FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-1

Appendix H. Using Multibanking for Large Programs

H.1. Large Programs

The Series 1100 hardware architecture has a default 65,535 decimal word address range for the
instructions of a collected program, including all user subprograms and all referenced run-time
library routines. If the size of the collected program is larger than this 65K-word range, the
collector produces truncation errors because it is trying to place an address which is greater than
65K into a 16-bit instruction u-field. Index registers can hold an 18-bit address. Therefore,
ASCII FORTRAN generates code using index registers to hold addresses if the O option (the
over-65K-address option) is used on the ASCII FORTRAN processor calls when the programs
are compiled. This raises the boundary to a 262K-word address range for your collected program
before truncation problems again appear.

If use of the O option results in no truncation errors during collection, your problem is solved.
(Having the statement COMPILER(PROGRAM=BIG) in source programs is equivalent to using
the O option when compiling them.)

However, if a program still gets truncation errors during collection, you must construct a
multibanked program or place some large data items in virtual space. When the size problems
are due to large user data objects, use either banked space or virtual space to solve the problem.
Using virtual space is preferred since it is easier to set up and use (Appendix M). When the
size problem is due to a large amount of executable code rather than large data items, you must
construct a multibanked program to solve the problem. When the problem stems from both the
size of the code and the size of the data objects, you must construct a multibanked program to
solve the code size problem, and use either banked or virtual space to solve the data size problem.
(Multibanked programs can also use virtual space.)

H.2. Banking

Banking is a Series 1100 mechanism for sharing the address space between different pieces of
code or data. For example, you can use the collector IBANK directive to direct the collector
to construct a bank (an I-bank) holding subprogram X, and to construct another I-bank to hold
subprogram Y. These two I-banks can be created with overlapping addresses. The same thing
can be done with data. You can use the collector DBANK directive to place common block CB1
into one bank (a D-bank) and common block CB2 into another parallel D-bank using the same
address space. These are called paged data banks. In this general manner, you create a banked
program which needs less address space than the unbanked program. You can define almost
any number of I-banks and D-banks, though the collector documentation should be referenced
for the exact limit (it is about 250). You must construct a collector symbolic (sometimes called

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-2

a MAP symbolic) containing a sequence of collector directives that define the banking structure
of your program.

For this mechanism to work, generated code must be able to move an address window from bank
to bank. A processor state register (PSR) is a hardware register that defines two address windows
for an executing program, an I-bank window and a D-bank window. An LIJ (load I-bank base
and jump) instruction moves the I-bank window, and an LDJ (load D-bank base and jump)
instruction moves the D-bank window from one bank to another.

Series 1100 hardware has two basic types:
1. older single-PSR systems
2. newer dual-PSR systems

3. Single-PSR systems include the 1106, 1108, 1100/10, and 1100/20; dual-PSR systems
include the 1110, 1100/40, 1100/60, and 1100/80.

On dual-PSR systems the two PSRs are referred to as the main PSR (PSRM) and the utility PSR
(PSRU). The 1100/60 and 1100/80 have the concept of four basing registers called bank
descriptor registers (BDRs). There is a one-for-one association between these four BDRs and
the four windows as defined by the main and utility PSRs:

BDR PSR Window

BDRO I-bank PSRM
BDR1 I-bank PSRU
BDR2 D-bank PSRM
BDR3 D-bank PSRU

This appendix refers to only PSRs since there is a one-for-one equivalence to BDRs.

Besides the LIJ and LDJ instructions to switch banks, the 1100/80 and 1100/60 have a
generalized LBJ instruction that you can use to switch both I-banks and D-banks.

When constructing a collector symbolic to create a multibanking structure for ASCII FORTRAN
programs, you must follow certain conventions: (1) no address overlap should ever occur between
I-banks and D-banks since results are unpredictable; (2) when multiple D-banks containing
paged data are defined, they must start at the same address (FORTRAN’s mechanism to switch
D-bank basing depends upon this); (3) in any multibanked collection, one bank is defined as the
control bank. The control bank is assumed to be always available and based since it contains
any unbanked programs and data and also the unbanked portions of the run-time library
routines.

H.2.1. General Banking Example (Dual-PSR System)

The following example consists of three separately compiled elements. MAIN1 is the main
program and SUB1 and SUB2 are subroutines. The first statement in each sample routine is
a directive to the compiler indicating that the final collected program is banked, and appropriate
linkages (e.g. LI1J, LDJ, LBJ instructions) must be used to ensure that the correct banks are
visible when necessary. The sizes of the code and data in the examples don’t warrant the use
of banking since these are simple examples for instruction only.

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs

Example of a Main Program (MAIN1):

COMPILER (BANKED=ALL)
COMMON /cb1/ a,x /cb2/ b,y
CHARACTER#*1 a,b
DATA a/'a’/, b/'b’/
WRITE(6,100) 'reference to: ', a
WRITE(6,100) ‘reference to: ', b
a= "¢’
b = 'd’
WRITE(6,100) 'reference to:', a
WRITE(6,100) ‘reference to:', b
100 FORMAT (1X, A13, 1X, A1)
x = 2.
y sqrt(x)
z =x ¢y
WRITE(6,200) x, vy
200 FORMAT (1X, 'sqrt of’, F10.5, ° is’, F10.5)
CALL sub1 (a, b, x, y, 2)
END

Example 1 of a Subprogram (SUB1):

COMP | LER(BANKED=ALL)

SUBROUTINE subl1 (a, b, x, y, z)

CHARACTER#*1 a, b

WRITE(6,100) 'in subroutine subl’
100 FORMAT(1X, A18)

WRITE(6,200) a, b, x, y, 2z

200 FORMAT(1X, "a=", A1, " b =", A1, " x =", F10.5,
1F10.5, "z = ', F10.5)
CALL sub2(b, 2.0)
END

Example 2 of a Subprogram (SUB2):

COMPILER (BANKED=ALL)

SUBROUTINE sub2(a, x)

CHARACTER*(*) a

CHARACTER#*19 b3cell /' common block cb3'/
COMMON /cb3/ b3cell

CHARACTER#*19 bdcell /' common block cb4'/
COMMON /cb4/ bdcell

PRINT *#, "a, len(a), x:', a, lenf{a), X
PRINT %, ‘common block ¢cb3:’, b3cell
PRINT #, "common block cbd4:’', bdcell

END

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-4

H.2.1.1. Collection of the General Banking Example

The following collector symbolic can be used to collect the three sample program elements into
a banked program. The LIB directive can be dropped if the ASCII FORTRAN library is in the
system relocatable library, SYS$#RLIB$. This is the general form that you should follow for
multibanking of ASCII FORTRAN programs on dual-PSR Series 1100 systems.

LIB FTN*RLIB.
IBANK,MRD IBANKM . INITIALLY BASED, MAIN PSR
IN MAIN1
IBANK,RD IBANK1,IBANKM
IN SUB1
IBANK,RD IBANK2,IBANKM
IN SUB2
DBANK,UD DBANK1,(040000,IBANKM,IBANK 1,IBANK2)
. INITIALLY BASED, UTILITY PSR
IN F2ACTIV$($ 1)
IN CB1
DBANK,D DBANK2,DBANK 1
IN(MAIND) F2ACTIV$($3)
IN CB2
DBANK,D DBANK3,DBANK 1
IN(MAIND) F2ACTIV$($3)
IN CB3
DBANK,CM MAIND,(DBANK 1,DBANK2,DBANK3)
. MAIND IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR
IN MAIN1
IN SUB1
IN SUB2
END

The collection of the sample program using this collector symbolic would result in the banking
structure shown in Figure H-1. The lines under the bank names are similar to the lines in a
collector S-option listing in that they indicate length.

If the three FORTRAN relocatables are copied to file TPF$, and if the above collector symbolic
is in element TPF$.BMAP, you can collect this program in a banked absolute and execute it with
the following control images. (This assumes that there are no other relocatables in file TPF$.)

@MAP BMAP, BABS
exat BABS

The following control images do a default nonbanked collection of the program and give the same
results when executed.

@MAP, | MAP,ABS
IN MAIN1

LIB FTN#RLIB.
exart ABS

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs H-5
I-Banks Based on D-Banks Based on Control D-Bank Based on
Main |-Bank PSR (PSRM) Utility D-Bank PSR (PSRU) Main D-Bank PSR (PSRM)
(start at 01000) (start at 040000 or over) (starts after largest of
D-banks based on utility
D-bank PSR and may
reach 262K limit)
IBANKM DBANK1
MAIN1 cB1
IBANK 1 DBANK2
SUB1 CcB2 Local data,
library—MCORES$ area
IBANK2 DBANK3
SuB2 CB3
C2F$
I/0 common bank
NOTES: 1. Program code goes into I-banks.

2. Named common blocks go into D-banks (paged data banks).

3. Data local to subprograms, blank common, any programs or named common not placed in other

banks and the run-time library routines, all go into the control bank.

4. The C2F$ 1/0 common bank is not mentioned in the collection, though it is referenced at run time

for all I/0 activities.

5. The paged data banks must start at or after address 040000 to avoid address overlap with the hidden

C2F$ 1/0 common bank.

6. The area after the control bank is open for the 1I/0 complex to acquire buffer space. Executive

Requests (ERs) to MCORE$ are made at run time to expand this area.

7. If any collected addresses go over 65K, use the O option or the COMPILER (PROGRAM=BIG)
statement with all of the ASCII FORTRAN compilations.

Figure H-1. Dual-PSR Banking Structure

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-6

The execution of the banked or nonbanked absolute results in the following output:

reference to:
reference to:
reference to:
reference to: d

sqrt of 2.00000 is 1.41421

in subroutine subl

a= cb=dx= 2.00000y = 1.41421 z = 3.41421
a, len(a), x:d 1 2.0000000

common block cb3:common block cb3

common block cbhd4:common block cb4

O T o

H.2.1.2. Analysis of the Collector Symbolic
This subsection describes the collector symbolic listed in H.2.1.

The main program MAINI is placed in an I-bank with the M option which makes it initially
based on the main PSR. (The main program must be in an initially based bank.)

The other two routines, SUB1 and SUB2, are placed into two other I-banks, each starting at
the same address as the I-bank containing MAIN1. (They can also be put into the same I-bank
as MAINI1 since they are so small.)

All I-banks have the R option on the IBANK directive to indicate they are read-only I-banks.
As a read-only bank, there is less Executive swap file activity.

All D-banks except the control D-bank have the D option on the DBANK directive to indicate
that they are dynamic banks. This means that they can be swapped out by the Executive if they
are not currently based, saving on main storage usage (though possibly causing more Executive
swap file activity).

The bank names given on the IBANK and DBANK directives (for example, IBANKM) are called
bank descriptor indexes, or BDIs. The collector gives them integer values that are used by the
LIJ and LDJ bank-switching instructions.

The paged data banks contain named common blocks and must be based on the utility D-bank
PSR. The paged data bank DBANKI1 is chosen to be the one initially based. The U option on
the DBANK directive for DBANKI1 indicates it is initially based on the utility PSR. The other
paged data banks holding named common are put at the same address as DBANK1.

The location counter one code ($1 code) of the run-time activate element F2ACTIV$ is put at
the beginning of initially based paged data bank DBANK1. The same is done with $3 code of
F2ACTIV$ for each of the other paged data banks. The F2ACTIV$ location counter ($1) contains
information to make the bank in which it resides self-identifying. This location counter is often
referred to as the bank’s ID area. The code under location counter ($3) in F2ACTIV$ is an exact
copy of location counter one. To work properly, the location counters one and three must be
collected at the same address in the banks. The IN directive of F2ACTIV$ ($3) has MAIND in
parenthesis. This is called local element inclusion and bypasses possible LOCAL-GLOBAL
CONFLICT messages from the collector.

The control bank MAIND is the D-bank named in the DBANK directive with the C option, and
the M option on it means it is also initially based on the main D-bank PSR. Only the main
program MAINI is included through use of an IN statement in this bank since the collector puts
anything not specifically included in another bank in the control bank. The control bank MAIND
is placed after the largest of the three paged data banks so that no address overlap occurs.

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-7

The area after the end of the control bank is used by the storage management complex to obtain
buffer space for the ASCII FORTRAN run-time system. Executive Requests (ERs) to MCORE$
are made to acquire this space.

The three paged data banks must not be defined at less than an 040000 (octal) address and the
paged data banks must start at an address higher than the highest I-bank address. This is
because their address space would then overlap the C2F$ 1/0 common bank, and unpredictable
results would occur.

The named common block CB4 is not given a home in any paged data bank. If the main program
and any subprograms are explicitly included in an I-bank and a D-bank by an IN statement,
CB4 falls in the control bank and, since the control bank is always based, it is not dynamically
banked. (See the section on element placement in the Collector Reference, UP-8721 [applicable
version].) This does not result in any problems; in fact, any subprograms not specifically included
in a bank by an IN statement fall harmlessly in the control bank. As long as the control bank
does not get so large as to cause collector truncation errors again, this is harmless. Any number
of subprograms can be included in an I-bank, and any number of named common blocks can be
included in a paged data bank. (Blank common and data local to subprograms must be in the
control bank.) The criteria for the contents of a bank should be a function of the final collected
size of the bank, and also a function of the locality of reference to the bank to try to minimize
thrashing between banks. (Any problem caused by excessive Executive swap file activity can
be minimized by carefully making selected banks static by not putting the D option on their
I-bank or D-bank statements.) A reasonable size for an I-bank or paged data bank is
approximately 16,000 decimal words. This means that the control bank can be up to about 32,000
words in size before truncation problems occur again.

H.2.1.3. Large Banks

If reasonable I-bank and paged data bank sizes still result in truncation errors at collection time,
or, if large paged data banks (greater than approximately 30,000 words) are to be defined, the
O option is needed on the ASCII FORTRAN processor calls to allow a 262K address range. In
addition, the ordering of the paged data banks and the control bank must be inverted to prevent
collector truncation errors on the run-time library routines in the control bank. This means
that the control bank must be placed after the I-banks in the address space, and before the paged
data banks in the address space. Since the ASCII FORTRAN run-time system makes the control
bank larger via ER MCORE$ to obtain buffer space, you must leave enough room between the
control bank and the paged data banks for I/0 main storage requirements. (Appendix G contains
formulas for estimating I/0 main storage requirements for a program.) Allowing 10,000 decimal
words is usually sufficient. However, if an ER MCORES$ results in an address overlap of the
control bank and paged data banks, error termination or a hang is ensured. The F2FCA library
element can also be reassembled with a sufficiently large local area in it (see G.7).

To collect your program with large D-banks, the collector symbolic (from H.2.1.1) must be
changed as follows. The DBANK directive for D-bank MAIND and the IN directive on MAIN1
are moved back to just before the DBANKI1 definition. Then these statements are changed as
follows:

DBANK,CM MAIND, (040000, IBANKM, 1BANK1, IBANK2)
IN MAIN1
DBANK,UD DBANK1, (MAIND+10000)

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-8

The rest of the collector symbolic remains unchanged.

The resulting collector symbolic is:

LIB FTN#RLIB

IBANK,MR | BANKM INITIALLY BASED, MAIN PSR
IN MAIN1

IBANK, R IBANK 1, | BANKM
IN SUB1

IBANK, R IBANK2, | BANKM
IN SUB2

DBANK,CM MAIND, (040000, | BANKM, IBANK1, | BANK2)
.MAIND IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR
IN MAIN1
IN SUB1
IN SuUB2
DBANK,UD DBANK1, (MAIND4+10000) . INITIALLY BASED, UTILITY PSR
IN F2ACTIVS$($1)
IN CB1
DBANK,D DBANK2,DBANK1
IN(MAIND) F2ACTIV$($3)
IN CB2
DBANK,D DBANK3,DBANK1
IN(MAIND) F2ACTIV$($3)
IN CB3
END

The collection then results in the banking structure of Figure H-2. The lines under the bank
names are similar to the lines in a collector S-option listing in that they indicate length.

When the common blocks don’t fit in the paged D-banks (truncation errors appear), put them
in virtual space (see Appendix M).

H.2.1.4. Variations on the Dual-PSR Structure

The generalized example shows multiple I-banks and multiple D-banks being used at the same
time. If your program is large only in the amount of I-bank code, you can simply omit the
definition of the paged data banks and only define I-banks and the control bank. If the program
has large common blocks causing the size problem, then the collector symbolic can be cut back
to defining only one I-bank, the control bank, and multiple paged data banks.

The LIB directive tells the collector where to obtain the ASCII FORTRAN run-time library. The
simple form of the LIB directive causes all run-time library routines, both code and data, to fall
into the control bank MAIND since they are not explicitly included in any bank. The following
form of the LIB directive directs the collector to put anything taken from FTN#RLIB into I-bank
IBANKM, and D-bank MAIND, in a normal $ODD/$EVEN I-bank/D-bank split:

LIB FTN*RLIB.(IBANKM/$0DD,MAIND/$EVEN)

This can minimize the size of the MAIND control bank.

FORTRAN (ASCII) Reference

UP-8244.3 Using Multibanking for Large Programs

H-9

1-Banks Based on Main | Control Bank Based on Main [D-Banks Based on Utility
I-Bank PSR (PSRM) (starts at | D-Bank PSR (PSRM) (starts at | D-Bank PSR (PSRU) (starts
01000) 040000) after the control bank and goes
up to a 262K limit)

IBANKM MAIND DBANK1

MAIN1 Local data, CB1

library-MCORE$ area

IBANK1 DBANK2

SuUB1 CB2
IBANK2 DBANK3

SUB2 CB3
C2F$

I/0 common bank

NOTES: 1 The paged data banks can extend out to the 262K address limit.

2. The 10K area between MAIND and the paged data banks is used by the I/0 complex for buffers.
If it is not sufficient, the separation must be increased or the library element F2FCA reassembled
with a nonzero reserve.

3. 1/0 acquires storage in increments of eight storage blocks (4096 decimal words).

Figure H-2. Dual-PSR Banking Structure, Over 65K

H.2.2. Banking for Single-PSR 1100 Systems

The collector symbolics described in H.2.1 through H.2.1.4 use the utility PSR of dual-PSR
systems to hold an address window for paged data. This utility PSR does not exist on single-PSR
systems such as the 1106, 1108, 1100/10, and 1100/20. If your program needs only multiple
I-banks and not multiple D-banks, the previously described collector symbolics can be used with
the definitions of the paged data banks removed. If your program needs both multiple I-banks
and multiple D-banks, it simply cannot be done on single-PSR hardware. However, you can
define a banking structure for multiple D-banks for single-PSR systems. A single I-bank is
defined, and it is also made the control bank to hold all unbanked code and data. The paged
data banks are defined to come after the control bank, but enough room must be left between
them for I/0 buffers (which are dynamically acquired by ER MCORE$ at runtime).

However, this type of collection has a problem resulting from the I-bank holding all unpaged
data. Because of this, no common banks can be referred to at runtime to do 170, calls to the
common mathematical library (CML), etc. The run-time library used must be a very special one,
having all run-time routines in relocatable form. (The ASCII FORTRAN library must be built
as a typel library, with the relocatable form of the PCIOS common I/0 modules, and also the
relocatable form of the CML modules.)

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs H-10

Another problem results from ASCII FORTRAN putting a SETMIN on all relocatables it
generates, which ensures that code to refer to array elements is correct. The collector emits
a warning on each FORTRAN element. For example:

MAIN1 MINIMUM ADDRESS IGNORED-LCO NOT IN DBANK

These collector warnings can be ignored, but the I-bank must be started at address 040000 or
after to ensure that the FORTRAN-generated code works correctly.

You must also edit and reassemble the ASCII FORTRAN library element F2BDREQU$ when
performing a multibanked collection for single-PSR systems. Adjust the values of three EQUs
as follows:

TAG Dual-PSR | Single-PSR

(default)

CBDR$ 2 0

VPDR$ 1 1

BKBDR$ ‘ 3 ’ 2

The example in H.2.1 using MAIN1, SUBI, and SUB2 can be collected using multiple D-banks
for single-PSR systems with the following collector symbolic:

LIB FTN*RLIBX. . VERY SPECIAL LIBRARY !
| BANK , MC I BANKM, 040000 . CONTROL BANK NOW
IN MAIN1,SUB1,SUB2
DBANK , MD DBANK1, (1 BANKM4+10000)
IN F2ACTIVS($1)
IN CB1
DBANK , D DBANK2 , DBANK 1
IN(1BANKM) F2ACTIV$($3)
IN CB2
DBANK , D DBANK3, DBANK 1
IN(IBANKM) F2ACTIV$($3)
IN CB3
END

Collection results in the following collector diagnostics:

MAIN1 MINIMUM ADDRESS IGNORED
SUB1 MINIMUM ADDRESS IGNORED
SUB2 MINIMUM ADDRESS IGNORED
CB4 MINIMUM ADDRESS IGNORED

LC O NOT IN DBANK
LC O NOT IN DBANK
LC O NOT IN DBANK
LC O NOT IN DBANK

The collection results in the banking structure given in Figure H-3 for the single-PSR multiple
D-bank problem. The lines under the bank names in Figure H-3 are similar to the lines in a
collector S-option listing in that they indicate length.

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs H-11

One I-Bank (the Control Bank) Based on the | D-Banks Based on the Main D-Bank PSR (PSRM)
Main I-Bank PSR (PSRM) (starts at 040000) | (starts after the control bank and may go up to
262K)
IBANKM DBANK1
Code, library, unbanked data-MCORE$ cB1
DBANK2
CB2
DBANK3
CB3

NOTES: 1. There are unavoidable collector diagnostics.
2. A totally local library must be used; no run-time common banks can be referenced.
3. The 10K separation between IBANKM and the D-banks must be able to satisfy all buffer requests
from the ASCII FORTRAN run-time system, or it must be increased, or the library element F2FCA
must be reassembled with a nonzero reserve large enough to satisfy the buffer requests.

4. The I-bank must start at or after address 040000.

8. If the paged data banks extend beyond 65K, use the O option on all of the ASCII FORTRAN
compilations.

6. IBANKM cannot extend beyond 65K in addressing.

Figure H-3. Single-PSR Banking Structure

H.2.3. Banking, Efficiency, and Source Program Directives

The examples in H.2.1 through H.2.2 use a simple generalized directive to the ASCII FORTRAN
compiler to indicate that banking is used in the final absolute program. In fact, this generalized
statement, COMPILER(BANKED=ALL), means:

@ Each subprogram referenced can be in a different I-bank, in the same I-bank, or the control
bank.

B Input arguments can be in paged data banks or in the control bank.
B Named common blocks can be in paged data banks or in the control bank.

Therefore, the actual banking structure is virtually unknown to the compiler, and yet it must
create linkages to ensure that items are visible or based when they are referenced.

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs H-12

H.2.3.1. I-Bank Linkages

The ASCII FORTRAN compiler uses the LIJ instruction to link between I-banks. This linkage
is fairly efficient since the bank switch is done and then the called subprogram is entered,
usually for some period of time. The compiler generates a pseudo-linkage called the IBJ$
linkage. The collector replaces this linkage with an LMJ instruction if the destination is in the

control bank, or the same I-bank, and with an LIJ instruction if the destination is in a different
I-bank.

H.2.3.2. D-Bank Linkages

Each time the compiler generates code to reference data in a (possibly) paged data bank (which
may be currently based), it must also generate an activate sequence. This activate code has
I several variations, but a typical sequence is two to four instructions long.

Example:
Variables A, B, and C are in named common blocks CB1, CB2, and CB3.
The FORTRAN statement A = B+4C is to be compiled.

If you haven’t given any directives to the ASCII FORTRAN compiler indicating that multiple
D-banks are being used, three machine instructions are generated for this statement: a LOAD,
an ADD, and a STORE. If you indicate to the ASCII FORTRAN compiler (through BANK
statements) that multiple D-banks are being used, there are also three activate sequences
| generated. This results in nine instructions instead of three for the unbanked program. In
addition, each activate sequence contains LBJ instructions. The LBJ instruction is simulated
in the Executive for older single-PSR systems and may cause a presence-bit interrupt if the bank
is swapped out on any Series 1100 system. Program efficiency is extremely dependent upon the
contents of the paged data banks and in the organization of the ASCII FORTRAN code.

Because performance can be so dramatically affected, you can supply several directives, including
the BANK statement (see 6.6) and several COMPILER statement options (see 8.5), to the ASCII
FORTRAN compiler to help program efficiency.

H.2.3.3. Multiple I-Banks Only

If your collected program is constructed using multiple I-banks for code and does not define
multiple paged data banks, use the LINK = IBJ$ option of the COMPILER statement rather
than the more general BANKED=ALL option. The compiler then generates the efficient IBJ$
linkage for subprogram references and generates code assuming that data is not banked. The
resulting program should be as efficient as an unbanked program.

H.2.3.4. Multiple Paged Data Banks

Once your multiple D-bank program is debugged and running, you might notice many activate
code sequences in the generated code that are not necessary, since a given paged program bank
may contain several named common blocks. Also, if you are actually hopping between paged
data banks a lot in the generated code, you may wish for a much faster activate sequence.

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs H-13

H.2.3.4.1. The BANK Statement

The BANK statement associates a paged data bank BDI name with one or more named common
blocks. Therefore, you can tell the compiler that common blocks CB1, CB2, and CB3 are actually
in the same paged D-bank and then the compiler does not generate activate sequences when the
program references them. Also, since the BANK statement tells the compiler that these items
are definitely banked and the BDI is supplied, a more efficient bank switch can be done. The
compiler generates a direct LBJ instruction to change which D-bank is currently based rather
than calling an F2ACTIV$ run-time routine.

Using a BANK statement to associate a BDI with a common block results in more efficient code
to reference that block. However, if the COMPILER (BANKED=ALL) statement is left in the
program, the compiler still generates inefficient code sequences. These code sequences reference
those named common blocks not specified in BANK statements. When you use BANK statements
to associate BDIs with common block names for all common blocks residing in paged D-banks,
you can replace the BANKED = ALL option of the COMPILER statement with the following
three options:

(BANKED=ACTARG), (BANKED=DUMARG), (LINK=IBJ$)

In addition to more efficient code to reference nonbanked common blocks, the options ensure
that:

B banked arguments are handled properly

B linkages to subprograms are correct

Since BANK statements associate specific BDI names with common blocks, if you change the
banking structure, you must also change all the programs and recompile them.

The BANK statement and various COMPILER statement directives are described in 6.6 and 8.5.

H.2.3.4.2. Optimization and Program Organization

The ASCII FORTRAN compiler is only effective at remembering which bank is currently based
and does not generate unnecessary activate sequences if global optimization is used during
program compilation. (Global optimization is called with the Z option on the ASCII FORTRAN
processor call.) Also, you should attempt to organize your code so that references to a given
D-bank are grouped in areas of code. This is especially true for the inner loop of DO-loops. Try
to have any inner loops refer to items in one paged data bank. (Unbanked data items can be
referred to in any manner.)

FORTRAN (ASCII) Reference
UP-8244.3 Using Multibanking for Large Programs H-14

Example:

SUBROUTINE SUBX (A, IA)
COMP | LER(BANKED=ALL)
DIMENSION A(IA)
COMMON/C1/A1(1000) ,B1(1000)
COMMON/C2/A2(1000) ,B2(1000)
BANK/BNK1/C1,C2
COMMON WORK(1000) @BLANK COMMON
L = 1A-1
DO 10 I=1,IL
10 WORK (1)=A(1)/A(14+1)4.03
DO 20 =1,IL
A1(1)=WORK(1)#B2(1)/B1(1)-A2(1)
IF(A1(1).NE.O.0) A2(I1)=1/A1(1)
20 CONTINUE
END

You have (possibly) banked arguments A and IA and two named common blocks that are known
to be in D-bank BNKI1.

Blank common can never be banked, so the program does some initial processing on the input
array A and moves it to WORK in blank common. (A local array can also be used.) Since only
one bank is referenced inside the first loop, the activate code sequence is moved out of the loop
(if global optimization is used). The same thing is true for the second loop, and no activate
sequences are done inside the loop. A single reference to an external routine inside either loop
causes at least one set of activate code to be generated inside the loop since the external routine
can possibly change which paged data bank is currently based.

If you had not supplied the BANK statement, the generated code would be loaded with activate
sequences since the compiler must assume the worst case.

H.2.4. Banking Summary

B Programs constructed using multiple I-banks and no multiple D-banks should use the
COMPILER(LINK =IBJ$) statement to indicate banking to the ASCII FORTRAN compiler.

B The COMPILER(BANKED=ALL) statement stresses ease of use for multiple D-bank
l programs. However, CPU efficiency suffers when compared to the use of the BANK
statement for common block names.

B Programs with multiple D-banks can cut the number of activate code sequences generated,
and can cause the direct generation of LBJ instructions by the selected use of BANK
statements to associate named common blocks with specific paged data bank BDIs. Replace

‘ the COMPILER (BANKED=ALL) statement with COMPILER (BANKED=ACTARG),
(BANKED=DUMARG), (LINK=IBJ$) to enhance efficiency.

B If BANK statements are used in a FORTRAN program to enhance efficiency, no error
diagnostics occur if they are incorrect. Bad program results can occur.

B The use of global optimization cuts the number of generated activate sequences
dramatically.

B Judicious organization of program logic and careful definition of the contents of paged data
banks can have a very beneficial influence on performance.

UP-8244.3

FORTRAN (ASCII) Reference
Using Multibanking for Large Programs

H-15

There must never be an address overlap between any I-bank and any D-bank, or between
the control D-bank and any paged data banks. If the run-time library used is a normal
common bank, the C2F$ I/0 common bank can extend to address 037777 (octal). Therefore,
no D-bank should start below address 040000.

The control bank holds all of your unbahked data and routines, all run-time library D-bank,
and any unbanked library routines. The control bank must be initially based and must
never be unbased by an LIJ, LDJ, or LBJ instruction.

If any addresses go beyond 65K in the collection, the O option (or the statement COMPILER
(PROGRAM=BIQG)) is needed on all ASCII FORTRAN compilations.

Any element containing only block data subprograms must be included using an IN directive
in the control bank in the collection, since the collector may otherwise ignore it. (This is
true for nonbanked collections as well.)

Control bank size can be minimized by supplying a LIB statement to the collector that
causes the code or I-bank portions of the run-time library to go into one of your I-banks,
for example, LIB FTN*#RLIB.(IBANKM/$ODD,MAIND/$EVEN).

Multiple D-bank operation depends upon copies of the activate code existing in each paged
data bank at exactly the same relative address. The $1 and $3 F2ACTIV$ code segments
are identical, and the only reason for the location counter split is to avoid local-global
conflict messages during collection. The easiest way to ensure the same address for ACTIV$
code is to make each paged data bank start at the same address and to have the ACTIV$
code first in each D-bank.

The local element inclusion of F2ACTIV$ code is also important. The $3 code (an exact
copy of $1 code) has no tags, but refers to data in the control bank; therefore, it must be
visible only to the control bank.

Single-PSR 1100 systems can’t have both multiple I-banks and multiple D-banks in the
same collection.

The TYPE BLOCKSIZE64 collector directive can save storage when the absolute element
resulting from the collection has many banks.

The single-PSR multiple D-bank setup needs a special library that contains a totally
relocatable form of all run-time routines so that no common banks are referenced. The
run-time element F2BDREQU$ must also be reassembled with some EQU values changed
(see H.2.2).

FORTRAN (ASCII) Reference
UP-8244.3 Error Diagnostics in Checkout Mode

Appendix I. Error Diagnostics in Checkout Mode

The diagnostics explained in Tables I-1 and I-2 are associated with the checkout mode of the

FORTRAN (ASCII) compiler (see 10.6).

Table I-1. Messages Occurring During Program Load

Message

Explanation

* % %% CHECKOUT RELOCATION ERRORS %

WARNING: NAME IS UNDEFINED: name

ERROR: USER PROGRAM TOO LARGE

NO MAIN ENTRY POINT, NO EXECUTION POSSIBLE

BAD LINE NUMBER n

BLOCK DATA PROGRAM NOT FOUND

If any errors are encountered while loading
your program, this message is issued and the
error are messages are then printed.

You referenced a subprogram that is not
defined in your compilation unit or the FTN
library. The offending name is printed on the
line following the message.

An address generated while loading your
program doesn’t fit in an address field. Your
program is too large. It may fit if the O option
is used, or if the Z option is omitted on the
processor call card.

This message is produced if your program
does not contain a main program. Instead the
program contains only subroutines, functions,
and BLOCK DATA subprograms. Interactive
debug mode is entered.

The line number, n (specified in the BREAK
command), is either out of range for your
program or is on a nonexecutable statement.

The BLOCK DATA program specified in the p
field of the PROG command or the p subfield
of a command doesn't exist in the FORTRAN
symbolic element.

FORTRAN (ASCII) Reference
UP-8244.3 Error Diagnostics in Checkout Mode

I-2

Table 1-2. Messages Generated by Interactive Debugging

Message

Explanation

COMMAND NOT ALLOWED

COMMAND NOT ALLOWED BECAUSE OF
CONTINGENCY

CONSTANT MUST BE TYPE data-type

ELEMENT HAS NO MAIN PROGRAM

ENTIRE ASSUMED-SIZE ARRAY CANNOT BE
DUMPED

ENTRY POINT NOT FOUND

ERROR: NO USER PROGRAM FOUND

FTEMP$ STORAGE DESTROYED

FUNCTION HAS NOT BEEN CALLED

The GO command (no fields) or the
WALKBACK command can’t be executed
because normal execution of the FORTRAN
program is not possible; that is, there is no
main program in the element, or the CALL
command has executed a subprogram and
returned.

The GO command (no fields) can’t be
executed because a contingency is captured
by the compiler. For example, if the
FORTRAN program encounters a guard
mode (!{GDM) contingency, then normal
execution of the program can’t resume. A
RESTORE command can bring back an
original version of the program.

