@

VARIAN 620
TRAINING MANUAL

varian data machines/a varian subsidiary

©

1972

varian data machines @-—-1

—_@ varian data machines

98 A 9902 504

JANUARY 1973

This manual is intended for training purposes anly. For detailed
information, refer to the applicable document for the system you are
using.

CONTENTS
TABLE OF CONTENTS
CHAPTER |
COMPUTER FUNDAMENTALS

Section 1 INErOdUCTIONoiiiiiiii e I-1
1.1 General DesCriplion ...ttt vre s et ar et e e e e e e s rabeneneeeeeesra I-1
1.2 CompuUter ConCEPES . ..ciiiiiiiii ittt e eer e e e eeeaan 1-2
1.2.1 Central Processing Unit (CPU).......coviiiriimiiiiiiieiiiceceerccrrcrire e naeee e, 1-2

L1.2.2 IMIBIMIONY cooeieieeeeetiteeeeeieeetreaee e e e e s e s arae s s e et eeeeeaaesaassnsennan s esaeasaeeeaesesrasnnesnsrsrnannbene 1-3

1.2.3 INPUL UNiteeeeiii et ererrrr et e e e e a s e e 1-3

1.2.4 OUtPUL UNit ..o st e et s s vt e e e e 1-3
Section 2 Numerical ANalySisccccoiiiiiiiiii e 1-4
2.1 Introduction................ N B SRR PRRPUPPPPIN I-4
2.2 Square Root ExXtraction...........iiiiiieiiiiiii i e -4

CHAPTER I
PROGRAMMING

Section 1 INEPOAUCTIONociiiee e et ra e s e H-1
1.1 Communication With @ Computer........ ..o e rre e e e e e e e e -1
1.2 MINEIMONICS ovveiiiiiiie et r e e e e e e e e e e anaaas PR 1-1
1.3 NUumerical Code........uiiiiiiiiiiiiicce e e rrrerrrerni e -1
1.4 INSTrUCTION Sl ..o et et i-2
1.5 Preparing the Programi.........iciiieiiiiiin e es s e s e ne e s ere e senennes w2
Section 2 FIoW-Chartingcccoiiiiii et -3
2.1 INErOQUCTION ... e a e r e e e s s s e r s e e e e e et e ae -3
2.2 NOTAHON e 11-6
P0G T 1Y 1 1] oo -3 O PO UPPPPPPPUPRIN -7
2.3.1 FUNCHONS oot e s e e s e s e s e s e n e e e e e eeneasaran s -7

G T 1= o 1 o £ =T -8

2.3.3 INPUL/OULPUL oo e e e 11-9

2.3.4 Start and StOP .. e e e e anaaes [1-10

2.3.5 Fixed ConNNECIOrS...ccoiiiiiiiiiiiiiiiiiiee et e e st s ae s e e ee e e s e s eesrn e re e i1-10

iii

varian data machines [@—-—

_@ varian data machines

CONTENTS
2.4 A Simple FIOW Chart ...ttt 11-11
2.8.1 SUDSHIIUTION ...ooiiiiiee e e 11-12
2.8.2 SUDFOULINES ...oooiiiiiiiiiet ettt s e e e e 11-13
2.8.3 ASSEITIONSoiiiiiiiiiiiiieie ettt e e s e e e s ree bbb a——————————r e 1-14
2.5 A More Complicated Flow Chartcc.cccoiiiiiriiiiiii e, 11-14
Section 3 Machine Language Preparationccoooiiiiiiiiiiiiiine, 1-17
3.1 INErOAUCTION ...coooiiiiiiii s e 117
3.2 INStruction Repertoire..........cocuiiiiiiiiire e n-17
3.2.1 INSErUCHION TYPES .oveiirieiiiiiiieieee et e e s ar e aee e s s s siebb e e e e e 1-18
3.2.2 AAAreSSeseevuireeiiiiieeiiriiiiiierieeieeeeeeesreecenrenenrrnersnesreneeseesssssisssesseeenenennd 118
0 T 07T [T OO PO PO RT PR 1-18
3.3 SAMPIE PrOBrams....ccccomiiiiiiiiiiiieiieiiteee e eecrirtr e e e seraeesssibbe e e e e e e s s s ssbraaaeeeesssabbnes 11-19
3.4 Machine LangUAage..........cccoiiiiiiiiiiiiiiiiiiiic et 11-30
I 2% T oo o 11 o ¥~ S TP P P T OO PP U PO PR PR PP PPPPPPP 11-30
2T 1 To [{1 T - PO PO TP TRRTUPOPPPPR 11-30
3.6.1 Specifying the Index Register..........cccooiiviireiiiieeeeeeeee i-33
3.6.2 An Example of INAeXiNG.......ccoooiiiiiiiiiniiii e, 1-33
3.6.3 Address Modification by Indexing........cccccccoevmiiiiiiiiiiiiniicn, 11-36
3.7 SUDFOUNINES ..o e 11-36
G 3 T 070 To 1147 S U PR PPRPRN 11-37
Section 4 Programming in Assembly Language................coceiiininiiinnnnn. 11-39
4.1 DAS ASSEMDIETeiiiiiiiiiiie et e e e an -39
.11 DAS KA .o e et 11-39
4.1.2 DAS BKA Lo s 11-40
4.1.3 DAS MR . e e e et a e 11-40
4.1.4 Stand-Alone MR ...t e 11-40
4.2 DAS S0UICE LANGUAEEuiiiiieeiiiiiie ettt e sctciaeeesetene e eessnntarraeaeaessesassnrnneereeessanns 11-40
4.3 SEAEMENTS ..o e e e e 11-41
4.3.1 Statement FOrmat...........oooiiiiiie e i1-41
4.3.2 Label Fild...ccooiiiiiiiiiiiei e e e 11-41
4.3.3 0peration Field...........eecceiiiiiieiiiiiiiiiee e r e 11-41
4.3.4 Variable Field ... 11-42
4.3.5 Comment Field....c..cooiiiiiiiiiiie e 11-42
4.3.6 Comment Statementsccccoomiiiiiiiiii 11-42
4.3.7 Blank Statements ... 11-42
4.4 Programming in Symbolic Assembly Language.............cccccoceiiiniiiiiiinn. 11-43

varian data machines @——

CONTENTS
CHAPTER IlI
COMPUTER OPERATION

Section 1 WOord FOrmats.......cccooiiiiiiiiiiiciinier e -1
1.1 LR goTo [Tox { [] o O PO P TP PPN -1
1.2 Single-Word INSTruCtioNS ...cooiiiiiiiiic s e -2
1.2.1 Addressable ... e n e aeeen -2
1.2.2 NONAddressable.. ..ot r st rrrr e s e e e -3
1.3 TWOo-WOord INStruCtioNScooiciiiiiiiiii ettt e e e e -4
1.3.1 Jump, Jump and Mark, and Execute Instructions...........ccccovieveennnin, -4

1.3.2 Memory In/0ut INStructions......ccccviiiiiiiiiiice e, -5
1.3.3 Immediate INStructionscceeiiiiiii -5
1.4 MACRO-INSTIUCLIONS ..uvviiiiiiiiiiiiiiiiricr e ettt et e et a e e e -6
1.5 INSErUCHION LISt uiieini et 111-6
Section 2 Paper Tape Formats........c.ccoooiiiiiiiiiiiicic e 111-8
2.1 Source Tape FOrmat....cocciiiiiies et a e I11-8
2.2 Bootstrap Format........oooiiiii s -8
2.3 Binary Object (Program Object) Format........occoivieeeiiiiiiiici e 111-8
2.4 MOS Relocatable Object FOrMatccciivueiiiveieiiiececicee e ectee et 1-12
Section 3 Operating Sequences for 620/i, 620/Lcccoceeeveiiiiiniiennnnnnn. fi-14
3.1 Access Operand in MemMOIY......oociiiier e e e e s st taaee e e e e e e e e s e e ennnnanan 1-14
3.2 Store Operand iN MemOrY ..ottt e e 1-17
3.3 Indirect Operand ACCESScoiiiiiiriiiiiiiieii it e e ee e 1-17
Section 4 Computer Failure...........cccccooiiiiiiiii11-19
4.1 0] SRR 111-19
4.2 1Y E €= 0= PP PP UP PSS 111-20
430G B (V1 =Y {01 o 170 o ¥ SO OO SPRRPPURPP -21
4.3.1 Diagnostic Routines for Corrective Maintenance...........cccocovvviiinninnnn. -21
4.3.2 Diagnostic Routines for Preventive Maintenanceccccccoevinnnenn . 1n-21

CHAPTER |V
620 COMPUTER SYSTEMS

Section 1 620/i and 620/L Systems.........ccccciiiiiiiiiiiiiiiee e V-1
1.1 TR oo (ULt {1 o U SO P U V-1

varian data machines
—&

Vi

CONTENTS
1.2 Switches and INdiCators.........cccoiiiiiiiiiiiie ettt eeere e e e IV-6
L.2.1 DiSPIaYS...oeeoiiieiiiesiie ittt ite st e sre e e cte e sn s sateebe s et be fene e s tr e e sbaeesree e naaeees V-6
D 01) { £ NP OT V-8
1.3 Manual Operationccociiiieiiieniinicie e eecteeeee e sreeeseareebe s srar e sanreenes sens 1V-10
1.3.1 Power CONtrol.........ccouviicciiiniiiccieee ettt ettt ae e ens aaeas IV-10
1.3.2 Manual Program Entry and Executioncccceeiiiniiiiniiiiiiiinenn s IV-11
1.3.3 Instruction Repeatccciiiiiiiimeieciie e s iv-11
1.3.4 SENSE SWItCheSooiiieiiiiiiicieee et eeees s IV-12
1.4 Organizationcocciiiiiiiiiiieeete et s er e et aeeas beees 1v-12
| O 3 R | - 1 o T USRI IV-12
) O 07 { (o LU SO IV-14
1.4.3 ArithmetiC/LOGICuuvviiiieeiiie ettt een e Iv-14
1.4.4 Input/Output ..ot een bre e IV-15
1.4.5 BUS SrUCIUre ..ot s IV-15
)R T N1 111 7 SO OO U USSR PURR IV-16
L R 20 B O o Yo T PO SO IV-16
1.5.2 Clock MOIfIers ...cooouriviiiiiiciiececree ettt snaea e een ares IV-18
1.5.3 Sequence COoNtrol..........cocueiiiiiieiiiee et e eetee et e v-19
1.6 Information Transfercvvvviiiiiie e e Iv-21
1.6.1 P Register to0 MemOrycccoeiiiiiiiiiiiiiieee e e 1V-21
1.6.2 Memory to U RegISter.......cccooiiiiiii it e Iv-21
1.6.3 U Register t0 Memory......cccoiiiiiiiiiiiic ettt e 1v-21
1.6.4 Memory 10 R ReISter ...ccccvveiiiiiiiii e e Iv-22
1.6.5 Adder to Operation Registers...........cccooiiiieiiiieiciiee e e 1v.22
1.6.6 Operation Registers 1o Memory........cccocovviiiiiciiineici e e Iv-22
1.6.7 Memory to Operation Registers...........coooviieiiiiiiiiiiiiiiiiieeieeee e Iv-22
1.6.8 INput 10 MemMOry.....cooiiiiiiieii e sra e e ee e cenee Iv-22
1.6.9 Output from MemoOry.....cccccoiiiiiiiiiiiiie et e IvV-23
1.6.10 Input to Operation Registers........cccocooviieiiiiiii 1V-23
1.6.11 Output from Operation RegiStersccccoovviiiiieiiiiiiinciiiii e s IvV-23
1.6.12 Operation Register to Operation Register.........c.ccoccoviiiiiiiiiiiinniies e IvV-23
R O -1 o T« | - TSSO RPR SO Iv-23
1.7.1 Operation Code DECOTING...........ccueerieuiiieeirecieniesieneeteeee st eiens saees Iv-24
1.7.2 M Field DeCOiNg........ccoeviiiiieiiiiieiie e eteeee et eeen seees Iv-24
Section 2 620/f, 620/1-100 Systemcoooiiiiiiiiiiiiie e 1V-30
2.1 INEFOQUCHION ..eeeiiiiii et ettt e e s e et e e e e e e eeeaaen aeeas 1V-30

2.2

2.3

2.4

2.5

2.6

CONTENTS
Switches and INdICators ... e Iv-37
2.2.1 POWEr SWItChociiiiiiiiiii e s 1vV-37
2.2.2 STEP/RUN Switch and STEP and RUN Indicators..........cocevvieverrnnnnne 1V-39
2.2.3 BOOTSTRAP SWItCh ...t e V-39
2.2.4 START SWItCh ..o e e e res 1V-40
2.2.5 REGISTER SWItCheS.....ccoceriiiciiiiiiiiii e 1V-40
2.2.6 Register Entry Switches and Display Indicatorsccccovviiiiniiiiinnnn, IV-40
2.2.7 LOAD Switch.......... PP PTUPR PSRRI IV-41
2.2.8 REPEAT SWItCh oot ee s s IvV-42
2.2.9 SENSE SWItChESooiiiiiiiiiei et e IV-42
2.2.10 INT (Interrupt) SWitCh.....cooiiiiii e e e 1vV-42
2.2.11 RESET SWICH ..coiiii e e 1v-43
2.2.12 OVFL (Overflow) INdicatorcoevveeviiiiii e ee e 1V-43
2.2.13 ALARM Indicator.......ccccoviimeiiiiiiiiiicriee e ereeee eerrrere et raraeeaerrenranan IV-43
Manual Operationccccoviviiiiei e e IV-43
2.3.1 Loading Into Sequential Memory Addressescccccoovvvererererciiiereeenenns IV-43
2.3.2 Displaying From Sequential Memory Addresses.........ccccccceveveieiiinenenenn. IvV-44
2.3.3 Manual Execution of Stored Programs.........ccccceoviiviiiiiiiiiiiiiiiicneee e, Iv-44
2.3.4 Manual Repetition of Instructions.........c.cooveviiiiiiiiiiiiee 1V-45
104210 17.2=) (o] o ST RPN IV-45
2.4.1 Control SeCtioN. ..ottt e e e en s IV-45
2.4.2 Decoding SeCHIONvvviiiiiiiiiiic s IV-45
2.4.3 Arithmetic UNit ..o e e IV-45
2.4.4 Operation RegISTers.......cocciiiiiiiiiiiieiieiin ettt se e e e e e e raereeeeeeesanas 1v-47
2.4.5 Auxiliary RegiSters........cccici it ee e ee IV-47
2.4.6 Data Switch Sectioncccoiiiiiiiiii e 1v-48
2.4.7 Register Entry Switches/Display Indicators..........ccccovvviiiiiiininiiiiiiinnnn. 1V-48
2.4.8 Shift-and-Rotate CirCUitc.c.ocvviiiiiiiiii e e IvV-48
2.4.9 . INternNal BUSES......coiiiciieiiic et aen e e s IvV-48
T4 = 1V-49
T S O T ol S PO IV-49
2.5.2 Clock MOQITIEFS ...eeiiiiiiiieeitiie e e e e eneeee e e e e 1V-51
2.5.3 Sequence Control ... IV-52
INformation TranSfer ... s IV-52
2.6.1 P Register 10 MemoOrycccoeiiiiiiiiiiii e e IV-53
2.6.2 Memory 10 | RegISter ..o 1V-53
2.6.3 | Register t0 MEMOIYcooiiiiiiie et v e e eaneaaeanaes 1V-53

vii

varian data machines @]——

_[@ varian data machines

CONTENTS
2.6.4 Memory 10 R ReEISter......coiviiiiiiiii i ceee et IV-55
2.6.5 Arithmetic Unit to Operation Registers.........cccccccoeviveeriiiniiiiniiiireeen e IV-55
2.6.6 Operation Registers t0 Memory.......cccoovvuiiiiiiee e IV-55
2.6.7 Memory to Operation RegISters........ccccceiviiiviieeiiiiiiieec e IV-56
2.6.8 INpUt 10 MEMOTY......oiiiiiiiii ettt IV-56
2.6.9 Output from MemOrY......ccciiiiiiiiiii e earee e IV-56
2.6.10 Input to Operation Registers..............ccccooivviiiiniiininiicenneeee IV-56
2.6.11 Output from Operation Registerscccccovvvreeriieiiiiiiiiiieeeee . IV-56
2.6.12 Operation Register to Operation Register..........ccocovvviriviiiieiiiiiiiineennn, IV-56
Section 3 620/L-100 Systemsccccccvverreerenrninnnn. reererrr—————— Iv-57
3.1 INErOAUCTION ... e 1V-57
3.2 System Operation..........iiiiiiiiiiiec et IV-62
3.3 Manual Operationscccocccceiiiiiiiriciee e e erer e e eaees 1V-66
3.4 Central Processing UNit......ccccocovieiiiiiiiiniiiiieicie e IV-69
CHAPTER V

LOGIC DESCRIPTIONS

viii

I1-1
-2
-3
i-4
I1-5
-6
-7
-8
I1-9
i-10
11-11
t-12
1-13
i-14
I1-15
1-16

in-1
-2
-3
-4
I1-5
-6
"n-7
I1-8
-9
il-10
1-11
1-12
11-13
I-14

varian data machines @——

CONTENTS
LIST OF ILLUSTRATIONS

Typical Computer SYSteMcccvviiiiiiii e -2
TypIiCal FIOW Chart......coooiiiiiiiiii et aee e e e e e e e e eesenes -4
Flow Chart SYMbBOIS. ..ottt ettt reeaene s -5
Flow Chart for T = AX’ + BX X SiN 0 cooeeoreeerereeeeereeerreereesenn. I-15
Flow Chart for a Positive and Negative Number Count.........c.ccceruunens 11-25
Count of Positive NUMDErS........cc.cooiuiiiiiieeiecie e 11-31
Loop Program.......c.cccccecvviivneieniinnnnenn, ettt e et re e e e e e aeeaeaeas 11-32
Add a Table of Three NUMbErs........cocoovvieiciiiciii e 11-34
SUDFOULINES ... s e e s e e 11-38
Example |, Coding FOrMcooiiiiiiieiececcte et 11-44
Example 1, ASSEMDIlY LISHING ...c..oveveeeereeereeeereeeeesesssesseseses e seesses oo 11-46
Example J, Coding FOrMu .ttt eeee e 11-48
Example J, Assembly LiStiNg ..cc.c.oouvveiiiciieeiiiiiiieeeee et 1-51
Example K, CodiNg FOIM ...ttt e e e s e e e e aeaenaeaaes 11-55
Example K; Assembly LiStiNg........ccccoiiiivieiiiciiiiiiiiccee e 11-56
Example L, Coding FOrM.....cccoviiiiiiiicii et 11-58
Example L, Assembly LiSting.....ccocoeiiiiiiiiiieie e H-59
Formats for Data Words and Indirect Addressescccoovvevevviinnennnn. I11-1
Single-Word Instruction Format............cceeeeeiiiiiiiinniiiie e -2
Single-Word Nonaddressable INStructionsocvvveveviveeovee e, -3
Two-Word Instruction FOrmat............cooviiveeeiinccies e -4
Immediate Instruction Format.........cccooiiiiiininiiicice e, -5
MACRO-Command FOrmatccoueeeiiiiiiiecic et 11-6
620 Series INStruction LiStcccoocueiiiiiiiiicc e -7
Source Tape FOrmMat......ccoooiiiiiiiiie ettt 111-9
BoOtStrap FOrmat........cooociiiiiiii sttt 111-10
Binary Object FOrmat.......ccccoeiiiiiiiiicce et 1-11
MOS Relocatable Object FOrmat.........ccocooeveeviiiiiiiiieeiee e 11-13
Operand Access from Memory SeqUENCE........ccccceceeviiceeeeeeerereeeeen, 11-15
Operand Storage in Memory SeqUENCE.......cciivuviiieeeeeeeeeeeeeeeeeeeeeeveans ill-16
Indirect Operand AcCCESS SEQUENCE.........cccoeeieeieiieiieriieeeeeeeeeeeeeeeeeenaean. 1-18

CONTENTS

V-1
Iv-2
V-3
V-4
IV-5
IV-6
V-7
V-8
V-9
IV-10
IvV-11
IvV-12
IV-13
IV-14
IV-15
IV-16
v-17
1V-18
IV-19
IV-20

V-1
V-2

V-3

V-4
V-5
V-6
V-7
V-8
V-9
V-10

V-11
V-12
V-13
V-14
V-15

_@’ varian data machines

62071 OULHNEG.....eeiiiiie e s eab b e e en e V-6
62071 Control CONSOIEovvvveeiiiiiiiee e rares 2eens v-7
620/L Control ConSOolecvivvrieiiiiiei et et eias e Iv-7
62071 Organization.............ccoieeiiiiiiiiie et e IV-13
Basic Timing ClOCKSuuviiiiiiei e s IvV-17
Example of a Modified Clock Sequenceccccccceeiiiiiiiiiiieiiiieeeeeeie, IV-10
Data 620/L Organization........cccccccccimummiiiiiiiiiinreereee e eee e Iv-21
620/f Computer Control Panel.......cccccccooniiiiininiiriiirreeicvnee e, IV-38
620/f Computer Functional Organization.........c..ceccveieeiinniiiceeeinnnnnenn, 1V-46
Basic TimMINgG ClOCKS.....ciioiiiiiiiiiieicceee ettt e e 1IV-50
Example of a Modified Clock Sequence.........ccccooceiiiiiiiiieiiiciiierinnns IV-53
620/F Organization........cccovciiiiiiiiiiei e IV-54
Varian 620/L-100 Mainframecccoviiiiiiiicciiiiieener e IV-61
Varian 620/L-100 Control Panelccccccccivriiiieciceiriiiinineeninenseciiininenn IV-63
Varian 620/L-100 Computer Organization..........ccccccccieiiieeiiiieiiiiieennnnnnnns v-70
Basic Clock Waveformsccccoeiiiiiiiieie e IV-79
Example of a Modified Clock Sequence...............c..occ..... e ———— 1V-81
Accessing on Operand in MemoOry........cccccceeiiiciiiiiiiiieieiee e e, 1V-82
Storing an Operand in MemOFY........ccooviiiiiiiiiiiiiiieecceee e IV-83
Accessing an Operand Indirectly...........coooooiiiiiiiiiiiiiiniiiee e, V-85
Quadruple 2-Input NAND Gate (SN7400N, 7400PC, N7400A) V-2
Quadruple 2-Input Positive NOR Gate (SN7402N, MC7402P,

TBOZ2PC) .ottt e et e st e s ety ba e et e e e e enarens o V-2
Quadruple 2-Input Positive NAND Gate (Open Collector)

(SNTZAOBN) ...t e ree e e ce e e eeeeeseerteeeseasrreeseasrraeeseeseanaes V-3
Hex Inverters (SN7404N, MC7404P, N7404A, 7404PC)cccccevvveeuennn... V-3
Hex Inverter with Open-Collector Circuit (SN7405J), MC7405L).............. V-4
Triple 3-Input Positive NAND Gate (SN7410N, 7410PC, N7410A)......... V-4
Dual 4-Input Positive NAND Gate (SN7420N, MC7420, 7420PC).......... V-5
Dual 4-Input Positive NAND Buffer (SN7440N, MC7440L, 7440DC)..... V-6
Quadruple 2-Input Positive NAND Gate (SN74HOON, MC3000P)........... V-7
Quadruple 2-Input Positive NAND Gate with Open Collector

(SN74HOLIN, MC3004P).......coiciiiiiieie ettt eee e e V-7
Hex Inverter (SN74HO4AN, MC30018)......c.uuuiiiiiiiimiieeiriieereiieieeeeeeeneneeeeenenen V-8
Hex Inverter with Open-Collector Output (SN74HO5N).........cceeeeiriinnnnns V-8
Triple 3-Input Positive NAND Gate (SN74H1O0ON).......c.ccooveiceviviiniiinnnnennn, V-9
Triple 3-Input Positive AND Gate (SN74HIIN)......ccccooiiiiiiiiiiiiniiinnininnn. V-9
Dual 4-Input Positive NAND Gate (SN74H20N, MC3010)...................... V-10

V-16
V-17
V-18
- V-19
V-20

v-21
V.22

V23

V-24
V-25
V-26
V.27
V-28
V-29
V-30
V-31
V-32
V-33
V-34
V-35
V-36
V-37
V-38
V-39
V-40
V-41
V-42
V-43
V-44
V-45
V-46
V-47
V-48
V-49
V-50
V-51

MC3020 and 3023).....ccciiiiriiriiiriieeieeenn e e V-14

MEC3B03B2) ...t e ettt ee e e et e e e e r et e e araaeeaaaen V-16
3-2-2-3-Input AND-OR Expander (SN74H62N, MC3018P).......c.ccooeu...... V-17
J-K Master-Slave Flip-FIOp (SN74A72N)uuuiiiiiiiieeeeeeeeeeceeeeeeeeeeevvanae s V-18
J-K Master-Slave Flip-Flop (SN7Z4H72N)....ooiiiiiiiiieeeeieee e raaeen V-19
Dual J-K Master-Slave Flip-Flops (SN7473 and 74107N).......ccccccouuene... V-20
Dual J-K Master-Slave Flip-Flops (SN74H73N)..ccvvvivvveieireiieeeeeeaeenns . V-21
Dual D-Type Edge-Triggered Flip-Flop (SN7474N).........ccccovivininnennnene. V-22
Dual D-Type Edge-Triggered Flip-Flop (SN74H74N).........cooovvviveveeenann.. V23
4-Bit Binary Counter (SN7493N) ...t V-24
4-Bit Right-Shift Left-Shift Register (SN7495N)coovvviveeviceeeeereeenns V-25
- Dual J-K Edge-Triggered Flip-Flop (SN74HI108N)......c.ccoovvvemoriirceesinann. V-26
Synchronous 4-Bit Up/Down Counter (SN74193J) .cccvvvviviieeieeneeennn.. V-27
Data Selector/Multiplexor (SN74150N).....cccccvviviiiiiuireeeeeoeeeeeeieeveeeeeeans V-28
Arithmetic Logic Unit/Function Generator (SN74181IN).......ccoevvvvrun. V-29
Look-Ahead Carry Generator (SN74182N)......... et V-30
Gated Full Adder (SNZA80N)..........ociiieeee et eee e e e V-31
256-Bit Read-Only Memory (SN7A88N).........coovivviiiieeeeeeeeeeeeeeeeeeeeen, V-33
High-Speed Buffer Memory/Register File (SN74170N).......cccvvveeeennen.. V-35
Quadruple Bistable Latch (SN7475N)......coouiooiiiiieeeeeeeeee e eee e V-37
Quadruple 2-Input NAND Gate (SNI15846N)........cccccvviriieaeeereeasennin, V-38
Triple 3-Input NAND Gate (SNI5862N)cccccovviiiiieeieeeeiieieeeeeeeeeneaaas V-38
Dual 4-Input NAND Power Gate (SNGOOBN)veeevvveeeeeeceeeeeeaeeenn. V-39
Pulse-Triggered Binary (SNI5850N)ccooiiioiireeeeee e eeeeee e V-40
Monostable Multivibrator (SN1I5851N)........ccocoviiieeeeeeeeeeeeeeeeeeeeeeea, V-41
Retriggerable Monostable Multivibrator (Fairchild U6A960159X)......... V-42
Quadruple 2-Input AND Gate (MC3001P)coveeeeeiiieeeeeeeeeeeeeeee v, V-42
Quadruple 2-Input NOR Gate (MC3002P)ccuvivereeeeieeeeeeeeeeeeeeaen, v-43
DUal SENSE AMIPS.....ooiiiiiiiiiirie et e V-43
Binary to Octal Converter (MCA006P).........oouoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeon V-44
3-Line t0 8-LiNe DECOUEIS......c.eeeiiiiieciiiiiiceie st e e e e e e V-45

varian data machines @——

CONTENTS
Dual 4-Input Positive AND Gate (SN74H21N, MC3011)....c..cecevurrnens V-11
Dual 4-Input Positive NAND Gate (SN74H22N).........cccovvvvevrevnveirnncnnas V-12
8-Input Positive NAND Gate (SN74H30N).......cccccvrerririririerieeirirerssieranns V-12
Dual 4-Input Positive NAND Buffer (SN74H40N, MC3024P)................ V-13

Dual 2-Wide 2-Input AND-OR-Invert Gates (SN74H50 and 51N,

Expandable 2-2-2-3-Input AND-OR Gate (SN74H52N, MC3031P)......... V-15
Expandable 2-2-2-3-lnput AND-OR Invert Gate (SN74H53N,

Xi

——@ varian data machines

CONTENTS
LIST OF TABLES

(A 620/i and 620/L Specifications.........cooovviiiiiiiiiiii e iv-2
V-2 Controls and INAiCators..........c.oooviviiee i V-8
V-3 Basic Timing COCK ...t 1V-18
V-4 Instruction Storage in U Register...........coocoiiiiiiiiiiii, IV-26
IV-5 Operation Code ClasSes..........ccovviiiiiiiiiiieiiceeee e Iv-27
IV-6 Operation Code Sets.........cccooiiiiiiiiiiiiiiiii e v-27
Iv-7 Operation Code GroUPScccovvviiriiiieiiieeccree et e IvV-28
V-8 M Field DECOAINEGoooieiiiiie ettt IV-28
V-9 620/ SPeCifiCationS........cccoriiiiiiii e IV-31
IV-10 Basic Timing CloCKScocoviiiiiiii e e IV-51
vV-11 620/L-100 SpecificationS........c.ccceeiiiiiiieiiiie ettt IV-58
Iv-12 Bootstrap Loader ROULINEScocooueueevemeeeeeeeeeeeeeeeeeeeeeeeeeeeee e IV-67
IV-13 Varian 620/L-100 System CIOCKSooovviviiiiiiiiiiiiniiiiieieciieeee e 1V-78

xii

CHAPTER |

COMPUTER FUNDAMENTALS

varian data machines @——

_[@ varian data machines

varian data machines @]—

CHAPTER |
COMPUTER FUNDAMENTALS

SECTION |
INTRODUCTION

1.1 GENERAL DESCRIPTION

Digital computing devices are not new. The first machine to employ some of the principles
of modern computers-was invented by Charles Babbage of England in 1822. His device,
which he called the analytical engine, was a steam-driven assembly of gears that
automatically computed and printed tables. The analytical engine incorporated three
elements used in computers today:

a. Storage (memory for holding information)

b. A mill (arithmetic unit), including the machinery for making decisions, to work
on the information ,

¢c. A control to govern the mill automatically and call for the next piece of
information in sequence when required

About the same time, George Boole, an English mathematician, was laying the foundations
of logical algebra. Boolean algebra is the cornerstone of computer logic circuit design.

The era of the modern computer began in 1937 with the Mark 1, an automatic sequence-
controlled calculator. Present electronic computers retain the same operational principles
as earlier machines. The great advances in computer technology have been in the fields of
circuit design and new components.

The digital computer is not a brain, but merely a machine that must be given precise
instructions on what and how to perform. What the human lacks in lightning speed and
unerring memory, the computer has in abundance. What the computer lacks in the ability
to reason, analyze, deduce, organize, and plan, man can supply. The computer is
insensitive to human emotion. When the button is pressed, the computer goes all the way,
given correct instructions, power, and data input. But, for all its merits, the computer is
useless if humans have not analyzed and prepared the problem for the machine and told
the computer exactly what it must do and when, in a language understandable to the
computer. The computer does not need human inspiration, but it must have the explicit
direction and control that can come only from the human brain. Man'’s role in solving this
problem is to program the computer.

——@ varian data machines

CHAPTER |
COMPUTER FUNDAMENTALS

1.2 COMPUTER CONCEPTS

A digital computer system can be divided into four basic sections as shown in the figure
below. The computer proper, called the central processing unit (CPU), has three
subsections: the control section, the arithmetic section, and the control panel. The
primary unit for the storage of information is called the memory. The input unit provides
information and instructions to the computer. The output unit gives the user the
processed data or information (answer). ‘ '

1.2.1 Central Processing Unit (CPU)

The control section coordinates computer operations. It directs data transfers and controls
the manipulation of the data. The control section also interprets and executes the
instructions and information read from memory or received from the input unit.

The arithmetic section performs calculations using basic arithmetic operations. It also
manipulates data under the supervision of the control section. The arithmetic section
usually contains registers (accumulators) that hold the data and the results of the
calculations and manipulations and logic circuitry that enables the data in the registers to
be combined with information transferred from memory or input devices.

CPU

CONTROL
SECTION

] AriTHMETIC
INPUT SECTION J > OUTPUT

CONTROL
PANEL

MEMORY

VT11-0908
Figure 1-1. Typical Computer System

varian data machines @——

CHAPTER |
COMPUTER FUNDAMENTALS

The control panel gives the user direct access to and control over CPU operations and
memory. Switches and indicators on the CPU permit examination or alteration of the
contents of memory or determination of the current status of the CPU and the program
operating in it. The control panel and a keyboard input device (teletypewriter) are often
grouped together under the term console.

1.2.2 Memory

The memory is a storage device for instructions and data. It is termed permanent storage
because its contents remain unchanged unless alterations are specifically requested by
the program or user. Since all information processed by the computer system passes
through memory, memory is considered the heart of any data-processing system.

1.2.3 Input Unit

The input unit receives instructions and data from input devices, e.g., punched card
readers, teletypewriter keyboards, magnetic tape or disc devices, etc. The input unit
translates the information received from these devices into a form that memory can
accept and store.

1.2.4 Output Unit

The ouput unit translates finished, processed data (answers) from the CPU into a form
that can be accepted by output devices, e.g., card punches, line printers, magnetic tape or
disc devices, etc., and transmits the translated data to these devices.

Note that some peripheral devices, e.g., magnetic tape or disc devices, can function both
as input and output devices.

__@ varian data machines

CHAPTER |
COMPUTER FUNDAMENTALS

SECTION 2
NUMERICAL ANALYSIS

2.1 INTRODUCTION

The numerical analysis of a problem demands mathematical skill and ingenuity from the
digital computer user. Scientific and engineering problems are not expressed in terms that
can be directly handled by the computer. Roots, vectors, trigonometric functions,
differential equations, and similar mathematical expressions and operations must be
reduced to (or expressed as) a series of arithmetical operations if the computer is to solve
the problem.

Specialists in the field of numerical analysis seldom actually use a digital computer; their
major concern is to provide the computer user with techniques, algorithms, routines, and
other mathematical assistance to permit computer applications. Computer users, however,
must have an elementary knowledge of numerical analysis.

2.2 SQUARE ROOT EXTRACTION

Extracting the square root of a quantity is a basic mathematical operation that is often
useful. The way in which this operation is executed by a digital computer is presented as
an example of an algorithm provided by the science of numerical analysis. The operation
is known as Newton's algorithm for square roots or the square root algorithm.

To begin, let X represent any number and let Y = X; i.e., Y is approximately equal to V'X
or an approximation of VX. Y can represent\/-)-(. with sufficient precision for the required
purpose. Y will be equal to 0 only if X is equal to 0. For any other value of X, Y is equal to
or less than X (Y< X). For example, if X = 25, then Y can initially have any value between
0 and 25.

The formula for the square root algorithm is

Yi+1 = 1/2 (Yi+7)~
1
where i = the order of the approximation; i.e., the number of times the equation has been

solved for Y. The following example shows how the square root of 25 is obtained when 24
is selected as the first approximation.

varian data machines @—

CHAPTER |

COMPUTER FUNDAMENTALS

Yl 1/2(24 + 25) Y3 1/2(7.26 + 25)
24 7.26
1/72(24 + 1.0417) 1/2(7.26 + 3.4435)
Y1 12.5208 Y3 5.3517
Yo 1/2(12.52 + 25) Y4 1/2(5.35 + 25)
12.52 5.35
1/2(12.52 + 1.9968) 1/2(56.35 + 4.6729)
Y2 7.2584 Y4 5.0114
Y5 = 1/2(5.01 + 25)
5.01
= 1/2(5.01 + 4.99)

The fifth approximation in this example gave the exact value of Y, but it is possible that an
additional step (or one less) would be required if no roundoffs were made during
computation. Frequently, an exact root cannot be found as square roots are often
irrational numbers.

The value first assinged to Y does not affect the precision with which VX can be found. Y
represents only the number of approximations to be performed.

The theory of square root extraction by this method states that:

a. When any number is divided by its square root, the quotient is the square root.
25/5 = 5

b. When a square root is added to a square root and the sum divided by 2, the
quotient is the square root.
1/2(56 + 5) =5

_@ varian data machines

CHAPTER |
COMPUTER FUNDAMENTALS

c. Therefore

Y = 1/2(5 + 25)
5
= 1/2(10)
Y = 5

An equivalent and alternate form of the square root algorithm formula is
Y = Y. + 1/72(X - Y)
i i
Yi
The following is an example of this formula using the same values as the first example.
The results of the first three approximations show the equivalency of the two formulas; the
fourth and fifth approximations are omitted.

i+1

Y1 = 24 + 1/2(25 - 24) Y2 = 1251 + 1/2(25 - 12.52)
24 12.25
= 1/2(1.0417 - 24) = 12.52 + 1/2(1.9968 - 12.52)
= 24 - 11.4791 = 12.52 - 5.2616
Y1 = 12.5209 Yy = 7.2584
Y3 = 7.26 + 1/2(25 - 7.26)
7.26 -
= 7.26 + 1/2(3.4435 - 7.26)
Y3 = 5.3517
In conventional usage of the subscript, i = 0 is the first approximate root as illustrated

below. A formula for successive approximations (iterations) is also shown.

varian data machines @_

CHAPTER |
COMPUTER FUNDAMENTALS

First Approximation Second Approximation
Yigr = L2+ X Yigo = L2, + X
Yi Yi
Y1 = 1/2(Y0 + X)) Yo = 1/72(Y + X))
Yier = Vi VALY Yiez = Vit 120 Vi)
i i+1
Y, = Y, + 1/2(; Yq)

The square root algorithm is particularly applicable for use with digital computers due to
the following advantages:

a. The computer is required to execute only the arithmetic operations of addition,
subtraction, and multiplication or division on the data supplied.

b. The programmer need only approximate the square root, and the closeness of
this first approximation will not affect the precision of the final result.

