (bits indicate this
kemnel, unmapped,§ (kernel) (unmapped) 100611'5091 10 NO NO YES address will not be
UNcached - cached)
xksseg U N U S E D
xkuseg 0 0 00
us::;:nc:]::ee:, (user) (mapped) 0000 0000 YES YES YES TLB
3-25 22jul1998 TR-IKI rev 0.7b SGI Proprietary

3-25.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

32-Bit Compatibility Areas

You can probably ignore all the 32-bit compatibility addresses on your machine, unless there is a user code running in
that context.

On a 64-bit machine, the beginning and end of memory have areas to make the machine compatible with 32-bit
architectures. These areas are listed in the illustrations above as [kseg, ksegO, ksegl, kseg2, and kseg3] in one drawing,
and [cksseg, ckseg0, cksegl, and ckseg3] in the other. Comparing the two illustrations may lead to some confusion.

In the right-hand illustration, you may notice that while there is a cksseg, ckseg0, cksegl, and ckseg3 area, there is no
"ckseg2" area. This is because the ckseg2 area was split into the ckseg3 and cksseg areas.

In the left-hand illustration, you may notice that in this case the areas are numbered sequentially, kseg, kseg0, kseg1,

kseg2, and even kseg3, but there is no "ksseg” area, although you may occasionally find it used to refer to "kernel
mapped space” (more on "mapped” versus "unmapped” below).

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-26

Addresses Accessed Based on CPU Mode

The 64-bit compatible memory addresses are divided into kernel areas, which only CPU’s running in kernel mode can
access, and the user area, which CPU’s running in either kernel or user mode can access.

You will probably encounter references to a third mode, supervisory mode, as well. This is a privilege level somewhere
between user mode and kernel mode. This mode is NOT implemented. You can ignore all references to it in both
documentation and in the code (it was easier to leave the code in, than to remove it). You can ignore the area of memory
addresses, xksseg, devoted to it.

There are really only four different types of memory segments you will probably need to know about. These are the three

kernel-only address areas composed of xkseg, and two subdivisions of the xkphys area, and the fourth segment type
composed of the user-specific area xkuseg.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-27

Cray Origin2000 Segment Types

When a processor references an address, it looks at the high bits of the address to determine whether the address falls into
user-accessable memory addresses (the high-order bit, bit 63, is a "0"), or kernel-only memory addresses (the high-order
bit, bit 63, isa "1").

Most addresses presented to the CPU are virtual addresses and must be "mapped", or translated, through the TLB, into
physical memory references.

Some addresses presented to the CPU are used as "direct”, or "unmapped”, references to a physical location, that is, the
address is not translated through the TLB, but is interpreted instead as instead reference to a physical area of memory.

3-28 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Interpreting the Segment Type From the Virtual Address
Each 64-bit address value is treated as shown below

The two most significant bits select the major segment.

The xkuseg, xkphys, and xkseg segment types are discussed below. The xksseg segment is not utilized, so it is ignored.
The size of a page of virtual memory can vary from system to system and release to release, so always determine it
dynamically. In a user-level program, call the getpagesize() function (see the getpagesize(2) reference page). In a
kernel-level driver, use the ptob () kernel function (see the ptob(D3) reference page) or the constant NBPP (Number of
Bytes Per virtual Page) declared in /usr/include/sys/immu.h.)

When the page size is 16 KB, bits 13:0 of the address represent the offset within the page, and bits 39:14 select a Virtual
Page Number (VPN) from the 226, or 64 M, pages in the virtual segment..

User Address Area Segment
xkuseg - Virtual User Memory - mapped, probably cached

3-29 22jul1998 TR-IKI rev 0.7b SGI Proprietary

o Distinguishing Bit Pattern?

If the high-order bit of an address, bit 63, is a O, then the address refers to the user memory segment.

In fact, the upper two "nibbles"” (ie, the upper 8 bits, 4 bits per nibble, same bits as the upper byte) are always all zeros for
user address references. (It may actually be the case that bits 62:56 could be something other than 0. It seems to be the
case that this is such a large virtual address value, this has never been tested.)

® Accessible to Which CPU Modes?
These addresses are the only ones CPU’s in user mode can access. CPU’s in kernel mode can access these areas, as well
as the kernel-only memory addresses. The xkuseg area, and the xkseg area (kernel mapped, possibly cached, see below),
are treated identically, except that only the kernel can access the xkseg area.

® What’s it used for?

The xkuseg area is the area devoted to user process space. User address space takes up roughly half of memory (about 16
terabytes).

® Mapped or Unmapped?

All user area addresses are considered mapped addresses. This means that the 64-bit address the CPU is examining is a

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-29.a

virtual address and cannot be used "as-is" to find an actual physical location. The CPU must go through the TLB in order
to translate the address into a real physical memory reference.

The kernel creates a unique address space for each user process. Of the 226 possible pages in a process’s address space,
most are typically unassigned, and many are shared pages of program text from dynamic shared objects (DSOs) that are
mapped into the address space of every process that needs them.

The Origin2000 architecture adds the complication that the location of a page, relative to the location where the process

executes, has an effect on the performance of the process. The kernel uses a variety of strategies to locate pages of
memory in the same node as the CPU that is running the process.

® Cached or Uncached?

User area addresses references are probably going to be cached. This means that CPUs must be concerned with cache
coherency issues before loading or storing user area adresses.

Any attempt to read that memory location must confirm that there is not a version which was read into cache and
changed, somewhere else in the machine. Such an occurrence would make the memory version incorrect, since the
memory version would not be the most recent version of the address’s contents.

Any attempt to write to that memory location will make other cached versions on the machine outdated and invalid.
It’s possible that a user could access the xkuseg area with uncached reference, but the user would have to do special

syssgi calls that are only used by SGI diagnostics to get uncached access to memory. Uncached access to the xkuseg
segment is Of allowed by the architecture and CPU, but the kernel chooses not to use the hardware in this way.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-29.b

Kernel Address Area Segments

For all kernel-only address area segments, the high-order bit (bit 63) is a "1".

There are two major areas of kernel memory, xkseg and xkphys. The kernel distinguishes which of the two segment
types an address falls into, by examining additional bits in the address.

The second-highest bit, bit 62, determines whether this address reference is to an xkseg area (bit 62 is a "1"), or an
xkphys area (bit 62 is a "0").

The xkphys area is further subdivided, based on cache-related issues. Bits 59, 60, and 61 (usually written "61:59") are
examined to determine which caching algorithm to apply to memory in an xkphys segment.

There are only three kernel-specific segment types you probably need to know about, xkseg, and two of the subdivisions
of xkphys.

3-30 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkseg - Virtual Kernel Memory - mapped, possibly cached
® Distinguishing Bit Pattern?

When bits 63:62 are "11", then the memory accessed is kernel virtual memory.

11000000

Only code that is part of the kernel can access this space, which is a 2 Terabyte segment starting at 0xC000 0000 0000
0000. All addressing in the xkseg area starts with "CO0' in the highest two nibbles (highest byte).

® Accessible to Which CPU Modes?
Only CPU’s running in kernel context can access memory in the xkseg segment addresses.

® What’s it used for?
This is the space in which the IRIX kernel allocates such objects as kernel stacks, per-process data that must be accessible
on context switches, and user page tables. Certain important data structures may be replicated into each node for faster

access.

This segment area is also the space in which kernel-level device drivers allocate memory, including automatic variables
declared by loadable device drivers. The stack and data areas used by device drivers are in xkseg.

3-31 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Since kernel space is mapped, addresses in the xkseg segment that are apparently contiguous need not be contiguous in
physical memory. However, a device driver can allocate space that is both logically and physically contiguous,when that
is required.

A driver has the ability to request memory allocation in a particular node, in order to make sure that data about a device is
stored in the same node where the device is attached and where device interrupts are taken.

e Mapped or Unmapped?

References to this space are mapped (that is, translated through the TLB) and cached. The kernel uses the TLB to map
kernel pages in memory as required, possibly in noncontiguous physical locations. The kernel passes the address through
the TLB, and the TLB examines the virtual address, which it translates to a physical address.

This segment area is treated exactly the same way as the mapped user area (xkuseg) in terms of how the TLB translates

virtual to physical address references. The difference is that, although pages in kernel space are mapped, they are always
associated with real memory. Kernel pages are never paged to secondary storage.

® Cached or Uncached?
The TLB itself has some bits set which define how it will handle cache coherency issues, that is, the appropriate caching

algorithm to use is determined by the TLB mapping. There are only two caching algorithm choices which are used. One
is "don’t cache it", and the other is "cacheable coherent update on write".

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-31.a

xkphys - Physical Kernel Memory
xkphys - unmapped, possibly CACHED
xkphys - unmapped, UNcached
o Distinguishing Bit Pattern?
When bits 63:62 are "10", then the memory accessed is kernel physical memory allocated in the xkphys segment.

For this particular segment type, three additional bits, bits 61, 60, and 59, are examined to determine whether cache
residency is a relevent concern for memory addresses in this segment. There are six possible subdivisions of the xkphys
memory area, based on what cache coherency algorithm to use for addresses in these sub-ranges, but only two of the
subdivisions (and their caching algorithms) are actually used. See the "Cached or Uncached?" section, below.

® Accessible to Which CPU Modes?
Only CPU’s running in kernel context can access memory in the xkseg segment addresses.

e What’s it used for?

CPU’s reference xkphys addresses in order to access kernel structures and data that will be needed "briefly", such as proc
structures, vnode structures, buf structures, and all kernel dynamic data, all of which is managed by pfdats.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-32

One-quarter of the 64-bit address space, that is, all addresses with bits 63:62 containing a bit pattern of "10", are devoted
to special access to one or more 1 TB of physical address spaces.

® Mapped or Unmapped?

Direct references to this space are "unmapped”, that is, the TLB is not involved in calculating the appropriate physical
memory address location.

The entire 64 bits are a virtual address that is not really a physical memory address refernce, but the processor knows how
to decode it into a physical address. The physical address selected is taken directly from the lower 40 bits, bits 39:0, of
that part of the word normally interpreted as a virtual page number and offset into the page. The three high order address
bits discussed above, bits 61:59, determine if this memory reference is cached.Those 3 bits are part of the actual virtual
address, which happens to map pretty straightforwardly to a physical address.

Access to addresses whose bits 56:40 are not equal to O cause an Address Error exception.

3-32.a 22jul1998 TR-IKI rev 0.7b SGI Proprictary

® Cached or Uncached?

® xkphys - unmapped, possibly CACHED

Addressing in the xkphys area that starts with "A8" in the highest two nibbles (highest byte) has a bit pattern of "1010
1000".

The first two bits, "10" (bits 63:62), indicate this is an xkphys segment.
The next three bits, "10 1" (bits 61:59), indicate which of the six possible xkphys caching algorithms is to be used, which,
in this case, is the "cacheable coherent update on write” algorithm. Again, only two of the six possible algorithms are

used.

This particular cached area of the xkphys segment starts at address 0xA800 0000 0000 0000, and goes through OxAFFF
FFFF FFFF FFFF, but it is highly probable you will only see addresses in this area that start with "A8".

3-33 22jul1998 TR-IKI rev 0.7b SGI Proprietary

e xkphys - unmapped, UNcached

S

Addressing in the xkphys area that starts with "96'" in the highest two nibbles (highest byte) has a bit pattern of "1001
0110".

The first two bits, "10" (bits 63:62), indicate this is an xkphys segment.
The next three bits, "01 0" (bits 61:59), indicate which of the six possible xkphys caching algorithms is to be used, which,

in this case, is the bit pattern to specify that addressing in this particular range of xkphys should be "uncached”. Again,
only two of the six possible algorithms are used.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-34

The 64-bit Word and the Virtual Address

40 “address bits* coupo-od of s
: "N'm 8 NASID bits
‘A= 32 wvirtual address bits

1. Of the 64 bits in a virtual address, only 40 bits are actually address values.

2. The high order 24 bits can be considered "mode bits", which contain information about how to interpret the low
order bits 39:0.

3. The NASID (Node Address Space ID) is the "power of two" at which each node’s memory begins

TR-IKI rev 0.7b SGI Proprietary 225ul1998 3-35

A Different View of Memory Segments - Diagram

' NODE -0 NODE 1 - ; e NODE

193] }
IE
2 thi
% d
e

72

,‘ = address gaps (between banks and between nodes)
: ddress{ = address :angé: :

3-37 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Memory Segment Overview

® "Stacked tuna cans” view of virtual memory is misleading
O the consecutive numbering across memory segment address ranges is misleading
(00...00 -> 96...00 -> AS...00 -> C0...00)
© the uncached xkphys (96...), cached xkphys (A8..), and xkseg (CO...) memory segments all describe the same
range of physical memory pages
© the xkuseg virtual memory addresses can refer to almost any pages of physical memory
O the high order "mode bits" of a virtual address word indicate how a physical memory page will be referenced
® Physical memory has address gaps between banks and between nodes
© these physical addresses do not exist
O attempts to reference these non-existent addresses will cause errors
® There are 4 virtual memory segment types of primary interest
© xkphy (cached) (A8..)
© xkphys (uncached) (96...)
o xkseg (CO...)
o xkuseg (00...)

3-38 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The following illustrations reference a 64-bit architecture.

For all types of memory segment addresses, there are three ranges to be considered:

63 ’ 9 ' 0 '

= all 40 address b;l.l:s set to 1.
= FFFFFFFFFF
= 10 000,000,000 deciml b:ytes

64-bit architecture-imposed address limit size

all 40 addrees. bit:- seot to :L
FFFFFFFFFF

64-bit architecture-imposed address limit size
o ‘ ' ' 10, 000,000,000 decimal bytes

xkuseg

000000000

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-39

— = i e s e e - g =
64-bit architecture-imposed address limit size all 40 _address bits -ot: to 1

FFFFFFFFFF
10,000, 000,000 decimal. bybes

,"_ o

1) The maximum possible (physical or virtual) address size the chip architecture will allow
(that is, if all of the bits the chip uses to reference an address are set to "1")

® of the 64 possible bits, bits 39:0 are used to specify an address

® 40 decimal bits constitute 10 hex characters of address
® An address 10 hex characters long could range from 0000000000 to FFFFFFFFFF

2) Highest Address Permitted by Configuration

'd. te~imposed (hardware or -oft:wa:o) limit
= 23c000 (* phy-m")

+ wite-imposed (hardware or ‘woftware) limit

hardware will not accept some bit combinations:

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-39.a

largest hnrdwaro—'logal virtual address = 7PPFFFFF ("K2SIZE")

software configuration cuning parameter limite:
largest softva:o—logal -oqmon!: size = 11!000 hex pages ('BYBSWSZ'}

o

re or msoftware) ‘1imit
limit_data_max + rlimit_sta

2) The highest (physical or virtual) address size that has been configured as a software or hardware limit

e the actual number of banks of memory a site has purchased will limit the maximum legitimate physical address
(xkphys), which is a number much smaller than the largest address the chip bit range could actually specify.

e the limit the site configures for total kernel space (xkseg) will be much smaller than what the chip bit range would
allow, and probably much smalier than the machine’s total range of physical memory pages.

e the user segment (xkuseg) space is limited to site-defined limits to the sum of
rlimit_vmem_max + rlimit_data_max + rlimit_ stack max

3) Actual Number of :Pages In Use

-

3-39.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Lo.oactual number of pages in use
= (pfdat ":.n-u-o' pngo-) + (cotal pages used for the ko:nol -tatic data))

-
SR ac!;ual numbea: of pagas in use :
= r.ota.l mapped wvirtual user paqos (10, t:ho-e with valid :'Dl: on :1”)

3) The actual number of pages in use

@ "xkphys" addresses
© not all physical pages of memory will actually be in use at any given time
O the "pfdat” table is used to manage physical memory, and is composed of two linked lists
= the linked list of "free" physical memory pages
= the linked list of "in-use” physical memory pages
© almost all of the physical pages available on the system are listed in the pfdat tables. The physical pages used
for the single 16Mbyte virtual page of kernel static information are not referenced with pfdat structures.

3-39.c 22jul1998 TR-IKI rev 0.7b SGI Proprietary

O

the total number of "xkphys" pages actually in use is the sum of:
(pfdat "in-use" pages) + (total pages used for the kernel static data)
an "xkphys" address that is within the bounds of the chip bit range, and is within the bounds of the range of
actually configured memory, is still invalid, if the address refers to a physical page not currently in use
® "xkseg" and "xkuseg" addresses

C must be "mapped” to be valid

© this means that, at some point, a page of physical memory must have been allocated and matched with that
xkseg or xkuseg virtual address, and an entry has been made in a table to reflect this (a "PDE" <Page
Descriptor Entry> in a "PTE" <Page Table Entry> table)
the only exceptions are the two kernel "wired” TLB (xkseg) entries which are not referenced in the kernel’s
PTE table . :
© an "xkseg" or "xkuseg" address that is within the bounds of the chip bit range, and is within the bounds of the
software configuration limits for that kind of address, is still invalid if the address refers to a virtual page which
does not have a valid PDE entry, that is, that virtual page has not yet been assigned a matching physical page of
memory (again, with the exception of the special kernel "wired" entries).

O

O

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-39d

"Unmapped'’ Virtual Address Segment Types

Unmapped Addresses - xkphys

e xkphys virtual addresses are considered "unmapped”, which means the last 40 bits of the word, bits 39:0, are treated
as the reference to a specific physical page, or "PFN" (Physical Frame Number)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-41

""Mapped'’ Virtual Address Segment Types

Mapped Addresses - xkseg and xkuseg

® xkseg and xkuseg virtual addresses are "mapped"” addresses, which means the last 40 bits of the word, bits 39:0,
must be translated to determine the matching physical page being referenced
® a page of physical memory must have been allocated and matched with that xkseg or xkuseg virtual address, and an
entry has been made in a table to reflect this (a "PDE" <Page Descriptor Entry> in a "PTE" <Page Table Entry>
table)
@ virtual-to-physical address translations that have already been calculated are stored in a CPU’s TLB (Translation
Lookaside Buffer)
® older TLB entries are overwritten eventually with newer address translations
a CPU’s TLB can be considered a cache of the most recently used virtual-to-physical address translations
the kernel maintains two special TLB entries that are considered "wired"
© they are always resident in the TLB
© they are not referenced in the kernel’s PTE table
m unlike other virtual addresses
m these two kernel (xkseg) pages are allocated during system startup
m the 32Mbytes of physical pages assigned to these two virtual kernel pages never change

3-43 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® it is uneccessary to keep a table entry showing what physical pages are currently assigned to these virtual
addresses

3-43.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkphys Memory Segments Diagram

- mmll ;\1'

Illl Zhs 2

Nt

NN

= address gaps (between banks -and: between nodes)

- addzess ranges

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-45

xkphys Memory Segments - Detail

® 1:1 correspondence between xkphys virtual addresses and address range of physical memory, including "bad" (gaps,
nonexistant) physical addresses

"96" = value of first byte of uncached xkphys memory segment virtual address

"A8" = value of first byte of cached xkphys memory segment virtual address

bits 61:59 determine caching algorithm

xkphys virtual addresses are considered "unmapped”, which means the last 40 bits of the word, bits 39:0, are treated
as the reference to a specific physical page, or "PFN" (Physical Frame Number)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-46

xkseg Memory Segment - Introductory Diagram

9;:’///////////;74 ‘'w address gaps {(between banks ‘and‘ be wafap »nodds)_ i
address ! = address ranges

xkseg Memory Segment - Introduction

® Only a small subset of physical pages are actually used for xkseg type memory references

® xkseg virtual addresses are "mapped”, that is, the last 40 bits of the word, bits 39:0, are not treated as a direct
translation to a physical page of memory

® "CO0" = value of first byte of xkseg memory segment virtual address
@ xkseg used for CPU-specific and node-specific data (eg. , kernel tables, each node’s copy of IRIX, etc.)

3-48 225ul1998 TR-IKI rev 0.7b SGI Proprietary

xkuseg Memory Segment - Introductory Diagram

NODE 1

3-50 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkuseg Memory Segment - Introduction

o the xkuseg virtual addresses are "mapped” addresses, that is, the last 40 bits of the word, bits 39:0, are noz treated as

a direct translation to a physical page of memory

® the xkuseg virtual address range covers much less than the total possible range of physical addresses
® the xkuseg memory segment is the size of one user process (the maximum permissable process size)
® cach CPU uses the entire xkuseg memory segment to refer to a single user process address space

o each CPU refers to the same range of xkuseg virtual addresses to describe that CPU’s currently connected process

(eg, "the" 10th page of "the” currently connected process)
o the same virtual address maps to different physical pages for each CPU.

® "sparsely populated” - only a small subset of physical pages are actually used by a CPU referencing xkuseg virtual
addresses
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-51

xkseg - Detail
xkseg Virtual-to-Physical Address Translation - Diagram

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-53

xkseg Virtual Addresses Mapped through the TLB to Physical Addresses

1. A CPU is presented with an xkseg virtual address

2. The CPU examines its TLB to see if a virtual-to-physical address translation has already been calculated for the page
containing the desired address (in this picture, this is the case. There are explanations later in this section for the
more complicated cases where PTE tables must be examined to determine the translation.)

3. The same virtual address presented to different CPU’s can be translated to different physical addresses

3-54 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkseg Wired Kernel TLB Entries - Diagram

3-56 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkseg Wired Kernel TLB Entries

® TLB has first few entries "wired" (preset) and used for kenel references

® system default page size is 4Kbytes

page size must be a multiple of 4Kbytes

normal Cray Origin2000 page size is 16Kbytes

page size is configurable

special kernel page size set to 16Mbytes (= 400 hex pages of normal’ pages of 16Kbytes each)
each R10000 chip TLB register entry contains two virtual-to-physical address translations

the first "wired" TLB entry contains references to two kernel-sized pages of 16Mbytes each

a CPU referencing any virtual address within the first 32 megabytes of kernel memory (xkseg mapped "CO" prefix
addresses) will always find a TLB entry mapping that virtual address to a physical page

no delay to handle a "TLB miss"

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-57

Contents of xkseg Kernel Wired Entries

Pizrs: SED®
wized page - REHRTY
Read-Only.
16 Mbytes

{400 bex
“noxoal™
peges)

[E95968004 4660008
Secood kezne i 3
wired page

Read/write
A6 Mbytes

{400 hex.
»oormmls

unfque §

EEISE LGB R NS Node 0’s 16 Mbyte
Wired Kernel
CRead~-Only Page ‘Read/Write Page

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-59

vt

@ the first wired kernel TLB entry
O refers to virtual address (CO...) pointing to physical pages on that node
O structures and data repeated on all nodes at same virtual addresses (different physical addresses)
® the second wired kernel TLB entry
© refers to virtual address (CO...) pointing to physical pages on Node O
© some structures and data repeated on other nodes, but nor at same virtual addresses (or physical addresses)
O when these structures and data are referred to with xkphy addresses (A8... or 96...), the physical pages
referenced are on the same node
® the pfdat table
© one pfdat structure is used to manage every physical page (1:1) of memory except for
= those physical pages used on each node to contain the kernel’s 16MByte Read-Only data
= those physical pages used on Node O to contain the kernel’s 16MByte Read/Write data
C only those pfdat entries reflecting the physical pages for that node are kept on that node
© each node has multiple linked lists of collections of contiguous free pages and contiguous in-use pages on that
node

Detail:

For CPU [4] (on Node 2) to locate an available, or "free", physical page of memory near CPU[1] (on Node 0), CPU[4]
walks through the following structures and pointers:

1. CPU(4]
© looks in CPU[4]’s pdaindr table for the location of CPU[1]’s PDA (the second entry)
© CPUI1]’s PDA is located on Node O
2. On Node 0, in CPU[1]’s PDA find the sub-structure "p_nodepda” (a structure called "nodepda_s")
3. In the p_nodepda structure is another sub-structure, "node_pg_data” ("pg_data_t")
4. The node_pg_data contains a sub-field, "pg_freelst” which points to a structure called "pg_free_s"

3-59.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

5. The pg_free_s structure contains a sub-structure
© This sub-structure is made up of an array of "phead” structures "phead" (of type "phead_t")
6. Each phead structure itself contains an array of "ph_list” structures of type "plist_t")
7. The first field of the ph_list array is "pf_next", which is a linked list that points to the first set of free pfdats on that
node

3-59.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkuseg - Detail

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-61
xkuseg "TLB Hit'" - Diagram
“pL,B HIT"
xkuseg process v : 3
3
= Address Space ID
- VBN (Virtual Page Rumber) [JJ]- PPN (Physical Frame Number)
offset into page
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-62

User Addresses Are (Also) Mapped Through the TLB:

1. A user proéess xkuseg virtual address (00...) is presented to CPU
Depending on the architecture, steps 2-4 may be done sequentially, or simultaneously:

1. CPU looks in primary cache for the byte offset into the page

2. CPU looks in secondary cache for the byte offset into the page

3. CPU looks in the TLB for a matching combination of both the virtual page number (VPN) and the Address Space ID
(ASID)

Address Space Identification (ASID) explanation

Each independent task, or process, has a separate address space, which is assigned a unique 8-bit Address Space Identifier
(ASID). This identifier is stored with each TLB entry to distinguish between entries loaded for different processes. The
ASID allows the processor to move from one process to another (that is, perform a "context switch") without having to
invalidate TLB entries.