The constant in the third field of the SET
command isn't the same data type as the
variable in the first field. The SET command
doesn’t perform conversions between data
types.

The main program is specified in the p field
of the PROG command or in the p subfield
of a command, but the FORTRAN symbolic
element doesn’t contain a main program.

The range of an assumed-size array is
unknown. Only individual elements of an
assumed-size array can be dumped.

The entry point specified in the s field of the
CALL command or in the parameter list of
the CALL command doesn’t exist in the
FORTRAN source.

You are using a RESTORE command but
haven’t previously done a SAVE on the
desired version.

A subprogram’s temporary storage area (for
saving registers and the parameter list) is
destroyed because of an error in your
program. The specified variable can’'t be
dumped.

A reference is made to a variable that is a
character function entry point, but the
function has not yet been called during
execution of the FORTRAN program.

(continued)

UP-8244.3

FORTRAN (ASCII) Reference

Error Diagnostics in Checkout Mode

I-3

Table I-2. Messages Generated by Interactive Debugging (continued)

Message

Explanation

ILLEGAL COMMAND

ILLEGAL SYMBOLIC NAME

ILLEGAL SYNTAX

INCORRECT NUMBER OF SUBSCRIPTS FOR
ARRAY *

10 ERROR ON LOADING USER PROGRAM,
LOAD ABORTED

10 ERROR ON USER OUTPUT FILE, 'SAVE’
COMMAND ABORTED

LABEL BREAK LIST IS FULL

LABEL UNDEFINED *

LINE NUMBER BREAK LIST IS FULL

NO BREAK SET FOR LABEL *

An illegal debug command name is
specified when input is solicited with ER
ATREAD$, or the name specified in the cmd
field of the HELP command isn’t a debug
command name.

An illegal FORTRAN variable name is
specified in the v subfield of a command, or
an illegal subroutine or function name is
specified in the p field of the PROG
command or the p subfield of a command.

A general syntax error is found. This
includes specifying a field for a command
when none is required, or not specifying a
field when one is required.

The number of subscripts specified for the
array in the v subfield of a command does
not equal the number of dimensions
declared for the array in the specified
FORTRAN program unit.

An |/0 error occurs while accessing your
program file during execution of the
RESTORE command. The command is
aborted. This may resultin error termination
also.

An 1/0 error occurs while accessing your
program file during execution of the SAVE
command. The command is aborted.

An attempt is made to add an entry to the
statement label break list with the command
BREAK n L [/p], but the list already has
eight entries.

The statement label n in the BREAK nL
[/p] command is not declared in the
specified FORTRAN program unit.

An attempt is made to add an entry to the
line number break list with the command
BREAK n, but the list already has eight
entries.

The statement label n (in the specified
pregram unit) in the command CLEAR n L
[/p]is not in the statement label break list.

(continued)

UP-8244.3

FORTRAN (ASCII) Reference

Error Diagnostics in Checkout Mode

I-4

Table I-2. Messages Generated by Interactive Debugging (continued)

Message

Explanation

NO BREAK SET FOR LINE NUMBER
PARAMETER'S SUBPROGRAM HAS NOT BEEN

CALLED

PROGRAM UNIT NOT FOUND

SETBP NOT ALLOWED ON COMPILER
GENERATED FOR SINGLE-PSR MACHINE

SUBSCRIPT OUT OF RANGE FOR ARRAY

*%%*UNDEFINED SUBROUTINE ENTRY %% %

USER FILE REJECTED, NOT FASTRAND
FORMATTED

USER INPUT FILE CANNOT BE ASSIGNED

USER OUTPUT FILE CANNOT BE ASSIGNED

The line number n in the command CLEAR
n isn't in the line number break list.

An attempt is made to reference a
subroutine or function parameter, but the
subprogram has not yet been called during
execution of the FORTRAN program.

The symbolic name specified in the p field
of the PROG command or the p subfield of
a command doesn’t exist in the FORTRAN
symbolic element as a named program unit.

The SETBP command can only be executed
on an ASCH FORTRAN compiler generated
for a dual-PSR machine. The nonreentrant
ASCIlI FORTRAN absolute taken off the test
file (file 2) of the ASCHl FORTRAN release
tape is a compiler generated for 1108
(single-PSR).

The constant subscripts specified for the
array in subfield v of a command are too big
or too small.

During execution, your program calls a
function or subroutine that is undefined.
The name of the subprogram was previously
printed out with the checkout relocation
errors.

You are attempting a SAVE or RESTORE
command, but the file is not a program file.
Something has happened, making it
unusable. The file affected is the
relocatable output (RQ) file specified on the
@FTN processor call command.

Your program file can’t be assigned to do
the RESTORE command. Some other run
must be using it.

Your program file can’t be assigned to do
the SAVE command. Some other run must
be using it.

(continued)

FORTRAN (ASCII) Reference
UP-8244.3 Error Diagnostics in Checkout Mode

Table I-2. Messages Generated by Interactive Debugging (continued)

Message Explanation

VARIABLE IS AN ARRAY * The variable in subfieid v of a command has
no subscripts, but the variable is declared as
an array in the specified program unit. An
array element is required.

VARIABLE IS NOT AN ARRAY * The variable in subfield v of a command has
subscripts, but the variable is not declared
as an array in the specified program unit.

VARIABLE NOT DEFINED * The variable in subfield v of a command is
not declared in the specified FORTRAN
program unit.

WARNING: CHARACTER CONSTANT The character constant in the third field of

TRUNCATED the SET command has too many characters
to fitin the character variable. It is truncated
to the declared length of the variable.

% This error message is followed by a second printed line. This line specifies the program unit (in the FORTRAN
—_ element) from which the variable or statement label (in the command image) comes. One of the following
formats:

IN MAIN PROGRAM
IN MAIN PROG n

IN BLOCK DATA n
IN BLOCK DATA PROGRAM m

IN SUBROUTINE n [e]
IN FUNCTION n [e]
where:
n Is a program unit name.
e is an external program unit name.
m is an unnamed block data program sequence number.

The specified program unit is taken from the p subfield of the command, or from the PROG command
default program unit, if p is not specified in the command.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

Appendix J. ASCII FORTRAN Level 8R1 and Higher Levels

J.1. General

ASCII FORTRAN levels 9R1 and higher contain all the features of the FORTRAN standard,
X3.9-1978 (called FORTRAN 77). ASCII FORTRAN level 8R1 doesn’t have all these features.
This appendix compares ASCII FORTRAN level 9R1 and higher to level 8R1. ASCII FORTRAN
level 8R1 is missing the following six statements: PROGRAM (see 7.9), INTRINSIC (see 7.2.4),
SAVE (see 7.12), OPEN (see 5.10.1), CLOSE (see 5.10.2), and INQUIRE (see 5.10.3). It is
incompatible with ASCII FORTRAN level 9R1 and higher in the storage allocation of character
data, DO-loops, the typing of parameter constants and statement functions, and list-directed
input/output. It doesn’t contain the 13 new intrinsic functions: ICHAR, CHAR, LEN, INDEX,
ANINT, DNINT, NINT, IDNINT, DPROD, LGE, LGT, LLE, and LLT (see 7.3.1), or the new logical
operators, .EQV. and .NEQV.

A new option, STD=66, is added to the COMPILER statement (see 8.5 and 8.5.6). This new option
forces the ASCII FORTRAN compiler and library routines for level 9R1 and higher to execute
as previous levels of ASCII FORTRAN do in the areas of storage of character data, DO-loops,
typing of statement functions and parameter constants, and list-directed input and output.

This appendix is organized into subsections corresponding to the sections of the standard
document, X3.9-1978. Each subsection of this appendix contains extensions in level 9R1 and
higher over ASCII FORTRAN level 8R1 and conflicts between ASCII FORTRAN levels 9R1 and
higher and level 8R1. ASCII FORTRAN extensions to level 8R1 in levels 9R1 and higher are
features that have been implemented to make ASCII FORTRAN conform to the standard
completely. Conflicts occur where the same construct can have different meanings in the two
levels. Thus, conflicts imply that a change is made to a feature in ASCII FORTRAN level 8R1
to achieve compatibility with the standard.

J.2. FORTRAN Terms and Concepts
Extensions:

A main program can have a PROGRAM statement as its first statement. Level 8R1 has no
PROGRAM statement (see 7.9).

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

J-2

Conflicts:

Character storage units for a datum are logically consecutive. Level 8R1 starts each character
datum on a word boundary. The COMPILER statement provides an option, STD=66, to allow
compatibility with previous levels on character data (see 8.5 and 8.5.6).

J.3. Characters, Lines, and Execution Sequence

Extensions:

PARAMETER statements can occur before and among IMPLICIT statements. Any specification
statement that designates the type of a symbolic name of a constant must precede the
PARAMETER statement that defines that particular symbolic name; the PARAMETER
statement must precede all other statements containing the symbolic name of constants that are
defined in the PARAMETER statement. Level 8R1 does not allow typing of PARAMETER
constants (see 6.3 and 6.8). The COMPILER statement provides an option, STD=66, to allow
compatibility with previous untyped PARAMETER constants.

Conflicts:

None.

J.4. Data Types and Constants
Extensions:

A complex constant can be written as a pair of integer constants or real constants. Level 8R1
allows only real constants (see 2.2.1.3).

Conflicts:

None.

J.5. Arrays and Substrings
Extensions:

You can use array names in a SAVE statement. Level 8R1 does not have a SAVE statement
(see 7.12).

Conflicts:

None.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Level 8R1 and Higher Levels

J-3

J.6. Expressions

Extensions:

Complex operands are allowed in relational expressions with the .EQ. and .NE. operators
unless one operand is double-precision. The comparison of a double precision value and
a complex value is not permitted. Level 8R1 does not allow complex operands in relational
expressions (see 2.2.3.3.1).

B The logical operators .NEQV. and .EQV. with lowest precedence are allowed. These
operators are not in level 8R1 (see 2.2.3.3.1).

Conflicts:

None.

J.7. Executable and Nonexecutable Statement Classification

Extensions:

None.

Conflicts:

None.

J.8. Specification Statements

Extensions:

EQUIVALENCE statements can contain character substring names. Level 8R1 doesn’t
allow character substring names in EQUIVALENCE statement lists (see 6.4).

Integer constant expressions are allowed for subscript and substring expressions in
EQUIVALENCE statements. Level 8R1 does not allow substring expressions in
EQUIVALENCE statements (see 6.4).

In the COMMON statement, an optional comma is allowed before the slash that comes
before the common block name, thatis, [[,]1/[cb 1/ nlist].... No comma is allowed
for level 8R1 (an error occurs) (see 6.5).

A parameter constant can be typed in an IMPLICIT statement or in an explicit type
statement (see 6.3 and 6.8). Level 8R1 does not allow typing of parameter constants. The
COMPILER statement provides an option, STD=66, to allow compatibility between levels
9R1 and higher and lower levels of ASCII FORTRAN for typing of parameter constants (see
8.5 and 8.5.6).

The name of a statement function can appear in an explicit type statement. The name of
a statement function can be typed by an IMPLICIT statement. Level 8R1 does not type
statement functions (see 6.3 and 7.4.1). The COMPILER statement provides the option,
STD=66, to allow compatibility between level 9R1 and lower levels of ASCII FORTRAN for
typing of statement functions (see 8.5 and 8.5.6).

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Level 8R1 and Higher Levels

J-4

The length in a CHARACTER type statement can be an asterisk or an integer constant
expression in parentheses as well as just an unparenthesized constant (that is, (#) or (exp)
or const). An entity in a CHARACTER statement must have an integer constant expression
as a length specification unless that entity is an external function, a dummy argument of
an external procedure, or a character constant that has a symbolic name. These exceptions
can have a length specification of asterisk. The length specified for a character statement
function or statement function dummy argument of type character must be an integer
constant expression. Neither an asterisk nor an expression is allowed in the length
specification in level 8R1 (see 6.3.2).

The length for a CHARACTER array element can occur before and after the element (that
is, a(d)*length). In level 8R1, the length can come before the subscript but an error is
issued if it appears after the subscript (see 6.3.2).

The comma is optional in the character type statement in the form:
CHARACTER[#* /len[,]]) nam[,nam] . . .
Level 8R1 issues an error message for the comma following /en (see 6.3.2).
In the IMPLICIT statement, the length for character entities can be an unsigned, nonzero
integer constant, or an integer constant expression enclosed in parentheses that has a

positive value. An unsigned, nonzero integer constant is allowed in level 8R1 but not an
expression (see 6.3.1).

A BLOCK DATA subprogram name can occur in an EXTERNAL statement. Level 8R1 does
not allow the optional name for a BLOCK DATA subprogram (see 7.2.3 and 7.8.2).

The INTRINSIC statement identifies a symbolic name as representing an intrinsic function.
Level 8R1 does not have the INTRINSIC statement (see 7.2.4).

The SAVE statement retains the definition status of an entity after execution of a RETURN
or an END statement in a subprogram. Level 8R1 does not have a SAVE statement (see
7.12).

Conflicts:

Character equivalencing is based on character storage units in level 9R1 and higher and
on words in level 8R1. This can give different results. This applies to both explicit
EQUIVALENCE statements and to argument association and COMMON association. For
example:

CHARACTER A%4,B%4,C(2)*3
EQUIVALENCE (A,C(1)).(B.C(2))

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

Level 9R1:
1 2 3 4 5 6 7 8
A
B
C(1) C(2)
Level 8R1:
1 2 3 4 5 6 7 8
A B
c(1) C(2)

The COMPILER statement provides an option, STD=66, to provide for compatibility with
lower levels of ASCII FORTRAN (see 8.5 and 8.5.6).

B The PARAMETER statement gives a constant a symbolic name. If the type of the name
is not default implied, the type must be specified by an explicit type statement or by an
IMPLICIT statement prior to the appearance of the name in a PARAMETER statement.
PARAMETER symbolic names have no type in level 8R1. Assignment of the value of the
expression is done in level 9R1 and higher as in an assignment statement (that is, with type
conversion, if necessary). The syntax of the PARAMETER statement is different in level
8R1 in that no parentheses can be used. Both forms of the PARAMETER statement syntax
are allowed in level 9R1 and higher (see 6.8). The STD=66 option in the COMPILER
statement provides for compatibility on previous levels of ASCII FORTRAN for typing of
parameter constants (see 8.5 and 8.5.6).

J.9. DATA Statement
Extensions:

B The comma before the variable list is optional, that is, [[,Jnlist /clist /] The comma
is required in level 8R1. A warning is given if the comma is omitted (see 6.9.1).

B Substring names are allowed in the variable list. Level 8R1 doesn’t allow substring names
in a DATA statement variable list (see 6.9.1).

Conflicts:
A PARAMETER constant beginning with the letter O in the constant list of a DATA statement

is interpreted by level 8R1 as an octal constant and by level 9R1 and higher as the PARAMETER
constant (see 6.9.1).

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

J-6

For example:

PARAMETER (02=5.)
DATA A/02/

J.10. Assignment Statements
Extensions:

None.

Conflicts:

None.

J.11. Control Statements
Extensions:

The DO-variable and the DO-statement parameters can be real, double precision, or integer.
Level 8R1 generates an error for noninteger DO-variables (see 4.5).

Conflicts:

In the standard, a DO loop need not be executed. The iteration count is given by
MAX(INT(m2-ml + m3)/ m3),0). The DO loop is not executed if m1 > m2 and m3 > 0 or
if ml < m2 and m3 < 0. In level 8R1, a DO loop is always executed. The iteration count
is given by MAX(((e2-el)/ e3 +1),1). If el > e2 and e is omitted, level 8R1 assumes e3 =-1,
and level 9R1 assumes e3 =41 (see 4.5.4.1). The STD=66 option of the COMPILER statement
provides for compatibility with previous levels of ASCII FORTRAN for DO loops (see 8.5 and
8.5.6).

J.12. Input/Output Statements
Extensions:

B The internal unit identifier is a character variable or character array or character array
element or character substring that specifies an internal file. Level 8R1 does not allow a
character substring for an internal unit identifier (see 5.9.1 and 5.9.3).

B An empty I/0 list is allowed on reads or writes to skip a record or to write an empty record.
Level 8R1 compiler requires a nonempty I/0 list on list-directed reads, unformatted
sequential-access writes, list-directed write or print, and unformatted direct-access writes.
Errors are issued when the list is missing (see 5.6.1.4, 5.6.2.2, 5.6.2.4, and 5.7.3).

B Character substring names are allowed in I/0 lists. Level 8R1 only allows them in output
lists (see 5.2.3).

B Character constants produced by list-directed output are not delimited by apostrophes, are
not preceded or followed by a blank or comma, and do not have internal apostrophes
represented by two apostrophes.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

J-17

B The implied-DO list parameters are the same as the new DO-loop parameters (that is, more
types, zero iterations possible). Level 8R1 doesn’t allow the new parameters (see 4.5 and
5.2.3).

B The OPEN statement is not in level 8R1 (see 5.10.1).

M The CLOSE statement is not in level 8R1 (see 5.10.2).
B The INQUIRE statement is not in level 8R1 (see 5.10.3).
Conflicts:

Character variables are only blank filled to the declared size of the variable during assignment
statements and I/0. Pre-level 9R1 compilers and I/0 systems performed blank fill to word
boundaries even though the character variable was not a multiple of four characters. The
STD=66 option does not change this incompatibility. Pre-level 9R1 absolute elements that use
the FORTRAN common bank C2F$ will not execute as before. That is, the old compiler will
blank fill to a word boundary, but formatted 1/0 will not blank fill to a word boundary.
Character comparisons of the data will not find any equal conditions.

J.13. Format Specification
Extensions:

If the output format is Gw.d Ee and the value of the variable fits an F format, the format used
is F(w-(e +2)).d-1,e +2)’b’) where b is a blank. The format is F(w-4).d-1,4Cbh’) in level
8R1 (see 5.3.1).

Conflicts:

@ During list-directed input, if the first record read in a read operation has no characters
preceding the first value separator, this indicates a null field. In level 8R1 it does not
indicate a null field but is handled the same as any other record. If you use the STD=66
option in the COMPILER statement, execution chooses level 8R1 and earlier methods of
input.

B During list-directed output, character constants always have the PRINT format (that is, no
apostrophes around character output). In level 8R1, PRINT and WRITE have different
formatting in that apostrophes are used during the WRITE. Also on list-directed output
in level 9R1 and higher, a complex constant must be written on one record if it fits, by itself,
on a record. Level 8R1 breaks it up without checking to see if it fits on one line. If you
use the STD=66 option of the COMPILER statement, execution proceeds with level 8R1 and
earlier types of output.

J.14. Main Program

Extensions:

The PROGRAM statement to name a main program must be the first statement in the main
program if it occurs. The PROGRAM statement is not implemented in level 8R1 (see 7.9).

Conflicts:

None.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Level 8R1 and Higher Levels

J-8

J.15. Functions and Subroutines

Extensions:

The following intrinsic functions are not in level 8R1: ICHAR, CHAR, LEN, INDEX,
ANINT, DNINT, NINT, IDNINT, DPROD, LGE, LGT, LLE, LLT, UPPERC, LOWERC, and
TRMLEN (see 7.3.1).

Extended conversion intrinsic functions are the following: INT, REAL, DBLE, and CMPLX
for all argument types. Level 8R1 gives warnings for use of complex with INT and proceeds
to flag further uses of INT as a user function. FORTRAN 77 allows integer, real, complex,
and double-precision arguments for INT. Level 8R1 gives warnings for any use of REAL
with variables other than complex and proceeds to flag further uses of REAL as a user
function. FORTRAN 77 allows integer, real, and complex as arguments for REAL. Level
8R1 gives warnings for any use of DBLE with complex variables, and sets further calls of
DBLE to a user function. FORTRAN 77 allows integer, real, double-precision, and complex
arguments for DBLE. Level 8R1 gives warnings for any complex variables used as
arguments of CMPLX; it makes further uses of CMPLX become calls to a user function.
FORTRAN 77 allows integer, real, double-precision, and complex arguments for CMPLX
(see 7.3.1).

The FUNCTION statement has the length for a character function as
CHARACTER([* length JC(A) while level 8R1 allows it after the function name, that is,
CHARACTER FUNCTION C#*3(A) (see 7.4.3.2). Both forms are allowed in level 9R1 and
higher.

Empty parentheses are allowed ori the SUBROUTINE statement. The FORTRAN 77 form
is SUBROUTINE sub [([d[,d]. . .])]; the level 8R1 form is SUBROUTINE sub [(d[,d] .
.)1 . The forms sub and sub() are equivalent (see 7.4.4.2).

An actual argument for a subroutine call can be %5, where s is a statement number. Level
8R1 uses currency signs ($) or ampersands (&) for the statement number (see 7.2.1 and 7.2.2).

A dummy argument array name can be associated with an actual argument which is an
array element substring as well as an array or array element. Level 8R1 passes a temporary
for an array element substring.

A dummy argument that becomes defined can be associated with a substring as an actual
argument. Level 8R1 associates it with a variable, an array element, or an expression.

Empty parentheses are allowed in the ENTRY statement. The FORTRAN 77 form is
ENTRY en[([d[-d]...])] while the level 8R1 form is ENTRY en[(d[.d]...)]]. FORTRAN
77 requires that the function be specified with the form en () even if the entry statement
did not have the empty set of parentheses (see 7.7).

Conflicts:

Statement functions are typeless in level 8R1, but are typed (just like other functions) in
level 9R1 and higher. This can cause different results on account of implied type
conversions (see 6.3 and 7.4.1). The STD=66 option of the COMPILER statement provides
for compatibility of level 9R1 and higher with previous levels of ASCII FORTRAN for typing
of statement functions (see 8.5 and 8.5.6).

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Level 8R1 and Higher Levels

J-9

B Register Al contains a function packet address for character function references (see K.4.6).
For level 8R1 ASCII FORTRAN, register Al contains a result address for character function
references. This is an incompatibility between level 8R1 and all higher levels. If a program
compiled with level 9R1 or higher refers to a character function program compiled by level
8R1, the STD=66 option of the COMPILER statement must be present in the level 9R1 or
higher program.

B If the value of e in RETURN[e] is less than one or greater than the number of asterisks
in the subroutine entry, in level 9R1 control returns to the CALL statement that initiates
the subprogram reference. In level 8R1, an error is issued and the program continues with
unknown results (see 7.6).

J.16. Block Data Subprogram

Extensions:

An optional global name can be specified for a block data subprogram, that is, BLOCK DATA
[name]. Level 8R1 doesn’t allow the optional name.

Conflicts:

None.

UP-8244.3

FORTRAN (ASCII) Reference
Interlanguage Communication

Appendix K. Interlanguage Communication

K.1. ASCII FORTRAN (FTN) to SPERRY FORTRAN V

The FORTRAN V subprogram must be declared as:

or:

EXTERNAL a (FOR)

EXTERNAL #*a

where a represents the FORTRAN V subprogram name.

The call to the FORTRAN V subprogram appears syntactically exactly as though it is a call to
an ASCII FORTRAN subprogram.

Restrictions and Considerations:

If both the ASCII FORTRAN and FORTRAN V programs perform 1/0 operations, the ASCII
FORTRAN library element F2FCA must be reassembled. The allocation and releasing of
buffer areas is not common between the two FORTRANSs and I/0 operations may fail. This
problem is resolved by reassembling element F2FCA with the required amount of main
storage. Refer to G.7 for determining the required amount.

FORTRAN V Series E subprograms are restricted to symbiont types of 1/0 and the tag,
CLOST$, will be undefined at collection time. This can be ignored since CLOST$ is defined
in FORTRAN V Series T.

Any files opened by FORTRAN V Series T must be explicitly closed using a CALL CLOSE
statement in a FORTRAN V subprogram if they are to be usable after program termination.

The FORTRAN V subprogram cannot call the EXIT service routine.
The FORTRAN V subprogram name can’t appear in a BANK statement.

FORTRAN V subprogram arguments and function names should not be type character or
double-precision complex as FORTRAN V supports neither data type.

The walkback mechanism doesn’t work if a walkback is attempted from a FORTRAN V
subprogram to an ASCII FORTRAN program.

UP-8244.3

FORTRAN (ASCII) Reference

Interlanguage Communication

K-2

Common blocks or local variables shared with or passed to FORTRAN V routines should
not be in virtual or banked space.

K.2. ASCII FORTRAN to PL/I

The PL/I external procedure must be declared as:

EXTERNAL a(PL1)

where a represents the PL/I procedure name.

The call to the PL/I procedure appears syntactically exactly as though it is a call to an ASCII
FORTRAN subprogram.

K.2.1. Restrictions and Considera:'ons

Level 8R1 PL/I, or later, must be used.

Any file opened by a PL/I procedure must be closed by a PL/I procedure. Files can be shared
between ASCII FORTRAN and PL/I, but they must be closed by the language which opened
them before they can be accessed by the other language. A file that is opened by a given
language does not have to be closed before switching to another language as long as the
called language routine does nol. access the file.

The PL/I procedure name can’t be a dummy argument name.

An argument to a PL/I procedure cannot be a label, subprogram name, or array name. An
array element can be passed from ASCII FORTRAN to PL/I, but PL/I must declare its
counterpart as a single data item; structures or cross-sections of arrays are not allowed.

Passing an array name from ASCII FORTRAN to PL/I can be accomplished through common
blocks. The PL/I procedure must use the EXTERNAL attribute on the declaration, and the
ASCII FORTRAN program must specify the array in a named common block. The PL/I
common block name is the variable name with the EXTERNAL attribute. ASCII FORTRAN
stores arrays in column-major order while PL/I stores them in row-major order. This
means that either the ASCII FORTRAN program must transpose the array so that it is in
row-major order when the PL/I procedure is called or the PL/I procedure must refer to the
array with the subscripts in reverse order and the array dimensioned in reverse order.

For example:

ASCII FORTRAN PL/I
EXTERNAL PL1SUB(PL1) PL1SUB: PROC;

INTEGER ARR(2,4,6) DCL 1 BLK1 EXTERNAL ALIGNED,
COMMON/BLK 1/ARR 2 ARR(6,4,2) FIXED DECIMAL(10,0);
ARR(2,3,4) = 234 PUT SKIP (WANT 234 ', ARR(4,3,2)):
CALL PL1SUB PUT SKIP;

END END;

If execution is stopped by the PL/I procedure using the STOP statement, any files opened
by ASCII FORTRAN are not properly closed unless the ASCII FORTRAN program explicitly
closes them using the CLOSE statement.

FORTRAN (ASCII) Reference
UP-8244.3 Interlanguage Communication K-3

B Common blocks or local variables shared with or passed to PL/I should not be in virtual
or banked space.

K.2.2. PL/I Argument Counterparts

PL/I has the following argument counterparts to ASCII FORTRAN.

ASCIl FORTRAN PL/I Comment
INTEGER FIXED BINARY (p,q) p can range 1-35, ¢ must be O.
FIXED DECIMAL (p,q) p can range 1-10, g must be O.
REAL FLOAT BINARY (p) p can range 1-27.
FLOAT DECIMAL (p) p can range 1-8.

DOUBLE FLOAT BINARY (p) p can range 28-60.

PRECISION FLOAT DECIMAL (p) p can range 9-18.

COMPLEX FLOAT BINARY COMPLEX (p) p can range 1-27.

FLOAT DECIMAL COMPLEX (p) p can range 1-8.

COMPLEX* 16 FLOAT BINARY COMPLEX (p) p can range 28-60.

FLOAT DECIMAL COMPLEX (p) p can range 9-18.

LOGICAL BIT (36) ALIGNED Only the rightmost bit is used by
ASCIl FORTRAN. The PL/I string
may not be of varying length.

CHARACTER#*n CHARACTER (n) The PL/I string may not be of
varying length.

K.3. ASCII FORTRAN to ASCII COBOL (ACOB)

The ASCII COBOL (ACOB) subprogram must be declared as:
EXTERNAL a(ACOB)

where a represents the ACOB subprogram name.

The call to the ACOB subprogram appears syntactically exactly as though it is a call to an ASCII
FORTRAN subprogram.

Restrictions and Considerations:
B ACOB level 4R2, or higher, must be used.

B Any file opened by an ACOB subprogram must be closed by an ACOB subprogram. Files
can be shared between ASCII FORTRAN and ACOB, but they must be closed by the language
that opened them before they can be accessed by the other language. A file that is opened
by a given language doesn’t have to be closed before switching to another language as long
as the called language routine doesn’t access the file.

UP-8244.3

FORTRAN (ASCII) Reference
Interlanguage Communication

K-4

The ACOB subprogram name can’t be a dummy argument name.

It is your responsibility to ensure the data alignment is the same for an ASCII FORTRAN
argument and its ACOB counterpart. Special care must be taken when passing character
type data to ACOB. If the ASCII FORTRAN argument is not word-aligned, the ACOB
argument declaration must reflect the offset via the use of a structure. To ensure that an
ASCII FORTRAN character scalar or array is word-aligned, place it as the first item in
COMMON or equivalence the character item to an integer variable.

The ACOB subprogram name must not be a function name since ACOB doesn’t support
functions.

An argument to an ACOB subprogram must not be a label or subprogram name since ACOB
has no argument counterpart.

An array name can be passed from ASCII FORTRAN to ACOB as an argument. However,
ASCII FORTRAN stores arrays in column-major order while ACOB stores them in
row-major order. This means either the ASCII FORTRAN program must transpose the
array so that it will be effectively in row-major order when the ACOB subprogram is called,
or the ACOB procedure must reference the array with the subscripts in reverse order and
the array dimensioned in reverse order. Beware of ASCII FORTRAN and ACOB alignment
conventions.

Example:

ASCIl FORTRAN ACOB

EXTERNAL C(ACOB) LINKAGE SECTION.
CHARACTER#5 ARR(2,4,6) 01 BUFF.
EQUIVALENCE (ARR({1,1,1),IDUM) 02 BUFA OCCURS 6 TIMES.
ARR(2,3,4) = 'ABCD’ 03 BUFB OCCURS 4 TIMES.
CALL C(ARR) 04 BUFC PIC X(5) OCCURS 2 TIMES.
PRINT *, 'WANT EFG:’, ARR(2,3,4) PROCEDURE DIVISION USING BUFF.
END C.

DISPLAY 'WANT ABDC:',

BUFC (4, 3, 2).
MOVE 'EFG’ TO BUFC (4, 3, 2).
EXIT PROGRAM.

If execution is stopped by the ACOB subprogram, any files opened by ASCII FORTRAN don’t
close properly unless the ASCII FORTRAN program explicitly closes them via the CLOSE
statement.

If ASCII COBOL passes a group item with no explicit type to an ASCII FORTRAN program,
the corresponding ASCII FORTRAN argument can be type INTEGER, REAL, DOUBLE
PRECISION, or LOGICAL. CHARACTER type is not allowed. ASCII FORTRAN can only
access that portion of a COBOL group item that is declared, either explicitly or implicitly,
by the ASCII FORTRAN program.

Common blocks or local variables shared with or passed to ACOB should not be in virtual
or banked space.

UP-8244.3

FORTRAN (ASCII) Reference
Interlanguage Communication

K-5

K.3.1. ASCII COBOL Argument Counterparts

ASCII COBOL (ACOB) has the following argument counterparts to ASCII FORTRAN.

ASCH FORTRAN

ACOB

Comment

INTEGER

REAL
DOUBLE PRECISION
COMPLEX

LOGICAL

CHARACTER*(n)

TYPELESS t

PIC S9(10) COMP SYNC

COMP-1
COMP-2
No ACOB counterpart

PIC 1 (36) SYNC

PIC X(n)

PIC 1 (36) SYNC

Ensure that the ACOB item is
word-aligned.

Only the rightmost bit is used by
ASCIl FORTRAN. Ensure that the
ACOB item is word-aligned.

Ensure that the alignment is the
same for ASCII FORTRAN and
ACOB.

Ensure that the ACOB item is
word-aligned.

t A typeless argument results from a typeless function, see 2.2.3.4.1.

K.4. ASCII FORTRAN and MASM Interfaces

This section provides information needed when writing Assembler routines that call or are called

by ASCII FORTRAN routines.

K.4.1. Arguments

For procedure calls with one or more arguments, ASCII FORTRAN requires an argument list.
The address of the argument list is in H2 of register AO0. A0 also contains the number of
character arguments in S1 and the total number of arguments in Q2. Bit number 9 of A0
(left-most bit is bit 1) specifies when argument type checking is desired by the caller.

following is the format of register AO for calling an ASCII FORTRAN program.

The

FORTRAN (ASCII) Reference

UP-8244.3 Interlanguage Communication K-6
S1 Q2 H2
A B C D
where:

A (S1 of AO) is the number of character arguments (maximum of 63).

B (Bit 9 of AO; assume bits are numbered 1-36 and the left-most bit is 1) is the
argument type checking bit. If set to 1 by the caller, argument type checking will
not be done. If set to 0, argument type checking will be done unless the called
subprogram has disabled type checking. The called subprogram can disable type
checking by using the COMPILER statement option ARGCHK=OFF or by
compiling the called subprogram with optimization (Z or V option).

C (Q2 of A0) is the total number of arguments (maximum is 250).

D (H2 of A0) is the address of the argument list descriptor words that are explained
in the following discussion.