The precision of the final result is dependent upon the number of iterations performed.
The first approximation determines the number of iterations required to accomplish this
final precision. As illustrated below, it does not matter whether this first approximation is
larger or smaller than the correct root,

Let X = 36, and Y0 = 4

Y = Yy 4+ 1720 -Yy) Y = 65 + 1/2(36 - 6.5).
1 0 0 2
Yo 6.5
= 4+ 1/236- 4) = 65 + 1/2(5.5385 - 6.5)
4
= 4-1/209 - 4) = 65 + 1/2(-0.9615)
= 4+ 25 - 65-048
Y, = 65 Y, = 6.02

The square root algorithm is an example of many such algorithms and similar techniques
developed by the science of numerical analysis for use in digital computer problem solving.

——@ varian data machines

varian data machines [@——

CHAPTER I
PROGRAMMING

___@ varian data machines

varian data machines @]—

CHAPTER I
PROGRAMMING

SECTION 1
INTRODUCTION

1.1 COMMUNICATION WITH A COMPUTER

Any computer accepts and executes a certain number of instructions (commands). Such
expressions can be plain English words or phrases, e.g., CLEAR AND ADD, MULTIPLY,
STORE WORD, etc. However, because of the length of such expressions and the frequency
of their use in computer programs, abbreviated mnemonic forms are often substituted.

1.2 MNEMONICS

A mnemonic code is usually composed of a two- or three-letter group representing a
specific computer instruction. Each of the letters in the group corresponds to the first (or
key) letter in the complete word or phrase. For example, the instruction CLEAR AND ADD
can have the mnemonic CAD.

Mnemonics ‘simplify the writing of computer programs. However, because the computer
responds only to numerical input, neither the mnemonic nor the full written instruction is
readily understandable to the computer. Each instruction, therefore, has a corresponding
numerical equivalent or numerical code.

1.3 NUMERICAL CODES

The numerical code exists in the computer as a-combination of the binary digits 0 and 1.
For simple machines, such codes can be expressed in full binary form. However, for most
computers the codes will be condensed to octal (base 8) or hexadecimal (base 16)
numbers. The use of octal or hexadecimal numbers allows the code groups to be expressed
in fewer digits than required by binary notation.

Octal notation is widely used because of the ease with which octal to binary conversions
can be performed. Thus, data fed into the computer in octal form can be readily converted
by the computer to binary for storage in memory. If the computer is not equipped to
perform this conversion, it can be done mentally by the programmer as he loads the data.

-1

_@ varian data machines

CHAPTER Il
PROGRAMMING

1.4 INSTRUCTION SET

The list of instructions or codes that a computer accepts and executes is called the
instruction set (repertoire) for that computer. The binary codes for these instructions
comprise the machine language for that computer, the only language the computer
understands.

1.5 PREPARING THE PROBLEM

The writing of a routine for the solution of a particular problem by a specific computer
requires the formulation of a computer message in its machine language. The message
writing procedure begins with the numerical analysis of the problem and ends with the
writing of the routine in machine language. One or more people may be involved, each
utilizing his individual area of interest to accomplish a specific part of the total task.

a. The numerical analyst analyzes the problem and finds the best mathematical
approach for the particular application.

b. The programmer decides:
(1) Operations to be performed and order of performance.

(2) Addresses for the required number of instructions, and any address
modifications necessary.

(3) Addresses for the required number of data words.

The programmer can use mnemonics for the written routine rather than specify
the actual addresses to be used.

c. The coder prepares the final routine in numerical code with all addresses
designated.

When the entire program is coded in machine language, it is ready to be loaded into the
machine.

"n-2

varian data machines @—

CHAPTER I
PROGRAMMING

SECTION 2
FLOW-CHARTING

2.1 INTRODUCTION

In preparing a problem for the computer, the user must first clearly define the problem
and a method of solving it. The computer can only follow instructions and cannot devise
its own methods of problem-solving. The definition of a simple problem and the method of
solving it may be obvious enough that the program can be coded directly as a list of
instructions in mnemonic form. However, if a problem is this simple, use of a computer is
probably unnecessary.

In typical computer problems from the business and scientific worlds, solutions require
many steps and decisions. As an aid to programming the solutions to such problems, the
flow chart is invaluable. The flow chart illustrated in figure li-1 is a schematic diagram of
the logical steps required to solve the problem. The chart consists of a series of connected
geometric figures, each denoting a step in the solving of the problem. Each geometric
shape has a particular logical significance, e.g., rectangles indicate computer processing
steps, diamonds indicate decisions (refer to figure 11-2). The geometric forms are
annotated with explanations and connected with lines and arrows showing the sequence
and direction of process flow.

Since the flow chart is a tool for analysis and clarification, it generally shows only enough
information to ensure:

a. Correct compilation of the instructions in the program
b. Proper planning for and allocation of memory space

Flow-charting is sometimes considered an art rather than a science because it is unlikely
that two programmers will produce identical flow charts for the solution of the same
problem. Given the various ways of approaching any problem, it is not necessary that such
charts be identical. Even the number of functions considered to be a single step for
inclusion in one geometric figure in the chart will vary. Since flow charts are tools, the way
in which this tool is used depends on the programmer’'s training, experience, ability,
preferences, and even personality. These differences do not reduce the importance of the
flow chart or the necessity of mastering flow-charting techniques. A good flow chart gives
maximum assistance in compiling a program and allocating memory space. Flow-charting
is thus an art with a sound basis in scientific methods.

11-3

varian data machines

CHAPTER II

PROGRAMMING

NOTE:

CIRCLED NUMBERS
CORRESPOND TO THE

NUMBERED STEPS OF THE
EXAMPLES GIVEN IN THE

TEXT,

POSTINDEXING 0)

FIG

BRING
INSTRUCTION
W—eD)

5-3

BRING
ADDRESS
GIVEN IN
n+l

®

BRING ADDRESS
GIVEN IN
PREVIOUS
ADDRESS

VTI3-0243

INDIRECT

BRING ADDRESS
GIVEN IN
PREVIOUS
ADDRESS

®

INDEX
() + (LAST
ADDRESS)

EXIT (NO
INDEXING

BRING X
REGISTER
(X—>R)

BRING B
REGISTER
(B—>R)

INDEX .
(R) + (n+1)

BRING
ADDRESS
(R} + (n+1)

[3

PREINDEXING

INDIRECT

BRING ADDRESS |
GIVEN IN
PREVIOUS

ADDRESS

BRING ADDRESS
GIVEN IN
PREVIOUS
ADDRESS

OPERAND
ADDRESS

Figure lI-1. Typical Flow Chart

-4

G-l

TAG
CARD
LISTING OPERATION
DECISION
MANUAL

COMMUNICATION OPERATION

AN
v

/ OPERATION
DECISION

CLOSED
C START-STOP ,

SUBROUTINE

DIRECTION DECISION

OF FLOW OR
SWITCH
MAGNETIC PAPER VISUAL
TAPE TAPE DISPLAY

VTII-0240

Figure 1I-2. Flow Chart Symbols

DNINNVYYO0Ud
Il Y31dYHI

—@ soulysew ejep uelea

_@ varian data machines

CHAPTER Il
PROGRAMMING

The completed flow chart should be examined to see that a program based on it will
actually allow the computer to solve the problem. Alternate methods that might require
less computer running time and/or memory space should be considered. When these
considerations have been taken into account and the final flow chart approved, the
programmer is ready to start writing the program based on the chart.

2.2 - NOTATION
The following is a list of common notations used to signify the writing of computer
programs.

Notation Meaning

() The content of; (A) indicates the contents of the

A register.

Al A register bit 1

Al-5 A register bits 1 through 5

Asn A register sign bit

— Indicates the transfer of data; (A) — (B) means the

contents of the A register are transferred to the
contents of the B register.

I The magnitude of, | X | indicates the magnitude
of X

< Smaller than; (A) < (B) indicates that the
contents of the A register are smaller than the
contents of the B register.

> Greater than; (A) > (B) indicates that the contents

of the A register are greater than the contents of
the B register

11-6

varian data machines @—

CHAPTER I
PROGRAMMING

2.3 SYMBOLS
2.3.1 Functions

The solution of a problem requires the execution of several functional steps. In the context
of flow-charting, a functional step is one that requires the exectuion of an arithmetical or
logical operation on the data being processed or the transfer of data within the computer.
A function box in the flow chart indicates a functional step or operation as illustrated
below.

The number of functions in any function box is at the discretion of the programmer. In the
preliminary part of the analysis, two or more functional operations may appear in a single
box if the operations are related or sequential, such as those shown in figure 11-3. As the
analysis progresses and the flow chart becomes more complete and detailed, complexity
permits only one functional operation per box.

Not annotated Annotated to show the addition
of word A to word B

—> —> —> A+ B —
Annotated to show the trans- Annotated to show the addition
fer of word A to address V1 of words A and B and the trans-

fer of the sum to address V1

—> A—V1 —> —» A + B—V]l |—>»

-7

r——@ varian data machines

CHAPTER i
PROGRAMMING

2.3.2 Decisions

Annotated to show a decision
based on an equality compari-
son of values of words A and B

IFA =B

IFA#= B

-8

A decision box is used to show a step which requires the computer to make a decision.
Computer decisions are two-valued (yes or no or true or false); therefore, the decision box
has one input path and two output paths (see below). For a particular operation, only one
of the output paths is taken dependent upon the decision.

Annotated to show a decision
based on the comparative values
of words A and B

varian data machines @———

CHAPTER 1l
PROGRAMMING

2.3.3 Input/Output

Whenever problem solution requires that information be received via the input equipment,
or transmitted via the output equipment, an input/output box is used in the flow chart as
illustrated.

The input/output box is annotated to indicate:

a. The operation to be performed by the use of words such as LOAD, STORE,
PRINT, DISPLAY, etc.

b. Data involved as stated in the literal term appearing in the equation (a, x, b’), a
memory address, or an auxiliary store address.

c. The input/output equipment involved. The equipment may be implied by the
operation (PRINT implies a teletypewriter), or explicitly stated.

Annotated for the loading of Annotated for the printing of
word A into memory via the the word at address V2
card reader

LOAD A FROM PRINT V2

—>
CARD READER -

11-9

——@ varian data machines

CHAPTER I
PROGRAMMING

234 Start and Stop

Start and stop boxes designate the beginning and the end of a flow chart as illustrated

below.
(START)-» —-»(STOP)

2.3.5 Fixed Connectors

A flow chart appears as a sequence of interconnected boxes arranged in either columns or
rows. It is normally not possible to present an entire flow chart on one page. Therefore, a
system of fixed connector circles is used to relate the separate sheets of the flow chart.
These circles are numbered; all fixed connectors with the same number refer to the same
location on the chart. A fixed connector may have one or more input/output paths as
illustrated.

-0 O -

-10

varian data machines @———

CHAPTER 1l
PROGRAMMING

2.4 A SIMPLE FLOW CHART

Using only the symbols presented so far, it is possible to formulate a simple flow chart to
solve the equation:

T = AX + BX
' LOAD A, B, AND X
(START) ™ FROM CP IN VM > BX—-va

X'—-V5 |—p AX? L3 AX° + BX |—»

AX® + BX—V6—»| PRINT V6 -——-»C STOP)

\/

-11

_@ varian data machines

CHAPTER 1l
PROGRAMMING

In the preceding flow chart:

a. FROM CP IN VM indicates that data is input from the control panel and stored
in variable memory. Variable memory is the area of memory reserved for the
storage of data with variable values, as opposed to data representing
mathematical constants with fixed values.

b. BX—sV4 indicates that B is to be multiplied by X and the product stored in
variable memory address V4. V4 is not the actual address 4, but is relative to
other addresses in the flow chart (all relative addresses are replaced with
specific memory addresses when the chart is coded).

This flow chart is only one of many that could be constructed for this particular problem.
The number of boxes used and the amount of information given in each box is at the
discretion of the programmer. For instance, the loading of each of the three terms (A, B,
and X) could be shown by a separate input box, and each of these boxes could be
annotated to show the storage address in variable memory.

The general rule is to show only the information necessary to compile the-list of
instructions and to ensure proper allocation of memory addresses.

2.4.1 Substitution

The preceding flow chart does not explicitly show when the value of T is computed but
implicates it in the function box AX® + BX before fixed connector box 2. At this point, a
substitution box can be used to indicate that a computation has been performed and the
result can be substituted to simplify the notations that follow.

Annotated for point of Annotated to change the value of
computation and substitution a subscript
AX' + BX—T Y; + 3-=Y, + 4

1n-12

varian data machines [@——

CHAPTER 1l
PROGRAMMING

The substitution box can also be used to:
a. Advance or change the value of a subscript (see above).

b. Provide a term or quantity that is equivalent to one that is not available (i.e., the
cosine of 60° that is available in memory for the sine 60° that is not).

c. Modify an address to effectively substitute one address for another.

2.4.2 Subroutines

Often the solution of a problem requires the solution of one or more subordinate or
auxiliary problems. |f these secondary problems appear repeatedly, either within the same
problem or in different problems, a separate routine is written for each problem and used

whenever that problem appears. These previously prepared routines for secondary
problems are called subroutines.

A flow chart is prepared for a subroutine in the same manner as larger routines except
that the START and STOP boxes are annotated identically to identify the subroutine. A
subroutine computation box is used to indicate where the subroutine is to appear on the
larger flow chart; the subroutine flow chart itself does not appear.

1-13

—@ varian data machines

CHAPTER I
PROGRAMMING

2.4.3 Assertions

An assertion box is used to present additional information or explanatory notes. It is
appended outside the path of the flow chart to indicate where the information is

applicable.
PERFORM 5
ITERATIONS
|
|
|
|
Y = VX
2.5 A MORE COMPLICATED FLOW CHART

Figure 11-3 is a flow chart to solve the problem:
T =AX +BX + VX + sin0

Subroutines are available for AX® + BX, VX, and sin 0. It is assumed that the correct
values of all terms are stored at a known memory address (any address except 0). A value
for Y in the square root algorithm must be assigned and stored in memory.

Between fixed connectors 2 and 3, the value of 1 is added to the subscript value of Y each
time a square root iteration is performed. This value is then compared with a value in the
decision box to determine when the required number of iterations (in this case, four) have
been performed so that the computation can proceed to the next step. During the square
root computations a closed loop exists in the flow chart between the bottom of the
decision box and the left end of the square root subroutine computation box (fixed
connector 2). Such a loop is known as a program loop.

Since a decision box always has two output paths, the appearance of a decision box in a
flow chart will always produce a program loop or a program branch; i.e., if one of the

1-14

varian data machines @-——

CHAPTER I
PROGRAMMING

LOAD 0 AND
START Y, FROM : 0
CP IN VI0,V11

@—————> AX2 +BX =C —» Cc~v2i

PERFORM
FOUR
INTERATIONS

I
® =

4

Y4 SINO ~D D -V23

\ 4

C+D

@—» Y4 -v22 m Y4 SINO ——»@

()——cro—vu

VTI-1163

Figure 11-3. Flow Chart for T = AX’ + BX VX sin 0

11-15

——@ varian data machines

CHAPTER I
PROGRAMMING

the remainder of the problem solution.

output paths does not loop back to a previous point in the flow chart, then the decision
‘must be to branch out on one or the other of the two possible output paths. Thus, a
branch determines which of two possible methods (or program paths), are to be used for

H-16

varian data machines @]—

CHAPTER I
PROGRAMMING

SECTION 3
MACHINE LANGUAGE PREPARATION

3.1 INTRODUCTION
After a problem has been analyzed and a method of solution determined by the
construction of a flow chart, the routine (or program) is prepared. The programmer first
verifies that:

a. The flow chart utilizes a method that will actually solve the problem.

b. This method is presented in its simplest form.

c. There is not a more efficient method.

3.2 INSTRUCTION REPERTOIRE
A program is written for a specific computer in response to the language used and the
repertoire provided. The number of instructions in a repertorie varies. A large repertoire
does not necessarily mean that the program will be more complex, only that more
instructions are available for the programmer’s use. A thorough knowledge of the specific
computer’s repertoire is necessary to fully utilize the instructions provided.
To write a program, the programmer must know:

a. The name and mnemonic of each instruction in the repertoire.

b. The result obtained through the use of each instruction.

c. The conditions governing the use of a particular instruction.

d. The type and format of the computer’s instruction and data words.

e. The types of addressing available, and the use of addresses with the various
instructions.

1-17

F—@ varian data machines

CHAPTER 1l
PROGRAMMING

3.2.1 Instruction Types

All computer instructions are classified as arithmetic or processing instructions, transfer
of information instructions, or transfer of control instructions. -

Certain instructions are included in two classifications; i.e., instructions that transfer data
to the arithmetic unit and perform an operation there. Examples are the ADD, SUBTRACT,
MULTIPLY, and DIVIDE instructions. This type of instruction always requires the use of an
address in the address part of the instruction word to specify the location of the data
word.

SHIFT LEFT and SHIFT RIGHT are examples of instructions that are only arithmetic or
processing instructions. This type of instruction does not require an address as no data
are transferred.

Transfer of information instructions such as LOAD and STORE generally require the use of
an address in the instruction word to indicate the point of origin cr destination of the
word being transferred. An exception is an instruction such as TRANSFER where the
origin and destination are given.

There are many transfer of control instructions, including all the JUMP instructions.
These instructions contain an address in the address part of the instruction word to
indicate the location of the instruction to which the program jumps. This is the address of
another instruction not a data word.

3.2.2 Addresses

A program can use either the actual address or a relative address. It the problem is fairly
simple, the actual address is used throughout. In more complex problems, relative
addresses are used until memory requirements are established and actual addresses can
replace the relative addresses. Actual addresses are expressed in octal or hexadecimal
notation; relative addresses can use any convenient format. :

3.2.3 Codes

In the program, instructions are written as mnemonic code references. Each mnemonic in
turn references a numeric code which is the final input to the computer and constitutes
the machine language. Mnemonic codes and the associated numeric codes for each
instruction are provided by the manufacturer of the specific computer. After the program
is completed, the mnemonics are coded into the numeric equivalents.

1-18

varian data machines @]—

CHAPTER I
PROGRAMMING

3.3 SAMPLE PROGRAMS

The following programs are presented to illustrate a computer repertoire. A specific
computer repertoire can comprise more or fewer instructions than used in these
programs.

A digital computer is normally used only for complex or lengthy problems as operating
expense does not make it practical for use in simple problems. The examples that follow
are presented as illustrations of flow charts and repertoires; they are too simple to be
typical computer problems. For additional information about these problems, refer to the
applicable system reference manual and to the instruction repertoire (figure 111-7).

"-19

CHAPTER |
PROGRAMMING

Given:

Problem:

-——@ varian data machines

PROBLEM 1

Three constants stored in constant memory locations:
C40, C41, and C42.

To store these constants in variable memory locations:
V100, V101, and V102, respectively.

Flow chart

C40—V100 (»{ C41—=V101 | C42—V102 @

11-20

varian data machines [@——

CHAPTER 1l
PROGRAMMING

Repertoire

Step No. Operation Address Remarks

000 LDA C40 This instruction clears the
accumulator to 0 and loads the
contents of C40 into the accumu-
lator.

001 STA | V100 This instruction stores the con-
tents of the accumulator in V100.

002 LDA Ca1 Same operations as step 000, for
the contents of C41.

003 STA V101 Same as step 001, stored in V101.

004 LDA Ca2 Same as step 000, for C42.

005 STA V102 Same as step 001, stored in V102.

006 HLT Computer stops. End of program.

NOTE: The step number column is used at the programmers’s option to keep track of
the program and provide a means of reference to a particular operation in the program
sequence.

11-21

——@ varian data machines

CHAPTER Il
PROGRAMMING

PROBLEM 2

Given: A located in C40, B in C41, and C in C42.
Problem: Write a program to solve for Y and store Y in V200:

'Y =3A-2B + C.

Flow charts

(START)—»A" + A + A=3AF» 3A-B-B |¥ 3A-ZB+C—|

Y—-V200 - STOP.

'START 3A-2B + C = Y}—» Y — V200 (sTOP)

Two flow charts are shown; both present the same solution to the problem. The first flow
chart is more detailed and breaks the operations down into three computation boxes, plus
a transfer box. The second flow chart places all the computations into one substitution
box.

11-22

varian data machines @__

CHAPTER 1l
PROGRAMMING

Repertoire
Step No. Operation Address Remarks
000 LDA C40 Accumulator register (AR) is cleared.
Contents of C40 loaded into AR.
001 ADD C40 A+ A = 2A in AR
002 ADD C40 A + 2A = 3A in AR.
003 SuB C41 3A - B in AR.
004 SUB C41 3A - 2B in AR.‘
005 ADD C42 3A-2B + Cin AR.
006 STA V200 Y = 3A - 2B + C to V200.
007 HLT Computer stops. End of program.

1-23

| varian data machines
m@®

CHAPTER I
PROGRAMMING

PROBLEM 3

Problem 3 illustrates the use of program tags. Program tags aid the programmer in
jumping to an unknown program address. They are annotated with one to four
alphanumeric characters, one of which must be a letter. X, X3, X123, XYZ, ABCD, XXX,
and PB12 are examples of program tag notation,

Given: Five numbers are stored in CO through C4; Cl10
contains 0; Cl1 contains 1.

Problem: Write a prdgram to place the count of negative numbers
in V100, the count of positive numbers in V101.

To solve the problem, write a program that:
a. Clears addresses V100 and V101 to 0.

b. Transfers each number to the accumulator to determine if it is positive or
negative. '

c. Stores a one in V101 if the number is positive, and a one in V100 if it is
negative.

Figure I1-4 illustrates a flow chart that causes the computer to step sequentially through
the program if all the numbers are positive. |f CO is a positive number, the program
proceeds normally to store a one in V101. If CO is negative, however, the computer must
jump out of the normal sequence to store a one in V100. Therefore, provision in made in
the program to jump to some other step in the case of a negative number. Since it is not
known when the program is written where a negative number will occur, program tags are
used. This will allow the programmer to go back and assign a program step number to the
program tag.

The reference boxes in the flow chart are annotated to correspond to the step number in
the repertoire that is associated with the program tag closest to that box.

11-24

cralll

CO—~—AR

1+ (Vio)

AG -

C2 =AR

1+ (V100)

1+ VIOl

AZ

C4—= AR

1+ V100

1=V101 ad Q-
=
. 1=V100
- 1evion M C3=AR
1+ (V100)
1+ Viol STOP

? ¢ 9

1+ V100 STOP

i

VTII1-1164
Figure Il-4. Flow Chart for a Positive and Negative Number Count

ONININVYO0Ud
Il 431dVHI

—-—@] SouIyoeW ejep ueleA

——[@ varian data machines

CHAPTER I
PROGRAMMING

Repertoire for Problem 3

Tag Step No. Operation Address ' Remarks
000 LDA Cl10 0 in AR
001 STA V100 0 in V1v00.
002 STA V101 0 in V101.
003 ~ LDA Co Contents of CO in AR.
004 JAN AA (035) If CO is negative, jump to AA

‘(we learn later in the program
that AA is step 035 and add the
step number at that time).

005 LDA Cl1 1 in AR if CO is positive.
006 ADD V101 Contents of V101 (0) to contents
' of AR (1).
007 STA V101 Contents of AR to V101.
AF 010 LDA C1 Confents of‘Cl to AR.
011 JAN AB (041) Jumps if C1 is negative.
012 LDA Cl1 1 in AR if Cl is positive.
013 ADD viol Add contents of V101 to AR (1).
014 STA vio1 Contents of AR to V101.
AG 015 LDA C2 Contents of C2 to AR.
016 JAN AC (045) Jumps if C2 is negative.
017 LDA e 1in AR if C2 is positive.

I1-26

Tag

AH

Al

AA

AB

Step No.

020
021
022
023
024
025
026
027
030
031
032
033
034
035

036

037
040
041

042

CHAPTER 1l
PROGRAMMING

Repertoire for Problem 3 (continued)

Operation

ADD

STA

LDA

JAN

LDA

ADD

STA

LDA

JAN

LDA

ADD

STA

HLT

LDA

ADD

STA

JMP

LDA

ADD

Address

V101
V101

C3

AD (051)
Cl1
V101

V101

Ca

AE (055)
Cl1
V101

V101

Cl1

V100

V100
AF (010)
Cl1

V100

H-27

Remarks

Add contents of V101 to AR (1).
Contents of AR to V101.
Contents of C3 to AR.

Jumps if C3 is negative.

1 in AR if C3 is positive.

Add contents of V101 to AR (1).
Contents of AR to V101.
Contents of C4 to AR.

Jumps if C4 is negative.

1 in AR if C4 is positive.

Add contents of V101 to AR (1).
Contents of AR to V101.

Stops here if C4 is positive.

1 in AR if CO is negative.

Contents of V100 (0) to contents
of AR (1).

Contents of AR to V100.
Jumps back to bring in C1.
1 in AR if C1 is negative.

Contents of V100 added to

varian data machines @_

-—@ varian data machines

CHAPTER I
PROGRAMMING

Repertoire for Problem 3 (continued)
Tag Step No. Operation Address Remarks
contents of AR (1).

043 STA V100 Contents of AR to V100.
044 JMP AG (015) Jumps back to bring .in C2.
AC 045 LDA Cl11 1 in AR if C2 is negative.
046 ADD V100 Add contents of V100 to AR (1).
047 STA V100 Contents of AR to V100.
050 JMP AH (022) Jumps back to bring in C3.
AD 051 LDA c11 1 in AR if C2 is negative.
052 ADD V100 Add contents of V100 to AR (1).
053 STA V100 Contents of AR to V100.
054 JMP Al (027) Jumps back to bring in C4.
AE 055 LDA Cl1 1 in AR if C4 is negative.
056 ADD V100 Add contents of V100 to AR (1).
057 STA V100 Contents of AR to V100.
060 HLT Stops here if C4 is negative.

To review this program:
a. In Step 003, the first number (CO) is transferred to the accumulator. A count

will be stored in either of two locations, depending upon whether this number is
positive or negative.

11-28

varian data machines @—

CHAPTER 1l
PROGRAMMING

In Step 004, the program states that if the number is negative, it will be dealt
with during a later portion of the program. The step number is not available yet,
so the programmer tags the point as AA and puts a reference box above the
function box on the flow chart.

Continue the program as though CO and all the other words are positive, but a
decision box and alternate branch are charted following each function box
annotated to show the transfer of a word in the AR.

At Step 034, a stop operation is programmed. To be complete, the program must
now store a count of the negative numbers.

At the first negative number, the computer was directed to jump to AA.

(1) The programmer can now assign a program step number to AA; this is
Step 035.

(2) He goes back to Step 004 and indicates that the address of tag AA is Step
035.

(3) He must also complete a cross reference to indicate that Step 035 is AA by
placing AA in the column to the left of the step number.

Assuming that CO was negative, a one must be stored in V100; this is Step 037.
(1) The computer must return to examine the second number at Step 010.
(2) The programmer programs an Unconditional Jump (JMP) to tag AF.

Looking back to where the second number (Cl) was brought into the
accumulator, he finds that this is Step 010. He tags Step 010 with an AF.

He continues with this procedure until he has stored a count of all negative
numbers in V100 and then programs a HLT operation at Step 060.

11-29

—@ varian data machines

CHAPTER I
PROGRAMMING

3.4 'MACHINE LANGUAGE

Figures 11-5 and 11-6 apply flow diagrams to problems involving decisions. The problem is
to make a flow diagram and write the machine language for a program that will count the
number of positive numbers contained in a group of four core memory words. The count is
kept in location 600. '

Machine language programs are written in the language that a specific computer
understands. In the following programs, the code column numbers are the machine
language; the mnemonics are nothing more than a memory aid. Refer to the table in
figure 11-5 for an example of a program using machine language.

3.5 LOOPING

Problems programmed for computer solutions have some repetitious aspects; a repetitious
process drawn on a flow chart appears as a loop. A single flow chart can have several
loops, and loops can be nested within one another.

Looping indicates a return to an earlier operation thus avoiding a sequence of almost
identical operation boxes. When the return is made, the computation will involve either a
new data item or a new estimate of a computed quantity. The operation will remain the
same, however. Looping is used in solving the problem illustrated in the flow chart in
figure 11-6.

3.6 INDEXING

Index registers reference a sequence of memory addresses and are used in nonloop
situations to permit rapid access to tables in memory and to enable branches beyond
range limits. Thus, indexing permits a number of operations to be executed rapidly.

In previous examples involving memory storage and various mathematical processes,
subscripts were generally assigned to the variables. Operations to be performed were
indicated in terms of these subscripts. For example, a; represented the i value of a series
of numbers a. To indicate that, after a;, was processed a; + 1 was to be processed,
operation on the subscript was required: i + 1 = i. This means that 1 is to be added to
the subscript, which generates the address to the next number.

To process a; as indicated, it is necessary to modify the appropriate instructions. They

can be modified by treating them as data and adding 1 to the operation and addresses
once each loop cycle. Three operations on the index register are required:

11-30

varian data machines —_

CHAPTER I
PROGRAMMING

(START ’

0 = 0600

(0600) +1
= 0600

(0600) + 1
= 0600

(0600) + 1
= 0600

e

Vrr-1165

(0600) + 1
= 0600

HALT

MACHINE LANGUAGE

STEP CODE MNEMONIC
500 005001 TZA
501 050600 STA
502 010530 LDA
503 " 001004 JAN
504 000506

505 040600 INR
506 010531 LDA
507 001004 JAN
510 000512

511 040600 INR
512 010532 LDA
513 001004 JAN
514 000516

515 040600 INR
516 010533 LDA
517 001004 JAN
520 000522

521 040600 INR
522 000000 HLT
530-533 DATA

REMARKS
AR-0
AR ML 600
AR = WORD 1

IS WORD NEGATIVE

ADD 1 TO LOCATION 600
AR = WORD 2
IS WORD 2 NEGATIVE

ADD 1 TO LOCATION 600
AR = WORD 3
IS WORD 3 NEGATIVE

ADD 1 TO LOCATION 600
AR = WORD 4
IS WORD 4 NEGATIVE

ADD 1 TO LOCATION 600
HALT
LOCATIONS

Figure 11-5. Count of Positive Numbers

11-31

— varian data machines

CHAPTER Il
PROGRAMMING

MACHINE LANGUAGE

STEP CODE MNEMONIC REMARKS

=7
500 005001 TZA AR =0
501 050600 STA ML600 = 0
502 030515 LDX XR = NUMBER OF WORDS
503 015520 LDA AR = WORD
504 001004 JAN IS WORD POSITIVE
505 000507 .
506 040600 “INR ADD 1 TO LOCATION 600
507 005344 DXR XR = XR-1
510 001040 Xz ANY MORE WORDS TO CHE CK

(0600) + 1 5N 000514

= 0600 512 001000 IMP RETURN FOR ANOTHER WORD
513 000503
514 000000 HLT HALT
515 000007 DATA LOCATION FOR NUMBER OF

WORDS
NO
i=0 520-530 DATA LOCATIONS
YES

o D

VTI-1166
Figure 11-6. Loop Program

11-32

The 620 computer systems include index registers for performing indexing operations. The
contents of these registers are used to automatically modify the operand address of
instructions. Index registers are designated by number within the computer. If an
instruction makes reference to an index register by its number, the contents of its
operand address are modified by the contents of that register. '

A specified index register is referred to as a tag; a tag is indicated in machine language by
placing its numerical designator in the M field (bits 9 through 11) of the machine code.
The first index register (the X register) is designated by a 5 in the M field; the second (B
register) by a 6. The instruction counter, which is a form of address modification, is
designated by a 4 in the M field.

In an instruction with no tag (0 in the M field), the address of the word that is processed
is simply the operand address. In an instruction with a tag, however, the address of the
processed word is given by the sum of the operand address and the contents of the
modifier. This address modification is automatic and temporary; the instruction does not
change, but the affect is as though it were changed during the execution of the
instruction. For example: let XR = 100. The instruction 12 5 000 adds the address
000 + 100 to form the effective address so that the contents of location 100 will be added
to the accumulator.

Given: A table three registers in length, starting at loca-

varian data machines @—

CHAPTER I}
PROGRAMMING

Setting the index register
1 =i

Increasing or decreasing the index register
i+ 1= or i-1 =i

Testing the value of the index register
i-n)=0

Specifying the Index Register

05 4 100 = P counter
05 5 100 = X register
05 6 100 = B register

An Example of Indexing

tion 0550. The sum is to be placed in register 0600.

-33

—@ varian data machines

e e e b et et

CHAPTER I
PROGRAMMING

Problem: Write a program to compute the sum of the contents of
the table.

The table looks like this

0550

3
0551

4
0552

5

Refer to figure lI-7 as an aid in following the sequence of events described below.
a. TZA 005001 clears the accumulator and LDX 030512 sets the first index

register. The current count of the index register is cleared to 0 and the value 2
placed in it; thus, the index appears in binary as: 0000000000000010. The

START MACHINE LANGUAGE
STEP CODE MNEMONIC REMARKS

LOAD 500 005001 TZA AR =0
ACCUMULATOR 501 030512 LDX PREPARE TO CYCLE
502 125550 ADD MAKE ADDITION
+ 503 001040 Xz ANY MORE WORDS TO CHECK
504 000510
505 005344 DXR XR = XR-1
P2 506 001000 IMP RETURN FOR NEXT LOCATION
507 000502
'_:‘W__ 510 050600 STA STORE SUM
sn 000000 HLT HALT
ADD CONTENTS
OF NEXT 512 000002 DATA NO. CYCLES -1
LOCATION 550 000003 DATA
TOAC 551 000004 DATA
552 © 000005 DATA
600 000000 DATA STORAGE LOCATION

NO YES PLACE SUM -
HALT
wiocao BT)

Figure 11-7. Add a Table of Three Numbers

VTiI-1167

1-34

varian data machines @——

CHAPTER 1l
PROGRAMMING

index register is set to 2 to cause the program to perform three passes of the
loop for the three core locations in the table.

The instruction ADD. 125550 at core location 0502 is executed next. During the
interpretation of this instruction, the computer forms the effective address to
reference core for data. The contents of the address field (0550) are added to
the contents of the specified index register (the first index register with a
current count of 2). Therefore, the effective address is 0550 + 2, or 0552. The
result of the operation of the instruction at 0502 thus causes the contents of
core location 0552 to be added to the contents of the accumulator (O at the start
of the program).

If the currrent count of the specified index register is O, transfer control to the
instruction whose location is given in the address field of the jump instruction,
JXZ. If the current count is not 0, do not jump; continue with the next
instruction in sequence, DXR.

The DXR instruction subtracts 1 from the current count of the index register.
The current count is 2; therefore, 2 - 1 = 1. The program goes to the next
instruction JMP to 0502 which is a loop instruction to ADD 125550. The
effective address for this instruction is now 0550 + 1 or 0551; therefore, the
contents of location 0551 are added to the accumulator.

The process is repeated. The JXZ test does not indicate a jump; the DXR
instruction at 0505 decreases the index register count by 1. The program then
loops again to ADD 125550 and the resulting effective address of 0550 + 0O
adds the contents of location 0550 to the contents of the accumulator.

This time the JXZ test is positive as the count of the index register is 0. The
program then jumps to location 0510 and places the total in the accumulator

register into location 0600.

The program halts at location 0511.

11-35

-—@ varian data machines

CHAPTER I
PROGRAMMING

3.6.3 Address Modification by Indexing

Indirect addressing is used primarily in address modification. For example, consider a
situation where five instructions exist in a program, each having DATA 1 in its address
field. If, for a second pass, we needed to add 1 to the address field of each of these five
instructions, five or more instructions would be needed to perform the modification. With
indirect addressing, each of the five original instructions could indirectly address DATA 1
and thus refer to a single register at the end of the program tc obtain the effective
address. Then, if modification is needed, the single register at the end of the program can
be modified.

The 620 computer systems have multilevel indirect addressing. In zero-level addressing,
the operand is located in the address field. In first-level or direct addressing, the address
of this operand is located in the address field; the operand is one level removed from the
instruction. If an operand is two levels removed, the addressing is second-level or indirect;
the address of the operand (the indirect address) is located in a word whose address is in
the instruction.

To indicate that the operand in an instruction is two levels removed, a special mark
(called a tag or a flag) is required in the instruction. The 620 computer systems use a 7 in
the operation field of the instruction word to indicate indirect addressing. The following is
an example of indirect addressing. For example, the machine language word 010100
means that the contents of 100 is to be loaded into the accumulator. If this instruction is
flagged as 017100, the accumulator is to be loaded with the contents of the location
specified in 100; 100 is the operand address of the instruction.

3.7 SUBROUTINES

The programmer can create subroutines when mathematical routines are repeated in.
several places within one program. The subroutine can be entered from each point in the
program where it is needed; the program returns to that point when the subroutine has
been executed. The inputs to a subroutine, therefore, are called entrance parameters; the
outputs from a subroutine are exit parameters. These parameters are sometimes
contained in a location immediately following the branch to the main program. The
subroutine branch is referred to as a call.