The processor’s current ASID is stored in the low 8 bits of the EntryHi register in coprocessor 0. These bits are also used
to load the ASID field of an entry during TLB refill.

The ASID field of each TLB entry is compared to the EntryHi register; if the ASIDs are equal (or if the entry is global,
which means the entry is valid for all processes), this TLB entry may be used to translate virtual addresses.

3-62.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Introduction to User Structures Related to "TLB'MISS"

| 32— Dit binary B o k L o > \nL—bir bincoy

! Segment Table

Level 2

3-63 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Introduction to User Structures Related to ""TLB Miss' (TLB Exception)

® PDA (Private Data Area)
¢ Each CPU has its own PDA.
© Used by each CPU for many things, including to track what context this CPU is in, what thread this CPU is
connected to, inter-CPU communication, and much more.
© See "pda.h" for structure contents.
O Always appears at the same virtual address in each processor
o Itis one page (4K), and the bottom 1024 bytes is used as aboot/idle stack.
e uthread structure
© Each process has at least one uthread structure associated with it.
© The uthread structure is the "starting point" for a CPU to refer to a process. Each CPU’s PDA points to its
currently connected thread (uthread structure).
¢ The uthread structure contains, or points to, many important things, directly or indirectly, including associated
vnodes, valid user pages, associated buffers, this process’s stack, etc.
© The uthread at 6.5 is the focal point for referring to a process in the way that the "proc" structure was the focal
point in earlier releases of IRIX.
e Segment Table
© The segment table is used to manage the user process image pages.
© Each segment table entry is one word long.
© One (16Kbyte) page of a segment table holds 2048 words
© The uthread structure points to the first entry in the segment table
m For 32-bit binaries
m cach one-word entry in the segment table points to the beginning of a page of user PDE entries.
® one page of (one word each) segment table entries refers to 2048 consecutive pages of user PTE
pages (each of which contains 2048 words, referring to 2048 user pages)
m For 64-bit binaries
m each one-word entry in the first-level segment table points to the beginning of a page of
secondary-level segment table one-word entries.
m Each one-word entry of the secondary-level segment is used in the same way as the segment table for

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-64

32-bit binaries, that is, each secondary-segment table word points to a page of PDE entries, and each
PDE entry contains a reference to a user’s virtual page (VPN), and the physical page (PFN) (if any)
that has been mapped to it.
® PTE Table and PDE entries
© A PDE is a one-word entry (in the PTE table) which refers to a page of a user process
O A PDE contains both the reference to the user’s virtual page number (VPN), and the mapping to the actual
physical page of memory (PFN) the page is using, if any.
© The contents of a PDE word are used to load a TLB entry.
© The PDE words in a user’s PTE table form a consecutive one-to-one correspondence with that user’s virtual
user (xkuseg) pages
© One (16Kbyte) page of user PDE’s holds 2048 words, and can therefore refer to 2048 virtual user pages
© The PTE (Page Table Entry) and PDE (Page Descriptor Entry) structures are "unioned"” in the code, that is, both
names are used to refer to the same structure (most of the code refers to "pde"s, except for "irix/kern/ml/tib.s",
which refers to "pte"s)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-64.a

B=n “TLB SINGLE MISsS"

xkuseg process vi::_tual address
physical
memory

3-65 22jul1998 TR-IKI rev 0.7b SGI Proprietary

TLB Single Miss
As before:
1. A user process xKuseg virtual address (00...) is presented to CPU
Depending on the architecture, steps 2-4 may be done sequentially, or simultaneously:
1. CPU looks in primary cache for the byte offset into the page
2. CPU looks in secondary cache for the byte offset into the page
3. CPU looks in the TLB for a matching combination of both the virtual page number (VPN) and the Address Space ID
(ASID)

This time, however, this user’s VPN is not found in the TLB.

3-66 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Overview of Resolving a TLB Single Miss

where is the pde

for this pag

TR-IKI rev 0.7b SGI Proprietary

Second page
this user’s PDE’s

<«
KPTEDASE 6666

First pagce of

this user’s POE's §
B 9999
Requested
page of uscr text §

T@Ivol, e

-physical memory :

22jul1998

3-68

TR-IKI rev 0.7b SGI Proprietary

22jul1998

3-68.a

Overview of Resolving a TLB Single Miss

e While this CPU is executing in user context:
© The currently connected user process takes up all of the xkuseg memory segment, or "00..." range of addresses.

C The VPN was extracted from the user’s xkuseg ("00...") virtual address.
© This VPN was presented to this CPU and was not found in this CPU’s TLB.
O This causes a "TLB Miss", or "TLB Exception"” in the hardware. Lol (
L E
This CPU will change context from user mode to kernel mode. u:k\ bm

e While the CPU is executing in kernel context the CPU will begin to execute kernel code to do the following:
© The kernel will find the base of this particular user’s PTE table of PDE’s.
m The base of each user’s PTE table is a "well-known kernel address"” of 00£c000000000, which is
associated with a kernel variable named "KPTEBASE". context v
m Each time a CPU is connected to a user proces, this same xkseg (c0...) virtual address is re ped to point
to a different physical page in memory, where the currently connected user’s PTE table begins.
© The CPU will calculate the offset from the beginning of the PTE table, "KPTEBASE?", that represents the PDE
for the user virtual page we want.
m Each PDE describes a virtual user page (VPN) which may, or may not, be valid.
m A virtual user page (VPN) is "valid" if it is associated with an actual physical page of memory and that
association has been written into the appropriate PDE for that VPN.
m Each virtual user page (VPN) is represented by a one-word PDE entry.
m We want the "VPNth word” from the beginning of the user’s PTE table.
m If we are looking for user virtual page 10:
= then the tenth word of the PTE table will contain the information about whether VPN 10 is
mapped to a physical memory page (PFN) or not.
m If we are looking for user virtual page 3000:
m then the 3000th word of the PTE table will contain the information about whether VPN 3000 is
mapped to a physical memory page or not.
m On a 64-bit architecture, the default page size is 16 Kbytes, or 2048 words.

3-69 22jul1998 TR-IKI rev 0.7b SGI Proprietary

m Each page of the PTE table contains 2048 one-word-long PDE entries.

m The 3000th entry is located in the second page of PDE’s.
m The second page of PDE’s will have a contiguous virtual address ("c0...") after the first page of

PDE’s. The physical address probably is not contiguous . It is the contents of the physical page
that we must examine to find the 3000th PDE.
m The result of this calculation, like all virtual addresses, will be an offset from the beginning of some page

(page # + offset).
m The virtual address will be an xkseg ("c0...") address. These addresses are virtual "mapped" addresses, and
must be looked up in the TLB, in order to determine what physical page actually holds the information.
© The CPU will extract the virtual page number (VPN) from the ("c0...") xkseg virtual address, and look in the
TLB to find what physical page actually holds that set of user PDE entries.
© The CPU will examine that physical page of memory, find the offset from the beginning of that page that
contains the PDE information that is needed, and will then load the contents of that PDE entry into the TLB.

The CPU will perform a context switch back to user mode.

® While this CPU is executing in user context:
© The CPU will re-execute the original user instruction which caused the "TLB Miss".

© This time, the virtual page number (VPN) and its associated physical page (PFN) are found in the TLB.
© This is a "TLB Hit". The secondary and primary caches are loaded, and the needed byte is presented to the

CPU. The instruction is executed.

3-69.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Detail of Resolving a TLB Single Miss

_Calculate the VPN to look for in the TLB

~process’ax:hxseg64—-lﬂtviﬂﬁa‘lhddreas
39 4

ol0lololelo]o

Virtual Page Numbexr

1. A user process is connected to a CPU. On a 64-bit architecture, among other things:
© The TLB is loaded with a pair of PDE entries, which represent the first and second pages of the user’s PTE
table. Each of the two xkseg ("c0...") virtual addresses is mapped to its physical page in its respective TLB
entry.
2. The CPU is presented with a virtual user xkuseg ("00...") address of "0000000003800123".
3. The CPU looks in the primary and secondary caches and does not find this byte offset of this page. These are "cache
misses".

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-71

4. The CPU needs to look in the TLB for the virtual page number (VPN) (and matching ASID).
© The virtual page number must be calculated from the 64 bit word.
m The 64-bit word contains both mode bits and address bits.
® The address bits contain both the page number and the offset into the page.
m The offset is represented by bits 13:0.
m Bit 13 falls in the middle of one of the 16 hex digits it takes to represent a 64-bit word.
© Bits 39:14 contain the virtual page number. Examining these bits shows the VPN is "e00".
5. The CPU looks in the TLB for VPN “e00" (and the ASID that matches this user address space).

In this case, the user’s VPN "e00" is not found in the TLB.

. This causes a "TLB Miss" (slang), or (the more technically accurate name)"TLB Exception” in the hardware.
. The CPU does a context switch to kernel mode and enters kernel code to handle a TLB Exception.
. Kernel code is performed to:
© find the beginning of the kernel structure with this user’s PDE’s.
m "KPTEBASE", xkseg address "c0000£c000000000", points to this.
© find the particular one-word PDE entry that contains information about user VPN "e00" and what physical
page (PFN) has been assigned to it.
1. Hex math is performed to find the byte offset from "KPTEBASE" (the beginning of the user’s PTE table)
which contains the PDE word for the requested user VPN.
® A PDE entry is only one word (8 bytes of 8 bits each=64 bits) long.
m A 16Kbyte page of PDE’s contains 2048 PDE word entries.
= We want that page of PDE entries that has the "e00~th word.
| (VPN) * 8 = the first byte of the 8-byte PDE word we want.
m (0xe00) * 8 = 0x7000
m The first byte of the PDE word with the information about user VPN @00 starts 7000 bytes from the
beginning of the PTE table.

e BN I«)

See next illustration.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-71.a

Hex math shows which page of PDE’s contains the 7000th byte.

See next illustration.

3-71.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The PDE that describes user VPN @00 starts 7000 bytes from KPTEBASE, the beginning of this user’s PTE table. This
puts it offset 3000 bytes into the second page of user PDE’s (page 1) .

3-71.c 22jul1998 TR-IKI rev 0.7b SGI Proprietary

1. The kernel calculates the virtual address of the 7000th byte.

See next illustration.

Page v

Page 1

a00~->2999

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-71d

The address of the 7000th byte is an xkseg ("'c0...") virtual address of "c0000£c000007000".

This kind of address is a "mapped" address, just like the user’s xkuseg virtual address.

1. The VPN for this kernel virtual address has to be calculated from bits 39:14 in exactly the same way the user’s VPN

was determined.
© Then that VPN is looked for in the TLB.

© The TLB entry will match the virtual page number (VPN) with the actual physical page of memory where this

page of user PDE’s starts.

See next illustration.

TR-IKI rev 0.7b SGI Proprietary 22jul1998

3-71.e

Calculate the VPN to look for in the TLB

kernel’s xkseg 64-bit virtnal address
: 63 39 14

The kernel xkseg ("cO0...") virtual address of the PDE data word we want is "c0000£c000007000".

That word is offset in a page full of user PDE words. When the offset bits are stripped out of the virtual address, the
virtual page number where that page of PDE’s starts is "300001".

The full kernel xkseg (“c0...") virtual address of that page can be calculated, as shown below.

Translation of VPN back into full virtual address

3-71.f 22jull1998 TR-IKI rev 0.7b SGI Proprietary

1. The CPU, still in kernel context, looks in the kernel TLB entries for virtual page number (VPN) "300001" of the

3-71.g 22jul1998 TR-IKI rev 0.7b SGI Proprietary

xkseg memory segment pages.

C The (kernel xkseg memory segment) virtual byte address "c0000£c000007000" exists within a (kernel
xkseg memory segment) virtual page that starts at byte address "c0000£c000004000".

¢ Of the 64 bits of virtual address, bits 39:14 constitute the virtual page number (VPN). The VPN for both
"c0000£c000004000" (the start of the page) and "c0000£c000007000" (a word within the page) is the
same, ie, "3000001".

© The VPN is what is used to look in the TLB entries, in order to find where in physical memory the entire page
of data has been written.

© In the illustration below, VPN "3000001" has been written to physical memory page (PFN) "2222" (a number
chosen arbitrarily for this example).

Where is the pde
for this page?

EBASE

Sccond pagce
ot this user’s
PDE’S word 00

A]

KPTEBASE 6666 B

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-71.h

First page ot
Lthis user’s PDRE’s

Ncequested 9999
of r text

lghi, u,._—'—"l,_u. PTE Table| physical memory

. The kernel finds VPN 300001 mapped to physical page (PFN) 2222 in the TLB.

. The kernel goes to physical page 2222 of memory, and then to the proper offset of 3000 more bytes into that page
(a distance of @00 words from KPTEBASE), and is now positioned at the first byte of the PDE word that represents
information about user VPN @00 and whether it has been assigned an actual physical page of memory or not.

C In the illustration above, KPTEBASE[e00] shows that user virtual page number (VPN) @00 has been written
to physical memory page (PFN) "9999" (a number chosen arbitrarily for this example).

3. The kernel now loades this PDE entry (and on this architecture, the next contiguous PDE entry as well) into the TLB

for this CPU.

rkseg

[S

See next illustration.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-71.i

SAhEYo.dg“the BY
a ESY BB I® pagé?

1. The CPU now does a context switch back to user mode.
1. The CPU re-executes the original instruction where it was presented with the xkuseg ("00...") user virtual address
"0000000003800123".
2. As before, the CPU looks in the primary and secondary caches for the desired byte, and as before, still does not find

it.

3. As before, the CPU does hex math to extract the virtual page number (VPN) from the 64-bit xkuseg address, and

- B «rrens
000000000000000 ..

this user’s PTE Table

Jecond page 22
< word e00 7

riret page ot

Tt s user’ s PDR7 &

Requested 9s3¢ B
PEge ©of usey text

determines that the VPN is "e00".

wn

3-71j

22jul1998

phywsical memory

. As before, the CPU looks in the TLB to see if VPN "e00" for this user’s ASID exists as a valid TLB entry.
- This time, the CPU does find this user’s VPN of "e00" in the TLB, we have a "TLB Hit", and the CPU presents the
physical page "frame" number (PFN), and offset into the page, to the HUB, and requests that it find the page and

return enough bytes to load both the primary and secondary caches, as well as providing the CPU with the particular

byte desired.

3-71.k

TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary

Detail of Resolving a TLB Double Miss

The sequence of events which lead up to a "TLB Double Miss", are very similar to the events which cause a "Single TLB
Miss", until the kernel tries to look in the TLB for the VPN containing the user’s PDE entries.

In a TLB "Double Miss", not only is the user’s VPN not referenced in the TLB (the "@00" in the previous example), but,
after the CPU does a context switch to kernel mode, the kernel can’t find the TLB entry for the page of user PDE’s that
refers to the VPN the user wanted either (the "3000001" in the previous example).

When the CPU in user context can’t find a requested VPN, that’s a single miss. After the context switch to handle the
single miss, the double miss occurs when the kernel discovers the user is trying to reference a VPN contained in a page of
PDE’s that aren’t referenced in the kernel’s TLB entries.

A TLB ""Double Miss'' Starts out the Same as a TLB Single Miss:

1. A user process is connected to a CPU. Among other things, this process is assigned an Address Space ID (ASID).
While the CPU is in user context:

1. a user 64-bit hex virtual addresss is presented to the CPU.
© Let’s use the same example as before, and use the xkuseg ("00...") virtual address "0000000003800123".
2. The CPU looks in the primary and secondary caches for the byte address requested.
3. The CPU does hex math to determine the Virtual Page Number ("VPN") contained in bits 39:14 of the 64-bit virtual
address.
© In this example, the VPN is "e00".
4. The CPU looks in its TLB for a user VPN "e00" that matches this user’s Address Space ID (ASID).
© A valid TLB entry will match, or "map", a virtual page number (VPN) with a physical page of memory
(Physical Frame Number, or "PFN").
© If the VPN and ASID pair are found in the TLB, this is a "TLB Hit", and the CPU continues to process in user

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-72

context.

© If the VPN and ASID pair are not found in the TLB, this is a "TLB Single Miss", and this causes a hardware
exception. This results in the CPU performing a context switch to kernel context, and beginning to execute
kernel code, although the CPU is still considered "connected” to the user.

Additional Information About the Single Miss:

At this point the ""EXL'' bit in the status register of coprocessor 0 is set to indicate we have
had one TLB Miss already.

For 32-bit binaries the kernel begins to execute at a ''vector'’ or entry point called
"UT_VEC", for a "TLB Exception''.

For 64-bit binaries the kernel begins to execute at a ''vector’' or entry point called
"XUT_VEC'', for an '"Extended TLB Exception’’.

‘While the CPU is in kernel context:

1. Hex math is done to calculate the offset from the beginning of this user’s PTE table, which holds the word of data
that describes what physical page of memory (PFN), if any, is being used by the requested VPN of, in our example,
"@00".

© Each user process has a Page Table Entry (PTE) table made up of as many pages as are necesssary to describe
the range of xkuseg virtual addresses for a user process.

© Each PTE table entry, or "Page Descriptor Entry” (PDE) is one word long. Each PDE describes one virtual page
(VPN), and which physical page (PFN), if any, is being used to contain the contents of this virtual page.

© On a system with a 16Kbyte page-size, this means that a single page of PDE’s contains 2048 words and can,

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-72.a

therefore, contain the information to map 2048 user VPN’s to physical pages (PFN’s).

O The PTE table starts at a "well-known kernel (virtual) address” of "c0000£c000000000", which is pointed
to by "KPTEBASE".

O Every CPU uses the same virtual address for the beginning of its currently connected user process’s PTE table.
These virtual addresses are, however, mapped to different physical pages in memory for each CPU’s process or
thread.

O Since one PDE represents the information for one user page, "KPTEBASE[VPN words] contains the PDE
information for any given VPN.

The user’s PTE table entries are referenced with xkseg kernel mapped ("c0...") virtual addresses. Mapped addresses
must be looked up in the TL.B to determine what physical page holds the referenceded data. The TLB is examined
for the value of the VPN extracted from bits 39:14 of the 4-bit virtual address. In our example, the VPN for the
appropriate page of user PDE entries was VPN 300001 .

The kernel enters a simple routine named ''utlbmiss’’, which does simple math to calculate
which page of user PDE words contains the PDE word that matches the VPN the user is
interested in.

Assuming a valid PDE entry exists, one of the user TLB registers is selected at random to
load with the value of "KPTEBASE[VPN]". Because there is a 1:1 correspondence
between PDE words and user VPN pages, this formula loads the appropriate PDE word for
the use VPN.

Where a TLB '"Double Miss'"' is Different:

1. At this point, for a "TLB Single Miss", the CPU would find VPN 300001 in the kernel TLB entries. This TLB

3-72.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

entry would reference the PFN containing a set of 2048 PDE entries, each containing the VPN-->PFN mapping
information for a single user page. The CPU would offset from the beginning of the physical page to the appropriate
PDE entry, and load its contents. Also, due to the machine architecture in our example (ie, a single TLB register
holds two PDE entries), the contents of the next physically contiguous PDE word, would also be loaded into the
TLB. These two entries represent contiguous virtual pages, but the matching physical pages are probably not
contiguous.

However, for a "TLB Double Miss", when the CPU looks in the TLB for VPN 300001, the kernel does not find
this VPN either. This results in a second "TLB Miss", this time due to actions of the kernel, not the user process.

double

§ Where is the pde
f for this page?

Second T
this uscxr’'s

-«

3-72.c 22jul1998 TR-IKI rev 0.7b SGI Proprietary

orf this

user’s PDE’S

r’kseg

9999
Requested
page of user text

| this user’s PTE Table}

physical memory

1. In the event of a "TLB Double Miss", the CPU can follow the pointers starting with its own PDA, which eventually
lead to the segment tables which describe the pages of the currently connected user’s PDE words.

Some of these structures were shown earlier, and some more detail is added in the diagram below. There is more
detail on the structures in this chain later in a later section.

| c0000£c000000000

64-bit Binary Segment Table Layout

-

VPN 3000000 F

300000

B first word peints to
segment containin
references to PDE
pages :
JOOOOO0) —> 300071 B

TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-72.d
the Level 1 cegment
i table page points te
§ 20448 Level 2 segment
f table pages
e Level 2 nent t;;l:le page
points to 2048 pages of PDE s
2 to 20448 user :
| pages
TR-IKI rev 0.7b SGI Proprietary 22jul1998 3-72.¢e

Module 4: Kernel Source Tree

Kernel Source Tree

This section provides an overview of the organization and location of operating system source code, with an emphasis on
kernel code, and tools for browsing it.

By the end of this section, the student should be able to:

® Locate operating system release project web pages

® [ocate operating system and kernel source code files

® Explain the kernel source tree subdirectory contents

e Explain the difference between ".h" files and ".c” files

® Determine if a ".c" file includes a specific ".h" file

® Describe the system logs, subdirectories, and files in /var/adm

Describe tools to examine system activity

Describe tools to examine a system dump

Use the cscope tool to find operating system and kernel source code files
Use the uname command to determine what software a system is running
Use the versions command to determine what software a system is running

4-1 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Related On-Line Materials

Additional information is available in the "Source and Object code maintenance” lesson, which provides detailed
information about:

® Operating system release project web pages

® The location of operating system code source files

® The location of operating system code binary files

® How to track changes to the operating system source tree

® How to track changes to the operating system object code

® The location of kernel source code and tools to examine it

® Determining hardware and software system status with various tools and commands

That information is available as part of the selection of IRIX Class Materials located at:
http://wwwtng.cray.com/~mix/irix.html#Class-Materials .

The lesson itself, and its Table of Contents, are located at:
http://wwwtng.cray.com/~mix/protect/irix/manual/current/object_code.html .

4-2 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Operating System Release Project Web Pages
IRIX 6.4.x ("ficus") Project Web Page:
http://info.engr.sgi.com/projects/bonnie_proj/ficus/isms/status/
IRIX 6.5 ("kudzu") Project Web Page:
http://info.engr.sgi.com/projects/bonnie_proj/kudzu/isms/status
Project Web Page information includes:

Description of platforms supported

Release milestones status

Bug status ("showstoppers”, summary reports, etc.)

ISM ("Independent Software Module") owner and status

Source and Build Information (source tree, "Build Meister”, etc.)
® Related news groups, news letters

® Features list

There is a tremendous amount of valuable information contained on each operating system release’s web page, including
the location of important source code directories.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-4

Source Code Location
The official location of source code is on "bonnie" in the "/proj" directory.

Once inside the SGI/CRAY firewall, there are two methods of getting to "bonnie"” and various source trees:

telnet bonnie.engr.sgi.com
Trying 192.26.80.202...
IRIX (bonnie)

login: guest

(no password necessary)

cd /proj
or:

cd /hosts/bonnie.engr.sgi.com/proj

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-5

Base Source Code Naming Convention Explanation

Source code is not assigned a release number until it is close to being released. Once released, no further changes are
made to that code directory tree.

IRIX 6.4 (which had the in-house name "ficus") has been released; "kudzu" has not, but will be released as IRIX 6.5 .

The "irix.65se" directory contains the most relevant source code for the Irix 6.5 base release for the Cray Origin2000
systems.

bonnie 6% c
drwaxwxr-3
drwxr-xr-x

d /hosts/bonnie.engr.sgi.com/proj; 1ls -la

3 root sys 57 Dec 29 10:10 kudzu

4 root sys 4096 Dec 26 16:58 irix6.5
drwxr-xxr-x 5 root sys 52 Jan 22 12:58 irix6.5~features
drwxr-xr-x 3 root sys 51 Jan 5 14:41 irix6.S5-unbundled
drwxr-xr-x 3 root sys 57 Dec 29 10:19 irxrix6.5f
drwxr-xr-x 3 root sys 22 Jan 16 17:07 irix6.5m

3

1

3

3

3

Arwxr-xr-x root sys 51 Jan 19 03:10 irix6.5se
lrwxr-xr-x root sys 14 Feb 11 1997 ficus -> irix6.4-s2mp+o
drwxr-xr-x root sys 56 Dec 14 1996 irix6.4-s2mp+o

drwxr-xr-x
Adrwxr-xr-x

root sys 36 Oct 29 1996 irix6.4-ssg
root sys 22 Nov 18 1996 irix6.4-ssg-unbundled

Other directorie names are explained below.

The original IRIX 6.4 release can be found in the "irix6.4-ssg" directory. The "ssg" suffix refers to the " Scalable Systems
Group". This release ran only on the high end "s2mp" (Scalable Symmetric Multi-Processor) architectures. This release
has been superceded by the "irix6.4-s2mp+o0" release.

The "irix6.4-ssg-unbundled” directory was never used, is empty, and can be ignored.

4-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The code to support the low end "Octane" architecture was added in the "irix6.4-s2mp+o0" version of the source, which is
actually the IRIX 6.4.1 release.

The project leader for each release chooses the naming conventions, such as references to "ssg", "+0", or "unbundled".
Do not rely on a consistent naming convention for released systems. All such conventions as naming and location are
totally up to the manager of the group.

The original in-house name for the IRIX 6.4 release was "ficus”. Note that the "ficus" directory has been symbolically
linked to "irix6.4-s2mp-+o/". The pre-release in-house name will always be linked to the most relevant base release file
name, once the operating system is released.