H1 H2
BDI of argument Address of argument Addressing
Words
a1 Q2 H2 Character
offset length 0 Descriptor
Words
S1 S2 S3 S4 S5 S6 Argument
type type type type type type Type
Words

The addressing words follow one another consecutively in storage. There is one addressing word
for each argument. The bank descriptor index (BDI) is required if the ASCII FORTRAN
subprogram being called expects banked arguments and the argument is not in the control
D-bank. It is also required if the argument is an external subprogram name and the ASCII
FORTRAN subprogram being called has the LINK=IBJ$ or BANKED=ALL compiler statement
options present. Otherwise, the BDI is zero. If an ASCII FORTRAN program calls a MASM
routine with arguments that have a BDI associated with them (that is, the actual data passed
resides in a banked common block), the MASM routine is responsible for basing the argument’s
data bank. All D-bank basing must be done by an ASCII FORTRAN library routine in element
F2ACTIV$. In other words, no LDJ or LBJ instructions should appear in your assembly code
to switch the utility D-bank basing. The interface to the activate routine is:

LA AO, addreswd. GET BDI and address in AO
LMJ X11,VACTIV$. base D-bank

FORTRAN (ASCII) Reference

UP-8244.3 Interlanguage Communication

A0 now contains the item’s absolute address, and its bank is based. All registers except A0 and
X11 are preserved. For details on ASCII FORTRAN banked programs, see Appendix H.

The character descriptor words follow one another consecutively in storage and follow the
addressing words. A character function name or a Hollerith string passed as an argument does
not have a character descriptor word. All other character types of arguments have a character
descriptor word. The offset is the byte offset of the start of the character item within the word
and has the value 0, 1, 2 or 3. If the character item begins on a word boundary, the offset is
zero. A character item beginning on Q2 of the word has an offset of 1, an item beginning on
Q3 has an offset of 2, and an item beginning on Q4 has an offset of 3. The character length,
represented in number of characters, is in Q2 of the character descriptor word. If a character
array is passed as an argument, the length passed is the size of an array element. If a character
substring is passed as an argument, the length passed is the length of the substring.

If argument type checking is desired, bit 9 of A0 (assume bits numbered from 1 to 36 and the
left-most bit is 1) must be zero and the argument type words must be present. The argument
type words follow one another consecutively in storage and follow the character descriptor words.
There is one type word for each six arguments. The following is a list of allowable types:

Subprogram

Integer

Real

Double-Precision Real
Complex

Double-Precision Complex
Character

Logical

Label

Hollerith

OO0 U kWNRO

A type 0 subprogram, matches any other type. Type 9, Hollerith, matches all types except
character and label. All other types must match exactly or else a run-time diagnostic message
is issued when type checking is enabled. The argument type words are optional. If they are
not present, either the caller must specify so by setting bit 9 of AO to 1 or the callee must disable
type checking by using the COMPILER statement option ARGCHK=OFF or compiling with
optimization.

If an Assembler routine refers to an ASCII FORTRAN subprogram that has the COMPILER
statement option STD=66 present or is compiled by an ASCII FORTRAN compiler lower than
level 9R1, the contents of A0 and the packet format differ. S1 and bit 9 of AO are ignored. The
character descriptor words and the argument type words are not required. In addition, any
character item passed to the ASCII FORTRAN subprogram must begin on a word boundary.

K.4.2. ASCII FORTRAN Register Usage

An ASCII FORTRAN subprogram saves and restores all registers that it uses except for the
volatile set X11, A0O-A5 and R1-R3. An ASCII FORTRAN subprogram requires register R15 to
contain the address of a storage control table (F2SCT) which is used on 1/0 operations and by
several of the ASCII FORTRAN library routines. Register R15 is loaded with the F2SCT address
as part of the initialization performed by an ASCII FORTRAN main program. Once R15 has
been initialized, it is the responsibility of any routine outside the ASCII FORTRAN environment
to preserve its contents upon reentry to an ASCII FORTRAN subprogram.

FORTRAN (ASCII) Reference

UP-8244.3 Interlanguage Communication

K-8

K.4.3. Initializing the ASCII FORTRAN Environment

Under normal ASCII FORTRAN conditions, the ASCII FORTRAN environment is initialized by
a call from the ASCII FORTRAN main program to the ASCII FORTRAN initialization routine.
If an ASCII FORTRAN subprogram is called from an Assembler routine and there is not an ASCII
FORTRAN main program, it is the responsibility of the Assembler routine to call the ASCII
FORTRAN initialization routine. One of two ASCII FORTRAN initialization routines must be
called by the Assembler routine before the ASCII FORTRAN subprogram is called. The ASCII
FORTRAN initialization need only be called once during the program execution. The
initialization routines use only the volatile set of registers. Both initialization routines acquire
buffer space and initialize tables that are used by I/0 and ASCII FORTRAN library routines.
This space is acquired by the common storage management system. If the Assembler routine
or controlling program has its own storage management system, the ASCII FORTRAN library
element F2FCA can be modified and reassembled to avoid any ER MCORES$. See Appendix G
for details.

One of the initialization routines also registers a contingency routine for capturing contingency
interrupts, which is required for the proper execution of some ASCII FORTRAN programs.
However, since some applications prefer to capture their own contingencies, a second routine
which does not register contingencies is provided. The ASCII FORTRAN service routines
UNDSET, OVFSET, and DIVSET register contingencies and should not be called if an application
depends on another contingency registration.

The following call initializes the ASCII FORTRAN environment but doesn’t register the ASCII
FORTRAN contingency routine.

LMJ A2FINTS$

The following call initializes the ASCII FORTRAN environment and registers the ASCII
FORTRAN contingency routine.

LMJ X11,FINT2$
On return from either of the initialization routines, register R15 contains the address of the

ASCII FORTRAN storage control table (F2SCT). It is the responsibility of the Assembler routine
to ensure that R15 contains the F2SCT address when calling an ASCII FORTRAN subprogram.

FORTRAN (ASCII) Reference

UP-8244.3 Interlanguage Communication

K-9

K.4.4. Terminating the ASCII FORTRAN Environment

Under normal conditions, the ASCII FORTRAN environment is terminated by a call from the
main program to the ASCII FORTRAN termination routine. The function of the termination
routine is to output buffered I/0 to the appropriate files and close all opened files. An ER EXIT$
is then performed which terminates the program. If an Assembler routine calls an ASCII
FORTRAN subprogram and control never reaches an ASCII FORTRAN main program for normal
program termination, it is the responsibility of the Assembler routine to close all opened 1/0
files. The closing of files can best be accomplished by having the ASCII FORTRAN subprogram
close them using the CLOSE statement. If the ASCII FORTRAN termination routine is called,
files are closed but control is not returned to the caller. The following is the Assembler call
to the ASCII FORTRAN termination routine.

LMJ X11,FEXITS

K.4.5. Calling an ASCII FORTRAN Subprogram

A call to an ASCII FORTRAN subprogram takes one of several forms depending upon whether
the subprogram is banked or not. For a nonbanked ASCII FORTRAN subprogram, call the
following Assembler linkage can be used.

LXLU X11,0
LtMJ X11,entry-point

ASCII FORTRAN returns to the caller via:
J 0,X11

For a banked ASCII FORTRAN subprogram call (that is, the ASCII FORTRAN subprogram has
the compiler statement options BANKED=ALL, BANKED=RETURN, or LINK=IBJ$), use one
of two calling sequences:

LXLU X11,bdi-of-the-subprograms-bank
LiJ X11,entry-point

or:

LXLU X11,BDICALL$ +entry-point
IBJ$ X11,entry-point

For a description of IBJ$ and BDICALLS$, see the Collector Reference, UP-8721 (applicable
version).

An ASCII FORTRAN banked subprogram returns by:
LAH1 A4,X711-save-location

JZ A4,0,X11
LIJ X11,0X11

FORTRAN (ASCII) Reference
UP-8244.3 Interlanguage Communication K-10

K.4.6. ASCII FORTRAN Function References

If an ASCII FORTRAN (level 9R1 or higher) character function is referred to, register A1 must
be set up by the calling routine to contain:

H1 H2
0 fetn-pkt-addr

where fetn-pkt has the form:

H1 H2
(] result-addr
0 char-length 0

The result-addr field in H2 of the first word points to the caller’s storage area where the result
of the function will be stored. This storage area must be in the control bank or be visible to
the function. It is the caller’s responsibility to ensure that the function result area is large
enough to hold the function result.

The char-length field in Q2 of the second word of the packet is the length of the function result
expressed in number of characters.

For ASCII FORTRAN levels 8R1 and lower, and whenever the compiler statement option
STD=66 is used in the function being called, register A1 must contain:

H1 H2
0 result-addr

The result-addr field description is the same as for levels 9R1 and higher. A fctn-pkt is not
required for levels lower than 9R1.

An ASCII FORTRAN character function places the function result in the caller’s storage area
pointed to by result-addr . If the value of a function isn’t a character string, it is returned in
registers A0, A0 through Al, or A0 through A3, depending on the function type.

UP-8244.3

FORTRAN (ASCII) Reference
Interlanguage Communication

K-11

K.4.7. Example

The following is an example of an Assembler routine that passes three arguments to the ASCII

FORTRAN subroutine FTEST.

The following is the ASCII FORTRAN subroutine FTEST that is called from the preceding

N NN
Wn =

NNNN
Noo s

NN
© ®

N = e e o o e b o
COONDIDIARWN=OOONDIDWN =

$(1)
MATH#*

FTNREF

$(0)
CHARD

ARGS

. STRING

REALNO

Assembler routine:

ONOA AWM =

SUBROUTINE FTEST (CALTYP, X, CALID)
CHARACTER CALTYP#*(*), CALID%*3

AXR$
LMJ A2 FINTS

LU R4,4

LA A0,(020003,ARGS)
LXLU X11,0

LMJ X11,FTEST

LA A4,REALNO
FA A4,(1.0)
SA A4,REALNO

JGD R4, FTNREF

LMJ X11,FEXIT$

FORM 9,9,18
+ STRING
+ REALNO
+ STRING
CHARD 0,3,0
CHARD 3,30

+ 6,2,6,0,0,0
ASCII

‘ASMB 17’

+ 2.5
END MATH

. initialize FTN

. loop initialization count
. list pointer

. call nonbanked FTN rtn
. bump 2nd arg by 1.0

. repeat call to FTN rtn

. terminate program

. address of 1st arg

. address of 2nd arg

. address of 3rd arg

. 'ASM’ offset=0 len=3
. 'B17’ offset=3 len=3
. char real char type

*
PRINT %, "CALLER ID *, CALID, " TYPE ’, CALTYP
PRINT #*, ‘SIN OF', X, " = ", SIN(X)
PRINT %, 'COS OF, X, " = ', COS(X)
RETURN
END

FORTRAN (ASCII) Reference
UP-8244.3 Interlanguage Communication K-12

The execution of the program is:

CALLER ID B17 TYPE ASM

SIN OF 2.5000000 = .59847214

COS OF 2.5000000 = -80114362
CALLER ID B17 TYPE ASM

SIN OF 3.5000000 = -35078323

COS OF 3.5000000 = -93645669
CALLER ID B17 TYPE ASM

SIN OF 4.5000000 = -97753011

COS OF 4.5000000 = -.21079580
CALLER ID B17 TYPE ASM

SIN OF 5.5000000 = -.70554033

COS OF 5.5000000 = .70866977
CALLER ID B17 TYPE ASM

SIN OF 6.5000000 = .21511999

COS OF 6.5000000 = .97658762

At line 3 of the Assembler routine, a call is made to initialize the ASCII FORTRAN environment.
The ASCII FORTRAN initialization routine acquires I/0 buffer storage via the common storage
management system. If the Assembler routine has its own storage management system, the
ASCII FORTRAN library element F2FCA needs modifications and reassembling. See Appendix
G for details.

At line 6, register AQ is loaded with a literal that specifies:

1. Two character arguments (S1)

2. Perform argument type checking (bit 9 of the literal is 0)

3. Three total arguments (Q2).

The second half of A0 contains the address of the argument list.

Lines 19 through 21 contain the argument addressing words. Lines 22 through 23 contain the
character descriptor words for the first and third arguments, respectively, which are character
types. The first argument passed is the character string ASM, the second argument passed is
the real number 2.5 (which is modified after each call by the Assembler routine), and the third
argument is the character string B17.

Line 24 contains the argument type word which the ASCII FORTRAN subprogram requires for
argument type checking. The first and third arguments are character types as indicated by the

6, and the second argument is a real type as indicated by the 2.

At line 14, the ASCII FORTRAN termination routine is called. This closes any opened 1/0 file
and then terminates program execution using an ER EXITS$.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

-1

L.1. General

Appendix L. ASCII FORTRAN Sort/Merge Interface

A sort/merge interface is available from ASCII FORTRAN to the sort/merge package. The
sort/merge package is described in the Sort/Merge Reference, UP-7621 (applicable version).

L.2. Sort/Merge Features Available Through ASCII FORTRAN

Enter the sort/merge interface using the CALL statement in ASCII FORTRAN. The sort/merge
interface provides the following functions:

CALL FSORT
CALL FMERGE
CALL FSCOPY

CALL FSSEQ

CALL FSGIVE

CALL FSTAKE

Perform a sort.

Perform a merge.

Specify an Assembler sort parameter table to be copied. This table can
be used in subsequent sorts or merges. The use of such a table can also

be inhibited.

Specify your collating sequence that is used in subsequent sorts or
merges. The use of such a collating sequence can also be inhibited.

Deliver an input record to sort without leaving your input subroutine.

Receive an output record from sort without leaving the your output
subroutine.

L.3. Restrictions With Sort/Merge Interface

L.3.1. Banked Arguments Not Allowed

The data given to any area of the sort/merge interface must not be banked. The scratch area

used by the sort/merge interface must not be banked.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Sort/Merge Interface

-2

L.3.2. Sort/Merge Interface Contains Only Formatted 1/0

The sort/merge interface attempts only formatted 1/0 on all logical unit numbers used in the
calls to do a sort or a merge. The ASCII FORTRAN I/0 complex doesn’t test the file to determine
if you have a formatted file. This can result in errors from the sort/merge interface.

L.3.3. Use of ASCII FORTRAN Free Core Area Element (F2FCA)

When the file RECORE is not assigned to the run (for FSORT only), the sort/merge interface
attempts to get storage space from the ASCII FORTRAN library common storage management
system (CSMS). If you supply a version of ASCII FORTRAN library element F2FCA so that the
CSMS routines are not used, you must make element F2FCA large enough to accommodate the
storage area needed by the sort/merge interface routines, the sort/merge package, and the area
needed for the FORTRAN library (see G.7).

L.3.4. Use of an Asterisk as a Dummy Character Argument Length

You can’t use an asterisk as a length specification for the dummy character arguments for the
following user-specified subroutines:

B Input

B Output

B Comparison

B Data reduction

The length specification must be an unsigned, nonzero integer constant, or an integer constant
expression enclosed in parentheses that has a positive value.

L.4. The CALL Statement to FSORT

L.4.1. The CALL Statement for a Sort
The form of the CALL statement for a sort is:

CALL FSORT (infost ,inpt ,outpt [,comprt] [,datrd])
where:

infost is the information string, a character string that describes various parameters to
the sort/merge interface, such as record sizes, key fields, and scratch facilities for
FSORT. A key field (or your comparison routine) and a record size must be
specified in infost.

Infost contains items of information separated by commas. Blanks in infost are
ignored. No distinction is made between uppercase and lowercase alphabetic
characters. Infost is scanned from left to right and must be terminated by some
character which is an illegal ASCII FORTRAN character, such as an exclamation
point (!). An asterisk (#) must not terminate infost.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-3

Infost can contain several clauses. The mnemonics used are truncated by the
sort/merge interface to the first four characters. The following items can be used

in infost for the call to FSORT:

1.

RSZ=rich

Rich is the record length in ASCII characters. This record size must be
specified when a sort is to be done. The RSZ clause can appear only once
in Infost. A record size clause can appear only once in infost; that is, the
RSZ and VRSZ clauses can’t appear in the same infost.

VRSZ = mrich /Inkszch

Mrlch is the maximum record size in ASCII characters for variable length
records. Lnkszch is an optional parameter indicating link size in ASCII
characters. When Inkszch is omitted, the slash (/) can also be omitted.
Lnkszch must be large enough to accommodate all keys. For example, if the
keys are specified by:

KEY=(11/15,1/10/d/s)

the last character in any key field for this KEY specification is the 25th
character. Therefore, the link size must be at least 25 characters long. The
link size should be specified only when a comparison routine has been
specified. The VRSZ clause can appear only once in infost. A record size
clause can appear only once in infost; that is, the RSZ clause and the VRSZ
clause can’t both be used in the same infost.

When sorting variable length records, the records are separated into smaller
parts (links) of equal size that are joined by pointers. As an example,
consider a record of nine words with the link size four words. Schematically,
the record is stored as:

word 1

word 2

word 3

word 4

pointer 1

= A

A >

B >

word 5

word 6

word 7

word 8

pointer 2

— B

word 9

garbage

null pointer

When the link size is given in the VRSZ clause, consider the following rules:

1. The link size should not be too small. For example, if the link size is
given as one word, the core (main storage) required for each record is
exactly twice the record size. This means that the sort uses many more
resources (main storage, mass storage, and tapes) than necessary.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

2. The link size should not be too large, since this may mean that much
of the area remains unused in the last link. This causes problems
because of poor use of main storage.

NOTE: The two rules are in conflict. The choice of a link size requires
a compromise between these two rules.

It is frequently advantageous to sort short variable length records as if these
records were fixed-length records because of the resources used by the
sort/merge package. If these records are treated as fixed length, you must
keep track of the record length.

CONS

CONS indicates that the closing messages from the sort/merge package are
to be sent to the system console. If CONS is not present, the opening and
closing messages from the sort/merge package are sent to the system log.
The opening messages give the block sizes on mass storage and may be used
to check the efficiency of the sort/merge usage of the scratch area. The
closing messages give the input and output record counts and the bias of the
data. The CONS specification can appear only once in infost.

DELL

DELL is used to indicate that the opening and closing messages from the
sort/merge package should not be sent to the system log. This clause can
appear only once in infost .

KEY = keysp
or:
KEY = keyspn

Keysp is a single key specification; keyspn is a multiple key specification
of the form (keysp, keyspy, . . .). The single key specification form,
KEY = keysp, can occur a maximum of 40 times in infost. There may be
a maximum of 40 keysp specifications within the keyspn. More than one
KEY=keyspn clause can occur in infost but only 40 keys are allowed for
each call to FSORT. The limit of 40 keys includes any keys given in the sort
parameter tables copied through the COPY clause (see L.7.1). The key
specification can indicate a character key, that is, a key that begins and ends
on a character boundary, or a bit key that either starts or ends outside a
character boundary. The form of the character key is:

charpos / length / seq / type
where:
charpos is the position within the record of the most significant
character of the key. Character positions are counted from

left to right beginning with position 1.

length is an optional field that specifies the length of the key in
characters. The default for length is 1.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Sort/Merge Interface

L-6

seq

type

is an optional field that specifies the sequencing order of the
key. The value A is used for ascending order; D is used for
descending. The default value is A.

is an optional field that specifies the type of the key. The
value of this field is B, Q, R, S, T, U, or V; U is the default
value. The values for this field indicate:

B The key field contains a signed number in a Series 1100
system internal representation.

Q The key field contains a signed decimal number in 9-bit
ISO character representation with a sign overpunched on
the last digit.

R The key field contains 9-bit ISO characters with a
leading sign, that is, a plus, minus, or blank. Any
character in the sign position that is not a plus, a minus,
or a blank is set to a blank.

S The key field contains 9-bit characters.

T The key field contains 9-bit ISO characters with a sign
in the last character position, that is, a plus, minus, or
blank. Any character in the sign position that is not a
plus, minus, or blank is set to a blank.

U The key field contains an unsigned number in the Series
1100 system internal representation.

V The key field contains a signed decimal in 9-bit ISO
characters with a sign overpunched on the first
character.

The form of the bit key is:

BIT/ wordpos / bitpos / length / seq / type

where:

wordpos is the position within the record of the word that contains the

bitpos

seq

type

most significant bit of the record. Words within the record
are numbered from 1.

is the position of the first bit of the key in the first word of
that key. Bits are numbered from left to right beginning at
1.

is an optional field that specifies the sequencing order of the
key: A for ascending or D for descending. The default is A.

is an optional field that specifies the type of the key. The
values for type may be A, B, D, G, L, M, P, or U; the default
is U. The values for type indicate:

A The key field contains 6-bit characters. All A key fields
must start and end on 6-bit byte boundaries.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

B The key field contains a signed number in the Series 1100
system internal representation.

D The key field contains 6-bit Fieldata characters with a
leading sign, that is, a plus, minus, or blank. Any
character in the sign position that is not a plus, minus,
or blank is set to a blank. All D key fields must start
and end on 6-bit byte boundaries.

G The key field contains 6-bit Fieldata characters with a
sign in the last character, that is, a plus, minus, or blank.
Any character in the sign position that is not a plus,
minus, or blank is set to a blank. The key field must
begin and end on a 6-bit byte boundary.

L The key field contains a number in 6-bit Fieldata
characters with a sign overpunched on the first digit.
The key field must start and end on a 6-bit byte
boundary.

M The key field contains a number in signed magnitude
representation. This means that the first bit is the sign
(that is, a 1 for negative and a 0 for positive), and the rest
of the field is the absolute value of the number.

P The key field contains a signed decimal number in 6-bit
Fieldata characters with a sign overpunched on the last
digit. The key field must begin and end on a 6-bit byte
boundary.

U The key field contains an unsigned number in Series
1100 system internal representation.

COMP

COMP indicates the use of your comparison routine. This indicates the
presence of comprt in the call to FSORT. The COMP clause can appear only
once in Infost.

COPY

COPY indicates that an Assembler sort parameter table is to be copied. The
COPY clause can appear only once in infost. See L.6.1.

DATA

DATA indicates that your data reduction routine is present. This indicates
the presence of datrd in the call to FSORT. This option can only be specified
when fixed length records are sorted. The DATA clause can appear only once
in infost .

SELE= recnol
or:

SELE= recnol / recno2

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-7

10.

11.

12.

or:
SELE=(recnol [/ recno2] ,recno3[/recno4], .. .)

Recnol through recno4 are record numbers. The SELE, or select, clause
indicates which records are given to the sort/merge package. If the first form
is used, only the record specified by recnol is given to the sort. If the second
form is used with recno2, all records from recnol through recno2 are given
to the sort. If the third form of the SELE clause is used, the records between
each pair of record numbers are given to the sort and single records are given
to the sort. All records are read, but only those records specified in the SELE
clause are given to the sort. Only 10 record number pairs can be used in
the third form. For each pair, recnol must be less than or equal to recno2,
and the last number of each pair must be less than the first number of the
next pair. If recnol appears without recno2, or recno3 appears without
recnod, only recnol or recno3, respectively, are given to the sort. This
clause can appear only once in infost .

CORE= corsz
Corsz is the size in words of the scratch area to be used by the sort. At least
3000 words must be used. In general, the sort runs faster if the scratch area

given to sort is expanded. This clause can appear only once in infost. See
L.9.2.

FILE= file-name

or:

FILE=(file-name, file-name, . . .)

File-name is a Series 1100 system internal file name. The second form of
the FILE clause permits the specification of more than one file name within
the clause. See L.9.3.1. The following restrictions apply to scratch files:
1. All scratch files must be assigned when the sort starts executing.

2. A maximum of 26 scratch files can be specified.

3. At least three tape scratch files must be used if any tape scratch files
are used.

4. If tape scratch files are used, a maximum of two mass storage scratch
files can be used for the sort.

NOCH = chksm

Chksm is any combination of the letters D, F, K, and T. The letter T refers
to tape and D, F, and K refer to mass storage. The nocheck clause is used
to omit a checksum. When the sort uses one or two mass storage scratch
files, D refers to the smaller of the two (one must be at least twice the size
of the other) and F refers to the larger of the two, if both files are present.

If the sort uses three or more mass storage scratch files, K refers to the
checksum on all the files.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-8

13.

14.

If K is specified for a sort with fewer than three mass storage files, D and
F are assumed. If D or F is specified for a sort with' more than two mass
storage scratch files, K is assumed. This clause can appear only once in
infost. See L.9.3.2.

MESH = meshsz / device

Meshsz is the mesh size and device is any combination of the letters D, F,
K, and T. If meshsz is not given, the value 5 is assumed. If device is not
present, the mesh size is assumed to apply to all device types. The letter
T indicates the use of tape scratch files; D, F, and K indicate the use of mass
storage scratch files. D and F are used if one or two mass storage scratch
files are used. D refers to the smaller of the two mass storage scratch files
and F refers to the larger of these two files. The letter K indicates the
checksum of three or more mass storage scratch files. The MESH=
specification can appear only once in infost. The letters D, F, K, and T can
be used only once each in the MESH specification. See L.9.3.2.

BIAS = biasno

Biasno is the average number of records in sorted subsequences present in
the input file. For example, biasno is 1 if the input is in exactly reverse
order. For random data, biasno is 2. If the input file is in an almost sorted
order, the bias value is higher. The BIAS clause can appear only once in
infost . Giving the bias value, if known, improves the performance of the
sort substantially. See L.9.1.

An example of an information string infost to sort variable-length records with
a maximum length of 200 characters with four key fields is:

"VRSZ=200,KEY=(1/10//s,11/10/d/q,21/10,31/10/d),CONS"’

The key fields in the record are defined as:

1.

The first key starts in the first character position of the record, is 10
characters long, and is sorted in ascending order with a user-specified
collating sequence (if that sequence is present).

The second key starts in character position 11, is 10 characters long, and is
sorted in descending order with an overpunch in the last character position.

The third key starts in character position 21, has a length of 10 characters,
and is sorted in ascending order.

The fourth key starts in character position 31, has a length of 10 characters,
and is sorted in descending order.

The CONS clause is present so that all messages are sent from the sort/merge
package to the console.

To sort record images of 80 characters with a key that starts in character position
1, that has a length of 5 characters, and that is sorted in ascending order, the
information string infost can be:

'RSZ=80,KEY=1/5"

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface

L-9

Infost must be the first parameter in the call to FSORT. The other parameters
follow infost .

inpt is either a logical unit number or the name of an input subroutine. If inpt is
the name of an input subroutine, the subroutine must be declared in an
EXTERNAL statement in the program unit containing the call to FSORT. See
L.8.1.

outpt is either a logical unit number or the name of an output subroutine. If outpt
is the name of an output subroutine, the subroutine must be declared in an
EXTERNAL statement in the program unit containing the call to FSORT. See
L.8.4.

comprt is the name of a comparison subroutine supplied by you. The subroutine is called
whenever two records are to be compared. The name of the comparison subroutine
must be declared in an EXTERNAL statement. This parameter must not be
present if you have not provided a comparison subroutine. This parameter must
be present if the COMP clause occurs in infost. See L.8.2.

datred is the name of a data reduction subroutine. The name of datred must be declared
in an EXTERNAL statement. This subroutine is called whenever two records with
equal keys are found. It decides whether the two records are merged into one
record or are not merged. This feature sorts fixed length records only. Datred
must not be present if you have not specified the DATA clause in infost; it must
be present if the DATA clause occurs in infost. See L.8.3.

L.4.2. Examples of Sort With Logical Unit Numbers

The following runstream contains a call to FSORT with a simple information string infost that
contains a KEY clause and an RSZ clause. The RSZ clause gives a record size of 80 characters.
The KEY clause states that the key begins in the first character position of the record, has a
length of five characters, and is sorted in ascending order. Infost ends with an exclamation point
('). The input and output parameters are simply unit numbers 5 and 6. The sort/merge
interface does formatted reads on unit 5 until all the input data is read. The interface then
calls the sort/merge package to sort the data, and does formatted writes on unit 6 of the data
from the sort/merge package.

@RUN
@FTN,S!

CALL FSORT('key=1/5,RSZ=80",5,6)
END

@MAP,SIF

LIB ASCII*FTNLIB.

@XxQT

... data images to be sorted . . .
@FIN

NOTE: The RSZ clause should not be greater than 1,024 characters when you use
FSORT with logical unit numbers. If the RSZ clause is greater than 1,024
characters, the output file is larger than the input file. Utilize
user-supplied input and output routines to handle larger record sizes so
that the input and output files can be the same size.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface L-10

Another example of a simple sort appears in the following runstream. This program assumes
that the source input from file IN¥#PUT is written to the file QUT#PUT. The records are 80
characters long with keys starting in character positions 1 and 6. Each key is five characters
long. The first key is sorted in ascending order, and the second key in descending order.

@RUN
@FTN,SI

CALL FSORT('rsz=80,key=(1/5,6/5/d)!",9,10)
END

@MAP,SIF

LIB ASCII*FTNLIB.
@ASG,A IN*PUT
@ASG,C OUT*PUT
@USE 9,IN#PUT
@USE 10,0UT#*PUT
@exar

@FIN

L.4.3. Examples of Sort With User Subroutines

The following example is a simple variation of the first example in L.4.2. The RSZ clause
declares the record size to be 80 characters. The KEY clause indicates that the key starts in
the first character position of the record, has a length of five characters, and is sorted in
ascending order. The inpt and outpt parameters are user-supplied input and output
subroutines that are declared in an EXTERNAL statement in the program. The subroutines
contain formatted I/0 statements to read from unit 5 and write to unit 6.

@RUN
@FTN,SI

EXTERNAL IN,OUT
CALL FSORT(key=1/5,rsz=80!,IN,0UT)
END

@FTN,SI IN

SUBROUTINE IN(RECORD,LENGTH,IEOF)
CHARACTER#*4 RECORD(20)
READ(5,1,END=2) RECORD
LENGTH=80
IEOF=0
RETURN

1 FORMAT(20A4)

2 IEOF =1
RETURN
END

@FTN,SI OUT

SUBROUTINE OUT(RECORD,LENGTH)

CHARACTER*4 RECORD(20)

IF (LENGTH.GE.O) WRITE(6, 1) RECORD
1 FORMAT(1X,20A4)

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-11

RETURN
END

@MAP,SIF

LIB ASCII*FTNLIB.

@xaT

. . . data images to be sorted . . .
@FIN

Another example of a sort with user I/0 routines appears in the following runstream:

@RUN
@FTN,SI
EXTERNAL IN,OUT
CALL FSORT(rsz=80 key=(1/5,6/5/d),core=20000",IN,0UT)
END
@FTN,SI IN
SUBROUTINE IN(RECORD,LENGTH,IEOF)
CHARACTER*4 RECORD(20)
READ(S,1,END=2) RECORD
1 FORMAT(20A4)
LENGTH=80
IEOF=0
RETURN
2 IEOF =1
RETURN
END
@FTN,SI OUT

SUBROUTINE OUT(RECORD,LENGTH)
CHARACTER#*4 RECORD(20)
IF (LENGTH.LT.0) GO TO 2
WRITE(10,1) RECORD

1 FORMAT(20A4)

RETURN
2 ENDFILE 10
RETURN
END
@MAP,SIF

LIB ASCII*FTNLIB.
@ASG,A IN¥PUT
@ASG,C OUT+*PUT
@USE 9,IN*PUT
@USE 10,0UT*PUT
@xaT

@FIN

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-12

L.5. The CALL Statement to FMERGE

L.5.1. The CALL Statement for a Merge

The form of the CALL statement for a merge is:

CALL FMERGE (infost, inpts, outpt [,comprt])

where:

infost

is the information string, a character string that describes various parameters to
the sort/merge interface, such as record sizes, key fields, and scratch facilities for
FMERGE. A key field (or your comparison routine) must be specified in infost .

Infost contains items of information separated by commas. Blanks in infost are
ignored. No distinction is made between uppercase and lowercase alphabetic
characters. Infost is scanned from left to right. Infost must be terminated by
some character which is an illegal ASCII FORTRAN character, such as an
exclamation point (!), but don’t use an asterisk (#).

Infost can contain several clauses. The mnemonics are truncated by the
sort/merge interface to the first four characters. The following items can be used
in infost for the call to FMERGE:

1. RSZ=rich

Rlch is the record length in ASCII characters. This record is not required.
If the RSZ clause is not given, the sort/merge interface assumes that the
maximum record length is 1,000 words. This wastes some main storage. If
the RSZ clause is present, the interface checks that the records from each
input source are in sequence. The RSZ clause can appear only once in infost .
Only one record size clause can appear in infost at a time. Thus, the VRSZ
clause can’t be used if the RSZ clause is used in infost.

2. VRSZ=mrich /Inkszch

Mrich is the maximum record size in ASCII characters for variable-length
records. Lnkszch is an optional parameter indicating link size in ASCII
characters. If Inkszch is omitted, the slash (/) is also omitted. Lnkszch
must be large enough to accommodate all keys. For example, if the keys are
specified by:

KEY=(11/15,1/10/d/s)

the last character in any key field for this KEY specification is the 25th
character. Therefore, the link size must be at least 25 characters long.
Specify the link size only when a comparison routine is specified. The
sort/merge checks to see if the keys fit in the link size but otherwise ignores
the link size for a merge. The VRSZ clause can appear only once in infost
and only one record size clause can be specified in infost at a time. Thus,
the RSZ clause can’t be used if the VRSZ clause appears in infost.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-13

KEY = keysp
or:
KEY=(keyspn)

Keysp is a single key specification and keyspn is a. multiple key
specification of the form keysp;, keysp,, etc. The single key
specification form KEY = keysp can occur a maximum of 40 times in infost .
There can be a maximum of 40 keysp specifications in keyspn. More than
one KEY = keyspn clause can occur in infost, but only 40 keys are allowed
for each call to FMERGE, including any keys copied through the COPY
clause (see L.7.1). The key specification can indicate a character key, that
is, a key that begins and ends on a character boundary, or a bit key that
either starts or ends outside a character boundary. The form of the character
key is:

charpos / length / seq / type
where:

charpos 1s the position in the record of the most significant character
of the key. Character positions are counted from left to right
beginning with position 1.

length is an optional field that specifies the length of the key in
characters. The default for the length is 1.

seq is an optional field that specifies the sequencing order of this
key: A for ascending and D for descending. The default value
is A.

type is an optional field that specifies the type of the key. The
value of this field may be B, Q, R, S, T, U, or V; the default
is U. The values for this field indicate:

B The key field contains a signed number in a Series 1100
system internal representation.