Subroutines are considered a single operation or instruction which operates on given data.
The operation: Sum of the squares of (A), (B), (C), and (D) can be written as: SUMSQ,
A/B/C/D/E. This instruction operates on four numbers and stores the sum of their
squares, thus A, B, C, and D are the inputs and E is the address of the answer.

11-36

varian data machines @———

CHAPTER 1l
PROGRAMMING

Figure 11-8 illustrates the control path from a main program to a subroutine at three
different locations.

3.8 CODING

The foregoing examples show routines that consist of a list of mnemonic code groups with
an associated list of relative addresses. The coder converts each relative address into an
instruction word so that the routine becomes a list of instruction words with an
accompanying list of data words. Each of the words in these lists also has an associated
address specifying where that word is to be stored in memory.

The numeric code equivalent of a mnemonic code group becomes the operation part of the
instruction word. An actual address is substituted for the relative address, and this
becomes the address part of the instruction word. In some cases for the repertoire used in
the examples, two addresses are used in the instruction word. For example, when a word
is transferred from a specified address in the input equipment to a specified address in
the internal memory, the instruction word must have a format that accommodates both
addresses. However, when either or both of the address parts of an instruction word are
not used, the coder must fill all the bit positions in the unused parts of the word with
zeros or an address might be inadvertently specified.

The instruction words as prepared by the coder can be written in either binary or octal
notation, depending upon the computer requirements. In any case, the final list of
instruction words as prepared on paper by the coder must be entirely in numerical
expressions. Although the work of the coder does not require a high order of ingenuity or
mathematical ability, it does require painstakingly close attention to detail. If even one
digit is in error in the final routine, it is quite likely that the solution, if any, will be
unusable,

n-37

— varian data machines

132 XSQT, ENTR, 107-116-125

133

134 BODY OF
135 suB-
136 ROUTINE
137

140, JMP* , XSQT

VTil-1168

11-38

CHAPTER 1l
PROGRAMMING

LOCATION
100
101 BODY OF
102 MAIN
103 PROGRAM
104
105

. JMPM , XSQT
106 M xS ‘\

—

107
110 BODY OF 4
m MAIN
112 PROGR AM
13
114
1s ., JMPM , XSQT
116
n7 BODY OF
120 MAIN
1P PROGRAM
122
123 ymem , xsQT
124
125
126 BODY OF
127 MAIN
130 PROGRAM
131

BECAUSE ANY JMPM INSTRUCTION
SAVES THE NEXT CORE LOCATION
IN LOCATION 1325 AND THEN
JUMPS TO THAT CELL +1, IT IS
POSSIBLE TO ENTER AND RE TURN
WITHOUT LOSING TRACK OF
WHERE WE ARE.

Figure 11-8. Subroutines

varian data machines @——

CHAPTER I
PROGRAMMING

SECTION 4
PROGRAMMING IN ASSEMBLY LANGUAGE

4.1 DAS ASSEMBLER

The 620 assembler (DAS) permits instructions, addresses, address modifiers and
constants to be specified in a straightforward manner.

a. Instruction mnemonics such as STB (Store B Register) are used in place of
numeric instruction codes.

b. Addresses can be referenced by labels rather than absolute locations.
c. Constants can be defined without conversion to binary or octal notation.

d. Comments can be added either between symbolic statements or with t.e
statement itself to document the program.

Several versions of the DAS are available for the 620 computer systems: DAS 4KA, DAS
8KA, DAS MR (for use with MOS), and stand-alone MR.

4.1.1 DAS 4KA

There are two sections to the DAS 4KA assembler. The first section (1/0) allows the user
to specify the type of 1/0 devices to be used. The second section is the assembler to be
used with 4K of memory and up. DAS 4KA recognizes 620/f mnemonics.

11-39

—@ varian data machines

CHAPTER 1l
PROGRAMMING

4.1.2 DAS 8KA

There are two sections to the DAS 8KA assembler. The first section (170) allows the user
to specify the type of 1/0 devices to be used. The second section is the assembler to be
used with 4K of memory and up. DAS 8KA recognizes 620/f mnemonics.

4.1.3 DAS MR

The DAS MR assembler is designed to be used with the Varian Master Operating System
(MOS). This enables the user to assign different 1/0 devices before calling the assembler.
DAS MR recognizes all instructions used with the various 620 computer systems, plus
several new ones including micro-programming.

4.1.4 Stand-Alone MR

Stand-Alone MR functions in the same manner as DAS MR but it can operate without the
supervision of MOS thus allowing more memory for user programs.

4.2 DAS SOURCE LANGUAGE

DAS translates symblolic instructions (the source program) into binary computer code (the
object program). Except for certain pseudoinstructions, each symbolic source statement
will generate one or two computer words.

Computer codes generated by DAS fall into two categories, instructions and data. A source
statement consists of several parts, or fields. Each source statement can contain a
combination of these fields depending on the requirements of the instruction or
pseudoinstruction being processed. The fields are: the label, instruction, variable and
remarks fields.

11-40

— varian data machines @———

CHAPTER 1
PROGRAMMING

4.3 STATEMENTS
4.3.1 Statement Format

A symbolic source statement has four fields: label, operation, variable, and comment.
Each field is variable in length and terminated by one or more blank characters. The
label, instruction, and variable fields can also be separated by commas. The label field
must begin in the first character position and other fields can begin in any remaining
character position; this is described as free-form. However, for convenience and uniformity
of the assembly listing output, it is suggested that the beginning of each field appear in
the same character position- throughout an assembly.

4.3.2 Label Field

A symbolic source statement can be associated with a symbolic name or label which
allows the statement to be referenced from other statements within the program. A label
field is usually optional. If used, the label field must begin in the first (left-most) character
position, and is terminated by a blank character or comma.

4.3.3 Operation Field

The operation field begins in the first nonblank character position following the label field,
if used. If the label field is not used, the operation field begins in the first nonblank
character position after the first character position. The operation field is terminated by a
blank character or comma. If the operation field is absent or not definable, the statement
is in error and two No Operation (NOP) instructions are generated in the object program.

11-41

——.@ varian data machines

CHAPTER I
PROGRAMMING

4.3.4 Variable Field

The variable field, if used, must begin within the eight nonblank character positions
following the operation field. If more than eight blank character positions occur after the
operation field, the variable field is considered void and a value of zero (absolute) is
assumed. Also, if an invalid term is encountered in the variable field, a value of. zero
(absolute) is assumed. The variable field contains subfields separated by commas.

4.3.5 Comment Field

The comment field is optional and is used as a documentation convenience. The contents
of this field are output on the assembly listing, but otherwise have no affect upon the
assembly process. The comment field begins in the first nonblank character position
following the variable field, or the operation field if the variable field is absent.

4.3.6 Comment Statements

A statement with an asterisk (¥*) character in the first character position is entirely
commentary and its contents have no affect upon the assembly process. However, the
statement is output in the assembly listing.

4.3.7 Blank Statements

A statement comprising blank characters from the first character position to character
position 72 is processed as a comment statement.

11-42

4.4 PROGRAMMING IN SYMBOLIC ASSEMBLY LANGUAGE

Figures 11-9 through 11-16 provide examples of symbolic assembly language programs. Each
example is in two parts: the program as coded on a DAS coding form, and the program
as it appears on the assembled listing. Refer to the comment field for a functional

explanation of each instruction.

11-43

varian data machines @——-

CHAPTER I
PROGRAMMING

Al

oA coDING FORM L w2 @:’:L?‘&,m ‘
E'X'A'M'P"‘gﬁm‘fﬁoﬁ‘ S A S B S ML ﬁoﬁfgfﬁ%:gmmm [I I A Iloennrmﬂou'
fel e REERERERAN WI'TWI ITTTTI R
_GIV[EN THREE nuusfas;ifb,c' COMPARE S ohﬁ;;ﬁp Lngmm
t__OF [THE THRE[E] NUMBERS N u CAIT I &N, ugusm. BEREREEEREEE ;
R I A N R U I N I
A=AB|LE _ ‘ ‘ i ‘_ o T T ! HEEE T
8+ BJAIKE e : L % ‘ i t !
[TIC=CAND | I ! ! B BB
| SRR] ‘ il H
il | ore_ ; []jos0o0 L. | [START N6 ADDRE[S'S] BF| PRAG
sten LDA BLE | = AR BEEEEREE]
; ! suB . . | BAKE . 41 4 A j‘l;BL‘F: Rj : . T | ‘T : i
A-t;l' lkxcB ‘ R = NEG, B IS/ LARG THAN A
Lba | ||| lABLE = [
SEB CA Al-lc =
L[]Islrre AR =] NEE!,| k| [TiS| LARGES
[LDA BLE [[[AR = P®S,| A IS LARGEST 1
TL6 | [STA LRGR [;LA ‘ ORE L , il
N BT S BN LA@,QED%’%LT n ‘ L
clkicls |1 [Lipla] AKE [([T [= AR AREE
Sule C AND L = C = Ll
AN, SITRC [1] | NE6,[ic| IS LARGEST
. lWLDA (| |BAKE | [[AR = P&S B I RGEST. | L
MP |1 STLE] JuMP 1@ STERE LARGEST | . | | i ‘ 1
sTRC; (| LD [AND | | | o= AR Ly T EEEREE
viafajs{sie]7fe]ofio]uluzpalie]is]re |7|u|n|zop| nlnjz ‘s 26127 e n]sliulzamzslulv[:m [a1[2]q u]as ss]arf 9]0 51 2 31 w5559 [9 60 61 o263 a4 [65 68 |07 [ea e[70| 1t | 72| o 75 [e 72 [70| 0

VTI12-0360)
Figure 11-9. Example |, Coding Form

ONINWVYYO0Ud

¥31dVYHO

saujyoew ejep uelea @_J

Sl

PAGE
varian data machines

DAS CODING FORM 2 .2 @avﬁnan

PROGRAMMER oen PROGRAM
*
il H ! I N O A N O WO O A Y i A OO A A NS N N N S S O T Y A W | B O
LABEL [OPERATION % VARIABLE AND COMMENT FIELD IDENTIFICATION
t {7 sl b3 ') 85 7™ 7)

1 I

T

HEEE JMP ;’! sthel [T [[T [JuMp [rgl siTdREl LARGEST | | |
| i HERESEESEREE RS AR E RN RN i

X _DATA L¢CATH@NS EEREEENNEREE RRE B » !
X ‘ ’] : L

ABLE _ DAr;A IR | A = |

BQA;K‘E‘ DAT‘A “ 2 LB = 20 : L : :
canp | IDATA 311 il =l o] T NEEY L
LRGR SS. TIEENAE _ISTgRAGE sz L ARGEST REEN |

! i PR : : ™
. |IBE6N | | | ADDR 6F FIRSI EXECUTABLE | || | il

] HA
L , | Pl ‘]<NS‘TRVUCT‘I ®N AT _RUN TIME i
C N . j 4 E B : B N H : B N
i | r i i w T T DR EERRE] !
L | | RN L s 5“!‘1‘"“"!' 111(L [
| : i i [1 i [i Lot I H
[RN EEERERRERERNENEE EIERRRRERRRER L |
1 T . 1 ! T T H IR g] i !
L . ! L 1 il i L] | | I i
— i
s ; / i
T —— T T ISR T
1 i - i T ; ! T BREREEEE] |
T 1 T T T
i : Cd L i I H
| 1 B
| i ! { i
i
i . ; : ! i oot L AL -
a ! Lol ' o L : L
123 4.5 8f7 anM‘H 13 14f1s le?‘lH‘Wl?ﬂ“zl]nlzJ‘Zl 25,2627 28,29 wisllu‘n\uijs‘xjy B39 0 410,43 485 46 47 45 910 S R B 4[5, 5% 7 % 59 606162 6364 65 66 67 68 69 70 71 72 73,74.75 7677 7879 80

78A0050-000A

VTI2-0361
Figure 11-9. Example |, Coding Form (continued)

ONINNYYO0Ud
Il Y31dVYHD

—@ sauiyorew ejep ueiea

_@ varian data machines

CHAPTER I
PROGRAMMING

PAGE 0000014

wEXAMPLE 1 THREE NUMBFPRS PROGRAM
w
* GIVEN THREE NUMBFRS A,B,C, COMPARE AND STORE THE LARGER
» OF THE THREE NUMBERS IN LOCATION LRGR,
L]
w ASABLE
« PRsRAKE
w C=CAND
| {
000500 ¢+ ORG y 0500 STARTING ADDRESS DF PRNG
000500 010525 BEGN ,LDA JABLE A B AR
000501 140526 s SUB ¢BAKE A =B ® AR
000502 001004 ¢ JAN 1 CKCB AR = NFG, B IS LARG THAN A
000503 000513 R
000504 010528 ,LDA s ABLE A mAR
000505 140527) SUB 2 CAND A e C ® AR
000506 001004 P JAN +STRC AR » NEG, € IS LARGEST
000507 000522 R
000510 010525 s LDA 1 ABLE AR ® PDS, A IS LARGEST
000511 050530 STLG ,8TA ¢ LRGR LARGEST TO STORE
000512 000007 PHLT '7 FLAGGED MWALT
000513 010526 CKCB ,LDA yBAKE B = AR
000514 140527 ¢ SUB s CAND B «C ® AR
000515 001004 1 JAN +STRC AR 3 NEG, C I8 LARGEST
000516 000522 R
000517 010526 yLDA s BAKE AR = PPS, B IS LARGEST
000520 001000 2 IMP ySTLG JUMP T0 STORE LARGEST
000521 000511 R
000522 010327 STRC ,LDA s CAND C » AR
000523 001000 PR LI 'STLG JUMP TD STORE LARGESY

000524 000511 R
L
« DATA LDCATIONS
"

000525 000001 ABLE ,DATA)t A u g

000526 000002 BAKE ,DATA ,2 B =2

000527 000003 CAND ,DATA ,3 =3

000530 LRGR ,BSS 1 STNRAGE FDR | ARGEST

000500 R +END +BEGN ADDR QF PIRST EXECUTABLE

LITERALS
POINTERS

VTII-1169

Figure 11-10. Example I, Assembly Listing

11-46

VrIi-1170

SYMBOLS
1 0003530 R LRGR
PAGE 000002

{ 000527 R CAND
1 000526 R BAKE
1 000525 R ABLE
1 000522 R S8TRC
1 000313 R CKCS
1 000511 R STLG
1 0n00SA0 R REGN

Figure 11-10. Example |, Assembly Listing (continued)

11-47

varian data machines @——

CHAPTER Il
PROGRAMMING

8v-1l

0AS CODING FORM 1.3 @ygmlgﬁt‘g_mnm

POGEAM

S SQUAR, R T _P G.R o | R I I .
o~ ot nuus&.slnoeéuué‘u FiE ﬁﬂ —PROGRAM - . .. - : {DENTIFICATION
133 L0 2 » a8 35 &0 ‘83 70 23]

Il Y31dVHO

S ERERRREREN T TT RSN REARRRANY Wﬂ[

I

l

Fa
-

X i xsQT)| 'SUBRBYUTIINE,| 1ol
L

ONINWVY YO0

S| IS A ROWITINE T capll THE SeuA 'E__RQFr ‘ T
% BR._SQUARE R(II_;}EJ AITI [VIEL NUMBIER'S| 1S, TN CALL.

i

RMAL RETURN_FRIPM SOUARE ROST, IS AT CALL + 3 (n+3).

"ANIE_IS DESIGNED [Td TA E_SQUARE RO ! SR I I I

G‘jb

K H . ‘
NUMBE‘RS AND Sr]gsng THE .gm%:gn N 40 peTaL wglc.l]
Il

SOuIyoBW Bjep UBMEBA @—

Y I

'
ﬁ%fu{q ApDlRlEls's
R, =l Tl |- 1] |

T'RD“ J i? 4 ; i
H ; i

1

X
1 TH;
N

CiE [+

s

Y
i m
o
-
]

0_END

DATA T's| [RIETR) [elVED] [alN[D[|s
L
I
o

4
=[]
Z |
QR

"

[>

R =
NDEX| =/ I =
fi?

A EEEEEE Ex " ‘
NE L RETURN FEET NEXT! NUMBE 1
L N L AL REA -
5§| 050}, |- |

EORMINED loo

MOt HI
e o
-
5
()
> O

i, 0700 «;m, 50,60, 70, 90, 110,120 B :
AT‘A i

|
: L ; ,&'2'0400\,;%3,.5'0 0.0, 0. 31000 181,107,003 o*’T@U“Iqo B | i*
a2 ii‘ Si’l l? 'Ilf ll‘ll“l‘ 15 "%'Pq Tsnt ‘]o 4520 ‘45 10 ’90";“ ;o qoplfjsp Cd el l ;

~
=)

B
k3

120, 20[22,23 2425, z“vnrvnn nuzsu:r » wlae o ultsuﬂ aje so\sllsl |9 :]”h[tluauuuﬂunmn 712]7!r Is'ulﬂnnn

VT12-0362
Figure lI-11. Example J, Coding Form

Sl

@vaﬂan data machines

. DAS CODING FORM 2 3 2 varian subs
PROCRAMMER JaTh PROGRAM
*
R S I | IS SO S N O S O || IS T N T S I S O G B S Y S O B Y
LABEL 7 OPERATION / VARIABLE AND COMMENT FIELD IDENTIFICATION
! : . [617 87 T 15018 T :zu‘] T . T 30 : 35 ‘w‘ . — 45 — ‘SO‘ . 1 ‘55 — [60‘ [- 65 70 7 T 80

soleir [[lgsisl [llowo [RelslervEl 4o perall L‘¢c'Airs:E~?-=! HEEERREEN |

i [! : i ;] g) T ; ; ; 7 T T +

L H P i ; ; 4 .
\]NTEGER SioEOAlgE‘ ROST SvBRAUITINE CALCULATED BY THE APPRPXIMATION [|| , L

Jz QLR wgi) x,A 1 oo wor K€V PONH]

MBER FOR SQoaRE REST IN THE B REGISTER. THE

&****x%
m

N TIE|R "wuwg Ny
X REG1 sTER [IlS ‘.SA‘VwE"D‘ AND RE[PLACED oN EXIT. ERRGR RETURN FgR
SQUIARE ROST| loF NEGATIVE NUMBERS AT n+2 FROM CALL.
N@RMA;L RETURIN AT h+3 FROM CALL WITH SQUARE ROST OHF NUMBER
1n [THE B REGlisTER . | =
xskrm| | | [ENT[R B L __lpLace wHERE RETURN ADDR IS| SAVED || | T T
[ez EXI T+ i SQ RT. OF 0=0 BEEREEE ‘ l B |
T TEA T NUMBER = BR = AR , ' I EEREEEN
JANX XSQT | ERR@PR RETURN T¥ Nt2 L i
STB NMBR | SAVE NUMBER | '
TB APRX NUMBER = I ST APPR¢XIMATI¢N ' _
STX |sAvVE | = sAavE XR IR ‘ L
LDXY 7, L INITIALIIZE XR F¢R APPR. L ‘ N
AGN TZA R I ZERY AR FOR DIVIDE
LDB NMBR : NUMBER. = BR
DIy APRX . NUMBER /. APPR¢XIMATI¢N : |
TBA X = BR = Al \ i L

V2.3 4.5 61708 9 10 111213 14[15[16 17 18 1920 21 22/23 2¢ 25 26 27 28 29|30 3132 3334 35:36 3730 I 40 4142 43 4¢ 45 46 47 4B 49 50 5] 2 N M 55 % 7 B 57 60 61 62 63 64 65 65 &7 68 69 70 7172|7374 75 6 77 73;7vim

96B0090-000A

VTI2-0363
Figure 11-11. Example J, Coding Form (continued)

ONINNVYYO0dd
Il 431dVHD

——@] souIyoewWw ejep ueleA

ONINNYYD0Ud
Il 431dVHI

saulysew ejep uelea @]—

0s-N

PAGE N
CODING varian data machines
MROGANIER - HATE oA PROGRAM Fou - . —iaé— @
{ ‘&MT&A%%J—CO%_F‘E{DIIIIIlllllllIlllllllll]J_LllllllllllIDENTlFK:ATIaI
1 sl7]e 15]1s 0 0 35 40 45 20 - 55) - 55 70 n]
I AlPR(X] IXie] T=lalR] [11
TA A/ X+ AR |*
S 1 (A X|+X) 11 =B
_ S|T|B! AP R P! I ATIF
-l =
7 X XIT s T. [=BR ‘
TIE! AP ritlo
T Lp g xRl
1IN SRT PDATIE| [ENTRY [T0| Ini+3
RETU* SQT Fi@ ack T N_PROGR
]
X sis]
' IRisls 1
N ElCUTITIBIN Dnlal sls
*]
! i | T
’IAIIQs;ri!wllununsul7ll|yfzn:|nnuumz7uu:omnn;x:su:wunwuuén:unsuounsn‘slsssasssiiu;svlwuanubsuuummﬂnnunuivnnn
VTI2-0364

Figure ll-11. Example J, Coding Form (continued)

RPAGE ,00001

000500

000300 006030
000501 000037
000502 025515
000503 002000
000504 000626
000505 000777
000506 065566
000507 001040
000510 000514
000511 005344
000512 001000
000513 000502
000514 000000
000515 000031
000816 000036
onoB17 o0Nn0N4d
000520 000050
000821 177777
nnob522 0n014e
000523 000001
000524 000000
000525 000000
0005826 000004
000527 000310
0ono530 001750
000531 000700
000532 177730
000533 000062
000534 000074
VTII-1171

R

*EXA

% % & % % ¥ %

NEXT

% % % %

HALT
Loc

MPLE J

varian data machines @——

CHAPTER I
PROGRAMMING

SQUARE RNDT PROGRAM

THIS A ROUTINE TN CALL THE SQUARE RDOT (XSAT) SUBROUTINE,

ERROR RETURN FOR SQUARE ROOT OF NEGATIVE NUMBERS TS IN CALL
+2 (N+2) NORMA| RETURN FROM SNUARE ROOT IS AT CALL + 3 (N¢J)
THIS ROUTINE IS DESIGNED .TO TAKE THE SQUARE ROQT

OF 40 OCTAL NUMBERS AND STORE THE ANSWER IN 40 DCTAL LOC,

,DRG
 LOXI

yLDB
'CALL

,8TR

P IXZ

sDXR
P IMP

HHLT
,DATA

¢DATA

, 0800 STARTING ADDRESS

y 037 XR = COUNT » 1

LOC, BR =» (1.0C + XR)

 X8CT, 0777 SURR CALL WITH ERROR RETURN
y8QRT, 1 NORMAL RETURN STORE RESULT

NOTE THAT THE DATA IS RETRIEVED AND STORED -FROM
BOATYOM TO TOP

yHALT ¥R = 0 END OF ROUTINE

, INDEX = { ® INDEX
JNEYT RETURN FOR NEXT NUMBER

, NORMAL HALT
,25,30,36,050,=1,100,01,00,0,4,200

11000,0700,-40,50,60,70,80,90,110,120

Figure 11-12. Example J, Assembly Listing

I1-51

[@ varian data machines

CHAPTER I
PROGRAMMING

PAGE 000002

000538 000106
000536 000120
000537 000132
000540 000136
000541 000170
000542 000000 +DATA ,0,02000,2,9,3000,03000,15,17,130,01 40
000543 002000
000544 000002
000545 000011
000546 005670
~ 000547 003000
000550 000017
0no351 000021
000552 000202
000333 000001
000554 000204 1DATA ,0204,300,310,320,330,340,330,400,500,=-10
000553 000434
. 000556 000446
000557 000500
000560 000312
000561 000524
000862 000536
000563 0006820
000564 0007484
000865 177766

000566 SORT ,MSS ,040 RESERVE 40 OCTAL LOCATIONS
] .
w INTEGER SQUARE RDOT SUBROUTINE CALCULATED BY THE APPROXIMATION
L]
. 172 (x +-——) =X+ 1
L]
» ENTER WITH Nunaea POR SQUARE ROOT IN THE 8 REGISTER, THE
« X REGISTER 1S SAVED AND REPLACED ON EX!Y, ERROR RETURN FQR
w SQUARE RODT OF NEGATIVE NUMBERS AT N+2 FROM CALL.
« NORMAL RETURN AT N3 FROM CALL WITH SQUARE RODT OF Nunaan
« IN THE B REGISTER
* H
000626 000000 X8QT L,ENTR PLACE WHERE RETURN ADDR 18 SAVED
000627 001020 2382 EXITet $Q RY, OF 080
000630 000637 R
000831 005124 TBA . NUMBER = BR v AR
000632 001004 s JAN® ,XSGT ERROR RETURN TO Ne2
VTH-1172

Figure 11-12. Example J, Assembly Listing (continued)

11-52

PAGE 00003
000633 100626 R
000634 060662 1 STB - NMBR
000635 060663 ST 7, APRX
000638 070664 $STX » SAVE
000637 006030 S LDXT)7
0Nn0640 000007
000641 005001 AGN e TZA '
000642 0206862 sLDR . ,NMBR
000643 170663 W DIV) APRX
000644 005021 ' TBA '
000645 120663 P ADD s APRX
000646 005012 1 TAR '
000647 004101 s ASRB ']
0006850 060663 1 8T8) APRYX
000631 005344 yDXR ’
000632 001040 P JIXZ JEXIT
000653 000636 R
000654 001000) JMP) AGN

00065% 000641 R
0006356 030664 EXIT ,LDX » SAVE

000657 040626 y INR S XSOT
000650 001000 JRETU® ,XSOT
000661 100626 R
000662 NMBR ,RSS ot
000663 APRX ,BSS ot
000664 SAVE ,RSS 0l
000000 JEND ,

LITERALS

POINTERS

SYMROLS

1 000664 R SAVE

1 000663 R APRX

1 000662 R NMBR

1 000656 R EXIT

1 000641 R AGN

{ 000626 R XSQT

1 000566 R SQRT
VTII-1173

varian data machines [@—

CHAPTER i
PROGRAMMING

SAVE NUMBER
NUMBER = 18T APPROXIMATION
SAVE XR

INITIALIZE XR FOR APPR,

ZERQ AR FOR NIVIDE
NUMBER = BR
NUMBER / APPROXIMATION

-A/X sBR mAR

A/X+X AR
A/X+X ®AR =BR
CA/X+X)1/2 =BR
NEXT APPROXIMATION
XR= 1 eXR

$Qa RT, =RR

COMPLETE APPROXIMATION
RESTORE XR

UPDATE ENTRY TO Ne+2
GO BACK TO MAIN PRNGRAM

NO EXECUTION ADDRESS

Figure 11-12. Example J, Assembly Listing (continued)

11-53

_@ varian data machines

CHAPTER |I
PROGRAMMING

PAGE 000004
1 000515 R (|NC

1 000514 R HALT
1 000502 R NEXT

VTII-1174

Figure 1I-12. Example J, Assembly Listing (continued)

11-54

GG-1l

DAS CODING FORM N @Zﬁﬁﬂw.ﬁ% machines
LABE%N%R%SI PN EXAMPLES .\ | L TENTTCATION
BRG] olilooolo’ [[| | [T |slrlalrrlinel lglc/av]ion aF N ‘ '

ZERG 7 _ lzER® A B, x REGI STERS
DECR T TIAR = -1 T | ‘ : “
INCR | | |2 BR= +1 ‘ ‘ | | il
DAR | ‘ AR = AR-I ‘ ‘
ERGE ' | 034 ‘ INCLUSIVE ¢R @F A+5 INT® XR ‘
LDATL NMBR | | [|AR = NMBR [|[. HEEER T
STA Lge | Akrfg}AshensLy‘rurs‘Is REL BEBEER
T MP CONT || I REREEENEE ‘ BEEED
NMEBR EQU. ‘|10 NMBR = 10 DECIMAL
LgC BSS. i RESERVE | LGOCATION
CANT LDA LocC IGENERATE INDIRECT PPINTER
S'TiA ¥ LeC _laLse GENERATE INDIRECT P¢IMTER \ i
LbXI os0 | | - » | ENEE 1;1£i BEERRN
LDIAE NMBR,1' | || [|iDA CQNTENTS ¢F‘L¢CATI¢N 62 pcraL | L .
, LDB = ‘ GENERATE LITERAL ‘
? S;N 0101 %+5 SENSE WRITE REGISTER OF TTY READY
N 9P 1 K
gmp | ([-3 77 [T [JuMP BACK IF N@#T READY Il RN B
ME | |lo1 CHAR burPuT (CHAR) TO TTY F ‘
et [lor7r ‘ FLAGGED HALT |
CHAR DATA ‘Al ASCII FOR A
¢ END . |
12 J‘JY‘SIA 7|8 9 10 11 12 13 14{15|16 17 18 19 20 21 22 23 24 25.26 27.28 29[30:] 32&3435363’73!’]910AIJZKIM 45 46 47 48 ¢ 50 51 QS:'S“SS'S&?SSS?AOM b2 63 64 65 66 67 68 &9 70°71 72|73:74 75 76 77‘?70:790

9680050-00QA

VTI2-0365
Figure 11-13. Example K, Coding Form

DNINWVYIOD0Ud
11 431dVYHI

——@ soujyoewW ejep ueleA

CHAPTER I
PROGRAMMING

PAGE J00001

010000
010006
0410001
010002
010003
010004
010008
010006
010007
010010
010011}

onsna?
005301
005192
005311
008034
006010
0006012
054002
001000
01003
000012
010012
010013
010014
010015
010016
010017
010020
010021
010022,
01002y
010024
010028
010026
010027
010030
010031
010032

017200
057201
006030
000030
0060193
000012
021000
101104
010027
005000
00119900
010022
1030n1
010032
000777
000301
000000

LITERALS
001006 000093
POINTERS
000200
000209

010012
110012

SYMBOLS
1 010032 R CHAR

byri-iees

——@ varian data machines

*EXAMPLE K
4 ORG
+2ERO
»DECR
+ INCR
,DAR
s MERGE
+LOATL

' STA
, JMP

NMBR ,FOQU
Loc ,888
CONT ,L0A
|STA.
JLOXI

s LDAE

,LDA
» SEN

,NOP
, JHP

4 OME
oHLT

CHAR ,DATA
+END

,016000
'7

0!

)2

'

,034

o NMRR

LOC
1 CONT

) 10
3!
LOC
Lnc
1030

+NMBR, 1

193
00108, %43

14
LY

)01,CHAR
,0777

S TAY
’

INSTRUCTION EXAMPLES
STARTING LOCATION OF PROGRAM
2ERQ A,B,X REGISTERS

AR & =i

BRs <1

AR = ARe{

INCLUSIVE OR QOF A+B INTO XR
AR ® NMBR

AFTER ASSEMBLY THIS I8 REL
NMBR = 10 DECIMAL

RESERVE 1 LOCATION
GENERATE INDIRECY POYNTER

ALSO GENERATE INDIRECT POINTER

LDA CONTENTS OF LOCATION 62 OCTAL

GENERAL LITERAL

SENSE WRITE REGISTER OF TTY READY

JUMP BACK IF NOT READY
OUTPUT (CHAR) YO TTY

FLAGGED WALT
ASCIT FOR A

Figure 11-14. Example K, Assembly Listing

11-56

varian data machines @-——

CHAPTER I
PROGRAMMING

PAGE 000002
{ 010013 R CONT

1 010012 R | NC
i 000012 NMAR

VTII-1176
Figure 11-14. Example K, Assembly Listing (continued)

11-57

I@ varian data machines

CHAPTER I
PROGRAMMING

[[]

8 T :

g B ®

< B

o ®

s | - H
3 z - - £
z 3

aw H_mn ®
8 [7]
&3 [3
LX) - ol m
@] - : . :
] - 2

] - - 3

A] El
s|] 9 1] :
8 _] 3
3 9
1 ¢]

B s

] 1 BL]

L]

B 3

- ol a

N 3

. Wi o _ @

] O L

4 1w [& 1w E

1 =) |) o 3

B | - () - 9 12]

«D_ o) 0| W e 3

o E W L 3]
<Y [Z[q [-)

o o e | Y a [3) BIRE]
o] >] I_m_, ol B 13
L] al [of =] 00 < - =l

B | [-4 [g o £l

x| Wi | z| © =3 & “IT‘ 3
| s |w [[W= Y] w e
-] > LL| [T of] :Pl_ - [

=] < 9 w0 | a N 2]

Q x LY o <] | - 5]

win = [=| wl =S 1ol | K

4" 8 [yl |00 W w| < a3

2 |ak [Te N_ = o~ ﬂ_F CNE 3
2 HE =| @l Wi 1] | a]
WAW] \m‘ [-Y S| Al of) 8
mmx P % 6] > — T [7]
nrtmn O [> [*Y) Of Wy o > — 0| 8
8 Z A %
. ™ L]
3| B 5
& a

s a

b

— L]

]

[+) -~ ™~ [Y] \n)| s

AQ N N NN x| &

© N g L _L N [\ N s (o [=

ﬂo SESNRINEE e NS N N

-] - NN 2 :I—7723I.Lmh_ -] s

H 190 Nolal<dOo[So/ain oM IO~
“ wl vt 4] | 4 & 1=
lxw hn*A - gl g X q < [[<] €] <N [N[O o] = =[] =

E [alNIN - a0l oalalo[ajalajalo]a alN| <= x| < <]~
Em.U_TT A) I T) I O O Y o e e = Y

- RN ~
M; | -

w 4 -~
._.»T- e\# e.h«_._ < -

11-58

Figure 11-15. Example L, Coding Form

VTI2-0366

PAGE 100001
015000
015000 005011
LEY2
015001 005004
«DD
013002 001411
LE-Y4
015003 000777
015004 015038
*AD
015005 006018
018006 015036
015007 006030
018010 015036
nN15011 015000
«DD
015012 000004
*TF.)
015013 015600
015014 016000
018015 014020
015016 006010
*87
015017 027721%
015020 006010
015021 077777
015022 006010
015023 077777
015024 006010
015025 100000
«NP
015030 0n1040
015031 015036
015032 001000
*8Y
015633 000000
015034 001000
015035 0415037
018036 000005
015037 014048
VTII-1177

*EXAMPLE |,

SEC

SEC

ALFA
BRAV

Figure 1I-16. Example L, Assembly Listing

+ ORG
' TZA

2 TZA
JHLT

JHLT
LDA

+LDAE
s LDXI
2LDA
yLDA
W LDA
LDA
1 LDA
LDAY
' LDAL
1LDAT
LDAY
V22
1 IX2
» JMP

s JMP

JDATA
,DATA

;018000
2040

’
’ 777

,0777
JALFA, 1

1 ALFA,L
2 ALFA
10,1
,0,4
10,1
10,2
yALFA

, 77777
,077777
,32767
,=30768
s ALFA
JALFA

1BRA

BRAY

‘5
1014045

11-59

varian data machines [@———

CHAPTER 1l
PROGRAMMING

EXAMPLE WITH ERRORS
CANNDT WAVE A VAR, FIELD

VARIABLE FIELD TO LARGE

EXP { TO LARGE
NOYBLE DEFINITION
EXP 2 HAS TD BE A { OR 2

CRFATE A REL ADDRESS
VAR FIELD TO LARGE

ILLEGAL DPERATION CODE

BRA UNDEFINED

—@ varian data machines

CHAPTER Il
PROGRAMMING

PAGE 000002

018040 STR
000000

LITERALS

POINTERS

SYMROLS

0 015040 R STP
1 015037 R BRAV
1 015036 R ALFA
0 015501 R SEC

VTIl-1178

,B88
"END

3}

Figure 11-16. Example L, Assembly Listing (continued)

11-60

CHAPTER IlI
COMPUTER OPERATION

varian data machines @]—

——@ varian data machines

varian data machines @]-——

CHAPTER NI
COMPUTER OPERATION

SECTION 1
WORD FORMATS

1.1 INTRODUCTION

Word formats for the 620 series computers are divided into two categories: data words
and instruction words. Each category has been optimized for the system environment.
620/f and 620/L systems are available only in 16-bit word lengths; the 622/i system has
an 18-bit word length. The data format is extendable for 18-bit words with the sign bit
in the high-order positions (refer to figure Ili-1).

There are four instruction word formats: single-word, double-word, generic, and macro-
instruction.

17 16715 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
)

I Sign (negative No's in 2's complement form)

Logical data is represented in true form.

18-bit word length

INDIRECT ADDRESS FORMAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i

t 15-bit Address Field
The higher order bit specifies further indirect addressing.

Figure lll-1. Formats for Data Words and Indirect Addresses

I -1

__@ varian data machines

CHAPTER 11l
COMPUTER OPERATION

1.2 SINGLE-WORD INSTRUCTIONS
1.2.1 Addressing

Therée are 12 basic instructions and two optional instructions that have single-word
memory reference formats (addressing). The single-word instruction is divided into three
fields as shown in figure HI-2. There are five addressing modes including: direct
addressing to 2,048 words, relative to P with a delta range of 512, indexing with the X or
B register, and indirect from the contents of the memory location addressed.

Single-word addressing instructions include: LDA, LDB, LDX, INR, ADD, SUB, MUL,
STA, STB, STX, ERA, ORA, ANA, and DIV. All basic single-word instructions are executed
in two cycles (except INR, MUL and DIV), including relative and indexed addressing
modes. In addition, one cycle is added for each level of indirect addressing.