The all platform release of IRIX 6.5 can be found in the "irix6.5" set of subdirectories.

The "irix6.5-unbundled” subdirectories are for products, like the compilers, which do not ship with the kernel. These may
have their own release cycles, and may be optional software.

The subdirectory named "irix6.5m" is for maintenance on the 6.5 release. This is where fixes for low priority bugs are
checked in (problems not significant enough to hold up the release).

4-6.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Where Is the Most Recent Version of the Source Code for the Upcoming IRIX 6.5
(kudzu) Release?

Source code for upcoming IRIX 6.5 release

Always buildable
Always viewable
Changing constantly
Being tested constantly
Kept on "bonnie”

Source code is kept in a continuously releasable state until it is released. Changes and corrections are applied directly to
the source code in the development tree for the release.

The source code for "kudzu”, which will probably be released as "IRIX 6.5", is kept in:
/hosts/bonnie.engr.sgi.com/proj/irix6.5/isms
(/hosts/bonnie.engr.sgi.com/proj/kudzu/isms is outdated)

NOTE: "isms" directories should be:

® Independent bodies of code
® The most recent appropriate software module for the release... but they may not be !

WARNING: The acronym "isms" stands for "Independent Software ModuleS". These are supposed to be large bodies of
independent code, which can be built independently, but there may be some interconnections between them anyway (e.g.,
all the graphics code, and all the man pages, and all the IRIX kernel do have interdependencies with each other). Any
"isms" directory should contain "all" the source code for that release, however, compilers have their own separate release
schedule and are not included in the same "isms" tree. Compiler versions can be found in subdirectories under:

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-7

/hosts/bonnie.engr.sgi.com/isms/cmplrs.sxc

(note: there is an Eagan cscope database of development IRIX 6.5 source, and there are IRIX 6.4 and 6.5 cscope
databases on bonnie.engr.sgi.com in /cscope .)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-7.a

Where Is the Most Recent Version of the Source Code for the Current IRIX 6.4 (ficus)
Release?

There isn’t one..
There is no policy for maintaining a recent viewable version of the source code for the current release.

The base source code for the IRIX 6.4 release is kept on "bonnie”, in the directory:
/hosts/bonnie.engr.sgi.com/proj/irix6.4-smp+o .

The code in this set of subdirectories is readable, buildable source.

There is no policy for maintaining a current viewable version of the source code for any released operating system.
Operating systems are released to customers in binary form (object code).

Once an operating system is released, it is no longer kept in a continuously releasable (buildable) state.

(note: there is an Eagan cscope database of released IRIX 6.4 source)

48 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Summary: Location of Operating System Source Code
Base Release, Current Release, and Upcoming Release

® Source code for IRIX 6.4 base release (no patches)
© Viewable
© Buildable
© Kept on "bonnie”
®m /hosts/bonnie.engr.sgi.com/proj/irix6.4-s2mp+o/isms
(/hosts/bonnie.engr.sgi.com/proj/ficus/isms is linked to the above)
® Source code for IRIX 6.4 base release with released patches applied
O Viewable
© KERNEL source MIGHT be buildable
© ALMOST all released patches applied
© No patches in test mode
© Kept on "bonnie”
= /hosts/bonnie.engr.sgi.com/proj/irix6.4_patched/isms
® Source code for IRIX 6.5 development
© Viewable
© buildable
© Kept on "bonnie”
m /hosts/bonnie.engr.sgi.com/proj/irix6.5/isms

(note: Eagan cscope databases of all three trees)

The source code for the base release will always be viewable and buildable. It will be located on "bonnie.engr.sgi.com” in
the "/proj" directory, under a name which includes the release number (e.g., "irix6.4-s2mp+o0").

There is no policy to maintain a viewable, buildable version of the current release with all or most currently released
patches applied.

4-9 22jul1998 TR-IKI rev 0.7b SGI Proprietary

NOTE: One of the developers has taken it upon himself to create a buildable version of the latest kernel, with resolved
patches applied. Whenever a new patch is inserted into the "irix6.4_patched/isms/irix/kern/*" tree, this developer will,
himself, apply a new patch which will result in the kernel source tree being a buildable and "vi-able" version of the
kernel, with most of the released patches (remember the time lag before a released patch shows up in the source tree)
compiled in (that is, patch dependencies and conflicts will be resolved).

In short, what you find in the "irix6.4_patched/isms/irix/kern" subdirectories will toggle between two states. It will
always be something that "vi" can examine. However, the code will be a buildable version of the kernel source, with most
of the recently released patches, only until the build team drops in a new patch or patches. Then the code will be an
unbuildable version of the kernel source, with most of the released patches, and with possible patch conflicts and
dependencies. When this condition is noticed, the developer will apply yet another patch to toggle the code back to a
buildable, resolved state.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-9.a

Kernel Source Tree Location
All source files are on "bonnie.engr.sgi.com".

The main kernel source directories are located in:
/hosts/bonnie.engr.sgi.com/proj/release-name/isms/irix/kexrn

IRIX kernel source code for the IRIX 6.4 release is located in:
/hosts/bonnie.engr.sgi.com/proj/irix6.4 -lmoo/im / irix/kern

IRIX kernel source code for the kudzu (IRIX 6.5) release is located in:
/hosts/bonnie.engr.sgi.com/proj/irix6.5/isms/irix/kern

All source code can be found on the "bonnie.engr.sgi.com” host, mostly in an "isms" directory of Independent Software
Modules, that is, code (mostly) logically distinct from other code. And most of the “interesting" operating system code is
in the subdirectories under "isms/irix/kern".

The IRIX kernel source code for the kudzu (IRIX 6.5) release for the Cray Origin2000 architecture is located in:
/hosts/bonnie.engr.sgl.com/proj/irix6.5se/isms/irix/kern

Most of the kernel code is in a "/proj” subdirectory related to the appropriate release name, each of which has its own
"isms" subdirectory. In each release’s "isms" directory of independent code modules, there is an "irix" directory, which
leads to a "kern" directory. Here is where the kernel code can be found.

Note: Many of the files and directories have been symbolically linked. Do not be confused if the pathway you "cd" to
does not resemble your "pwd" output. The shell you use makes a difference. If you are using csh, then you could
encounter something like this:

cd /hosts/bonnie.engr/proj/irix6.4-s2mp+o/isms/irix/kexrn ; pwd

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-10

/hosts/bonnie.engr/disks/xlv2/ficus/irix_ ficus/kern

Using ksh rather than csh will avoid this confusion.

4-10.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Kernel Source Tree Contents

Below is an explanation of the files and directories where various parts of the kernel source tree, or useful system
information, can be found. The "cscope” source browsing tool is introduced, and examples are given.

All source files are kept on the "bonnie.engr.sgi.com” system, in the "/proj" directory, which is divided into subdirectories
by release name. Underneath the "...release_name/isms" subdirectory, most of the major operating system release
components can be found.

File names that end in ".s" are written in assembly language. Most of these are in the ".../isms/irix/kern/ml" subdirectory.

File names that end in ".c" are written in the C programming language. File names that end in ".h" are "header files"”, and
are also written in "C".

4-11 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The Difference Between ''.h'"' and ".c" Files
The difference between ".h" and ".c" files is as follows.

Files that end in the characters ".h" are called "header files". Header files can contain either C language source code, or
structures and constants used by "modules” (source code files).

Files that end in the characters ".c" are called "modules” or "source files". These files contain "C" language code which,
among other things, can include directives to the compiler’s pre-processor. Such directives can instruct the compiler to
define a name to have a certain value, or to include a certain "header file" as part of the source when the source is
compiled.

In a ".c" file, directives that begin with "#include"” specify a header file to include in the source. Header file names that
are surrounded by the characters "< >", such as:

#include <sys/types.h>

...indicate that certain "standard directories” (this is system and implementation dependent) should be searched and used
as a prefix to the file pathname specified. One of the most common of the standard directories is "/usr/include".

cd /usr/include/sys
1ls types.h
types.h

Header file names that are enclosed in quotation marks, such as:

#include "region.h"

...indicate that the directory the source code resides in should be searched first, and, if the file is not found, then the
standard directories are searched.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-12

Where to Find '"'.h' Files

Since header files contain and define the format for kernel structures and pointers, they are very useful to examine, in
order to understand kernel functions and solve system dumps.

Not all of the ".h" files will be on your system if you are not running source. For example, "region.h" is not a standard
UNIX header file, but is specific to the IRIX methodology of memory management (paging). If you are running a binary
version of the operating system at your site, you do not have all the files necessary to compile the operating system on
your machine.

If you want to find a specific ".h" file, the best tool to find a source version of it (inside of the SGI firewall) is probably
"cscope”.

Header (".h") files may also include other header (".h") files. This may make examination of a source file confusing. It
may be difficult to understand what structure definitions the code is referencing when the files which define them are not
explicitly "included” up at the top of the file. For example, in the directory:

/hosts/bonnie.engr.sgi.com/proj/irix6.5se/isms/irix/kexn/os/as

...one can find the source file "region.c”, and the header file "region.h".

The "region.c” file uses but does not include the "region.h” file. Instead, the "region.c" source file includes a different
header file, "as_private.h", which izself includes the "region.h" file.

In this way, the region.h header file is included indirectly as part of a different header file referenced in "region.c”. Once
inside the SGI firewall, you can use the "cscope” tool to find such occurences.

In this case, we know (or suspect) that the "region.c” file uses, but does not include, the "region.h” header file. What we
need to do is:

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-13

® Look at the list of all the different ".h" files that the "region.c” code includes.
This can be done by examining the region.c source code directly.

® Make a list of all the files that explicitly include the "region.h" header file.
This is one of the standard operations that the cscope tool will do.

® Compare the two lists, that is, compare the "region.c” header files to the list of all the files which include the
"region.h" file directly.

and:
® Hope we find a match.
Unfortunately, the last two steps have to be done by hand.

If we find such a file, then we will know that "region.c” does include "region.h", indirectly, by way of an intermediate
header file which includes "region.h" directly in its directives.

Below is an example of using cscope to try and find which ".h" header files include the "region.h" header file. Then a
comparison is done to see if any of these are files used in "region.c".

4-13.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Once you’ve invoked cscope, a window much like the above is generated. The last command choice option is to do
exactly what we want, find all the files which have a directive to explicitly include the "region.h" file. Your keyboard
arrow keys will allow you to select which of the nine possible searches you want to invoke.

In Step (1), the header file we’re interested in, is entered on the appropriate command line. This results in the generation
of a list of all files (not just header files) which include the target file. The yellow horizontal bar shows that, in this case,
118 files were found. Pressing your space bar will cycle you through these choices. Many of the result files are source
code file names ending in ".c" , but we are trying to find a header file (a file ending in ".h"). The area where the file
names are listed, however, is not always wide enough for the full file name to show, so you might have to select a file just

4-13.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

to determine if its name ends in ".h" or not.

Following step (3), above, will open up a separate window, as shown below, with the specified file opened, and the cursor
positioned at the line specified in the cscope window. In this case, a window will open up with the cursor at line 83 of the
file "as_private.h", which is located in the directory:

/hosts/bonnie.engr.s8gi.com/proj/irix6.5se/iamas/irix/kexrn/os/as

Now we know that the header file "as_private.h" includes the header file "region.h". A little detective work shows that the

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-13.c

source file "region.c” includes the header file "as_private.h". We have now confirmed that the "region.c” file uses the
structures and variables defined in the "region.h” header file.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-13.d

Operating System and Kernel Source Tree File and Directory Structure

Operating Syst.em Source Tree on *bonnie’

I /hosts/bonnie. ang:..lg.\ ccm/pro) I

: (P4 nl- =a)
(/irinG . 4—a2mp40) (/irinG.Sse)

directories of major O. 3. o panents
= .",i'
lﬂ!ﬂi A

t t -i'/man . JRCS-- lbuud Imlnd- 71ib. Makefile I :

I /maveaoTe (llbeet l T

I NI

mhcmmzc:mcm.h]bmb

clock.a terx.a exec.q". Joa‘k*up o u:ua.n:"/p:‘q'c C ete, ‘
malloc.c main.o ‘page.c) at:. /Bvma’ . :
‘ut:-a. 'S wnode.c k:hnu&. i Startup.e

4-14 22jul1998 TR-IKI rev 0.7b SGI Proprietary

- gL LOYIRME oS G _PLAVELW . s rwyavu.a ¢ I

Once you have gotten onto the "bonnie” system, and selected the operating system release your are interested in from the
"/proj" directory, and further descended into the ".../isms/irix" subdirectory, you will find that the "/irix" directory
contains the following subdirectories:

%$cd /hosts/bonnie.engr.sgi.com/proj/irix6.5se/isma/irix;ls

Makefile RCS build cmd include kern lib man

The "cmd" subdirectory contains the "savecore” subdirectory, where information about past system crashes or hangs is
kept. In the "lboot” subdirectory there are a number of files important to the booting, configuration, and tuning of the
system.

% cd /hosts/bonnie.engr.sgi.com/proj/irix6.5se/isms/irix/cma;1ls

Makefile cpr hinv mmscd snOlog xbstat
RCS diskless icrash netman snOmsc xfs

bsd dlpi ip26ecc nvlog snmp xfsm
btool dprof lboot onlinediag stress x1lv
cached flash linkstat perfex sysctlxd xperform
clshm flashio mkmachfile savecore tk

cms £lashmmsc mkpart smt tokenring

On a live system, much of the configuration and tuning information can be found in the "/var/sysgen" directory. The
"/var/sysgen/master.c” file is generated by the boot process and is full of SYSTUNE, system, and driver configuration
information. The "bdevsw" and "cdevsw" structures (block special device and character special device switch tables) are
also defined in the master.c file.

Most of the kernel code and structure definitions live in the subdirectories under ".../isms/irix/kern".

4-14.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

$ cd /hosts/bonnie.engr.sgi.com/proj/irix6.5se/isms/irix/kern;ls

Makefile fs master.d sgi
RCS io ml stubs
bsd kcommondefs mtune sys
btool kcommonrules os

dp ksys protoklocaldefs

Below is an explanation of the subdirectories found in the kernel source tree.

bsd - "bsd” stands for "Berkely Systems Developement”. Directory contains networking related code, e.g. sockets,
protocols, network device drivers.

btool - Contains code for "btool”, a code coverage analysis tool.
dp - Contains distributed processing support, ie., cellular IRIX support.
fs - Contains all the code for each of the file systems types, in subdirectories like nfs, pipefs, procfs, xfs, cachefs.

io - Contains source code for I/O device drivers and /O support routines, e.g., ql.c (SCSI chip logic and glogics
controller code), scsi.c (generic SCSI code), and dksc.c (generic disk drivers).

kcommondefs - Contains basic common flags/locations for kernel builds. The makefile includes these extensions for
Make.

kcommonrules - Ensures that kernel builds end up in proper directories, install proper header files, etc. The makefile
includes these extensions for Make.

ksys - Contains a directory of kernel private header files - never exported outside the kernel.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-14.b

master.d - Contains a directory of configuration files for every device driver, which a program called "lboot" reads and
decides whether to configure that device drives in or not. If you’re writing a new driver, you’d add a new file for it in
master.d.

ml - Contains low level machine level code for system startup, locks, interrupt management, and error handling. All the
assembler files go here, e.g., MIPs assembly language files, the assembler language level locking code "lisclocks.s"”, etc..
The ml directory has several interesting subdirectories, including:

LOCORE - A directory of the most common ".s", shared assembler, files for all platforms.
mtune - Contains files with system tunable parameters. These are modified only indirectly using the "systune"” tool.

os - A directory containing the bulk of the operating system code, e.g., fork, exec, the main kernel files and directories,
the vm directory for virtual memory, the as directory for address space management (part of memory management -
NUMA [nonuniform memory access] support code files are in this subdirectory). There is an important subdirectory
named "as", which contains most of the code important for page fault handling, the definitions of the region and pregion
structures, etc.

protoklocaldefs - The prototype kernel local definitions file. Before a kernel is built, this file is copied into klocaldefs and
modified. Binary sites do not need to think about this file.

sgi - This is a directory of somewhat odd codes like a random number generator for the kernel, and some with more
obvious value, such as the code for kernel mallocs, kern_heap.c , or chunkio.c, which deals with DMA (Direct Memory
Access - 1/O controllers get data out of memory by touching it directly, they don’t go through the CPU. The "chunkio”
code coalesces DMASs to do large efficient direct memory accesses instead of lots of small inefficient ones).

stubs - If there’s an optional subsystem, that some site doesn’t want, a stub for it is put in here and when that code gets
referenced the code will just return.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-15

sys - This is where most of the public header files, i.c., those that get installed in /usr/include/sys can be found. But some
of the public header files are in /irix/kern directories and get exported. This is also true of some of the private header files.

Many kernel structure definitions can be found in this directory

NOTE: Graphics has commands and libraries and kernel pieces, but it’s not in /irix/kern. However, many related pieces,
such as header files and device drivers, can be found under other "isms", for example, isms/gfx/kern, and the digital
media drivers in /isms/dmedia/kern. The communications group has its own kern header files, such as the IBM x25

communications support under /isms/comm/kern.

NOTE: The IRIX 6.4 source code is scattered all over, but the "isms" directory should contain the complete list of
independent software modules. There are exceptions to this, however. For example, the compilers group has its own
release schedule, since compilers are unbundled. Compiler versions can be found in subdirectories under:

/hosts/bonnie.engr.sgi.com/isms/cmplrs.sxrc

4-16 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Tools Available to Browse Source

® cscope - interactively examine a C program
© Tutorial available
O See man page on "tokyo" (login as guest)
© Not officially supported, just for internal use
O Supported equivalent is "gid"”
® see man page on Indys

o dwarfdump - locate source patches
© Example available

® ctags - create a tags file
© For vi users
C See man page

® ctags - create a tags file
O For emacs users
© No man page

(note: there is an Eagan cscope database of released IRIX 6.4 source)
(note: there is an Eagan cscope database of patched IRIX 6.4 source)

(note: there is an Eagan cscope database of development IRIX 6.5 source,

4-17 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Determining What Software the System Is Running

® versions
O Show system software
© List installed patches
m "versions -Inv | grep patch”
m "versions -bv | grep patch”
© Remove system software (eg, patches)
© Has man page

® uname
© Show system software
® "uname -a"
= "uname -R"
© Has man page

TR-IKI rev 0.7b SGI Proprietary 22jul1998

4-18

versions - show system software; list installed patches
See "man versions”.
Versions has many options and three main functions.

The "showprods" option displays information about the software that is currently installed on a system.

"Showfiles" displays lists of files on your system and information about those files ("inst” can be used to remove installed

software from your system).

Typing "versions -Inv | grep patch”, or "versions -bv", will generate a list of patches installed on the system (versions can

also be used to remove patches).

TR-IKI rev 0.7b SGI Proprietary 22jul1998

4-19

uname - show system software
The uname command has several options. Below are samples of uname output with explanation of the fields.

flurry 6% uname -R
6.5-ALPHA-1274039320

flurry 17% uname -a
IRIX64 flurry 6.5-len-root-SNO 06231008 IP27

bonnie 71% uname -a
IRIX64 bonnie 6.2 03131016 IP19

|

|
| .CPU board type)
_date and time operating system was generated mmddhhmm
| _major.minor rel. number,with optional maintenance level
(eg, 6.4, or, 6.4.1)
_node name of system on communications network, host name
__name of current IRIX system. Used to be IRIX, but is now IRIX64
because of 64-bit OS.

A word about the CPU board type. The CPU zype would be more useful. The CPU type can be derived from the board
type:

IP numbers always increase with products.

Odd numbered IP’s are always high end products.
Even numbered IP’s are always low ends.

Recent numbers:

® [P19 = R4000 (or R4400) Challenge (other than S model), Onyx

4-20 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® [P20 = R4x00 Indigo

® P21 = R8000 POWER Challenge, POWER Onyx

® P22 = R4x00 Indigo2, Indy, Challenge S

® IP23 =is none

® [P24 = Indigo2

e [P25 = R10000 POWER Challenge R10000

® [P26 = R8000 POWER Indigo2

® P27 = R100000rigin 02000 and O200, both, even though they’re different CPU boards but they’re all
R10000-based systems

e P28 = R10000 POWER Indigo2 R10000

® [P29 = 0200

e IP30 = R10000 OCTANE (low end machine, in-house "Speed Racer”)

e P32 = R10000 O2

4-20.a 22jul1998 TR-IKI rev 0.7b SGI Proprictary

How Do I Know What Crashed My System?
What Was Going On Just Before the System Crashed?

® icrash- IRIX system crash analysis utility
< Has man page
© Tutorials available
© Tips available
< Gives status of
= networks
m disks
m tapes
m OS state
m PE states
W register contents

® SYSLOG - writes message onto the system log
¢ Has man page

® utrace - Basic kernel trace mechanism (NEW 12/97)
© Has web page
o Circular buffer of time-stamped events for each CPU
© Requires kernel rebuild to enable

TR-IKI rev 0.7b SGI Proprietary 22jul1998

4-21

Where Does the System Put Things When It Crashes?
System logs are in either:
® /usr/adm
or

® /var/adm

TR-IKI rev 0.7b SGI Proprietary 22jul1998

4-22

What System Logs Exist?

System Logs in /var/adm:

$ cd /var/adm ; 1s

SYSLOG dtmp pacctl pacctd pcplog utmp

acct fee pacctl0 pacct5s sa utmpx

avail klogpp pacctll paccté sat wtmp

bds.log lastlog pacctl2 pacct? sulog wtmpx

crash mkpts pacct2 paccts sysmon .msg

dodiskerr pacct pacct3 pacct9 sysmonpp

4-23 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Description of system logs, subdirectories, and files:
Most of the interesting system logs, subdirectories, and files are in /var/adm .

SYSLOG - log of everything happening on the system. See man SYSLOG.

acct - invoke accounting. See man acct.

avail - directory of logs , see /var/adm/avail/availlog - the primary log of the availmon tool, which keeps track of when
you bring the machine up and down and why, and, if so configured, will send mail to SGI headquarters. The log contains
information that this machine was rebooted, and for what reason, how long was it down etc.That log is processed and
there’s a databasee that tries to summarize field info.

bds.log - logs all the opens and closes of and performance data for BDS (Bulk Data Services files (which are used to
transfer large quantities of data between machines).

crash -where the dumps are put (default directory) .
dodiskerr - part of disk error accounting

dtmp - output from the acctdusg program

fee - output from the chargefee program, ASCII tacct records

klogpp - symbolic link to /usr/sbin/klogpp, which is the command that filters kernel messages for the syslogd (to
SYSLOG and the /dev/console)

lastlog - record of who’s logged in.

pacct - raw data file of all accounting activity that the acct command reads into reports

4-24 22jul1998 TR-IKI rev 0.7b SGI Proprietary

—

pcplog - performance copilot log

sa - unix acct

sat - directory of security audit trail related files

sulog - record of who tried to su to root or to some other login ID

sysmon.msg - sysmon allows a user to browse SYSLOG:; this file contains a message from the SYSLOG file.
sysmonpp - program filter for log messages

utmp - see man page man pages for these last 4. These are logs of who logged in to do what commands on which
terminal. These files hold user and accounting information for such commands as who, last, write, and login.

utmpx - see "utmp”, above.
wimp- see "utmp”,above.
wtmpx- see "utmp",above.

A more involved exploration of code examination and system dump analysis is handled in other modules.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 4-24.a

Module 5: Operating System Overview

IRIX Operating System Overview

This section provides an overview of the organization of the IRIX operating system, user memory components, memory
management, process relationships, and the primary functions of the IRIX kernel code.

By the end of this section, the student should be able to:

e Explain the IRIX operating system philosophy
e Explain the concept of an interrupt
e Explain the concept of an exception
e Describe the major system components of system memory
® Describe the major system components of user memory
o Explain how kernel and user components are related
Explain the primary memory management methodologies for moving pages in and out of memory
Describe the relationship of sched and init to all other processes in the system
Describe the functions of the fork and exec system calls
Describe the process relationships for a user connecting to a system through a network
Explain each of these primary kernel activities:
© System Initialization
O Process Management
© User Program Interface
© Memory Management
o File Management
© I/O Management
© Communication Facilities

5-1 22jul1998 TR-IKI rev 0.7b SGI Proprietary

UNIX (IRIX) philosophy

The philosophy of UNIX (IRIX) is to take advantage of work already done by others. As this onion-like diagram

5-2 22jul1998 TR-IKI rev 0.7b SGI Proprietary

suggests, UNIX (IRIX) is built in layers, with each layer representing a building block that can be used to build other |
building blocks. Most commands, programs, and utilities supplied with the UNIX (IRIX) system can be used in
combination with each other to build other tools. Complex mechanisms can be built from a set of simple commands to
perform various functions.

The UNIX (IRIX) operating system kernel, in most instances, insulates the user from needing to know intimate details of
the machine hardware. The machine hardware would include processors, peripheral devices, memory, hard disks, etc. The
layer immediately outside the IRIX kernel is referred to as the system call layer. System calls allow user-written
applications at the outer layers to invoke various functions residing inside the IRIX kernel. For example, an application
needing to read a file would issue the read () system call which would invoke a read handler inside the kernel that would
communicate with the device where the desired data resides and return the data to the application.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-2.a

IRIX system major components (user memory)

The above diagram illustrates the major components that comprise user memory in an IRIX system.