Q The key field contains a signed decimal number in 9-bit
ISO character representation with a sign overpunched on
the last digit.

R The key field contains 9-bit ISO characters with a
leading sign, that is, a plus, minus, or blank. Any
character in the sign position that is not a plus, minus,
or blank is set to a blank.

S The key field contains 9-bit characters.

T The key field contains 9-bit ISO characters with a sign
in the last character position, that is, a plus, minus, or
blank. Any character in the sign position that is not a
plus, minus, or blank is set to a blank.

U The key field contains an unsigned number in a Series
1100 system internal representation.

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-14

V The key field contains a signed decimal in 9-bit ISO
characters with a sign overpunched on the first
character.

The form of the bit key is:
BIT/ wordpos / bitpos / length / seq / type
where:

wordpos is the position in the record of the word that contains the most
significant bit of the record. Words in the record are
numbered from 1.

bitpos is the position of the first bit of the key in the first word of
that key. Bits are numbered from left to right beginning at
1.

seq is an optional field that specifies the sequencing order of the
key: A for ascending or D for descending. The default is A.

type is an optional field that specifies the type of the key. The
values for type may be A, B, D, G, L, M, P, or U; the default
is U. The values for £ype have the following meanings:

A The key field contains 6-bit characters. All A key fields
must start and end on 6-bit byte boundaries.

B The key field contains a signed number in a Series 1100
system internal representation.

D The key field contains 6-bit Fieldata characters with a
leading sign, that is, a plus, minus, or blank. Any
character in the sign position that is not a plus, minus,
or blank is set to a blank. All D key fields must start
and end on 6-bit byte boundaries.

G The key field contains 6-bit Fieldata characters with a
sign in the last character, that is, a plus, minus, or blank.
Any character in the sign position that is not a plus,
minus, or blank is set to a blank. The key field must
begin and end on a 6-bit byte boundary.

I The key field contains a number in 6-bit Fieldata
characters with a sign overpunched on the first digit.
The key field must start and end on a 6-bit byte
boundary.

M The key field contains a number in signed magnitude
representation. This means that the first bit is the sign,
that is, a 1 for negative and a 0 for positive, and the rest
of the field is the absolute value of the number.

P The key field contains a signed decimal number in 6-bit
Fieldata characters with a sign overpunched on the last
digit. The key field must begin and end on a 6-bit byte
boundary.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-15

inpts

U The key field contains an unsigned number in Series
1100 system internal representation.

4. COMP

COMP indicates the use of your comparison routine. This requires the
presence of comprt in the call to FMERGE. The COMP clause can appear
only once in infost.

5. COPY

COPY indicates that an Assembler sort parameter table is to be copied. This
clause can appear only once in infost. See L.6.1.

6. INPU=inptsor

Inptsor is an integer constant from 2 through 24 that indicates how many
input sources are given in the parameter inpts. The INPU clause must
appear only once in infost.

An example of an information string infost that merges two files containing
variable length records with a maximum length of 200 characters with four key
fields is:

"VRSZ=200,KEY=(1/10//s,11/10/d/q,21/10,31/10/d), INPUT =2V
The key fields in the record are defined as:

1. The first key starts in the first character position of the record, is 10
characters long, and is sorted in ascending order with a user-specified
collating sequence if that sequence is present.

2. The second key starts in character position 11, is 10 characters long, and is
sorted in descending order with an overpunched sign in the last character
position.

3. The third key starts in character position 21, has a length of 10 characters,
and is sorted in ascending order.

4. The fourth key starts in character position 31, has a length of 10 characters,
and is sorted in descending order.

To merge three files containing records of 80 characters with a key starts in
character position 1, has a length of five characters, and is sorted in ascending
order, the information string infost may be:

"RSZ=80, INPUT=3, KEY=1/5"

Infost must be the first parameter in the call to FMERGE. The other parameters
follow infost.

is two or more logical unit numbers, the names of two or more input subroutines,
or a combination of logical unit numbers and input subroutines. The parameter
inpts can contain from 2 through 24 input sources. When inpts contains the
names of input subroutines, the subroutine names must be declared in an
EXTERNAL statement in the program unit containing the call tc FMERGE. See
L.8.1.

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-16

outpt

comprt

is either a logical unit number or the name of an output subroutine. If outpt
is the name of an output subroutine, the subroutine must be declared in an
EXTERNAL statement in the program unit containing the call to FMERGE. See
L.8.4.

is the name of a comparison subroutine that you supply. The subroutine is called
when two records are to be compared. The name of the comparison subroutine
must be declared in an EXTERNAL statement. This parameter must not be
present if you don’t provide a comparison subroutine. This parameter must be
present if you use the COMP clause in infost. See L.8.2.

L.5.2. Examples of CALL Statements to Merge

The following runstream contains a call to FMERGE with a simple information string infost
that contains a KEY clause and an RSZ clause. The RSZ clause declares a record size of 80
characters. The KEY clause indicates that the key starts in the first character position of the
record, has a length of 5 characters, and is sorted in ascending order. Infost contains the clause
INPUT=2 to indicate that there are two input sources contained in the input parameter inpts.
The inpts parameters are the logical unit number 8 and the user-supplied input subroutine
name IN. The output parameter outpt is the logical unit number 9. Infost ends with an
exclamation point (!).

@RUN
@FTN,SI

MAIN

EXTERNAL IN
CALL FMERGE('rsz=80,key= 1/5,input=2"",8,IN,9)
END

@FTN,SI

IN

SUBROUTINE IN(RECORD,LENGTH,IEOF)
CHARACTER#*4 RECORD(20)
READ(5,1,END=2) RECORD
LENGTH=80

IEOF=0

RETURN

-—

FORMAT(20A4)

2 IEOF=1
RETURN
END

@MAP,SIF

LIB ASCII#FTNLIB.
@ASGA IN
@ASG,C OouUT
@USE 8,IN
@USE 9,0UT

@exart

... the second input file on data images . . .

@FIN

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-17

The example that follows merges two input image files (IN%*1 and IN*2) that were sorted in
ascending order on columns 1 through 10 and the merged data is written to file QOUT#PUT. The
input subroutine ignores all records in the input file IN#2 that have a 1 in column 11.

@RUN
@FTN, S|

EXTERNAL IN
CALL FMERGE(' rsz=80,key=1/10,input=2'!",8,IN,10)
END

@FTN,SI IN

SUBROUT INE IN(RECORD, LENGTH, | EOF)
CHARACTER RECORD*80, | ,0ONE/ “1°/
FORMAT (A)
2 FORMAT (10X, A1)
3 READ(9,1,END=4) RECORD
DECODE (2, RECORD) |
IF (1.EQ.ONE) GO TO 3

-

LENGTH=80
IEOF=0
RETURN
4 |EOF=1
END
@MAP,SIF
LIB ASCII*FTNLIB.
@ASG,A IN*1

@ASG,A INx2
@ASG,C OUT*PUT
@USE 8, IN*1
@USE 9, IN*2
@QUSE 10,0UT*PUT
exart

@FIN

L.6. The CALL Statement to FSCOPY

L.6.1. The CALL Statement to Copy an External Sort Parameter Table

This facility provides access to the Assembler procedure R$FILE.

The form of the CALL statement to copy an external Assembler sort parameter table is:
CALL FSCOPY(table)

where table is the name of an externalized entry point. Table must be declared in an
EXTERNAL statement. The CALL statement to FSCOPY with one external argument must
occur before a call to FSORT or FMERGE with the COPY clause in its information string infost .
(See L.4.1 and L.5.1.) The call of FSCOPY establishes which sort parameter table is copied. The
subroutine argument is the first word of the sort parameter table to be copied. The subroutine
argument is not an ASCII FORTRAN subroutine but is an Assembler entry point.

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-18

Only one sort parameter table can be copied at one time. Each call on FSCOPY deletes the
previous table that was copied. If FSCOPY is called without any arguments, a new table is not
copied and the previous table is deleted.

L.6.2. Record Size When FSCOPY Is Used

Key positions, record lengths, and link sizes in Assembler sort parameters must be given as if
there were an extra word in front of the record. (See L.4.1 and L.5.1.)

L.6.3. An Example of CALL Statement to FSCOPY

The following runstream contains an Assembler sort parameter table and program that calls
FSORT and FSCOPY. The program sorts the source input from character positions 1 through
6 in ascending order, from character positions 7 through 12 in descending order, and from
character positions 13 through 16 in ascending Fieldata order with a special collating sequence
such that all Bs precede all As. The information for character positions 13 through 16 comes
from the Assembler sort parameter table. The source input is on logical unit 5 and the output
is placed on logical unit number 6. Note the extra word or six characters in the starting
character position (19+46). This is described in L.6.2.

@RUN
@MASM, S| COPIED
R$FILE °KEY',61946,6, A" ,'A" ; Extra word!
COP | ED* ‘SEQ’, e’ ,"UPTO"," ', ;
‘BT, A", "ALL"
END

@FTN,S|I

INTEGER CORE(21000)

EXTERNAL COPIED

CALL FSCOPY(COPIED)

CALL FSORT(key=(1/6,7/6/d),copy,rsz=80,core=20000!",
1 5,6,CORE)

END
@MAP, I FS
LIB ASCII#FTNLIB.

exaT
. . . data images
@FIN

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-19

L.7. The CALL Statement to FSSEQ

L.7.1. The CALL Statement to Provide a User-Specified Collating Sequence

A user-specified collating sequence can’t be explicitly declared in the information string infost
of a call to FSORT or FMERGE. The use of a nonstandard collating sequence is specified only
in the KEY clause field £ype in a character key with the value S. (See L.4.1 and L.5.1.) The
user-specified collating sequence is set up through a call to FSSEQ with a single argument.

The form of a CALL statement to FSSEQ is:
CALL FSSEQ (seqthl)

where seqthl is an argument containing a character string that is 256 characters long. Seqthl
contains the user-defined collating sequence of the ISO character set. If seqtb/ is not present,
the previous user-defined collating sequence is deleted. Only one user-defined ISO collating
sequence is in use at any one time. A second CALL statement to FSSEQ causes the previous
collating sequence to be replaced with the new user-defined collating sequence.

L.7.2. An Example of the CALL Statement to FSSEQ

The following runstream contains two calls to FSORT and two calls to FSSEQ. The first call
to FSSEQ contains a user-defined collating sequence in array SEQTAB. The collating sequence
is the same as the standard ISO collating sequence except that the letters A and B (uppercase
and lowercase) are interchanged. The first call to FSORT uses the user-defined collating
sequence. The input is read from unit 5. The input is sorted according to:

1. The first key that starts in character position 1 of the record, has a length of 10 characters,
and that is sorted in ascending order.

2. The second key that starts in character position 11 of the record, has a length of five
characters, and is sorted in descending order according to the user-defined collating
sequence specified in the call to FSSEQ.

3. The third key that starts in character position 16 of the record, has a length of five
characters, and is sorted in ascending order.

The result is written by the user output routine OUT.
The second call to FSSEQ deletes the previous user-defined collating sequence and does not set

up another sequence. This means that the normal ISO collating sequence is used when sorting.
Note the use of the CORE= clause in infost in both calls to FSORT.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-20
@RUN
@FTN,SI
EXTERNAL OUT
INTEGER SEQTAB(64),CHAR
* set up collating sequence
CHAR(1)=BITS(SEQTAB(1+1/4),1+9%MOD(1,4),9)
DO 1 1=0,255
1 CHAR(I)=1
CHAR(65)=CHAR(65) +1
CHAR (66)=CHAR(66) -1
CHAR(97)=CHAR(97) 41
CHAR(98)=CHAR(98) -1
* give collating sequence to sort
CALL FSSEQ(SEQTAB)
* do the first sort
CALL FSORT(key=(1/10,11/5/d/s,16/5),rsz=80,
1 core=20000!",5,0UT)
* remove collating sequence
CALL FSSEQ
* do the second sort

CALL FSORT(key=(1/10,11/5/d/s,16/5),rsz=80,
1 core=20000!",10,6)
END

@FTN,SI ouT

SUBROUT INE OUT (RECORD, LENGTH)
CHARACTER#80 RECORD

IF (LENGTH.LT.O) RETURN
WRITE(10,1) RECORD

PRINT 2,RECORD

RETURN

1 FORMAT (A)

2 FORMAT {1X,A)
END

@MAP,SIF

LIB ASCII*FTNLIB.

@ASG,T TEMP

@USE 10, TEMP

exaT
. . . data images .
@FIN

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-21

L.8. User-Specified Subroutines

The sort/merge interface lets you provide subroutines to do the following:

B Read records

B Compare records

B Examine fixed-length records with equal keys and optionally merge the records
B Write records

You are not required to supply any of these subroutines. The sort/merge interface and package
handles all these areas when you don’t wish to supply any subroutines.

L.8.1. User-Specified Input Subroutine

An input subroutine can be supplied to be called by the sort/merge package to read the records.
(See L.4.1 and L.5.1.) The input subroutine is called with three arguments. The first argument
is an array that contains the input record to be returned to the sort/merge package. The second
argument is an integer that contains the length of the input record in characters. The third
argument is an integer that indicates when the last record is delivered.

The input subroutine can do the following:
1. Read a record and return the record to the sort.

2. Return the null string with a record length of zero and the third argument set to a one
to indicate the end of the input file.

3. Read a record and call FSGIVE with that record as an argument. The input subroutine
can enter FSGIVE several times before returning an input record or an end-of-file mark
to the sort/merge package.

The end of the file can be signaled through FSGIVE. Control is not returned to the instruction
following the call to FSGIVE in the input subroutine. Control returns to the sort/merge package.

L.8.1.1. An Example of a User-Specified Input Subroutine

The following input subroutine reads the source input from unit 5 and returns a record length
of 80 characters. The third argument is set to 0 if the end of the file is not reached and set
to 1 if the end of the file is reached in the input file.

SUBROUT INE IN(RECORD, LENGTH, | EOF)
CHARACTER#4 RECORD(20)
READ(5,1,END=2) RECORD
LENGTH=80
| EOF=0
RETURN
1 FORMAT (20A4)
2 | EOF=1
RETURN
END

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-22

L.8.1.2. The CALL Statement to FSGIVE

The call to FSGIVE provides the capability of giving a record to the sort without leaving the
user-specified input subroutine. Call FSGIVE with three arguments:

1. the input record for sort
2. the length of the record given to the sort
3. the flag given to sort to indicate that the end of the file is reached

When the flag is 0, the end of the file was not reached, while a nonzero flag indicates that the
end of the file is found.

These arguments are similar to the arguments for the input subroutine.

L.8.1.3. An Example of User-Specified Input Subroutine with FSGIVE

The following input subroutine reads characters separated into words by blanks or the end of
the line from input unit 5. Any character except a space can be part of a word.

The input subroutine reads from unit 5 when first entered. The subroutine moves each word
that it finds to the record area and then calls FSGIVE for each word that is not the last word
on a data image. The input subroutine IN is reentered each time a new data image is needed
from the input file. The end of the input file is signaled by the input subroutine IN. The end
of the input file can also be indicated by setting the third argument to FSGIVE to a nonzero
value. The calls to FSGIVE is intermixed with calls to the input subroutine IN.

SUBROUTINE IN(RECORD,LENGTH, | EOF)
CHARACTER RECORD#80,CARD(80),BLANK/ * */

1 READ(5,2,END=99) CARD
2 FORMAT (80A1)
* find last nonblank character
DO 3 IMAX=80,1,-1
3 IF (CARD(IMAX).NE.BLANK) GO TO 4
* The input record was blank, so read a new record
GO TO 1
4 I=1
* find first blank separator
5 DO 6 J=I, IMAX
6 IF {CARD(J).EQ.BLANK) GO TO 8
* record has no more blanks - deliver
ENCODE (80,2 ,RECORD) (CARD(J),J=1,IMAX)
7 LENGTH=80
| EOF=0
RETURN
* At least one blank was found
8 IF (J.NE.I) GO TO 9
* It was a leading blank - ignore it
I=141
GO TO 5
* A word was found - deliver
9 ENCODE (80,2 ,RECORD) (CARD(K) ,K=1,J-1)

CALL FSGIVE(RECORD,80,0)

FORTRAN (ASCII) Reference
UP-8244.3 ASCIT FORTRAN Sort/Merge Interface L-23

GO TO 5
* This is end of input - tell the sort
99 1EOF=1

RETURN

END

L.8.2. A User Comparison Routine

If a comparison routine is present, it is called whenever the sort/merge package must compare
two records. The COMP clause must be present in the information string of the call to FSORT
or FMERGE. The parameter comprt must also be specified in the call to FSORT or FMERGE.
(See L.4.1 and L.5.1.)

The compare subroutine is called with three arguments. The first two arguments are the two
records compared when the records are fixed-length records or the first links of the two records
to be compared when the records are variable length. The third argument is an integer whose
value informs the sort of the result of the comparison done by the comparison subroutine. The
result can be:

B The value 1 if the first record precedes the second record
B The value 2 if the order of the records is immaterial
B The value 3 if the second record precedes the first record

Care is necessary when using a comparison subroutine together with keys specified in the
information string because the sort/merge package translates the key fields according to certain
rules. The Sort/Merge Reference, UP-7621 (applicable version), contains a description of the
translation rules.

L.8.2.1. An Example of a User Comparison Subroutine

For the following example, assume the first five characters of each record contains a signed,
nonzero number between -49999 and 49999. A negative number X is represented by 50000-X.
If key translation is not used, the following comparison subroutine can be used:

SUBROUTINE COMP(FIRST,SECOND, CODE)
INTEGER FIRST(2),SECOND(2),CODE,F,S
DECODE(1,FIRST) F
DECODE(1,SECOND) S
1 FORMAT(15)
IF (F.GE.50000) F=50000-F
IF (S.GE.50000) S$=50000-S
IF (F-S) 2,3.,4

2 CODE=1
RETURN
3 CODE=2
RETURN
4 CODE=3
RETURN

END

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-24

L.8.2.2. An Example of a Runstream With a Comparison Subroutine

In the following example of a comparison subroutine, the first two characters of the records given
to the comparison subroutine contain an integer that indicates the starting position of the key
within the record. The key is five characters long and contains a right-justified integer value.
A complete runstream for using this comparison subroutine is:

@RUN
@FTN, S|

EXTERNAL COMP
CALL FSORT(comp,rsz=80,core=20000!",9,10,COMP)
END

@FTN,SI COMP

SUBROUTINE COMP(R1,R2,CODE)

INTEGER CODE

CHARACTER R1%#80,R2%80,F1+8 ,F2+8
* compute the key values

DECODE(4,R1) I1

DECODE(4,R2) 12

ENCODE(8,5,F1) I1

ENCODE(8,5,F2) 12

DECODE(F1,R1) I1

DECODE(F2,R2) 12

* do the comparisons
IF (11-12) 1,2,3
1 CODE=1
RETURN
2 CODE=2
RETURN
3 CODE=3
RETURN
4 FORMAT (12)
5 FORMAT (" (',12,'X,15)")
END
@MAP,SIF
LIB ASCI I *FTNLIB.
@ASG,A IN#PUT
@ASG,C OUT*PUT
@USE 9, IN¥PUT
@USE 10, 0UT*PUT
exar

@FIN

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-25

L.8.3. User Data Reduction Subroutine

The data reduction subroutine is called by the sort/merge package whenever the sort/merge
package finds two records whose order is immaterial. The data reduction subroutine may or may
not merge the two records into the first record. The data reduction subroutine can only be
specified when sorting fixed-length records. The DATA clause must be specified in the
information string in the call to FSORT. The datred parameter must be present in the call to
FSORT. Two restrictions must be remembered:

1. The records, if merged, must always be merged into the first record (that is, the first
argument).

2. The data reduction routine can’t change key fields.

The data reduction subroutine is called with three arguments. The first two arguments are the
two records. The third argument is an integer result assigned by the data reduction subroutine
with the following possible values:

B The value 1 indicates that the two records are merged.
B The value 2 indicates that the two records are not merged.

The sort/merge subroutines translate the key fields according to certain rules. Exercise care
when using a data reduction subroutine together with keys specified in the information string
in the call to FSORT. The translation rules are described in the Sort/Merge Reference, UP-7621
(applicable version).

L.8.3.1. A Simple Example of a Data Reduction Subroutine

The following data reduction subroutine assumes that any input record that contains a 1 in
character position 6 is chosen over any other record. If both records contain a 1 in character
position 6, the first record is chosen over the second record.

SUBROUTINE DATA(FIRST,SECOND, CODE)

INTEGER CODE

CHARACTER FIRST#80,SECOND*80,TEST,ONE/1H1/
DECODE(1,FIRST) TEST

1 FORMAT (56X, A1)
IF (TEST.NE.ONE) GO TO 2
CODE=1
RETURN

2 DECODE(1,SECOND) TEST
IF (TEST.EQ.ONE) GO TO 3
CODE=2
RETURN
3 FIRST=SECOND
CODE=1
END

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface

L-26

L.8.3.2. An Example of a Runstream With a Data Reduction Subroutine

This example with a data reduction subroutine assumes that two records with equal keys are
merged if character position 11 of at least one of the records is blank. The record with the blank
in character position 11 is retained. If both records have character position 11 blank, the first
record is retained.

This runstream chooses the decision field outside the key fields to avoid any problems with key
field translation.

@RUN
@FTN, S|

EXTERNAL DATA

CALL FSORT(key=(1/5,6/5/d),rsz=80,data reduction
1 user code,core=20000!",9,10,DATA)

END

@FTN, S| DATA

SUBROUTINE DATA(R1,R2,CODE)
INTEGER CODE,BLANK/1H /
CHARACTER#80 R1,R2
DECODE(1,R1) IB

1 FORMAT (10X, A1)
IF (1B.NE.BLANK) GO TO 2
CODE=1
RETURN

2 DECODE(1,R2) IB
IF (1B.EQ.BLANK) GO TO 3
CODE=2
RETURN

3 R1=R2
CODE=1
END

@MAP,SIF

LIB ASCI | *FTNLIB.
@ASG,A IN#PUT

@ASG, C OUT#*PUT

@USE 9, IN¥PUT
@USE 10, 0UT*PUT
exart

@FIN

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-27

L.8.4. User-Specified Output Subroutine

The output subroutine is called by the sort/merge package when a record is written. The output
subroutine is called with two arguments. The first argument is the record to be written and
the second argument is the length in characters of the record to be written. The second argument
is also a flag to your output subroutine to indicate when the sort delivers the last record to be
written. The length is normally a positive number indicating the size of the record in characters.
If the length is negative or zero, the last record is delivered to the output subroutine.

L.8.4.1. A Simple Example of a User-Specified Output Subroutine
The following output subroutine outputs records to unit 6 through a formatted write:

SUBROUT INE OUT (RECORD, LENGTH)
CHARACTER#80 RECORD
IF (LENGTH.GT.O0) PRINT 1,RECORD
1 FORMAT (1X,A)
RETURN
END

L.8.4.2. The CALL Statement to FSTAKE

Your output routine can indicate to the sort/merge package when the output routine needs a
new output record. This is done by a CALL statement to FSTAKE with two arguments. The
first argument is the record received from the sort/merge package. The second argument is the
length in characters of the new record. If the length argument is negative after returning from
FSTAKE, the last record is delivered from the sort/merge package.

L.8.4.3. An Example of FSTAKE in an Output Subroutine

The following example moves records containing one word each into card images with exactly
one space between the words, then writes the record when the card image becomes full. The
sorted records are assumed to contain 80 characters.

SUBROUTINE OUT(RECORD, LENGTH)
INTEGER POS/1/
CHARACTER CARD(80),CR(80),BLANK/ *~ '/ ,RECORD%80
IF (LENGTH.LT.O) GO TO 99
* Blank the output record
DO 1 1=1,80
CARD(|) =BLANK
Place each character of the record in a word
DECODE{80,3,RECORD) CR
FORMAT (80A1)
Find actual length of record
DO 4 1L=80,1,-1
IF (CR(IL).NE.BLANK) GO TO 5
This is a blank record---ignore the record
GO TO 10
IF (POS+IL.LE.81) GO TO 8
The card image to print is full--go print it

ANN

FPRINT 6,CARD

* * W N k =

*x O

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Sort/Merge Interface

L-28

6 FORMAT (1X, 80A1)

DO 7 1=1,80
7 CARD (|) =BLANK
POS=1
8 DO 9 I=1,IL
9 CARD (P0OS-141)=CR{(I)

POS=POS+IL41
* get next record to get next word
10 CALL FSTAKE(RECORD,LENGTH)
IF (LENGTH.GE.O) GO TO 2
99 IF (POS.GT.1) PRINT 6,CARD
RETURN
END

L.9. Optimizing Sorts

An understanding of this subsection is not required to do a sort. This information is provided
for those who need to sort larger data sets than the standard scratch assignments (main storage
and mass storage) allow. This information also helps those who need to minimize the resources
used in a sort. You also need to use this information if the sort/merge package error B5 is given
for a sort.

The standard scratch file assignments are:

B 19,000 words of main storage

B Six disk files of 512 tracks each (initial reserve 0)

This amount of storage should be sufficient to sort some 200,000 to 250,000 card images. If a
very large sort (that is, a multiple cycle sort requiring operator intervention) is necessary, you
should consult the Sort/Merge Reference, UP-7621 (applicable version). The performance of a
sort is mainly determined by the following three factors:

1. The bias of the input data

2. The size of the main storage scratch area

3. The scratch files used

The CPU time used by the sort is decreased slightly by inhibiting the checksum on the sort’s
scratch files or by increasing the size of the checksum mesh.

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-29

L.9.1. The Bias of the Input Data

The bias can be defined as the average number of records in sorted subsequences present in the
input file. (See BIAS= biasno in L.4.1.) For example, if the input file is exactly in reverse order,
the bias is 1. Also, random data has a bias of 2. Generally, the bias is greater if the input file
is almost sorted; that is, the more nearly sorted the input file, the greater the bias.

If a bias is specified, the sort is able to use available resources optimally so that more data can
be sorted using the same amount of scratch storage. You should specify the bias whenever it
is known and when the bias is less than 1.4 or greater than 3.

The bias is specified by the form:

BIAS= biasno

L.9.2. The Size of the Main Storage Scratch Area
The size of the main storage scratch area is specified two ways:
1. Assign the file RSCORE with a suitable maximum granule value.

2. Specify the size of the main storage scratch area in the information string for the sort or
merge.

If the size of the main storage scratch area is given by both methods, the R$CORE value overrides
the size of the main storage scratch area given in the information string. (See L.4.1.)
L.9.2.1. The Use of R$CORE

The size of the main storage scratch area in words is specified at run time by assigning the file
R$CORE with a suitable maximum size. For example, if 20,000 words of main storage scratch
area are desired, the following control statement guarantees that 20,000 words of storage are

available to the sort/merge interface and package:

@ASG,T R$CORE,///20

L.9.2.2. The Use of the CORE Clause in the Information String

The amount of main storage scratch area for the sort is specified by the following CORE clause
in the information of the call to FSORT:

CORE= corsz
where corsz is the size of the main storage scratch area in words. The sort/merge interface
rejects any size that is less than 3,000 words. The sort generally executes faster when it is given

more main storage.

When you use this clause in the information string, don’t assign the file R§CORE.

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-30

L.9.3. The Scratch Files Used and Checksum

Avoid the use of tape scratch files when possible. Tape sorts are slower and require operator
intervention. The sort/merge package distinguishes two cases for mass storage files:

1. One or two mass storage files

2. More than two mass storage files

The first case is more suitable when only one or two mass storage units are available to the sort.
However, this case requires a careful assignment of main storage and mass storage scratch
resources. The optimal amount of main storage will depend on how much mass storage is
available to the sort. A suitable assignment of facilities appears in the Sort/Merge Reference,
UP-7621 (applicable version). Different mass storage scratch files should be kept on separate
mass storage units if possible.

L.9.3.1. Scratch Files Named in the Information String

Scratch files are specified by the FILE clause in the information string. (See L.4.1.) The
following restrictions apply when the FILE clause is used:

1. All scratch files must be assigned when the sort is started.
2. A maximum of 26 scratch files can be specified.
3. At least three tape scratch files must be used if any tape scratch files are used.

4. If tape scratch files are used, a maximum of two mass storage files are used for the sort.

L.9.3.2. Checksum and the Sort

A checksum is normally done on all tape and mass storage files. You can omit the checksum
on one or more device types (mass storage or tape). You can also specify a checksum mesh size
for each device type. For example, if a mesh size of 5 is given, only every fifth word of each
block written to tape or mass storage is included in the checksum.

You can omit the checksum by specifying the nocheck clause (NOCH) in the information string
for the call to FSORT. You provide a mesh size by specifying the MESH clause in the information
string. These clauses are described in the CALL statement to FSORT. (See L.4.1.)

FORTRAN (ASCIHI) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-31

L.10. Sorting Very Large Amounts of Data
When it is not practical to assign enough scratch storage to hold all of the data to be sorted,
a multicycle sort must be done. For that case, the ASCII FORTRAN program must be executed
with the P option (@XQT,P) and some sort/merge package parameter data images must be
prepared. These data images are fully described in the Sort/Merge Reference, UP-7621
(applicable version).
The SMRG parameter data image format is:
'SMRG’, outptprefx’, nbrrecds, nbrreel
where:
outptprefx is a string two characters long that identifies the intermediate output tapes.
nbrrecds specifies the number of records sorted in each cycle. It is optional.
nbrreel specifies the number of reels to be produced in each cycle and is optional.
If the number given in nbrrecds specifies more records than the assigned

hardware can hold, nbrrecds is ignored.

The parameter data images are read after the call to FSORT but before the first input record
is read or before your input routine is first called.

You must use the following control image after the last sort/merge parameter data image:
@EOF A

If you wish to rerun interrupted multicycle sorts, refer to the Sort/Merge Reference, UP-7621

(applicable version).

L.10.1. An Example of a Large Single-Cycle Sort

The following runstream contains a sort that must run as efficiently as possible. The records

are in nearly reverse order (the bias is about 1.2). A checksum is not done. About 400,000 records

must be sorted, so the standard scratch assignments cannot be used. Ample amounts of main

storage and mass storage are available for the sort.

The first step is to calculate the sort volume. This is the record size times the number of records
times a safety factor:

20 * 400000 * (1 + .1)
which equals about 9 million words.

For a big sort, use six equal-size files. This makes each file about 1.5 million words, or about
850 tracks.

A suitable amount of main storage scratch area is about 50K words.

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-32

The scratch files must be assigned before the sort begins. The runstream for the sort can be:

@RUN
@FTN,SIO

CALL FSORT(rsz=80,key=(1/5,6/5/d),core=50000,
1 bias=1.2,files=(M1,M2) ,nocheck=dft,
1 files=(m3,m4 ,m5,m6)!",9,10)

END
@MAP ,SIF
LIB ASCI I #FTNLIB.
@ASG, A IN*PUT

@ASG, T OUT#PUT,T,REELNO
@ASG, T M1,///850
@ASG, T M2,///850
@ASG, T M3,///850
@ASG, T M4,///850
@ASG, T M5,///850
@ASG, T M6,///850

@USE 9, IN¥PUT
@USE 10, 0UT*PUT
exart

@FIN

L.10.2. An Example of a Multiple-Cycle Sort

The following runstream is used for a multicycle sort. The information is much the same as
the large single-cycle sort except that there are about 20 million records sorted, using the same
amount of main storage and mass storage. In addition, four scratch tape files are used.

@RUN
@FTN,SI0

CALL FSORT('rsz=80,key=(1/5,6/5/d},core=50000,
1 bias=1.2,file=(M1,M2,T1,7T2,7T3,T4) ,noch=dft,
1 files=(m3,m4,m5,m6)!",9,10)

END
@MAP ,SIF
LIB ASCI I #FTNLIB.
@ASG, A IN#PUT

@ASG,TV OUT#*PUT,U9V/2,REEL1/REEL2/REEL3
@ASG, T M1.,/7/7/71117

@ASG, T M2,//P0S/715

@ASG, T ™. T

@ASG, T T2,T

@ASG, T 13,7

@ASG, T T4, T

@USE 9, IN¥PUT
@USE 10, 0UT#*PUT
@xaT,P

"SMRG ", "EX’

QEQF A

S =

@FIN

UP-8244.3

FORTRAN (ASCII) Reference
ASCII FORTRAN Sort/Merge Interface

L-33

L.11. Error Messages From a Sort or a Merge

Two different types of error messages can be produced during a sort or a merge. The first type
is written to the console and its form is:

XXXX ERROR CODE Y Z

where XXXX is SORT or MERGE, Y is a letter, and Z is a digit. This message is immediately
followed by an ER ERR$ exit. This type of message is produced by the sort/merge subroutines
and is described in the Sort/Merge Reference, UP-7621 (applicable version).

The second type of message is produced by the sort/merge interface with the form:

FTN SORT/MERGE ERROR CODE NN strg

where NN is a 2-digit error code. The error codes and an explanation for each follows. Strg
is a four-character string that provides further information on the error.

01

02

03

04
05
06
07

08

09

10

11
12
13

14

15

The mnemonic in the information string whose first four characters are given in strg
is not known to the routine called (for example, SELE is not allowed for merges and
UNKNOWN is not allowed for sorts or for merges).

The routine specified in strg is called with the wrong number of arguments.

The character position of the most significant character of a key is negative or too
large.

A key length is negative or too large.

An erroneous key type (such as A for a character key) is specified.

The sorting sequence is not A, D, or a null string.

The word position of the most significant bit of a bit key is negative or too large.

The bit position of the most significant bit of a bit key is incorrect (0 or greater than
36).

The translation table in FSSEQ does not contain the full ISO set. Strg contains the
octal code for the first character found that cannot be translated.