The single-word addressing instruction format is designed to enable the system user to
write his programs with a minimum number of memory addresses and to execute these
programs in minimum time. The format is uncomplicated and the fields divide into
convenient octal groupings so that programs can be written and checked rapidly.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op Code Mode Address

OXX Direct addressing to 2048
100 Relative - add A field to P

101 Index (X) - add A field to X
110 Index (B) - add A field to B
111 Indirect

Not used by the 18-bit instruction word

Figure 111-2. Single-Word Instruction Format

-2

varian data machines @—

CHAPTER 1INl
COMPUTER OPERATION

1.2.2 Nonaddressing

Twenty-six instructions are single-word nonaddressing. Each divides into three fields of
class codes, operation codes, and definitions as illustrated in figure 111-3.

These instructions perform arithmetic unit, control unit, and input/output functions. The
operations are: halt, register change, shift (12), overflow (2), external control, and
input/output for the A and B registers (11).

The shift instructions can shift up to 31 places. The sense and external function
instructions can address up to 64 peripheral devices and define up to eight functions. The
input and output commands can select A or B, A and B, and clear and input to A or B, A
and B. The input/output instructions can address up to 64 devices. (The in-memory and
out-memory instructions and the sense command are two-word instructions.)

The single-word nonaddressing instructions are octal-grouped for user convenience. They
provide flexibility for input/output processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C @) d

Class Code Op. Code - Definition

Figure 1lI-3. Single-Word Nonaddressing Instructions

-3

———@ varian data machines

CHAPTER il
COMPUTER OPERATION

1.3 TWO-WORD INSTRUCTIONS

There are two classes of two-word instructions and six types: jump, jump and mark,
execute, immediate, in/out memory, and sense. The 620/f computer has the additional
two-word instructions IJMP, JSR, SRE, and BT. The two-word mstructlon format is
illustrated in figure [11-4.

There are a total of 45 standard and over 16 optional two-word instructions. The efficiency
and power of the two-word instructions becomes more and more apparent with use. They
provide direct and random addressing and accessing of up to 32,768 words. In most
cases, they permit a two memory location sequence of instruction to replace the usual
three memory location sequence. The amount of memory conserved and time saved by
these instructions depends upon the application, and ranges from 5 to 25 percent.

1.3.1 Jump, Jump and Mark, and Execute Instructions

The first word of the jump, jump and mark, and execute instructions contains three
fields: the C field containing the class code, the O field containing the operation code,
and the condition field specifying any combination of nine conditions. The conditions
are: SS1,S8S2,S8S3, X = 0,B = 0, A = 0, A Negative, A Positive, and Overflow. On the
620/1, if bits 1 and 2 are on, the other bits specify not conditions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L C

@)

Condition

L+]%

ADDRESS

t— INDIRECT ADDRESS FLAG

Figure 111-4. Two-Word Instruction Format

Hi -4

1st Word

2nd Word

varian data machines @—ﬂ

CHAPTER 11l
COMPUTER OPERATION

The second word contains the jump address, the jump and mark address, or the address
of the instruction to be executed. !f the specified conditions of the first word are met, the
instruction is executed. If the conditions are not met, the second word is skipped and the
P register is incremented.

1.3.2 Memory In/Out Instructions

The memory in/out instructions have a format similar to that of the instructions
discussed in section 1.3.1. The condition field of the IME/OME instructions addresses the
selected device; the second word contains the memory for the data. Indirect addressing
is not permitted.

1.3.3 Immediate Instructions

The immediate instructions have a special two-word format as illustrated in figure Il1-5.
There are 12 immediate instructions plus two that are optional; these are: LDAI, LDBI,
LDX!, ADDI, SUBI, INRI, MULI, STAI, STBI, STXI, ERAI, ORAI, ANNAI, and DIVI.

Bits 3 through 6 define one of the immediate instructions listed above. These instructions
provide literal addressing which contains the operand in the operand address field. They

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

]
L 0 : 0 6 Op. Code 0 Ist Word

S OPERAND 2nd Word

]
[R,

t _ SIGN OF OPERAND FOR 18 BIT FORMAT

Figure 1lI-5. Immediate Instruction Format

-5

———@ varian data machines

CHAPTER 1lI
COMPUTER OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 5 M step XBA XBA
¢ Source

00 Transfer
01 Increment
10 Complement Destination
11 Decrement

0 Execute unconditionally

1 Execute if overflow set

Figure 111-6. Macro-Command Format

automatically increment the P counter after the execution, and the next instruction is
obtained from P + 2.

1.4 MACRO-INSTRUCTIONS

A number of micro-steps are programmable into a macro-instruction with. the single word
Macro-Command. This command has over 128 useful combinations including those listed
in the instruction set (section 1.5). The macro-command format is illustrated in figure llI-
6.

The X, B, and A Register contents can be logically ORed, cleared, transferred, set to a
common value, complemented, NORed, incremented, decremented, and, if desired,
perform the above conditionally on an overflow. Sequences of micro-commands can be
used to perform additional logical functions customary in a system environment.

1.5 INSTRUCTION LIST

Figure 111-7 provides a list of the instructions available with the 620 series computers.
Certain instructions are notated for their specific application to the 620/f computer. In
addition, all multiply/divide and extended addressing is optional in the 620/i and 620/L
systems.

HI -6

varian data machines @]—

CHAPTER Il
COMPUTER OPERATION

Varian 620 and V73 Computer Systems

Octal Octal Octal Octal
Instn. Code | Instn. Code | Instn. Code | Instn. Code

ADD 120000 [INRE 00604z | LASR 004500+ | STBI 006060
ADDE 00612z {INR! 006040 | LDA 010000 |STX 070000
ADD! 006120 |IXR 005144 | LDAE 00601z [STXE 00607z
ANA 150000 | JAN 001004 | LDAI 006010 |STXI 006070
ANAE 00615z |JANM 002004 | LDB 020000 | SUB 140000
ANAI 006150 [JANZ@ 001016 |LDBE 00602z [SUBE 00614z
AOFA 005511 |JANZM@ 002016 |LDBI 006020 |SUBI 006140
AOFB 005522 {JAP 001002 | LDX 030000 | TAB 005012
AOFX 005544 [JAPM 002002 |LDXE 00603z | TAX 005014
ASLA 004200+n |JAZ 001010 {LDX! 006030 | TBA 005021
ASLB 0040000 [JAZM 002010 | LLRL 004440+ | TBX 005024
ASRA 004300+ [JBNZ@® 001026 | LLSR 004540+n | TSA@ 007402
ASRB 004100+ |JBNZM@ 002026 | LRLA 004240+" | TXA 005041
BT@ 0064vw |JBZ 001020 | LRLB 004040+n | TXB 005042
CIA 1025xx [JBZM 002020 | LSRA 004340*n | TZA 005001
CIAB 1027xx |JMP 001000 | LSRB 004140+n | TZB 005002
CIB 1026xx [JMPM 002000 | MUL 160000 | TZX 005004
CPA 005211 | JOF 001001 [MULE 00616z | XAN 003004
CPB 005222 |JOFM 002001 |MULI 006160 | XANZ@ 003016
cPX 005244 | JOFN@ 001007 | NOP 005000 | XAP 003002
DAR 005311 | JOFNM@ 002007 | 0AR 1031xx | XAZ 003010
DBR 005322 [JSIM 002100| 0AB 1033xx | XBNZ@ 003026
DIV 170000 [JS2M 002200 | OBR 1032xx | XBZ 003020
DIVE 00617z |JS3M 002400 | OME 1030xx | XEC 003000
DIVI 006170 [JSR@ 00650x | ORA 110000 | XOF 003001
DXR 005344 | JSS1 001100 | ORAE 00611z |XOFN@ 003007
ERA 130000 | JSS2 001200| ORAI 006110 | XS1 003100
ERAE 00613z |JSS3 001400 | ROF 007400 | XS2 003200
ERAI 006130 | JSIN@ 001106| SEN 101 xxx | XS3 003400
EXC 100xxx | JSS2N@ 001206 | SOF 007401 XSIN® 003106
HLT 000xxx | JS3N@ 001406|SOFA 005711 | yeona 003206
IAR 005111 [JSINM@ 002106|SOFB 005722 | yaane 003408
IBR 005122 | JSS2NM@ 002206 SOFX 005744

JMP@ 00670 | JS3NM@ 002406| SRE@ 0066yx | SXNZ@ 003046
IME 1020xx | JXNZ@ 001046 | STA 050000 | XXZ 003040
INA 1021xx | JXNZM@ 002046 | STAE 00605z | W=0-15 Y-1,2,4
INAB 1023xx | JXZ 001040 | STAI 006050 | X=0-7

INB 1022xx | JXZM 002040 STB 060000 | Z=4-7

INR 040000 | LASL 004400+ |STBE 00606z | V=0-3

@ Instruction unique to 620/f, 620/f-100, and V73.

All MUL/DIV and Extended Addressing is optional with Varian 620/i.

VTI1-1831
Figure I1I-7. 620 Series Instruction List

-7

r—@ varian data machines

CHAPTER 1l
COMPUTER OPERATION

SECTION 2
PAPER TAPE FORMATS

2.1 SOURCE TAPE FORMAT

Source tapes for the Varian computer systems are normally generated by using a Teletype
in off-line mode. The Varian 33/35 ASR Teletype will always punch channel 8 as
illustrated in figure 111-8.

Source tapes for the 4KA, 8KA, and MR assemblers and the source editor program (EDIT)
all use the same format. As developed by Varian, this format is a modified ASCI| code of
eight bits, using one frame of tape per character. Varian part numbers for source tapes
are labled with a T; for example, 92T0201-054A.

2.2 BOOTSTRAP FORMAT

The first part of the binary load/dump program and the executive routine require the
bootstrap format (figure 111-9). This format is loaded with a bootstrap routine, normally
located in memory location 07756 through 07775.

Bit 8 is only used for leader and trailer. Bit 7 is always the logical complement of bit 6,
and bits 6 through 1 contain two octal numbers. Three frames make up one 18-bit word
(six octal characters). Bit 6 of the first frame is the most significant bit (MSB), and bit 1
of the third frame is the least significant bit (LSB) of the word. The first valid frame (first
binary frame) is the first channel 7 punch. The feed hole is located between channels 3
and 4.

2.3 BINARY OBJECT (PROGRAM OBJECT) FORMAT

All tapes labeled object (except for stand-alone FORTRAN tapes) are in the binary object
format. These tapes may be identified by the use of a U in the Varian part number; for
example, 92U0107-001.

In this format, bit 8 is used only for leader or trailer, bit 7 is always the logical
complement of bit 6 (except for record marks), and bits 6 through 1 contain data. Three
frames comprise a word with bit 6 of the first frame as the most significant bit and bit 1
of the third frame as the least significant bit.

-8

varian data machines @——-

CHAPTER 1l

COMPUTER OPERATION

87654 321

VTII-1187

Figure 111-8. Source Tape Format

1 -9

—-@ varian data machines

CHAPTER ll
COMPUTER OPERATION

)

FIRST BINARY FRAME

00000000000000000000000
e00ccecveccscecsccccscocoe

100437
006010
000223
s e i | ooz000

oo | 007320
" o| 001100
007012
005001
001000
cees | 007014
————— 000007
et :§05111

054310

006010

I
1o @

o0 0000
'Y Y
°

® O
[
L]

see

| |
e0ee 00 o

el el @l
o o

oe ‘o
® ¢ 0000 000
o ! ! le
. | °

)

87654 321

VI11-1188A
Figure 111-9. Bootstrap Format

i -10

varian data machines [@——

CHAPTER il
COMPUTER OPERATION

)

[] .
[] .
[] .
[] .
[] .
[] .
® .
® L]
[] 3
e]
. .
RECORD MARK == Z|= -5 "= =
RECORD SIZE | -E— ol o] 000011
ORIGIN ADDRESS | _eee:e 027400
DATA | _eee:e | 007400
O 002000
S I SR S W
L _:::_:_;;_ | 027434
. --E- _ ees| 000007
Jo%0:e | 007401
N Y PR3 M
I 002000
N N S
L _::;_;_;;__ _ 027434
s o 001000
DATA | ‘eeece® | 027403
- = _.g___'_!’_ -
CHECKSUM | ¢ e:. 001014
RECORD MARK —= 2|2 T 782 o
RECORD SIZE s . 000000
EXECUTION ADDRESS :...;.‘ 027400
CHECKSUM ceeese’ [027400
H :
® °
[] .
® .
[]]
V;/\
87654 321

VTII-1189
Figure 111-10. Binary Object Format

" -11

_@ varian data machines

CHAPTER 1l
COMPUTER OPERATION

Figure 111-10 locates the following information as it appears in the binary object format:

Record mark indicates the start of a record to the binary
loader

Record size the number of data words in the record
0< n< 62 DAS tape
0< n< 65 BLD tape

0 indicates the end of a program

Origin address the memory address where the binary loader is
to put the data words

Checksum exclusive-OR of all words in the record (except
for the checksum word)

Execution address run address in the case of ioad and execute

A program can contain many records.

2.4 MOS RELOCATABLE OBJECT FORMAT

All tapes produced by the MOS assembler or compiler will have this format (the assembler
and the compiler produce identical object tapes). Refer to appendix B of the MOS manual
(98 A 9952 090) for a detailed description of the relocatable MOS object format. Object
tape produced by the MOS debug program is slightly different (refer to appendix A of the
MOS manual).

In this format, blank tape with feed holes is used for leader and trailer. Bits 7 and 6 are
not part of the word; they are ignored. Bits 8, 5, 4, 3, 2, and 1 contain data. Three frames
comprise a word with bit 8 of the first frame as the most significant bit and bit 1 of the
third frame as the least significant bit.

Object records have a fixed length of 60 words; the records are separated by three blank
frames known as the record mark. Program identification and the creation date are in
packed-ASCI| format.

_Figure l11-11 is an illustration of MOS relocatable object format.

Hi -12

RECORD CONTROL ™~
WORD -

CHECKSUM
PROGRAM SIZE
PROGRAM 1.D

PROGRAM CREATION ™~
DATE

DATA

VIiI-1190

Figure 111-11. MOS Relocatable Object Format

e T 060400

o0 _ o
T e é¢ 00|
-.Ei:'-:——:—- _132252

oo o 000002
“:‘:'35'0""'

eee + oo 142305
S33% 308

oo o+ oo 141315
990 _c0_9o) _

cees.oe | 143640
'._._:—30-'——-——

e =+ o 120240
R e Tl Y

e o @ 130270
o0000. _ |
Y 127661
i ek Y1 e

ese co00 132657
#33%ai80e|

eeee-. o 133271
et --o--

o0 o 010000
.

eee o+ o 022226

000 _c00
“ee “s e |~
200 o e 026547
e T v T|IT™
—-E; s __000000

o & 100001
-3

o0 oo 002000
A

e o 000000
-t
Ty 007000

*0_ _o . —
Y O
/\

87654 321

i -13

varian data machines @——

CHAPTER Il
COMPUTER OPERATION

__._ varian data machines

CHAPTER 1lI
COMPUTER OPERATION

SECTION 3 |
OPERATING SEQUENCES FOR 620/i, 620/L

Three typical operating sequences are described in the following paragraphs. There are
variations to these sequences, depending upon the particular instruction being executed,;
however, an understanding of these fundamental operations will enable the user to
quickly understand the timing of each individual instruction sequence. ‘

3.1 ACCESS OPERAND IN MEMORY

The simplest and most basic sequence is one in which a single-word, directly-addressed
operand is read from memory. This is typical of the load, arithmetic (excluding multiply
and divide), and logic type instructions.

The timing of the suboperations of this sequence is illustrated in figure 111-12. At time O,
the instruction cycle (ICYX +) for the nth instruction is initiated. Note that the n - 1
instruction is being executed (IEPX +) while the current instruction (n) is being read from
memory. At time 0.9, the instruction is transferred to the U register. During the
instruction address phase (IAPX +), which occurs while the instruction just read is being
restored to memory, the operand address is generated.

Since the operand is not indirectly addressed, the operand cycle (OCYX +) is initiated at
time 1.8. After the operand has been read from memory and stored in the R register, the
address of the next instruction, n + 1, is generated (normally by adding 1 to the P
register) and transferred to the memory L register. This suboperation is performed while
the operand is being restored in memory. The instruction cycle (ICYX +) for n + 1 is then
initiated at time 3.6.

Note that the operation to be peformed upon the operand now contained in the R register
is executed during the instruction execution phase (IEPX+) of ICYX+ for n + 1. This
operation could be, for example, adding the operand value to contents of the A register
and storing the result in A (ADD), or simply transferring the operand to one of the
operation registers (LDA, LDB, or LDX).

I -14

q1-

MEMORY CYCLES (1.8us) [READ 1 RESTORE | READ | RESTORE | READ ! RESTORE | READ I RESTORE |

START INSTRUCTION CYCLE A\ JAN

READ INSTRUCTION | n. l I et] I

STORE INSTRUCTION A" An+l

IN U REGISTER <

GENERATE OPERAND I n I n+1

ADDRESS
n
START OPERAND CYCLE JAN A

READ OPERAND l n I | n+] I

LOAD OPERAND n nt]
IN REGISTER VAN A

GENERATE INSTRUCTION ntl l nt2 |

ADDRESS

EXECUTE INSTRUCTION n-1. I n I

CLIX+ L —[J—56Ns (TYPICALLY) [] ’ M

cLax+ —f =56 NS (rvpicaun [[[L
ICYX+ | | | l |

OCYX+ _‘ l l J
1EPX+] I I I

IAPXs I l I

TIME (us) 0 0.9 1.8 2.7 3.6 4.5 5.4 6.3

VTII-1183
Figure 11I-12. Operand Access from Memory Sequence

NOILVY3IdO ¥431NdWO0I
Il ¥31LdVHI

——-@ souIyoew ejep ueleA

91-

MEMORY CYCLES (1.84s) [READ | RESTORE | CLEAR | WRITE | READ 1 RESTORE | CLEAR ¢ WRITE |

START INSTRUCTIONS n .
CYCLE A\ A AN

READ INSTRUCTION I n I ntl

STORE INSTRUCTION n n+l
IN U REGISTER A A

GENERATE OPERAND ADDRESS | n l n+l
START OPERAND CYCLE JAN
TRANSFER OPERAND TO [__n_] pve

MEMORY (W REG)

WRITE OPERAND IN MEMORY | n I n+]

GENERATE INSTRUCTION — [_Tz_j
ADDRESS n

EXECUTE INSTRUCTION n-1 {- - —;

cLIx+ 1 —{}=56 Ns (rvpicaLLy) | 1
cLax+ ~{ "} 56 Ns (TYPICALLY) [] 1 M
oYX L l -

_
OCYX+] J | |
IEPX+ N 1
IAPX+ _—_J'_——[r——’L

TIME (us) 0 0.9 i.8

YL

3.6

N
~
LS
"
(%]
IS
o
w
~N
N

VTI1-1184
Figure 111-13. Operand Storage in Memory Sequence

NOILYY3IdO 43LNdWNOD

Il Y31dVYHD

seulyoew ejep ueliea @———

varian data machines @——

CHAPTER Il
COMPUTER OPERATION

3.2 STORE OPERAND IN MEMORY

The sequence for storing an operand in memory (STA, STB, STX) is essentially identical
to that for accessing an operand, except that the specified memory cell is cleared and the
operand written into it. The sequence of suboperations is shown in figure 11-13.

The nth instruction is accessed and the operand address generated during ICYX+ as
before; execution of the n - 1 instruction occurs during IEPX+ of the nth cycle as
indicated. However, during the operand cycle (OCYX+), the operand is transferred to
memory while the referenced cell is being cleared. During the last half of the cycle, the
operand is stored into the cleared cell. During this time, the address for the next
instruction is generated. Note that there is no execution, as such, for this type of
instruction (indicated by dashed lines) because the execution has already been
accomplished in effect by the transfer and storage of the operand in memory.

3.3 INDIRECT OPERAND ACCESS

The third basic sequence involves indirectly accessing an operand in memory by a single-
word instruction. In this case, an address cycle (ACYX +) is required to read the indirect
address word from memory before performing the operand cycle (OCYX-).

The sequence of suboperations is illustrated in figure 1i1-14. During the instruction cycle
(ICYX +), the nth instruction is read from memory and stored in the U register as before.
The previous instruction, n - 1, is executed during IEPX +. During the instruction address
phase, IAPX+, the location of the (indirect) address word is generated. This address
word is read from memory and stored in the R register as indicated in the timing
diagram. For the case illustrated, the address word accessed contains the address of the
operand (otherwise, another address cycle would be initiated to access a second address
word, and so on). The operand address is transferred to the memory L Register during
the last half of ACYX + to locate the operand read out during the succeeding OCYX +.
The generation of the address for instruction n + 1 and the execution of instruction n are
then performed as in the simple operand access instructions (section 3.1).

n-17

11

8-

MEMORY CYCLES (1.8pus)

START INSTRUCTION
CYCLE
READ INSTRUCTION

STORE INSTRUCTION
IN U REGISTER

GENERATE MEMORY ADDRESS

START ADDRESS CYCLE

READ ADDRESS

GENERATE OPERAND
ADDRESS

START OPERAND CYCLE

READ OPERAND
GENERATE INSTRUCTION

ADDRESS

EXECUTE INSTRUCTION
CLIX+

CL2X+

1ICY X+

ACY X+

OCYX+

IEPX+

1APX+

TIME (s)

VTil-1185

[READ 1 RESTORE | READ | RESTORE | READ 1 RESTORE | READ 1 RESTORE |
1l
N A
- ——
N Nk
I n I I) n I
) n
AN JaN
[~ 1]
AI'\
I n I
N L r‘+] d
n-1 I n |

-

—~{ J—56 Ns (rypicaLy) [] [L

~[|56 Ns (ryPicaLy) [11 [

l |

0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2

Figure 111-14. Indirect Operand Access Sequence

NOILVHY3IdO ¥3LNdINOD

Il 431dVHI

saulyoeuw ejep uenieA @———-

varian data machines @—

CHAPTER 1lI
COMPUTER OPERATION

SECTION 4
COMPUTER FAILURE

When a computer fails to produce a result (stops before completing the routine), or when
the result produced is obviously incorrect; it is because of an error, a mistake, or a
malfunction. ~

a. An error is a fault that can be attributed to the numerical analysis or the
method chosen for solution of the problem: The computer is operating correctly
and the routine is exactly what the programmer wants it to be, but the results
are incorrect because the wrong methods or techniques of problem solving were
chosen.

b. A mistake is an inadvertent fault in the routine. The computer is doing exactly
what it is being instructed to do, but the routine is not what the programmer
thinks it is. A mistake can be made in writing the mnemonic routine, in coding
the routine, in loading the routine into the computer, or all three. This entire
process can be a lengthy one, and the opportunities for making mistakes are
abundant.

c. A malfunction is a fault in the computer itself; i.e., some electrical or mechanical
fault in the computer causes it to stop or to produce incorrect resuits.

According to these definitions, a computer cannot make mistakes and a programmer
cannot malfunction.

4.1 ERRORS

Errors probably account for the least amount of computer failures. This is because a
programmer will not usually attempt to write a routine until he is convinced that he knows
how to solve the problem. Also, the algorithms and other tools provided by the numerical
analyst have been proven in use many times over and have been refined to mathematical
perfection. Therefore, one should not look for errors until the possibility of a mistake or
malfunction has been eliminated.

I -19

———[@ varian data machines

CHAPTER 1l
COMPUTER OPERATION

4.2 MISTAKES

Mistakes account for the largest amount of computer failures. Many routines work
incorrectly the first time they are put into the computer. The computer may stop when it
encounters an instruction that is not in its repertoire; or, if it does succeed in completing
the program, the result may be so large or so small that it is clearly unreasonable.

The process of locating and correcting the mistakes in a routine is known as debugging. it
is a good idea to first ensure that the routine stored in the computer is the same as the
one written down on paper. Therefore:

a. If the routine was loaded into the computer manually through a control panel or
some other punchkey or punchbutton system, it is advisable to load the program
a second time to see if the second results are identical to the first.

b. If the routine was loaded by magnetic or punched paper tape, it might be
advisable to prepare the tape a second time. However, if the equipment for
verification is available, load the prepared tape in the verification equipment
and have a printed routine produced. Verification equipment is designed to read
a tape and produce a typed or printed copy of the information on the tape. The
printed routine and- the original manuscript of the routine can be compared to
see if any mistakes were made in transcribing the routine on the tape.

The specific actions and procedures followed in debugging a routine are determined by
the characteristics and design features of the computer being used. Some computers have
a display system which can be used to show the word stored in the accumulator (and
possibly other registers) at any given time. Other computers have a step-by-step feature
that uses the signal from a manually operated switch to cause the computer to execute
one instruction and stop. If both of these features are present, the operator can observe
the results produced by the execution of each step. This provides a very thorough, although
time consuming, debugging method.

Regardless of the specific techniques used, the object of debugging a routine is to ensure
that the routine is properly coded, that the routine and associated data words are
correctly stored in memory, and that the routine does not exceed the computer's
capability; e.g., additions do not cause a computer overflow. It is also necessary to
determine that the proper instructions have been chosen.

When the programmer and computer operator are convinced that the routine is correct,

1 -20

varian data machines @—

CHAPTER Il
COMPUTER OPERATION

that it has been accurately coded, and properly loaded into memory, and that the results
. (if obtained) are still wrong, it is time to check for a malfunction.

4.3 MALFUNCTIONS

In the case of a malfunction, corrective maintenance of the computer is indicated. The
first step in most corrective maintenance procedures is the location and isolation of the
fault. This is accomplished in digital computers through use of diagnostic or check
routines.

4.3.1 Diagnostic Routines for Corrective Maintenance

Diagnostics are routines of proven quality and correctness that have been prepared for the
specific purpose of determining the operating condition of one or more computer units or
sections. A library of diagnostic routines is an essential part of the maintenance
equipment for a computer.

The diagnostics for a given computer differ as to length and specific purpose. One routine
can be designed to check the control section, another for the arithmetic unit, etc.; and
several routines may be required to obtain an indication of the malfunction and its
location. For example, a specific diagnostic can determine that a malfunction exists in a
certain register, and other diagnostics can then be used to localize the trouble to a
particular flip-flop in that register. When the maximum amount of information has been
obtained by use of the diagnostic routines, the malfunction can be further isolated
through use of the available electronic test equipment.

4.3.2 Diagnostic Routines for Preventive Maintenance

As well as being important to corrective maintenance, diagnostic routines are valuable for
use in preventive maintenance. A well-designed diagnostic (check) routine used with
reasonable frequency provides an excellent method of GO/NO-GO checking of the
computer.

In addition to the use of check routines, a method known as marginal checking is
frequently a part of the preventive maintenance procedures. The object of marginal
checking is to determine and measure the amount of variation in the operating voltages
(and perhaps frequencies) from their normal levels and values. These variations occur
before a malfunction is caused; the operating conditions of the circuits to be checked are
deteriorated in a controlled manner until a malfunction occurs.

Hi-21

——@ varian data machines

CHAPTER 1l
COMPUTER OPERATION

Marginal checking operates in the following manner:

a. The value of the parameters being varied is read and recorded. This is done in a
systematic and automatic manner, and a day-by-day record is kept of the values
at which failure occurs.

b. These daily values can be compared with previously determined values of the
maximum margins or tolerances allowed to determine when a component has
deteriorated to the point that it should be replaced.

Marginal checking is most effective in" detecting gradually deteriorating components
before the deterioration has become severe enough to cause a malfunction. It will not
necessarily prevent abrupt failures, such as shorted elements or wiring, but it can be used
as a means of diagnosis and fault location once a malfunction has occurred.

" -22

CHAPTER IV
620 COMPUTER SYSTEMS

varian data machines @—7

_@ varian data machines

varian data machines [@_

CHAPTER IV
620 COMPUTER SYSTEMS

SECTION 1
620/i AND 620/L SYSTEMS

1.1 INTRODUCTION

The 620/i and 620/L computers are system-oriented, high-speed parallel binary
computers. Modular design and extensive use of integrated circuits permit a compact
package, occupying only 10.5 inches of rack space. With flexibility built-in, the 620/i and
620/L computers are ideally suited for use as general-purpose computers or as on-line
system devices.

The 620/i and 620/L. computers feature:

1.8-microsecond memory cycle

16- or 18-bit words

Nine hardware registers

Six addressing modes

Over 100 basic instructions

Memory sizes of 4,096 words minimum, 32,768 words maximum
The 620/i and 620/L systems are designed to be user-oriented. Input/output flexibility
allows a wide selection of option facilities including: Direct Memory Access, Real-Time
Clock, Power Failure/Restart, and Buffer Interlace Controller. These features combined

with priority interrupts, external sense lines and external control lines enable the systems
to meet every possible |/0 requirement. Specifications for the 620/i and 620/L computers

are listed in table IV-1.

V-1

_@] varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Description

Memory

Arithmetic
Word Length

Speed
(Fetch and execute)

Operation Registers

Buffer Registers

Table 1V-1. 620/i and 620/L Specifications

System-oriented, general-purpose digital
computers, designed for on-line cata system
requirements, utilizing magnetic core memory,
binary, parallel, single-address, with bus
organization and micro-control

Magnetic core, 16 bits (18 bits optional), 1.8
microseconds full cycle, 700 nanoseconds

access time, 4,096 words minimum expandable to
32,768 words maximum

Parallel, binary, fixed-point, two’'s complement

16 bits standard, 18 bits -optional

Add or subtract 3.6 microseconds
Multiply (optional on 620/i) 18.0 microseconds,
16-bit
19.8 microseconds,
18-bit
Divide (optional) 18.0 to 25 microsec-
onds, 16-bit
Register change class 1.8 microseconds
170 - from A or B 3.6 microseconds
Memory 5.4 microseconds

A register: accumulator, input/output, 16/18
bits

B register: double-length accumulator,
input/output, index register, 16/18 bits

X register: index register, 16/18 bits

P register: program counter, 16/18 bits

R register: operand register, 16/18 bits
U register: instruction register, 16/18 bits
S register: shift register, five bits, oper-
ates with the U register for executing
shift instructions
L register: memory address register, 16 bits
W register: memory word register, 16/18 bits

V-2

Control

varian data inachines [@—

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-1. 620/i and 620/L Specifications (continued)

Addressing Modes:

Direct addressing: to 2,048 words

Relative to P register: 512 words

Index with X register: hardware, does
not add to execution time

Index with B register: hardware, does
not add to execution time

Multilevel indirect addressing

Immediate

Extended addressing (optional)

Instruction Types:
Single-word, addressing
:Double-word, addressing
Single-word, nonaddressing
Double-word, nonaddressing

Instructions:
Over 100 standard instructions as listed
below, plus more than 128 micro-
instructions

Load (three)

Store (three)

Arithmetic (five, two optional on 620/i)
Logical (three)

Jump (10)

Jump and mark (10)

Execute (10)

Immediate (14, two optional on 620/i)
Input/output (13)

Register change (26)

Logical shift (six)

Arithmetic shift (six)

Control (two)

Extended addressing (14 optional on 620/i)
Micro-instructions (over 128)

Micro-EXEC (Optional):
Facility and hardware to construct a

V-3

——[@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Table IV-1. 620/i and 620/L Specifications (continued)

hardware program external to the 620/i
eliminates stored program memory accessing
by use of hardware program

Console:
Display and data entry switches for all
operation registers, three sense switches,
instruction repeat, single step, run, and
power on/off

Input/output Processor input/output:
Programmed data transfer
Single word to/from memory
Single word to/from A and B registers
External control lines
External sense lines

Automatic data transfer '
Direct memory access facility transfer with
rates over 200,000 words per second-

Priority interrupts (optional):
Group enable/disable, individually
arm/disarm, single instruction interrupt
capability

Real-time clock (optional):
Adjustable time base: can be programmed
as multiple internal timer

Power failure/restart (optional):
Interrupts on power failure and auto-
matically restarts on power recovery

Physical Dimensions:

Mainframe: 10-1/2 inches high, 19 inches
wide, 15 inches deep

Iv-4

varian data machines [@—

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-1. 620/i and 620/L Specifications (continued)

Weight:
Mainframe: 35 pounds

Power:
3 amps 115V ac, 60 Hz (340 watts).
115 £ 10V, 60 t2 Hz. Power supplies
are regulated; additional regulation is
not required under normal commercial
power sources. Conversion for 50 Hz and
other voltages available at added cost.

Expansion:
Main processor contains provisions and
space for all internal options

Installation:
Mounts in standard 19-inch cabinet, no
air conditioning, sub-flooring, special
wiring, or site preparation required

Environments:
0 to 45 degrees C; 0 to 90 percent rela-

tive humidity
Mainframe integrated circuit, 8.8-MHz clock, logic
Logic and signals levels OV false, +5V true

Figure IV-1 presents an outline of the 620/i computer.

IV-5

___ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

1.2 SWITCHES AND INDICATORS

The 620/i and 620/L control consoles, as illustrated in figures IV-2 and V-3, provide for
operator communication with the computer. This communication is accomplished through
use of the register displays and control switches.

1.2.1 Displays

The contents of all operation registers in the computer (including the instruction register),
are displayed in binary-octal form when selected by the register display switches.
Indicators and switches permit independent control over each bit in table 1V-2. During
normal operation (run mode) the display is active; however, the register entry and reset
switches are deactivated to prevent accidental alternation of the register contents.

J
N A

- [T - o 2 a7 o —]

VT1-0933
Figure IV-1. 620/i Outline

IV-6

VHT-170

- mpepn popmEe mpape anpnEe

Figure 1V-3. 620/L Control Console

V-7

varian data machines —

CHAPTER IV
620 COMPUTER SYSTEMS

—@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

1.2.2 Controls

Control switches permit the operator to manually alter normal program operation. These
switches, also described in table 1V-2, provide considerable control flexibility for
maintenance, troubleshooting, and program debugging. The sense switch controls are also
useful in normal program operation to allow operator selection of particular program
sequences to be executed. '

Table 1V-2. Controls and Indicators
Control or indicator " Function

A Register llluminated indicators display the contents of
the A register upon selection of A from the console.
Pressing a switch enters a one into the correspond-
ing bit position; pressing RESET clears the regis-
ter. The overflow light is set or reset by exe-
cution of the set overflow (or arithmetic condition)
and reset overflow instructions, or by pressing
SYSTEM RESET.

B Register llluminated indicators display the contents of
the B register upon selection of B from the con-
sole. Pressing a switch enters a one into the
corresponding bit position. Pressing RESET clears
the entire register.

Instruction llluminated indicators display the current instruc-
Register (U) tion being held in the instruction (U) register
"~ during execution. Pressing a switch enters a one
into the corresponding bit position, and pressing
RESET clears the entire register.

Instruction Illuminated indicators display the memory location

Counter (P) of the next instruction to be executed when the
computer halts. Upon selection of P from the con-
sole, pressing a switch enters a one into the
corresponding bit position. Pressing RESET clears
the entire register.

V-8

Control or indicator

Index Register (X)

SYSTEM RESET

RUN

STEP

REPEAT

SENSE SWITCHES
1, 2, and 3

varian data machines @—

CHAPTER 1V
620 COMPUTER SYSTEMS

Table 1V-2. Controls and Indicators (continued)
Function

Illuminated indicators ‘display the contents of the
index (X) register upon selection of X from the
console. Pressing a switch enters a one into the
corresponding bit position, and Pressing RESET
clears the entire register.

Momentary-contact switch that permits manual reset
following memory temperature overload condition,
also used to initialize computer and peripheral
equipment.

Momentary-contact switch that sets computer to
normal operation mode. Indicator is off and opera-
tion is halted when the STEP switch is pressed or

a program halt instruction is executed.

Momentary-contact switch that permits operation

to be halted and the program executed one instruc-
tion at a time. Pressing this switch in the RUN
mode stops opération, turns the RUN indicator lamp
off, and turns STEP indicator lamp on. The in-
struction register display indicates the next
instruction to be executed when STEP is pressed
and the program counter indicates the location of
the next instruction to be executed after the in-
struction in the instruction register

is executed. Normal operation is started and STEP
turned off when the RUN switch is pressed.

Toggle switch that permits the manual repetition

of an instruction in the instruction register.

Pressing STEP executes the instruction and advances
the program counter; however, the contents of the
instruction register are left unchanged. The

switch on the control console is activated only

‘when the STEP switch is on (operation halted).

Toggle switches permitting manual program control

whenever the sense switch jump, jump-and-mark, or
execute instructions (JSS1, JSS2, JSS3, JSIM,

V-9

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Table IV-2. Controls and Indicators (continued)
Control or indicator Function

JS2M, JS3M, XS1, X82, and XS3) are executed only
if the corresponding SENSE switch is set on.

POWER: Alternate-action switch/indicator turns memory and
620/i logic power supplies on and off, also controls
Teletype controlier power. Switch indicator lamp
lights when memory and computer power are both on;
indicator is off when power is turned off.

620/L Key-operated power switch controls the ac input
to the 620 power supply: PWR OFF position, dis-
ables ac input to the power supply primary; in
the PWR ON position, supplies ac power to the
power. supply primary to make the system fully
operational; and, in the PWR ON DISABLE position
supplies ac power to the power supply primary
to make the computer operational; however, disables
all control console switches execpt the power
switch itself so that pressing any other switch
at this time has no effect. The control panel
and power supply indicator lights are functional
when the POWER switch-is in PWR ON or PWR ON
DISABLE. The key can be removed from the power
switch in any of the three positions. To turn
off the computer, place the power switch in the
PWR ON position, lift the STEP/RUN switch then
turn the power switch to PWR OFF.

1.3 MANUAL OPERATIONS

Control. console operation is simple and can be understood by reference to table 1V-1 and
figures 1IV-2 and IV-3. The following paragraphs describe typical operation sequences that
illustrate normal computer use.