The init process (pid (1)) is created and started by the first kernel process, sched (pid(0)) during system start-up and
becomes the parent of all other processes (except sched) in the system. The getty, login, and shell (sh, csh, ksh ...)
processes provide the interfaces between the system and users.

Several daemon processes exist to provide services to both users and the kernel. The network daemons (inetd, telnetd,
etc.) provide the interface between the system and a user at a network terminal. Daemons such as nagsd and cron execute
user scripts or commands non-interactively. Other daemons provide functionality for the kernel. The kernel can
"off-load” lengthy work to them, such as tape support, accounting, error logging, and so on.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-3

User binaries represent the execution of program binaries as initiated by the shells.

5-3.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

IRIX system major components (kernel logic)

This diagram illustrates the major components that comprise the IRIX operating system kernel.

The kernel logic is the overall controlling component in the system.

5-4 22jul1998 TR-IKI rev 0.7b SGI Proprietary

When Does the Kernel Take Control Away From a User Process?
Kernel code will take control of a CPU away from a user process when:
® The user pfocess receives an interrupt

An interrupt is something generated externally to the process, which requires kernel intervention, such as the
completion of I/O.

® The user process generates an exception

An exception is something generated by the process, such as when a user process makes a request to the kernel to
take control of the CPU to do a system call.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-5
Kernel block diagram
trap interrupt or exception
interrupt and exception handlers
veoJiame/ivix/kazn/aya/ebd b
ECC reset general
exception interrupt exception(s and
3 - 2 interrupts)
vectoxr - A N N {32 sub-types)
entry ¢
point
“ interrupts
d by process)
. logical feit
C)\‘Q%gﬂ/g:g;:ng 2
- - by
p function
M -
zge : !'i;lc System ‘
t Routines
> ;?S
pe]
oML l bost adapter drivers ’
TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-6

1‘:33:“] scs disk | [scs: tape| |vme |

5-6.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Primary Kernel Activities

Kernel code selects one of several handlers to service the interrupt or exception. After all interrupts and the user’s
exception (if any) have been processed, the kernel will return control of the CPU to a user - but it may not be the same
user who had the CPU before the kernel call. Which user the kernel connects to is determined by which process has the
highest priority to run at that time.

A major part of the kernel code provides for the processing of system calls. A system call is a type of interruption to user
processing, called an "exception”. System calls can be organized into one of four areas: process management, file
management, /O management, and miscellaneous routines that are used by both the kernel and "outside” processes.

Another major portion of kernel logic is devoted to handling I/O interrupts, which signal an I/O completion.

On IRIX systems, the primary memory management methodology is based on moving pages in and out of memory, not
processes, so invoking sched for that purpose is done as a last resort. The primary memory management routines for
moving pages into memory are Kernel routines triggered by a "TLB miss", when a CPU cannot find what it wants in its
Translation Lookaside Buffer, and must ask the kernel to make page information more local. The primary memory
management routines for moving pages out of memory start with vhand.

To facilitate performance, a copy of the IRIX kernel resides in that part of main memory assigned to each individual node
of a multi-node system. Interrupts and exceptions generated by user processes, interprocess communication, system calls,
etc. can be handled more efficiently (faster) when a copy of the IRIX kernel is located "nearby” in the node’s local
memory instead of a CPU having to access kernel code through the interconnect fabric from a part of memory that would
not be considered local, and would therefore take more time to access.

5-7 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The kernel block diagram above shows various user and kernel modules and how they are related. This is a useful model,
although interactions in the kernel are much more complex than this.

The UNIX (IRIX) kernel is designed around two primary entities: files and processes. Therefore, two major components
of the kernel are the file subsystem and the process control subsystem.

The block diagram shows three levels: user, kernel, and hardware. The system call interface represents the boundary
between user programs and the kernel. A system call is a request made by a user’s program to execute a function residing
in the operating system kernel. Library functions, which also invoke system calls, are actually linked together with the
user’s program.

The diagram partitions the set of system calls into two groups; those that interact with the file subsystem and those that
interact with the process control subsystem. The file subsystem manages the creation and removal of files, controls access
to files, allocates file space, administers free space, and reads and writes data for users. A user’s process interacts with the
file subsystem using system calls like open(2), close(2), read(2), write(2), chmod(2), chown(2), and stat(2).

The file subsystem provides user access to data using a buffering mechanism that controls the flow of data between the
kernel and secondary storage. The kernel’s buffering mechanism interacts with block I/O device drivers to initiate reads
and writes of data to and from the kernel. Device drivers are kernel modules which control access to peripheral devices.
A block I/O type of device is a device which is read and written in fixed units, referred to as a block, or multiples of a
block. Data residing on a block I/O devices can be accessed in a random manner. An example of block devices would
include disk drives.

The file subsystem also interacts with character devices. Character devices include all devices which are not block
devices, and can be read and written to by as little as one character at a time, such as terminals and tape devices.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-8

The process control subsystem has responsibility for the creation/termination of user processes, interprocess
communication (IPC), process scheduling, process synchronization, and memory management. A user’s process interacts
with the process control subsystem using system calls like fork(2), exec(2), wait(2), exit(2), brk(2), ki11(2), and
signal(2).

The memory management facility is responsible for making sure each process is allocated sufficient memory to perform
its tasks. IRIX uses demand paging to control user memory space. "Demand paging” means that a page containing the
requested information is made local to a CPU only when it is needed, or "demanded"”, by the executing process.

The scheduler facility is responsible for fairly allocating the CPU’s to individual user processes. This is handled through
queueing mechanisms. Processes with the highest priority are given CPU attention first. A process either voluntarily
gives up its CPU while waiting for a resource (for example, I/O data or system call handling) or the process is preempted
by the kernel when its time slice is consumed.

Interprocess communication is supported in several forms including signals, pipes, shared memory, and message queues.

Hardware control is responsible for handling device interrupts. Devices like terminals or disks may interrupt the CPU
while a process is executing. Interrupts are serviced by special interrupt handling functions in the kernel.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 5-9

Summary of IRIX Kernel Primary Functions
e System Initialization

A facility exists for the IRIX kernel to start up and initialize itself. The system provides a "bootstrap” facility to load
a copy of the IRIX kernel into the system memory and start running.

® Process Management

A facility to create, terminate, and control user processes. IRIX is a multiprocessing operating system, so the kernel
ensures that each active user process is given its appropriate share of CPU attention and other resources. Therefore,
all processes appear to execute in parallel.

® User Program Interface

The kernel provides a robust set of system calls allowing user programs to access the vast array of services provided
by the operating system. System calls are invoked by library routine interfaces to the operating system.

e Memory Management

On IRIX systems, the total amount of memory needed to accommodate all currently active processes far exceeds the
physical memory installed in the hardware. To simulate more memory than is physically available and help
overcome this bottleneck, the IRIX kernel implements a virtual-memory system. The system maps virtual addresses
to physical addresses at run time. Therefore, there are no memory restrictions on a user’s process other than those
imposed by the operating system or imposed by the system administrator.

5-10 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® File Management

The IRIX operating system maintains many types of files which reside in file systems. A file system is an organized
hierarchy of directories containing these various file types. File systems typically reside on physical media such as
hard drives and the operating system provides the services to access individual files within file systems. IRIX
supports multiple file system types.

® /O Management
The operating system provides several user-selected options to influence the path taken for input/output data, which
affects I/O performance and the level of risk for data loss. The kernel supports familiar I/O methods such as
sequential and random VO, buffered and direct /O, synchronous and asynchronous /O, file locking mechanisms,
etc.

o Communication Facilities

The operating system provides for inter-process communication, inter-machine communication (networks), and
communication between processes and devices.

5-11 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module 6: Interrupt and Exceptions (Preliminary)

Interrupts and Exceptions (Preliminary Notes)
This section provides an overview of Interrupts and Exceptions. By the end of this section, the student should be able to:
e describe the difference between an interrupt and an exception

® describe the five different initial entry points, or "vectors", into the kernel for interrupts and exceptions
@ describe the logic flow through various interrupt and exception handlers

6-1 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Processor Operating Modes

The MIPS processor under IRIX operates in one of two modes: kernel and user. The processor enters the more privileged
kernel mode when an interrupt, a system instruction, or an exception occurs. It returns to user mode only with a "Return
from Exception” instruction.

Certain instructions cannot be executed in user mode. Certain segments of memory can be accessed only in kernel mode,
and other segments only in user mode.

6-2 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Interrupt and Exception Types

e Types and Entry Points (handler table)
o TLB exception
c Extended TLB exception
o ECC Exception
o Reset Interrupt
o General Exception(s and Interrupts)
m 32 subtypes

The hardware defines the entry points. The handling is done by software.

The processor supports five hardware, two software, one timer, and one nonmaskable interrupt. The hardware Interrupt is
described in great detail in Chapter 17 (17.3) of the R10000 Microprocessor User’s Manual, in the section titled
"Interrupt Exception” (http://www.sgi.com/MIPS/products/r10k/UMan_V2.0/HTML/t5.Ver.2.0.book_365.html#0).
Software exceptions and interrupts are described in great detail in Chapter 6 (6.14) of the R10000 chip manual, in the

section titled "Interrupts”
(http://www.sgi.com/MIPS/products/r10k/UMan_V2.0/HTML/t5.Ver.2.0.book_129 html#HEADING169).

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-3

How are Interrupts Different From Exceptions?

e Interrupt
c asynchronous to the currently executing process or thread
o due to causes unrelated to the current user process
o After an interrupt, control returns to the next instruction

e Exception

o synchronous to the currently executing process or thread

c caused by, or requested by, the currently executing process or thread
After an exception, control returns to the same instruction

[0)

Exceptions are ocurrences which make a CPU stop operating in user mode and begin executing in kernel mode, as a
direct result of something that user’s process did, either accidentally (such as a floating point error), or on purpose (such
as a system call request).

Some examples of exceptions are floating point exceptions, system call exceptions, page fault exceptions.

Interrupts are (probably) not due to actions of the currently connected process. If a CPU receives an /O interrupt, the
CPU will stop executing in user context, and start executing in kernel context, in order to handle the I/O interrupt. The
I/0O which has completed is probably the last steps of some other process’s I/O system call request, although it could be
an asynchronous IO which was requested earlier by the currently connected process. An interrupt is externally,
asynchronously, caused, and distinct from the currently executing process.

Some examples of interrupts are disk interrupts, tty interrupts, hardware error interrupts, clock interrupts.

Another difference between exceptions and interrupts is where the CPU resumes execution in the user process, once the

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-4

CPU returns to user context. In general, exceptions occur "in the middle of instructions”, therefore when the CPU returns
to user context, it has to try to restart that same original instruction. And interrupt occurs "between” instructions, that is,
when the CPU returns to user context, it executes the *next* insttruction after the point the interrupt occurred.

6-4.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

How are Interrupts Similar to Exceptions?

® Both cause the CPU to do an exchange to kernel mode.
@ Kernel then saves context of previous process

6-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

MIPS Processor Exception and Interrupt Kernel Entry Points

On MIPS processors, there are five possible interrupts or exceptions, but only FOUR entry points to the kernel:

. TLB exception

. Extended TLB exception
ECC exception

. Reset interrupt

General exception

Nhuwe -

The Reset Interrupt, like the NMI Interrupt, is caused by pushing a button, and is handled by the hardware, not by the
kernel.

Examine the "sbd.h" file (use cscope, or look on look on bonnie for the source file. Here’s the path on bonnie for the
IRIX 6.5 version /hosts/bonnie.engr.sgi.com/proj/irix6.5se/isms/irix/kern/sys/sbd.h).

(I think "sbd" stands for “system board” ?)

This file defines the five entry points listed above. Although the comments say "Chip definitions for R3000 and R4000",
these entry points apply to the R10000 chip as well.

All of them are called "Exception vectors” (see at or about line 39).

The TLB Exception

The first one, the "utlbmiss vector”, listed above as the "TLB exception”, is defined at (or about) line 49.

#define UT_VEC COMPAT_KOBASE /* utlbmiss vector */
TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-6

The Translation Lookaside Buffer is a piece of hardware used to contain mappings of virtual addresses to physical
addresses. It is of limited size. With an R10000 chip, there are 64 registers, each of which holds two virtual-to-physical
page mappings, so there is a maximum of 128 possible translations from virtual to physical that can be found in the TLB
at any given time. With an R4000 or R5000 chip, there are 64 registers, each holding only one virtual-to-physical
mapping. If a user tries to reference a virtual address that isn’t one of the current 64 or 128 in the hardware, we take a
"TLB exception” or "TLB miss" (these terms are synonomous), and the MIPS processor then starts executing code at the
entry point for TLB exceptions (at address 80000000).

The Extended TLB Exception

#define XUT_VEC (COMPAT_ KOBASE+0x80) /* extended address tlbmiss */

This is the entry point for the "extended TLB handler”. This handler has the same function as the TLB miss exception
vector, but handles TLB misses on 64 bit addresses. The utlbmiss vector handles TLB misses on 32 bit addresses, which
is the default.

TLB misses don’t have time to do anything but that, so the code doesn’t handle anything much more than the TLB miss
situation.

The ECC Exception

#define ECC_VEC (COMPAT_KOBASE+0x100) /* BEcc exception vector */

ECC exception code (Error Correcting Code exceptions) is used to handle single or multi-bit errors, or single or multi-bit
cache errors. All MIPS processors jump to the ECC exception vector, at yet another "well-known place in memory". The
R 10000 puts this entry point at a fixed place in memory. It’s unusual that an ECC exception happens, and it doesn’t

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-6.a

follow normal rules for handling. In general, the more memory your system has, the more frequently you will get ECC
exceptions. You probably won’t see these very often and it will be obvious when you do . The machien sofware and
hardware will call out where the problem area is (if it’s a double-bit error) and keep track of how often and if it is going
bad (single-bit errors) .

Like the TLB exception handlers, ECC exceptions handle the situation and don’t do much of anything else. Both the TLB
handlers and the ECC handler are explicitly short exceptions.

The Reset Interrupt

#define R_VEC (COMPAT_K1BASE+0x1£c00000) /* reset vector */

The non-maskable interrupt and the reset interrupt and the power on interrupt are all caused by people pushing buttons.
When a processor receives an NMI (Non-maskable interrupt), or reset interrupt or power on interrupt, it doesn’t actually
get handled by the kernel. As a result of the button being pushed, the CPU goes off into PROM to handle it, so these are
really not handled by the kemnel.

Nonmaskable Interrupt (NMI) Core Dumps

It is possible to manually generate a system core dump without the benefit of a system panic. All high-end
(CHALLENGE® L or CHALLENGE® XL servers, Onyx® workstations, Origin200 and Origin2000 systems) systems
contain a special feature that enables system administrators to initiate system core dumps. They accomplish this by
issuing a Nonmaskable Interrupt (NMI) request. Depending on the system, selecting a system controller menu option or
pressing a special button on the system controller will initiate an NMI. A system administrator (often at the request of
SGI support) normally induces an NMI core dump when users of a system complain that the system is partially or
completely hung. The resulting system core dump may provide a clue about the cause of the problem.

The General Exception(s and Interrupt vector)

6-6.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

#define E_VEC (COMPAT_KOBASE+0x180) /* Gen. exception vector */

Calling this vector the "General exception vector” is a bit of a misnomer. A better name would be the "General Exception
AND INTERRUPT vector”, because it actually is for both interrupts and exceptions. This entry point handles all the
kinds of interrupts and exceptions not handled by the other vectors (eg., system calls, clock interrupts, I/O, etc.).

On the MIPS architecture, all the reasons you’d end up here are subdivided into 32 different ways of dealing with
why-you-got-here, sort of like 32 sub-entry-points, 32 potential vectors within the general exception vector, and those 32
are found in

-.../irix/kern/os/startup.c

Look for "causevec".

There’s a vecint vector for interrupts, more TLB stuff, read misses, write misses, attempts to modify stuff when you don’t
have permission, read/write address errors, system calls, breakpnt instructions, etc. FP overflow see MIPS architecture
manual for a definition of each of these all MIPS architecture manual: in SGI home page. See:

http://www.sgi.com/MIPS/products/r10k/UMan_V2.0/HTML/t5.Ver.2.0.book_1.html

In particular, go the table of contents and take a look at Chapter 17 on CPU Exceptions and 6.14 on Interrupts. In that
same book, go to the index, find "Cause register".

The MIPS architecture defines 8 interrupt levels defined in the description of the coprocessor O status register and the
coprocessor O cause register

Some background:

MIPS defines things as part of the CPU. One of the concepts of "CPU" is the concept of ’coprocessor’. there used to
actually be a co-processor, but now it’s actually built into the CPU chip - but it’s still called "the co-processor”. In all

6-6.c 22jul1998 TR-IKI rev 0.7b SGI Proprietary

MIPS cpus, coprocessor O is for the special CPUcontrol registers, manipulate TLB, status regs, cause regs, clock reg,
count and compare regs, up to about 32 control regs - see the architecture manual. These can only be accessed in kernel
mode. Coprocessor 1 is always the Floating point control registers processor, so anytime you have any FP status reg and
FP control reg, for FP operations.The architecture also defines Coprocessors 2 and 3, but they are not yet in use (possibly
will be for media extensions and vector extensions).

Actually, these are register sets, pieces of the CPU. The word "processor” is misleading. Every CPU has these.

The status register in coprocessor 0 has 8 hardware levels defined for interrupts and we don’t use them. Because that’s
not enough on the big machines. we have so many - so on Origin and other platforms, we provide, extrenal to the CPU
hardware, in the HUB chip, a register that says *here* are the interrupts that are really pending and they are prioritized
into 128 levels, pretty much per-device , eg, for each SCSI controller, it’s common to use 30-40 of them, as defined by
MYV developers. The hardware prioritizes them but the software just uses them as 128 levels. same as UNICOS concept
of hardware prioritizes by bit position versus software doesn’t care re/interrupts. The HUB register is called the interrupt
pending register.

To see all about how to read what interrupt is pending in the register, see:

http://babylon.engr.sgi.com/systemsw/projects/lego/hardware.html

(SNO used to be called Lego)

click on Lego Hub, Router, IOC3, LINC Chips
ChipDoc - Chip

Hub Programming Manual

chapter 2

CHAPTER 2 Hub Internal Register Definitions
2.1.1.20 INT_PENDO

2.1.1.21 INT_PEND1

What’s important is that there is system hardware external to the processor thatkeeps track of which interrupts are

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-6.d

actually pending at a given time, but these aren’t icrash-locatable, so there’s no way to find out what the processor
actually knows.

So that’s a quick walk-through of the entry points for the four/five exceptions/interrupts mentioned before. When it
comes to handling interrupts and exceptions, there are special handlers for each of those 5. Four of them handle special
cases, and the fifth one has the 32 subtypes in a table in startup.c . If you look at the table, you’ll see there’s a single
subtype for all device interrupts (disk, tape, console, tty, etc.). We always comes through the general exception vector,
and always check to see if it’s a hardware interrupt. If it is, the CPU spawns a thread for that kind of hardware, and for
the device handler,which has other subtypes, and looks at more and more sub-divisions of handlers until it gets to point
where some piece of software says this is the driver and the interrupt handler for this particular device, and spawns a
thread to handle it (thread is spawned higher up).

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-6.e

General Exceptions

lceneral Exception Vector:
Hardware Interrupt and Hardware/Software Exception Check Sequence

/hosts/bonnic.engr. syi . com'proj/ reloarse/isms/irix/kem/ml /LOCORE/gen_oxe . 5

The above illustration is a simple diagram of the kinds of interrupts and exceptions that the kernel checks for, and reflects

6-7 22jul1998 TR-IKI rev 0.7b SGI Proprietary

the checks that the code goes through in the actual order that they are checked for.
Details of how these checks are performed, and more detail about the different interrupt and exception types is below.

Five interrupt and exception vectors were described earlier (see
/hosts/bonnie.engr.sgi.com/proj/release/isms/irix/kern/sys/sbd.h):

#define UT_VEC COMPAT_KOBASE /* utlbmiss vector */
#define XUT_VEC (COMPAT_KOBASE+0x80) /* extended address tlbmiss */
#define ECC_VEC (COMPAT_KOBASE+0x100) /* Ecc exception vector */
#define R_VEC {COMPAT_K1BASE+0x1£c00000) /* reset vector */
#define E_VEC {COMPAT_KOBASE+0x180) /* Gen. exception vector */

The "UT_VEC" and "XUT_VEC" exceptions handle 32-bit and 64-bit architecture TLB misses, respectively. The
ECC_VEC, or "Error Correcting Code" vector handles single or multi-bit errors, as well as single or multi-bit cache
errors. The "R_VEC", or "Reset” vector handles NMI (Non-Maskable Interrupt) and reset interrupts.

The "Interrupt and Exception Roadmap” details the "E_VEC", or "general exception” vector, which actually handles both
hardware interrupts as well as software interrupts and exceptions. There are 32 possible types of "general exception”, as
defined in/isms/irix/kern/os/startup.c , shown in the cscope screen extract below.

6-7.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

When a CPU acts on an "E_VEC", or general exception, it executes the code found in
.../release/isms/irix/kern/mlV/LOCORE/gen_exc.s . The primary function of the gen_exc.s code is to determine which of
the above 32 reasons caused the CPU to stop operating in user context, and what is the appropriate routine to handle what
must be done while executing in kernel context.

The gen_exc.s code checks first for interrupts, then for system calls, by examining the bits in the kO register after
masking them against CAUSE_EXCMASK and then EXC_SYSCALL, as shown in the cscope screen extract, below.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-7.b

After the above, checks are made for a TLB read miss (exception), watch exception, and breakpoint exception, after
which the code falls through to a routine which handles "everything else".

The CAUSE_EXCMASK, EXC_SYSCALL, and other exception comparison bit fields are explained in the following
CScope screen extracts.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-7.c

Hardware Interrupt Check

The possible hardware interrupts are defined in .../release/isms/irix/kern/sys/sbd.h :

For an R10000 chip 02000 or 0200 machine, the hardware interrupt bit mask is explained in
.../release/isms/irix/kern/sys/SN/SNO/IP27.h :

6-8 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The priority and definition of the above hardware interrupts can be found in .../release/isms/irix/kern/ml/SN/intr.c :

6-8.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

ST I

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-8.b

Software and Hardware Exception Check

The possible hardware and software exceptions, like the hardware interrupts, are also defined in
.../releaselisms/irix/kern/sys/sbd.h . Notice that if the result of the masking operation is a zero, we have a hardware
interrupt of one of the kinds defined above. As state above, this is the first thing the gen_exc.s code checks for.

After the check for hardware interrupts, then the check for hardware and software exceptions begins. A check is made to
see if this is a system call (EXC_SYSCALL). Then a check is made to see if this is TLB read miss (EXC_MOD or
EXC_RMISS). TLB write misses are handled later in the logic (see the logic path on the diagram leading to ecommon,
then PDA, then VEC_tlbmiss). If this is not a TLB read miss, then a check is made to see if we have a watch
(EXC_WATCH) or breakpoint (EXC_BREAK) exception (these seem to be primarily pathways related primarily to
debugging). Finally, all the remaining exceptions (software exceptions, all of which have a prefix of "SEX_C....", below)
fall through the longway code, then to ecommon, then, to the appropriate handler.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 6-9

a1ty

—intocrunt

(V2 PN\‘;\@/

/u/%@{ <
6-9.a 22juiioos YW TR-IKI rev 0.7b SGI Proprietary

6-9.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary i

Module 7: Process Management Overview

Process Management Overview

This section provides an overview of IRIX processes and process management.

By the end of this s;ection, the student will be able to:

Describe the difference between a process and an executable file

Use the el fdump tool to examine an executable file.

Define “"process” and describe a virtual process image.

Describe a stack format, and the differences between a user stack and a kernel stack

Use the gmemusage tool to display and examine system and process physical memory usage
Describe some of the key structures in process control, and their functions

Describe the flow of execution in a context switch

Describe the flow of execution in a system call

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Process Management Overview

The process management facilities within IRIX are at the heart of the operating system. They are responsible for coordination of all the tasks
invoked by users as well as system tasks. The process management subsystem’s responsibility includes the following:

User process life cycle
Creation, execution, interruption, and termination of user processes.
CPU scheduling

All runnable processes are placed on run q Run q must be cc ly maintained with the highest priority processes
scheduled to run next at any point in time.

Context switching

Once a process gets connected to a CPU, process management must determine how long the process is allowed to use the CPU before
the CPU switches to another process.

Accounting
The kernel must keep track of how much execution time a process has consumed in user mode as well as kernel mode.
Memory usage

The memory management subsystem must be consulted to allocate and deallocate main memory when a process is initiated, or when it
expands or contracts in memory.

Exception handling

When programs executing within processes cause exceptions, the operating system must notify the affected process via the signal
mechanism.