The maximum record size (RSZ) given in the information string is negative or greater
than 65K. ~

No record size (RSZ) is specified in the information string for a sort.
An impossible link size (0 or greater than the maximum record size) is specified.
No keys and no user comparison routine are given in the information string.

An error exists in the collating sequence (FSSEQ). The given string is less than 256
characters.

The auxiliary main storage area is full. For remedial action, please submit a software
user report (SUR).

FORTRAN (ASCII) Reference
UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-34

16 An overflow occurs in the sort parameter table. For remedial action, please submit
a software user report (SUR).

17 At least one key extends beyond the record.

18 A bit key of type A, D, G, L, or P does not start on a 6-bit byte boundary.

19 The length in bits of a bit key of type A, D, G, L, or P is not divisible by 6.

20 An erroneous return code is given on exit from your comparison routine.

21 An erroneous record length is given on exit from your input routine.

22 T}le link size is not specified for variable length records and no key specifications are
given.

23 A forbidden character was found in the information string.

24 The output routine/file or your comparison routine is not in the argument list.

25 The COPY specification is given in the information string, but FSCOPY is not called

(or the most recent call has no arguments).

26 For a sort, an input file/routine is not in the argument list. For a merge, either too
few (less than two) or too many (more than 26) input files/routines are given in the
argument list.

27 The bias is given as less than 1.

28 The mnemonic whose first four characters are in strg appears more than once in the
information string. If strg is RSZ, VRSZ may have appeared before (and vice versa).

29 The size of the main storage scratch area is given as less than 3,000 words or greater
than 262,141 words.

30 An illegal character is given in the NOCH specification (only D, F, K, and T are
accepted to the right of the equals sign) in the information string.

31 Your data reduction routine is not in the argument list.

32 A given scratch file is not on mass storage. The most common reason is that the file

is not assigned to the run.
34 More than 26 scratch files are specified in the information string.

35 The first member of a select pair (SELE clause) is not greater than the previous pair’s
second member.

36 The second member of a select pair is less than the first member.
37 An erroneous return code is given on exit from your data reduction routine.
38 A facility reject status is generated in the attempt to assign one of the sort scratch

files. Strg specifies which of the six standard files can’t be assigned. The next line
gives the FAC REJECT code.

FORTRAN (ASCII) Reference

UP-8244.3 ASCII FORTRAN Sort/Merge Interface L-35
- 39 Some keys overlap. Strg gives the number of the major key of the pair that overlaps

(the most major key is number 1, the next number 2, etc.).

40 An illegal sign appears in an arithmetic field. Strg gives the first four characters
found after (and including) the one in error.

41 An illegal character appears in a numeric field. Strg gives the first four significant
digits.

42 The field in strg is not followed by an equals sign.

43 A numeric field given in strg appears when an alphabetic field is expected.

44 Nonblank characters appear between an equals sign and a left parenthesis.

45 The first field of a keyspn in a KEY clause is alphabetic and is not BIT.

46 An alphabetic field in strg appears when a numeric field is expected.

47 An integer field contains a decimal point.

48 An invalid delimiter in strg is found.

49 The name of a scratch file contains more than 12 characters.

..... 50 The first instruction of your routine is illegal.

51 Too many parameters in the call to FSORT or FMERGE exist.

52 No main storage scratch parameter argument is given and an OWN clause is in the
information string.

53 The data reduction routine is specified for a sort of variable-length records.

55 The first word of the user-provided sort parameter table is wrong.

63 The mesh size is previously specified for a device given in strg (strg has a value D,
F, K, or T).

64 An impossible mesh size is specified.

65 An illegal device type in strg is used in a MESH specification.

66 An illegal delimiter is used in a MESH specification.

67 Banked data arguments are not allowed.

68 Only the first argument to FSORT, FMERGE, FSGIVE, or FSTAKE can be of type
CHARACTER.

69 The logical unit number for input or output is a reread unit or outside the defined

range of logical units.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

Appendix M. Virtual FORTRAN

M.1. General

When a collected FORTRAN program doesn’t fit in the traditional 65,535 words of main storage
(or 262,143 words if the FORTRAN programs were compiled with the O option) and collector
truncation diagnostics result, consider putting large objects, such as common blocks or local
arrays, in virtual space.

Putting a large object in virtual space reduces the main storage requirements of the collected
absolute element. For example, a subroutine that processes two REAL argument arrays of extent
NxN needs six local arrays of the same size (or larger) as working storage during its processing.
Since a local array can’t be dimensioned as NxN, a reasonable maximum size must be picked
and the subroutine must be compiled with that size. But, the following problems exist:

B When NxN is 150x150, this takes up 22K words of main storage per local array or 132K
words total in local storage for this one routine.

B When a typical N in an execution is only 50, most of the storage space just mentioned goes
to waste.

@ When using an N over 150, the element must be recompiled with a larger size to handle
it.

B When using an N over 180, the main storage requirements are too large to fit in the
262,000-word address range limit of the Series 1100 architecture.

But when these six arrays are put in virtual space, the following occurs:
B The collected size drops by about 132K words.

B The local arrays are dynamically allocated in virtual space on subprogram entry, and freed
on subprogram exit.

B During execution, main storage requirements are only marginally larger than the collected
size.

B Virtual space is exempt from the 262,000-word limit of the current Series 1100 architecture,
and you can pick a value for N that is rarely exceeded (thereby forcing recompilation) with
minimal extra overhead.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-2

The following example shows the same subroutine written with and without virtual space:
Program before change:

SUBROUTINE SUB(N,AR1,AR2)

PARAMETER (M=150) @ marginal size
REAL L1(M,M),L2(M,M),L3(M,M)

REAL L4(M,M),L5(M,M),L6(M,M)

REAL AR1(N,N),AR2(N,N)

Program after change:

SUBROUTINE SUB(N,AR1,AR2)

VIRTUAL L1,L2,L3,L4,L5,L6

PARAMETER (M=300) @ comfortable size
REAL L1(M,M),L2(M,M),L3(M,M)

REAL L4(M,M),L5(M,M),L6(M,M)

REAL AR1(N,N),AR2(N,N)

Named common can also be put into virtual space as shown:
Program before change:

PARAMETER (M=100) @ marginal size
COMMON/C1/A(M,M)B(M,M)

COMMON/C2/D(6000) ,F(99000) ,G(M)
COMMON/C3/PIVOT (M)

Program after change:

VIRTUAL /C1/,/C2/

PARAMETER (M=400) @ comfortable size
COMMON/C1/A(M,M)B(M,M)

COMMON/C2/D(6000) ,F(99000),G(M)
COMMON/C3/PIVOT (M)

A maximum virtual address range of 32 million words is currently available using virtual space.
The default size is 6.5 million words. A big difference exists between theoretical limits and
practical limits. We recommend that a casual user keep within two or three times the real
memory size of his machine to keep thrashing levels acceptable.

Compiler-generated code that references a virtual object is generally less efficient than that for
references to objects in nonvirtual space. (An object refers to a scalar variable or an array in
common, or local to, the subprogram.) Only the larger common blocks and local arrays that cause
size problems should be put into virtual space. For example, when arrays dimensioned as NxM
are put in virtual space, smaller single-dimension arrays dimensioned by N or M to hold a row
or column should be left in normal nonvirtual space.

Several routines are available to you that enhance CPU performance of virtual or banked
programs. For more information, see M.17.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M.2. Method

Use of multiple D-banks materializes virtual space. Each D-bank contains a page of virtual
space. A virtual object from your program is dynamically allocated by the ASCII FORTRAN
run-time system and gets as many pages as are necessary to hold the object. Since the Series
1100 executive currently allows a maximum of 251 banks to an executing program, this puts an
upper limit on the number of D-banks used for virtual pages. The amount of virtual space
available is the maximum number of banks times the virtual page size. You can select the
maximum number of pages allocated for virtual space and their size. Defaults are 200 pages
and 32K words, giving a default of 6.5 million words of virtual space. (K means 1,024 words.)
Page sizes are a power of 2 and can be 4K, 8K, 16K, 32K (default), 64K, or 128K words. A total
of 246 banks of size 128K words gives a range of 32 million words. Large page sizes give a large
virtual address space, but smaller page sizes minimize main storage requirements and
dramatically reduce potential thrashing problems of a large page size.

The D-bank pages used for virtual space are defined in the FORTRAN main program’s
relocatable by use of a new collector INFO-11 directive. Use of these directives in the generated
relocatable defines a set of initially void D-banks to the collector. COMPILER statement options
can be used in the main program to change the size or the number of these D-banks from the
default values. When the main program does not contain a VIRTUAL statement or is not written
in FORTRAN, virtual space can still be used. The run-time library element VSPACE$ then
supplies the INFO-11 directives defining virtual space. Default values can be altered by
changing tags in the procedure VIRTPROC$ in the MASM procedure element FTNPROC, and
then reassembling elements VSPACE$ and VFTNEQUS$.

Virtual space is allocated and initialized dynamically during execution of your program. When
an external subprogram is entered for the first time, it calls the virtual storage allocator to
allocate space for the static virtual objects belonging to it, or to any of its internal subprograms.
These static virtual objects can be named common blocks and selected large local arrays.
Generated code saves the virtual addresses of these objects returned by the virtual storage
allocator. After allocation, execution of code performs any initialization needed resulting from
DATA statements on the virtual items. On subsequent entries to the subprogram, the above
process is skipped for the allocation and initialization of static virtual space; it is only done once
per external program unit. When a named common block has already been allocated by a
previous program unit, the virtual allocation routine simply returns its virtual address.

Each D-bank holding a page of virtual space has a 64-word ID area at the beginning of the bank.
This area makes the bank self-identifying, and is used by generated code to speed up execution
times.

Virtual local arrays in the automatic storage class (those that do not have SAVE statements
specifying them) are allocated and initialized on each entry to an external subprogram, and are
freed on each return from the subprogram. Local virtual space defaults to the automatic storage
class and local nonvirtual space defaults to the static storage class.

Expect the following when virtual space is allocated for a virtual object:
B The object is allocated on a 64-word boundary in a virtual page.
B The first 2,048 words of a virtual object are guaranteed to be in one virtual page. This

permits more efficient code to be generated to reference virtual objects when they are in
the first 2K of their allocation.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-4

M.3. Restrictions for Declaration Matching

Since special code sequences are required to reference virtual objects, all FORTRAN routines
that reference a virtual object must declare the object as a virtual object. However, arguments
don’t need to be specified in a VIRTUAL statement. A VIRTUAL statement in a FORTRAN
element guarantees that arguments are correctly referenced when they reside in normal, banked,
or virtual space. For more information on banking, see Appendix H.

Example:
One element:

VIRTUAL L1.,/C1/
COMMON/C1/C1(999)
COMMON/C2/C2(10000)
REAL L1(9999)

CALL X(L1(1),1.0.))

END

Separate element:

SUBROUTINE X(A1,XL,))
COMMON/C1/C1(999)
VIRTUAL/C1/
COMMON/C1/C1{999)
REAL A1(x)

C1()=A1()

END
Description:

When subprogram X doesn’t contain a VIRTUAL statement, or when common block C1 is not
named in its VIRTUAL statement, fatal run-time diagnostics result, indicating storage
mismatch.

In current FORTRAN library files holding FORTRAN relocatables, often a simple
COMPILER(BANKED=ALL) statement is put in each FORTRAN element in case any program
using the library has multiple D-banking present. Obtain the same results by inserting a
VIRTUAL statement into each element in case any arguments are in virtual space. (This also
handles banked arguments.) When any named common blocks are in virtual space, they must
be named in VIRTUAL statements in any subprogram that declares them.

M.4. Initialization of Virtual Objects

Initialization for objects in virtual space is needed when they have initial values specified in
DATA, DIMENSION, or type statements. This initialization is accomplished by code that
executes after the allocation calls. A DATA statement consisting of a mismatch of storage classes
presents a problem, as the following example shows:

VIRTUAL /DBVIRT/,LOCALD,LOCALS
COMMON /CB1/A(1000) @ standard common

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-5

COMMON /CBVIRT/V(1000000) @ virtual common block
DIMENSION LOCALD(1000000) @ virtual dynamic local
DIMENSION LOCALS(1000000) @ virtual static local

SAVE LOCALS @ put LOCALS in static class

DATA A(1),V(1),LOCALD(1),LOCALS(1)/1.,2.,3,4/
The DATA statement in the above example calls for:

B Initialization of nonvirtual common block CB1. (This is normally done by ROR packets, that
is, code is normally not executed to initialize items in nonvirtual common.)

B [Initialization of virtual common block CBVIRT. (This must be done only once by generated
code after allocation.)

B [Initialization of the static local array LOCALS. (This must be done only once by generated
code after allocation.)

B [Initialization of the dynamic local virtual array LOCALD. (This must be done by generated
code after allocation, on each entry to the subprogram.)

The ASCII FORTRAN compiler can’t separate the initializations of these various types so that
they can be done in their respective manners. Therefore, when any item in any initialization
statement is in virtual space, the entire statement is accomplished by generated code. When
any item in an initialization is in the virtual automatic storage class, all items must be in the
automatic storage class or the statement is flagged in error. (The preceding example is in error.)
When an initialization statement has a virtual/nonvirtual mismatch on static class items, a
warning is issued at compile time, and code generates to accomplish the entire statement at
execution time. The warning is issued since dynamically initializing nonvirtual common can lead
to incorrect program results. Initialization done by the collector resulting from ROR packets
is insensitive to program execution flow, whereas initialization done by generated code exactly
follows the program execution flow and can result in an item being initialized after it is used.

To prevent problems in an initialization statement, you should ensure that:

B A mixture of static storage class virtual items and automatic storage class virtual items
are not contained in an initialization statement

B A mixture of virtual items and nonvirtual items are not contained in an initialization
statement.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN

The following shows the compiler action on combinations of various storage classes in a single
initialization statement:

VIRTUAL NONVIRTUAL
static automatic static automatic
common| local local common| local local
\} common X
|
R static
T local OK X
U
A automatic
L local E E X
\' common w W E X
|
N R static
oT local oK oK E OK X
N U
A automatic
L local E E oK oK OK X

NOTE: E means an error diagnostic; W means a warning diagnostic.

M.5. BLOCK DATA

BLOCK DATA subprograms initializing common in virtual space must appear in an element
holding one or more executable program units. The first program unit entered in the element
also causes the BLOCK DATA initializations to be done dynamically. Due to this, we recommend
that you place the BLOCK DATA subprograms in the element holding the main program. Always
place BLOCK DATA subprograms in an element holding executable code because the collector
ignores the BLOCK DATA element unless the element is part of the collection.

M.6. DATA = AUTO

The COMPILER(DATA=AUTO) statement activates the ASCII FORTRAN automatic storage
feature. Programs using this feature can also use the VIRTUAL statement. However, one or
more noncommon static D-bank cells are allocated per program unit, and the prolog code is
slightly longer.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M.7. Error Detection

M.7.1. Insufficient Space

A request for virtual space that cannot be met results in a run-time diagnostic and error
termination. You must either limit your storage requirements, or increase the virtual address
space available by putting COMPILER statements in your main program that specify larger
banks or more banks for virtual space.

Once the Executive is changed to allow the loading of a program containing over 251 banks, the
full 2,047 banks allowed by the collector can be used, and the maximum virtual address range
rises to 262 million words.

Most run-time diagnostics are accompanied by a walkback to aid in debugging. The walkback
is available only when one or more of the compilations uses the F option.

M.7.2. Bad Allocation or Initialization

Because of the dynamic allocation and initialization of named common in virtual space, the first
program unit that calls the virtual storage allocator for a given common block must have the
same or larger size for the common block of any other program unit and must be the only
program unit with DATA initialization on it. An exception to this is when there are BLOCK
DATA program units in the same element that are executed first. A program unit presenting
a request to the virtual storage allocator for an allocated common block results in a run-time
diagnostic when either:

B The requested size is greater than that originally allocated, and the allocation can’t be
expanded

B Initialization is to be performed by this program unit

The virtual storage allocator keeps track of nonvirtual common blocks. When one subprogram
indicates a common block is a virtual object and another says it is not, a fatal run-time diagnostic
occurs.

When a nonvirtual common block has dynamic initialization due to a DATA statement in a given
program unit and the common block is already referenced by another program unit, a run-time
diagnostic also occurs.

M.7.3. Page Spanning
A major restriction of virtual FORTRAN is:

No portion of a scalar or array element may span from one virtual page to the next.
The compiler is not aware of the page size to use unless a main program is present in the
compilation unit. Thus, for many instances it can’t diagnose a scalar or array element that
illegally spans a page boundary. So, the compiler calls a span-check routine for each referenced

variable that has a potential spanning problem. A run-time diagnostic occurs when a problem
exists.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-8

Example:

VIRTUAL /C1/

COMMON /C1/ R,DP(400000),R2(100000)
COMPILER(PAGESIZE=4K)

READ R,R2

DOUBLE PRECISION DP

This program is in error. The double-precision array DP will have spanning problems on page
sizes from 4K to 64K, and can also span on a 128K page size when the common block is allocated
far enough into the virtual page. Change the program to place the double-precision array DP
on a double word boundary. One method is:

COMMON /C1/ R,TRASH,DP(400000),R2(100000)

Insertion of the variable TRASH puts array DP on a double word boundary. Run-time
diagnostics appear when bank spanning is detected.

Arguments also pose a problem. Bank spanning can occur when the size or type declared for
the dummy argument isn’t the same as that declared for the actual argument passed. Examples
include:

B passing a REAL array, but declaring it as DOUBLE PRECISION or COMPLEX in the called
routine

@ a mismatch on size declarations on actual and dummy character arguments (these can be
either scalars or arrays)

To detect a bank-spanning problem on arguments from any of the above causes, a span-checking
routine is called on entry to a subprogram to check its arguments. A run-time diagnostic occurs
for each argument with a problem.

This span-checking routine is not called for arguments when optimization is used or when a
COMPILER(ARGCHK =OFF) statement is in the called routine. It is handled like the normal
ASCII FORTRAN argument type-checking routine (for being called or not being called).

Example:

VIRTUAL /C1/,/C2/
COMMON /C1/C4(9000)
COMMON /C2/R(9000)
CHARACTER#*4 C4
REAL R

Arrays C4 and R can't incorrectly span banks; they start on acceptable boundaries.

* %k Xk

CALL SUBR(C4(1),R(2))

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-9

SUBROUTINE SUBR(C,DP)
VIRTUAL
COMPILER(ARGCHK =OFF)
CHARACTER* 11 C(4000)
DOUBLE PRECISION DP(3000)

These actual to dummy argument type—
mismatches may cause spanning problems.

* %k k K

Program execution errors can result because bank spanning can occur on some array elements,
depending on virtual page size, where the common blocks are allocated in them, and which array
elements are referenced. When dummy argument arrays have an asterisk (#) as the last
dimension, the extent of the array is unknown and no span-checking function takes place.

Example:

SUBROUTINE INTX(C.X.Y.N,OK)
VIRTUAL

CHARACTER#*(#) C(#),COK(9991,N)
DOUBLE PRECISION X(N,*)
COMPLEX#16 Y(100,N,*)

Description

Only array COK can be span-checked in this example.

M.8. Character Arrays

Code generated to reference a character array uses a compiler-generated variable referred to
as a virtual origin variable. The virtual origin variable contains the address of the array
manipulated to simplify index calculations. The virtual origin of a character array whose
element size is not a multiple of four characters (including all CHARACTER#(#) arrays) is kept
in character address form (for example, base address times four). When the array is in virtual
space, its base address is a virtual address. When the run-time library element F2BDREQU $
(see M.10) is changed to use BDR3 for referencing virtual space, the D-bit of the BDR field is
shifted up to make the virtual origin value overflow and become negative when using 128K banks
for virtual space. All other virtual bank sizes don’t cause a problem. Therefore, the following
restriction is placed on the use of virtual FORTRAN:

A program defining a virtual or dummy character array whose element size is not a multiple
of four characters results in a run-time diagnostic when the collected bank size is 128K
and BDR3 is used for virtual space.

There is no problem with 128K banks when the default BDR1 references virtual space. The
span—check routines issue the diagnostics for this nonmultiple-of-four character array problem
for 128K banks.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-10

M.9. Banking and BDR Use

The D-banks used for virtual pages start near the end of the standard 262,143-word address
space: 262,144 minus page size minus 512. Don’t overlap this address space with the control
bank or other multiple banks.

M.10. Hidden User Banks

When on dual-PSR machines you can use the utility PSR that is not used for the virtual banks,
as long as its use is hidden from ASCII FORTRAN. You must define the banks in the collector
symbolic and manage all basing of banks under that window. ASCII FORTRAN treats items in
these user banks as if they are in the control bank. BDIs should never be passed for arguments
in user banks, instead, a BDI field of zero should be passed so that ASCII FORTRAN treats the
items as unbanked (that is in the control bank). This happens automatically for FORTRAN
programs when nonvirtual common blocks are included by the IN directive in the user banks.

When hidden user banks are used, the following rules apply:

B When a named common block is in a hidden bank, it may not be referenced from a
FORTRAN subprogram with a COMPILER(BANKED=ALL) statement in it.

B User banks can’t overlap in address space with any other program banks (I-banks, control
bank, or virtual banks).

B Two BDRs simultaneously basing banks with overlapping address space are not allowed.
B A virtual bank must not be based under a BDR used for user banks.

B A request for storage by an MCORE$ statement on the control bank must not overlap
address space with user banks.

B No FORTRAN-generated code (location counters 0, 1, and 4 in an ASCII FORTRAN
compilation) should be placed in hidden user banks.

The utility I-bank BDR (BDR1) is used to base the virtual banks. When you are using this BDR
for FORTRAN banked space, or for your own use hidden to FORTRAN, the utility D-bank BDR
can be used instead for virtual space. The run-time library element F2BDREQU$ holds EQU
values for the BDRs, as follows:

VBDR$ BDR used for virtual space
BBDR$ BDR used for banked space
CBDR$% BDR used for the control bank

When your program is not collected according to these conventions, you must edit F2BDREQU $
and reassemble it.

M.11. Performance

Virtual FORTRAN adds the ability to define and use large user objects such as scalar variables
and arrays to the Series 1100 ASCII FORTRAN system. Referencing a virtual object requires
more code than referencing a nonvirtual object, so only put larger objects in virtual space (an
object here means an array or scalar variable). When a large common block has mostly large

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN

M-11

arrays, you can place the larger arrays in a new common block that is then placed in virtual
space. This leaves the smaller items in nonvirtual space, which is more efficient to reference.

The software paging of virtual FORTRAN is similar to the virtual memory architectures of other
manufacturer’s machines. Improper use of a large user address space in these machines often
means disaster for you. This is also true for the virtual FORTRAN 1100 system. CPU
performance and page traffic depend on what you do and don’t place in virtual space, as well
as on how you use it. It is possible to cause dramatic CPU performance and page-traffic changes
by a simple reordering of key loops in some programs. A program that goes through a large
amount of virtual space referencing one item per page doesn’t execute in a reasonable amount
of time.

A program that uses a large amount of virtual space takes some setup time. This is because
even static virtual space is dynamically allocated and initialized, and each bank must have its
correct size allocated by an ER to MCORE$. The overhead involved with allocation of virtual
space is incurred only once per program. For a program with a large amount of virtual space,
this overhead is not unreasonable.

M.12. Thrashing

On virtual storage machines, your user address space is broken into pages for purposes of
swapping. A reference to something in a nonresident page automatically brings that page in
real memory. Resident pages not currently being referenced are swapped out by the operating
system when storage becomes scarce.

In the ASCII FORTRAN virtual system, the pages reside in the D-banks defined by the main
program’s INFO-11 directives. The allowable page sizes are 4K, 8K, 16K, 32K, 64K, and 128K
words. You select the page sizes in your main program. Large page sizes can cause thrashing
when your reference pattern doesn’t result in a reasonably sized working set of pages. Avoid
large page sizes unless necessary for a larger virtual address range. Programs that need a very
large address space (i.e., 4 million words or more) run when the system is lightly loaded.

When a program takes excessive wall clock time to execute in comparison to the SUP times
accumulated, thrashing is occurring. Look for loops in your program that reference virtual
objects in an inefficient manner.

Example:
The following program defines and references its data in an inefficient manner:

SUBROUTINE COMP
VIRTUAL /CB1/,VEC
COMMON /CB1/A1(2000,2000),8(2000,2000)
REAL VEC(2000)
DO 5 K = 1,2000
5 VEC(K) = 0.0
DO 10 J=1,2000
DO 10 1=1,2000
10 VEC(l) = A1(J,1) - SIN(B(J.I))

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-12

Description

The inner loop of this program references three separate virtual pages on each iteration, and
two of these pages are referenced for only a very few iterations before a bank change occurs.
The local vector VEC isn’t that large (2,000 words) and should not be placed in virtual space
when used in this manner.

Example:

The following variation on the above program segment is essentially equivalent, and greatly
reduces page traffic and thrashing:

SUBROUTINE COMP
VIRTUAL /CB1/
COMMON /CB1/A1(2000,2000),B(2000,2000)
REAL VEC(2000)
DO 5 K = 1,2000
5 VEC(K) = 0.0
DO 10 J=1,2000
DO 10 1=1,2000
10 VEC(l) = A1(J,1) - SIN(B(J.I))

Description

In this code sequence, there are many references to a page before it is no longer needed. The
working set of pages referenced by the program changes very slowly with time. In addition, page
traffic and bank swapping by the operating system are substantially reduced.

The dynamic allocator (DA) in the executive controls storage allocation and swapping; thus, its
operation directly influences the thrashing potential of a program. An executing program must
have the ability to accumulate a reasonable working set of resident pages or thrashing occurs.
Recent DA modifications improve its operation in this area. The changes are called the PEF-1
package. This package is available starting with EXEC level 38R1. This DA enhancement is
needed for a program that heavily uses a large amount of virtual address space.

M.13. CPU Performance

M.13.1. Generated Code

When you make a reference to a virtual object, the ASCII FORTRAN compiler must generate
a decomposition code sequence. This can add three to seven machine instructions to a simple
reference of an array element. One of these instructions is either an LBJ, which is a very slow
instruction, or a link to an activation run-time routine. There are several variations of code
sequences that reference items in virtual space. Some of these sequences have a test around
the LBJ instruction or around the link to an activation run-time routine. These test sequences
are used when the probability of a bank change occurring is low. For example:

A @ = A (I+100) - A (I-1)

The decomposition code sequences are generated when referencing an array that is known to be
in virtual space by its declaration, or is a dummy argument. It is not known whether an

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-13

argument is in virtual space or not, so a special virtual code sequence must be used when a
VIRTUAL statement is in the subprogram.

Scalar arguments or scalars in virtual space must also be activated. No decomposition sequence
needs to be done, but an LBJ (and possibly a preceding test instruction) must be executed to
reference the scalar. Since scalars take up little space, we strongly recommend that you place
as few scalars as possible in virtual space. For heavy use of scalar dummy arguments in a
subprogram, it is faster to move them to local variables in the subprogram to cut down on
unnecessary LBJ instructions that can cause unwanted page traffic to occur.

A scalar in virtual space that resides wholly under a relative of address 2K in its location counter
has better code generated to reference it. A full decomposition sequence need not be generated,
though the LBJ activation is still needed. The LBJ is expensive and can cause page traffic, so
we again recommend that you keep scalars and small arrays out of virtual space.

ASCII FORTRAN-generated code uses index registers to reference all data when the O option
(over 65K addressing option) is used. This is normally needed when the last address of the
collected program is over 65K. Use of this option may be needed in a virtual FORTRAN program
when the control bank that holds all nonvirtual data is too large, and truncation errors result
during collection. However, the location and size of the banks defining virtual space do not affect
use of the O option. The code generated to reference nonvirtual data is faster without the O
option. Therefore, the O option is not assumed by default.

M.13.2. Input/Output

M.13.2.1. Striping and Implied-DOs

A system that needs a large amount of virtual space may also need to do a large amount of I/0
on these large arrays for input and results. Unformatted I/0 on a whole large array does striping
to avoid heavy addressing arithmetic and LBJ usage.

Example:
VIRTUAL A
REAL A{2000,1000)
READ(10,END=20,ERR=22) A

An implied DO in the I/0 statement causes CPU usage on the statement to increase dramatically,
because the compiler generates codes for each element reference and a control transfer occurs
between this code and the I/O complex for each array element.

Example:
VIRTUAL A
REAL A(2000,1000)
READ(10,END=20,ERR=22){(A(l,J),1=1,2000),J=1,1000)

You often want to do a large block of I/0 from a contiguous area of an array but cannot simply
use the whole array name as a list item because of one of the following:

B The starting point is a variable

B The end point is a variable

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-14

B You only want to do one column of a multidimensional array
Thus, you can only use the inefficient implied DO in the I/0 list.
Example:

SUBROUTINE X(NSTRT,NEDN,A,INX)
COMMON/CX/C(100000),C2(4000,20)
DIMENSION A(2000,1000)

READ(10) (A(l),|=NSTRT,NEND)

READ(1 1) (C(1).)=NSTRT,NEND)
WRITE(12)(C2(,INX),I= 1,4000)

END

You can change the previous example to do more efficient whole-array 1/0 by the method shown
below:

SUBROUTINE X(NSTRT,NEND,A,INX)
COMMON/CS/C(100000),C2(4000,20)

CALL ARY10(.TRUE,10,A(NSTRT),NEND-NSTRT 4 1)
CALL ARY 10(.TRUE, 11,C(NSTRT),NEND-NSTRT + 1)
CALL ARY 10(.FALSE, 12,C2(1,INX),4000)

SUBROUTINE ARY 10(READ,UNIT,ARY,SIZE)
LOGICAL READ
INTEGER UNIT,SIZE
REAL ARY(SIZE)
IF (READ) THEN
READ(UNIT) ARY
ELSE
WRITE(UNIT) ARY
ENDIF
END

NOTE: This method applies to FORTRAN programs that either do or do not use virtual
space.

M.13.2.2. Buffer Sizes

When you do unformatted I/0 on large arrays, the OPEN statement should specify a reasonable
block size and segment size. The defaults of 111 words for segment size and 224 words for block
size are not appropriate when transferring millions of words of data (see Appendix G and 5.10.1).
Control bank space is used for I/0 buffers. You cannot define very large buffer sizes such as
300K words.

M.13.2.3. NTRAN$

The NTRAN$ service routine can do very efficient, primitive I/0 on any size virtual object. (See
1.10)

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-15

M.13.3. Intrinsic Functions

The ASCII FORTRAN compiler moves banked or virtual array elements to local storage when
these are passed as arguments to selected mathematical intrinsic functions.

M.14. Timings

The following tests show the effect of various addressing decomposition code sequences on
execution times. The results are also compared to nonvirtual FORTRAN timings. The basic test
is a simulation of the following FORTRAN program segment:

REAL A(1048576),B(1048576),C(1048576),D(1048576)
DO 101 = 1,1048576
10 A() = B()*C(l) 4+ D()

Several different decomposition code sequences are run (called A, B, C, D, E, etc. in Table M-1),
some having tests around the LBJ instruction or activation call.

This program shows ASCII FORTRAN nonvirtual code-generation capabilities in the best light,
since all array references are strength-reduced, and a free auto-increment can be done on
X-registers for each array reference. It is an inefficient example for the virtual approach since
each array reference requires a full decomposition sequence and LBJ. Real programs are never
nearly as optimizable for ASCII FORTRAN as this one, and are hopefully not as inefficient as
this one is for virtual FORTRAN.

Test setups:

M TEST1: Four simulated one-million-word arrays, each getting eight 128K banks. (The
arrays are 1,048,576 words each, octal 04000000.)

B TEST2: Four 32K arrays all in one bank. An outer loop brings the number of iterations
up to be the same as the four one-million-word arrays. The purpose of this test
is to see what effect the test instructions skipping around the LBJ or activation
calls has.

The following control tests are done for comparison purposes using ASCII FORTRAN level 10R1
with OZ compile options. An outer loop brings the number of iterations up to one million.

B TEST5: No banking.
M TEST6: Banking, all arrays in one bank, a BANK statement is supplied to the compiler.

B TEST7: Banking, each array in a different bank, four BANK statements are supplied to
the compiler.

B TESTS: Banking, all arrays in one bank, no BANK statements, but BANKED=ALL used
to indicate banking.

B TEST9: Banking, each array in a different bank, no BANK statements, but
BANKED=ALL used to indicate banking.

In Table M-1, the VA/addr column gives the registers that the virtual address is taken from,
and the register that the absolute address resides in after activation. Ax means a single Ax -
register such as A0, Al, A2, A3. Pair means an even-numbered non-A x -register pair, such as
A4-A5, A6-AT.

UP-8244.3

FORTRAN (ASCII) Reference
Virtual FORTRAN

M-16

Example:

A/Ax The VA is in an A-register, and the absolute address is in an Ax -register after

activation.
Table M-1. Timings (in seconds)
Code Added |VA/Addr.| TEST1 Time [TEST2!| Activate
Sequence Instr. Time Link
/Ref.
Nontest Sequences C 5 Ax/Ax 20.93 20.93 LBJ
EAO 6 Pair/Ax 21.15 21.15 LBJ
Nonargument Test TLEABS1 4 Ax/Ax 27.71 10.44| LMJ
Sequences
FAOQ 6 Pair/Ax 25.16 10.87 LMJ
Argument Sequences | TLARGB 5 Ax/Ax 29.82 12.60 SLJ
TLARGU 6 Pair/Ax 31.11 15.09 SLJ
Control Tests:
Test Time Comments
FTN 10R1: TEST5 2.663 Control test, no banking done
TEST6 2.647 One LBJ per 32K iterations
TEST7 14.991 Four LBJs per iteration
TESTS 6.748 One SLJ, total
TEST9 33.902 Four SLdJs per iteration

These tests were done on a Series 1100/80 using a UNISCOPE 200 display terminal. We obtained
CPU timings by executing a TIME program before and after each execution.