1.3.1 Power Control

Power to the computer, the memory, and control logic for the Teletype is turned on and off
by the POWER switch: the 33 ASR Teletype has a separate power switch. Provision is
also made for controlling power to other |/0 device controllers from the control console
switch. If the memory temperature sensor detects an overload condition, the ALARM
indicator on the console illuminates; the memory should be disabled and power turned off.
Power should not be restored until the temperature is returned to normal.

IV-10

varian data machines @——

CHAPTER IV
620 COMPUTER SYSTEMS

1.3.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data can be read from memory
and entered into memory, and a prestored program manually executed. To load words into
memory (either instructions or data), set the desired word in the A, B, or X register, set up
the appropriate store instruction (STA, STB, STX) with the desired operand address in the
instruction (U) register, and press STEP to execute the store operation.

To display the contents of any memory cell in the A, B, or X register display, set the
appropriate load instruction (LDA, LDB, LDX) with the proper memory address in the
instruction register, and press STEP to load the selected word into the register.

To manually execute a program stored in memory, set the starting location of the program
in the program counter. When STEP is pressed, the instruction contained in the
instruction register is executed, and the instruction of the selected loaction is transferred
to the instruction register for execution when the switch is again pressed. Repeated
operation of STEP will then step through the program one instruction at a time. All
operations such as multilevel indirect addressing will be performed for each instruction
each time STEP is pressed. Note that 1/0 instructions involving an asynchronous device
that transfers data in a block (such as a magnetic tape unit or the Teletype) generally
cannot be operated in a single-step mode.

Note

To select a register from the console, place the desired register
switch in the UP position on the 620/i and in the DOWN position on
the 620/L. Select only one register at a time.

1.3.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed
when STEP is pressed, and the program counter contains the location of the next
instruction to be transferred to the instruction register after the current instruction is
executed. In some cases, it is desirable to manually execute an instruction several times.
When REPEAT is on, instruction register loading is inhibited even through the instruction
counter is advanced each time STEP is pressed. This mode is particularly useful for
loading words into sequential memory locations, and for displaying the contents of
sequential memory cells.

IvV-11

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

To load a group of sequential memory cells, set the appropriate store instruction (STA,
STB, STX) in the instruction register with the relative address mode in the M field, the A
field set to 0, and the base address in the program counter. Repeated operation of STEP
will store the contents of A, B, or X into sequential memory locations. The word loaded on
each step can be changed by entering the desired value into the operation register for
each step.

To display the contents of a group of sequential memory cells, set the appropriate load
instruction (LDA, LDB, LDX) in the instruction register, in the relative address mode, with
the base address in the program counter, and the A field set to 0. The contents of the
sequential location will be displayed in the selected operation register each time STEP is
pressed.

1.3.4 SENSE Switches

The SENSE switches allow the operator to dynamically alter a program sequence in either
run or step mode. The three SENSE switches provide a logical-AND function with bits 6
through 8 of the instruction word and, consequently, can be used for various logical
branches as set up on the console.

1.4 ORGANIZATION

A block diagram of the 620/i computer is shown in figure 1V-4. The computer is composed
of four major sections: memory, control, arithmetic/logic, and input/output.

1.4.1 Memory

The basic memory module contains a minimum of 4,096 words; total memory capacity can
be expanded in 4,096-word increments to a maximum of 32,768 words. As illustrated in
figure 1V-4, each memory module is connected with the same location (L) and word (W)
register. The L register contains the location of the word to be accessed in memory during
either a clear/write or read/restore cycle. The W register receives words read from
memory during a read/restore cycle and receives words from the central bus (C bus)
during a clear/write cycle. The W register is 16 or 18 bits long. Outputs from W register
are gated onto the W bus through line drivers by appropriate timing signals.

IvV-12

ET-AI

oy 4 oy 3
] J
y U [conmor [0 VO ConnECTOR
REGISTER REGISTER | |A/
. LOGK 1
SLR 1 Usuu swl [CONTROL BUS
- T
R £-BUS
G-BUS T
| I
L_J
FIRST
my
UNIT
AN
U {}*SLGB
CONTROL & FIRST)
£-BUS vo Vo
ARITHMETIC ADDER Y
i CONTROLLER INTERFACE DEVICE DEVICE
SLAB ﬁ
\
c-8Us c-8us
SET L SETW ¢ SET A SET B, SET X SET P,
| ! v vV T Ay v v v Vv
! DATA ! L w A B X P
| DISPLAY | REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER
| |
| | SLA sL8 sLx sLp
| | f
| DATA)
| SWITCHES | $-BUS
{ |
| SN | PR |
W-BUS (MEMORY DATA) i
M1y MSC 2
MEMORY MEMORY
FIRST SECOND
4K 4K
L-BUS (MEMORY ADDRESS) ﬁ

VTI1-1285
Figure 1V-4. 620/i Organization

SINILSAS ¥3ILNdWWOD 029
soulyoelw ejep ueLeA

Al 43LdVHD

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

1.4.2 Control

The control section provides the timing and control signals required to perform all
operations in the computer. The major elements are the instruction register and the
timing and decoding logic.

a. The instruction (U) register is 16 or 18 bits long. This register receives each
instruction from memory and holds the instruction during its execution. The
control fields of the instruction word are routed to the decoding and timing logic
where the codes determine the required timing and control signals. The address
field, used for various addressing operations, is also routed to the arithmetic/
logic section.

b. The decoding logic decodes the fields of the instruction word held in the
instruction register to determine the control signal levels required to perform the
operations specified by the instruction. These levels select the timing signals
generated by the timing logic.

¢. The timing logic generates the basic 2.2-Mc system clock. From this clock, the
timing logic develops the timing pulses which control the sequence of all
operations in the computer.

1.4.3 Arithmetic/Logic

The arithmetic/logic section is the part of the computer that performs numeric and logical
calculations. (Refer to figure IV-4 for the important components of this section.) The
arithmetic unit is functionally composed of several subsections, a humber (R) register,
adder, and control and arithmetic logic. The R register receives the operands read from
memory and holds these words during the execution of an arithmetic or logical instruction.
The R register gates allow selection of the R register contents, the R register complement,
or the instruction register for an operation. This selection depends on whether an operand
stored in the R register or the A field of the instruction word stored in the instruction
register is to be used. The adder generates the arithmetic sum and carry. The logic gates
allow shifting of the bits, the forming of a logical product and logical masking; these gates
are used to implement the shifts required for multiplication and division.

vV-14

varian data machines @———

CHAPTER 1V
620 COMPUTER SYSTEMS

1.4.4 Input/Output

The 620/i 1/0 section facilitates integration of the computer into an overall system. The
I/0 section of the computer communicates with the operation registers and the memory
through the internal C bus (refer to figure 1V-4). Data and control signals are transmitted
to and from external peripheral devices through the 1/0 bus. Standard or. special
peripheral devices are in parallel on the 1/0 bus, and any number of logical devices up to
a total of 64 can be added. Such devices could include teleypewriters, high-speed printers,
analog/digital converters, disc memory, common carrier interface, magnetic tape
transports, and plotters.

1.4.5 Bus Structure

There are four buses in the 620/i and 620/L computer systems:

a. The W bus provides the parallel path and selection logic for routing data and
instructions between memory, the 1/0 unit, the control unit, and the arithmetic
unit; it also provides a direct path to memory for the IN MEMORY and QUT
MEMORY [/0 instruction; and, with the interlace option, allows |/0 operations
to occur simultaneously with extended arithmetic and shift commands.

b. The C bus provides the parallel path and selection logic for routing data between

the arithmetic unit, the 1/0 unit, the memory bus, and the operation registers.

. This bus permits data to be uniquely or commonly transferred to the operation

registers, and performs the distribution function for microprogramming. The C

bus also provides a bidirectional parallel word path to the party-line bus and the

W bus. The C bus is the central communication avenue ahd connects with all
internal elements of the 620/i or 620/L computers.

c. The S bus provides the parallel path and selection logic for routing data between
the operation registers and the arithmetic unit.

d. The party-line bus provides a 16-bit parallel bidirectional 1/0 communication
path. This bus includes the control lines for transfer ready, sense, control,
interrupt address, and acknowledge and information drop-ins. The party-line
bus is packaged as one cable. Each peripheral device has a party-line connector
and a party-line extender connector; the device and the party-line form a link
whereby additional subsystems can be added at the site on a plug-in basis.

IV-15

——@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

1.5 TIMING

The 620/i and 620/L systems operate on a basic 1.8-microsecond machine cycle; that is, a
full memory cycle (read/restore or clear/write) is performed in each 1.8-microsecond time
interval (except for some special cases in which this period is extended as discussed in
subsequent paragraphs). All operations performed by the computer are accomplished
within some multiple of this basic timing period. ' \

To execute the various operations, several suboperations are performed during the
memory cycle time. Timing of these suboperations is controlled by the internal 2.2-MHz
master clock. The period of this master clock is 0.45 microseconds, or one-fourth of the
basic 1.8-microsecond machine cycle; this permits multiple suboperations to be executed
during the memory cycle period. Note that the first half-cycle (0.9 microseconds) of the
memory period is used to access a word (read) or to clear a cell (clear); the second half-
cycle is used to restore a word (restore) or to write a new word (write) into the cell.

1.5.1 Clocks

The clocks which control the timing of all operations in the computer are generated by the
timing and control logic. These clocks are illustrated in figure IV-5 and listed in table |V-3.

IV-16

varian data machines [@_

CHAPTER 1V

620 COMPUTER SYSTEMS

s300]9 Suiuny diseg "G-A| 24n3ig

=k SPUODISOIDIW 4 * ()2

———————— SPUOIISOLIW Q* | ———— I

U u

| I I S

LT 1] L1 L1

=
=

g u u u u u u u

|Giaw 3301538] @vad) avay |

rPIcO-111A1

+XZ10

+X171D

-XHd3

+XHd3

310

+XOHd

+XTOW

V-17

_@ varian data machines

CHAPTER IV

620 COMPUTER SYSTEMS

Clock

Master Clock
(MCLX +)

Phase Clock
(PHCX +)

Address Phase
(EPHX-)

Execute Phase
(EPHX +)

Clock 1

Clock 2
(CL2X +)

Table 1V-3. Basic Timing Clocks

Description

Crystal-controlled timing signal for entire system
2.2-MHz

1.1-MHz timing signal (counted down and synchronous
with MCLX +); used to time the basic execute and ad-
dress phases of the computer

Basic timing phase, synchronous with restore or
write half cycles of memory; all transfers of in-
struction and operand addresses to memory are per-
formed during this period

Basic timing phase, synchronous with read or clear
half cycles of memory; all operations on words
(transfers of data to and from memory and execution
of instructions) are performed during this period

Basic timing pulse used to initiate memory cycle
and all operations synchronous with start of
memory cycle

Basic timing clock used to initiate all operations
synchronized with start of memory write or restore
half-cycle

1.5.2 Clock Modifiers
All functions performed by the 620/i and 620/L occur in two basic phases:

a. The transfer of addresses to the memory L register (address phase)

b. Operation upon words read from memory, or the storing of words into memory

(execute phase).

These basic address and execution phases can be modified by certain program
instructions or by signals received from devices external to the computer. The conditions
under which the periods of the basic clocks are modified are:

IV-18

varian data machines @-——

CHAPTER IV
620 COMPUTER SYSTEMS

Shift During shifting operations with words contained in the
A and B Registers, the execution phase (EPHX +) is ex-
tended by the number of master clock periods (0.45
microseconds) equal to the specified number of shifts

Interrupt When an external interrupt is received, the address
phase (EPHX-) is extended 0.9 microseconds to accommo-
date delays in receiving the interrupt address from
the external device

Trap When a buffer interlace controller requests a transfer
to or from memory, EPHX- is extended 3.15 microseconds
to permit the execution of the full trap sequence
(routing of address and data from the external device)

Halt On a halt instruction, clocks CL1X+ and CL2X + are
inhibited; this prevents any further operations until
the STEP or RUN switch is pressed.

Modification of the execute phase of an instruction is illustrated in figure IV-6. This
modified sequence is typical of a shift instruction. At time 0, the instruction has been
fetched from memory. Starting at time 0.9, the instruction ‘is executed; however, the
normal 0.45-microsecond execute phase is extended 0.45 microseconds for each shift (six,
in this illustration). Note that clocks 1 and 2 (CL1X+ and CL2X +) are inhibited during
the extended execution period. In a similar manner, the address phase is extended when
required by the conditions defined above.

1.5.3 Sequence Control

The basic clocks generated from the master clock are used to time three operating
sequences: instruction cycle, operand cycle, and address cycle. All operations performed
by the computer are timed by one or more of these timing sequences.

1V-19

02-Al

RESTORE | READ ikssroms READ 'z

I
RITE) | (CLEAR) | (WRITE | (CLEAR) EXTENDED lL(WRITE) (CLEAR) | WRITE) | (CLEAR) |

MEMORY?:ESTORE READ : RESTORE { READ
Wi 1

CYCLE

LCCE S N | 1 N 8

e LI LI L LI rriri

CLIX+ N | N I
L—SHIFT OPERATION—-:

cLax+ 11 | | Il N o
| I

}G—EXTENDED EXECUTE PHASE—m=]

0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1

VIii-1193

Figure IV-6. Example of a Modified Clock Sequence

SIWILSAS d3LNdWOID 029

Al 431dVHD

saulyoew ejep uelea @——-

1¢-Al

- SETR SET Uy oM112 BIDIRECTIONAL
D108 D108
R u —— rinda =1, VO CONNECTOR
REGISTER REGISTER [
LOGIC b R
SLR | {}SLR | sLu j r [CONTROL BUS L vo
= b
1 | E BUS CABLE
G BUS oAt — 3
TIMING [
L2
D12
FIRST
o DEVICE DEVICE
uNIT CONTROLLER | | CONTROLLER
o
DMI08
{} 4 {Fysiet DMI13 DMI21 @ @
CONTROL & DMm108 FIRST E BUS :
ARITHMETIC ADDER Y INTERFACE DEVICE DEVICE
LOGIC CONTROLLER
DMI112 SLAB ﬁ ﬁ
\V4 @
ABUS T AE0S T AB0S
cBus X CBUS cBus
INVERSION TPOX
BETWEEN
A BUS AND C BUS
SETL SETW \} SET A SET B SET X SETP
|] v ¥ v v v LAY,
| " DMI09 DMIGE DM108 BA108 DR 108 G108
DATA L W A B P DATA-OUT
t DISPLAY I REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER GATING
t |
1 | N SLA S8 sLX sLp i \ DM12]
| !
| DATA |
| SWITCHES 1 S BUS
| |
| R | PR |
W BUS (MEMORY DATA) ;
ssLl sl g ﬁ
DM286 :
- DM288 0 STACK
STACK
L BUS (MEMORY ADDRESS) N
VTI3-0268

Figure 1V-7. Data 620/L Organization

SINFLSAS ¥3LNdINOD 0¢9

Al 431dVYHD

souyoew ejep uelea

varian data machines
—&

CHAPTER IV
620 COMPUTER SYSTEMS

1.6 INFORMATION TRANSFER

All data communication between the basic functional elements of the machine is through
the three data buses C, S, and W. The C and S buses are internal to the computer. The W
bus is external and bidirectional; that is, a single set of lines is used to carry information
both to and from the memory. The following paragraphs outline the major data transfer
paths in the computer (refer to figure IV-7).

1.6.1 P Register to Memory

As an instruction cycle begins, the location of the next instruction is transferred from the
P register to the L register. The contents of P are transferred through the S bus to the
adder. The adder increments the location address with the arithmetic gates, and restores
the incremented count to the P and L registers. The memory address register, L, now

contains the address of the next instruction word to be fetched from memory, and the P
register holds the updated address.

1.6.2 Memory to U Register

During the instruction cycle, the instruction word located by the address in the L register
is read out on the W bus and read into the W register (memory data register). It's then
transferred out to the U register.

1.6.3 U Register to Memory

For many instructions requiring an operand, the address of the operand is contained in
the instruction word held in the U register. This operand address is transferred to the L
register through gates in the arithmetic logic and the C bus. The address from U can be
modified during the transfer to L as follows:

a. Direct Address. No modification; bits 0 through 10 transferred from U to L
directly address the operand in the first 2,098 memory locations.

b. Relative Address. The effective operand address transferred to L is formed by
adding bits 0 through 8 from U to the contents of P. Addition is performed by
selecting the contents of P and U and bringing them into the adder. This
permits addressing any word up to 512 locations ahead of the current program
location.

Iv-22

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

c. Index Address. The effective operand address transferred to L is formed by
adding bits 0 through 8 from U to either the contents of X or B.

d. Indirect Address. Same transfer as direct address, but the word read from
memory will be the address of an operand rather than the operand itself.

1.6.4 Memory to R Register

Operands read from memory into the W register are transferred to the R register. The
operands are stored in R while an arithmetic or logical operation is being performed.

For indirect addressing, and for instructions whose operand address is stored in the
memory location following the instruction word, the operand address will be read from
memory into the W register and then transferred to the R register. The address is then
routed to the L register through the C bus.

1.6.6 Operation Registers to Memory

The contents of any one of the operation registers are transferred to memory by selecting
the register onto the S bus and routing the word through the adder C bus, and W register.
The contents of the P register can be transferred to the L register to address an
instruction as previously explained. The conterits of the P register and other registers can
be stored in memory by the same path, except that the word is entered into the W
register. Note that an address cycle must precede this transfer to place the storage
address in the L register.

1.6.7 Memory to Operation Registers

The contents of a memory location can be transferred to any of the operation registers
through the W, G, and C buses. Note that an address transfer must precede the data
transfer to place the memory address in the L register.

1.6.8 Input to Memory

Input data from the E bus can be routed directly to memory through the C and W buses.
Data transfer must be preceded by an address transfer to load the memory location into
the L register. When the transfer is under control of an instruction, the memory address
will be generated as a normal operand address.

IvV-23

_-@ varian data machines

CHAPTER 1V
620 COMPUTER SYSTEMS

1.6.9 Output from Memory

Output words can be transferred directly from memory to the 170 cable through the W, G,
and C buses. A storage address must first be transferred to the L register by an
instruction.

1.6.10 Input to Operation Registers

Input words can be transferred directly to the A or B register through the E and C buses.
These transfers are always controlled by an instruction, with the instruction designating
the operation register to receive the word.

1.6.11 Output from Operation Registers

Words can be transferred directly from the A or B registers to the 1/0 cable through the
S, C and E buses. These transfers are controlled by an instruction which connects the
selected register on the S bus.

1.6.12 Operation Register to Operation Register

The contents of an operation register can replace or modify the contents of the register
itself or another register. The process of incrementing and restoring the contents of the P
register has been previously described. The contents of the A, B, and X registers can be
transferred, incremented, complemented, decremented, or shifted. All these operations
involve selecting the register onto the S bus, processing in the adder, and transferring
back through the C bus. Note that shifting is performed in this transfer path. The
contents of the selected register are shifted left or right as they are gated from the

_ arithmetic logic gates to the C bus. This transfer path is involved in all register change
instructions.

1.7 DECODING

The operation code and M fields of the instruction words (refer to Chapter lil, section
1.2.1) stored in the U register are decoded to provide static control levels used throughout
the execution of the instruction. In the following discussion, reference will be made to the
following logic diagrams contained in the 620/i maintenance manual Volume 2.

Op. Code Decoding DM110, sheet 2
Address/Function Decoding DM110, sheet 1

Note that the gating terms shown in these diagrams correspond to the U register bit
positions. These bit positions correspond to the instruction fields discussed in chapter Il
and summarized in table 1V-4.

IV-24

varian data machines @—-ﬁ

CHAPTER 1V
620 COMPUTER SYSTEMS

for double-word instructions where the second word is an address (e.g., jump) by placing
a one in the | bit of the second word.

1.7.1 Operation Code Decoding

The instructions operation code contained in bits 12 through 15 of the instruction word is
decoded in three functional categories: class, set, and group. These three categories,
which encompass all types of instruction performed by the computer, have been chosen to
minimize the gating required to implement the program operations by generating terms
common to many instructions. The complete operation code decoding structure is shown
in drawing DM110 in the maintenance manual. The three categories of decoding are
summarized in tables IV-5, IV-6, and IV-7.

a. Class decoding separates instructions into three classes: single-word
addressing, single-word nonaddressing or double-word and 1/0.

b. Set decoding simplifies gating requirements for the execution of the single-word
addressing instructions. Sets HIXX + through H4XX + define subcategories of
the single-word addressing instructions. Timing functions are used to select the
appropriate phase for executing the instruction.

¢. Group decoding is an arbitrary structure. One of the group terms is true for all
single-word addressing instructions. These terms are used in various gating
structures to implement the separate operations.

1.7.2 M Field Decoding

The M field of the instruction word (bits 9 through 11) is decoded to specify the following
according to the instruction class defined in the operation code:

Class K1 Addressing Mode
Class K2 Instruction Type
Class K3 Instruction Type

Note that for class K1 instructions, the instruction type (load, store, arithmetic, or logic)
is specified by the operation code; and for class K2, the instruction type is specified by
the M field. Class K3 contains all 1/0 type instructions, and the M field specifies a
subtype. M field decoding as a function of the class is summarized in table IV-8.

in class K1 instructions, the indirect addressing mode is specified by 07 in the M field
(AC7X +); the indirect addressing level is extended by placing a one in the | bit of the

indirect address words read from memory . Indirect addressing may also be accomplished

IV-25

—@ varian data machines

CHAPTER 1V
620 COMPUTER SYSTEMS

U Register
Output

U15X
u14x
U13X
ul1z2x

++ + +

Ul1Xx
u1ox
uo9Xx

++ +

uo8x
uo7Xx
Uo6X
Uo5Xx
uo4x
uo3X
uoz2x
Uo1X
uoox

+++++++++

Table 1V-4. Instruction Storage in U Register

Instruction

Bit No.

15
14
13
12

11
10
9

O =N WhOO NN

Field

Operation Code

M Field

A Field

IV-26

Code

01-07,
11-17

00

10

Code
(octal)

00-03

04-07

11-15

16-17

Class

Desig.

K1

K2

K3

Set

Desig.

H1

H2

H3

H4

varian data machines [@-—

CHAPTER IV
620 COMPUTER SYSTEMS

Table IV-5. Operation Code Classes

Gating
Terms Description Instruction Types
K1XX + All single- Load, Store, Arith-
KIXX + word address- metic Logical
ing instruc-
tions
K2XX + Single-word Jump, Jump and Mark,
nonaddress- Execute,
ing and immediate
double-word. Register change,
Logic, Shift, Arith-
metic shift, control
extended
K3XX + All 170 in- Input/Output
structions
Table 1V-6. Operation Code Sets
Gating
Terms Description
HIXX + Instruction cycle execute |
phase of all load instructions.
H2XX + Operand cycle execute phase on
all store instructions
H3XX .+ Instruction cycle execute phase
of all arithmetic and logic
HAXX- instructions. (Except INR)

v-27

Class
Desig.

K1

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Code
(octal)

01, 05,
11, 15

02, 06,
12, 16

03, 07,
13, 17

04, 14

M Field
(Octal)

0-3

Table IV-7. Operation Code Groups

Group
Desig.

Gl

G2

G3

G4

Gating
Terms

GIXX +

G2XX +

G3XX +

G4XX +

Table IV-8. M Field Decoding

Gating
Terms

ACOX +
to
AC3X +

ACAX +

AC5X +

AC6X +

AC7X +

Addr. Mode,
Type, or
Subtype

Direct address

Relative ad-
dress

Index, index/
indirect (X
register)

Index, index/
indirect (B
register)

Indirect
address

Iv-28

Description

efer to
chapter I,
section 1.2.1

Class
Desig.

K2

K3

varian data machines @—-—

CHAPTER 1V
620 COMPUTER SYSTEMS

Table IV-8. M Field Decoding (continued)

Addr. Mode,
M Field Gating Type, or
(Octal) Terms Subtype Description
0 ACOX + Control HLT only
1 AC1X + Jump All
2 AC2X + Jump and All
mark
3 AC3X + Execute All
a AC4AX + Shift Arithmetic and logic
5 AC5SX + Register All
change
6 AC6X + immediate All
7 AC7X + Miscellaneous Set/reset OF
0 ACOX + External EXC
control
1 AC1X + Sense SEN
2 AC2X + Data input Operation
registers and
memory
3 AC3X + Data output ‘Operation
registers and
memory
4 AC4AX + Extended
external
control

1V-29

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

SECTION 2
620/f, 620/f-100 SYSTEMS

2.1 INTRODUCTION

The Varian 620/f computer is a high-speed, general-purpose, digital computer for scientific
and industrial applications, its features include:

Fast Operation 750-nanosecond memory cycle

Large Instruction Set 142 plus 8 optional instructions

Word Length 16 bits

Modular Core Memory Expandable to 32,768 words in 4,096- or 8,192-
word increments

Automatic Data Direct memory access (DMA) facility provides

Transfer automatic data transfers with rates to 275,000

words per second; priority memory access (PMA)
for transfer rates to 1.3 million words per

second

Multiple Addressing Direct, indirect, relative, preindexed and
postindexed, immediate, extended, and indirect
indexed

Flexible 1/0 64 devices can be placed on the partyline 1/0

bus. The I/0 system can easily be expanded to
include features such as automatic block trans-
fer, multilevel priority interrupt, and cycle-
stealing data transfers

Extensive Software DAS 4A, DAS 8A, and DAS MR (macro) assemblers;

IV-30

varian data machines [@_

CHAPTER 1V
620 COMPUTER SYSTEMS

binary load/dump (BLD II); debugging (AID H);
computer diagnostics (MAINTAIN 1l); mathematical
subroutines; real-time monitor (RTM); source

program editor (EDIT); master operating system
(MOS) for fixed- and moving-head discs, drum,

and magnetic tape; ANSI FORTRAN |V; conversational
BASIC; report generator (RPG IV, a business-

oriented language); and an extensive library of
programs in the VOICE users’ group

Table IV-9 lists the 620/f specifications.
Table 1V-9. 620/f Specifications
Parameter Description

Type General-purpose, parallel-operation
digital computer

Memory (Read/Write) A 3-wire/3D magnetic core memory
with a 16-bit word length, 750-
nanosecond full cycle time, 400-
nanosecond access time, 4,096-word
basic and expandable to 32,768
words in 4,096 increments, asynchronous
with CPU operation

Word Length 16 bits

Machine Cycle 750 nanoseconds

Speed

Operation A register: 16-bit accumulator
Registers and shift register

IV-31

—-@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-9. 620/f Specifications (continued)

Parameter

Auxiliary
Registers

Arithmetic

Arithmetic Operation
Times

Logic Levels

Description

B register: 16-bit accumulator
and shift register
(least significant
half of double-
length accumulator)
or index register

X register: 16-bit index register

P register: 15-bit programn counter
and index register for
relative addressing

| register: 16-bit instruction
register

L register: 15-bit memory address
register

R register: 16-bit arithmetic
buffer register

D register: 16-bit input/output
register

Binary, two’'s complement notation

Add or Subtract 1.5 microseconds

Multiply (optional) 6.4 microseconds

Divide (optional) 6.4 microseconds

Register Change 750 nanoseconds

Input/Output From A or B reg-
ister, 1.5 micro-
seconds

From memory,
2.25 microseconds

Positive Logic:

(Internal)
True = +2.4V minimum, -+5V maximum
False = -0.5V minimum, + 0.5V maximum

Negative Logic:

(170 Bus)
True = -0.5V minimum, + 0.4V maximum
False = +2.8V minimum, + 3.6V maximum

IV-32

Parameter

Addressing Modes:

Instructions

Instruction Types

Input/Output

/0 Program Control
Instructions

Computer Options

varian data machines @———

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-9. 620/f Specifications (continued)

Description

Direct: to 2,048 words

Relative to P register: to 512 words

Pre- and postindexed with X register hardware:
to 32,768 words (does not add to execution
time)

Pre- and postindexed with B register hardware:
" to 32,768 words (does not add to execution
time)

Multilevel indirect: to 32,768 words

Immediate

Indirect indexed: to 32,768 words

Extended: to 32,768 words

142 plus 8 optional instructions

One-word addressing
One-word nonaddressing
Two-word addressing
Two-word nonaddressing

Asynchronous

Data transfer in:

One-word nonaddressing

Two-word addressing
Data transfer out

One-word nonaddressing

Two-word addressing
External control

One-word nonaddressing
Program sense

Two-word addressing

Memory protection (MP)

Teletype Controller (TTY)

Buffer interlace controller (BIC)
Power failure/restart (PF/R)
Real-time clock (RTC)

Automatic bootstrap loader (ABL)

1V-33

_@ varian data'machines

CHAPTER IV
620 COMPUTER SYSTEMS

Parameter

Software

Table 1V-9. 620/f Specifications (continued)

Description

Priority interrupt module (PIM)
Priority Memory Access (PMA)
Optional instruction set:

Hardware multiply/divide (M/D)

Bit test (BT)

Skip if register equal (SRE)

SYMBOLIC ASSEMBLER:

Modular two-pass symbolic assembler
operating in the basic 4,096-word
memory. Includes 17 basic pseudo-
operations. The 8,192-word. memory
version includes over 30 pseudo-
operations

FORTRAN:

Modular one-pass compiler; subset
of ANS! FORTRAN for 8,192-word
memory

AlD:

Program analysis package that assists
programmers in operating the machine
and debugging other programs. In-
cludes basic operational executive
subroutines

DIAGNOSTICS:

Software package that provides fast
off-line verification of CPU and
peripheral operation and assists in
isolating and correcting suspected
faults

SUBROUTINES: :
Complete library of basic mathemati-
cal, fixed- and floating-point,

single- and double-precision, number
conversion and peripheral communi-

1V-34

Parameter

Dimensions

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-9. 620/f Specifications (continued)

Description

cation subroutines plus provisions
for adding application-oriented
routines

MOS:

The master operating system (MOS)
provides for automatic batch processing
that includes a minimum 8K core
memory

BASIC:

BASIC is an easy-to-use programming
language for business and scientific
applications, permitting an inexperienced
operator to program the system with
only a few hours training

RPG IV (optional):

The report program generator

(RPG V) system, a hardware/software
package, produces reports, financial
statements, sale records, and other
commercial documents in tabular form

The mainframe and expansion chassis’

I, I, and Il are 10.5 inches (26.6 cm)

high, 19 inches (48.1 cm) wide, and

21 inches (53.1 cm) deep (expansion

chassis Il is 15 inches (37.9 cm) deep).

The mainframe power supply is approxi-
mately 5.25 inches (13.3 c¢cm) high,

19 inches (48.1 ¢cm) wide, and 21 inches

(53.1 cm) deep. The expansion power supply is
approximately 5.25 inches (13.3 cm) high, 19
inches (48.1 cm) wide, and 18 inches (45.7 cm)
deep. The 620/f-100 mainframe power supply
is located in the mainframe chassis with the
CPU tray.

IV-35

-—-@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Parameter

Weight

Input Voltage
Input Current

Temperature
Operating
Storage

Mainframe Power
Supply Outputs

Expansion Power
Supply Outputs

Humidity
Operating
Storage

Table 1V-9. 620/f Specifications (continued)

Description

The mainframe and expansion chassis

each weigh approximately 65 pounds

(29.3 kg). The mainframe power supply

weighs approximately 80 pounds (36.2 kg). The
expansion power supply weighs approximately 60
pounds (28.6 kg).

105 to 125V ac or 210 to 250V ac

at 50 or 60 Hz (For compatibility with the tele-
type, frequency must be either 50 or 60 (+1/2,
-0) Hz)

The mainframe power supply requires
approximately 15 amperes ac; each
expansion frame power supply requires
approximately 4 amperes ac

0 to 50 degrees C
-20 to 70 degrees C

+ 3V at 5 amperes

+ 5V at 50 amperes

-5V at 2 amperes

+ 12V at 4 amperes

-20V programmed at 6 amperes

+40V at 2 amperes

(The -20V output is controlled by a sensistor
in the memory stack to regulate the current in
memory-inhibiting lines.)

+5V at 20 amperes
-5V at 4 amperes
+ 12V at 4 amperes
-12V at 4 amperes

To 90 percent without condensation
To 95 percent without condensation

IV-36

varian data machines [@—

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-9. 620/f Specifications (continued)

Parameter Description

Vibration 3 to 10 Hz at 1g force or 0.25 double
amplitude, whichever is less. Ex-
ponentially raised frequency from
3 to 10 Hz and back to 3 Hz over a
10-minute period, three complete
cycles. This specification applies
for all three principal axes

Shock 4g for 5 to 11 milliseconds, essentially
) sine shock waveform (all three princi-
pal axes; both directions in each axis)

2.2 SWITCHES AND INDICATORS

Figure IV-8 shows the switches and indicators on the control panel of the 620/f computer.
Their uses are discussed individually in the following subsections. Used with a
teletypewriter and peripheral devices, the control panel contains all controls necessary to
operate the 620/f computer.

The front panel of the power supply has an AC PWR ON indicator light.

2.2.1 Power Switch
The key-operated power switch controls the ac input to the 620/f power supply.

In the PWR OFF position, ac input to the power supply primary is disabled.

In the PWR ON position, there is ac power to the power supply primary and the system
should be fully operational. '

In the PWR ON DISABLE position, there is ac power to the power supply primary and the
computer is operational. However, all control console switches are disabled except the
power switch itself. Pressing any other switch while the power switch is in PWR ON
DISABLE has no effect.

The control panel and power supply indicator lights are functional when the POWER
switch is in PWR ON or PWR ON DISABLE.

The key can be removed from the power switch in any of the three positions. To turn off

IvV-37

ines

data mach

varian

CHAPTER IV

620 COMPUTER SYSTEMS

‘

[oued 104u0g Ja3ndwo) 3/029 "g-Al Sy

£0L0-111A

3/029 sauiyoew ejep :wtg@

IV-38

varian data machines @_

CHAPTER IV
620 COMPUTER SYSTEMS

the computer, place the power switch in the PWR ON position, lift the STEP/RUN switich,
then turn the power switch to PWR OFF. '

2.2.2 STEP/RUN Switch and STEP and RUN Indicators

When the STEP/RUN switch is up, the 620/f is in step mode and the STEP indicator is lit.
When the switch is down, the computer is in run mode. The RUN indicator lights after
START is depressed.

If the computer is in step mode:
a. Pressing the STEP/RUN switch to RUN position puts the computer in run mode.

b. Pressing the START switch‘ executes the instruction in the | register, and fetches
the next instruction from the address specified by the contents of the P register
and places it in the | register.

If the computer is in run mode:

a. Lifting the STEP/RUN switch to STEP position halts the 620/f after completing
the execution of the current instruction and fetches the next instruction and
sets it in the | register. The RUN indicator goes out and the STEP indicator
lights.

b. Pressing the START switch starts the program at the address specified by the P
register after executing the instruction in the | register.

2.2.3 BOOTSTRAP Switch

BOOTSTRAP is a momentary, spring-loaded switch that is functional in 620/f systems
containing the optional automatic bootstrap. In other 620/f systems, this switch is present
on the control panel, but it is not connected.

The bootstrap program enables the loading of the binary load/dump program into
memory. Before the automatic bootstrap is loaded into memory, the binary load/dump
tape should be inserted into the paper tape reader with the first binary frame at the read
station.

To load the automatic bootstrap program:

V-39

T—@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

a. Set the power switch to PWR ON.
b. Set the STEP/RUN switch to RUN.
c. Press and release BOOTSTRAP.

If the system does not contain an automatic bootstrap, load the provided bootstrap
program manually.

2.2.4 START Switch

START is a momentary, spring-loaded switch. Pressing it when the 620/f is in the run
mode starts the program. Pressing the START switch when the computer is in the step
mode executes the instruction in the | register (except HLT), and fetches the next
instruction from the address specified by the contents of the P register and places it in the
| register.

2.2.5 REGISTER Switches

Pressing one of the five REGISTER switches selects the designated register (X, B, A, |, or
P) for display or entry.

Only one register can be selected at a time. Simultaneously pressing two or more
REGISTER switches disables the selection logic and ORs the front panel register display.

2.2.6 Register Entry Switches and Display Indicators

The 16 indicators across the top of the 620/f control panel display the contents of a
selected register. Data are entered into registers on the corresponding register entry
switches located under the indicators. The indicators and switches are read from left to
right, bits 15 to 0. An illuminated indicator shows that that bit contains a one. For
negative data, the sign bit (bit 15) is a one. The indicators and switches are divided into
groups of three for ease in reading octal configurations.

2.2.6.1 REGISTER DISPLAY

To display the contents of a register, switch the STEP/RUN switch to STEP and press the
REGISTER switch for the desired register.

The display indicators light when they correspond to register bits that contain ones. To
remove the display, pull up on the REGISTER switch and the indicators go out.

IV-40

varian data machines [@—

CHAPTER IV
620 COMPUTER SYSTEMS

2.2.6.2 DATA OR INSTRUCTION ENTRY

To enter data or instructions in a register:
a. Display the contents of the register.

b. Enter ones by pressing down on the register entry switches corresponding to the
bits to be set. :

c. Enter zeros in the other bits by pulling up on all other register entry switches.
The indicator lights do not change when the register entry switches are
manipulated. They still display the contents of the register.

d. When the desired configuration is entered on the register entry switches, press
LOAD. This loads the register with the configuration entered on the switches,
and the indicators change to display this new configuration in the register.