I/O processing

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Processes need to associate themselves with files for purposes of reading and writing. The process management subsystem must
coordinate with the file and I/O management subsystems.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-2.a
Executable Files and Processes Diagram
Linked view Executable view
ELF header . ELFheader -
_Program header table ‘Program header table
- Section 1 . S o
Segment 1. ...
© Sectionn
— . Segment 2
_Section header table ‘Section header table
TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-3

Executable Files and Processes Diagram

A process is created from an executable file stored in the file system. Executable files generated by any compiling system are called a.our
files, because the default name for the compiler and linkage editor output is a. out.

At the beginning of each a. out file is a header. The header contains the information about the format and structure of the program within the
file. The header tells the system how to build a process in memory from the executable file stored on disk.

All a.out format files in IRIX use the format called the Extensible Linking Format (ELF). The diagram above shows an overview of the ELF
format. The stored format of an a. out file is called the linked view (a program). As the file is loaded into memory to execute, the format of
the a.out file within memory is called the executable view (a process).

ELF a. out files are constructed from various sections that are described within the header. The sections describe the organization of the parts
of an executable file as stored on disk. Sections are used to hold parts of a program like instructions (code text), data, symbol tables, etc.

When an a. out file is loaded into memory for execution, three kinds of logical segments are set up: the text segment, the data segment
(initialized data followed by uninitialized, the latter actually being initialized to all 0’s), and a stack. A segment holds the parts of the program
for the execution view and may contain one or more sections from the executable file.

A single-threaded program loaded into memory may have multiple text and data segments, but only one stack segment. The text segments are
not writable by the program,; if other processes are executing the same a. out file, the processes will share the same text segments.

7-4 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Executable Files and e1fdaump(1)
ELFDUMP ELFDUMP

NAME
elfduwp - dumps selected parts of a 32-bit or a 64-bit ELF object
file/archive and displays them in ELF style

SYNOPSIS
elfdump [options] file

DESCRIPTION
}'ﬁ elfdump command duwps selected parts of a given ELF object
e.
This command works for 32-bit or 64-bit ELF object files or ELF
archives only. It accepts these options and many others (see
man page) :

-£ Dusps the file (ELF) header.
-h Dumps all section headers in the file.

The el fdump command will display selected portions of an a. out executable file. The options to el£dump(1) control what portions are
displayed. The examples on the following pages will only illustrate the use of the -f and -h options. For additional options, see the el £dump(1)
man page.

7-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

pR sty

$ 1s -1 cat
“rWXr-xr-x 1 root
$ elfdump —f cat

cat:

sys

oy

Program header table

70236 Jan 19 1997 cat

Section 1
Section n
Section header table
TR-IKI rev 0.7b SGI Proprietary 223ul1998 7-6
[1] SHT_MIPS_OPTION 0x100000b4 Oxbd 0x60 .MIPS.opt ions
ox4 0 AIIOC NOSTRIP
[2] SHT_MIPS_REGINFO 0x10000114 0x114 0x18 .reginfo
0 0x4 0x18 ALLOC

[3] = SHT_PROGBITS 0x10000130 0x130 0xcc60 text

0 [0x10 ox1 ALIOC :
[4] SHT_PROGBITS 0%1000cd90 0xod90 0x20 .init

0 0 0x10 ox1 ALLOC TR
[5] SHT_PROGBITS 0x1004d000 0xdi000 0x21d0 .rodata

0 [0x10 0Ox1 TE
[6] SHT_PROGBITS 0x1004£1d0 Ox£1dO0 0x1060 .data

0 0 -0x10 ox1 WRITE
{7] SHT_PROGBITS 0x10050230 0x10230 0x38 .1it8

o] 0 Ox10 0ox8 WRITE ALLOC G
[8] SHT_PROGBITS 0x10050270 0x10270 0x250 .sdata

4] o] 0x10 Ox1 WRITE ALLOC GPREL
{9] SHT_NCBITS 0x100504c0 0x104cO OxSc .sbss

0 0 0x10 ox1 WRITE ALLOC GPREL
[10] SHT_NCBITS 0x10050520 0x104c0 0x3624 .bss

0 (] QxiO : Oox1 WRITE ALLOC
[11) STSRIB 9 gx11000 0x79 .shstrtab
$

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-7

7-7.a

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Process Definition Diagram

Process A

:bss.(heap)

4 Stack
4 (Private) -
(readAerite)

=, g

process’s page
table

Process B

Ghared)
:(read only)

not "~

Data

. o (Private)
< _permitted {8 (readAvrite)

bss (heap)

K

Stack
(Private)
(readAwrite)

= =

: 4
process’s page
table

22jul1998

Addrcssable by
uscr’s program

TR-IKI rev 0.7b SGI Proprietary

Process Definition Diagram Explanation

A process is the execution of a program or executable file stored in the file system. An IRIX process is partitioned into several regions as
shown above. All processes will have text, data, and stack regions but may contain others such as shared memory and memory mapped
regions.

® Text
Contains a sequence of bytes that the CPU interprets as machine instructions. Has status "read only” and may be shared by multiple
processes; that is, multiple processes may be executing concurrently all issuing instructions from the same shared text area. Because the
text area can be shared, individual processes are not allowed to modify it.

® Data
A memory region private to the individual process and can be read or written by the process’ instructions (text). Consists of two parts;
an initialized area and uninitialized area usually referred to as the bss or heap area. Heap area can grow dynamically as the process
needs more space. Heap growth is in the direction of the stack, ie, towards higher virtual addresses.
As shown above, a process cannot read or write to any other process’ data or stack regions.

® Stack
Used to hold locally allocated variables and parameters passed to functions. Is automatically expanded as needed when process invokes
functions or subroutines. Stack growth is in the direction of the heap, ie, towards lower virtual addresses. A process has two stacks. The
user stack is used while executing instructions in user mode. The kernel stack is used for executing instructions in kernel mode or while
the kernel is executing instructions "on behalf of” or "in the context of™ the user process, such as when the kernel executes system call
code which the user process requested.

As of IRIX 6.5, the user information traditionally stored in the "u area” on UNIX systems has been dispersed into other areas of the IRIX
kernel. That information is now in various parts of the uthread, kthread, and proc structures.

The process’s page table, the "pte”, is used to load the TLB for the purpose of virtual to physical address translations.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-9

User Stack Diagram

User Stack

Process A

Text -

ple .
rocess's page
P tablep 9

TR-IKI rev 0.7b SGI Proprietary 225ul1998 7-10

User Stack Diagram Explanation

Attributes of the user stack are:

@ Automatically created, and size dynamically adjusted, at run time.
® Logical stack frames that are pushed onto the stack when a function is called, and popped off the stack when returning,.
® Stack pointer indicates current position in the stack.
® Stack frame contains parameters passed to the function, function’s local variables, location of previous frame, return address to calling

function,
® Kemel grows the stack as needed.

7-11

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Kernel Stack Diagram

Physical Memory

7-12

22jul1998

At system call or ex tion,
CXU switches attecnet‘i,on
from user to kernel

TR-IKI rev 0.7b SGI Proprietary

Kernel Stack Diagram Explanation

Because a process can execute in two modes, user or kernel, a separate stack is used for each mode. As stated on the previous page, the user
stack contains the arguments and local variables for functions executing in user mode.

The kernel stack contains the stack frames for functions executing in the kemel in kernel mode. The function and data entries on the kernel
stack refer to functions and data in the kernel, not the user program. The kernel stack’s construction is the same as that of the user stack.

The "kernelstack” contains information about what the kernel is doing on behalf of a particular process. This information can help to
determine the cause of a system panic or hang. The kernelstack virtual address is the same for all processes running on the system. For
example, on an IP27 system, the address of the kemelstack is OXfIfffffffffff800. The kernelstack address is platform specific and is
determined when the kernel is built.

Information is contained in the proc struct about the mapping of the kernelstack address to a particular physical memory page.

(¢ \LLMC&Q e Snbc/ 40 ipag»u
- (

| shceo @
ok siadk il zud e

<) s z/ {XL\J)}BL

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-13

Processes and Kernel Threads

In IRIX revision 6.1 and earlier versions of IRIX, the process was the central mechanism for distributing processor resources over a collection
of independent and cooperating tasks in the operating system. IRIX 6.2 introduced the migration toward the use of kernel threads (kthreads)
as a central mechanism.

Kernel threads resemble the execution model of a UNIX process and consist of a code stream, private stack, and private register space. Unlike
UNIX processes, kthreads are inexpensive to create and destroy, and can be quickly scheduled. A kthread has an associated user process
context only if it is running on behalf of a system call or page fault, otherwise it has no logical connection to a user process.
With IRIX 6.2 and 6.3, only a partial conversion was made. The construct of a kthread was introduced, however it was still closely associated
with entries in the proc table. In fact, a proc table entry was allocated for each active kthread in the system (even those that had no process
context). Not until IRIX 6.4 was the conversion more or less complete (the evolution will continue with future revisions of IRIX). The
kthread has now become the fundamental execution entity in the system. There are three types of kthreads:

® User process

@ Interrupt thread (ithread)

® Service thread (sthread)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-14

Displaying process memory (gmemusage(1))

The command gmemusage(1) can be used to display the memory usage for individual processes as shown below.

7-15 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Cray Origin2000 System Workload gmemusage(1) Display

click on "Irix"

7-16 22jul1998 TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-16.a

IRIX Physical Memory gmemusage(l) Display

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-17

T m—————

7-17.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Process Physical Memory gmemusage(1) Display

SEETITIN

7-18 22jul1998 TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-18.a

Process Control Diagram

Kernei memory

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-19

Process Control Diagram Explanation
This diagram provides a brief overview of how the kernel controls individual user processes.
1. pda structure

Each CPU has a private data area (pda) in main memory which points to the thread structure for the process currently connected to the
CPU.

2. thread structure

When a process is created, a thread structure is dynamically allocated in the kernel which is used in controlling the process. The thread
structure holds information such as status of signals, CPU scheduling information, and current system call and arguments passed.

3. proc structure

When a process is created, a proc structure is also dynamically allocated in the kernel which is used in controlling the process. The proc
structure keeps track of who its parent, child, and sibling processes are as well as what process group it belongs to.

4. pte structure (page tables)
Helps map virtual process pages to physical memory pages.
Because the thread and proc structures are always resident in memory, the information maintained in these structures for a particular process
is always available to the kernel, even if the process is paged out. Therefore, the thread and proc structures contain all of the data needed
about a process even though the process might not be present in main memory.
Conversely, if a process is paged out by the kernel to gain space for a different process, the information in the user area is not available to the

kernel until the process is paged back into memory. Therefore, the user area contains process control information that is not needed by the
kernel when the process is inactive or paged out of main memory.

7-20 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Process Segments or Regions

Kernel memory

The IRIX kernel divides the virtual address space of a process into logical segments or regions. A segment or region is a contiguous area of
virtual address space of a process which can be treated as a distinct object to be shared or protected. Several processes can share a segment or
region.

For example, several processes may execute the same program, such as multiple users of the same shell program. Therefore, it makes sense
for them to share the same copy of the text region. In a similar manner, several processes may cooperate by sharing a common
shared-memory region. The process region mechanism also allows the kernel to protect regions of a process’s address space so that the
process itself cannot alter the region. This is done with the text region of a process.

7-21 22jul1998 TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-21.a
Kernel’s Region Tables Diagram
Kernel memory
A’s datasegment | | g ‘A’s'text segment
IA’: stack segment] IA":_ shared memory]
TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-22

Kernel’s Region Tables Diagram Explanation

The kernel maintains a region table (not shown above) and allocates an entry in the table for each active region on the system. Region table
entries keep track of where each region resides in physical memory. Process-independent attributes are kept in the region table entries.

Each process also has a per process region table where each entry is usually referred to as a pregion (preg in the diagram). Each preg entry
has a pointer to a region table entry which has pointers to where the region resides in physical memory (shown as a dashed arrow in diagram).
The preg entry also contains a permission field that indicates the type of access allowed to the process: read-only, read-write, or read-execute.
Process-specific attributes are kept in the pregion structure.

A process’ pregions (pregs) are maintained in two separate lists. One list controls the regions which are considered private and the other
controls those which are shared. The process’ thread structure locates the private and shared pregion lists.

7-23 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Region Sharing Diagram

A_‘?:,da;w'a:segmert

4

I s stack sé.gment:i

7-24 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Region Sharing Diagram Explanation

Several processes can share parts of their address spaces via a common region. Each process sharing a region accesses the region via a private
pregion (preg) entry.

The illustration above shows two processes (A and B) which are exec::ing the same program and sharing a shared-memory region. The
obvious advantages of region sharing are:

® Reduction in physical memory requirements when multiple processes are executing the same program. For example, there is significant
reduction in physical memory requirements for a program like the shell program which has many concurrent users.

® Much less kernel paging is required with one copy of a program’s text and multiple processes executing within the same text area.

® Process startup time is reduced if desired program text is already in memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-25

Multiprocessing

Process A ,

user stack

. kemel stack

i o o o e o v s

The IRIX system is a multiprocessing environment. Each CPU can execute in only one of two locations at any time: user process or operating
system kernel. However, the operating system gives users the impression that a single CPU can give attention to multiple processes
simultaneously, but only one user process can execute at a time per CPU when the CPU is not "in" the kernel.

The kernel provides this illusion by a mechanism called time slicing. Processes receive short bursts of CPU attention called time slices. In
general, a single process will not receive 100% attention of a CPU. Therefore, to the user it looks like multiple processes are all executing
simultaneously, but in reality it is just one process at a time executing in short bursts. The CPU(s) must switch attention to multiple processes
(residing in priority order on the run queue) very rapidly to provide this illusion. Processes are switched in and out of a CPU typically every

few milliseconds.

On a multi-CPU system, multiple processes execute simultaneously in the various CPUs.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-26

7-26.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Process Execution Flow Diagram

Physical memory
YN

kemel’s
address
space

process’
address
space

7-27 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Process Execution Flow Diagram Explanation

Each process runs in its own address space and behaves as if all of the machine resources are available for its exclusive use. The execution of
multiple processes in parallel is achieved by switching different processes in and out of the CPU every few milliseconds.

The above diagram shows the typical flow of execution for a process.

1. When a CPU is executing in a user process, it is said to be operating in user mode. The process can only access memory that is within
its address space.

2. When a user process makes a system call, generates an exception (fault), or when an interrupt occurs like a terminal interrupt (Ctrl-C) or
a system clock interrup, the user process’s context is saved before the CPU executes kernel code.

3. When the CPU leaves the user process and enters the kernel, it is executing in the kernel on behalf of that user process and is said to be
executing in kernel mode. In kernel mode, the CPU is authorized to execute privileged instructions and can access the code and data of
any process. A user process cannot access kernel code, or the address space of any other process.

4. When the kernel has completed execution on behalf of the user process, it restores the context of the user process and returns CPU
control to the process at the location where the user process was previously interrupted. Execution resumes in user mode.

From the viewpoint of a user program, a process’ address space is a linear, flat, addressable area of memory starting at address zero and

extending to a fixed address boundary set by both the hardware and operating system kernel. However, to the kernel, a process’s address
space is divided into discrete regions called text, data, heap (bss), and stack shown on previous pages.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-28

System Call Interface Diagram

Physical memory

TR-IKI rev 0.7b SGI Proprietary 22jul1998 7-29

System Call Interface Diagram Explanation

A system call is the mechanism a user uses to invoke a function or perform a task in the kernel. There are hundreds of system calls a user can
invoke; for example, open(2), read(2), write(2), close(2), chmod(2), chown(2), kil11(2), etc. The method used to invoke a system call and
have control passed to the kernel for execution is illustrated above with explanation below:

1.

7-30

N uhs W

The user’s program issues a system call by specifying the name of the specific call with an attached list of arguments. For every
possible system call supported in IRIX, there is a unique library routine which processes the system call request. Control is passed to
this library routine.

. From the viewpoint of the kernel, every system call is known by a unique integer which must be passed to the kernel for identification.

The library routine invokes an instruction that changes the process’ execution mode to kernel mode and causes control to be passed to
the kernel’s system call handling code passing along the integer identifier for the desired system call.

. The kernel’s system call handling code receives the integer to identify the system call the user is invoking, and looks up the system call

number in a table (sysent) to find the address of the appropriate system call handler.

Control passes to the identified system call handler and the system call executes.

When finished with the user’s request (for example, a file read request), the system call handler returns to the kernel code from which it
was called.

. The kernel returns to the user process’ library routine which originally passed control to the kernel switching back to user mode.
. The library routine returns to the user’s program where the system call was made with a return value indicating success or failure.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module 8: IRIX System Calls

IRIX System Call Processing

Unit covers:

Overview of IRIX kernel system call processing

List and role of key components in system call processing

System call walk-through

System call argument processing including return value conventions
System call icrash(1m) examples

8-1

22jul1998 TR-IKI rev 0.7b SGI Proprietary

System Call Review

® User processes access Operating System Services via a mechanism called System Calls.
® System calls are performed with these general steps:

1.
2.
3. The interrupt is “trapped” by the OS; the OS performs the operation (if legal) and returns one or more return

8-2

User program prepares calling argument values according to each one’s prototype as described in the calls
man(2) page.
Program performs a hardware instruction that causes in interrupt. The mnemonic for this in IRIX is syscall.

values as described in the call’s man(2) page. See man page for intro(2) for list of standard error return values.

. OS returns control to the user process, passing any return values to the user program.
. The user program checks return values for errors and handles error or continues processing.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

3.

Noaus

® Programs have access to System Calls with several methods:
1.
2.

User codes the above "calling sequence” in program using direct assembler code.
User uses standard UNIX system call library routines (a.k.a. open(2), read(2), ciose(2)) to directly access the
system call.
User uses standard "higher level” library functions to access system services. These library routines take a lot of
the clerical work out of accessing system services or provide services in themselves. For instance:
B fopen(3), tciose(3), £reaa(3), and swrite(3) provide file /O with user library level (double) buffering and
other services.
W psignal(3) provides general access to kernel signal processing services.
® malloc(3) allocates and manages user (heap / BSS) memory, making breax(2) system calls to request that
the kernel expand user memory.

. Compilers generate System Call sequences as part of their command support.

Compiler commands such as FORTRAN’s orex and reao build upon library man(2) system call routines.
Most compilers provide direct access to both man(2) and man(3) library routines.

. Many compilers allow imbedding of assembler commands within their "normal” code. These assembler

routines may make system calls as described above.

@ In all cases, the same low level kernel system call is invoked and processed by the OS. This unit describes kernel
system call processing at this level.

TR-IKI rev 0.7b SGI Proprietary 225ul1998 8-3

System Ca‘ll Component Diagram

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-4

System Call Overview

The diagram shows the general flow of control for IRIX system call processing. The open(2) system call is used as a
typical example.

1. User process "A" executes (open(2)) system call.
The system call library code invokes a syscall interrupt.
Control switches to the kernel.
2. Low level kernel exception handler (trap) routines decode the exception type and dispatch control to assembler
routine systrap for system call exceptions.
3. Routine systrap check for usage errors (e.g. interrupt must be from user, not kernel) and save user’s CPU register
context.
Systrap fabricates a kernel stack and calls C function sysca11().
4. Function syscall() accesses user’s calling arguments.
O A check is made to make sure that the system call number fits within the scope of the sysent [] table.
© The system call number argument is used to load the corresponding interrupt function address from the kernel
sysent [] table.
O The sysent[] table argument limit is used to check the caller’s number of arguments.
© If errors, syscall() returns to user with a standard error code (errno.h).
o If no error, syscall() calls kernel function corresponding the system call number.

8-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

5. Processing continues at the kernel system call function.
© During call processing, error conditions may cause the function to return to syscal1() without completing the
required work. syscall() returns the error (syserr.h) code to the user process.
© The thread of logic started in the system call may block (sleep), waiting for some condition (resource) in the
kernel.
This is called a "context switch” and is covered in another unit.
© Eventually the system call processing completes.
® Functions pass one or two "return values” to the calling user process indicating the success or failure of the
call. The values are documented as the call’s RETURN VALUES in the man(2) pages.
m Additional data may be passed between the user and the kernel via user calling argument addresses; for
example the path address in an open(2) or buffer address in a read().
6. Returning to syscall() the kernel:
© Does final error checking.
O Restores the calling process’s (A) CPU register context -OR-
O Calls soft_trap() to schedule another process (B), restoring it’s context instead.
© Process A resumes either immediatly or when it is resumed by swtch().
© Process A should check it’s return value(s) before proceeding with other program logic.

8-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

System Call Walk Through
User Makes System Call

Calling arguments are loaded into CPU registers. By IRIX convention, these are the "a" registers starting with reg a0.

The man page for open(2) shows C SYNOPSIS:

int open (const char *path, int oflag,

.. /* mode_t mode */)

For this C open command : int fd = open("/tmp/opensam”,O_CREAT,0700);

® The address of the path string literal "/tmp/opensam” is loaded into register ao.
® The open flag o_creAT (value 0x100) is loaded into register a1.
#define O_CREAT 0x100 /* open with file create (uses third open arg) */
® The mode value 0700 is loaded into register a2.
o Other operands may be used as defined in the open(2) man page.
® The program calls the open system call library function open() in open.s which loads register vo with the system

call number.

The number for each call is defined in fille sys. s. This number represents a position (index) into a system call entry
points table called sysent[]. For open(2), this is 1005 (the base of the table is 1000).

® The open library code executes the syscall machine instruction causeing an interrupt into the kernel.

® Register content summary:
O a0-a2 contain the calling arguments.
O +0 contains the system call number.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-7
Sample assembler code for open(2)
9: main() { from sample program opn.cC
10:
{ 10} 0x10000b38: 8f 84 80 1lc 1w a0,~-32740(gp) local memory pages
[10] 0x10000b3c: 24 84 10 00 addiu a0,a0,4096 path string literal
[10] 0x10000b40: 24 05 01 0O 1li al,256 O_CREAT=0x100
[10} 0x10000b44: 24 06 01 cO 1i a2,448 mode=0700
[10] 0x10000b48: B8f£ 99 80 30 1w £9,-32720(gp) &open()
[10) 0x10000bdc: 03 20 £8 09 jalxr ra,t9 call open -> _openéd
openéd: from libc.so.l
[18) Oxfa3edal: 24 02 03 ed 1i v0,1005 index into sysent table
{ 18] Oxfa3edad: 00 00 00 Oc syscall
[18] Oxfa3edas8: 14 e0 00 03 bne a3,zerxo,0xfac5078 -> _cerror (indirectly)
[18) Oxfa3ledac: 00 00 00 0O nop
[19] Oxfa3ed4b0: 03 e0 00 08 ir ra -> back to main()
. Cerxror: from cerror.s
[30] O0xfa384£8: 3c 0Oe 00 12 lui t2,0x12
[30) Oxfa384fc: 65 ce 6f 58 daddiu t2,t2,28504
[30] 0x£a38500: 01 as 70 24 daddu t2,t2,t9
{ 31) Oxfa38504: 8d cl 93 £8 1w at,-27656(t2) at=&errno (gobal error)
{ 31)] oxfa38508: ac 22 00 00 sw v0,0(at) save v0 in global errmno
[34] 0xfa3850c: 8d cc 93 a8 1w t0,-27736(t2)
[35] 0x£fa38510: 8d cd 93 £8 1w tl,-27656(t2)
[34] Oxfa38514: 8d 8c 00 00 1w £0,0(t0)
[36] Oxfa38518: 11 84 00 02 beq t0,tl,0xfafd84c
[36] Oxfa3851lc: 00 00 00 OO0 nop
[37) oxfa38520: ad 82 00 00 sw v0,0(t0) save v0 in per/ thread errno
[41) Oxfa38524: 03 e0 00 08 ir ra -> back to main()
main() continued
[10] 0x10000b50: ©0O 00 00 00O nop
[10)] 0x20000b54: B8f 85 80 40 1w al,-32704(gp) &fa
[10] 0x10000b58: ac a2 00 00 sw v0,0(al) £Aa=v0
11: £4 = open(*/tmp/opensam”,O_CREAT,0700);
TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-8

Kernel Traps the Interrupt

o Low level interrupt handler routines test interrupt (exception) code, calling systrap (systrap.s) for the syscall
hardware exception.
® Assembler code in systrxap
O Saves CPU registers in user process’s uthread exception frame area.

Calling argument values from the a registers are now in the process thread area.

© Switches system times (accounting) over to OS.

© Use system call number (sysnumber) in v0 as index into the sysent[] table to access kernel function address,
call argument count, and call flags.

© C function syscall() is called to dispatch the system call.

8-9 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Syscall() Dispatches the Call

® System call counts are incremented; by call number and total.
® The system call number and argument values are checked for sanity
(Specific checking of argument values is done by each system call function.)
Errors are returned as described below.
® User system call arguments are copied (up to 8 of them) to the uthread ut_scallargs|] array.
® The specific system call function is called as defined in the kernel sysent[] table.

8-10 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Kernel Performs Specific System Call

® Kernel executes functions as initiated by the "top level" system call function
For example: open() calls copen() which may call x£sopen(), and so on.
® Very often the kernel performing a system call must wait for some resource such as an I/O operation. In this case:
© The function calls sleep() (or a variant of sleep()) to give the CPU to another process (thread).
© The CPU selects another process thread and resumes processing that one.
o Eventually the event the process was waiting for (e.g. 1/O) completes. The interrupt handler for that event
awakens this sleeping process with a wakxeup() call.
© The kernel will eventually select this process to resume where it left off.
O A system call may result in many sleep-wakeup situations before it completes.
® If successful, "top level” functions return specific RETURN values as defined in the system call man(2) page.
o Kernel functions check for errors, returning specific error codes as described below.
@ In any case, control returns to the "top level” system call function, which returns to syscal11().