M.15. Efficiency Suggestions

Avoid using the ALL option of the VIRTUAL statement because it places all named common
into virtual space. Separate out the largest arrays, and put those arrays into one or more
common blocks in virtual space. (Large local arrays can also be named in the VIRTUAL
statement.) .

Keep scalers (and small arrays) out of virtual space as much as possible. When heavy use
(especially in loops) of scalar arguments occurs, move them to local variables after
subprogram entry and use the local copies in the subprogram. (The compiler often does
this itself when it is safe to do so.)

When a subprogram has many array arguments that you know are usually in nonvirtual
space, drop some of these arguments and use nonvirtual common instead.

When possible, organize your code so that references to items in virtual space iterate in
small increments, rather than randomly or in large increments. This can minimize bank
switching and thrashing.

UP-8244.3

FORTRAN (ASCII) Reference

Virtual FORTRAN

M-17

NOTE: Use of the MOVWD$ service routine to move data from one array to
another often aids efficiency.

Increase the default buffer sizes for files having heavy unformatted I/0 on large arrays.
Use whole arrays for I/0 list items when possible. See the method shown in M.13.2.1.

B Use the smallest bank size possible for virtual space to help minimize thrashing potential.

M.16. Argument Forms

When arguments pass to a FORTRAN program, a packet is generated that contains one address
word for each argument. There are four address forms that can pass for an argument in ASCII

FORTRAN.
Form: Fields:
18 18
A 0 address
6 12 18
B 0 BD/ address
6 12 18
C BDR BD/ address
Q 6 12 18
D 0 BDR BD/ offset

Description:

Unbanked form

Banked form without BDR

Banked form with BDR

Virtual address form

The 6-bit BDR field in forms C and D is set as follows (the bits are numbered from left to right,
starting at one by the FORTRAN convention):

Bit 1: 0

Bits 2 - 3: BDR number.

BDR! Utility I-bank
BDR2 Main D-bank
BDR3 Utility D-bank
Bits 4 - 6: 0

UP-8244.3

FORTRAN (ASCII) Reference
Virtual FORTRAN

M-18

The different forms are used for the following purposes:

Form A is passed for arguments known to be in the control bank at compile time. This
includes nonvirtual and nonbanked data (local and common), constants, and temporaries
(expression results).

Form B is passed for arguments that are banked items declared with the standard banking
mechanism (the BANKED=ALL COMPILER statement option, or a BANK statement with
a common block list).

Form B is also used in I/0 packets and packets for character run-time routine calls. In
addition, it is used internally by generated code for certain character array arguments when
VIRTUAL is on. Normally, a form B address converts to a form C address for internal use
by compiled code.

Form C is used when passing a dummy argument as an actual argument when
BANKED=DUMARG is on, and for passing a dummy scalar argument as an actual
argument when VIRTUAL is on.

Form D, the virtual address form, is passed for variables in virtual space. The BDR can
be 1 or 3 (it is defined in element F2BDREQU$). It cannot be 0 or 2 because then a virtual
address is not unique (that is, forms C and D look identical). Form D is used for virtual
items only. The bit size n is defined according to the virtual bank size as follows:

Virtual Bank Size |Value of n
4K
8K
16K
32K
64K
128K

“NWbdOO®O

NOTE: K means 1,024 words.

There is no ambiguity between the four forms because of the BDR field used in forms C and D.
This field is used by subprogram prolog code and run-time routines to distinguish between the
forms.

To get this uniqueness of forms, the following assumptions are made concerning the maximum
number of pages in the program:

500 when banking with no virtual
500 when virtual with bank size 4K
1,000 when virtual with bank size 8K
2,000 when virtual with bank size 16K, 32K, 64K, or 128K

NOTE: The defaults are 200 pages of 32K words each.

Nonvirtual FORTRAN with standard banking handles forms A, B, and C. Virtual FORTRAN

handles all four argument forms.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-19

M.16.1. Processing Dummy Scalars

In a virtual FORTRAN subprogram-generated code, dummy scalar references use a banking
sequence that involves an LBJ (or test and LBJ), but no virtual address decomposition.
Therefore, dummy scalars must have their argument words converted to form C by a run-time
call in the subprogram prolog code. In nonvirtual FORTRAN with standard banking, a banking
sequence and form C is used for all dummy scalars and dummy arrays.

M.16.2. Processing Dummy Arrays

There are a large number of decomposition code sequences that can be used on a virtual address.
Arguments pose a special problem since it cannot be determined at compilation time that they
are in virtual space. When these dummy arguments are not in virtual space, they need not be
activated by an LBJ since they are always visible. A coding sequence manipulating fields of a
virtual address has a problem when used on an array argument that is in nonvirtual space. Once
the array is indexed past the collected virtual page size, a BDI switch occurs. This means that
a program using 4K-sized virtual pages cannot safely pass a control bank (nonvirtual) array
larger than 4K words in size as an argument. This is a poor restriction. There are other
activation sequences that do not do a simple decomposition into fields.

Assume that two words in each ID area (RANGEABS and RANGEABS+1) give the absolute
address range for that virtual page. Another ID area word (MAGICCELL) is structured such
that the virtual address of any word in that bank added to it gives the absolute address of that
word. Assuming that register X10 points at the virtual ID area, the following range test code
sequence is possible for items declared in virtual space.

Sequence TLEABSI:

VA - > AO, VA means virtual address

;A AO,MAGICCELL,X10 .Make absolute address if visible
TLE AO,RANGEABS+1,X10 .Address too big?
TLE AO,RANGEABS.,X10 .No. Too smalil?

LMJ X11,ACTAO .Wrong bank visible, fix it.

.Use address in AQ

An argument may or may not be in virtual space, so the canned X10 pointer to the virtual ID
area is insufficient; a control bank argument always causes an out-of-line activation call. So,
each argument needs an associated ID area pointer to be used by a variation of the above
sequence. (Even the control bank has an ID area.)

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-20

Sequence TLARGB:

VA - > A0, VA of elt of X to AO

L X11,ARGXIDPTR .Ptr to ID area for arg X
A AOMAGICCELL X11 .

TLE AO,RANGEABS+1,X11

TLE AO,RANGEABS,X11

SLJ X11,ACTAOX

.Use address in AO

The control bank ID area defines its absolute address range in cells RANGEABS and
RANGEABS+1 as FIRST$ to 0777777. The control bank ID area has a MAGICCELL of zero
and argument prolog code uses an absolute address for control bank array arguments rather than
a virtual address when creating the virtual origin variable for a dummy array. Use of range
test sequences like the above on array arguments means that:

@ the code sequence works correctly for both virtual and nonvirtual arguments
B no bank needlessly activates when already based, even control bank arguments

B artificial size restrictions do not have to be placed upon nonvirtual arrays when they are
passed as arguments (even when they are in banked space)

These test sequences are used to reference dummy array arguments.

M.16.3. Example of Argument Forms Passed

The following example has items in virtual space, banked space, and the control bank:

SUBROUTINE x(e,b)
VIRTUAL /C1/
COMPILER(BANKED=ALL)
COMMON/C2(1000)
DIMENSION e(100000)
COMMON /C1/d(10000000
CALL y(1, b, c(i), d(i), e(i))
END

The following list shows the address forms in the parameter packet passed to subroutine y from
subroutine x:

Argument Description of Argument Address Form
1 Constant (control bank) A

b Dummy scalar C

c (i) Element of banked array B

d (i) Element of virtual array D

e (i) Dummy array element A C orD

D is passed; and when e is an array in banked space, form C is passed.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-21

M.17. Library Utility Routines

M.17.1. VACTIV$
Purpose:

Use VACTIV$ to base an item’s bank and return its absolute address. Only experienced
programmers should use this routine.

Form:

L AO,address
LMJ X11,VACTIV$

Description:

Use the VACTIV$ linkage protocol only from MASM routines. It is called from the FORTRAN
library, including I/0, and user MASM routines to base an item’s bank (if it has not already
been based) and returns its absolute address. It replaces the old ACTIV$ routine that could not
handle virtual addresses. The linkage is LMJ X11,VACTIV$. VACTIV$ is in the control bank,
so an IBJ$ or LIJ need not be done. All registers are restored except X11 and AO.

Example:
Input:

AO has an address in one of the four forms: A, B, C, or D.
AY

Output:
H2 of AO contains the item’s absolute address. . Also, the item’s bank is based.
NOTE: HI and A0 may be nonzero on the return.

Several routines aid you in enhancing CPU performance of virtual or banked programs. With
the exception of the MOVWD$ and MOVCH$ routines, the following routines should only be
used by programmers skilled in the use of assembly language, and familiar with multibanking
and the ASCII FORTRAN subprogram linkage conventions. The MOVWD$ and MOVCH$
routines on the other hand are easy to use, and their use in a few key places enhances
performance. All of these routines can be called from FORTRAN programs.

Several examples can be found in M.17.4, following the presentation of all of the routines.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-22

M.17.2. Service Routines

M.17.2.1. LOCV$
Purpose:

LOCV$ is an extension of the ASCII FORTRAN LOC service routine that handles virtual
addresses.

Form:
I = LOCV$(arg)

where: arg is a FORTRAN variable. The argument can be in the control bank, in banked
space, or in virtual space.

Description:
The address of the passed-argument is returned. The form A address word is returned when
the argument is in nonvirtual space. A form D address word is returned if the argument is in
virtual space.
NOTE: When the item is type character, its offset is ignored. The address word
passed for the argument can be in one of the forms A, B, C, or D. An item
in virtual space can only have a form C or D address word.
M.17.2.2. CVVASF
Purpose:
CVVASF returns information about the bank in which the argument resides.
Form:
DP = CVVAS$F(arg)
where: arg is a FORTRAN variable.
Description:
This routine returns information in registers A0 and Al. The address returned in register A0
is in one of three forms: A, C, or D. The form A address word is returned for a control bank
argument, form C is returned for an argument in banked space, and form D is returned for an
argument in virtual space. Register Al holds the ID area pointer for the bank in which the

argument resides.

When you want both results, type the function as DOUBLE PRECISION. Otherwise, type the
function as REAL or INTEGER.

NOTE: An ID area pointer for a bank has the BDR+BDI in H1, and H2 is the
address of the 64-word ID area for that bank.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-23

M.17.2.3. CVBK$F
Purpose:
CVBKS$F returns information about the bank in which the argument resides.
Form:

DP = CVBK$F(arg)
where arg is a FORTRAN variable.
Description:
This routine returns information in registers A0 and Al. The address returned in register A0
can be one of two forms: A or C. The form A address word is returned for a control bank
argument, and form C is returned for an argument in banked or in virtual space. Register Al
holds the ID area pointer for the bank in which the argument resides.
When you want both results, type the function as DOUBLE PRECISION. Otherwise, type the
function as REAL or INTEGER.

M.17.24. CVBK$I

Purpose:
CVBKS$I returns information on the BDI portion of the address contained in its argument.
Form:

DP = CVBK$I(arg)
where arg is a FORTRAN variable holding an address.
Description:
CVBK$I is an indirect version of CVBK$F. This routine returns information in registers A0
and Al. The address returned in register A0 is in one of two forms: A or C. The form A address
word is returned for a control bank address, and form C is returned for an address representing
banked or virtual space. Register Al holds the ID area pointer for the bank that the address
represents.
When you want both results, type the function as DOUBLE PRECISION. Otherwise, type the
function as REAL or INTEGER.
M.17.2.,5. LBJS$IT

Purpose:

LBJ$IT performs an LBJ instruction to base a desired bank.

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN M-24

Form:
CALL LBJ$IT(arg)
where arg is a one-word FORTRAN variable or array element. It holds a form C address
word for a bank that is to be based. The address can be for virtual space, banked space,
or the control bank.

Description:

An LBJ instruction is done on the passed argument to base the desired bank. Then a return
takes place to the caller.

NOTE: The argument is not checked for validity. H2 of the argument (the address)
is not used and need not be a valid address in the bank.

M.17.2.6. FTNWB$
Purpose:
FTNWB$ performs a full walkback trace.
Form:

CALL FTNWB$

NOTE: There are no arguments.
Description:
This walkback call doesn’t pull the FTNPMD complex into your collected program. When the
FTNPMD complex is collected in your program, this call activates a full walkback trace from
the point of call; then normal execution resumes. When the FTNPMD complex is not collected
in your program, the call has no effect.

NOTE: The FTNPMD complex is brought inte a collection when one or more
FORTRAN relocatables are compiled with the F option, when you include
element FTNPMDI in your collection with the INCLUDE directive, or when
you call the FTNPMD complex entry points FTNPMD or FTNWB in the
FORTRAN program.

M.17.2.7. MINES$F
Purpose:

The MINES$F routine is a strip-mining routine that is callable by a FORTRAN program. It is
meant to be used as a primitive in strip-mining basic operations on virtual banks.

Form:

I = MINES$F(present ,direct ,next)

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-25

where (the arguments on input to MINES$F are):

present is a variable holding an address in one of the forms A, B, C, or D. You want to
know the number of words remaining in the bank indicated by this address.

direct is an integer variable that indicates the direction taken to check the amount
remaining in the bank.

When direct .GE. zero, movement is forward.
When direct .LT. zero, movement is backwards.
The values that the arguments to the MINEF$ routine contain when the function returns are:

present Unchanged

direct Contains a signed integer value that indicates the remaining number of words in
a virtual bank. When the present argument is not for virtual space, the value
returned is a positive or negative 0777776 depending on the direction as specified
by the direct argument on input.

next Contains the form D address of the start of the next virtual bank when the flag
in direct is positive. When the flag is negative, the virtual address points to the
end of the previous virtual bank. When the present argument does not hold an

address for virtual space, the address returned in next is 0.

I The function value returned is the original item address as held on entry in
present , but possibly changed to another form. Two forms of output for I are:

1. The function result is a form A address when present holds a control bank
address.

2. The function result is a form C address when present holds an address for
banked or virtual space.

Description:

The caller wants to know the number of words remaining in a virtual bank from some present
point (present). The FORTRAN variable present holds an address in one of four forms: A,
B, C, or D. The direction can be forward or backward as indicated by direct being positive or
negative. The function result can be used in an LBJ instruction to base the bank where the
stripe resides.

M.17.2.8. MOVWD$

Purpose:

The MOVWDS$ routine moves word-oriented items efficiently. It can also broadcast a scalar item
to an array. Either source or target or both items can be banked or virtual.

Form:

CALL MOVWD$(source ,srceincr ,target ,trgtincr ,precision ,itercount)

UP-8244.3

FORTRAN (ASCII) Reference
Virtual FORTRAN

M-26

where
source

sreceincr

target

trgtincr

precision

itercount

NOTE:

Purpose:

Form:

where
source

srceincr

target

trgtiner

is the item that is moved to a target.

is an integer expression indicating the increment in elements to find the next
source item to be moved. This increment can be positive, negative, or zero.
When the increment is zero, the item is a scalar and the scalar is broadcast
in the target array.

is the destination item that is filled from the source.

is an integer expression indicating the increment in elements to find the next
target item to be stored to. This increment can be positive, negative, or zero.
When the increment is zero, the item is a scalar.

is an integer expression indicating the number of words of storage per array
element of the source and target items. The precision is assumed to be the
same for both source and target. The values for precision are: one, two,
or four words.

is an integer expression indicating the number of iterations or loops of this
move. For zero or negative values of itercount, no moves are done. This
form of a zero-trip DO loop allows you to easily replace simple loops that
move data with CALL statements to MOVWD$.

Character items can be used for source and target items only when the
character items have no offset and the size of their array elements are one,
two, or four words.

M.17.2.9. MOVCH$

Use the MOVCHS$ routine to move character items efficiently. It can also broadcast a scalar
item to an array. Either source or target or both items can be banked or virtual.

CALL MOVCHS$(source ,srceincr ,target ,trgtincr ,itercount)

is the character item to be moved to a target.

is an integer expression indicating the increment in elements to find the next
source item that is moved. This increment can be positive, negative, or zero.
When the increment is zero, the item is a scalar and the scalar is broadcast
in the target array.

is the destination character item that is filled from the source.
is an integer expression indicating the increment in elements to find the next

target item to be stored to. This increment can be positive, negative, or zero.
When the increment is zero, the item is a scalar.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-27

- itercount is an integer expression indicating the number of iterations or loops of this
move. For zero or negative values of itercount, no moves are done. This
form of a zero-trip DO loop allows you to easily replace simple loops that

move data with CALLs to MOVCHS.

NOTE: The target and source items do not have to be the same character lengths.
The normal rules of truncation or filling with blanks for character
assignment statements are followed by the MOVCH$ routine.

M.17.3. Virtual Storage Allocator

There are three routines to allocate virtual storage. Two allocate static virtual storage for
virtual common blocks and static local virtual variables. One allocates and frees dynamic virtual
space for local virtual storage in the automatic class. These routines are called by generated
code, or explicitly called by FORTRAN programs.

NOTE: The virtual storage allocators acquire about 500 words of control D-bank
storage by use of the MCORF $ routine. Other utilities that you use can also
acquire storage Iin a similar manner.

M.17.3.1. SALCS$P
Purpose:
The SALCS$P routine allocates static virtual storage in a packed manner.
Form:
VA = SALC$P(cbnam ,size ,flag ,base)
where

chnam is a one-word code (or name) used as a tag on this allocation. It must be unique
for all allocations. The compiler uses the common block name in Fieldata for
virtual common blocks. It uses a created name for local static virtual space.

size is the size in words of this virtual allocation.

flag is either .TRUE. or .FALSE. When .FALSE., this allocation is dynamically
initialized by the caller to simulate DATA statement operation. It prints
run-time diagnostics.

base is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator.

Description:

The function result is the form D virtual address of the first word of this allocation. The virtual
storage allocator SALC$P allocates size words of virtual space to the static virtual object of
name cbnam. When the object already exists in virtual space, the existing allocation is used.
When size is greater than the existing size on previously allocated object, an attempt is made
to expand it. Expansion is possible when the object is the last one allocated in static virtual
space, or when there is room between the end of its current allocation and the next allocation.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-28

When expansion is not possible, a nonfatal run-time diagnostic occurs. When the object is
already allocated, and flag is .FALSE., indicating that the object undergoes dynamic
initialization on the return, a nonfatal run-time diagnostic occurs.

When the object is a common block and another program unit has already used the common block
but did not indicate it as being a virtual object, error termination occurs. When not enough
virtual space is available for the allocation, error termination also occurs.

NOTE: The size and number of D-banks that virtual space uses is defined by the
main program, or by the library element VSPACE$ when the main program
is not FORTRAN or does not contain a VIRTUAL statement.

The routine SALC$P allocates virtual space in a packed manner and is the compiler default.
This means that each allocation starts where the last allocation left off instead of at the
beginning of a new D-bank. However, all virtual allocations start on a 64-word boundary in
virtual space, and the first 2,048 words of an allocation are in one D-bank. (The 64-word
boundary minimizes potential bank-spanning problems, and the first 2,048 words being in one
bank allows efficient coding to reference scalars in the first 2,048 words of a virtual common
block.)

M.17.3.2. SALOC$
Purpose:
The routine SALOC$ allocates static virtual space in an unpacked manner.
Form:
VA = SALOC$(chnam ,size ,flag ,base)
where
cbnam is a one-word code (or name) used as a tag on this allocation. It must be unique
for all allocations. The compiler uses the common block name in Fieldata for
virtual common blocks. It uses a created name for local static virtual space.
size is the size in words of this virtual allocation.
flag is either .TRUE. or .FALSE. @ When .FALSE,, this allocation is dynamically
initialized by the caller to simulate DATA statement operation. It prints

run-time diagnostics. When .TRUE,, this allocation is not dynamically initialized.

base is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator.

Description:

SALOCS$ operates identically to SALC$P, except that it allocates virtual storage in an unpacked
manner, starting a new allocation at the beginning of a new D-bank.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-29

- M.17.3.3. DALCS$P
Purpose:
The routine DALC$P allocates and frees dynamic local virtual space.
Form:
VA = DALCS$P(size ,base)
where

size is the size in words of this virtual allocation. When negative, it is a deallocation
call.

base is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator (allocation call only).

Description:

The function result is the form D virtual address of the first word of this allocation. Dynamic
virtual space is allocated in a LIFO (last-in-first-out) manner. A deallocation call size must
be the negative of the allocation size, or error termination occurs. Dynamic virtual space is
allocated from the last virtual D-bank backwards, and static virtual space is allocated from the
first virtual D-bank forwards. This separates the two forms of allocation so that fragmentation
of virtual space does not occur. When not enough virtual space is available for the allocation,
error termination occurs. On a deallocation call the base argument isn’t set, and no function
result is returned.

M.17.4. Examples Using the Virtual Feature
Example 1:

Example 1 shows changes that can be done to enhance performance of programs that use virtual
or banked space heavily. This program does a simple sum reduction of a REAL array. The code
is:

PARAMETER(N= < size >)
REAL A(N), SUM
SUM=0
DO 10 I1=1,N

10 SUM=SUM + A(l)
PRINT*,SUM

Now let’s define a service routine that performs a sum reduction, and replace the loop with a
call to it:

PARAMETER(N= < size >)
REAL A(N),SUM,SUMRED
SUM=SUMRED(A,N)
PRINT*,SUM

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-30

The SUMRED service routine does a sum-reduction by strip-mining portions of its input array,
basing the stripe to make it visible, and performing several adds in its inner loop to hide the
costs of storing the sum and the JGD instruction. It references the source array using base-offset
type of referencing, which means it can access the source array in virtual space, banked space,
or the control bank.

REAL FUNCTION SUMRED(SOURCE,ITER)
VIRTUAL
COMPILER(PROGRAM=BIG)(U1110=0PT)
IMPLICIT INTEGER(A-2)

REAL SOURCE(*),DUM(1),DUMY

DEFINE DUMY(i)=DUM(i+OFF)

SUMRED=0
REMAIN=ITER
NOWDS=1 @ go forwards in source
START=CVVAS$F(SOURCE) @ starting point in input array
LOCDUM=LOCV$(DUM) @ abs. addr. of local array DUM
C
C Calculate a stripe size and address, set up for
C Dbase-offset referencing using DUMY, base the stripe,
C do a sum reduction on the stripe.
Cc
1 START=MINE$F(start,nowds,next)
IF (NOWDS.EQ.Q) RETURN
IF (BITS(START,1,18).NE.O)CALL LBJS$IT(START)
OFF=BITS(START,19,18)}~LOCDUM @ offset to stripe
NUM=MIN(REMAIN,NOWDS) @ # words in this stripe
LITTLE=MOD(NUM4)
DO 10 I=1,LITTLE B do remains of MOD 4 first
10 SUMRED=SUMRED +DUMY(I)
DO 20 I=LITTLE+ 1,NUM,4 @ do most of the stripe
20 SUMRED=SUMRED +DUMY(l)4+DUMY(l 4 1)4-DUMY(I 4 2)4 DUMY(I 4+ 3)

REMAIN=REMAIN-NOWDS
IF(REMAIN.LE.O)RETURN
START=NEXT

GO TO 1

END

This SUMRED example can be extended to have increments other than one. Similar routines
can handle primitives other than sum reductions.

This program was executed on a Series 1100/80 with an array size of 67,000 words. It was timed
with the array in virtual space, and in the control bank. The original program executed once
with the simple loop and once with the modification to call SUMRED.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-31

The following shows the Series 1100/80 CPU timings in seconds:

Nonvirtual Array (in Control | Virtual Array (32K Banks)

Bank)
Original Program 0.1141 0.3118
Program Modified to 0.0637 0.0638

Call SUMRED

There are 67,000 floating-point adds performed. Using the 0.0638-second time, that is over one
million floating-point operations per second (one MFLOP).

Even the nonvirtual sum reduction has its CPU time cut approximately in half by calling
SUMRED. This is due to the SUMRED routine stringing-out the inner loop by doing four
operations per iteration. The original program can also do this.

Example 2:

The following example shows the use of the MOVWD$ call to enhance performance on an inner
loop:

SUBROUTINE SUB(ARG,N)
VIRTUAL/CX/
COMMON/CX/C(2000,2000)
REAL LOCAL(2000),ARG(2000)
DO 10 I=1,2000

LOCAL{l)=C{1,N)
10 ARG())=C(I,N+ 1)

The loop can be replaced by:

CALL MOVWD$(C(1,N),1,LOCAL,1,1,2000)
CALL MOVWD$(C(1,N+1),1,ARG,1,1,2000)

The subprogram SUB is called 100 times from a driver, where the N passed as the second
argument is the loop index. Timings are done on the original program, the program modified
to call MOVWDS$, with variations of the argument array being in the control bank or in virtual
space. The default page size (32K words) is used for virtual space.

UP-8244.3

FORTRAN (ASCII) Reference

Virtual FORTRAN

M-32

The following shows the Series 1100/80 CPU times in seconds:

ARG Array in Control Bank

ARG Array in Virtual Space

Call MOVWD$

Original Program With a 1.508 3.226
Loop
Program Modified to 0.106 0.157

Example 3:

Original Program:
REAL A(10000)
DO 10 1=1,10000
A()=2.0

C(1%2-1)=(1.0,0.)
10 C(1%2)=CX

REAL A(10000)

COMPLEX C(20000),CX

This program can be modified as follows:

COMPLEX C(20000),CX

CALL MOVWD$(2.0,0..A,1,1,10000)
CALL MOVWD$((1.0,0),0,C(1),2,2,10000)
CALL MOVWD$(CX,0,C(2),2,2,10000)

When MOVWDS$ calls can replace a loop, it is usually much more efficient than the original loop.
When the target or source items are banked objects, virtual objects, banked dummy arguments,
or virtual dummy arguments, a speed-up factor of 10 to 20 can result. The number of words
to be moved must be large enough to cover the setup cost. A call to MOVWD$ to move 40 words
or less is of marginal benefit over regular compiled code.

MOVWDS$ can also be used to broadcast a scalar in an array as the following example shows:

This program segment executed 20 times in both the original and modified form.

The following shows the Series 1100/80 CPU times in seconds:

Nonvirtual (Arrays in
Control Bank)

Virtual Arrays

Original Program

1.294

2.787

Modified Program to
Call MOVWD$

0.410

0.414

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-33

- M.17.5. User-Controlled Dynamic Storage Allocation Examples

The FORTRAN language has only static and dynamic data classes for user variables. Common
is always in the static class, and local variables can be placed selectively into either the static
or dynamic class. Often a program needs to obtain space in a more controlled manner than this,
like PL/I’s BASED storage. You can simply allocate portions of a larger array as space is needed.

Method 1:
SUBROUTINE GETDAT(RSIZ,DATAI)
This routine is entered periodically to acquire a buffer of

size rsiz and initialize it. Later, all of the buffers acquired
are processed elsewhere as a group.

OOOO0

COMMON /BUFFRS/ BUFRS(40 000)
INTEGER RSIZ,RECEND,NORECS,RECINX,RECSIZ
REAL BUFRS,RECORD,DATAI
COMMON /BUFDSC/ RECEND,NORECS,RECINX(500),RECSIZ(500)
DEFINE RECORD(l) = BUFRS(I4+RECINX(NORECS))
DATA NORECS,RECEND/0,0/
NORECS = NORECS + 1
IF (NORECS .GT. 500 .OR. RECEND4RECSIZ .GT. 40000) THEN
STOP ‘Allocation overflow’
ENDIF
RECINX(NORECS) = RECEND @ Remember record location
RECSIZ(NORECS) = RSIZ @ and its size.
RECEND = RECEND + RSIZ @ New start point for next time
DO 101 = 1,RSIZ @ Initialize new record
10 RECORD(l) = AMOD(FLOAT(l),DATAI)
END
Other program units can access the various records in the buffer pool by using statement
functions similar to RECORD in the above example.

If the 40,000-word area in the preceding example is not sufficient, the buffer area can be
expanded and placed into virtual space as follows:

SUBROUTINE GETDAT(RSIZ,DATAI)
VIRTUAL /BUFFRS/
COMMON /BUFFRS/ BUFRS(4 000 000) @ Note, 4 million words

FORTRAN (ASCII) Reterence
UP-8244.3 Virtual FORTRAN M-34

This method uses a large virtual object as a buffer source and has an unfortunate side effect.
The D-banks used for virtual space are dynamically based and space is acquired dynamically
by an MCORE$ Executive request by the first program unit to reference the virtual object. When
the amount of buffer space needed is quite variable (thereby forcing a large maximum size), but
usually only needs a small amount of space, the additional virtual space acquired is wasted. The
full declared size is allocated, resulting in unnecessary additional start-up time and an
unnecessarily very large allocation of system swap file. A method using the virtual storage
allocation routines can be used that does not have these undesirable side effects. It is almost
identical to the method using MCORF$ for acquiring control D-bank space dynamically.
Method 2:

SUBROUTINE GETDAT(RSIZ,DATAI)
C
C This routine is entered periodically to acquire a buffer of
C size rsiz and initialize it. Later, all of the buffers acquired
C are processed elsewhere as a group.
C

VIRTUAL /BUFFRS/

COMMON /BUFFRS/ BUFRS(2050)

INTEGER RSIZ,NORECS,RECINX,RECSIZ

INTEGER LOCV$,SALCSP

REAL BUFRS,RECORD,DATAI

COMMON /BUFDSC/ NORECS,RECINX(500),RECSIZ(500)

DEFINE RECORD(l) = BUFRS(i+RECINX(NORECS))

DATA NORECS/0/

NORECS = NORECS + 1

IF (NORECS .GT. 500) THEN

STOP "Allocation overflow’

ENDIF
C
C Note: We use the record index as the name of our
C virtual allocation for this record.
C

| = RSIZ

RECINX(NORECS)=SALC$P(NORECS,I,.TRUE.,TRASH}-LOCV$(BUFRS)
C
C "I" passed to SALC$P instead of RSIZ, since RSIZ could be
C in virtual or banked space.
C

RECSIZ(NORECS) = RSIZ

DO 101 = 1,RSIZ @ Initialize new record
10 RECORD(l) = AMOD(FLOAT(I),DATAI)

END

NOTE: The various arguments passed to the virtual storage allocator must not be

in virtual or in banked space.

This program acquires a portion of virtual space dynamically for each record. There is no wasted
space, no undesirable start-up overhead, and no unnecessary use of the system swap file. The
sections of virtual space acquired can be separated from one another by allocations for virtual

COMMON (or static local) initiated by other subprograms.

FORTRAN (ASCII) Reference
UP-8244.3 Virtual FORTRAN M-35

One difference of the preceding method is that you can’t easily do a collection process to compact
your buffer space. When buffers must be capable of being released, it is better to use the first
method of directly allocating out of an array or to use the modification described next.

There is a side effect of ASCII FORTRAN'’s virtual allocation mechanism that can eliminate the
overhead of unused virtual space. When the virtual storage allocator is asked to allocate an
object that is already in static virtual space, it attempts to expand the existing allocation when
the requested size is greater then the existing size. A small amount of expansion is possible
when there is unused space between the end of the current allocation and the start of the
allocation of the next virtual object. Multiple open-ended expansions are possible for an existing
virtual allocation when it is the last object that is allocated in virtual space. Your allocation
routine then must simply ensure that the virtual object used for dynamic allocation of buffers
has a size last presented to the virtual storage allocator that is sufficient to materialize the
needed amount of space. To do this, use modifications of either of the two allocation methods
previously described. The following example is an expansion of the second method.

Method 3:
SUBROUTINE GETDAT(RSIZ,DATAI)

This routine is entered periodically to acquire a buffer of

size rsiz and initialize it. Later, all of the buffers acquired
are processed elsewhere as a group.

This routine expands an existing virtual allocation. No

static virtual space can be allocated by any other subprogram
once this subroutine is entered.

OOO0OOOO0

VIRTUAL /BUFFRS/

COMMON /BUFFRS/ BUFRS(2050)

INTEGER RSIZ,RECEND,RECMAX,NORECS,RECINX,RECSIZ,OFFSET

INTEGER LOCV$,SALCSP

REAL BUFRS,RECORD,DATAI

COMMON/BUFDSC/RECEND,RECMAX,NORECS,RECINX(500),RECSIZ(500)

DEFINE RECORD(l) = BUFRS(I4+RECINX(NORECS))

DATA NORECS,RECEND,RECMAX/0,0,-33 000 000/

NORECS = NORECS + 1

IF (NORECS .GT. 500) THEN
STOP ‘Allocation overflow’

ENDIF

IF (RECEND+RSIZ .GE. RECMAX) THEN
RECMAX = RECEND + RSIZ @ Expanded size of $MINE$
OFFSET = SALC$P(FDCBNM,RECMAX,. TRUE., TRASH)-LOCV$(BUFRS)
DATA FDCBNM/'$SMINES$'F/ @ Fieldata name of our buffer
IF (RECEND .EQ. 0) THEN

First entry: Set RECEND to get at the beginning of our $MINE$
buffer area by base-offset referencing of BUFFRS in common block
BUFFRS. We could have expanded the BUFFRS common

block allocation also, passing BUFFRS in Fieldata to SALC$P.

Then the variable OFFSET would not be needed. However, other
subprograms may have already allocated the common block BUFFRS
and they may also have caused subsequent allocations in virtual
space, thus ensuring that BUFFRS could not be expanded when
needed.

OOO0OOOOOO0

FORTRAN (ASCII) Reference

UP-8244.3 Virtual FORTRAN M-36
o
RECEND = OFFSET
ENDIF
ENDIF
RECINX(NORECS) = RECEND @ Remember record location
RECSIZ(NORECS) = RSIZ @ and its size
RECEND = RECEND 4 RSIZ @ Start point for next request
DO 101 = 1,RSIZ @ |Initialize new record
10 RECORD(l) = AMOD(FLOAT(l),DATAI)
END

This method has no extra start-up overhead and causes no unnecessary swap file load. You can
easily compact your buffer pool by supplying simple buffer release and buffer compaction
routines.