To enter data into core memory:
a. Load into the | register a storage instruction (STA, etc.).
b. Select the register specified by the storage instruction in step a.

c. Load the selected register using the data entry switches.

d. Press START to execute the instruction in the | register. This stores the contents
of the specified register at the effective memory address.

The TSA instruction can also transfer data entered on the control panel switches to the A
register.

2.2.7 LOAD Switch

LOAD is a momentary, spring-loaded switch. When the 620/f is in step mode and a
register has been selected, pressing this switch loads the register with the bit
configuration entered on the register entry switches.

IV-41

__@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

2.2.8 REPEAT Switch

REPEAT is a toggle switch that is operative in both step and run modes. To repeat an
instruction contained in the | register, press REPEAT, and then press START. The
instruction is executed again and the program counter advances. However, the contents of
the | register remain unchanged.

To run a program, REPEAT must be off.

2.2.9 SENSE Switches

The three SENSE switches are toggle switches permitting program modification by the
operator. When the program contains instructions dependent on the setting of these
switches, jumps and executions occur when the switch condition is met and do not occur
when the switch condition is not met.

To set a SENSE switch, press down. To reset it, lift. Operations dependent on the position
of this switch will be executed if the switch is in the position indicated by the instruction.

EXAMPLE

A program can be written so that the operator can obtain a partial
total of a column of figures being added by use of the JSS1 (jump if
SENSE switch 1 is set) instruction. The program writes individual
entries as long as SENSE switch 1 is not set. When the operator
wants a partial total, he sets the switch. The program then jumps to
an instruction sequence that prints the desired information.

2.2.10 INT (Interrupt) Switch

INT is a momentary, spring-loaded switch used to interrupt the 620/f computer. It is
functional only when the 620/ is in the run mode.

In systems that do not contain the optional priorty interrupt module (PIM), pressing INT
interrupts to memory address 0.

In systems containing a PIM, pressing INT interrupts to an even-numbered memory
address specified by the PIM.

IvV-42

varian data machines @_—

CHAPTER IV
620 COMPUTER SYSTEMS

2.2.11 RESET Switch

RESET is a momentary, spring-loaded switch used for initialization control and for
stopping 1/0 operations. Pressing this switch halts the 620/f and initializes the computer
and peripherals. This switch is electrically interlocked with the STEP/RUN switch and is
disabled when the latter is in RUN.

Note that this switch is not a display reset.

2.2.12 OVFL (Overflow) Indicator

OVFL lights whenever an overflow condition exists.

2.2.13 ALARM Indicator

ALARM lights to signal an overheated system. If the POWER switch key is accessible, turn
the power switch to PWR OFF and call the Varian customer service engineer.

If the power switch key is not accessible, turn off the power switch located on the back of
the power supply, or pull the main plug, and call the Varian customer service engineer.

2.3 MANUAL OPERATIONS

With the 620/f in step mode, data or instructions can be manually transferred to or from
memory or stored programs can be manually executed.

Note that the | register contains the instruction being executed, while the P register points
to the address of the following instruction.

To load data or instructions into memory, to display the contents of memory, or to alter

the contents of memory, follow the procedures in Register-Entry Switches and Display
Indicators.

2.3.1 Loading Into Sequential Memory Addresses

To load a sequential group of memory addresses:
a. Set STEP/RUN to STEP and press REPEAT.

b. Load the P register with the base address.

IV-43

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

c. Load into the | register a storage instruction (STA, etc.) with 100 in the M field
(relative addressing), and zero in the A field.

d. Select the register specified by the storage instruction in step c.
e. Load the selected register using the data entry switches.
f. Press START to execute the instruction in the | register.

g. Repeat steps e and f until all instructions are loaded. The next cell to be loaded
can be observed by displaying the P register.

2.3.2 Displaying From Sequential Memory Addresses

To display the contents of a group of sequential memory addresses:
a. Place STEP/RUN in STEP, and press REPEAT.
b. Load the P register with the base address.

¢. Load into the I register a loading instruction (LDA, etc.) with 100 in the M field
(relative addressing), and zero in the A field.

d. Select the register specified by the loading instruction in step c.

e. Press START once for each memory location to be displayed.

2.3.3 Manual Execution of a Stored Program

To execute a stored program manually:
a. Select step mode and turn off REPEAT.
b. Set the P register to the first address of the program.
c. Clear the | register.

d. Press START.

Iv-44

varian data machines @_

CHAPTER IV
620 COMPUTER SYSTEMS

e. Press START again to execute the instruction and to load the next instruction
into the | register.

f. Repeat step e once for each instruction.

2.3.4 Manual Repetition of Instructions

To repeat an instruction manually:
a. Press the REPEAT switch down.

b. Press START. This advances the P register but inhibits loading the | register.
Thus, pressing START again executes the same instruction.

2.4 ORGANIZATION

The functional sections of the computer are illustrated in figure IV-9.

2.4.1 Control Section

The computer control section generates the basic 9.0-MHz system clock that provides the
timing and control signals for all computer operations. It directs the transfer of data
between the registers and controls CPU operations. It also interprets instructions read
from memory and provides the necessary gating logic for executing them. Information
from the instruction (1) register is used to generate the timing and control signals.

2.4.2 Decoding Section

The decoding section decodes the fields of the instruction word held in the | register to
determine the control signal levels. These levels select the timing signals generated by the
timing unit in the control section.

2.4.3 Arithmetic Unit

The arithmetic unit contains the adder, gating, and control circuits required for all
arithmetic and logic operations except shifting.

V-45

9v-Al

TO/FROM
it | [VOSECTON
OPTIONS r ":
" : voGates | MERLS MEMORY
BUS | ! MO BUS SECTION
[D REGISTER L ABS BUS
T B
1?(1::.?& | wormmE T 1/O TIMING &
CONTROLLERS &onTROL
(/O 8US) 1/O CONTROL >
CONTROL CARD 8.8 MHz
LINES
— — — — — —— — — o e e — — —t — — P o —— — — — —— —— — —— — — —
[] -1 _
: |1 momm
| C BUs C 8Us I
| ! T] 1 } I
| A REGISTER B REGISTER X REGISTER P REGISTER I REGISTER R REGISTER : :
| 7 + + A BUS Azous ¢ I || REGISTER
L [* i i SWITCHES
Ic|Toc?c‘Ano_ PR | o ene |1
|1

MAIN CLOCK L0 CLoCK I I C BUS |
-

L 4 77)

18 MHz
9 MHz
r——le——————_——— ——_—
! I
CPU TIMING ! '
AND CONTROL ’ CONTROL DECODE I
L_ — — CONTROL I AND 11 CARDS

CPU SECTION

i

VTI2-0281B

Figure 1V-9, 620/f Computer Functional Organization

SIN3L1SAS ¥3LNdINOD 029

Al 431dVHI

soulyoeuw ejep ueuea @_—

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

24.4 Operation Registers

The operation registers are designated A, B, X, and P. The A, B, and X registers are
directly accessible to the programmer. The P register is accessible indirectly to the
following:

a. Jump instructions that modify the program sequence

b. The relative addressing mode of the arithmetic/logic instructions that uses the
contents of the P register to modify the operand address

A register. This 16-bit register is the upper half of the accumulator and accumulates the
results of logical and addition/subtraction operations, the most significant half of the
double-length product in multiplication, and the remainder in division. The A register can
also be used for 170 transfer under program control.

B register. This 16-bit register is the lower half of the accumulator and accumulates the
least significant half of the double-length product in multiplication and the quotient in
division. It can also be used for /0 transfers under program control and as a second
hardware index register.

X register. This 16-bit register permits indexing of operand addresses without adding
time to the execution of indexed instructions.

P register. This 15-bit register holds the address of the current instruction and is
incremented before each new instruction is fetched. A full complement of instructions is
available for conditional and unconditional modification of this register. The P register is
also used in relative addressing.

2.4.5 Auxiliary Registers

The auxiliary registers are designated I, L, R, and D.

| register. This 16-bit instruction register receives each instruction from memory through
the W bus and holds the instruction during its execution. Instructions can be loaded in
the | register from the C bus via the control panel register entry switches. The control
fields of the instruction word are routed to the decoding section to determine the required
timing and control signals. The five least significant bits of the | register are transferred
into a shift counter to shift-count-control the shift instructions.

IvV-47

——@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

L register. This 15-bit address register contains the address of the memory location
currently being accessed during either a clear/write or read/restore cycle.

R register. This 16-bit buffer register holds the second and subsequent words of a
double-word instruction. It also holds the multiplicand and divisor in arithmetic
operations. The R register buffers the arithmetic unit from memory to permit interlace 170
operations on a memory cycle-stealing basis.

D register. This 16-bit register stores |/0 information.

2.4.6 Data Switch Section

The data switch section provides gating logic for operand data being read from or written
into memory via 1/0. CPU information does not pass through this section.

24.7 Register Entry Switches/Display Indicators

The register-entry switches enter data and instructions, via the control panel, in the A, B,
X, |, or P register. The display indicators display the contents of the A, B, X, |, or P register
as selected on the control panel.

2.4.8 Shift-and-Rotate Circuit

The shift-and-rotate (S/R) circuit is a special data path to shift or rotate the contents of
the A and B registers.

2.4.9 Internal Buses
The basic computer contains eight buses designated as C, AY, AZ, MB, MD, ABS, AB, and
170.

C bus. The C bus provides the data path and selection logic for routing data from the
arithmetic unit to the operation registers (A, B, X, and P), the auxiliary registers (D, |, and
L), and register display.

AY bus. The AY bus routes selected data from either (or any combination of) the A, B, X,
or P register, or 170 data (D) register to the AY input of the arithmetic unit.

AZ bus. The AZ bus routes selected data from the | and R registers and register-entry
switches.

IV-48

varian data machines @——

CHAPTER IV
620 COMPUTER SYSTEMS

MB and MD buses. The MB and MD buses provide data paths to and from memory,
respectively.

ABS bus. The ABS bus routes address information into memory from the address (L)
register and the D register.

AB bus. The AB bus provides data paths between the computer and the internal options
(real-time clock, power failure/restart, and Teletype controller).

Input/output bus. The |/0 bus is a party-line, bidirectional bus. It permits programmed
data transfers between peripheral devices and the computer. The 1/0 bus also permits
plug-in expansion of all peripheral controllers. Part of the 1/0 bus is an E bus used for
bidirectional data transfer.

2.5 TIMING

The 620/f operates on a basic 750-nanosecond machine cycle. That is, a full memory cycle
(read/restore or clear/write) is performed in each 750-nanosecond time interval (except in
some special cases in which this period is extended as discussed in subsequent
paragraphs). All operations performed by the computer are accomplished within some
multiple of this basic timing period.

To execute the various operations, several suboperations are performed during the
memory cycle time. Timing of these suboperations is controlled by the internal 18-MHz
master clock. The period of this master clock is 55 nanoseconds; this permits multiple
suboperations to be executed during the memory cycle period. Note that the first half-cycle
(approximately 400 nanoseconds) of the memory period is used to access a word (read) or
to clear a cell (clear); the second half-cycle is used to restore a word (restore) or to write a
new word (write) into the cell.

2.5.1 Clocks

The clocks which control the timing of all operations in the computer are generated by the
timing and control logic. These clocks are illustrated in figure 1V-10 and listed in table
[V-10.

IV-49

F—@ varian data machines

CHAPTER IV

620 COMPUTER SYSTEMS

$390]) Sunwi] diseg ‘Or-Al 2.nSyg

POII-IILA
- s9su0zZ 395UQ0y ATILYWIXOYddY —————=
~ag=DISUQ) | =g JISUGE ———t—i-
_ _ viX
| | -tdx
I 1 [14X
U U v

~——(3IIIM) TYOISTY ——n

(¥vId) vy ——————

IV-50

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

Table 1V-10. Basic Timing Clocks

Clock Description

Master Clock Crystal-controlled timing signal (18 MHz) for
(100) the entire system

Alternate Clock 9-MHz timing signal (counted down and synchro-
(ALC) nous with I0C); used to time the basic execute

and address phases of the computer

Sequence State 1 Basic timing phase, synchronous with read or

(XF1+) clear half-cycle of memory; all operations on
words (transfers of data to and from memory)
are performed during this period

Sequence State 2 Basic timing phase, synchronous with restore
(XF1-) or write half-cycle of memory; all transfer
of instruction and operand addresses to
memory are performed during this period

Sequence State 3 Basic timing phase used for execution or
(XFA) instructions and other operations

2.5.2 Clock Modifiers

All functions performed by the 620/f occur in two basic phases:
a. Transfer of addresses to the memory L register (address phase)

b. Operation upon words read from memory, or the storing of words into memory
(execute phase)

These basic address and execution phases can be modified by certain program
instructions or by signals received from devices external to the computer. The conditions
under which the periods of the basic clocks are modified are:

Shift During shifting operations with words contained in the
A and B Registers, sequence states 2 and 3 are extended
by the number of alternate clock periods (110 nanoseconds)
equal to the specified number of shifts -1.

1V-51

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

Interrupt When an external interrupt is received, sequence states
2 and 3 are extended 0.9 microsecond to accommodate
delays in receiving the interrupt address from the ex-
ternal device

Trap When a buffer interlace controller requests a transfer
to or from memory, sequence states 2 and 3 are extended
3.15 microseconds to permit the execution of the full
trap sequence (routing of address and data from the
external device)

Halt On a halt instruction (ST1), the alternate clock is
inhibited; this prevents any further operations until
the STEP or RUN switch is pressed.

Modification of the execute phase of an instruction is illustrated in figure 1V-11. This
modified sequence is typical of a shift instruction. At time O, the instruction has been
fetched from memory. Starting at time 400, the instruction is executed; however, the
normal 220-nanosecond sequence state 2 is extended 110 nanoseconds for each shift
(six, in this illustration). In a similar manner, sequence state 3 is extended when required
by the conditions defined above.

2.5.3 Sequence Control

The basic clocks generated from the master clock are used to time three operating
sequences: instruction cycle, operand cycle, and address cycle. All operations performed
by the computer are timed by one or more of these timing sequences.

2.6 INFORMATION TRANSFER

All data communication between the basic functional elements of the machine is through
the three data buses C, AY, and W. The C and AY buses are internal to the computer. The
W bus is external and bidirectional; that is, a single set of lines is used to carry
information both to and from the memory. The following paragraphs outline the major
data transfer paths in the computer. Refer to figure IV-12.

IV-52

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

rya

XF1 | " | [
L N } L 4

XF1- . J ! T T I

U
XFA " . |

i
SHIFT OPERATION
6 PLACES
110nsec x 6 = 660nsec
INSTRUCTION EXTENDED 550nsec

VTII-1195

Figure 1V-11. Example of a Modified Clock Sequence

2.6.1 P Register to Memory

As an instruction cycle begins, the location of the next instruction is transferred from the
P register to the L register. The contents of P are transferred through the AY bus to the
arithmetic unit which increments the location address with the arithmetic gates, and
restores the incremented count to the P and L registers. The memory address register, L,
now contains the address of the next instruction word to be fetched from memory, and the
P register holds the updated address.

2.6.2 Memory to | Register

During the instruction cycle, the instruction word located by the address in the L register
is read out on the W bus and read in to the | register.

2.6.3 | Register to Memory

For many instructions requiring an operand, the address of the operand is contained in
the instruction word held in the | register. This operand address is transferred to the L
register through gates in the arithmetic unit and the C bus. The address from the |
register can be modified during the transfer to L as follows:

1V-53

YS-Al

DATA OUT
TO/EROM §
INTERNAL f VO_SEQP'_“ R
OPTIONS r ":
1, / EDSM MB BUS
AB : | /O GATES] MEMORY
BUS | ! MD BUS SECTION
emDs |1 D REGISTER | L |EMABA ABS BUS
) e b |
TO/FROM E BUS 1 EADS 1
/O DATA CARD
PERIPHERAL Lo BAA e + - 1/0 TIMING & pata N} !
CONTROLLERS CONTROL i
(WO BUS) /O CONTROL To vo I ma |
“ConTROL CARD 8.8 MHz SECTION | ADDRESS |
LINES | I
] I
| T, -
—_——— e e —_—
[cpus I]
os || REGISTER |
: - L REGISTER T DISPLAY |
I CBUS C BUS CLKL LODI STxx CLKR I |
JCLKA gmODL 4 CLKB 3 CLKX +CLKP | I I
| AREGISTER 8 REGISTER X REGISTER P REGISTER 1 REGISTER R REGISTER I : :
| EAAY BEX Lexay Avsus JEPAY azpus JEICB/ EICBL EICBD [ERAZ ot ¢ REGISTER |
| * i T SWITCHES I
B —_——————— l ARITHMETIC
e r 1 v I |
i _ l | | |
| ABLor mP i MAIN CLOCK 1/O CLOCK C BUS]
L——2a l | patALOOPCARDS | | pisray caro |
I e AT
9 MHz
T oL 4—: CONTROL DECODE l
l _ CONTROL 1 AND 1§ CARDS |
I CPU SECTION

VTI2-398

Figure 1V-12. 620/f Organization

SIN3LSAS H3ILNdINOD 029

Al 431dVHD

souiyorw ejep uelea

varian data machines @—

CHAPTER IV
620 COMPUTER SYSTEMS

a. Direct Address. No modification; bits 0 through 10 transferred from | to L
directly address operand in the first 2,098 memory addresses.

b. Relative Address. The effective operand address transferred to L is formed by
adding bits 0 through 8 from | to the contents of P. Addition is performed by
selecting the contents of P and | and bringing them into the arithmetic unit.
This permits addressing any word up to 512 locations ahead of the current
program location.

¢. Index Address. The effective operand address transferred to L is formed by
adding bits 0 through 8 from | to either the contents of X or B.

d. Indirect Address. Same transfer as direct address but the word read from
. memory will be the address of an operand rather than the operand itself.

2.6.4 Memory to R Register

Operands read from memory are transferred to the R register. The operands are stored in
R while an arithmetic or logical operation is being performed.

For indirect addressing, and for instructions whose operand address is stored in the
memory location following the instruction word, the operand address will be read from
memory and then transferred to the R register. The address is then routed to the L
register through the C bus.

2.6.5 Arithmetic Unit to Operation Register

Outputs from the arithmetic unit, generated as a result of an arithmetic operation
involving the R register and one of the operation registers, are stored in an operation
register through the C bus.

2.6.6 Operation Register to Memory

The contents of any one of the operation registers are transferred to memory by selecting
the register onto the AY bus and routing the word through the arithmetic unit, C bus, and
W data switch register. The contents of the P register may be transferred to the L register
to address an instruction as previously explained. The contents of P and other registers
can be stored in memory by the same path, except that the word is entered into W the
data switch register. Note that an address cycle must precede this transfer to place the
storage address in the L register.

IV-55

_@ varian data machines

CHAPTER IV
620 COMPUTER SYSTEMS

2.6.7 Memory to Operation Registers

The contents of a memory location can be transferred to any of the operation registers
through W, AZ, and C buses. Note that an address transfer must precede the data
transfer to place the memory address in the L register.

2.6.8 Input to Memory

Input data from the E bus can be routed directly to memory through the data switch
register and W bus. Data transfer must be preceded by an address transfer to load the
memory location into the L register. When the transfer is under control of an instruction,
the memory address will be generated as a normal operand address.

2.6.9 Output from Memory

Output words can be transferred directly from memory to the 1/0 cable through the W
and C buses and the data switch register. A storage address must first be transferred to
the L register by an instruction.

2.6.10 Input to Operation Register

Input words can be transferred directly to the A or B registers through the E and C buses
and the data switch register. These transfers are always controlled by an instruction, with
the instruction designating the operation register to receive the word.

2.6.11 Output from Operation Registers

Words can be transferred directly from the A or B registers to the I/0 cable through the
AY, C, and E buses. These transfers are controlled by an instruction which connects the
selected register on the AY bus.

2.6.12 Operation Register to Operation Register

The contents of an operation register can replace or modify the contents of the register
itself or another register. The process of incrementing and restoring the contents of P has
been previously described. The contents of the A, B, and X registers can be transferred,
incremented, complemented, or decremented. All these operations involve selecting the
register onto the AY bus, processing in the arithmetic unit, and transferring back through
the C bus.

IV-56

varian data machines @——

SECTION 3
620/L-100 SYSTEM

3.1 INTRODUCTION

The Varian 620/L-100 Computer is a general-purpose digital computer, designed for a
variety of system applications.

The computer processes 16-bit words in a full-cycle execution time of 950 nanoseconds, or
over one million cycles per second.

The instruction set of the Varian 620/L-100 comprises 133 standard, instructions, many of
which can be microcoded to extend the effective repertoire to several hundred
instructions.

Core memory can be expanded in 4,096 word (4K) increments, from a minimum of 4K to a
maximum of 32K. Improved design allows the packaging of a fully expanded 32K system in
two 10-1/2-inch high, standard rack enclosures.

The central processing unit (CPU) features four user-accessible operation registers, five
buffer registers, an overflow indicator, and convenient operator’s control panel.

Six addressing modes can be implemented: direct, multilevel indirect, immediate, indexed,
relative, and extended forms that permit direct addressing of any area of the fully
expanded 32K system.

One power supply can furnish all the power required to maintain the maximum 32K
system plus a number of peripheral controllers.

The computer mainframe chassis accommodates the circuitry for the CPU, an 8K master
memory, all the available mainframe (internal) option, and up to nine peripheral
controllers.

Mainframe standard features include: hardware multiply/divide and extended addressing
(M/D), memory protection (MP), real-time clock (RTC), and power failure/restart (PF/R).

The standard Varian 620/L-100 party-line input/output (1/0) bus can interface a

maximum of ten peripheral controllers. Additional peripheral controllers can be
accommodated by including an 1/0 buffer card.

IV-57

__@ varian data machines

System 1/0 options include: priority interrupt module (PIM) and buffer interlace controller
(BIC). The PIM establishes eight levels of interrupt priority for selected peripheral
controllers and places interrupt requests on the 1/0 bus in order of priority. The BIC
implements the direct memory access (DMA) capabilities of the basic computer,
permitting cycle-stealing 1/0 data transfers between memory and peripheral controllers at
rates of up to 382,720 words per second.

Table 1V-11. 620/L-100 Specifications

Description System-oriented, general-purpose digital computer
for on-line data processing

Memory Magnetic core, with a 16-bit word length, 950-
nanosecond full-cycle time, 425-nanosecond access
time, and expandable from the basic 4,096-word
(4K) minimum to a maximum of 32,768 words (32K)

Arithmetic Parallel, binary, fixed-point, two’s complement
Word Length 16 bits
Machine Cycle Speed Addition/subtraction 1.9 microseconds
(Fetch and Execute) Multiplication (optional): 9.5 microseconds
Division (optional): 9.5-13.2 microseconds
Register modification: 0.95 microseconds
A/B register input/output: 1.9 microseconds
Memory input/output: 2.85 microseconds
Instruction Set 115 standard, and 18 optional, instructions, many

of which can be microcoded for extended operations

Instruction Types One- and two-word addressing, and one- and two-
word nonaddressing instructions performing the
following functions:

Load/store Jump
Shift/rotation Jump and mark
Register modification Execution
Arithmetic Control

Logic Input/output

IV-58

Addressing Modes

Operation Registers

Auxiliary Registers

Control Panel

Logic and Signals

Input/Output

varian data machines @—1

Direct, to 2,048 words

Relative to P register, to 512 words

Indexed with X or B register, to 32,768 words
(does not add to execution time)

Multilevel indirect

immediate

Extended

A register: 16-bit accumulator and shift register

B register: 16-bit accumulator and shift register
(low-order half of the double-length accumulator),
or index register

X register: 16-bit index register

P register: 16-bit program counter

U register: 16-bit instruction register

L register: 15-bit memory address register
W register: 16-bit memory data register
S register: 5-bit shift register

R register: 16-bit operand register

Register entry switches and display indicators;
overflow (OVFL), STEP, and RUN indicators;
REGISTER select and bit RESET switches; three
SENSE switches; instruction REPEAT, STEP, and
RUN switches; SYSTEM RESET, and three-position
power switch

Integrated circuits and 4.211 MHz clock

Internal logic levels: OV = false (zero),
+5V = true (one)

Memory data logic levels: OV = true (one),
+5V = false (zero)

1/0 bus logic levels: +3 = false (zero),
0OV = true (one)

Programmed 1/0 operations: external control, pro-
gram sense, data transfer in, and data transfer
out

Automatic data transfers: direct memory access
(DMA) with transfer rates over 382,720 words
per second

IV-59

_[@ varian data machines

Standard Features

Computer Option

170 Options

Input Voltage

input Current

Dimensions

Weight

Temperature

Humidity

Interrupt system: allows computer options and
peripherals to interrupt CPU operations

Multiply/divide and extended addressing:
simplifies the programming of arithmetic
and addressing operations

Real-time clock: user-selected variable time base
for time and event accumulation

Power failure/restart: protects a program in
progress during power failures

Bootstrap protection: protects the memory address
containing the bootstrap loader routine and the
binary load/dump program

Priority interrupt module: establishes and imple-
‘ments interrupt priorities for peripherals

Buffer interlace controller: permits direct access
to memory for block data transfers

105 to 125V ac, or 210 to 250V ac, at ‘50 or 60 Hz

Power supply requires 5 amperes at 115V, and 3
amperes at 230V

Mainframe and expansion chassis: 10.5 inches
(26.6 cm) high, 13 inches (32.9 cm) deep,
and 19 inches (48.1 cm) wide
Power supply: 10.5 inches (26.6 cm) high, 7.5
inches (18.9 c¢cm) deep, and 17.75 inches (44.9 cm)
wide
Mainframe and expansion chassis: approximately
35 pounds (15.9 kg) without circuit cards
Power supply: approximately 36 pounds (16.3 kg)

Operating: 0 to 50 degrees C
Storage: —20 to 70 degrees C

Operating: to 90 percent without condensation
Storage: to 95 percent without condensation

IV-60

varian data machines [@—

Vibration 3 to 10 Hz at 1g force or 0.25 double amplitude,
whichever is less; exponentially raised frequency
from 3 to 10 Hz and back to 3 Hz for 10 minutes,
three complete cycles; applies to all three prin-

cipal axes

Shock 4g for 11 milliseconds, essentially sine shock
waveform (all three principal axes, both directions
in each axis)

Figure IV-13 presents an outline of the 620/L-100 computer.

VHT0-0172

Figure 1V-13. Varian 620/L-100 Mainframe

IV-61

_— varian data machines

3.2 SYSTEM OPERATION

Program Execution

The Varian 620/L-100 requires very little preparation before a program can be executed.
Assuming that the system, including peripherals, is properly installed and connected to an
ac power source, the following procedure is followed to make a cold start (i.e., when a new
system is being initialized or the contents of memory are unknown).

3 a. Turn on computer power by placing the power keyswitch on the control panel (figure IV-
‘ 14) to PWR ON.

b. Initialize the system by pressing SYSTEM RESET, then reset all registers using the
REGISTER selection and BIT RESET switches.

c. Load the appropiate bootstrap loader routine (table 1V-12) from the control panel.
d. Load the binary load/dump program (BLD Il,) using the Teletype or high-speed paper
tape reader (depending on the bootstrap loader selected). Verify after loading that

the P register contains the proper starting address.

e. Load the object program using the same paper tape reader as that used for BLD II.

_—h

Press the RUN switch on the control panel.

This section describes control panel switches and indicators, and implementation of the
above procedure and manual operations.

Switches and Indicators

The control panel of the Varian 620/L-100 is illustrated in figure IV-14.

Power Switch

The key-operated power switch controls the ac input to the power supply.
In the OFF position, ac input to the power supply primary is disabled. In the PWR ON

position, there is ac power to the power supply primary and the system should be fully
operational. In the CONSOLE DISABLE position, there is ac power to the power supply

IV-62

@varian data machines 620/L-100

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

EHEEEIEEEIEEEIEEEIEEE]

Q REGISTER ot
X B A U P RESET
[oveL] [sTEP] RUN (e | [[] [] [===])|
"WR|°N SENSE SYSTEM

m 1 2 3 REPEAT STEP RUN RESET
S| BEE 5 B= =

VTII-1830
Figure IV-14. Varian 620/L-100 Control Panel

primary and the computer is operational. However, all control panel switches are disabled
except the power switch itself. Pressing any other switch while the power switch is in
CONSOLE DISABLE has no effect. The control panel indicators are functional when the
power switch is in either the PWR ON or CONSOLE DISABLE position.

The power switch key can be removed in any of the three positions. To turn off the
computer, place the switch in PWR ON, press the STEP switch, then turn the power switch
to OFF.

STEP Switch and Indicator

Pressing the momentary, spring-loaded STEP switch when the computer is in run mode
(RUN indicator on) halts the computer after execution of the current instruction. Pressing
STEP when the computer is halted executes the instruction currently in the instruction (U)
register (step mode).

When STEP is pressed, the STEP indicator lights; it goes out when the RUN switch is
pressed.

IV-63

varian data machines @—

___ varian data machines

RUN Switch and Indicator

Pressing the momentary, spring-loaded RUN switch executes the instruction currently in
the U register and starts automatic processing of the stored program at the address
specified by the P register.

When RUN is pressed, the RUN indicator lights; it goes out when the STEP switch is

pressed.

REGISTER Selection Switches

Pressing one of the five toggle-action REGISTER selection switches selects the designated
registers (X, B, A, U, and P) for display or entry.

Only one register can be selected at a time. Simultaneously pressing two or more

REGISTER switches disables the selection logic and the register display indicators.

Register Entry Switches and Display Indicators

The 16 indicators across the top of the control panel display the contents of a selected
register. Data are entered into registers on the corresponding register entry switches
located under the indicators. The indicators and switches are read from left to right (bits
15 through 0). A lighted indicator shows that bit contains a one. For negative data, the
sign bit (bit 15) is a one. The indicators and switches are divided into groups of three for
ease in reading octal configurations.

To display the contents of a register, press STEP and select the desired register. The
display indicators light when they correspond to register bits that contain ones. To remove
the display, pull up on the REGISTER switch.
To enter data or instructions in a register:

a. Display the contents of the selected register.

b. Clear the register to all zeros by pressing the BIT RESET switch.

c. Enter ones by pressing down on the register entry switches corresponding to the bits to
be set. The associated display indicator lights for each switch pressed.

IV-64

varian data machines @—

To enter data into computer memory:

a. Load a storage instruction (e.g., STA) into the U register.
b. Select the register specified by the storage instruction.
¢. Load the data word into the selected register using the data entry switches.

d. Press STEP to execute the instruction in the U register. This stores the contents of the
specified register at the effective memory address.

BIT RESET Switch

Pressing the momentary, spring-loaded BIT RESET switch when the computer is in step
mode resets all bits of the selected register to zero. All register display indicators go out.

REPEAT Switch

The toggle-action REPEAT switch permits manual repetition of an instruction in the U
register. When REPEAT is down, pressing STEP executes the instruction and advances the
P register to the next program address. The U register contents remain unchanged.
REPEAT is disabled when the computer is in run mode.

SENSE Switches

The three toggle-action SENSE switches permit program modification by the operator.
When the program contains instructions dependent on the setting of these switches,
jumps and executions occur when the switch condition is met and do not occur when the
condition is not met.

To set a SENSE switch, press down. To reset it, lift. Operations dependent on the position
of this switch are executed if the switch is in the position indicated by the instruction.

EXAMPLE

A program can be written so that the operator can obtain a partial total of a
column of figures being added by use of the JSS1 (jump if SENSE switch 1 is
set) instruction. The program writes individual entries as long as SENSE switch
1 is not set. When the operator wants a partial total, he sets the switch. The
program then jumps to an instruction sequence that prints the desired
information.

IV-65

_@ varian data machines

33

a.

SYSTEM RESET Switch

The momentary, spring-loaded SYSTEM RESET switch is used for initialization control and
for stopping 1/0 operations. Pressing this switch halts the computer and initializes it and
all peripherals. Note that SYSTEM RESET does not reset the registers.

OVFL (Overflow) Indicator

OVFL lights when a program overflow condition exists.

MANUAL OPERATIONS

" Loading the Bootstrap Loader

After computer power is turned on and the system initialized, load the bootstrap loader
routine (table IV-12):

In step mode, load a.store A register relative to P instruction (054000) into the U
register.

Press the REPEAT switch.

Load the starting memory address of the bootstrap loader (007756) into the P register.
Load the first bootstrap loader instruction into the A register. If the high-speed paper
tape reader is to be used for subsequent program input, select the column headed
High-Speed Reader Code in table IV-12; if using the Teletype paper tape reader,

select the column headed Teletype Reader Code.

Press STEP to load the A register contents into the address specified by the P register,
which is incremented by one after the instruction is loaded.

Clear the A register by pressing BIT RESET.

Repeat steps d, e, and f for each bootstrap loader instruction.

IV-66

Table 1V-12. Bootstrap Loader Routines

High-Speed Teletype
Address Reader Code Reader Code
007756 102637 102601 READ
007757 004011 004011
007760 004041 004041
007761 004446 004446
007762 001020 001020
007763 007772 007772
007764 055000 055000
007765 001010 001010
007766 007000* 007000
007767 005144 005144
007770 005101 005101 ENTR
007771 100537 102601 SEL
007772 101537 101201
007773 007756 007756
007774 001000 001000
007775 007772 007772
NOTE

Symbolic Coding

CiB

ASLB

LRLB

LLRL

JBZ
(Memory address)

STA

JAZ
(Memory address)

IXR

INCR

SEL

SEN
(Memory address)

JMP
(Memory address)

varian data machines @———-

RDR
NBIT -7
1

6

SEL

0,1
LHLT + 1

1
RDON
IBFR,READ

* =2

The bootstrap loader routine is always loaded into thévhighest addresses of the
first 4K memory increment, regardless of availabie memory.

* Replace this code with 007600 if the test executive of MAINTAIN Il (refer to document

number 98 A 9952 060) is to be loaded and executed.

To determine that the bootstrap loader is correctly loaded:

a. Initialize the system by pressing SYSTEM RESET.

b. Clear all registers by momentarily pressing each REGISTER selection switch, pressing

BIT RESET each time.

c. Load LDA instruction 014000 (load A register relative to P) into the U register.

IV-67

.__ varian data machines

d. Load the bootstrap loader's starting memory address (007756) in the P register,
keeping the REPEAT switch in the down position.

e. Select the A register and press STEP. The contents of each memory address are
displayed sequentially each time STEP is pressed.

f. Ifanerror is found, load the correct instruction code into memory.
NOTE

The P register error address is always the error address plus one.

Loading, Displaying, and Altering Memory

To load data or instructions into memory, to display the contents of memory, or to alter
the contents of memory, follow the procedures given in the description of the register entry
switches and display indicators above.

Loading Sequential Memory Addresses

To load a sequential group of memory addresses, follow the procedures for loading the
bootstrap loader routine using the A, B, or X register and loading the base address of the
instruction group into the P register.

Displaying Sequential Memory Addresses

To display the contents of a group of sequential memory addresses:
a. Press STEP and REPEAT.
b. Load the base address of the instruction group into the P register.

Load into the U register a relative-addressing load instruction (LDA, LDB, or LDX).

o

d. Select the register specified by the instruction in step c.

Press STEP once for each memory address to be displayed.

®

1V-68

varian data machines @—

Executing a Stored Program

To execute a stored program manually:
a. Instep mode, load the first address of the program into the P register.
b. Clear the U register.
c. PressSTEP.

d. Press STEP again to execute the instruction and to load the next instruction into the U
register.

e. Repeat step d once for each instruction.

Repeating an Instruction

To repeat an instruction manually:
a. Instep mode, press REPEAT.
b. Press STEP.
This procedure advances the P register each time STEP is pressed, but inhibits the loading
of the U register with the next instruction in sequence.
3.4 CENTRAL PROCESSING UNIT

The Varian 620/L-100 computer is organized in three major functional sections:
» The Central Processing Unit (CPU)
+ The Memory

» The Input/Output (1/0) System

Figure IV-15 illustrates the functional sections of the CPU and their interaction with
memory and the 1/0 system.

IV-69

0Z-M

SETRY {; SETUy {}_] 44P0593 BIDIRECTIONAL
44P0542 44P0597
R U "gg;‘fkmp =7 VO CONNECTOR
REGISTER REGISTER f———— TROL "
LOGIC P 5
SLR l SLUII ﬁ} U [CONTROL BUS | vo
o =
i i E BUS | CABLE
DMA/L T)
’ TIMING [
L_d
FiRST] P05
v DEVICE DEVICE
UNIT CONTROLLER CONTROLLER
A
N 44p05%2
44P0013 44P0598
FIRST
ARITHMETIC E BUS
Y DEVICE DEVICE
LOGIC UNIT CONTROLLER INTERFACE L
ABUS T T 2805 7 ABOS
cBus b\ caus CBUS
INVERSION 1PQx
BETWEEN
A BUS AND C BUS
SETL SET W SET AL SET B SET X, SET P,
| \ 4 v v T8y v LAY,
1 | 44P0595 4470592 44P0592 44p0592 44P0592 42P05%7
DATA L w A 8 x P LATA-QUT
| DIsPLAY 1 REGISTER REGISTER REGISTER REGISTER REGISTER REGISTER GATING
| 1
1 | A SLA StB sLX sLp 44P05%5
] 1 I
| DATA |
| SWITCHES h S BUS
1 |
Lo === 4
W BUS (MEMORY DATA) B
sl g s s g ﬁ
PO
veony | seon | m
o 44p0506 ™ STACK
STACK
L BUS (MEMORY ADDRESS) ?