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-11

Syscall() Resumes Processing

® If system call return an error the error:
© The error is posted to the user (set in errno).
© The process may be sent a signal .
® If no error:
© Set user return values rv1 and xv2 into registers vo and vi1 (see argument processing below).
® Clear flags indicating that the system call is finished.
® Return to systrap().

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-12

Systrap() Resumes Processing

@ Kernel system call functions may set a resched flag in the kernel when they perform some operation that changes
the potential scheduling of processes (thread) in the system. Examples:
© Fork creats a new process which may need to run.
© Exit destroys a process leaving the CPU free to run another.
O A signal is sent to a process awakening it from sleep.
O I/0 completes awakening a process.
@ When the resched flag is set, function gswtch() is called to check a process run queue. The most worthy process is
selected to resume. (See process scheduling for more detail).
® The kernel system call timer is stopped and the user timer is resumed.
® The first user stack TLB is loaded.
® The user’s CPU context (register values) are restored.
@ ERET machine instruction is executed. Control resumes at the address in Epc, which was the user pc at the time of
the syscall exception interrupt.

8-13 22jul1998 TR-IKI rev 0.7b SGI Proprietary

User Resumes Processing

® The library routine returns control to the calling user function.

® The user SHOULD check the return value (v0) and exrno for error before continuing.

e In the open sample used in this walk-through, the integer £a recieves the return value. If there was no error, £a will
be an index to the user’s open file descriptor in their open file table, the product of the open(2) system call
operation.

8-14 22jul1998 TR-IKI rev 0.7b SGI Proprietary

System Call Argument Processing

‘struct opena

echar *fname;)

/,sysaxrg t. fmode; .
usysarg. t cmode;

B T Rt N
turn{copen .
Jiiaape> fname
E ‘uap->fmode-FOPEN,
{mode__t)uap->cmode

ra -)

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-15

System Call Argument Processing
Typical system call argument processing is shown using the open(2) system call as an example.

1. Open library code loads the calling argument values into registers a0, a1, and a2.
The library code calls the kernel with the syacall command.
On entry to the kernel, all user registers are save in the uthread exception frame.
systrap() creates a stack frame for the call to syscal1() with room forr syscall’s local variables such as error and
rvp.

2. The system call number is placed in the ut_syscalilno field and the user arguments are copied into the
ut_scallargs([8] array, both in the process’es uthread area.

3. Before syscall() calls the specific system call function, the kernel sets a0 to point to the system call arguments,
now in the uthread area. Register al is set to point to the return value pointer rvp (in the stack). Register a3
contains the system call number (not always used).

4. The called function used a0 to locate the calling arguments. C code "maps” these arguments to their function use as
seen by the opena structure in the open(2) system call.

5. Kernel function open() calls copen() passing the caller’s argument (values and pointers) to it in the a registers as
shown.

6. The system call function procees, performing each one’s service until it finishes or returns with error.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-16

7. At some time before returning, the system call functions store results in xv1 and possibly rv2. These values are also
in registers vo0 and v1. By convention, the system call functions return O (zero) if no error or non-zero if error to

syscall().

8. syscall() places the exrror, v0, and vi values in the exception frame a3, vo, and v1 fields.
systrap() reloads the CPU registers (including the return vaalues) from the exception area just before returning to

the interrupted user process.

9. The system call library routine checks register a3 for non-zero, storing the value in user process global data area

arxrno.

Register vo is delivered to the user process as the result of the system call. Depending on the specific system call,
the user can test this for success or failure, and access exrno for a more specific reason for failure in the case of an

€ITor.

8-17 22jul1998

TR-IKI rev 0.7b SGI Proprietary

icrash(1M) Samples

Process uthread Display

>> proc -f a8000002014f£fcc00

PROC ST PID PPID PGID UID WCHAN NAME

a8000002014£cc00 21 27 1 27 0 a8000002006b19d8 x1v_plexd

SELECTED FIELDS FROM THE KTHREAD STRUCT AT Oxa800000201508c00:

K_FLAGS (0x240020) =KT_SLEEP | KT_HOLD | KT_WSV
K_W2CHAN=0x0,K_STACK=OXfE££££EEEEE£8000, K_STACKSIZE=16384
K_PRTN=1, K_PRI=-3, K_BASEPRI=-3, K_SQSELF=0, K_ONRQ=-1
K_SONPROC=-1, K_BINDING=-1, K_MUSTRUN=-1

K_LASTRUN=4, K_CPUSET=1, K_EFRAME=0x0, K_LINK=0x0
K_INHERIT=0x0, K_INDIRECTWAIT=0x0
K_RFLINK=0xa800000201508c00, K_RBLINK=0x%a800000201508c00
K_FLINK=0xa800000201508c00, K_BLINK=0xa800000201508c00

SELECTED FIELDS FROM THE PROC STRUCT:

P_CHILDPIDS=0x0, P_SLINK=0x0, P_SHADDR=0x0

OPEN FILES FOR PROC 0xa8000002014£fcc00:

FD FILE RCNT DATA BH FLAGS
o] ag8000002006a0240 3 a8000000009e5500 a8000002006a8418 3
‘i a8000002006a0240 3 a8000000009e5500 a8000002006a8418 3
2 a8000002006a0240 3 a8000000009e5500 a8000002006a8418 3

1 active processes found

8-18 22jul1998

TR-IKI rev 0.7b SGI Proprietary

uthread Detail

>> px *(uthread_t *)0xa800000201508c00
struct uthread_s {
ut_kthread = kthread_t (
k_regs = {
[0]) 0xa800000201508c00
[1] 0x80
[2) 0xa800000201508c¢84
[3] 0x80
[4] O0x0
[5) 0x0
[6] 0x100197d8
{71 0x10019798
(8] OxXfEEfEELLELL£ED940
[9]1 0xO0
[10] 0xc000000000200490
[11] Ox68al
[12] O0x0

}
k_id = 0x10000005a
{edited)
ut_syscallno = 0x5
ut_scallargs = {
[0] 0x100195138
{1] oxo0
{2] 0x0
{31 0x0
{4] 0x0
{S] 0x200e6c
{6] 0x0
[7] 0x200e70

adjusted down from 1005, indexes to open()

uger address of path
open flags (is zero this case)
open mode (is zero this case)

}

{edited}
ut_rsa_runable = 0x0
ut_rsa_npgs = 0x0
ut_rsa_locore = 0x0
ut_rsa_pad = "

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-19
Trace of open(2) System Call
>> trace a8000002014fcc00
STACK TRACE FOR UTHREAD 0Oxa800000201508c00 (xlv_plexd, PID=27):
1 swtch[../os/swtch.c: 1086, 0xc000000000200490]
2 thread_block([../os/ksync/mutex.c: 159, 0xc00000000017b2£f4]
3 sv_queue(../os/ksync/mutex.c: 1394, 0xc00000000017c998]
4 sv_timedwait_sigl[../os/ksync/mutex.c: 1968, 0xc00000000017d46a0]
S sv_wait_sig([../os/ksync/mutex.c: 1252, 0xc00000000017¢650]
6 fifo_open[../fs/fifofs/fifovnops.c: 118, 0xc000000000355edd)
7 vn_open[../os/vnode.c: 1841, 0xc0000000001b8dS0])
8 copen{../os/vncalls.c: 211, 0xc0000000001cb728])
9 open[../os/vncalls.c: 145, 0xc0000000001cb5bc])
10 syscalll../os/trap.c: 2737, 0xc00000000018cbad]
11 systrap{../ml/LOCORE/systrap.s: 314, 0xc000000000037c48]
r0/zexo:0000000000000000 rl/at :£££E£EEEEEEEEEECO r2/v0:00000000000003ed
r3/v1:0000000000000000 r4/a0:0000000010019138 r5/al:0000000000000000
r6/a2:0000000000000000 r7/a3:0000000000000000 xr8/a4:0000000000000000
r9/a5:0000000000200e6c rl0/a6:0000000000000000 rl1l/a7:0000000000200e70
rl2/t0:000000001001b010 rl3/tl1:000000001001b008 r14/t2:0000000000000008
xrl5/t3:000000003£££0000 1xr1l6/s0:0000000010019138 1xr17/s1:00000000100197b0
rl8/s2:0000000000000000 xr19/s3:0000000000000000 xr20/s54:0000000000000000
xr21/s5:000000000£b4£950 x22/s6:00000000100197d8 xr23/s7:0000000010019798
r24/t8:0000000000000003 r25/t9:0000000010004494 xr26/k0:0000000000000000
x27/k1L:E£ELE£L£££8400££b3 r28/gp: 000000000fb5813i 229/sp 000000007£££29a0
r30/88:0000000000000000 r3l/ra: 000000000 « EPC:000000000£fb01474
(CAUSE=8, 4§R=£££f£f££8400££b3, R-lOOO 49
mEse== S 7,,\,,/
L{)‘(’ ke S < OVUZ% fYUzanLuvLe;M gé
e g TLEMISS
._~, :>LLLQ£ Q((x{))’t\b (,Huvﬁ Ub &wf)% ON_ (S (B
(e DERVG B“"‘S‘QB
TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-20

Trace Detail (partial)

>> trace -f a8000002014fcc00

STACK TRACE FOR UTHREAD 0xa800000201508c00 (xlv_plexd, PID=27):

{edited)
8 copen{../os/vncalls.c: 211, 0xc0000000001cb728])

RA=0xc0000000001cb5c4, SP=OxfL£L££fffff£ffbe30, FRAME SIZE=128

fEEFELLL£E££fbe30: a8000002006a0270 0000000301419¢c18
£ELE£L££££££fbeq40: a800000201508¢c00 a800000201508c84
£fEELELE££££fbeSO: a800000201508c00 0000000010019138
£LEELEE££££££be60: 0000000000000000 0000000000000000
fELEL££££££££be70: 0000000000000001 £EE£E£E£EELEEEEbed8
fELELEL££££££be80: c0000000001cb5¢c4 <¢000000001418d30
£E£ELELLE££££££be90: 0000000000020000 0000000000020000
ffEffff££££fbeal: a800000201508ea8 <¢00000000018cbac

open[../os/vncalls.c: 145, 0xc0000000001cbkS5be]

RA=0xc00000000018cbac,

SP=0Oxffff£fff£££fbeb0, FRAME SIZE=32

EEEEEEEEE£EfbebO: €00000000018cbac 0000000000000000
EEEEEEEE£EEfbecO: €00000000018d374 a800000201508c00
8-21 22jul1998 TR-IKI rev 0.7b SGI Proprietary

RA=0xc000000000037c¢50,

10 syscall([../os/trap.c: 2737, 0xc00000000018cbad)
SP=0OxfE£L£fff££f£ffbed0, FRAME SIZE=160

fEEELL£££££fbed0: 000000007£££2£cO0 0000000000000000
fEEL£££FEffFfbeeO: 0000000000000000 a2800000201509368
fELL£LL£££££fbef0: 0000000000000000 0000000000000000
fELLLLLL£L££££LE£00: 0000000000000004 000000000000000S
fEELELLELEE££LE20: 0000000000000000 a800000201509380
L£EELELELLLEEEDE20: ££LL£££££8400££b3 000000000000££a0
£ELLELLLLL£E££LE30: 0000000000000000 <000000000037e50
EEEELELELL£££D£40: 00000000100197b0 0000000010019798
£ELELELLLELLEELESO: 000000000£L4£950 0000000000000000
£ELLELLEFLLEEDESO: 00000000000000b4 <€00000000001a09¢

11 systrap(../ml/LOCORE/systrap.s: 314, 0xc000000000037c48]

xr0/z2ero:0000000000000000
r3/v1:0000000000000000
r6/a2:0000000000000000
r9/a5:0000000000200e6¢c
rl2/t0:000000001001b010
xr15/t3:000000003£££0000
rl8/s2:0000000000000000
x21/s5:000000000£b4£950
r24/t8:0000000000000003
r27/k1:£££E£££££8400££b3
r30/s8:0000000000000000

rl/at:£££££LE£FELEE££CO

xr4/a0:0000000010019138

r7/a3:0000000000000000
rl0/26:0000000000000000
rl3/t1:000000001001b008
rl6/s0:0000000010019138
rl9/s3:0000000000000000
r22/s6:0000000010019748
r25/t9:0000000010004454
r28/gp:000000000£b58134
r31/ra:000000000£b08744

xr2/v0:00000000000003ed
r5/a1:0000000000000000
r8/a4:0000000000000000
rll/a7:0000000000200e70
x¥14/£2:0000000000000008
xrl7/51:0000000010019700
r20/s4:0000000000000000
r23/s7:0000000010019798
xr26/k0:0000000000000000
xr29/sp:000000007£££29a0
EPC:000000000£b01474

CAUSE=8, SR=fffffff£8400f£fb3, BADVADDR=10004454

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Frame For open()

9 open[../os/vncalls.c: 145, 0xc0000000001cb5Sbc}

RA=0xc00000000018cbhac,

SP=0xfE£fffff££fffbeb0,

FRAME SIZE=32

fffffffff££fbeb0: c00000000018cbac 0000000000000000 O(sp)=xa
fEELEE££££€fbecO: c00000000018d374 a800000201508¢00
>> findsym c00000000018cbac
=======z==

0xc00000000018cbac ~--> syscall + Ox3ac

1 symbol found

TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-23
Disassembly Code For open()
>> dis open 30

[open:145, 0xc0000000001cb590]) ori ad,zexo,OxfEEf

[open:145, 0xc0000000001cb594]) 1w a2,20(a0) aOwuap a0+20 is mode

[cpen:144, 0xc0000000001cb598]) daddiu sp,sp,-32

[open:145, 0xc0000000001cb59c] dsll ad,ad,16

{open:144, 0xc0000000001cbS5a0] move a3,al

[open:145, 0xc0000000001cb5a4] la al,8(a0) a0=uap &0+8 is flags

{open:145, 0xc0000000001cb5a8] ori ad,ad,0xfffe

(open:145, 0xc0000000001cb5Sac] sd ra,0(sp)

[open:145, 0xc0000000001cbSbO] nor ad,ad,zero

[open:145, 0xc0000000001cb5b4] 14 a0,0(a0) aO=uap a0+0 is *fname

[{open:145, 0xc0000000001cb5b8]) daddu al,al.,ad

[open:145, 0xc0000000001cb5bc] jal 0xc0000000001cb600 (copen)

[open:145, 0xc0000000001cb5c0]) sll al,ai,0

{open:145, 0xc0000000001lcb5c4d] 1iad ra,0(sp)

{open:145, 0xc0000000001cb5¢8]) ix ra

{edited)

TR-IKI rev 0.7b SG1 Proprietary 22jul1998 8-24

Frame For copen()

8 copen(../os/vncalls.c: 211, 0xc0000000001cb728]

RA=0xc0000000001chbSc4,

SP=0xfffffff£££f£fbe30, FRAME SIZE=128

£ELELLLLL£££be30: a8000002006a0270 0000000301419c1l8 (0/8)
LEELLLEL£££££fbed0: a800000201508c00 a800000201508¢c84 (16/24)
fELLLLL£LL££££beS0: a800000201508c00 0000000010019138 (32/40) (/*fname)
£ELELLLLL££££be60: 0000000000000000 0000000000000000 (48/56) (cnode/)
ELLELELL££££De70: 0000000000000001 f£ELL£££L££££€bed8 (64/72) (fmode/*xvp)
£LEELELL£££Lbe80: ¢0000000001chb5cd <000000001418430
E£ELLLLEL££££€be90: 0000000000020000 0000000000020000
fELLELEEL££££beal: aB800000201508ea8 <00000000018cbac
8-25 22jul1998 TR-IKI rev 0.7b SGI Proprietary
Disassembly Code For kernel copen()
>> 4is copen 20
[copen:168, 0xc0000000001cb600]) daddiu sp,sp,-128
[copen:168, 0xc0000000001chb604] sd a0,40(sp) a0=*fname
[copen:168, 0xc0000000001cb608] sd a2,48(sp) a2=cmode
[copen:168, 0xc0000000001cb60c] sd a3,72(sp) a3=*rvp
[copen:174, 0xc0000000001cb610] move v0,al
[copen:174, 0xc0000000001chb6E14] sd al, 64 (sp) alsfmode
{copen:175, 0xc0000000001cbé618] andi at,al,0ox3
[copen:181, 0xc0000000001cbélc] 1i v0,22
{copen:181, 0xc0000000001cb620] sd s0,32(sp)
{copen:181, 0xc0000000001cb624] sd zexo, 56 (sp)
[copen:175, 0xc0000000001cb628] beqg at,zero,0xc0000000001cb758
[copen:168, 0xc0000000001ché2c] move s0,al
{copen:186, 0xc0000000001cbé630] daddiu a2,sp,8
[copen:186, 0xc0000000001cbé634]) daddiu al,sp,0
[copen:181, 0xc0000000001cbé638] 1i ad,132
[copen:181, 0xc0000000001cbké63c] andi a3,s0,0x84
[copen:181, 0xc0000000001cbé640] xox a3,a3,ad
[copen:184, 0xc0000000001cbé644d] 1i ad,-S
[copen:186, 0xc0000000001cb648]) lui a0, 0x1
fcopen:184, 0xc0000000001cbé64dc] and ad,s0,a4

8-26

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Register Aliases

Spc - current user pc

Ssp - current value of stack pointer

Srn - register n

$fn - single precision floating point register

Sén - double precision floating point register

$mmhi - most significant multiply/divide result register
$mmlo - least significant multiply/device result register
$fesr -~ floating point control and status register

$feir - floating point exception instruction register
Scause - exception cause register

(The following is correct for 32bit abi programs)

Alternate
i Alias Alias Description
$x0 $zero always O
$rl s$at reserved for assembler
$r2..$r3 $v0..$v1 expression evaluations, static links,
returned values ©
$ra..s$r7 $a0..$a3 ar s “AQJJ:> « i :
$r8..$xrlS $t0..5t7 temporaries ﬁ i g % O
$rl6..$xr23 $s0..$s7 saved across procedure calls $ 4) \r \ \ a_ am
$r24..8x25 $t8..St9 temporaries fﬂ A
$r26..$xr27 $k0. .Skl reserved for kernel
$r28 $gp global pointer
$x29 $sp stack pointer
$xr30 $s8 saved across procedure calls
$r31 $ra return address
TR-IKI rev 0.7b SGI Proprietary 22jul1998 8-27

Module 9: Memory Management Overview

Memory Management Overview

9-1 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module Overview

This module provides an overview of the hardware and software mechanisms used to manage the system memory. Emphasis is on virtual
addressing and memory paging, which are used to give users the illusion that their processes can consume all available memory or even more
memory than physically available.

9-2 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module Objectives

After completing this module, you will be able to:

® Explain the characteristics of a swapping type of UNIX system.

® Describe the concepts of virtual address and memory page in IRIX systems.

@ Describe the role of the TLB in memory address translation.

® Describe how virtual addresses are translated to physical memory addresses.

@ Explain the concepts of demand paging and page stealing in IRIX.

® Use sax(1) to produce reports on memory, swapping, paging, and TLB activity.

® Use ps(1) to determine total size and current memory consumption of user processes.

® Use gr_osview(1) to display dynamic memory, swapping, paging, and TLB activity.

TR-IKI rev 0.7b SGI Proprietary

22jul1998

Hardware Memory Review

The hardware aspects of memory management were presented in the Hardware Overview section of this course. Please review those pages for

the details. Following is a summary and diagram of the hardware memory concepts presented there.

TR-IKI rev 0.7b SGI Proprietary

22jul1998

Origin2000 distributed-shared memory
® Located in a single shared address space but is physically dispersed across system nodes.

@ Former systems had memory centrally located and only accessible over a single shared bus.

The interconnection fabric is a mesh of multiple point-to-point links connected by the routing switches. These links and switches allow
multiple memory accesses to occur simultaneously.

® To a processor, main memory appears as a single addressable space containing many blocks or pages.

® Page migration hardware moves data into memory closer to a processor that frequently uses it to reduce memory latency.

9-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Origin2000 Memory Hierarchy (in order of increasing memory latency)
® Processor registers
® Cache (primary and secondary)
® [ocal memory
®

Remote memory

Remote caches

9-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Hardware Address Sequence Review Diagram

CPU module Execution unit nd CPU module on tlode
(aPnn) and registers
- Transiation
kokaside
> butter Pri
cache

MIPS R4X00;
RS000, RB000 or R10000

Router X ¢

Connection

Fabric
TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-7
Hardware Address Sequence Review Diagram Explanation
TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-8

A CPU examines an instruction, and isolates that part of it which represents the address of the page, and the offset into that page, of the data
that the CPU needs. This address might be something like the address of an instruction to fetch, or the address of an operand of an instruction.

Then

1.

9-9

the CPU goes through the following steps in order to find that address.

The virtual address of the needed data is formed in the processor execution or instruction-fetch unit. Most addresses are then mapped
from virtual to real through the Translation Lookaside Buffer (TLB). This process may have had a “TLB miss" if the virtual-to-physical
mapping was not already in the TLB. At that point, the CPU had to exchange into kernel context in order to determine the physical
address and then load it into the TLB. One way or another, at this point the TLB has a virtual-to-physical address mapping of the
address the process wants, and the CPU 'knows’ what physical page of memory it must access.

. Most addresses are presented to the primary instruction or primary data caches, depending on what is being addressed. These caches are

in the processor chip. If a copy of the data with that address is found, it is returned immediately.

. When the primary cache does not contain the data, the address is presented to the secondary cache, which is used to hold both data and

instructions. If the secondary cache contains a copy of the data, the data is returned immediately.

. When the secondary cache does not contain the data, the physical address reference is placed on the system bus and handed over to the

HUB chip. The HUB knows which areas of memory have been assigned to which nodes, which area of memory has been assigned as
"local” to this node, and which nodes are attached to which router connections. The HUB acts as a switch, and directs the request either
to this node chip’s local memory, or whatever remote memory address is appropriate.

. 'When the HUB chip recognizes that local memory does not contain the data, the address passes out through the "connection fabric”, that

is, through router connections to other nodes on this, or other hypercubes in the system, to a memory module in another node, from
which the data is returned.

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Memory Subsystem Introduction

One of the major concerns for the operating system is how it manages the finite amount of physical memory installed in the system hardware.
The toal amount of memory needed by all active processes on the system is constantly changing and generally is far greater than the actually
available physical memory. The operating system kernel must handle situations like:

Where will a process reside in main memory?

How will it prioritize which processes are the most eligible to occupy main memory?
‘What scheme will be used to move processes in and out of main memory?

How will it allocate more memory to a process as its needs grow?

How will it free unused memory when a process wants to shrink?

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Historical Solutions to Memory Management (Swapping)

Earlier versions of UNIX used a method called swapping to manage main memory. With this method, whole processes were swapped from
memory to disk to make room for other processes that needed to run, as shown below. Historically, UNIX was a swapping system and the
swapping was done by a special process called the swapper or sched (short for seheduler) which always has a process ID (PID) of 0. More
recent versions of UNIX still have a swapper process or sched.

Early UNIX systems were
swapping systems.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-11

Recent Solution to Memory Management (Virtual Memory)
To overcome the constraints of having to have an entire process resident in physical memory in order to run, UNIX System V Release 4
adopted a concept referred to as virtual memory. A virtual machine allows programmers to ignore the physical layout and size of machine
memory. A program is written to reference virtual addresses for both instructions and data, thus relieving the programmer from concern as to
where things are physically located in memory.
Some attributes of virtual memory systems are:

@ Gives illusion that there is more memory available than physically installed on machine.

® Can run programs that are larger than physical memory.

® Process does not have to be entirely in memory to execute.

® Translation mechanism is needed to convert virtual memory addresses to physical addresses at run time.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-12

User Process Components Review

A process is the execution of a program and consists of a pattern of bytes that the CPU interprets as machine instructions (text), data, and
stack. A program executing in a process reads and writes its data and stack areas and possibly shared memory areas. Following is a more
complete description of the components that comprise a process.

® Text contains the executable code (machine instructions) for a process. It is usually marked read-only so that a process cannot alter its
own code or be altered by other processes. Text areas can be shared by many user processes that are concurrently executing the same
code; for example, multiple users using the same shell program (sh, csh, ksh).

® Data holds the data used and modified by the process during execution. It is usually marked for reading and writing. It is never shared
with other processes; otherwise, a process could alter the data area of another process.

® Stack holds the data necessary for the program to call and return from code modules called subroutines and for allocation of local data

9-13 22jul1998 TR-IKI rev 0.7b SGI Proprietary

values. It is marked for reading and writing and cannot be shared with other processes.

® Shared memory is an area of memory accessible to multiple processes. One process can write data into the shared memory area and
another process can read the data.