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-1
Index
Term Reference Page Term Reference Page
ANSI, OPEN statement 5.10.1 5-57
A ARCOS intrinsic function Table 7-2 7-8
ARGCHK=OFF option 8.5 8-6
ABORTS$ 7.3.3.15.2 7-37 ARGCHK=ON option 8.5 8-6
ABS intrinsic function Table 7-2 7-9 Argument
ACOB interface K.3 K-3 function 7.2.1 7-2
ACOS intrinsic function Table 7-2 7-8 7.5 7-63
ACSF$ 7.3.3.15.2 7-37 subroutine 7.2.2 7-3
Actual array 2.2.24.4 2-12 7.5 7-63
ADATE 7.3.3.15.2 7-37 type checking K.4.1 K-7
7.3.3.15.2 7-38 Arithmetic)
Adjustable array 2.2.2.4.3 2-12 expression 2.2.31 2-15
AIMAG intrinsic function Table 7-2 7-11 operator 22311 2-15
AINT intrinsic function Table 7-2 7-10 primary 2231.2 2-16
ALGAMA intrinsic function Table 7-2 7-9 term 2.2.3.1.2 2-15
Alignment, storage 6.10.1 6-26 Arithmetic assignment
ALOG intrinsic function Table 7-2 7-8 statement 3.2 3-1
ALOGI10 intrinsic function Table 7-2 7-8 Array
AMAXO intrinsic function Table 7-2 7-9 assumed size 22241 2-11
AMAX1 intrinsic function Table 7-2 7-9 22243 2-12
AMINO intrinsic function Table 7-2 7-9 declaration 2224 2-10
AMIN1 intrinsic function Table 7-2 7-9 dimension 6.2 6-2
AMOD intrinsic function Table 7-2 7-10 element reference 22245 2-12
Ampersand location of elements 2.2.2.46 2-13
EXTERNAL option 7.2.3 7-4 subscript 2224 2-10
for concatenation 2.2.3.2 2-18 ARSIN intrinsic function Table 7-2 7-8
statement label 7.2.1 7-2 ASCII
subprogram name 6.6 6-14 character set Appendix B
subroutine statement FORTRAN 1.1 1-1
label 7.2.2 7-3 symbiont files G4 G-13
AND intrinsic function 7.3.1 7-6 ASCIlI FORTRAN compiler
ANINT intrinsic function Table 7-2 7-10 calling 10.5 10-22
ANSI tape format checkout 10.6 10-25
file processing G.3.2 G-12 ASIN intrinsic function Table 7-2 7-8
general 5.6.6 5-40 Assembler interface K.4 K-5
interchange tapes G.3.3 G-13 Assembly language 1.2 1-2
usage G.3 G-9 ASSIGN statement 4.2.3 4-5

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-2
Term Reference Page Term Reference Page
Assigned GO TO 4.2.3 4-5 BIAS clause L4.1 L-8
Assignment L.9.1 L-29

arithmetic 3.2 3-1 Bit 1.2 1-2
character 3.3 3-4 Bit key L4.1 L-5
common 6.5 6-12 L5.1 L-14
data storage 6.10.1 6-26 BITS and SBITS 7.3.2.1 7-14
dimension 6.2 6-2 Blank
equivalence 6.4 6-9 format code 5.3.1 5-10
general 3.1 3-1 in 1/0 field 5.3.1 5-10
initial value 6.9 6-20 in numeric input 5.3.10 5-19
logical 3.4 3-6 INQUIRE 5.10.3 5-73
statement 3.1 3-1 line 104.1.1 10-8
statement label 3.5 3-6 OPEN 5.10.1 5-61
type 6.3 6-3 Blank common storage 6.5 6-12
Associated variables 5.7.1 5-44 Blank fill 5.3.1 5-9
Assumed-size array 2.2.24.1 2-11 Blanks 5.3.10 5-19
22243 2-12 BLOCK DATA
Asterisk 7.4.3.2 7-60 initializing common in
7.4.4.2 7-62 virtual space M5 M-6
EXTERNAL option 7.2.3 7-4 procedure 7.8 7-67
statement label 7.2.1 7-2 program unit 10.2.1 10-1
subroutine statement statement 7.8.2 7-67
label 7.2.2 7-3 structure 7.8.1 7-67
Asterisk fill 5.3.1 5-13 Block IF statement 441 4-10
AT statement 9.3 9-5 execution of 44.13 4-11
ATAN intrinsic function Table 7-2 7-8 IF-block 44.1.2 4-11
ATAN?2 intrinsic function Table 7-2 7-8 IF-level 44.1.1 4-10
Automatic storage 8.5.1 8-7 Block size 5.6.6 5-41
Aucxiliary input/output 5.10.1 5-64
statements 5.10 5-57 5.10.3 5-75
CLOSE 5.10.2 5-68 G.2.1.3 G-6
INQUIRE 5.10.3 5-70 Blocking statements
OPEN 5.10.1 5-57 block IF 4.4.1 4-10
Aw format 5.3.1 5-11 ELSE 44.3 4-12
ELSE IF 4.4.2 4-12
B END IF 444 4-12
example 4.4.5 4-12
BACKSPACE statement 5.6.3 5-36 general 44 4-10
BANK statement 6.6 6-14 BN format 5.3.1 5-10
H.2.34.1 H-13 BOOL intrinsic function 7.3.1 7-6
Common block name 6.7.3 6-17 BREAK checkout command 10.6.2.1 10-27
BANKACT options 8.5.3 8-9 10.6.3.1 10-30
BANKACT=CALL option 8.5.3 8-10 Break keyin 10.7.5.2.2 10-65
BANKACT=NOTEST option 8.5.3 8-10 Buffer offset 5.6.6 5-42
BANKED options 8.5.2 8-8 Buffer sizes in Virtual
BANKED=ACTARG option 8.5.2 8-8 - FORTRAN M.13.2.2 M-14
BANKED=ALL option 8.5.2 8-8 BZ format 5.3.1 5-10
BANKED=DUMARG option 8.5.2 8-8
BANKED=RETURN option 8.5.2 8-8 C
Banking H.2 H-1
in Virtual FORTRAN M.10 M-10 CABS intrinsic function Table 7-2 7-9
BDICALL$ 8.5.4 8-10 CALL
BDR H.2 H-2 checkout command 10.6.2.1 10-28

FORTRAN (ASCIll) Reterence

UP-8244.3 Index Index-3
Term Reference Page Term Reference Page
10.6.3.2 10-31 SNAP 10.6.3.15 10-45
control statement 7.2.2 7-3 STEP 10.6.3.16 10-46
Calling TRACE 10.6.3.17 10-46
FORTRAN processor 10.5 10-22 WALKBACK 10.6.3.18 10-47
subroutine 7.2.2 7-3 Checkout mode 10.6 10-25
Carriage control 5.3.4 5-15 calling 10.6.1 10-26
5.3.10 5-19 contingencies 10.6.4 10-49
CCOS intrinsic function Table 7-2 7-8 debug commands 10.6.3 10-28
CCOSH intrinsic function Table 7-2 7-9 diagnostics Appendix 1
CDABS intrinsic function Table 7-2 7-9 entering 10.6.2.1 10-27
CDCOS intrinsic function Table 7-2 7-8 general 1.3.1 1-3
CDCOSH intrinsic function Table 7-2 7-9 10.6 10-25
CDEXP intrinsic function Table 7-2 7-8 restrictions 10.6.5 10-50
CDLOG intrinsic function Table 7-2 7-8 soliciting input 10.6.2.2 10-28
CDSIN intrinsic function Table 7-2 7-8 Checksum L.9.3.2 L-30
CDSINH intrinsic function Table 7-2 7-9 CHKRS$ subroutine 10.6.6 10-50
CDSQRT intrinsic function Table 7-2 7-8 CHKSV$ subroutine 10.6.3.12 10-42
CDTAN intrinsic function Table 7-2 7-8 10.6.6 10-50
CDTANH intrinsic function Table 7-2 7-9 CLEAR checkout command 10.6.3.3 10-33
CEXP intrinsic function Table 7-2 7-8 CLOG intrinsic function Table 7-2 7-8
CHAR intrinsic function Table 7-2 7-10 CLOSE service subroutine 7.3.3.17 7-47
Character CLOSE statement 5.10.2 5-68
array M.8 M-9 reread 5.10.2 5-69
assignment statement 3.3 3-4 CMPLX intrinsic function Table 7-2 7-10
constant 2215 2-5 COBOL interface K.3 K-3
conversion 3.3 3-5 Code reordering 8.5 8-7
expression 2.2.3.2 2-18 8.5.5 8-11
operator 2.2.3.2 2-18 Collection
storage 6.10.1 6-26 and execution 10.5.2.2 10-25
substring 2.2.2.5 2-13 banking Appendix H
CHARACTER FUNCTION BLOCK DATA 7.8.1 7-67
statement 7.4.3.2 7-60 Colon 5.3.7.2 5-17
Character key L.4.1 L-4 Colon in 1/0 list 5.3.7.2 5-17
L5.1 L-13 Comment
Character set convention 1.5 1-8
ASCII Appendix B inline 2.2.7 2-25
FORTRAN 2.1 2-1 line 2.2.5 2-24
CHARACTER type statement 6.3.2.2 6-7 treatment 10.4.1.1 10-8
Checkout commands Common assignment 6.5 6-12
BREAK 10.6.3.1 10-30 Common block
CALL 10.6.3.2 10-31 listing 10.4.2.2.6 10-21
CLEAR 10.6.3.3 10-33 name 6.5 6-12
DUMP 10.6.3.4 10-34 COMMON statement 6.5 6-12
EXIT 10.6.3.5 10-35 COMP clause L4.1 L-6
GO 10.6.3.6 10-36 L.5.1 L-15
HELP 10.6.3.7 10-37 Comparison subroutine
LINE 10.6.3.8 10-38 parameter L4.1 L-9
LIST 10.6.3.9 10-38 L.5.1 L-16
PROG 10.6.3.10 10-39 Compilation listing
RESTORE 10.6.3.11 10-40 contents } 10.4.2.2 10-11
SAVE 10.6.3.12 10-42 diagnostic messages 10.10 10-71
SET 10.6.3.13 10-43 general 10.4.2 10-10
SETBP 10.6.3.14 10- 44 options 104.2.1 10-10

JURIEAN (ASULl) Reterence

*

UP-8244.3 Index Index-4
Term Reference Page Term Reference Page
with EDIT 8.4 8-5 Fieldata 2.2.1.6 2-6
Compilation process 6.9.4 6-22
general 1.3.1 1-4 Hollerith 2.2.1.5 2-5
with BANK 6.6 6-14 integer 2.2.1.1 2-3
with checkout 10.6 10-25 logical 2214 2-5
with COMPILE 8.5 8-6 octal 2.2.1.6 2-6
with DELETE 8.3 8-4 real 2.2.1.2 2-3
with INCLUDE 8.2 8-1 single precision 2.2.1.2.1 2-3
Compiler Contingency clause
calling 10.5 10-22 checkout 10.6.4 10-49
checkout 10.6 10-25 general 170 5.8 5-50
location counter usage 6.10.2 6-29 input/output 5.8.1 5-50
optimization 10.8 10-68 Continuation line 2.2.6 2-24
options 10.5.1 10-23 104.1.2 10-8
COMPILER statement 8.5 8-6 CONTINUE statement 4.6 4-22
ARGCHK =OFF 8.5 8-7 Control statement
ARGCHK=0ON 8.5 8-7 CONTINUE 4.6 4-22
BANKACT=CALL 8.5 8-6 DO 4.5 4-14
BANKACT=NOTEST 8.5 8-6 END 4.9 4-25
BANKED=ACTARG 8.5 8-6 general Section 4
BANKED=ALL 8.5 8-6 GO TO 4.2 4-2
BANKED=DUMARG 8.5 8-6 IF 4.3 4-7
BANKED=RETURN 8.5 8-6 4.3.2 4-9
DATA=AUTO 8.5 8-6 PAUSE 4.7 4-23
DATA=REUSE 8.5 8-6 RETURN 7.6 7-64
LINK=IBJ$ 8.5 8-6 STOP 438 4-24
NBRPAGES=n 8.5 8-7 Conventions of notation 1.5 1-8
PAGESIZE=nK 8.5 8-7 Conversion
PARMINIT=INLINE 8.5 8-6 arithmetic assignment 3.2 3-2
PROGRAM=BIG 8.5 8-7 ASCII 7.3.3.18 7-47
STACK=KEEP 8.5 8-6 character 3.3 3-5
STACK=LIST 8.5 8-6 E, D, F, and G editing 5.3.10 5-19
STD =66 8.5 8-6 Fieldata 7.3.3.18 7-47
U1110=0PT 8.5 8-7 table Appendix E
VIRTUAL=NCCB 8.5 8-7 COPY clause L4.1 L-6
VIRTUAL=STATIC 8.5 8-7 L.5.1 L-15
COMPL intrinsic function 7.3.1 7-6 L.6.1 L-17
Complex CORE clause L4.1 L-7
constant 2.2.1.3 2-5 Core parameter L.4.1 L-9
in format list 5.3.5 5-15 L.5.1 L-16
storage 6.10.1 6-26 COS intrinsic function Table 7-2 7-8
COMPLEX FUNCTION COSH intrinsic function Table 7-2 7-9
statement 7.4.3.2 7-60 COTAN intrinsic function Table 7-2 7-9
COMPLEX type statement 6.3.2.1 6-6 CPU performance in Virtual
Concatenation 2.2.3.2 2-18 FORTRAN M.13 M-12
COND$ 7.3.3.15.2 7-36 Cross reference listing 10.4.2.2.3 10-18
7.3.3.15.2 7-38 CSIN intrinsic function Table 7-2 7-8
CONJG intrinsic function Table 7-2 7-11 CSINH intrinsic function Table 7-2 7-9
CONS clause L4.1 L-4 CSQRT intrinsic function Table 7-2 7-8
Constant 2.2.1 2-3 CTAN intrinsic function Table 7-2 7-8
character 2.2.1.5 2-5 CTANH intrinsic function Table 7-2 7-9
complex 2.2.1.3 2-5 Currency symbol
double precision 22122 2-4 enlry hame 7.7 7-65

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-5
Term Reference Page Term Reference Page
in a symbolic name 2.2.2 2-6 example 9.7 9-8
statement label 7.2.1 7-2 TRACE OFF 9.5 9-7
subroutine statement TRACE ON 9.4 9-6
label 7.2.2 7-3 Debug mode 10.5.2.1 10-24
CVBKS$F service subroutine M.17.2.3 M-23 10.6.2.1 10-27
CVBK$I service subroutine M.17.2.4 M-23 DEBUG statement
CVVASF service subroutine M.17.2.2 M-22 general Section 9
C2F$ H.2.1.1 H-5 INIT 9.2.4 9-4
SUBCHK 9.2.2 9-3
D SUBTRACE 9.2.5 9-5
TRACE 9.2.3 9-4
D (editing code) 5.3.1 5-10 UNIT 9.2.1 9-3
DABS intrinsic function Table 7-2 7-9 Debugging
DACOS intrinsic function Table 7-2 7-8 checkout 10.6 10-25
DALC$P service subroutine M.17.3.3 M-29 10.6.2 10-27
DARCOS intrinsic function Table 7-2 7-8 diagnostic system 10.10 10-71
DARSIN intrinsic function Table 7-2 7-8 FTNPMD 10.7 10-51
DASIN intrinsic function Table 7-2 7-8 FTNWB 10.7 10-51
DATA see truncation problems 9.2 9-2
clause L.4.1 L-6 walkback 10.7 10-51
options 8.5.1 8-7 Declaration
statement 6.9.1 6-21 explicit 22223 2-9
Data explicit statement 6.3.2 6-5
conversion Appendix E implicit statement 6.3.1 6-4
declarations, in block 7.8 7-67 implied via names 22221 2-8
initializations 6.9 6-20 implied via statement 2.2.2.2.2 2-9
lengths 6.3 6-3 of array 2.2.24.1 2-11
reduction subroutine L.8.3 L-25 of dimension 6.2 6-2
reduction subroutine DECODE statement 5.9.2 5-53
parameter L.4.1 L-9 Define file block usage G.10 G-32
storage 6.10.1 6-26 DEFINE FILE statement
type statement 6.3 6-3 direct 5.7.1 5-44
value assignment 6.9.1 6-21 sequential 5.6.6 5-40
DATAN intrinsic function Table 7-2 7-8 DEFINE statement 7.4.2 7-56
DATAN2? intrinsic function Table 7-2 7-8 DELETE statement 8.3 8-4
DATA=AUTO DELL clause L.4.1 L-4
with Virtual statement M.6 M-6 DERF intrinsic function Table 7-2 7-9
DATA=AUTO option 8.5.1 8-7 DERFC intrinsic function Table 7-2 7-9
DATA=REUSE option 8.5.1 8-7 DEXP intrinsic function Table 7-2 7-8
DATE$ 7.3.3.15.2 7-36 DFLOAT intrinsic function Table 7-2 7-10
DBANK H.2 H-1 DGAMMA intrinsic function Table 7-2 7-9
DBLE intrinsic function Table 7-2 7-10 Diagnostic
DCMPLX intrinsic function Table 7-2 7-10 checkout compiler Appendix I
DCONJG intrinsic function Table 7-2 7-11 FTNPMD 10.7.5.3 10-66
DCOS intrinsic function Table 7-2 7-8 general 10.10 10-71
DCOSH intrinsic function Table 7-2 7-9 input/output general 5.8.2 5-51
DCOTAN intrinsic function Table 7-2 7-9 messages Appendix D
DDIM intrinsic function Table 7-2 7-11 tables 10.7.2 10-51
Debug commands 10.6.3 10-28 Differences between
Debug facility FORTRAN processors Appendix A
AT 9.3 9-5 DIM intrinsic function Table 7-2 7-11
DEBUG 9.2 9-2 NIMAG intrinsic function Table 7-2 7-11
DISPLAY 9.6 9-7 Dimension

AU LSAN (ADL..) Relerence

UP-8244.3 Index Index-6
Term Reference Page Term Reference Page
adjustable 2.2.24.1 2-11 PMD command 10.7.5.2.1 10-62
of array 22241 2-11 service subroutine 7.3.3.1 7-17
value 2.2.24.2 2-12 DVCHK service subroutine 7.3.3.3 7-19
DIMENSION statement 6.2 6-2 Dw.d format 531 5-10
DINT intrinsic function Table 7-2 7-10
Direct access 1/0 E
DEFINE FILE 5.7.1 5-44
FIND 5.74 5-49 EDIT statement 84 8-5
general 5.7 5-44 CODE 84 8-6
READ 5.7.2 5-46 PAGE 8.4 8-6
record number 5.2.2 5-4 SOURCE 8.4 8-6
SDF files G.2.2.2 G-8 START 8.4 8-6
WRITE 5.7.3 5-47 STOP 8.4 8-6
DISPLAY statement 9.6 9-7 Editing
Divide fault 7.3.3.9 7-25 codes 5.3.1 5-9
DIVSET service subroutine 7.3.3.9 7-25 repetition of codes 5.3.2 5-14
DLGAMA intrinsic function Table 7-2 7-9 repetition of groups 5.3.3 5-14
DLOG intrinsic function Table 7-2 7-8 variable format 5.3.9 5-18
DLOGI10 intrinsic function Table 7-2 7-8 Editing codes
DMAXI1 intrinsic function Table 7-2 7-9 Aw 5.3.1 5-11
DMIN1 intrinsic function Table 7-2 7-9 BN 5.3.1 5-10
DMOD intrinsic function Table 7-2 7-10 BZ 5.3.1 5-10
DNINT intrinsic function Table 7-2 7-10 Dw.d 5.3.1 5-10
DO statement 4.5 4-14 Ewd 5.3.1 5-10
active and inactive 4.5.3 4-16 Ew.dDe 5.3.1 5-10
examples 4.5.7 4-20 Ew.dEe 5.3.1 5-10
execution 4.5.4 4-17 Fw.d 5.3.1 5-9
extended range 4.5.5 4-19 Gw.d 5.3.1 5-12
nested 45.2 4-15 Gw.dEe 5.3.1 5-12
range of 4.5.1 4-15 ’h1h2...hw’ 5.3.1 5-12
Dollar sign 2.2.2 2-6 Iw 5.3.1 5-9
Double precision Iw.d 5.3.1 5-9
complex constants 2.2.1.3 2-5 Jw 5.3.1 5-9
real constants 2.2.1.2.2 2-4 Lw 53.1 5-11
DOUBLE PRECISION type Ow 5.3.1 5-11
statement 6.3.2.1 6-6 pP 5.3.1 5-10
DOUBLE PRECISION Rw 5.3.1 5-11
FUNCTION statement 7.4.3.2 7-60 S 5.3.1 5-11
DO-variable availability 4.5.6 4-20 Sp 5.3.1 5-11
DPROD intrinsic function Table 7-2 7-11 SS 5.3.1 5-11
DREAL intrinsic function Table 7-2 7-10 TLw 5.3.1 5-13
DSIGN intrinsic function Table 7-2 7-11 TRw 5.3.1 5-13
DSIN intrinsic function Table 7-2 7-8 Tw 5.3.1 5-12
DSINH intrinsic function Table 7-2 7-9 wHhl..hw 53.1 5-11
DSQRT intrinsic function Table 7-2 7-8 wX 53.1 5-12
DTAN intrinsic function Table 7-2 7-8 : 5.3.1 5-13
DTANH intrinsic function Table 7-2 7-9 Efficiency H.2.3 H-11
Dual-PSR H.2.1 H-2 Efficient programming 10.9 10-70
Dummy array 22244 2-12 Element reference 2.2.24.5 2-12
Dummy character argument ELSE IF statement 4.4.2 4-12
length specification L34 L-2 ELSE IF-block 4.4.2.1 4-12
DUMP execution 4.4.2.2 4-12
checkout command 10.6.3.4 10-34 ELSE statement

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-7
Term Reference Page Term Reference Page
ELSE-block 4.43.1 4-12 7.3.3.15.2 7-38
general 4.4.3 4-12 DATE$ 7.3.3.15.2 7-36
ENCODE statement 5.9.4 5-55 7.3.3.15.2 7-38
END IF statement 444 4-12 ERR$ 7.3.3.15.2 7-37
END statement 4.9 4-25 EXIT$ 7.3.3.15.2 7-37
ENDFILE statement 5.6.4 5-38 FABORT 7.3.3.15.2 7-37
END= clause specification 5.2.7 5-7 FACSF 7.3.3.15.2 7-37
Entry and exit tracing 9.2.5 9-5 FCOND 7.3.3.15.2 7-38
Entry point listing 10.4.2.2.7 10-21 FDATE 7.3.3.15.2 7-38
ENTRY statement 7.7 7-65 FERR 7.3.3.15.2 7-37
EQUIVALENCE statement 6.4 6-9 FEXIT 7.3.3.15.2 7-37
ERF intrinsic function Table 7-2 7-9 FIO 7.3.3.15.1 7-31
ERFC intrinsic function Table 7-2 7-9 FIOI 7.3.3.15.1 7-31
Error detection FIOW 7.3.3.15.1 7-31
Bad allocation or FIOWI 7.3.3.15.1 7-31
initialization M.7.2 M-7 FIOXI 7.3.3.15.1 7-31
Insufficient space M.7.1 M-7 FSETC 7.3.3.15.2 7-38
Page spanning M.7.3 M-7 FTSWAP 7.3.3.15.1 7-32
Error detection for Virtual FUNLCK 7.3.3.15.1 7-32
FORTRAN M.7 M-7 FWANY 7.3.3.15.1 7-32
Error message FWST 7.3.3.15.1 7-32
checkout compiler Appendix [general 7.3.3.15.1 7-30
compiler messages Appendix D I01$ 7.3.3.15.1 7-31
1/0 general 5.8 5-50 IOWI$ 7.3.3.15.1 7-31
5.8.2 5-51 IOW$ 7.3.3.15.1 7-31
I/0 library 10.7.4.1.1 10-53 I0XI$ 7.3.3.15.1 7-31
I/0 messages G.9 G-19 10% 7.3.3.15.1 7-31
G.9.3 G-21 SETC$ 7.3.3.15.2 7-38
math library 10.7.4.1.1 10-53 TSWAP$ 7.3.3.15.1 7-32
user program 10.7.4.1.3 10-56 UNLCK$ 7.3.3.15.1 7-32
ERR$ 7.3.3.15.2 7-37 WAIT$ 7.3.3.15.1 7-32
ERR= clause specification 5.2.6 5-7 WANY$ 7.3.3.15.1 7-32
ERTRAN 7.3.3.15 7-30 EXIT
Evaluation of expressions checkout command 10.6.3.5 10-35
arithmetic 2.2.3.1.3 2-16 PMD command 10.7.5.2.2 10-65
logical 2.2.3.3.3 2-21 service subroutine 7.3.3.14 7-29
typeless 2.2.3.4.2 2-23 EXIT$ 7.3.3.15.2 7-37
Ew.d format 5.3.1 5-10 EXP intrinsic function Table 7-2 7-8
Ew.dDe format 5.3.1 5-10 Explicit declaration
Ew.dEe format 53.1 5-10 general 22223 2-9
Executable statement 10.3.1 10-5 statement 6.3.2 6-5
Execution Exponent
and collection 10.5.2.2 10-25 overflow 7.3.3.4 7-20
in DO 454.1 4-17 overflow and underflow 7.3.3.6 7-22
order 10.2.4 10-3 underflow 7.3.3.5 7-21
system 1.3.2 1-4 Expression
tracing 9.4 9-6 arithmetic 22245 2-12
using checkout 10.5.2.1 10-24 2.2.3.1 2-15
Executive Request 7.3.3.15 7-30 character 2.2.3.2 2-18
- ABORT$ 7.3.3.15.2 7-37 general 2.2.3 2-14
ACSF$ 7.3.3.15.2 7-37 logical 2.2.3.3 2-19
ADATE 7.3.3.15.2 7-38 typeless 2.2.34 2-22
COND$ 7.3.3.15.2 7-36 External function

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-8
Term Reference Page Term Reference Page
entry 7.7 7-65 parameter L5.1 L-16
EXTERNAL statement 7.2.3 7-3 L.8.2 L-23
7.43.1 7-60 COPY clause L.5.1 L-15
general 7.4.3 7-59 core parameter L.5.1 L-16
non-FORTRAN 7.10 7-69 data reduction subroutine
return from 7.6 7-64 parameter L.8.3 L-25
External program unit 10.2.2 10-2 INPU clause L.5.1 L-15
External reference listing 104.2.2.8 10-21 input subroutine
EXTERNAL statement 7.2.3 7-3 parameter L.5.1 L-15
External subprogram 7.1 7-2 L.8.1 L-21
KEY clause L.5.1 L-13
F output subroutine
parameter L.5.1 L-16
FABORT 7.3.3.15.2 7-37 L84 L-27
FACSF 7.3.3.15.2 7-37 RSZ clause L.5.1 L-12
FACSF2 7.3.3.15.2 7-36 VRSZ clause L.5.1 L-12
FALSE logical 2214 2-5 FMT= clause 524 5-6
FASCFD subroutine 7.3.3.18 7-47 Format specification
FCOND 7.3.3.15.2 7-36 carriage control 5.34 5-15
7.3.3.15.2 7-38 complex variables 5.3.5 5-15
FDATE 7.3.3.15.2 7-37 control of record 5.3.7 5-16
7.3.3.15.2 7-38 defined specifications 5.3 5-8
FERR 7.3.3.15.2 7-37 editing code repetition 5.3.2 5-14
FEXIT 7.3.3.15.2 7-37 editing codes 5.3.1 5-9
FFDASC subroutine 7.3.3.18 7-47 end of output list test 5.3.7.2 5-17
Fieldata constant 2.2.1.6 2-6 FMT= clause 5.2.4 5-6
6.9.4 6-22 general 5.2.4 5-6
File 5.1 5-1 list-directed 5.3 5-8
CLOSE 5.10.2 5-68 multiple line formats 5.3.7.1 5-16
direct 5.7.1 5-44 output list fulfiliment 5.3.7.2 5-17
OPEN 5.10.1 5-57 relationships to an 170
reference number 5.21 5-3 list 5.3.8 5-17
reference table G.6 G-15 scale factor 5.3.6 5-15
sequential 5.6.6 5-40 slash 5.3.7.1 5-16
skeletonized 5.7.1 5-45 variable format 5.3.9 5-18
FILE clause L4.1 L-7 FORMAT statement 5.3 5-8
L.9.3.1 L-30 Format, editing codes 5.3.1 5-9
FIND statement 5.7.4 5-49 FORTRAN
FIO 7.3.3.15.1 7-30 evolution 1.2 1-2
F101 7.3.3.15.1 7-30 execution time system 1.3.2 1-4
FIOW 7.3.3.15.1 7-30 170 guide Appendix G
FIOWI 7.3.3.15.1 7-30 PROC 8.2 8-2
FIOXI 7.3.3.15.1 7-30 processor 1.3.1 1-2
FLD changed to BITS A3 A-4 sample listing 10.4.2.2.2 10-11
FLOAT intrinsic function Table 7-2 7-10 sample program 14 1-5
Floating-point system 1.3 1-2
overflow 7.3.3.8 7-24 FORTRAN V Appendix A
underflow 7.3.3.7 7-23 FORTRAN V interface K1 K-1
FMERGE L.5 L-12 FORTRAN-supplied
bit key L.5.1 L-14 intrinsic procedure 7.3 7-6
Character key L.5.1 L-13 procedure 7.3 7-6
COMP clause L.5.1 L-15 pseudo-function 7.3.2 7-14
comparison subroutine service subroutine 7.3.3 7-17

FORTRAN (ASCII) Reference
UP-8244.3 Index Index-9

Term Reference Page Term Reference Page
Free core area G.7 G-17 FTNPMD 10.7 10-51
FSCOPY L.6 L-17 10.7.5 10-62
key position L.6.2 L-18 diagnostics 10.7.5.3 10-66
link size L.6.2 L-18 initiating 10.7.3 10-52
record size L.6.2 L-18 soliciting input 10.7.5.1 10-62
sort parameter table L6.1 L-17 FTNR 10.6.2.1 10-27
FSETC 7.3.3.15.2 7-38 10.6.6 10-50
FSGIVE L81.2 L-22 purpose 1.3.1 1-3
FSORT L.4 L-2 FTNWB 10.7 10-51
BIAS clause L4.1 L-8 calling 10.7.4.1.4 10-57
L.9.1 L-29 general 10.7.4 10-53
bit key L4.1 L-5 initiating 10.7.3 10-52
character key L41 L-4 messages 10.7.4.2 10-58
COMP clause L4.1 L-6 procedures 10.7.4.3 10-59
comparison subroutine FTNWB$ service subroutine M.17.2.6 M-24
parameter L.4.1 L-9 FTN$PF 8.2 8-4
L.8.2 L-23 FTSWAP 7.3.3.15.1 7-30
CONS clause L4.1 L-4 7.3.3.15.1 7-32
COPY clause L4.1 L-6 Function
CORE clause L4.1 L-7 alternate entry 7.7 7-65
L.9.2 L-29 argument 7.5 7-63
core parameter L4.1 L-9 external 7.4.3 7-59
DATA clause L.4.1 L-6 FORTRAN-supplied 7.3 7-6
data reduction subroutine initial statement 7.4.3.2 7-61
parameter L.4.1 L-9 internal 7.4.3 7-59
L.8.3 L-25 intrinsic 7.3.1 7-6
DELL clause L4.1 L-4 non-FORTRAN 7.10 7-69
FILE clause L4.1 L-7 programmer-defined 7.4.3.2 7-60
L.9.3.1 L-30 programmer-defined
input subroutine procedure 7.4 7-55
parameter L4.1 L-9 pseudo-function 7.3.2 7-14
L.8.1 L-21 reference 7.2.1 7-2
KEY clause L4.1 L-4 return from 7.6 7-64
large sort L.10 L-31 statement function 74.1 7-55
MESH clause L4.1 L-8 structure 7.4.3.1 7-60
L.9.3.2 L-30 subprogram 7.4.3 7-59
NOCH clause L4.1 L-7 typeless 2.2.34.1 2-22
L.9.3.2 L-30 FUNCTION statement 7.4.3.2 7-60
output subroutine FUNLCK 7.3.3.15.1 7-32
parameter L4.1 L-9 FWANY 7.3.3.15.1 7-32
L84 L-27 FWST 7.3.3.15.1 7-30
RSZ clause L4.1 L-3 7.3.3.15.1 7-32
R$CORE L.9.2.1 L-29 Fw.d format 5.3.1 5-9
SELE clause L.4.1 L-6 F$EP 10.7.4.3.1 10-59
VRSZ clause L4.1 L-3 F$INFO 10.7.4.3.2 10-59
FSSEQ L.7 L-19 F2ACTIVS H.2.1.2 H-6
user-specified collating F2DYN$ 7.3.3.22 7-53
sequence L.7 L-19 F2FCA L.3.3 L-2
FSTAKE L.8.4.2 L-27
FSTAT 7.33.151 7-30 G
7.3.3.15.1 7-32
FSYMB 7.3.3.15.1 7-30 GAMMA intrinsic function Table 7-2 7-9