VTI3-0288
Figure 1V-15. Varian 620/L-100 Computer Organization

saulydew ejep ueriea

varian data machines @——

The CPU can be grouped, for descriptive purposes, into five functional sections: the
control section, the arithmetic/logic section, operation registers, auxiliary register, and
internal buses.

Control Section

The control section generates the timing and control signals for all computer operations.
The major elements in this section are the instruction (U) register, the timing and
decoding logic, and the shift control logic.

The U register receives each 16-bit instruction from memory through the W bus and holds
the instruction during its execution.

The control fields of the instruction word are routed from the U register to the timing and
decoding logic, where they are decoded to determine the signal levels required to perform
the operations specified by the instruction.

The address field of the instruction word held in the U register is used for addressing
operations. The information contained in this field is then routed to the arithmetic/logic
section.

Timing logic generates the 4.211 MHz master clock from which the signals that control the
sequence of computer operations are derived.

The shift control section contains the shift counter and logic to control shifting,
multiplication, and division operations.

Arithmetic/Logic Section
The arithmetic/logic section comprises the operand (R) register and the arithmetic unit.

The R register receives operands frecm memory and holds them during instruction
execution. The operand can be either data or address words. This register also permits
transfers between memory and the 1/0 bus during the execution of the optional extended-
addressing instructions.

The arithmetic unit contains gating required for arithmetic, logical, and shifting

operations. Indexed- and relative-addressing modifications take place in this section
without adding to the instruction execution time.

V.71

—@ varian data machines

The arithmetic unit also controls the gating of words from the operation registers and the.
170 bus to the C bus, where they are distributed to the operation registers or to memory
buffers. This facility implements various microcoded instructions.

Operation Registers
The CPU contains four operation registers, designated A, B, X, and P.
The A, B, and X registers are directly accessible to the operator. The P register is indirectly

accessible through the use of the jump instructions, which modify the program sequence.

A Register

This 16-bit register is the upper-half of the accumulator. It holds the results of arithmetic
and logic operations referring to operands stored in memory. During multiplication, it
holds the most significant half of the double-length product. The A and B registers can
also be used for 1/0 transfers under program control.

B Register

This 16-bit register serves as an extension of the accumulator and as a second index
register. Instructions that shift the contents of the A and B registers simultaneously are
available.

X Register

This 16-bit register permits indexing of operand addresses without adding time to the
execution of indexed instructions.

P Register

This 16-bit register holds the address of the current instruction. It is incremented before
each new instruction is fetched. A full complement of instructions is available for
conditional and unconditional modification of this register. The P register is also used in
relative addressing.

IvV-72

varian data machines @—1

Auxiliary Registers

The auxiliary registers are designated U, S, L, W, and R. None are directly accessible to
the operator.

. U Register

This 16-bit register holds the instruction being executed. The U register acts as a buffer
between the control unit and memory to permit 1/0 operations on a memory-cycle-by-
memory-cycle basis. '

S Register

This five-bit register, in combination with the U register, works as a shift counter. The S
register also acts as a buffer between memory and the control unit.

L Register

This 16-bit memory address register holds the address of the location in memory being i
accessed during memory cycles.

W Register

The W register is the 16-bit memory buffer register. J‘

R Register

This 16-bit buffer holds the multiplicand and divisor in arithmetic operations. The R
register acts as a buffer between the arithmetic unit and memory to permit 1/0
operations.

Internal Buses

The CPU contains five buses, designated C, S, W, L, and E.

IV-73

___@ varian data machines

C Bus

This bus provides the parallel path and selection logic for routing data between the
arithmetic unit, the 170 bus, the operation registers, and the memory (W) register. The
register display indicators on the computer control panel are also driven from the C bus.
Collection and distribution of data simultaneously from and to operation registers is
facilitated by the C bus.

S Bus

This bus provides the parallel path and selection logic for routing data from the operation
registers to the arithmetic unit.

W Bus

The W register is directly connected to memory through the W bus to provide paths for
data in and out of memory.

L Bus

The L register is directly connected to memory through the unidirectional L bus.

E Bus

This bus is a bidirectional input/output bus. It permits data transfers between peripheral
devices and the computer. The E bus is an integral part of the 1/0 system.

Information Transfer
All communication between the functional section of the CPU is through the C, S, and W
buses. The C and S buses are internal to the CPU. The W bus is external and

bidirectional; that is, one set of lines carries information both to and from memory. The W
bus provides a direct path to memory for data transfers and, in combination with the

IV-74

buffer interlace controller (BIC), allows /0 operations to occur simultaneously with
extended arithmetic and shifting operations.

P Register to Memory

As an instruction cycle begins, the address of the next instruction is transferred from the
P to the L register. The contents of the P register are transferred through the S bus to the
adder. The adder increments the address by one and transfers the incremented count to
the P register. The L register then contains the address of the instruction to be fetched
from memory, and the P register holds the updated address.

Memory to U Register

During the instruction cycle, the instruction address in the L register is read out on the W
bus to the W register, from which it is transferred out to the U register.

U Register to Memory

For many instructions requiring an operand, the address of the operand is in the
instruction word held in the U register. This operand address is transferred to the L
register through gates in the arithmetic logic and the C bus. The address from the U
register can be modified during the transfer to the L register as follows:

a. Direct Address. No modification; bits O through 10 are transferred from the U register
to the L register to directly address an operand in the first 2,098 memory locations.

b. Relative Address. The effective operand address transferred to the L register is formed
by adding bits 0 through 8 from the U register to the contents of the P register. This
permits addressing a word up to 512 locations above the current program location.

c. Indexed Address. The effective operand address transferred to the L register is formed
by adding bits 0 through 8 from the U register to the contents of either the X register
or the B register. 1

d. Indirect Address. The word read from memory is the address of an operand rather than
the operand itself.

Memory to R Register

Operands read from memory into the W register are transferred to the R register. They are
stored in the R register during an arithmetic or logical operation.

IV-75

varian data machines @———

_@ varian data machines

For direct addressing (and for two-word addressing instructions in which the operand
address is the second word), the operand address is read from memory into the W register
and then transferred to the R register; it is then routed to the L register via the C bus.

Adder to Operation Register

Outputs from the adder, generated as a result of an arithmetic operation involving the R
register and one of the operation registers, are transferred to an operation register via the
C bus.

Operation Register to Memory

The contents of an operation register can be transferred to memory by gating those
contents of the S bus and routing the word through the C bus and W register. Note that
an address cycle must precede this transfer to load the storage address in the L register.

Input to Memory

Data from the E bus are routed directly to memory through the C and W buses. A data
transfer is preceded by an address transfer to load the memory address into the L
register. When .the transfer is controlled by an instruction, the memory address is
generated as a hormal operand address.

Output From Memory

Data are transferred directly from memory to the 1/0 cable through the W and C buses. A
storage address is first transferred to the L register by an instruction.

Input to Operation Registers

Data are transferred directly to the A or B register through the E and C buses. These
transfers are always controlled by an instruction designating the register to receive the
information.

Output From Operation Registers

Data are transferred directly from the A or B register to the 1/0 cable through the S, C,
and E buses. These transfers are controlled by an instruction that connects the selected
register to the S bus.

IV-76

j

Register to Register

The contents of an operation register can be used to replace or modify the contents of any
register. The process of incrementing and restoring the contents of the P register is
described above. The contents of the A, B, and X registers can be transferred,
incremented, complemented, or decremented. The overflow indicator can be set and reset.
These operations are implemented by gating the register contents to the S bus, processing
them in the adder, and returning the result via the C bus. Note that shifting occurs in this
data path. The contents of the selected register are shifted to the left or right as they are
gated from the arithmetic/logic gates to the C bus. Note that all register modification
instructions use this data path.

Instruction Field Decoding

The operation code and mode (M) fields of the instruction word stored in the U register
are decoded to provide static control levels used throughout the execution of the
instruction.

Operation Code
The instruction's operation code has three functional categories: class, set, and group.

a. Class designates one of three types of instructions: one-word addressing, one-word
nonaddressing or two-word, and 1/0.

b. Set decodes simplify gating requirements for the execution of one-word addressing
instructions. Timing specifications select the appropriate phase for executing the
instruction.

¢. Group decoding is any arbitrary designation to describe the gating of computer
operations according to the desired function. One of the group terms is true for all
one-word addressing instructions.

M Field

The M field of an instruction word spécifies the addressing mode or the instruction type,
according to the instruction class defined in the operation code.

\v-77

varian data machines @—‘
a

|
|

|

_@ varian data machines

Timing
The Varian 620/L-100 operates on a basic 950-nanosecond machine cycle. That is, a full

memory cycle (read/restore or clear/write) occurs in each 950-nanosecond interval. All
computer operations take place within some multiple of this basic timing period.

During a full-cycle memory operation, suboperation timing is controlled by an internal

. 4,211 MHz master clock. The pulsewidth of this master clock is 237 nanoseconds, or one-
fourth of the basic 950-nanosecond machine cycle; this permits the execution of various
suboperations during the memory cycle. Note that the first half-cycle (475 nanoseconds)
of the period is used to access a word (read) or to load zeros into an address in memory
(clear). The second half-cycle is used to reload a word (restore) or to write a new word
(write) into the address.

System Clocks

The clock signals that control the timing of computer operations are listed in table 1V-13
and their waveforms are illustrated in figure 1V-16.

Table 1V-13, Varian 620/L-100 System Clocks

Signal Mnemonic Description
Master Clock MCLX + Crystal-controlled 4.211 MHz timing signal
' for the entire system
Phase Clock PHCX + The 2.105 MHz timing signal (counted down

and synchronized with MCLX +) used to time
the basic address and execution phases of
computer operations

Address Phase EPHX- Basic timing phase that corresponds to the
memory restore or write half-cycle; instruc-
tion and operand addresses are transferred
to memory during this period

Execution Phase EPHX + Basic timing phase that corresponds to the
memory read or clear half-cycle; data are
transferred to and from memory and instruc-
tions are executed during this period

Clock 1 CLIX + Signal that initiates a memory cycle and
operations that are synchronized with the
start of the memory cycle

Clock 2 cL2x + Signal that initiates operations that are
synchronized with the start of a memory
write or restore half-cycle

IV-78

NANOSECONDS —

To 950 950 1900 2850 3800

NANOSECONDS

238 ns = | | 475ns
MEMORY READ 'RESTORE [READ i RESTORE [READ [RESTORE | READ | RESTORE [READ [%
CYCLE (CLEAR) , (WRITE) | (CLEAR) ; (WRITE) | (CLEAR) ; (WRITE) | (CLEAR) ; (WRITE) | (CLEAR) | ¢

(PHASE CLOCK)

MASTER
(MASTER CLOCK) 45 NANOSECONDS (TYPICALLY)

moe~cee L L L L L L L L

45 NANOSECONDS

(EXECUTE PHASE)

64°Al

(ADDRESS PHASE)

(INSTRUCTION CYCLE)

CLIx+ M (TYPICALLY) ——f}— n 0 o
(CLOCK 1)

45 NANOSECONDS
(Céféz'(2) I [(TYPICALLY) —{1— n 1
EPHX+ j I————[r—_l——[___—'

EPHX~ N | [| AN I SN R R B
ICYX+ R . I

[EPX+
(INSTRUCTION EXECUTE _____| L [L
PHASE)
IAPX+ I
(INSTRUCTION ADDRESS I S
PHASE)
ACY X+
(ADDRESS CYCLE) NOTE: IF NO ADDRESS 1S NEEDED FOR THE INSTRUCTION, OCYX+
ocrxs OCCURS AT ACYX+ TIME, OTHERWISE AS SHOWN..
— — — OCCuRs AT

(OPERAND CYCLE)

VII2-0380

Figure 1V-16. Basic Clock Waveforms

saulyoew ejep uelea

-——@ varian data machines

Clock Modifiers

modified are:

Shift
Interrupt

Trap

Halt

conditions defined above.

A memory cycle in the Varian 620/L-100 comprises two phases:
a. Fetchingan instruction from memory

b. Executing the fetched instruction

The memory-cycle phases are modified by certain instructions or by signals received from
devices external to the computer. The conditions under which the clock periods are

During the shifting of words contained in the A .
and B registers, the execution phase is extended
by the number of master clock periods (237.5 nano-
seconds) equal to the number of shifts specified.

When an external interrupt is requested, the address
phase is extended 475 nanoseconds to accommodate
delays in receiving the interrupt address from the
external device.

When a BIC requests a transfer to or from memory,
the address phase is extended 1.66 microseconds to
permit the execution of the trapping sequence (i.e.,
the routing of the address and data from the
external device).

On a halt instruction, clock CL1X+ and CL2X + prevent

any further operations until the STEP or RUN switches
are pressed to resume program execution.

Modification of the execution phase of an instruction is illustrated in figure IV-17. The
illustration is typical of a shift instruction. At time 0, the instruction has been fetched
from memory. Starting at time 475, the instruction is executed. However, the normal
237.5-nanosecond execution phase is extended 237.5 nanoseconds for each shift (six are
illustrated). Note that CL1X+ and CL2X + are inhibited during the extended execution
phase. In a similar manner, the address phase is extended when required by the

IV-80

varian data machines @—-—‘

MEMORY g RESTORE | READ

RESTORE;READ VrestORE | READ ' ResTORE | ReaD T
CYCLE $ (WRITE) | (CLEAR)

T
! (WRITE) | (CLEAR) (EXTENDED) :(WRITE) (CLEAR) l(wme) (CLEAR) |

L+ |)) 1 B 1

PHCX+ e rrreerere e s e r

i il . - f |
|
L mome ,L - I |
|

EXTENDED EXECUTE PHASE |
|

|
[
F

_— I e B 11

EPHX- I | M T ;
| | | | | | | | |
475 95 1425 1900 2375 285 3325 3800 4275
To TIMEIN -
NANOSECONDS '
VTI2-0384

Figure VI-17. Example of a Modified Clock Sequence

Operation Sequences

The basic clock signals generated from the 4.211 MHz master clock time three operation }
sequences: instruction cycle (ICYX+), operand cycle (OCYX+), and address cycle
(ACYX +). All computer operations are timed by one or more of these signals. ;

The following paragraphs describe typical operation sequences. Variations of these i
sequences depend on the instruction being executed. However, a study of these
fundamental operations will aid the user in understanding the timing of a specific
instruction sequence.

IV-81

—@ varian data machines

Accessing an Operand in Memory

The simplest and most basic operation sequence is one in which a one-word, directly
addressed operand is read from memory. This is typical of the load/store, arithmetic
(excluding multiplication and division), and logic instructions. The timing of the
suboperations of this sequence is illustrated in figure 1V-18. At time 0, the instruction
cycle (ICYX +) for the nth (current) instruction is initiated. Note that instruction n- 1 is
being executed (IEPX +) while the nth instruction is being read from memory. At time
475, the instruction is transferred to the U register. During the instruction address phase
(IAPX +), when the instruction just read is being restored to memory, the operand
address is generated.

Since the operand is not indirectly addressed in the illustrated case, the operand cycle
(OCYX +) is initiated at time 950-nanoseconds. After the operand has been read from
memory and- stored in the R register, the address of the next instruction (n + 1) is

READ | RESTORE READ | RESTORE READ ¢ RESTORE READ 1 RESTORE
MEMORY CYCLES (950 nsec) H H

i A

n+l
START INSTRUCTION CYCLE A\ AN

READ INSTRUCTION I n I ntl

STORE INSTRUCTION n ntl
IN U REGISTER A A

GENERATE OPERAND []]

ADDRESS
n B
START OPERAND CYCLE AN A™

READ OPERAND I n I n+l

LOAD OPERAND n ntl
IN REGISTER A A

GENERATE INSTRUCTION [] e

ADDRESS

EXECUTE INSTRUCTION ol =]
45 NANOSECONDS
CLIX+ L —] =(YricALLY) M M i
45 NANOSECONDS
CLaxe ——] |- aypIcALLY) 1 M M

| | 1

1CY X+

L

1
QCY X+ _L
IEPX+ 1 11
IAPX+ I . B 1

TIME (nsec) 0 475 950 1425 1900 2375 2850 3325 3800
VTI2-03814

1

Figure 1V-18. Accessing on Operand in Memory

Iv-82

varian data machines @——

generated (normally by incrementing the P register) and transferred to the L register. This
suboperation is executed while the operand is being restored to memory. The instruction
cycle (ICYX +) for n + 1 is then initiated at time 1900.

Note that the operation to be performed on the operand contained in the R register is
executed during the IEPX 4+ phase of the instruction cycle for n + 1. This operation could
be, for example, adding the operand value to the contents of the A register and storing the
result in that register (ADD instruction), or simply transferring the operand to one of the
operation registers (LDA, LDB, and LDX instructions).

Storing an Operand in Memory

The sequence for storing an operand in memory (STA, STB, and STX instructions), is
essentially identical to that for accessing an operand, except that the specified memory
address is cleared and the operand written into it. The sequence of suboperations is
shown in figure 1V-19.

T

1 RESTORE | CLEAR !

.

READ | RESTORE | CLEAR + WRITE |

An An+l
| . n |

MEMORY CYCLES (1.8psec) [READ WRITE |

VAN

START INSTRUCTIONS
CYCLE

READ INSTRUCTION

n+]

STORE INSTRUCTION
IN U REGISTER

n

/\ -

GENERATE OPERAND ADDRESS

1

nl

START OPERAND CYCLE

TRANSFER OPERAND TO
MEMORY (W REG)

WRITE OPERAND IN MEMORY

GENERATE INSTRUCTION
ADDRESS

EXECUTE INSTRUCTION

- ——-—
1 .

CLIX+

45 NANOSECONDS
—~ }-avpicaLLy) [

CL2X+

25 NANOSECONDS
~ —ayricaLLY) [

1CY X+

OCYX+

—
|
=

i : I

|EPX+

1APX+

TIME (nsec)

o

VTI2-01414

HJ

0.9 1.8

Figure IV-19. Storing an Operand in Memory

1V-83

_—[@ varian data machines

The nth instruction is accessed and the operand address generated during the instruction
cycle as described above; execution of the n — 1 instruction occurs during IEPX- of the
nth cycle as indicated. However, during OCYX +, the operand is transferred to memory
while the referenced address is being cleared.

During the last half of the cycle, the operand is stored in the address just cleared. During
this time, the address for the next instruction is generated. Note that there is no
execution, as such, for this type of instruction (indicated by dashed lines in the
illustration) because the execution has already been accomplished, in effect, by the
transfer and storage of the operand in memory.

Accessing an Operand Indirectly

In this case,.an address cycle (ACYX +) is requried to read the indirect address word from
memory before performing the operand cycle (OCYX-).

The sequence of suboperations for accessing an operand indirectly is illustrated in figure
1V-20.

During the instruction cycle, the nth instruction is read from memory and stored in the U
register. The previous instruction, n - 1, is executed during IEPX+. During the
instruction address phase (IAPX+), the location of the (indirect) address word is
generated. This address word is read from memory and stored in the R register.

For the case illustrated in figure IV-20, the address word contains the address of the

operand. If this were not the case, another address cycle would be initiated to access a

second address word, etc. The operand address is transferred to the L register during the

last half of ACYX+ to locate the operand read out during the succeeding OCYX +. The

address for instruction n + 1 is generated and instruction n is executed, completing the -
sequence.

V-84

G8-Al

MEMORY CYCLES (950 nsec)

| READ 1 RESTORE | READ 1 RESTORE | READ 1 RESTORE | READ i RESTORE |

START INSTRUCTION n mt]
A A

CYCLE
READ INSTRUCTION

STORE INSTRUCTION
IN U REGISTER

GENERATE MEMORY ADDRESS

START ADDRESS CYCLE

READ ADDRESS

GENERATE OPERAND
ADDRESS

START OPERAND CYCLE

READ OPERAND

GENERATE INSTRUCTION
ADDRESS

EXECUTE INSTRUCTION

— ——

N : JaN

ntl

cuxe . vnicALy) = =l

45 NANOSECONDS

CL2xX+ ~ Faveicatyy T [M

1CY X+] | 1 L
ACYX | | [
ocre . | |

e I 1
|APX+ _—I_—_L J__L

| | | | l | i | |

TIME (asec) 0 475 950 1425 1900 2375 2850 3325 3800

VII2-0383a

Figure 1V-20. Accessing an Operand Indirectly

——@ Saulyoew ejep uelea

CHAPTER V
LOGIC DESCRIPTIONS

varian data machines @—

__. varian data machines

LOGIC DESCRIPTIONS

DTL and TTL integrated circuits (ICs) are used throughout the 620 series computer
systems. These circuits are general-purpose digital logic units packaged to simplify
maintenance. The IC board layout uses a " bit-slice" technique in which all register and
gating circuits associated with six bits are packaged on one board. figure V-1 through
V-49 describe the basic logic packages used in the 620 series computers.

The following abbreviations are used in the following figures:

AY General Instrument

HD Harris Semiconductor

TI Texas Instruments part

TR Western Digital

SN74 In Tl part number, indicates TTL logic
(same number used by National Semiconductor)

SN15 In Tl part number, indicates DTL logic

MC Motorola part

N Signetics

U Fairchild part one-shot
Number followed by PC or DC Fairchild

Logical O Ground

(normal)

Logical 1 +5V

(normal)

Logical O + 3V

(170 bus)

. Logical 1 Ground

(170 bus)

V-1

varian data machines @—

CHAPTER V
LOGIC DESCRIPTIONS

———@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

A
C
B |

Propagation Delay

To logical O typ. 7 ns

To logical 1

A
C
'B

VTII-1723

A
C
B

Propagation Delay

To logical O typ. 8 ns
To logical 1 typ. 12 ns
._.AO c
—Bg

VTII-1724

J OR N DUAL-IN-LINE.PACKAGE

Truth Table
{TOP VIEW)
A B C .
8 (1) i MENE
S | e
1 1 0

typ. 11 ns

VDM 49A0007-000

Figure V-1. Quadruple 2-Input NAND Gate (SN7400N, 7400PC, N7400A)

Truth Table J OR N-DUAL-IN-LINE PACKAGE
(TOP VIEW)

A B C Vee 4Y 4B 4A 3Y 3B 3A
0 0 1

. KAERVEANRINER RER] 8
0 1 0 T
11010 eilfsd
1 1 0 '

<] <

VL2 {3qjeq]sS([|6]]7
1vy 1A 1B 2Y 2A 2B GND

VDM 49A0032-000

Figure V-2. Quadruple 2-Input Positive NOR Gate (SN7402N, MC7402P, 7402PC)

V-2

_A
C
. B ‘

Propagation Delay

To logical 0 typ. 8 ns
To logical 1 typ. 35 ns
@
C
B
VTII-1725

Figure V-3. Quadruple 2-Input Positive NAND Gate (Open.Collector) (SN7403N)

A|>:B.

Propagation Delay

To logical 0 typ. 8 ns
To logical 1 typ. 12 ns

A, Ol > B
VTII-1726

Figure V-4. Hex Inverters (SN7404N, MC7404P, N7404A, 7404PC)

varian data machines @]——

CHAPTER V
LOGIC DESCRIPTIONS

J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

Truth Table

A B C

0 0 1

0 1 1

1 0 1 |
1 1 0

VCC 48 4A 4y 38 3A 3y

ISyt

[T

2Y GND

1A 18 Y 2A 28

VDM 49A0081-001

positive logic: Y = AB

JOR N DUAL-IN-LINE PACKAGE
{TOP VIEW)

Truth Table
A B
0 1
1 0

Vec 6A 6Y 5A 5Y 4A av

Cpd el O

»

P o) o

1 2[3 4 5,6 7,
1A 1y 2A 2Y 3A 3Y GND

VDM 49A0040-000

V-3

_@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

JOR N DUAL-IN-LINE PACKAGE
Truth Table IvoP VIEW)

A B A, B VCC 6A 6Y 5A 5Y 4A 4Y
0 1 [14||13|[12||n||m||9||8|
—— Crsel 0ol Cpo

Propagation Delay E\{ | E.DD] E.[l
1 2 (13 |4H5||6||7|

To logical 0 typ. 8 ns
To logical 1 typ. 40 ns

1A 1Yy 2A 2¥ 3A 3Y GND

positive logic: Y = A

VDM 49A0575-000

VTII-1727
Figure V-5. Hex Inverter with Open-Collector Circuit (SN7405J, MC7405L)
AIN- PACKAGE
Truth Table JOR N DUALINLINE PAC
A B C D Vee '€ 1Ivo3C 38 A 3Y
%—— b -2 0 0 1 uin 12|n|[m||9||a|
T 0 0 1 1 L
0 1 0 1
0 1 1 1] %"
1 0 0 1 r '
1 0 1 1
1 1 0 1
1 1 1 0
1 2113 4(1S5(]6]]?
Propagation Delay 1A 18 24 28 2C 2Y GND
To logical O typ. 7 ns positive logic: Y = ABC

To logical 1 typ. 11 ns

VDM 49A0005-000
Figure V-6. Triple 3-Input Positive NAND Gate (SN7410N, 7410PC, N7410A)

VTII-1728

V-4

varian data machines [@——

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JOR N DUAL-IN-LINE PACKAGE
(TOP VIEW)
A B C D E Vee 0 2C NC 28 24 2Y
0 0 0 0 1 SR RERIAERIBER [RER] 8
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1 —
0 1 0 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 0 1 " HeHdsd«sHs 11
etc. | etc. | etc etc. | efc s we ac o Jﬂajjj
1 1 1 1 0
positive logic: Y = ABCD
Ae—
B ——— E
C_.___.‘
D.__._-
Propagation Delay
To logical O typ. 8 ns
To logical 1 typ. 12 ns
E

OO ®>P

VDM 49A0006-000
VTI1-169

Figure V-7. Dual 4-Input Positive NAND Gate (SN7420N, MC7420,7420PC)

V-5

F—@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JOR N DUAL-IN-LINE PACKAGE

(TOP VIEW)
A B C D E Vee 2 NC o2 24 2Y
0 0 0 0 1 IENEHEHENENE
0 0 0 1 1
0 0 1 0 1 *J
0 0 1 1 1
o [1 o To [1 » C
0 1 0 1 1
0 1 1 1 1
L_ToTo To 1 T
etc. | etc etc. | etc etc A 18 e o o v e
1 1 1 1 0 o — —

Il
T

Propagation Delay

To logical O typ. 8 ns
To logical 1 typ. 13 ns

oO0Owm >

VDM 49A0504-000

VTI1-1697
Figure V-8. Dual 4-Input Positive NAND Buffer (SN7440N, MC7440L, 7440DC)

V-6

varian data machines @—

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)
A A B C Vee 4B A 4Y 38 A 3y
B DD-C— 0 0 1 [M]|13|1z|u]|n 9||s|
0 1 1
o InSlinY
1 1 0 b

Propagation Delay
To logical 0 typ. 6.2 ns ‘ !‘I |

To logical 1 typ.- 5.9 ns 1

1A iB Iy 2A 28 2Y GND
A
C
B
VDM 49A0039-000

VTII-1715
Figure V-9. Quadruple 2-Input Positive NAND Gate (SN74HOON, MC3000P)
Truth Table JORN
A DUAL-IN-LINE PACKAGE (TOP VIEW)

VCC 48 4A 4Y 38 3A 3y

Inininninnipy

apqnspynpngiwgj9)ye|

o] P

= = O[Ol
= O |— O |

C
1
1
1
0

Propagation Delay 't .
To logical 0 typ. 7.5 ns Flgjrlrﬁ:’—k]
To logical 1 typ. 10 ns ! T HaHsHesHi
A 1A 18 1Y 2a 28 2Y GND.
C
B
VDM 49A0042-000

VTII-1698
Figure V-10. Quadruple 2-Input Positive NAND Gate with Open

Collector (SN74HO1N, MC3004P)

V-7

__@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

Ll (=]
—

A B A B
l: 0

Propagation Delay

‘To logical 0 typ. 6.5 ns
To logical 1 typ. 9 ns

s

VTII-1716

Truth Table

Vee 6A 6Y BA BY 4A 4y

||4||13|I12| nijwj9ogs

e
alalla

IRIRZIERIER IR AL
1A 1Y 2A 2Y 3A 3Y GND

VDM 49A0023-000

Figure V-11. Hex Inverter (SN74H04N, MC30018)

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

A B A | B
o | 1
1 0

Propagation Delay

To logical O typ. 10 ns
To logical 1 typ. 13 ns

—@'A > —

VTII-1699

Ve 6A 6Y BA 5Y 4A 4Y
||4|||3|||z||n|||o||9||a|

NIRAIERIERIRE AN
1A 1Y 2A 2Y 3A 3Y GND

VDM 49A0061-000

Figure V-12. Hex Inverter with Open-Collector Output (SN74HO5N)

varian data machines [@__

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)
_.é‘___ D A B C D Vec 1€ 1Y 3¢ 38 3”3y
__g 0 0 0 1 wl[n][ue]{n]]w]]s]]s
—_— 0 0 1 1
0 1 0 1
0 1 1 1
B D 1 0 0 1 -
1 0 1 1
1 1 0 1
1 1 1 0 1 2 3 4 5 6 1
Propagation Delay 1A 18 24 28 2 2Y GND
To logical 0 typ. 6.3 ns
To logical 1 typ. 5.9 ns
VDM 49A0054-000
VTII-1717

Figure V-13. Triple 3-Input Positive NAND Gate (SN74H10N)

Truth Table JORN

DUAL-IN-LINE PACKAGE (TOP VIEW)

1C Yy 3C 38 3A 3y

B

(@) s/}) |OIUJ |>

i

o G Ll Gl (o] (@) (@] [&] b~

== OO |—= |00
[l [el [l (ol Ll (ol Ll{e]le]
=IOICIOICIC|IOC|O|O

Propagation Delay

To logical O
To logical 1

typ. 8.8 ns
typ. 7.6 ns

VTII-1700

1A 8 2A 28" 2C 2Y GND

VDM 49A0022-000

Figure V-14. Triple 3-input Positive AND Gate (SN74H11N)

V-9

CHAPTER V

___@ varian data machines

LOGIC DESCRIPTIONS

Vri-1701

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)
A B C D E Vee ® € NC 28 24 2Y
o |o Jo O |1 TMEHEHERENENE
0 0 0 1 1 _]
0 0 1 0 1 [
0 0 1 -1 1 L
0 1 0 0 1 » :
0 1 0 -1 1
0 1 1 0 1 ['
0 1 1 1 1 12 aflafls[]6f]?
1 0 0 0 1 1A 1B NC 1C ID 1Y GND
etc. | etc. | etc. | etc. | etc.
1 1] 1 0
J—

A E

B

C _

D

Propagation Delay

To logical O typ. 7 ns

To logical 1 typ. 6 ns

A

B E

C

D

VDM 49A0056-000

Figure V-15. Dual 4-Input Positive NAND Gate (SN74H20N, MC3010)

V-10

varian data machines @——

CHAPTER V
LOGIC DESCRIPTIONS

JORN
Truth Table DUAL-IN-LINE PACKAGE (TOP VIEW)
A B - C D E Vee ™ 2C NC 28 2a 2Y
0 0 160 0 0 w2 juljw]]s]|s
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0 »
0 1 0 1 0
0 1 1 0 0 ‘
0 1 1 1 0 ! 201314115617
etc. | etc.| etc. | etc. | etc. 1A 1B NC IC 1D 1Y -GND
1 1 1 1 1
A | E
B
C
D
Propagation Delay
To logical O typ. 8.8 ns
To logical 1 typ. 7.6 ns
A E
B
C
D

Vrii-1702

VDM 49A0094-001

Figure V-16. Dual 4-Input Positive AND Gate (SN74H21N, MC3011)

V-11

__@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table

Same as that in
figure 1V-26

VDM 49A0038-000

JORN
DUAL-IN-PACKAGE (TOP VIEW)
v D ¢ NC 28 24 2v

CcC
Wil zyfniiw)j9is

J|1147]15]16]]7
1A 18 NC1IC 1D 1Y

»

GMND

Figure V-17. Dual 4-Input Positive NAND Gate (SN74H22N)

A

B E

c ‘

D ‘

Propagation Delay

To logical 0 typ. 7.5 ns
To logical 1 typ. 10 ns
A
B E
C
D

VTII-1718

A

B

C

D I

E

F

G

H

Propagation Delay

To logical 0 typ. 8.9 ns
To logical 1 typ. 6.8 ns
VTI1-1703

Figure V-18

Truth Table

Same as that in
figure 1V-26 except
for extra inputs

VDM 49A0060-000

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

N
VCC NC H G NC C Y

wijwj|injjwlijs|le

positive logic: Y = ABCDEFGH

. 8-Input Positive NAND Gate (SN74H30N)

V-12

varian data machines @_

CHAPTER V'
LOGIC DESCRIPTIONS

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)
A B C D E Vec 2D 2C€ NC 28 2A 2v
o 1o fo 10 [1 wlfa] 2wl [w][o][s
0 0 0 1 1
0 0 1 0 1
o o [1 [1 |1 _—Eﬁo—l
0 1 0 0 1 »
0 1 0 1 1 ‘
0 1 1 1 1
1 0 0 0 1 "2 sHefsHs
etc. | etc etc. | etc. | etc. 1A 1B NC 1C 1D 1Y GND
1 1 1 1 0 —
positive logic: v = ABCD
A —
B ——): E
C____
D__._._‘
Propagation Delay
To logical O typ. 6.5 ns
To logical 1 typ. 8.5 ns
A
B E
(o}
D

VDM 49A0019-000

VTII-1704 .
Figure V-19. Dual 4-Input Positive NAND Buffer (SN74H40N, MC3024P)

V-13

varian data machines
—&

CHAPTER V
LOGIC DESCRIPTIONS

' JORN
Truth Table DUAL-IN-LINE PACKAGE (TOP VIEW)
A B C D E Vee '8 X X D aC iy
0 0 1 1 0 wliajjnnjjuolj]js
1 1 0 0 0 e |
1 1 1 1 0

All other cases E is
equal to a logical 1
[

Vi 2113|4]]S]16]]7
1A~ 2A 28 2C 20 2Y GND

X -positive logic: v = (AB) + (D) + (X
(X = Output of SN74H60 or SN74H62)
X
A ——mi
B E
C —
D
Propagation Delay
X =1and X =0 To logical 0 typ. 6.2 ns
causes E = 0 To logical 1 typ. 6.8 ns
Note

1. Both expander inputs are used simultaneously for expanding.

2. If expander is not used, leave X and X pins open.

3. Expander inputs X and X are functional on SN75H50N circuits only.
Make no external connections to X and X pins of SN74H51.

4. A total of four SN74H60 expander gates or one SN74H62 expander
gate can be connected to the expander inputs.

VDM 49A0093-001 and 49A0041-000
VTI1-1705
Figure V-20. Dual 2-Wide 2-Input AND-OR-Invert Gates (SN74H50

and 51N MC3020 and 3023)
V-14

varian data machines @_—

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)
Any AND gate with all Vee i H G, F X Y
logical 1 inputs causes Wl niinjjwojjelie
K to be logical 1 . L(]—‘
Logical 1 on J input »

causes K to be logical 1

t2l3aflaf]sfief]?
A B8 C D £ NC GND

positive logic:

A ———— J Y = (AB) + (CDE) + (FG) + (HI) + (X)
{X = Output of SN74H61)
B
C
D
K
E
F
G
H
| — Propagation Delay Using Expander Pin
To logical O typ. 9.8 ns
To logical 1 typ. 14.8 ns
Note
1. A total of six expander gates can be connected to input J.
2. No internal connection.
VDM 49A0095-000
VTILI-1729

Figure V-21. Expandable 2-2-2-3-Input AND-OR Gate (SN74H52N, MC3031P)

V-15

_@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

JOR'N-
Truth Table DUAL-IN-LINE PACKAGE (TOP VIEW)
. (See Note 4)
Any AND gate with all Vee B e

logical 1 inputs causes

J to be logical 0 Wijujj{injjnwjjsjje

Logical 1 on X and -
logical 0 on X causes »
J to be logical 0

X

Vil2fj3(j4y]si|efl? :
A ¢ o0 E _F_ G G

A X positive logic: Y = (AB) + (CD) + (EFG) + (HI) + ®
(X = Output of SN74H6D or SN74H62)
B
C
D
J
F ———
F
s Propagation Delay
H To logical 0 typ. 7.4 ns
' ‘ To logical 1 typ. 11.4 ns
Note
1. Both expander inputs are used simultaneously for expanding.
2. |If expander is not used, leave X and X pins open.
3. Expander inputs X and X are functional on SN74H53 circuits only.
Make no external connection to X and X pins of SN74H54.
4. A total of four SN74H60 expander gates or one SN74H62 expander
gate can be connected to the expander inputs.
VDM 49A0106-000
VTII-1730

Figure V-22. Expandable 2-2-2-3-Input AND-OR Invert Gate (SN74H53N, MC3032)

V-16

1 211314516 (]7
A 8 C D E X GND
~ positive logic:
A X = (AB) + (CDE) + (FGH) + (1))
B when connected to X and X pins of
C SN74H50 or SN74H53 gircuif.
.)
E—_—
X
F —————
G -
X
H Propagation Delay
| —— As listed in figures
J IV-31 or IV-33
Note
1. Connect to X input of SN74H50 or SN74H53.
2. Connect to X input of SN74H50 or SN74H53.
VDM 49A0098-000
For Use With SN74H50 and SN74H53 Circuits
VTII-1731

varian data machines @——-

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

Any AND gate with all

I ’ | 1 . t Vee J] H G F X
ogica inputs causes 8
X to be logical 1 and MpwpetL e

X to be_logical 0 when

X and X are connected

to SN74H50 or SN74H53 »

Figure V-23. 3-2-2-3-Input AND-OR Expander (SN74H62N, MC3018P)

v-17

r—@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

PRESET
L)
clock [_
— @
CLEAR |
J
CLOCK ——
Q J

operation is as follows:

2.
3. Disable AND gate inputs
4

VIil-1732

1. Isolate slave from master
Enter information from AND gate inputs to master

J can be removed after
the leading edge of clock

. th4+1 = Bit time after clock puise.
. NC = No Internal Connection, -

TRUTH TABLE
th th+1
[K a NOTES
oo | q ‘
5 LJd=J1.42.43
1 0 . K=K1.K2.K3
110 1
11 [Qp

1
2
3. tp = Bit time before clock pulse.
a
5

Transfer information from master to slave

J

OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

VCC PRESETCLOCK K3 K2 K1 Q

141[13[{12][11{]10 9 8
T)

NC CLEAR N J2 J3 Q@ GND

~ positive logic:
Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Preset and clear are independent of clock

HIGH

LOW

CLOCK WAVEFORM

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of

VDM 49A0003-000
Figure V-24. J-K Master-Slave Flip-Flop (SN7472N)

varian data machines [@———

CHAPTER V
LOGIC DESCRIPTIONS

PRESET JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

[__. A VeC PRESETCLOCK K3 K2 K1 Q
E— L RERERERIASRIRIR AR IR
- | P L J] 1
CLOCK Preset_
~" o b

____'.‘ K 6 - Cleoyf Q

] [—

[7 i HedsHefsHef

NC CLEAR J1 J2 J3 & GND

CLEAR
positive logic:
Low input fo preset sets Q to logical 1
J -1 ¢
L Low input to clear sets Q to logical 0
CLOCK [1 ’ Preset and clear are independent of clock
Q I
TRUTH TABLE Minimum clock = 12 ns
' ' HIGH
n L) 2 3
J X Q ! 15V 15V
191 o4
0 0 Qn LOW E MLNIMUM E
| L —]
o1} o0 NOTES: 1.)=J1eJ20)3 setup .
T 5T 2 K=Kl Kie K3 CLOCK WAVEFORM
)] a 3. tn = Bit time before clock pulse.
" 4. th 41 = Bit time after clock pulse.