9-13.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

User Process Virtual Memory Image

Virtual Address
Space

memory max. Y

Assume that the physical memory of a system is addressable with the first byte located at byte offset O, and that the last byte has a byte offset
equal to the amount of memory on the system (in other words, the maximum physical byte memory location). Compilers (C, Fortran, C++,
etc.) generate machine code that is 0-based, that is, the program is assumed to begin at byte offset O and consumes as many bytes as needed. If
the system were to treat the compiler-generated addresses in a user’s program as address locations in physical memory, it would be
impossible to execute two processes concurrently because their addresses would overlap.

This is why compilers generate program addresses for a virtual address space within a given address range. The compiler assumes that every
program begins at address 0 and can consume as much space as needed within the given range. The machine’s memory management unit
(MMU) then translates the virtual address generated by the compiler (0-based) into address locations in physical memory. The compiler does
not need to know (nor does it care) where in physical memory the kernel will later load the program for execution. Furthermore, several
copies of the same program can coexist in memory. They all would execute using the same virtual memory addresses but would be
referencing different physical addresses.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-14

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-14.a

User Process Virtual Addresses

Compilers generate virtual addresses (0-based) for data and instruction references without regard to the physical page size defined on the
system. This makes program codes more portable from system to system. However, for purposes of this explanation of virtual addressing,
assume that the machine’s physical page size is defined to be 4K (4096 bytes). A process’ virtual page will map onto a physical page
somewhere in the system’s memory (location controlled by the kernel) when the process executes.

Every byte within a user’s process is addressable with a virtual address. A virtual address consists of two parts: a virtual page number and an
offset within that page.

virtual address

9-15 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Assume physical page size = 4K bytes (4096 dec or 1000 hex)
Virtual address = (virtual page number (the VPN) + byte offset into page)

Instruction address 0x2128 =
Virtual address (VPN 2, offset 0x128)

Process’ Virtual

Address Space Data address 0x5844 -

Virtual address (VPN 8, offset 0x844)

Hardware easily translates O-based
address to virtual address:
0x pppooo =

virtual address (VPN ppp. offset 000)

The above illustration of a machine with physical page size defined as 4K bytes shows that the 0-based addresses generated by the compiler
for instruction and data references actually serve as virtual addresses also. When the program executes, the CPU will interpret the 0-based
addresses as virtual addresses and map the virtual addresses to physical memory locations.

It is easy for the CPU to translate a compiler-generated (0-based) address into a virtual address. For a system with page size defined as 4K
bytes (as above), the rightmost 12 bits in the address (remember 1 hex digit = 4 binary digits) are the byte offset into the page and the
remaining leftmost bits comprise the virtual page number (VPN). Likewise, for a system with page sizes of 16K bytes, like the Cray
Origin2000, the rightinost 14 bits in the address are interpreted as the byte offset.

9-15.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Virtual to Physical Address Translation

virtual address

pte (Per Process Page Table)

“valid” bit

As a user process executes, it references instruction code and data by using the virtual addresses generated by the compiler. These virtual
addresses are transparently translated into physical addresses by a combination of hardware and software.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-16

Every process has its own page table which provides a mapping from the process’ virtual address space (virtual page numbers) to physical
memory locations (physical page numbers). Using a combination of hardware and software, a process’s virtual page number is looked up in
its pte (page table) to produce a physical page number. The physical page number is then combined with the page offset to yield a real address
in physical memory.

A process’s memory space does not have to be entirely resident in physical memory at once. Only the pages currently being referenced need
to be memory resident. Therefore, virtual addressing allows a process’ virtual address space to be larger than the machine’s physical address
space. The kernel keeps track of which pages are currently in memory by maintaining a flag in each page table entry (called the valid bit). If a
page is not currently in main memory then it is invalid and the memory management system must keep information about where the page is
residing in secondary storage. When a process references a non-resident page (invalid), then the process must wait until the system brings the
page into physical memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-16.a

Translation Lookaside Buffer (TLB)

CPU module Execution unit nd CPU module on ltiode

J’/('P nn) and registers

MIPS R4X00;
RS000, RB000 of R10000

Routexr
Connection
Fabric

The pte (per-process page table) is a structure maintained in physical memory. Each time a process references memory, the virtual page
number needs to be looked up in the process’s page table to locate the physical page of memory where that virtual page is mapped. However,

9-17 22jul1998

TR-IKI rev 0.7b SGI Proprietary

searching the page table every time a process references memory would be very damaging to the process’ performance. Therefore, if a
process’s page table (or portion of it) could be stored in memory built into the CPU’s chip, then virtual to physical address translations could

be performed very quickly. This type of memory is referred to as associative memory.

The purpose of associative memory is to "associate” a given virtual page number to a physical page number. However, associative memory on
the CPU is limited to a small area due to the lack of space for this type of memory on the chip. On MIPS CPUs, this area is called the

Translation Lookaside Buffer (TLB). The number of TLB entries varies by MIPS processor type.

|Processor Typeﬁumber of TLB Entries|
R4x00 96
R5000 96
R8000 384
R10000 128

9-17.a 22jul1998

TR-IKI rev 0.7b SGI Proprietary

Translation Lookaside Buffer (TLB) (continued)

Translation Lookaside Buffer (TLB)

virtual p:’ge *

presented to | —fam-

all entries at

once
-t
-1 Each TLB entry maps to two

djacent pages in)

L g virtual address space

When a user’s virtual address is presented to the CPU, the TLB is first checked for a match on the virtual page number. The virtual page
number is presented to all TLB entries at the same time. Note that each TLB entry points to two adjacent pages within the process’ address
space.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-18

TLB '"Hits'" and '"Misses"'

virtual address

Physical Memory

pte (Per Process Page Table)

“valid” bit

Ideally, the TLB would be large enough to hold an entry to translate every possible virtual address presented to the CPU by a process during
its execution. However, large TLBs are not practical and they can only hold a subset of the page table entries for a given process. Each TLB
entry can map to two adjacent pages in the user process’ virzual address space. These pages do not need to be adjacent in ;hysical memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-19

When the virtual memory address requested in the CPU falls within a page described by a TLB entry, the TLB supplies the physical memory

address for the desired page. The offset is then applied to locate any desired byte location in physical memory. This is referred to as a TLB
hir.

When the virtual memory address requested in the CPU is not covered by any active TLB entry, the MIPS processor generates an interrupt to
the kernel which is then handled by an IRIX kernel routine. The kernel inspects the requested address. If the address is found to be valid (in
other words, resides within the process’ virtual address space), the kernel loads a TLB entry from the appropriate entry in the process’ page
table. The kernel then restarts the instruction which now will find an appropriate TLB entry to perform the address translation.

9-19.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Virtual Addressing Summary

User Process Per Process Page Table

This illustration summarizes how virtual addresses within a user’s process are translated to locations within physical memory. At compile
time, a user’s program is compiled using 0-based addresses to locate instructions and data. These O-based addresses are referred to as virtual
addresses and consist of two parts: the virtual page number and a byte offset within the page. At execution time, when these virtual addresses
are presented to the CPU for resolution, they must be translated to physical addresses in real memory.

When a process is loaded into memory to execute, the kernel establishes a pte (page table) for the process. Each virtual page within the
process’ virtual address space will have an entry in the page table. If a particular page currently resides in physical memory, the page table
will point to where it is located in real memory. Otherwise, the virtual page is marked "invalid” in the page table.

The task of translating virtual addresses occurs in the TLB. The TLB is an on-chip associative memory limited in size. The TLB basically

9-20 22jul1998 TR-IKI rev 0.7b SGI Proprietary

contains a subset of the entries in the process’ page table. If the CPU finds a match on the desired virtual page in the TLB, this is considered a
"TLB hit". It is quick and easy to determine the page’s physical address in memory. If the CPU does not find a match on the desired virtual
page in the TLB, this is a "TLB miss". The kernel must get involved to load a TLB entry with the appropriate entry from the process’ page
table and then re-issue the affected instruction.

The physical pages that correspond to a user’s process can be anywhere within the user portion of system memory. When the kernel assigns

physical pages of memory to a process, it need not assign the pages contiguously or in any particular order. The purpose of paged memory is
to allow greater flexibility in assigning physical memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-20.a

Demand Paging Overview

User Process Per Process Page Table
: Vpage # Ppage #
| govalldy.

Physical Memory

Gnvalid)
(nvalid)

Gnvalid)

(nvalid) .

Gnvalid)

tnvallg)
Gnvalid)

Gnvalid)

‘When a process is created on the system, only a small amount of physical memory is initially consumed. Some memory is needed by the
kernel to control and manage each process. The code (text) and data areas associated with the new process remain in the file containing the
program which is being executed. Therefore, most of the page table entries for a newly created process would be marked invalid.

Pages are created and allocated for a process only when they are referenced by the currently running process. This mechanism is referred to as
demand paging. The entire process does not need to reside in memory in order to execute. The kernel loads pages of a process on demand
when the process references the pages.

With demand paging, physical memory pages are created for only the parts of the program which actually execute. The parts of a program
that never execute can remain in secondary storage. An example of a piece of program that might not execute would be error or signal

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-21

handling code which will not execute unless there is an error or signal is delivered.

Processes tend to execute instructions in smaller portions of their entire text (instruction) space, such as in looping constructs and frequently
called subroutines. Also, a process tends to reference data in small subsets or clusters of the process’ total data space. Each process has a set
of pages that need to be in main memory to ensure it runs efficiently. This set of pages is referred to as its working set. As a process executes,
its working set changes depending on its pattern of memory references.

When a process tries to access an address that is not in the working set, a page fault occurs so that the kernel can read into memory the page
containing the desired address and attach the page to the process’s address space. The kernel suspends the execution of the user process until
it has read the needed page into memory and attached it to the process’s address space. After the page has been loaded into memory, the
process re-issues the instruction it was executing when it incurred the faulit.

9-21.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Demand Paging Page Load Procedure

Translation Lookaside Buffer (TLB)

er-Process Page Table
[Vpane ¥ | Fpage & |

User Process

O

The procedure for loading a page into memory is as follows:

1. The process references a memory address.

2. The CPU attempts to translate the user’s virtual address in the TLB. Assume no entry in the TLB can translate the virtual address to
physical address.

3. The currently running process is suspended and a fault is generated. This is called a 7LB miss and control passes to the IRIX kernel.

4. The kernel’s exception handler searches the process’s page table for a valid entry corresponding to the virtual address that was not

9-22 22jul1998 TR-IKI rev 0.7b SGI Proprietary

found in the TLB. If one is found, the entry is placed in the TLB and the instruction is re-issued. Now when the instruction is executed,
the virtual address is found in the TLB (TLB hit), translated to the physical memory address, and accessed by the CPU.

5. If the kernel’s exception handler cannot find a matching entry in the page table, then the desired page is not residing in physical
memory. The kernel then locates a free page in physical memory and associates it with the current executing process by adding an entry
to the process’ page table.

6. The kernel then initiates an input operation to fetch the requested data from either the file system where the executable program resides

or the swap device. The process then voluntarily goes to sleep allowing other processes to run while the input operation is in progress.
After the data arrives in memory, the process is \awakened and again scheduled to run.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-22.a

Demand Paging Advantages and Disadvantages

The IRIX kernel supports a demand paging algorithm which means that pages of memory are swapped between main memory and a swap
device. This kernel feature gives the illusion that a single user process has all of system memory available if needed.

Some advantages of demand paging systems:
® Frees processes from size limitations otherwise imposed by the amount of physical memory available on the system.
® Transparent to user programs.
@ Allows more processes to fit simultaneously into main memory as compared to a swapping system.
Some disadvantages of demand paging systems:
® Processes must wait for a page while it is being loaded.

® During initial stages of a process, a process will usually generate many page faults which leads to slower startup times and many disk
operations.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-23

Page Stealing

“Kernel's
L page stealer
£ PROCeSS
- (vhand)

Kemel needs to load page
from secondary storage

but no hrsic memo
is avail'a’b e. i

Eventually the operating system will need to bring into memory a page from secondary storage (swap device or executable program file) but
all physical memory pages are in use. The kernel handles this situation by a mechanism called page stealing.

The kernel has a process called the page stealer (or vhand) that swaps out memory pages to the swap device. The kernel creates the page
stealer during system initialization and invokes it throughout the lifetime of the system whenever the system is low on free pages; in other
words, whenever the number of free pages falls below a configurable threshold (called the low-water mark).

The page stealer examines pages that are already allocated to a process and steals some of them so that they can be used by other processes. It
keeps stealing pages from processes until the number of free pages reaches a configurable threshold (called the high-water mark).

Note that the low-water and high-water thresholds need to be set appropriately in order to reduce the frequency that the page stealer needs to

execute. Otherwise, the page stealer process can get into a thrashing situation where it is being called very frequently with little work to do;
thus, negatively impacting system performance.

9-24 22jul1998 TR-IKI rev 0.7b SGI Proprietary

9-24.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Page Stealing Page Selection

Physical Memory

crper oo

aney

Per Process Page Table

"referenced” bit
“modified” bit

The page stealer has to decide which pages are the best candidates to steal. The best candidates are those pages whose next reference will be
the farthest into the future. Since that is very difficult to predict, the most common method used in UNIX System V systems is called Not
Recently Used (NRU).

With the Not Recently Used method, every page has a modified and referenced bit in its page table entry. When a page is referenced, its
referenced bit is set. Likewise, when a page is modified, its modified bit is set.

When the page stealer needs to steal some pages, it does so in the following order:

® First selects those pages which have not been referenced for "a long time". Pages that are not included within a process’s working set

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-25

are ideal candidates.
@ If that does not yield enough pages, then it selects those which have been referenced but not yet modified.
® If that still does not yield enough pages, then it selects those that have been referenced and modified.

Eventually, most of the pages will have their referenced bit set, so the page stealer makes a sweep through memory clearing the referenced bit
of every page in memory.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-25.a

Page Stealing Page Actions

Per Process Page Table

and

marked an "invalid™

If page was modified, then

to swap device
before releasing. Pagels
retrieved from swap ce
if process re-accesses
page.

e placed back on kemnel’s free list
page

After selecting which pages will be stolen, the following actions are taken:

® If page has not been modified:

Page is simply placed back on the list of free pages. These pages are invalidated in their respective page tables and cleared from any
TLB entries pointing to them. Future access to these pages will require reloading from the swap device or secondary file storage.
However, stolen pages are added to the back of the kernel’s free list of pages so that they can be quickly reclaimed by the original

owning process.

@ If page has been modified (dirzy page):

9-26

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Page is first written to the swap device before being placed on the list of free pages.

Note that under heavy load conditions, it is possible for a process to have less than its working set of pages available in main memory. This
condition can lead to excessive kernel paging because immediately after a page is stolen from a process, the process may need it to be paged
back in. This thrashing situation may be going on in every active process on the system, thus causing excess system overhead because much
of the the system resources are being devoted to paging in and paging out of processes instead of getting user work done. If a system is
thrashing, entire processes may have their pages stolen and written out to the swap device. In some cases, large processes will be killed to free
up memory (see "The Swapper Process in IRIX", below). If a system is constantly swapping processes in and out, this may be evidence that

the system does not have enough installed physical memory.

9-26.a

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Page Stealing and Job Classes

e , Job Classes
* Real time — priority driven
« Batch critical - Miser
Page steali N .
pgr?omy -9 * Time share - earnings driven
lowest priority
first « Batch opportunistic — Miser
* Weightless - idle driven
Work is managed in an IRIX systemn within job classifications. When the page stealer needs to release memory pages, it will first apply its
page selection criteria (discussed above) to processes representing jobs in the lowest classifications first, and then work its way up through the
above ordered list.
The IRIX job classifications are listed above with briefs explanations below:
® Weightless
A job that is about to go idle is placed in this class.
@ Batch opportunistic

Batch requests submitted to Miser are placed in this class and are specified with CPU time requirements. Job will complete when there
is opportunity. If job cannot complete in specified time interval, it is moved to the Batch critical class.

® Time share

Typical interactive IRIX processes placed in this class.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-27

® Batch critical

Batch requests are submitted to Miser with a specified CPU time limit and placed into the batch opportunistic class. If job cannot
complete in specified interval of time, job moves to this class with higher priority.

® Real time

Highest priority jobs in the system. Guaranteed a specified amount of CPU attention in specified interval.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-27.a

Page Cache in IRIX

. Stolen pages being swapped out
Physical Memory 31 0'Ch £od i page cache (inside
z system buffer cache).

Pag: Is reclaimed from page
cache or retrieved from swap
device Iif process re-accesses
page.

Per Process Page Table

If page was modified. then e
written to swap device befopn:g
releasing.

™\

Stolen page placed back on kemel’s free list
and marked an "invalid” page

When IRIX steals a page from a process and that page has been modified by the process, it cannot be released but must be written to the swap
device. IRIX implements an intermediate staging area for those pages which are being moved to the swap device. This area is called page
cache and resides within the kernel’s buffer cache. The kernel normally uses the buffer cache for an intermediate staging area for /O
operations. Modified stolen pages are temporarily staged in the page cache before being written to the swap device. The kernel assumes the
overhead of writing the stolen pages to the swap device later when they age out of the buffer cache.

The page cache allows the page stealer greater performance because it does not have to wait for completion of physical I/O to the swap

device. Also, if a process re-accesses the stolen page while it still resides in the page cache and before it has actually been written to the swap
device, it can be reclaimed from the page cache simply and efficiently.

9-28 22jul1998 TR-IKI rev 0.7b SGI Proprietary

9-28.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

User Process Space and Swapping

Text pages are read-only.
Stolen text pages are no
swapped, but simply
released and re—read from
the executable file when
accessed again.

Anonymous memory
pages - not
associated with
executable file.

Data and stack regions are
writeable and pages are
enerated when needed by
(ano| ous). Stolen
data and stack pages are
swapped to a swap device.

A process’s memory space is partitioned into several regions. The user is able to modify the memory in some of these regions but not others.

The text region has read-only status and is shareable with other processes. Text regions are not allowed to be modified. This means that if the
page stealer stole a text page from a process, if that page is needed again by the process, that page can simply be reloaded from the executable
file image (because the text page has not been modified). This also means that the page stealer can simply release the text page and no
swapping to a swap device is necessary.

Conversely, the data and stack regions have read/write status and can be modified. The IRIX kernel allocates pages for the data and stack

regions as needed by the process. The pages allocated for the data and stack areas are not associated with the executable file from which the
user program was loaded. Therefore, these pages are referred to as anonymous memory pages associated with the process. If the page stealer

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-29

needs to steal an anonymous page, then it must find a location on secondary storage where it can temporarily store the page for later recall, if
accessed. The swap device(s) serve this role for the page stealing operation.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-29.a

Swap Space Management

Kemel’s Swap Table

swap ll"fO

l:“mm
i

swip info

Kemel adds swap info
entries to its swap table
as swap devices are
added dynamically.

As explained on the previous page, only anonymous memory pages associated with user processes need to be swapped with the kernel’s page
stealing operation. The IRIX kernel then needs to maintain a mapping between anonymous pages and the swap space. Each anonymous page
is mapped to a page-sized block of swap space.

IRIX must have at least one disk partition or file allocated for swap space. Additional swap areas can be added or removed while the system is
running. When a swap area is added by the system administrator, the number of pages that can be stored in that swap area is calculated. The
kernel then adds a swap info structure to its swap table to keep track of the new swap area.

‘When new anonymous memory pages are generated by user processes, the kernel’s swap management routines spread the anonymous pages
across all swap areas to maintain performance. If some swap areas are full, all swap areas will be searched until free space is found.

9-30 22jul1998 TR-IKI rev 0.7b SGI Proprietary

The Swapper Process

Early UNIX systems were
swapping systems.

As stated at the beginning of this section, earlier versions of UNIX used a method called swapping to manage main memory. With this
method, whole processes were swapped from memory to disk to make room for other processes that needed to run. Historically, UNIX was a
swapping system and the swapping was done by a special process called the swapper or sched (short for scheduler) which always has a
PID=0. More recent versions of UNIX still have a swapper process or sched.

The reason that demand paging type systems still need a swapper process is because there can be times when demands for memory are so
high that the page stealer cannot maintain a large enough list of free pages. When free memory falls below a specified level, the kernel’s
swapper or sched process is invoked. The swapper process calls a kernel function to select a process to swap out to the swap device. All of
the memory pages associated with the selected process are then freed. A flag is cleared in the selected process’ proc table entry indicating it

9-31 22jul1998 TR-IKI rev 0.7b SGI Proprietary

is no longer eligible to run.

At a later time, the kemnel’s swapper or sched process is invoked again. If the amount of free memory is above a specified level, a kernel
function is called to select a process to swap back into memory (now residing on the swap device). A flag is set in the selected process’ proc
table entry indicating it is now eligible to run again. As this process receives CPU attention, the process’s memory pages will be faulted back
into main memory when they are accessed, by the demand paging mechanism described earlier in this section.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-31.a

The Swapper Process in IRIX

IRIX systems currently
do not swap whole processes
to/from the swap device.

The implementation of sched or the swapper process in IRIX systems is different than a typical UNIX system. The swapper process is
implemented such that it never swaps whole processes to and from a swap device. Currently, if memory is oversubscribed to an extent where
the page stealer cannot keep up with the demand, then IRIX will begin removing processes from the system. The largest processes are the first
candidates.

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-32

The Swapper Process Relationship to Other Processes

the first process created on the system.

system.
SGJ?i telnetd
SGG'?i login
fori/exec
|
5078 grep&
9-33 22jul1998

The swapper or sched process is a special kernel process which serves as the origin (or
great-great-... grandparent) of all processes on the system. For instance, the swapper generates
the init process which is responsible for initiating all of the major daemons that run on the
system. The reason sched always has a process ID (PID) value of zero is because it is always

The diagram to the left shows how the swapper or sched is related to all other processes on the

TR-IKI rev 0.7b SGI Proprietary

Reporting Paging Activity (sax -p)
The sax(1) command (with option -p) will report paging activity for the host system.

$ sar -p
IRIX64 flurry 6.S5-ALPHA-1274427934 02121253 IP27 02/27/58

05:55:¢ vflt/s dfill/s cache/s pgswp/s pgfil/s pflt/s cpyw/s
05:55:¢ unix restarts

06:00:06 152.97 32.16 117.73 0.0 0.68 177.21 10S.60
06:10: 10.60 2.14 .46 0.0 0.33 11. M4 6.46
06:20: 10.74 1.87 .87 0.0 0.00 12.70 8.10
06:30: 6.08 1.17 4.91 0.0 0.00 T. 4.21
06:40: 2083.65 S69.09 1503.61 0.0 0.83 1201.67 631.8S5
06:50:06 4682.61 1312.76 3351.06 0. O 1.68 2760.90 1462.15
07:00:07 S056.14 1221.84 3814.96 0.0 0.16 3099.43 1698.52
07:10:06 4752.46 1327.61 3389.85 0.0 0. 2812.26 1470.38
07:20:06 3994.62 1335.02 2619.04 0.0 0.06 2323.55 1137.50
07:30: 3945.11 1260.85 2628.23 0.0 0.32 2265.80 1119.86
07:40: 3488.68 1144.82 2309. 96 0. Of 0.13 1983.08 993.95
07:50:06 3465.20 962.82 2472.63 0. Ol 0.26 2124.83 1126.90
08:00:06 4118.88 1034.86 3061.75 0.0 0.21 2607.35 1420.63

(abbreviated)

14:00:07 346.31 199.52 141.92 0.00 13.94 79.14 30.21
14:10:06 290.03 153.21 130.94 0. 00 02 92.87 47.74
14:22:30 unix restarts

14:30:06 2009.49 3.00 1 50 0.00 133.46 1691.78 2.25
14:40:06 3142.42 82.61 .53 0.0 272.73 2887.67 57.58
14:50:06 385.55 33.25 150.89 0. Of 5.17 112, 58.06
15:00:07 194.89 29.92 .64 0.0 7.80 6.63 9.94
15:10:06 56.39 31.62 24.77 0.0 0.34 35.87 7.19
15:20:06 101.87 73.30 28.41 0.0 0.00 49.48 1.50
Average 1637.73 456.06 1171.S52 0.0 15.99 974.88 435.29

9.34 22jul1998

steal/s rclm/s

0
~d
000000000000 W

~
N
esoe oo

[=1-1

»
~
o0QQOQN 0O

TR-IKI rev 0.7b SGI Proprietary

The sax(1) output data columns have the following interpretation (/s means per second):

Column header | Interpretation
- vils - Address translation page faults (valid page not in memory)
dfill/s Address translation fault on demand fill or demand zero page
. cache/s Address translation fault page reclaimed from page cache
pgswp/s Address translation fault page reclaimed from swap space
pgfil/s Address translation fault page reclaimed from file system
o pflt/s (Hardware) Protection faults -- including illegal access to page and writes to (software) writable pages
cpyw/s Protection fault on shared copy-on-write page
. steal/s Protection fault on unshared writable page
rclm/s Pages reclaimed by paging daemon
TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-35

Reporting System Swapping and Switching Activity (sar -w)
The sar(1) command (with option -w) will report system swapping and switching activity for the host system.