@FTN 10.5 10-22 Global optimization 10.8.2 10-69

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-10
Term Reference Page Term Reference Page
GO checkout command 10.6.3.6 10-36 error messages 5.8.2 5-51
GO TO statement format 5.3 5-8

assigned 4.2.3 4-5 list-directed 5.5.1 5-24
computed 422 4-3 namelist 5.4.2 5-21
general 4.2 4-2 sequential READ 5.6.1 5-26
unconditional 4.2.1 4-2 Input subroutine L.8.1 L-21
Gw.d format 5.3.1 5-12 Input subroutine parameter L.4.1 L-9
Gw.dEe format 5.3.1 5-12 L.5.1 L-15
Input/output control list
H END= clause 5.2.7 5-7
ERR= clause 5.2.6 5-7
H format 5.3.1 5-11 file reference number 5.2.1 5-3
HELP checkout command 10.6.3.7 10-37 FMT= clause 524 5-6
HFIX intrinsic function Table 7-2 7-10 format specification 524 5-6
Hidden user banks M.9 M-10 input/output status
Hierarchy of operators 2.2.3.5 2-23 clause 5.2.8 5-7
Hollerith namelist specification 5.2.5 5-6
constant 2.2.1.5 2-5 record number 5.2.2 5-4
format 5.3.1 5-11 REC= clause 5.2.2 5-4
representation difference A.4 A-8 UNIT= clause 5.2.1 5-3
’h1h2..hw’ format 5.3.1 5-12 Input/output guide Appendix G
Input/output list 5.2.3 5-4
I implied DO 5.2.3 5-5
Input/output status clause 5.2.8 5-7
IABS intrinsic function Table 7-2 7-9 Input/output status word 5.8.1 5-50
IBANK H.2 H-1 INQUIRE statement 5.10.3 5-70
IBJ$ 8.5.4 8-10 INT intrinsic function Table 7-2 7-10
ICHAR intrinsic function Table 7-2 7-10 Integer
Identification line 104.2.2.1 10-11 constant 2.2.1.1 2-3
IDFIX intrinsic function Table 7-2 7-10 storage 6.10.1 6-26
IDIM intrinsic function Table 7-2 7-11 Table 6-4 6-27
IDINT intrinsic function Table 7-2 7-10 INTEGER FUNCTION
IDNINT intrinsic function Table 7-2 7-10 statement 7.4.3.2 7-60
IF statement INTEGER type statement 6.3.2.1 6-6
arithmetic 4.3.1 4-7 Interactive postmortem dump 10.7.5 10-62
general 4.3 4-7 diagnostics 10.7.5.3 10-66
logical 4.3.2 4-8 soliciting input 10.7.5.1 10-62
IFIX intrinsic function Table 7-2 7-10 Interlanguage
IMAG intrinsic function Table 7-2 7-11 communication Appendix K
Implicit Internal file statements
name rule 2.2.2.2.2 2-9 DECODE 5.9.2 5-53
statement 6.3.1 6-4 ENCODE 594 5-55
Implied declaration 2.2.2.21 2-8 general 5.9 5-51
Implied DO 5.2.3 5-5 READ 5.9.1 5-51
INCLUDE statement 8.2 8-1 WRITE 5.9.3 5-54
INDEX intrinsic function Table 7-2 7-11 Internal function 7.4.3 7-59
Initial value 6.9 6-20 Internal subprogram 6.3.1 6-4
Inline function 7.3.1 7-7 6.6 6-14
Inline procedure 7.3 7-6 6.6 6-14
INPU clause L.5.1 L-15 7.1 7-2
Input 10.2.2 10-2
contingency clauses 5.8.1 5-50 Interrupt 10.6.2.1 10-27
direct READ 5.7.2 5-46 Intrinsic function

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-11
- Term Reference Page Term Reference Page
ABS Table 7-2 7-9 DATAN2 Table 7-2 7-8
ACOS Table 7-2 7-8 DBLE Table 7-2 7-10
AIMAG Table 7-2 7-11 DCMPLX Table 7-2 7-10
AINT Table 7-2 7-10 DCONJG Table 7-2 7-11
ALGAMA Table 7-2 7-9 DCOS Table 7-2 7-8
ALOG Table 7-2 7-8 DCOSH Table 7-2 7-9
ALOG10 Table 7-2 7-8 DCOTAN Table 7-2 7-9
AMAXO0 Table 7-2 7-9 DDIM Table 7-2 7-11
AMAX1 Table 7-2 7-9 DERF . Table 7-2 7-9
AMINO Table 7-2 7-9 DERFC Table 7-2 7-9
AMIN1 Table 7-2 7-9 DEXP Table 7-2 7-8
AMOD Table 7-2 7-10 DFLOAT Table 7-2 7-10
AND 7.3.1 7-6 DGAMMA Table 7-2 7-9
ANINT Table 7-2 7-10 DIM Table 7-2 7-11
ARCOS Table 7-2 7-8 DIMAG Table 7-2 7-11
ARSIN Table 7-2 7-8 DINT Table 7-2 7-10
ASIN Table 7-2 7-8 DLGAMA Table 7-2 7-9
ATAN Table 7-2 7-8 DLOG Table 7-2 7-8
ATAN2 Table 7-2 7-8 DLOGI10 Table 7-2 7-8
BOOL 7.3.1 7-6 DMAX1 Table 7-2 7-9
CABS Table 7-2 7-9 DMIN1 Table 7-2 7-9
CCOSs Table 7-2 7-8 DMOD Table 7-2 7-10
CCOSH Table 7-2 7-9 DNINT Table 7-2 7-10
CDABS Table 7-2 7-9 DPROD Table 7-2 7-11
- CDCOS Table 7-2 7-8 DREAL Table 7-2 7-10
CDCOSH Table 7-2 7-9 DSIGN Table 7-2 7-11
CDEXP Table 7-2 7-8 DSIN Table 7-2 7-8
CDLOG Table 7-2 7-8 DSINH Table 7-2 7-9
CDSIN Table 7-2 7-8 DSQRT Table 7-2 7-8
CDSINH Table 7-2 7-9 DTAN Table 7-2 7-8
CDSQRT Table 7-2 7-8 DTANH Table 7-2 7-9
CDTAN Table 7-2 7-8 ERF Table 7-2 7-9
CDTANH Table 7-2 7-9 ERFC Table 7-2 7-9
CEXP Table 7-2 7-8 EXP Table 7-2 7-8
CHAR Table 7-2 7-10 FLOAT Table 7-2 7-10
CLOG Table 7-2 7-8 GAMMA Table 7-2 7-9
CMPLX Table 7-2 7-10 general 7.3.1 7-6
COMPL 7.3.1 7-6 HFIX Table 7-2 7-10
CONJG Table 7-2 7-11 IABS Table 7-2 7-9
COS Table 7-2 7-8 ICHAR Table 7-2 7-10
COSH Table 7-2 7-9 IDFIX Table 7-2 7-10
COTAN Table 7-2 7-9 IDIM Table 7-2 7-11
CSIN Table 7-2 7-8 IDINT Table 7-2 7-10
CSINH Table 7-2 7-9 IDNINT Table 7-2 7-10
CSQRT Table 7-2 7-8 IFIX Table 7-2 7-10
CTAN Table 7-2 7-8 IMAG Table 7-2 7-11
CTANH Table 7-2 7-9 INDEX Table 7-2 7-11
DABS Table 7-2 7-9 INT Table 7-2 7-10
DACOS Table 7-2 7-8 ISIGN Table 7-2 7-11
DARCOS Table 7-2 7-8 LEN Table 7-2 7-11
- DARSIN Table 7-2 7-8 LGAMMA Table 7-2 7-9
DASIN Table 7-2 7-8 LGE Tabie 7-2 7-11
DATAN Table 7-2 7-8 LGT Table 7-2 7-11

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-12
Term Reference Page Term Reference Page
LLE Table 7-2 7-11
LLT Table 7-2 7-11 L
LOC 7.3.1 7-6
LOG Table 7-2 7-8 Label tracing
LOG10 Table 7-2 7-8 enabling 9.2.3 9-4
LOWERC Table 7-2 7-11 initiating 9.4 9-6
MAX Table 7-2 7-9 terminating 9.5 9-6
MAXO0 Table 7-2 7-9 Labeled common storage 6.5 6-12
MAX1 Table 7-2 7-9 Language elements 2.2 2-1
MIN Table 7-2 7-9 array 2.2.2.4 2-10
MIN1 Table 7-2 7-9 constant 2.2.1 2-2
MOD Table 7-2 7-10 expression 2.2.3 2-14
NINT Table 7-2 7-10 operators 2.2.3.1.1 2-15
OR 7.3.1 7-6 symbolic name 2.2.2 2-6
REAL Table 7-2 7-10 variable 2.2.2.3 2-9
SIGN Table 7-2 7-11 Large banks H.2.1.3 H-7
SIN Table 7-2 7-8 Large programs Appendix H
SINH Table 7-2 7-9 LBJ H.2 H-2
SNGL Table 7-2 7-10 LBJ$IT service subroutine M.17.2.5 M-23
SQRT Table 7-2 7-8 LCORF$ 7.3.3.21 7-50
TAN Table 7-2 7-8 LDJ H.2 H-2
TANH Table 7-2 7-9 LEN intrinsic function Table 7-2 7-11
TRMLEN Table 7-2 7-11 LGAMMA intrinsic function Table 7-2 7-9
UPPERC Table 7-2 7-11 LGE intrinsic function Table 7-2 7-11
XOR 7.3.1 7-6 LGT intrinsic function Table 7-2 7-11
INTRINSIC statement 7.2.4 7-5 Library procedure 7.3 7-6
I0C I/0 error status L1J H.2 H-2
function 58.1 5-50 LINE checkout command 10.6.3.8 10-38
IOFLG$ subroutine 7.3.3.23 7-54 LINK=IBJ$ option 8.5.4 8-10
101$ 7.3.3.15.1 7-31 LIST checkout command 10.6.3.9 10-38
I0S 170 error status function 5.8.1 5-50 Listing option 10.4.2.1 10-10
IOSTAT = 5.2.8 5-8 List-directed
IOU 1/0 error status general 5.5 5-23
function 5.8.1 5-50 input 5.5.1 5-24
IOWI$ 7.3.3.15.1 7-31 output 5.5.2 5-25
IOW$ 7.3.3.15.1 7-31 output statements 5.6.2.4 5-35
10X1%$ 7.3.3.15.1 7-31 PRINT 5.6.2.4 5-36
I10% 7.3.3.15.1 7-31 PUNCH 5.6.2.4 5-36
ISIGN intrinsic function Table 7-2 7-11 READ 5.6.1.4 5-30
Iw format 5.3.1 5-9 WRITE 5.6.2.4 5-36
Iw.d format 5.3.1 5-9 List-directed WRITE 5.6.2.4 5-35
Literal format 5.3.1 5-12
J LLE intrinsic function Table 7-2 7-11
LLT intrinsic function Table 7-2 7-11
Jw format 5.3.1 5-9 LOC intrinsic function 7.3.1 7-6
Local optimization 10.8.1 10-68
K Location counter 6.10.2 6-29
LOCV$ service subroutine M.17.2.1 M-22
KEY clause L4.1 L-4 LOG intrinsic function Table 7-2 7-8
L.5.1 L-13 Logical
L.7 L-19 constant 2214 2-5
evaluation 2.2.3.3.3 2-21
expression 2.2.3.3 2-19

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-13
Term Reference Page Term Reference Page
expression formation 2.2.3.3.2 2-21 output 5.4.3 5-23
factor 2.2.3.3.2 2-21 READ 5.6.1.3 5-29
operator 2.2.3.3.1 2-19 WRITE 5.6.2.3 5-34
. primary 2.2.3.3.2 2-21 NAMELIST statement 5.4.1 5-20
storage 6.10.1 6-27 NBRPAGES=n option 8.5.9 8-13
term 2.2.3.3.2 2-21 Nested DO-loop 4.5.2 4-15
Logical assignment NINT intrinsic function Table 7-2 7-10
statement 3.4 3-6 NOCH clause L.4.1 L-7
LOGICAL FUNCTION L.9.3.2 L-30
statement 7.4.3.2 7-60 Nonexecutable statement 10.3.1 10-5
LOGICAL type statement 6.3.2.1 6-6 Non-FORTRAN argument 7.10 7-69
LOG10 intrinsic function Table 7-2 7-8 NTRANS
LOWERC intrinsic function Table 7-2 7-11 Error messages 7.3.3.16.3 7-45
Lw format 5.3.1 5-11 With the virtual feature 7.3.3.16.2 7-45
NTRANS$ service subroutine 7.3.3.16 7-39
M
0
Machine language 1.2 1-2
1.3 1-2 O option 8.5.8 8-13
Main program Object code listing 10.4.2.2.4 10-19
BANKED=ACTARG Object program 1.3 1-2
option 8.5.2 8-8 10.5.2 10-24
banking Appendix H Octal constant 2.2.1.6 2-6
definition 7.1 7-1 6.9.3 6-22
general 10.2.2 10-2 OPEN statement 5.10.1 5-57
sample 14 1-5 block size 5.10.1 5-64
MASM interface K.4 K-5 implicit CLOSE 5.10.1 5-66
MAX intrinsic function Table 7-2 7-9 record format 5.10.1 5-61
MAXADS$ service subroutine 7.3.3.19 7-49 record size 5.10.1 5-63
MAXO intrinsic function Table 7-2 7-9 reread 5.10.1 5-66
MAXI1 intrinsic function Table 7-2 7-9 segment size 5.10.1 5-65
MCORE$ H.2.1.1 H-5 Operator
MCORF$ 7.3.3.21 7-50 arithmetic 2.2.31.1 2-15
MESH clause * L4.1 L-8 character 2.2.3.2 2-18
L.9.3.2 L-30 concatenation 2.2.3.2 2-18
Method of storage hierarchy 2.2.3.5 2-23
assignment 6.10 6-26 logical 2.2.3.3.1 2-19
MIN intrinsic function Table 7-2 7-9 relational 2.2.3.3.1 2-19
MINES$F service subroutine M.17.2.7 M-24 Optimization H.2.3.4.2 H-13
MIN1 intrinsic function Table 7-2 7-9 code reordering 8.5.5 8-11
MOD intrinsic function Table 7-2 7-10 compiler 10.8 10-68
MOVCHS$ service subroutine M.17.2.9 M-26 general 1.3.1 1-3
MOVWDS$ service subroutine M.17.2.8 M-25 global 10.8.2 10-69
Multibanking Appendix H local 10.8.1 10-68
BANK 6.6 6-14 pitfalls 3.2 3-2
FORTRAN compiler 1.3.1 1-2 4.5.6 4-20
10.8.3 10-69
N Option
format 5.2.4 5-6
Name rule 2.2.2.2.1 2-8 on PDP call 8.2 8-2
Namelist on processor call 10.5 10-22
input 5.4.2 5-21 OR intrinsic function 7.31 7-6
name specification 5.2.5 5-6 Order of stalements 10.3.2 10-6

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-14
Term Reference Page Term Reference Page
Output Processor, FORTRAN 1.3.1 1-2

contingency clauses 5.8.1 5-50 PROG checkout command 10.6.3.10 10-39
direct WRITE 5.7.3 5-47 Program
error messages 5.8.2 5-51 execution 9.2 9-2
format 524 5-6 10.2.4 10-3
list-directed 5.5.2 5-25 format 10.4.1 10-7
namelist 54.3 5-23 main program 7.1 7-1
sequential WRITE 5.6.2 5-32 organization 10.2 10-1
Output subroutine parameter L.4.1 L-9 subprogram 7.1 7-1
L.5.1 L-16 unit 10.2.1 10-1
OVERFL service subroutine 7.3.3.4 7-20 unit organization 10.2.3 10-3
OVFSET service subroutine 7.3.3.8 7-24 Program control statement
OVUNFL service subroutine 7.3.3.6 7-22 COMPILER statement 8.5 8-6
Ow format 5.3.1 5-11 DELETE 8.3 8-4
EDIT 8.4 8-5
P general Section 8
INCLUDE 8.2 8-1
P format 5.3.1 5-10 PARAMETER 6.8 6-19
Paged data banks H.2 H-1 PROGRAM statement 7.9 7-68
PAGESIZE=nK option 8.5.9 8-13 Program unit 2.2.2.1 2-7
PARAMETER function 7.4.3 7-59
in program 10.3.2 10-6 organization 10.2.3 10-3
statement 6.8 6-19 procedures 7.1 7-1
with DELETE 8.3 8-4 subroutine 7.4.4 7-61
PARMINIT=INLINE option 8.5.1 8-7 types 10.2.2 10-1
PAUSE routine 10.6.2.1 10-27 Programmer check list Appendix C
PAUSE statement 4.7 4-23 Programmer-defined
PCIOS G.1 G-1 procedure
PDP procedures (entry) 8.2 8-1 BLOCK DATA 7.8 7-67
PDUMP service subroutine 7.3.3.2 7-18 function 7.4.3 7-59
PL/I interface K.2 K-2 statement function 7.4.1 7-55
PMD 10.7.3 10-52 subroutine 7.4.4 7-61
10.7.5.1 10-62 Programming techniques C3 C-3
PMD mode commands PROGRAM=BIG option 8.5 8-6
DUMP 10.7.5.2.1 10-62 Pseudo-function
EXIT 10.7.5.2.2 10-65 BITS 7.3.2.1.1 7-14
PP format 5.3.1 5-10 general 7.3.2 7-14
PRINT SUBSTR 7.3.2.2 7-16
formatted 5.6.2.1 5-32 PSR window H.2 H-2
list-directed 5.6.2.4 5-36 PSRM H.2 H-2
namelist 5.6.2.3 5-34 PSRU H.2 H-2
PROC 8.2 8-1 PUNCH
Procedure formatted 5.6.2.1 5-32
FORTRAN-supplied 7.3 7-6 list-directed 5.6.2.4 5-36
general 71 7-1 namelist 5.6.2.3 5-34
10.2.2 10-2
non-FORTRAN 7.10 7-69 R
references 7.2 7-2
Procedure Definition Range of DO-loop 4.5.1 4-15
Processor (PDP) READ
general 8.2 8-1 direct access 5.7.2 5-46
sample reference 8.2 8-3 formatted 5.6.1.1 5-26
Procedure subprogram 10.2.2 10-1 internal file 5.9.1 5-51

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-15
- Term Reference Page Term Reference Page
list-directed 5.6.1.4 5-30
namelist 5.6.1.3 5-29 S
reread 5.6.1.5 5-31
unformatted 5.6.1.2 5-28 S format 5.3.1 5-11
Real SALCS$P service subroutine M.17.3.1 M-27
constant 2.2.1.2 2-3 SALOCS$ service subroutine M.17.3.2 M-28
storage 6.10.1 6-26 Sample listing
REAL FUNCTION statement 7.4.3.2 7-60 common block 10.4.2.2.6 10-21
REAL intrinsic function Table 7-2 7-10 entry point 10.4.2.2.7 10-21
REAL type statement 6.3.2.1 6-6 external reference 104.2.2.9 10-21
Record termination message 10.4.2.2.10 10-22
buffer offset 5.6.6 5-42 Sample program Figure 1-2. 1-6
direct DEFINE FILE 5.7.1 5-44 SAVE checkout command 10.6.3.12 10-42
end-of-file 5.6.4 5-38 SAVE statement 7.12 7-71
file 5.6.6 5-40 Scalars 2.21 2-3
form 5.6.6 5-42 2.2.2.4 2-10
formatted 5.6.1.1 5-27 Scale factor 5.3.6 5-15
5.6.2.1 5-33 Scope of names 7.11 7-69
list-directed 5.6.14 5-30 SDF
5.6.2.4 5-35 block size G.2.1.3 G-6
namelist 5.6.1.3 5-29 data records G.2.1.2 G-5
5.6.2.3 5-35 direct access G.2.2.2 G-8
segment G.2.1 G-2 end-of-file record G214 G-6
sequential DEFINE FILE 5.6.6 5-40 file layout G.2.15 G-7
size 5.6.6 5-41 file processing G.2.2 G-7
5.10.1 5-63 general G.2 G-2
unformatted 5.6.1.2 5-28 labels G.2.1.1 G-3
5.6.2.2 5-33 record segments G.2.1.2 G-5
Record number specification 5.2.2 5-4 sequential access G.2.2.1 G-17
REC= clause 522 5-4 Segment size 5.6.6 5-41
Reference 5.10.1 5-65
procedure 7.2 7-2 5.10.3 5-75
subroutine 7.2.2 7-3 SELE clause L4.1 L-6
Register usage K.4.2 K-7 Sequential access 170
Relocatable binary output 1.3.1 1-3 BACKSPACE 5.6.3 5-36
Reread statement 5.6.1.5 5-31 DEFINE FILE 5.6.6 5-40
Restart processor (FTNR) ENDFILE 5.6.4 5-38
general 10.6.6 10-50 general 5.6 5-26
purpose 1.3.1 1-3 output 5.6.2 5-32
Restarting program 10.6.3.11 10-40 READ 5.6.1 5-26
RESTORE checkout command 10.6.3.11 10-40 REWIND 5.6.5 5-39
RETURN statement 7.6 7-64 SDF files G.2.2.1 G-7
REWIND statement 5.6.5 5-39 Service subroutine
RSZ clause L.4.1 L-3 CLOSE 7.3.3.17 7-47
L.5.1 L-12 CVBKS$F M.17.2.3 M-23
Run condition switch 7.3.3.11 7-27 CVBK$I M.17.2.4 M-23
Run condition word 7.3.3.11 7-28 CVVASF M.17.2.2 M-22
RUN Executive command 1.4.3 1-7 DALCS$P M.17.3.3 M-29
Rw format 5.3.1 5-11 DIVSET 7.3.3.9 7-25
R$CORE L.3.3 L-2 DUMP 7.3.3.1 7-17
L9.2 L-29 DVCHK 7.3.3.3 7-19
R$FILE L.6.1 L-17 ERTRAN 7.3.3.15 7-30
EXIT 7.3.3.14 7-29

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-16
Term Reference Page Term Reference Page
FASCFD 7.3.3.18 7-47 checksum L.9.3 L-30
FFDASC 7.3.3.18 7-47 data reduction subroutine L.8.3 L-25
FTNWB$ M.17.2.6 M-24 error messages L.11 L-33
F2DYN$ 7.3.3.22 7-53 FMERGE L.5 L-12
LBJS$IT M.17.2.5 M-23 FSCOPY L.6 L-17
LCORF$ 7.3.3.21 7-50 FSGIVE L.8.1.2 L-22
LOCV$ M.17.2.1 M-22 FSORT L.4 L-2
MAXAD$ 7.3.3.19 7-49 FSSEQ L.7 L-19
MCORF$ 7.3.3.21 7-50 FSTAKE L.8.4.2 L-27
MINES$F M.17.2.7 M-24 large sort L.10 L-31
MOVCH$ M.17.2.9 M-26 optimization L.9 L-28
MOVWD$ M.17.2.8 M-25 output subroutine L.8.4 L-27
NTRAN$ 7.3.3.16 7-39 scratch files L.9.3 L-30
OVERFL 7.3.3.4 7-20 user comparison routine L.8.2 L-23
OVFSET 7.3.3.8 7-24 user-specified
OVUNFL 7.3.3.6 7-22 input subroutine L.8.1 L-21
PDUMP 7.3.3.2 7-18 user-specified
SALC$P M.17.3.1 M-27 subroutines L.8 L-21
SALOCS$ M.17.3.2 M-28 Source program 1.3.1 1-3
SLITE 7.3.3.12 7-28 definition 1.3 1-2
SLITET 7.3.3.13 7-29 format 10.4.1 10-7
SSWTCH 7.3.3.11 7-27 listing 10.4.2.2.2 10-11
UNDRFL 7.3.3.5 7-21 SP format 5.3.1 5-11
UNDSET 7.3.3.7 7-23 Space fill 5.3.1 5-9
SET checkout command 10.6.3.13 10-43 Specification statement
SETBP checkout command 10.6.2.1 10-27 COMMON 6.5 6-12
10.6.3.14 10-44 DATA 6.9.1 6-21
SETC$ 7.3.3.15.2 7-38 DIMENSION 6.2 6-2
Side effects of assignments 3.2 3-2 EQUIVALENCE 6.4 6-9
SIGN intrinsic function Table 7-2 7-11 explicit typing 6.3.2 6-5
Sign-on line 10.6.6 10-50 implicit typing 6.3.1 6-4
SIN intrinsic function Table 7-2 7-8 Specification subprogram
Single precision BLOCK DATA 7.8 7-67
complex constants 2.2.13 2-5 organization 10.2.2 10-2
real constants 2.2.1.2.1 2-3 10.2.3 10-3
Single PSR H.2.2 H-9 Specification system, data
SINH intrinsic function Table 7-2 7-9 storage 6.10.1 6-26
Skeletonized file 5.71 5-45 Specification typing, implicit 6.3.1 6-4
Slash (/) SQRT intrinsic function Table 7-2 7-8
end-of-record 5.5 5-23 SS format 5.3.1 5-11
in DATA statement 6.9.1 6-21 SSWTCH service subroutine 7.3.3.11 7-27
in DIMENSION 6.2 6-2 STACK =KEEP option 8.5.1 8-8
in 170 list 5.3.7.1 5-16 STACK=LIST option 8.5.1 8-8
in NAMELIST statement 5.4.1 5-21 Statement
in type statement 6.3.2.1 6-6 arithmetic IF 4.3.1 4-7
6.3.2.2 6-7 categories 10.3 10-5
SLITE service subroutine 7.3.3.12 7-28 classification 10.3.1 10-5
SLITET service subroutine 7.3.3.13 7-29 composition 10.4.1.2 10-8
SNAP checkout command 10.6.3.15 10-45 executable 10.3.1 10-5
SNGL intrinsic function Table 7-2 7-10 form 2.2.4 2-24
Sort parameter table L.6.1 L-17 general 10.4.1.2 10-8
Sort/Merge interface label 10.4.1.3 10-9
banked arguments L.3 L-1 nonexecutable 10.3.1 10-5

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-17
- Term Reference Page Term Reference Page
ordering 10.3.2 10-6 SUBSTR 7.3.2.2 7-16
tables Appendix F Substring expressions 2.2.2.5 2-14
Statement function 6.4 6-9
DEFINE 7.4.2 7-56 Substring, character 2.2.2.5 2-13
general 7.4.1 7-55 Symbolic name
reference 7.4.2.1 7-57 data types 2.2.2.2 2-8
Statement label 10.4.1.3 10-9 format 2.2.2 2-6
assigning value 3.5 3-6 uniqueness 2.2.2.1 2-7
general 104.1.3 10-9 variable 2.2.2.3 2-9
Static virtual storage sizes System Data Format (SDF)
listing 10.4.2.2.9 10-21 general 5.6.6 5-40
STD=66 option 8.5.6 8-12 OPEN 5.10.1 5-57
J.12 J-7
STEP checkout command 10.6.2.1 10-27 T
10.6.3.16 10-46
STOP statement 4.8 4-24 TAN intrinsic function Table 7-2 7-8
Storage TANH intrinsic function Table 7-2 7-9
alignment 6.4 6-10 Termination message 10.4.2.2.10 10-22
EQUIVALENCE 6.4 6-9 Thrashing in Virtual
in banks 6.6 6-14 FORTRAN M.12 M-11
of data 6.10.1 6-26 TLw format 5.3.1 5-13
Storage area between units 6.5 6-12 TRACE checkout command 10.6.3.17 10-46
Storage assignment TRACE OFF 9.5 9-6
map 10.4.2.2.5 10-20 TRACE ON 9.4 9-6
- method 6.10 6-26 TRMLEN intrinsic function Table 7-2 7-11
Storage control table G.8 G-19 TRUE logical 2.2.1.4 2-5
K.4.3 K-8 Truncation errors H.1 H-1
Storage-allocation packet G.11 G-34 Truncation problems
Strip-mining M.17.2.7 M-24 collection and execution 10.5.2.2 10-25
Subprogram 10.2.2 10-2 DIMENSION statement 6.2 6-2
banking Appendix H initial value assignment 6.9 6-20
BLOCK DATA 7.1 7-2 storage assignment 6.10 6-26
7.8 7-67 TRw format 5.3.1 5-13
definition 7.1 7-1 TSWAP$ 7.3.3.15.1 7-32
external 7.1 7-2 Tw format 5.3.1 5-12
function 7.1 7-1 TYPE BLOCKSIZE64
internal 7.1 7-2 collector directive H.2.4 H-15
program unit 10.2.1 10-1 Type rules, arithmetic 2.2.3.14 2-17
subroutine 7.1 7-1 Type statement
Subroutine explicit 6.3.2 6-5
argument 7.5 7-63 general 6.3 6-3
BANKED=DUMARG implicit 6.3.1 6-4
option 8.5.2 8-8 Typeless
BANKED=RETURN evaluation 2.2.3.4.2 2-23
option 8.5.2 8-8 expression 2.2.3.4 2-22
CALL 7.2.2 7-3 function 2.2.34.1 2-22
general 7.4.4 7-61
return from 7.6 7-64 U
service 7.3.3 7-17
structure 7.4.4.1 7-62 Unary operator 2.23.1.1 2-15
subprogram 10.2.2 10-1 UNDRFL service subroutine 7.3.3.5 7-21
SUBROUTINE statement 7.44.2 7-62 UNDSET service subroutine 7.3.3.7 7-23
Subscript checking 9.2.2 9-3 Unit reference number G.5 G-14

FORTRAN (ASCII) Reference

UP-8244.3 Index Index-18
Term Reference Page Term Reference Page
UNIT= clause 5.2.1 5-3 L.5.1 L-12
UNLCK$ 7.3.3.15.1 7-32
UPPERC intrinsic function Table 7-2 7-11 w
User comparison routine L.8.2 L-23
User-specified collating WAIT$ 7.3.3.15.1 7-32

sequence L.7 L-19 Walkback 10.7 10-51
User-specified output 10.7.4 10-53
subroutine L.8.4 L-27 messages 10.7.4.2 10-58
User-specified subroutines L.8 L-21 procedures 10.7.4.3 10-59
U1110=0PT option 8.5.5 8-11 WALKBACK checkout
command 10.6.3.18 10-47
\"4 messages 10.6.3.18 10-48
WANYS$ 7.3.3.15.1 7-32
Value change tracing 9.2.4 9-4 WHh1...hw format 5.3.1 5-11
Variable 2.2.2.3 2-9 Word 1.2 1-2
Variable format 5.39 5-18 WRITE
Virtual FORTRAN Appendix M direct access 5.7.3 5-47
Argument forms M.16 M-17 formatted 5.6.2.1 5-32
Banking and BDR use M.9 M-10 list-directed 5.6.2.4 5-36
BLOCK DATA namelist 5.6.2.3 5-34
subprograms M.5 M-6 unformatted 5.6.2.2 5-33
Character arrays M.8 M-9 WX format 5.3.1 5-12
CPU performance M.13 M-12
DATA=AUTO M.6 M-6 X
Efficiency suggestions M.15 M-16
Error detection M.7 M-7 X format 5.3.1 5-12
Examples M.17.4 M-29 XOR intrinsic function 7.3.1 7-6
Hidden user banks M.10 M-10
Initialization of virtual Z
objects M.4 M-4
Library utility routines M.17 M-21 Zero-fill 5.3.1 5-9
Performance M.11 M-10 $ 54.2 5-21
Restrictions for entry name 7.7 7-65
declaration matching M.3 M-4 in a symbolic name 2.2.2 2-6
Service routines M.17.2 M-22 statement label 7.2.1 7-2
Thrashing M.12 M-11 subroutine statement
Timings M.14 M-15 label 7.2.2 7-3
Virtual storage allocation M.17.3 M-27 & 5.4.2 5-21
Virtual object initialization M.4 M-4 EXTERNAL option 7.2.3 7-4
Virtual space for concatenation 2.2.3.2 2-18
options affecting 8.5.9 -13 statement label 7.2.1 7-2
VIRTUAL statement 6.7 15 subprogram name 6.6 6-14
Arguments passed to a subroutine statement
subprogram 6.7.4 6-17 label 7.2.2 7-3
Examples 6.7.6 6-17 * 7.4.3.2 7-60
Local variables 6.7.2 6-17 7.4.4.2 7-62
Placement of 6.7.1 6-16 EXTERNAL option 7.2.3 7-4
Virtual and banking statement label 7.21 7-2
together 6.7.5 6-17 subroutine statement
VIRTUAL=NCCB option 8.5.9 8-14 label 7.2.2 7-3
VIRTUAL=STATIC option 8.5.9 8-14
Volatile register set K.4.2 K-7
VRSZ ciause L.4.1 L-3

CuTt

| <= SPERRY

| USER COMMENT SHEET

| We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

| (Document Title)

{Document No.) (Revision No.) {Update No.)

l Comments:

I From:

— I (Name of User)

| (Business Address)

| Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD __

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY CORPORATION

ATTN.: SOFTWARE SYSTEMS PUBLICATIONS

P.0. BOX 64942
ST. PAUL, MINNESOTA 55164

cuT

O
n
<
Z
<
oC
T
oc
O
L

-
oc
-
-
©
>
Q

Reference

-8244 3

upP

This document contains the latest information available
at the time of preparation. Therefore, it may contain
descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest
information regarding levels of implementation and
functional availability, please consult the appropriate
release documentation or contact your local Sperry
representative.

Sperry reserves the right to modify or revise the content
of this document. No contractual obligation by Sperry
regarding level, scope, or timing of functional
implementation is either expressed or implied in this
document. It is further understood that in consideration
of the receipt or purchase of this document, the recipient
or purchaser agrees not to reproduce or copy it by any
means whatsoever, nor to permit such action by others,
for any purpose without prior written permission from
Sperry.

FASTRAND, +SPERRY, SPERRY, SPERRY#UNIVAC,
SPERRY UNIVAC, UNISCOPE, UNISERVO, UNIVAC, and

are registered trademarks of the Sperry Corporation.
ESCORT, MAPPER, PAGEWRITER, PIXIE, SPERRYLINK,
and UNIS are additional trademarks of the Sperry
Corporation.

©1985 - SPERRY CORPORATION PRINTED IN U.S.A.