$ sar -w
U, IRIX64 flurry 6.5-ALPHA-1274427934 02121253 Ip27 03/01/98

01:37:05 swpin/s bowin/s swpot/s bswot/s pswvot/s pswch/s kswch/s
01:37:05 unix restarts
01:40:06 0.00 0.0 0.00 .0 0.00 181 632
01:50:06 0.00 6.0 0.00 .0 0.0 20 557
02:00:07 0.00 0.0 0.00 .0 0.00 30 599
...... 02:10:07 0.00 0.0 0.00 .0 0.00 822 575
02:20:07 0.00 8.0 0.00 .0 0.00 24 566
02:30:06 0.00 0.0 0.00 .0 0.00 23 563
02:40:06 0.00 0.0 0.00 .0 0.00 30 564
02:50:06 0.00 0.0 0.00 .0 0.00 22 560
03:00:07 0.00 g.0 0.00 .0 0.00 21 558
03:10:06 0.00 0.0 0.00 .0 0.00 20 558
i 03:20:06 0.00 0.0 0.00] 0.00 22 560
03:30:06 0.00 0.0 0.00 .0 0.00 25 563
03:40:06 0.00 0.0 0.00 .0 0.00 21 559
(abbreviated)
07:20:06 0.00 0.0 0.00 0 0.00 456 601
07:30:06 0.00 0.0 0.00 0 0.00 694 699
R 07:40:07 0.00 0.0 0.00 0 0.00 634 772
07:50:08 0.00 0.0 0.00 0 0.00 624 813
08:00:07 0.00 0.0 0.00 0 0.00 607 747
08:10:06 0.00 0.0 0.00 0 0.0 824 850
08:20:06 0.00 0.0 0.00 0.0 0.00 1199 1002
Average 0.00 0.0 0.00 8.0 0.8 18 610

TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-37

The sar(1l) output data columns have the following interpretation (/s means per second):

Column header | Interpretation

swpin/s Pages swapped in

bswin/s Number of 512-byte units swapped in
swpot/s Pages swapped out

bswot/s Number of 512-byte units swapped out
pswot/s Processes swapped out

pswch/s Processes switched

kswch/s Kernel switches

9-38

22jul1998

TR-IKI rev 0.7b SGI Proprictary

Reporting TLB Activity (sar -t)

The sar(1) command (with option -t) will report TLB activity for the host system.

$ sar -t

IRIX64 flurry 6.S5-ALPHA-127442793S 02241507 IP27 03/02/98

08:50:07 tflt/s rflt/s vmwrp/s sync/s flush/s i
:00:06 0.00 0.20 00 352.82

09:00

09:10:06 0.00
09:20:06 0.00
09:30:06 0.00
09:40:06 0.00
09:50:06 0.00
10:00:06 0.00
Average 0.00

9-39

3.45
0.93

=ooDN
W~
~SOVVWY

0000000,

00 51.19 6552.07
oo 10. 94 1400.16
00 38. 76 4960, 34
0o 9.98 1277.49
00 8.12 1039.60
0o 9.02 1155.18
00 18. 69 2392.05

.
QQQQDODD?

(=1

o

&

o0

»

B

Iy

22jul1998

/s idget/s idprg/s rg/:
PDO ggo. 0 ggs'.’u v-pg

s
0700
85

08 2.
31 0.02
62 1.68
0. 00
23 0. 07
.70 0.04
.04 0.62

TR-IKI rev 0.7b SGI Proprietary

The sar(1) output data columns have the following interpretation (/s means per second):

Column header | Interpretation
tfl/s User page table or kernel virtual address translation faults: address translation not resident in TLB
flv's Page reference faults (valid page in memory, but hardware valid bit disabled to emulate hardware reference bit)
sync/s TLBs flushes on all processors
vmwrp/s Syncs caused by clean (with respect to TLB) kernel virtual memory depletion
flush/s Single processor TLB flushes
idwrp/s Flushes because TLB ids have been depleted
idget/s New TLB ids issued
idprg/s TLB ids purged from process
vmprg/s Iindividual TLB entries purged
TR-IKI rev 0.7b SGI Proprietary 22jul1998

9-40

Process Size (ps -1)

The ps(1) command (specifying the -1 option) will display the total size of individual processes as well as the amount of main memory
currently being consumed by those processes. The example below shows a typical ps display. Sizes are listed in units of pages of memory.

UID PID PPID C PRI NI P SZ:RSS WCHAN STIME TTY TIME CMD

b0 S hlm 9712 8849 0 64 24 + 902:0 883b8310 Feb 11 ttyq0d 0:01 xcalc

b0 R hlm 22726 8849 8 64 20 0 406:169 - :07:44 ttyql 0:00 ps -1f

b0 S hlm 8849 8848 0 60 20 ~ 102:60 882b3754 Feb 05 ttyql 0:05 -ksh
Total size of pi A A Total resident size of process

The SZ and RSS columns of the ps(1) display are explained on the ps(1) man page and reproduced below:

Sz Total size (in pages) of the process, including code, data, shared memory, mapped files, shared libraries and stack. Pages
associated with mapped devices are not counted. (Refer to syscon£(1) or syscon£(3C) for information on determining
the page size.)

RSS Total resident size (in pages) of the process. This includes only those pages of the process that are physically resident in

memory. Mapped devices (such as graphics) are not included. Shared memory (shmget(2)) and the shared parts of a

forked child (code, shared objects, and files mapped Mar_sHARED) have the number of pages prorated by the number of

processes sharing the page. Two independent processes that use the same shared objects and/or the same code each count
all valid resident pages as part of their own resident size. The page size can either be 4096 or 16384 bytes as determined
by the return value of the getpagesize(2) system call.

TR-IKI rev 0.7b SGI Proprietary 22jul1998

9-41

Reporting Memory Statistics (sar -R)

The sar(1) command (with option -R) will report memory statistics for the host system.

9-42

$ sar -R
IRIX64 flurry 6.5-
05:55:50 physmem
as 0

ALPHA -1274427934 02121253 I1P27 02/27/98
kernel user fasctl fadelwr fsdata freedat empty

:55:8 unix restarts
06: 00: 0 172 2103 398 23 4505 346 2297365
06:10:0 354 1800 431 10 4940 340 2297037
06:20: 01 3429 37 1761 481 10 4957 340 2296984
06:30:0 34 340 1784 483 11 4997 339 229689¢
06:40:0 28 27717 011 93 7225 1342 2291182
06:50:06 23429 6 6397 089 118 1576 2134 228553
07:00:07 23429 04 3220 172 327 661 2832 228629
07:10:0 3429 40508 3288 207 152 445 6 228574
07:20:0 3429 40724 8382 261 48 667 3614 228011
07:30:0 i 40982 332 8002 12420 3708 227122
7:40: 01 3429 41110 18805 364 3 23415 4637 225341
7:50:0 3429 41444 39508 428 1 242072 21 199726
8:00:0 3429, 4 41616 94 746 247114 16813 199322
8:10: 0l 3429, 4 39533 646 7 245380 22098 1 237
8: 20: 0! 34 42821 731 252147 23317 1 29
8: 30: 0! 34. 43530 946 113 278520 24120 19516S!
8:40:0 34, 4 40950 002 171 272597 24796 1! 17
8:50:07 234291 435 40791 166 68 74590 25790 1 99!
9:00: 06 34291 436 46226 197 22 271718 27683 1951464
(abbreviated)
3:50:06 2342912 52736 186004 2337 941 462051 244577 1394266
4:00:07 2342912 52900 187836 2342 550 465263 262795 1371226
4:10:06 2342912 52994 185772 2406 1397 435000 311843 1353500
4:22:30 unix restarts
gveraga 2342912 43246 70195 1904 925 233329 38919 1954394
22jul1998 TR-IKI rev 0.7b SGI Proprietary

The sax(1) output data columns have the following interpretation:

9-43

Column header | Interpretation

physmem Physical pages of memory on system

kernel Pages in use by the kemel

user Pages in use by user programs

fsctl Pages in use by file system to control buffers
fsdelwr Pages in use by file system for delayed-write buffers
fsdata Pages in use by file system for read-only data buffers
freedat Pages of free memory that may be reclaimable
empty Pages of free memory that are empty

22jul1998 TR-IKI rev 0.7b SGI Proprietary

Reporting Unused Memory Pages and Disk Blocks (sar -r)

The sax(1) command (with option -r) will report unused memory pages and disk blocks for the host system.

$ sar -r
IRIX64 flurry 6.5-ALPHA-1274427935 02241507 IP27 03/02/98

08:50:07 eemen frees vwag
— 09:00:06 2270596 27611 0 3083933
09:10:06 7 27 0 3085163
039:20:06 8 27611520 30854
09:30:06 2218342 27611520 3081868
09:40:06 2167508 27611520 2890365
09:50:06 2074090 27611520 2879629
10:00:06 2071240 27611520 290527
] 10:10:07 2059354 27611520 1313505
10:20:06 1878832 27611520 1336262
10:30:06 1858292 27611520 1335474
10:40:06 1832440 27611520 1296596
10:50:06 1805964 27611520 1301303
gvetage 2097120 27611520 2299571
TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-45

The sax(1) output data columns have the following interpretation:

‘‘‘‘‘ Column header | Interpretation
freemem Average pages available to user processes
— freeswap Disk blocks available for process swapping
vswap Virtual pages available to user processes
TR-IKI rev 0.7b SGI Proprietary 22jul1998 9-46

Reporting Memory Activity (gr_osview(1))

The gxr_osview(l) command will produce a graphical display of memory management activity including memory usage, page faults, TLB
activity, and page swapping. An example of a gx_osview(l) display is shown below for a 128-CPU Origin2000 system with the user’s
.grosview file setto (see gr_osview(1) man page for details):

cpu(sum) strip creepscale

rmem strip creepscale interval(2)

fault strip creepscale colors{(1,2,3,4,5,6,72,92)
tlb strip creepscale

P p strip creep le

swp strip creepscale

nettcp strip creepscale

System: Origin2000 system (128 CPUs)

9-48 22jul1998 TR-IKI rev 0.7b SGI Proprietary

9-48.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Module 10: UNIX Filesystem Overview

UNIX Filesystem Overview

Unit covers:

e Generic layout of a UNIX filesystem

e Layout of a UNIX System V filesystem
® Layout of an IRIX EFS filesystem (TBD)
® Layout of an IRIX XFS filesystem (TBD)

10-1

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Sample UNIX FileSystem

dats

Cled Zhbgne!anné 3

inode

7] inod@
data

10-2

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Generic UNIX FileSystem

Hierarchy of regular and directory files
File composed of inode and data
Inode
© File type
© Access permissions
o Pointers to where file’s data "lives" on disk, called here extents (exts)
Directory files
© Inode type directory (d)
© File data (contents) lists file names and corresponding inode numbers (locations on disk)
o File name "." (dot) references inode of "self”
o File name "..” (dot-dot) references inode of parent directory (except root - see below)
e Data files
© Inode type regular file (f)
© Data appears as sequential or random list of file characters (bytes)
® Root directory "/"
¢ Topmost directory in filesystem
O Parent directory is itself
® Mount point
o Several filesystems may be "joined" together to form (the perception of) a single filesystem
© Root directory of one filesystem is mounted to (associated with) an otherwise empty directory in another
(previously mounted) filesystem

TR-IKI rev 0.7b SGI Proprietary 22jul1998 10-3

UNIX System V filesystem

TR-IKI rev 0.7b SGI Proprietary 22jul1998 10-4

Small UNIX file sample

: B - S Jrifdle blkno /)
.amall UNIX file - direct . . - Fessibllns g ‘brte otfsec
L B ; . Lo 2
ot By
inode /ﬁ—-‘f__ —= 2 .27 2048
Biino srreyi 526 4 2200700 007000 - 4870

4

', 'inode -directs
/- fizst 10 inode blkno
~directly point to file

system data blocks 71024

3 73072

arsune 1024 byt (236 word) block

10-5 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Small UNIX file

o Filesystem made up of blocks O through n (filesystem relative block number)
In sample, each block is 1024 bytes (256 four byte words)
@ Inode contains block number (blkno) array
© First 10 array items point directly to a file’s data blocks
© Array indices 11-13 are used for indirect descriptors (see next subject)
e Sample file
o Composed of four filesystem blocks, in order 5, 16, 4, 21
© Each f.s. block holds 1024 bytes user data
User sees data as a stream of (up to) 4096 characters; file size in inode
o For example, f.s. blkno 21 is user block 4 (or character positions 3072-4095)

10-6 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Large UNIX file sample

file -blkno ./

iarge UNIX files — single, rs Bline, == byte offset
double, and.triple indirect ; g
:I.node M 2. 2040
blkno arzag’ 5:.16 & 24 fn nn ononn nnoon. 23 31 54 o/ o
‘single indireats
44th inocde "blkno points to a bloak of
pointers to data: blocks
.4 7 1024
3./ 3072

double indirects
--12th inode blkno:points to a block of

137 12+1024
11 7 10+1024

12 J 11+1024

‘267) 268+1024

TR-IKI rev 0.7b SGI Proprietary 22jul1998 10-7

Large UNIX file

® Single indirect
© When the file grows beyond what fits in ten direct block descriptors the file continues to grow using single
(level) indirect
< Inode array index 11°s block is a block (full of) data block descriptors each pointing to data blocks
© Sample
m Inode element 11 points to f.s. block 23
m F.S. block 23 holds 256 block descriptors each pointing to a 1024 byte block
o File capacity is 10+256 = 266 blocks
e Double indirect
< When the file grows beyond what fits in the single in direct block capacity the file continues to grow using
double indirect
o Inode array index 12’s block is a block (full of) data block descriptors each pointing to another block of block
descriptors each pointing to data blocks
Sample
= Inode element 12 points to f.s. block 32
m F.S. block 32 holds 256 block descriptors, each pointing to a 256 word block.
=m Each of those 256 (possible) descriptors points to blocks pointing to 256 data blocks
o File capacity is 10+ 256+256*256 = 65802 blocks
@ Triple indirect
< In the extreme case when the file grows beyond what fits in the double indirect block capacity the file continues
to grow using triple indirect
Inode array index 13’s block is a block (full of) data block descriptors each pointing to another block of block
block descriptors each pointing to another block of block descriptors each pointing to 1024 byte data blocks
Sample
® Inode element 13 points to f.s. block 34
m F.S. block 34 holds 256 block descriptors.
m Each of those points to 256 blocks of block descriptors.
m Each of those 256*256 blocks points to 256 blocks of block descriptors

O

C

C

TR-IKI rev 0.7b SGI Proprietary 22jul1998 10-8

10-8.a

m Each of the 256*256*256 blocks points to 1024 byte data blocks.
© File capacity is 10+ 256+256*256+256*256*256 = 16,843,018 blocks

22jul1998

TR-IKI rev 0.7b SGI Proprietary

Module 11: XFS Filesystem - Structure

The Extent Filesystem (EFS)
Limitations:

Filesystem max: 8GB

File max: 2GB

Number of files fixed at mkfs time
Less than full hardware bandwidth
Slow crash recovery (minutes)

No support of sparsely-allocated files
Slow performance for large files

¢ linear bitmap structures for tracking free space made finding contiguous space slow

< linear searching of large directories

22jul1998

TR-IKI rev 0.7b SGI Proprietary

xFS: the extension of EFS

The main ideas:

"x" for to-be-determined (but the name stuck)
large filesystems

large files

large number of inodes

large directories

large /O

parallel access to inodes

binary tree algorithms for searching large lists

delayed allocation to improve data contiguity

asynchronous metadata transaction logging for quick recover

ACL’s --Access Control Lists (see chacl(1), acl(4), acl_get_file(3c), acl_set_file(3c))

22jul1998

TR-IKI rev 0.7b SGI Proprietary

A New XF'S Filesystem:

file system (new) filesysi.sc

® 3 "allocation groups”
O AG'’s are used to keep the size of freespace and inode management data structures manageable

TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-3

O These structures use AG-relative block and inode pointers
O Directories are round-robined thru the AG’s
e O Files cluster around their directory, but are not limited to a single AG
O Free space and inode structures in memory are locked per-AG, so parallelism can be achieved filesystem wide
® built with a journaling log within the data fork (i.e. not an XLV logical volume with "data” "realtime" and "log"
forks)
e ® mkfs -b size=blocksize \
-d name=special-file,agcount=3 \ /* "data" section: device to build on, count of allocation groups*/
-i size=256,maxpct=25 \ /* "inode" section: inode size, percent of fs for inodes */
-1 internal=1,size=512b /* "log" section: log is internal with inodes/data, size in blocks */
B ® example on a regular file:

mkfs -b size=4096 \
-3 name=/tmp/cpw. fs,file=1,size=145133568,agcount=5 \
-i size=256,maxpct=25,align=1 \
-1 internal=l,size=512b

meta-data= /tmp/cpw.fs isize=256 agcount=5, agsize=7087 blks
data = bsize=4096 blocks=35433, imaxpct=2S5
= sunit=0 swidth=0 blks
log = internal log bsize=4096 blocks=512
R realtime = none extsz=65536 blocks=0, rtextents=0

TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-3.a

allocation group

sb2.se

® superblock: identical one in each allocation group; describes basic characteristics of the filesystem and location of
some key components

11-4 22jul1998 TR-IKI rev 0.7b SGI Proprietary

® agf: allocation group free space; points to the structures for locating free space on the filesystem
® agi: allocation group inodes; points to the structures for locating inodes in the allocation group
@ agfl: used by XFS internally

11-4.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Superblock:

xfs sb t

® HREF="xfsdb.htm"” TARGET="_blank">xfs_db ''man page"’

o xfs_db example:

xfs_db: sb

xfs_db: print
magicnum = 0x58465342
blocksize = 4096
dblocks = 35433

TR-IKI rev 0.7b SGI Proprietary

22jul1998

logstart = 16388
rootino = 128
agblocks = 7087
agcount = 5

logblocks = 512
iﬁédesize = 256
inopblock 16
:i.r;;x_pct = 25
icount = 64
ifree = 61
fdblocks = 34897

TR-IKI rev 0.7b SGI Proprietary

22jul1998

11-5.a

11-7.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

AGFL - Allocation Group Free List:

1ist here

fsblock
r array of block : typoognol[':thOJ

ars to blocks owned > type catbt
allocation btree codae > pzrint
to 1ist haere

> agrl [n]
> print

egtla.sc

® The Allocation Group Free List is only used internally by XFS to control agf btree blocks

11-8 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Located in the 4th 512 byte block of each allocation group the agfl freelist for internal btree space allocation is maintained for each
allocation group. This acts as a reserved pool of space separate from the general filesystem freespace (not used for user data)

e xfs_db ""man page"’
o xfs_db example:

xfs_db: agfl 0
xfs_db: print
bno{0~127] = 0:4 1:5 2:6 3:7 /* blocks 4, 5, 6 and 7 are occupied */

TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-8.a

AGI: Inode Btree Control:

xfs_agi_t

> agi (nJ] agil.sc
> print

® xfs_db "'man page"
o xfs_db example: [empty filesystem]

xfs_db: agi 0

print

magicnum = 0x58414749

versionnum = 1

seqgqno = 0

length = 7087

count = 64 /* allocated inodes in this a.g. */

TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-9

root = 3 /* block number of root of inode btree */
level = 1

freecount = 61 /* free inodes in the a.g. */

newino = 128

dirino = null

unlinked{0-~63} =

11-9.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

AGI and Inode Btree:

s

x£s__inobt block t

> inode ({ino]
> pri.nt

of 64 inodes
Lb].ozlks le.gl

. 40p6 bytes)

sosisvese

»SQ

e XFS dynamically allocates inodes as needed
® XFS has replaced free space bit maps with a binary trees

11-10 22jul1998 TR-IKI rev 0.7b SGI Proprietary

|

I S B

® ecach entry in the inode btree block represents a chunk of 64 inodes (the above binary tree has only one level)
® xfs_db "'man page"
® xfs_db example:

xfs_db: agi O
xfs_db: print
count = 64
root = 3

level = 1
freecount = 61

type inobt
print
magic = 0x49414254

x£s_db: fsblock 3

o
<
[
9
[
wno

numrecs 1

leftsib null

rightsib = null

recs(l] = [startino, freecount, free] 1:[128,61, Oxff£££ELELELEFEE£8) /* inodes 131-191 are free */

/* note how the bit map represents low numbered inodes on the right */
/* from superblock: rootino = 128 (root) rbmino = 129 rsumino = 130 (for realtime extents) */

xfs_db: inode 128

xfs_db: print

core.magic = O0x49de

core.mode = 040755

core.version = 1

coxe.format = 1 (local)

core.nlinkvl = 2

core.uid = 0

core.gid = 0

core.atime.sec = Fri Feb 27 15:56:39 1998
core.atime.nsec = 931142000
core.mtime.sec = Fri Feb 27 15:56:39 1998
core.mtime.nsec = 931142000
core.ctime.sec = Fri Feb 27 15:56:39 1998
core.ctime.nsec = 931142000

core.size = 9

core.nblocks = 0

core.extsize = 0

R

core.nextents = 0
TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-10.a
core.naextents = 0
core.forkoff = 0
core.aformat = 2 (extents) /* this inode will have extents -- currently are none */
TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-10.b

On-disk Inode:

u.sfdir.list (3] .inumber = 8388838
u.sfdir.list (3] .namelen = 12
u.sfdir.list([3].name = *"libmalloc.so"
u.sfdixr.list([4] .inumber = 8609299
u.sfdir.list (4] .namelen = 3
u.sfdir.list([4].name = “cpp*"

11-12.b 22jul1998 TR-IKI rev 0.7b SGI Proprietary

1-block Directory:

offset{55)/
block({52)/
#blocks(21)

‘xfg bmt rec 32 t

dinode t > £sblock n

~ Pervngs VT P

—

TR-IKI rev 0.7b SGI Proprietary 22jul1998

11-13.a

Btree Directory:

> fsblock n > type hmapbtd > print

xfs_dinode_t xfs dir leafblock_t

inode nn
print

vV

> fisblock n
> type dir
> print

xfs dir leafblock_t Airs.sa

® pictured above is a 1-level binary tree structure for a directory
e the first extent is not directory data, but a table that tells what extent contains a given key

TR-IKI rev 0.7b SGI Proprietary 22jul1998

11-14

C any link with hash value up to the first entry would be found in extent[1] of the directory

© any link with hash value up to the second entry would be found in extent[2] of the directory

O each "leaf” of the directory contains a list of hash values in association with an index to the full link name
within the block

© there inay be duplicate hash keys

11-14.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Btree Directory - Index Block:

xfs_dinode_t > £sblock n —

> type dir xrfs_dir learfblock_t
> inocde n > print > print Aire.sc

® The above diagram provides a little more detail of the "xfs_da_intnode_t" block
® The "before” field is the index into the inode extents

11-15 22jul1998 TR-IKI rev 0.7b SGI Proprietary

TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-15.a
Attribute Fork Inside Inode:
y»
> inode ([ino] > print xfs_dinode_t attri.sa
@ A small set of "attributes” may be stored entirely within an inode
® A larget set will be stored separately, as shown below
TR-IKI rev 0.7b SGI Proprietary 22jul1998 11-16

Attributes Block:

. offset(55)/,
block(52) 7

= :#blog::l;‘s (21 v
xfs bmt rac 32t !

xfs_dinode_t : :
> inode {ino} > print > print xrs_attr_leafblock attcz.sc
® Access Control Lists (ACLs) are stored as attributes

® DMTF bitmapped file id’s are stored as attributes
O it is highly recommended that filesystems to be DMF-managed be made with 512-byte inodes so that the DMF bfid’s can be

11-17 22jul1998 TR-IKI rev 0.7b SGI Proprietary
stored with in the inodes
® The attributes of a file may be anything that its owner wishes to store with it
® example:

$ attr -s character_set -V kanji filex
Attribute "character_set" set to a 5 byte value for filex:
kangi

$ attr -s revision -V 5.1 filex
Attribute "revision" set to a 3 byte value for filex:
5.1

$ attr -1 filex
Attribute “"character_set®” has a 5 byte value for filex
Attribute *revision®" has a 3 byte value for filex

$ attr -g charactexr_set filex

Attribute “character_set® had a 5 byte value for filex:
kanji

11-17.a 22jul1998 TR-IKI rev 0.7b SGI Proprietary

Data Fork - Binary Tree

block number ‘(t-)
bloc‘k nunber (fs)

xfs_dinode_t offaet / block 7 #block

> inode n > print block 7 lb].ock

a “leaft" o

® above is a file with a 2-level binary tree of extents
© the inode points to blocks of indirect pointers

TR-IKI rev 0.7b SGI Proprietary 22jul1998

11-18

o the indirect blocks point to the leaf blocks containing the actual extent descriptions
e reference: reading an inode

xfs_iget ()
xfs_iread()
xfs_iformat
xfs_iformat_btree
gets only the root of the btree into memory (attached to if_broot)

® reference: reading the entire extent list

xfs_iread_extents ()
xfs_bmap_read_extents
reads all the extents (and attaches them to if_extents)

TR-IKI rev 0.7b SGI Proprietary 22jul1998

11-18.a

Journaling Log

® Examining all the filesystem metadata to reconstruct it after a crash would take too long
< large filesystems
¢ inodes not in a fixed location

® XFS does write-ahead logging of all structural updates to filesystem metadata

inodes

directory blocks

free extent tree blocks

inode allocation tree blocks

file extent map blocks

AG header blocks

the superblock

® log entries must be written to disk before the metadata itself reaches disk

@ the log is circular, with a tail chasing a head

@ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>