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change when the clock pulse is

In a high state. VDM 49A0520-000

V1733 Figure V-25. J-K Master-Slave Flip-Flop (SN74H72N)

V-19

_@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

SN54107, SN74107

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)
Ve CLEARCLOCK K CLEARCLOCK J

|14||13||12||11”10||9 ||8|

J CLOCK K § CLOCK K
CLOCK o P CLEAR CLEAR
Q Q & Q
1f203fase[]7
@) J & & K @ @ GND
‘SN5473, SN7473
CLEAR J OR N DUAL-IN-LINE PACKAGE(TOP VIEW)
) 3 a Q GND K Q Q
l 14 | 13 l 121111 10 9 8
TRUTH TABLE o><6: al 0|
{Each Flip-Flop) . CLEAR CLEAR
tn th1 J CLOCK K K CLOCK
J K Q L
o o I
0 1 0 r [_
1 O 1 NOTES: 1 2 3 4 i 5 6 7
1 1 6n 1. tn = Bit time before clock pulse. CLOCK CLEAR K Voo CLOCK CLEAR

VTII-1734

2. tp4q = Bit time after clock pulse.

positive logic:
Low input to clear sets Q to logical O.
Clear is independent of clock.

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:

1. Isolate slave from master

2. Enter information from AND gate inputs to master

3. Disable AND gate inputs

4. Transfer information from master to slave

VDM 49A0002-000 and 49A0100-000

Figure V-26. Dual J-K Master-Slave Flip-Flops (SN7473N, 74107N)

V-20

varian data machines @—-——

CHAPTER V
LOGIC DESCRIPTIONS

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW) .

1J 1@ 1@ GND 2k 2@ 2@
141]13 12 1 10 9 []

Q [e]

' OCLEAR

J CLOCK K

CLEAR
KCLOCK J

[—=

1 2 3 4 5 6 1

1 1 v 2 2
CLOCK CLEAR 1K "CC CLOCK CLEAR 2J

positive logic:

Low input to cleor sets Q to logical O
Clear is indepepdent of clock

) Qe——
CLOCK
K Q ®
¢
CLEAR
TRUTH TABLE
t th 41
) X Q HIGH
0 0 Q.
0 1 0
NOTES: Low
1 0 1
1. tn = Bit time before clock pulse.
1 1 Q. 2. T4t = Bil time after clock pulse.

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of

2 3
E15v 15V
sl MINIMUM 4

]
"-——tsetup e

CLOCK WAVEFORM

operation is as follows:

1. Isolate slave from master

2. Enter information from AND gate inputs to master
3. Disable AND gate inputs

4. Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change whenthe clock pulse is

in a high state.
Minimum clock time = 12 ns

VTI1-1735

VDM 49A0036-000

Figure V-27. Dual J-K Master-Slave Flip-Flops (SN74H73N)

V-21

__@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

PRESET

Q—

0 pb——-

D
—c
CLEAR

Propagation Delay Using Clock Input

JOR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

v 2 2 2
CC CLEAR 2D CLOCK PRESET 2@ 28§

itz gn 10 9 8

P D
lcLock @

PRESET]

positive logic:
Low input to preset sets Q to logical 1

Low input to clear sets Q to logical O
Preset and clear are independent of clock

TRUTH TABLE (Each Flip-Flop)

t

2. tp4q = bit time after clock pulse.

To logical O typ. 20 ns
To logical 1 typ. 14 ns

D J I

CLOCK [| _

Q |
Clock triggering occurs at a voltage level of the clock pulse and is
not directly related to the transition time of the positive-going pulse.
After the clock input threshold voltage has been passed, the data
input (D) is locked out.

VDM 49A0012-000
VTII-1736 '

Figure V-28. Dual D-Type Edge-Triggered Flip-Flop ($N7474N)

v-22

n tn+1
INPUT OUTPUT OUTPUT
D Q Q
0 0 1
1 1 0
NOTES: 1. tp, = bit time before clock pulse.

To logical 0 typ. 8.5 ns TRUTH TABLE (Each Flip-Flop)
To logical 1 typ. 13 ns T
n th+1
INPUT OUTPUT | OUTPUT
D Q Q
0 0 1
Width of clock pulse = minimum of 15 ns ! ! 0

VTII-1737

Propagation Delay Using Clock Inputs

varian data machines @—-——

CHAPTER V
LOGIC DESCRIPTIONS

PRESET JORN

DUAL-IN-LINE PACKAGE (TOP VIEW)

2 2 2 -~
Ve CLEAR 20 CLOCK PRESET 2Q 20

LRERRUR'EERINER RN NEN-

Q
CLEAR
CLOCK Q
D Q
PRESET
0

Q —
12713 []4f}s]]6]]7

D
e C
1))) 10 @ GND
CLEAR CLOCK PRESET
CLEAR Low input to preset sets Q to high level

Low input to clear sets Q to low level
Preset and clear are independent of clock

Q ., PRESET
o Q
cLock @

CLEAR

NOTES: A. t, = bit time before clock pulse.
B. t,4+1 = bit time after clock pulse.

Information at input D i transferred to the Q output on the positive-
going edge of the clock pulse. Clock triggering occurs at a voltage
level of the clock pulse and is not directly related to the transition
time of the positive-going pulse. When the clock input is at either
the high or low level, the D input signal has no effect.

VDM 49A0082-001
Figure V-29. Dual D-Type Edge-Triggered Flip-Flop (SN74H74N)

V-23

__@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

JORN
121 9 8 11 DUAL-IN-LINE PACKAGE (TOP VIEW)
I I INPUT :
A NC A D GND B C
| | NI I
I ‘ |
—Q I 5 W[cH [oH
Loace [rdcr [ldcr | Lofcp
| | ¢ Al 3 g |k s
| —
I | 1 2 3 4 5] 1
I I INFUT Rory Romy NC Ve MCNC
14 213
TRUTH-TABLE;(Seé Notes 1, 2, and 3)
OUTPUT Propagation Delay From
COUNT p|lc]|s A Input Clock A to Output D
° 0 jo oo To logical 0 typ. 75 ns
! 0jojo1 To logical 1 typ. 75 ns
2 0 0 1 0
3 0 0 ! 1
4 0 1 0 0
5 0 | 0 |
é 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1o lo |1
10 1 0 1 0
n 1 0 1 |
12 1)) 0 NOTES: 1. Output A connected to input B
2. To reset all outputs to logical O both
13 1 ! 0 ! Rg(1) and Rg(2) inputs must be at
14 1 1 1 0 loglcal 1.
s) N) 1 3. Either (or both) reset inputs Rg(1)
and Rg(2) must be at a logical O to count.
VTII-1738

Figure V-30. 4-Bit Binary Counter (SN7493N)

V-24

AB.C, or D

input

 Propagation Delay From Clock 1 or 2

To
To

Information transferred when clock input goes low

VTII-1739

varian data machines @_—

CHAPTER V
LOGIC DESCRIPTIONS

JORN
CLOCK | DUAL-IN-LINE PACKAGE (TOP VIEW).
Vee h oo eT D EaET Chury
22951 _ABC, or D 8" lzl_ wijwopjells
Output H
p
("
M alafialo
B
=9
1 2 3 4
SERIAL A B C D MODE GND

INPUT N—— INPUTS —— CONTROL

‘positive logic:
Mode control = 0 for right shift
Mode control = 1 for left shift or parallel load

logical O typ. 24 ns
logical 1 typ. 26 ns

When a logical O level is applied to the mode control input, the
number 1 AND gates are enabled and the number 2 AND gates are
inhibited. In this mode, the output of each flip-flop is coupled to the
R-S inputs of the succeeding flip-flop and right-shift operation is
performed by clocking at the clock 1 input. In this mode, serial data
is entered at the serial input. Clock 2 and parallel inputs A through
D are inhibited by the number 2 AND gates.

When a logical 1 level is applied to the mode control input, the
number 1 AND gates are inhibited (decoupling the outputs from the
succeeding R-S inputs to prevent right-shift) and the number 2 AND
gates are enabled to allow entry of data through parallel inputs A
through D and clock 2. This mode permits parallel loading of the
register; or, with external interconnection, shift-left operation. In
this mode, shift-left can be accomplished by connecting the output
of each flip-flop to the parallel input of the previous flip-flop (D
output to input C, etc.) and serial data are entered at input D.
VDM 49A0090-001

Parallel-in Parallel-Out Register

Figure V-31. 4-Bit Right-Shift Left-Shift Register (SN7495N)

V-25

__@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

CLEAR I

Propagation Delay Using Clock

To logical O
To logical 1

typ. 16 ns
typ. 10 ns

Minimum T Setup

10 ns
13 ns

Logical 1
Logical O

VTII-1740

®
4

2.

VDM 49A0099-000

PRESET TRUTH TABLE
th th+1
J K Q
0 [¢] Q,
0 1 0
1 0 1
J 0 -
CLOCK B I
—_—C
_ NOTES:
K Q
1. ty = Bit time before
clock pulse

th+i = Bit time
after clock pulse

JORN '
DUAL-IN-LINE PACKAGE (TOP VIEW)

! 2
V¢ PRESETCLEAR 2) PRESET CLOCK 2K

"l 1|2”"Hlﬂ”9”9|
| Sm— E—— 1
| o
4 1 .4
J Clock K K Clock J
b l—qf’resq' Clear —Q(Clear Preset
Q e} [e] Q

jl_ﬂiﬂ_3ﬂ4ﬂ§ﬂ6”7|’"

K 1@ 1@ 1y 20 20 GND

positive logic:

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Preset and clear are independent of clock i

INHIBITED

J-K INPUTS _4

MINIMUM | i
Tsetup —P»t [~

|
- | € paTA
K1 N\ ouT
| INPUTS 0
l4— ENABLED -9

J-K INPUTS
INHIBITED

CLOCK WAVEFORM

V-26

These dual monolithic J-K flip-flops are negative edge-triggered.
They feature individual J, K, and asynchronous preset inputs to
each flip-flop as well as common clock and asynchronous clear
inputs. When the clock goes high, the inputs are enabled and data
will be accepted. The logical state of the J and K inputs may be
allowed to change when the clock pulse is in a high state and
bistable will perform according to the truth table as long as
minimum set-up times are observed. Input data are transferred to
the outputs on the negative edge of the clock pulse.

Figure V-32. Dual J-K Edge-Triggered Flip-Flop (SN74H108N) -

varian data machines @——

CHAPTER V
LOGIC DESCRIPTIONS

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

INPUTS INPUTS

OUTPUTS e Ay

/DATA CLEAR, TOAD DATA BATA
Vec A BORAOW CARRY

|s|514|312||w9

[OAD A B C D e J
uP CARRY p———— b . .
CLEAR % %2 % I_ o o EuTAW o o
LT
INIESIERIERIER IR IREIL
Al

INPUTS

logic: Low input to load sets QA =A,

Qg =8B,Q,=C,and Q=D

The outputs of the four master-slave flip-flops are triggered by a low-
to-high transition of either count (clock) input. The direction of
counting is determined by which count input is pulsed while the
other count input is high.

All four counters are fully programmmable; that is, the outputs may
be preset to any state by entering the desired data at the data
inputs while the load input is low. The output will change to agree
with the data inputs independently of the count pulse. This feature
allows the counters to be used as modulo-N dividers by simply
modifying the count length.

A clear input has been provided which forces all outputs to the low
level when a high level is applied. The clear function is independent
of the count and load inputs. An input buffer has been placed on
the clear, count, and load inputs to lower the drive requirements to
one normalized Series 54/74 load. This is important when the
output of the driving circuitry is somewhat limited.

VDM 49A0091-000
Dual Clock With Clear

VTII-1741 Figure V-33. Synchronous 4-Bit Up/Down Counter (SN74193J)

V-27

ines

data mach

varian
LOGIC DESCRIPTIONS

CHAPTER V

®

_Whan used to indlcate an input condition,X = LOGICAL 1 OR LOGICAL 0

V-28

—_———— ‘o 3
- W A o~
w J= =l va.D.z, £ ~|rlo|~l o~ o =l o] | 0|~ of ~! o ~jo| -l o| =l of =] 0| ~| o] ~| o[~| o] ~{ o
- _ hant W o
E m. Ty <5 b 5“&-
> m o Xi—e o= MM ﬂ.w_Aw _..._w 3 x| []) 2 x| |3 I > foe| x| 2 x| 2 [[| [> [[[x > | x| x| Ix {x [x]ol=
& -
w w w alz55 ﬁA -__I-B e b
s <«||2r—< 3p—2522 +_D,.A:ﬂ R I R B B R e B 3 e R 3 B E Y B A E P B £ P E S £ E B Y P Y A B £
@ NOQ .+
l—n ﬁﬂ“l[ﬁ wp—» ﬂ_“,icl. > I [x| xf el > f 3¢ 3¢ [Fx o[[x|] [3| 3¢ [¢ [pxe 3 |x]x I [[@ = 1x |2] x{x
Q 7S LT -
S [S . 4 ol im0 o o | x| > e x> | [3] > x| x| 3| x| 3| < [x| 3¢ {3 | [| [3¢ I fo | = 3¢ | [|| x|
M = v w Qg 0, g+ w
‘B w -
Q ﬂ“.l!ﬂ b~ w.fb M M o | e[] e x| x ot > fxc|xef x| xf i x| |xxfo e x| x| xfx [|xfxix
- - w
M 13 » o o~ @ “Mh +iQ S| x| e[| 5e] o] x| 3¢ 3¢ e ¢ [¢ ¢ | x| e xe] 3¢ ¢ | ¢ | ¢ ¢ [fom o 3¢ | ¢ | ¢ ¢ | [¢ |] ¢ { ¢
- - "y w
w | %) B smu+.mn w =
Z2l) = - N - EN'gi ° 1< | ey x]] x| x] % [x x| x x| x| x| x| 2 x> [x |0] [xfx|xx[3x]x]|x[x[x[x]x{x
— PR uam 1 . € Q -
al° - w vm WL,V.MJ'N .ﬂu om &] ox x| x| x| xix |l x| fx[x)x|x|x|x|of~]x{x|xix|x[x]|x|x]x|x]x|x]x{x
ey -} _ : ‘
N. ?|& hur g - W, %,R—A__.._l m & | ox x]xpxpx)] x| x[x x| |x[x]|x[x]|fe[x[x[x]x|x]x|x}x[x]|x]x|x[x]x|xIx
I._ aolt—e 2 w,A .M-w T m & | o [xixix]x] x| x| x|x]x|x|x|x]|of~|x]xfx]|x]|x]|x|x[x|x|x|x|x]x}|x|x|x|x}ix
M ““M.ﬂ m 2| & | e[| ef x|] x| > [x> fo | =]] 3] 3¢ | 3¢ [¢ | 3¢] [¢ [5] o< [¢ [¢ | ¢ [¢ [x [[¢] ¢
- - hd ~
o S [& ¢ NM“ + o o b o [|xefse] x| x| e | x [o] 3| x| | 3] | 3¢ | > |3 | > [3¢ | > |] > | ¢ [3¢ | x| > [¢ | x| x| > [x
2 vmu LIz .-“AHA, = & f x| x| x| xf x| x| o= fx]xx|x|x|ax] x| xfx|x[x]x]xEx|xfx[x]|x[x[x{x]x|x]x
p . RN
l H. | W;Mv... & | xx{x|x|x]of = x|x[x|x]x]x|x|x]|x|xfx]x|x]x]|x]x|%x[x]|x[x|x|x]x|xfx
| x e]x[of =] x| x| x| x|x]xx[x] x| x| x| x|x]x|>x]x|xfx|xixfx]x]xfx]x|x]x]x
& | xfo =)] x| x| x|x] ||| x| x| x]x]x|x|>xx|x}x]] [x]x]xf>|x|x]xix
w
m ~lo|o|ojoo qo|ojojo/aoad o ofo|ojojo|o|ojojolo|olo|o|oc|o|o|o
E
13
< xlo|e|=|~|o| o] =|~{o|o|~|~|olo] | ~|c|e]~l=|o|o]=|~|c|c]~|~|o|o] -]~
o xX|ojolojo|=| ~| ~|~|o|o|ojo|~|~| ~|~|o|o|olo|~|~|=|~[C|O|O|O|~]|=] |~
o x|olo|o|o|o| o] o|of«=|m|mlw]|w] =] -]~ olojojelole|eje|~|~]|=|=|~|| -]~
o | x|e|e|e|o|e| of ofolo|o]ofelofo] o|o|={~|~l=|~|~1~|-[~1~|~|~[~]|~| |~
O "w v wn
~ls o 2 ccc
— N — +
o Bs . ol eNe)
= = 2 mm NN~
- 2 = s o 2 >
c O o D 22 ,£ =
_—— — —
- D SR doc o @
3
[Ty 7 - (]
£ 5 * [o}
Qjwn] = w0 =
S © c 2T O E + = 3
——— @S 3 e 9
© 3 c o 2 g °
o < - Q0
mlal=|olo]olNf o]ol<|om]—|o =7 7 ocd & 8T
2] InN [¥eT fTo] RS Nepl [oV] £ o - > © b v ow
NINJN| N et — == 52 o .mmr...& 343..l
n S ..a920 8 2 3
Sg o9 = £ ccg
Q-5 s 5~ a oo S
N = - O [} 35 3
2 ®ER”L ©C 20 ®
S o q T+ - oo =
= 085 X ~0% £ c®
L v WENw O = F QO

VDM 49A0097-000
Figure V-34. Data Selector/Multiplexor (SN74150N)

VTII-1742

varian data machines @_—

CHAPTER V
LOGIC DESCRIPTIONS

N DUAL-IN-LINE PACKAGE
(TOP VIEW)

wurs

oumruts
Bk oB ok o 8 G Poaa B

vee &Y

TABLE OF ARITHMETIC TABLE OF LOGIC

OPERATIONS FUNCTIONS
FUNCTION FUNCTION
SELECT OUTPUT FUNCTION FEL - OUTPUT FUNCTION

s3 s2 51 S0{ LOW LEVELS ACTIVE HIGH LEVELS ACTIVE S3 S2 S1_S0/NEGATIVE LOGIC | POSITIVE LOGIC

L Lt LfF=Aminus1 F=A LLe | F=A F=h fogic: see function tables

L L L H|F=ABminus1 F=A+B Lt L L H] F=AB F= A¥B

L L H L|F=ABminus1t F=A+B L L HL F=A+8 F =AB

L.L H H|F=minus1(2s F =minus 1 (2'scomplementt] | L L H H| F=Logical1 F = Logical 0

L H L L|F=Apius(A+B] F = A plus AB L H L L F=AT8 F=AB PIN DESIGNATIONS

L H L H|F=ABplus [A+B) F = (A+8] plus AB L H L H F=8 F=8 _ﬁw PIN NOS. FUNCTION

L H H L|F=AminusB minus 1 £ = A minus B minus 1 L HHL F=A@®B F=A®B A3 A2, A1A0019,21,23 2] WORD A INPUTS

L H H H|F=AB F = AB minus 1 L HHH - A4 F = AB B3 828180]16.20.22.1] WORD B INPUTS

H L L L|F=Aplus(asB] F = Aplus AB WL L Ll FedB F=AB s3,52,51,50 | 3,466 | TUNCHOMIELECT

H L L H{F=AplusB F = A plusB HL L H|] F=A@®B F=A@B = 5 CA::“—V—,Y;SPUT

H L H L|F=aABpus(am) F = [A+B] plus AB HLowL|l F-e F=8 HEDECENSREL

H L H H[F=AB £ = AB minus 1 H L HH| F-Aw F=-A8 " 8 INPUT

H H L L|F=Apusaf F = Aplus At H WL L] F=Logcao ¥ = Logical 1 3, F2,F1,F0 |13, 11,10,9] FUNCTION OUTPUTS

H H L H|F=ABplsA F = [A+B] plus A HH L H|l F=4B F=A+B -8 14 COMPARATOR OUTPUT

H H H L|F=ABplsA F = [A+B] plus A HHH L] F=na8 F =A+B r 15 CARRY PROPAGATE

H H H H|F=A F = A minus 1 H H H H|] F=A FxA OuTPUT
Coed 16 CARRY OUTPUT

With mode control (M) and Cg low With mode cantrol (M) high: C, irrelevant s 7 CARRY GENERATE
tEach bit is shifted to the next more significant position. For positive logic: logical 1 = high voltage QUTPUT
logicat 0 = low voltage Vee 24 SUPPLY VOLTAGE

GND B GROUND

The SN74181 are high-speed arithmetic logic unit (ALU)/function
generators which have a complexity of 75 equivalent gates on a
monolithic chip. This circuit performs 16 binary arithmetic
operations on two 4-bit words as shown in the function table. These
operations are selected by the fdur function-select lines (S0, S1, S2,
and S3) and include addition, subtraction, decrement, and straight
transfer. When performing arithmetic manipulations, the internal
carries must be enabled by applying a low-level voltage to the mode
control input (M). A full carry look-ahead scheme is made available
in the SN74181 for fast, simultaneous carry generation with a group
carry propagation (P) and carry generate (G) for the four bits in the
package. When used in conjunction with the SN74182 full carry
look-ahead circuits, high-speed arithmetic operations can be
performed. For example, the typical addition time for the SN74181
is 24 nanoseconds for four bits. When expanding to 16-bit addition
with the SN74182, only 13 nanoseconds further delay is added so
that the total addition time is 35 nanoseconds, or 2.2 nanoseconds
per bit. One SN74181 is needed for every 16 bits (four SN74181

circuits). VDM 49A0096-000

VIII-1743 Figyre V-35. Arithmetic Logic Unit/Function Generator (SN74181N)

V-29

CHAPTER V

——@ varian data machines

LOGIC DESCRIPTIONS

PIN DESIGNATIONS

N_DUAL-IN-LINE PACKAGE (TOP VIEW)

DESIGNATION | PIN NOS. FUNCTION WPoTS OUTRUTE
Vec P2 G2 Cn Cpra © G Cous
G0,G1,G2,G3 | 3,1,14,5 ACTIVE-LOW
T v CARRY GENERATE INPUTS u
P ACTIVE-LOW
PO,P1,P2,P3 | 4,2,15,6 <
CARRY PROPAGATE INPUTS v
Cn 13 CARRY INPUT
Chix, C
nx ety 12,119 CARRY OUTPUTS
Cntz
g 10 ACTIVE-LOW
CARRY GENERATE OUTPUT
- ACTIVE-LOW v ouTPUT
P 7 INFUTS
CARRY PROPAGATE OUTPUT
Vee 16 SUPPLY VOLTAGE logic: see description
GND 8 GROUND

VTII-1744

The SN74182 is a high-speed, look-ahead carry generator capable of
anticipating a carry across four binary adders or group of adders. It
is cascadable to perform full look-ahead across n-bit adders, with
only 13 nanoseconds delay for each level of look-ahead. Carry,
generate-carry, and propagate-carry functions are provided as
enumerated in the pin designation table above.

The SN74182, when used in conjunction with the SN74181
arithmetic logic unit (ALU), provides full high-speed carry look-ahead
capability for up to n-bit words. Each SN74182 generates the look-
ahead (anticipated carry) across a group of four ALUs and, in
addition, other carry look-ahead circuits may be employed to
anticipate carry across sections of four look-ahead packages up to
n-bits. Applications data for the SN74181 illustrates cascading of
SN74182 circuits to perform multi-level look-ahead.

Carry inputs and outputs of the SN74181 are in their true form and
the carry propagates (P) and carry generates (G) are in negated
form; therefore, the carry (input, outputs, generate, and propagate)
functions of the look-ahead circuit are implemented in the
compatible forms. Reinterpretations of carry functions at the
SN74181 are also applicable and compatible with the look-ahead

package. Logic equations are:
Cntx = Gg + PoC
Cn+y = G1 +P1Go + P1PoCp
Cn+z = G2+ P2Gq + P2P1Go + P2P1PCh

G = G3 + P3G + P3PoGq + P3P2P1Go
P - P3P2PTPO

VDM 49A0102-000
Figure V-36. Look-Ahead Carry Generator (SN74182N)

V-30

varian data machines @—-—

CHAPTER V
LOGIC DESCRIPTIONS

TRUTH TABLE JORN
(See Notes 1, 2, and 3) DUAL-IN-LINE PACKAGE (TOP VIEW)

chl Bl Al Ca | Z | 2 Voo B By A A Ay A
Wi

o[ofo 1 1 0 | + LARRI AN RER

0 0 1 1 0 1

0 1 0 1 0 1 B, By Ag A 2

o1 1] o 110 » N

1{ofo 1 o |1 _ N

11011 0 1 0

1 110 0 1 0

1l 1j1] 0 joj1 I KRNI
v B Gy n+1 GND

NOTES: positive logic: See truth table

1.A-pﬁ'-'Z“C,B=BT§‘whereAt=i\1-—A2, B*-ﬁz
2. When A% or B* are used as Inputs, A_ and A_ or B_ and B, respectively must be connected to GND,
3. When A_ and A2 or B1 and B2 are used as inputs, A%or B¥ respectively must be open or used to perform Dot-OR]
loglc.
1 10

Gl Ge] T O Gl
’]

-
ais FD’“’ g L
14

Even-Bit Adder C I J 01 =]]] Cov]
1 3 4 5 6 7

2

VDM 49A0001-000
VIII-1745 Figure V-37. Gated Full Adder (SN7480N)

(continued next page)

V-31

—@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

8

H;]L;;D]l Qfo][f;” =] o] [o]

0dd-Bit Adder 8 |[swee |[T8] [enei] [Som | [sum | [Tono |
2 3 4 5 6 7

1

Operation: This ga'ted full adder is used inr the 620/i and 620/L
systems for both even and odd bits, differing only in the input pins
used.

VIII-1746 Figure V-37. Gated Full Adder (SN7480N) (continued)

V-32

ines

data mach

varian

CHAPTER V
LOGIC DESCRIPTIONS

Access time = 40 ns

Truth Table

32 words of 8 bits

The truth table shown is the

16 words of 16 bits

strap for the 620/f (16 words

high-speed paper tape boot-
of 16 bits).

logical 1
= logical O

H =
L

@ - 4 . I] ‘
SYl_IVOIOI cloiciolociolc|olec|ojc|e|— ~|~l—]~lc|clc|ojo|ofx
4 :
| | S
1 | B
i i A
“0_10m00_0 Slojel~|cl—~ o=~ o ~ o|~lclo|—|~l~|ojol ~jc|olclx
{ | i
| B
WIIOOOO olol ~loclolcloi~olol~lololecl~|lo|~|olc|lc|{olo|~}x
WWOlIIIO OOllO.OllOlOl@OlOlOOOOOlH
o
a
[
WaYJOIOOOO ~|olol~lololo|clolo|clolojo|~lol~|clo|olc|ojofx
%000001 olo|lojololoiolo|ojo|l~|o|lclolelo|o|olelo]olo]ofT
i
~ |)
YOOAOOOO clolo|~|o|lojololo|ol~|o|l=|o|~jc| ~|c|olo|o|c|ojT
| !
| i
%3 ojocjoclo olol—~ololo|olo|c|o o ol~jclo|l~lc|olo]-kT
Lt~ o o —~
w
o
MGLLLLLL Al fajalalajalajalalalria]afjalajA|LtalalT
2
w
- AP i o U I s ol R e o TIIIT|I[T|IT|I|T | T QT (2T |2 |T|I|T X
I
WNBLLHH.LL SITiT | (I T T |2l T|T |4 || (T3l |TiT|{a{l (T |T|X
rr}
2.
@
v.CLLLLHH SIS T T T |||l (TlziIT|IalAi2|TiT iz (X
- <
<
2
ol A A ala|aid ITIT|Z|T(T(T || AjdjI|dia|alalalz|lzTizjTiT|iT(TIX
[TTR QS [S (U O [} B[IR I U JE [(U Iy U e o e i s il o o s o s ol s o s e ol o o o e ol e ol I) s ol e o >4
s
g |ol-|afaf<in 90123456789012345678901&
ES il ol Rl Rl Rl ol Rl Rl ol Rl S S B RS SR SRR RN R A Kl Rl Bl
T
o~ |¢ olofnlololelz|a|als]e
[| | 1] 1]] ! T TS T

low level, X = irrelevant

high level, L =

H

VDM 49A0113-000 (as selected)
-38. 256-Bit Read-Only Memory (SN7488N)

(continued next page)

Figure V

VTII-1747

V-33

——@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

The SN7488 circuit is a customer-programmed, 256-bit, read-only
memory organized as 32 words of eight bits each. This monolithic,
high-speed, transistor-transistor logic (TTL), 32-word memory array
is addressed in straight 5-bit binary with full on-chip decoding. An
overriding memory-enable input is provided which, when taken high,
will inhibit the 32 address gates and cause all eight outputs to
remain high. Data, as specified by the customer on the illustrated
truth table/order blank, are permanently programmed into the
monolithic structure for the 256 bit locations. This organization is
expandable to n-words of N-bit length.

The addressing of an eight-bit word is accomplished through the
buffered, binary select inputs which are decoded by the 32 five-
input address gates. When the memory-enable input is high, all 32
gate outputs are low, turning off the eight output buffers.

Data are programmed into the memory at the emitters of 32 eight-
emitter transistors. The programming process involves connecting
or not connecting each of the 256 emitters. If an emitter is
connected, a low-level voltage is read out of that bit location when
its decoding gate is addressed. If the emitter is not connected, a
high-level voltage is read when addressed. Those decoding-gate
output emitters which are used are connected to their respective bit
lines to drive the eight output buffers. Since only one decoding gate
is addressed at a time, only one of the 32 transistors can supply
current to the output buffers at a time.

N
DUAL-IN-LINE PACKAGE (TOP VIEW)
BINARY SELECT
ENABLE OUTPUT
vee 6 ! ¢ 5 c [A ve

B juzyfnjjmwi]9

[111 Il_l
6 E o ¢ 8 A
v Y8
I—‘V2V3Y4Y5Y5V7
[T i1
5
Y5

VIl21(3]]4

Y Y2 Y3 Ya Y6 Y7 GND

V
QUTPUTS

positive logic: See description

VTI1-1748
Figure V-38. 256-Bit Read-Only Memory (SN7488N) (continued)

V-34

varian data machines @——

CHAPTER V
LOGIC DESCRIPTIONS

WA WB GW
w1 o ooy o (10)
a
81T .‘ .7 -
(18) 4 1 2 -
10
14
-
=)
D—om

T
|

——op 2

1
|

—i4D ‘
3D gol—— s , :

L
|
i

].Q —] D»'ﬂo:o
aiT3] o ° "r.o .i-i
]'D 2 & g =
i 30-{>0
n af af u 4 D(—.—’OGQ
e el %}
3 7 = 5 & —
RA RB GR “© - 2 i_
Y (3 mf (@] s m){
Gw Wg Wap Mg Aa Gp
__-.ﬂ/._—/
WRITE INPUT READ INPUT
Pin (16) = Ve, Pin (8) = GND
WRITE FUNCTION TABLE ‘READ FUNCTION TABLE
~ (SEE NOTES A,B, AND C). _ “(SEE NOTES A AND.D)
“ WRITE INPUTS WORD " "READ INPUTS QUTPUTS F¥ F |
I wg wa Gw 0 1 2 3 Rg Ra Gp | 1@ 20 30 40
T T t {a-0 0, Qn Qn L L L | wos1 woB2 Wwo0B3 WoB4
L H L Q, Q=D Qg Qq L H L | wiBt wiB2 wiB3 WiB4
H L L Q, Q, Q=0 Qp H L L [wzer wzs2 w2e3 weea
H H. L Q, Q, Q, Q-D H H L | w31 w3s2 w3s3 w3ss |
X X H Qn Qn Qp Qn X X H H H H H
NOTES: A, H= high level, L = low level, X = irrelevant
B. (Q = D) = The four selected internal flip-flop outputs will
assume the states applied to the four external data inputs,
C. Qp, = No change.
D..WO0B1 = The first bit of word 0, etc,
VDM 49A0108-000
Organized 4 Words of 4 Bits
VTII-1749

Figure V-39. High-Speed Buffer Memory/Register File (SN74170N)
(continued next page)

V-35

r——@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

The SN74170 MSI 16-bit TTL register files are organized as 4 words
of 4 bits each and separate on-chip decoding is provided for
addressing the four word locations to either write-in or retrieve data.
This permits simultaneous writing into one location and reading
from another word location.

Four data inputs are available which are used to supply the 4-bit
word to be stored. Location of the word is determined by the write
address inputs A and B in conjunction with a write-enable signal.
Data applied at the inputs should be in its true form. That is, if a
high-level signal is desired from the output, a high-level is applied at
the data input for that particular bit location. The latch inputs are
arranged so the new data will be accepted only if both internal
address gate inputs are high. When this condition exists, data at the
D input are transferred to the latch output. When the write enable
input, GW, is high, the data inputs are inhibited and their states
can cause no change in the information stored in the internal
latches. When the read enable input, GR, is high, the data outputs
are inhibited and remain high.

The individual address lines permit direct acquisition of data stored
in any four of the latches. Four individual decoding gates are used
to complete the address for reading a word. When the read address
is made in conjunction with the read-enable signal, the word
appears at the four outputs.

This arrangement (data-entry addressing separate from data-read
addressing and individual sense lines) eliminates recovery times,
permits simultaneous reading and writing, and is limited in speed
only by the write time (45 nanoseconds) and the read time (35
nanoseconds). The register file has a nondestructive readout in that
data are not lost when addressed.

V-36

varian data machines @—

CHAPTER V
LOGIC DESCRIPTIONS

This complex-function IC is a monolithic, quadruple, bistable latch TRUTH TABLE
with complementary Q and Q outputs. (Each Latch)
Information at the Q output follows that present at the data input | ta th+1
(D) as long as the clock remains high. When the clock goes low, the o o
information that was present at the time of transition is retained ’ 1 7
until the clock returns to high. ° o
CLOCK 1.2 —e—{ CP 6 _—TQ NOTES: 1. t, = bit time before
clock pulse transition.
2, t = bit time after
INPUT 1 — nt1 ,
- D Q 1Q clock pulse transition.
NC—No Internal Connectiori
cP Q}——30
'J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)
INPUT 2 D Q ——20
CLOCK
e 2 & 12 6N0 3T X 4Q
an OIE
CLOCK 3-4 _T_ cP Q 30
INPUT 3 D Q| 3Q
P T Eoj
INPUT 4 D Q 4Q
positive logic: see truth table -
SN5475 Logic ’

—0 Q
(SN5475/5N7475)

.
5 '—l \ gher J_‘

Lotch ‘
><

o o
CLOCK DATA

VDM 49A0000-000
VTII-1706 Figure V-40. Quadruple Bistable Latch (SN7475N)

V-37

——-@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table — 4"\rot’”;ne'ww oy

A Al B [C Inininininioin
3 e LEJ E‘BL

B____| 0 1 1 :

1 0 1 » }
A 1 1 0

C
B8
I 1 II 2 I | Jf14f15[]16]]7
Propagation Delay JA 1B 1Y 2A 28 2Y GND
To logical 0 typ. 20 ns itive logi
/ : v=AB

To logical 1 typ. 40 ns posttiveTogie: ¥

VDM 49A0008-000
VTI1-1719 .
Figure V-41. Quadruple 2-Input NAND Gate (SN15846N)

TrUth Table Vc‘ 1C IYTOSCVTFW3B 3A 3y
A ‘ A B c D |I4HI3H12 nijwg9 8
B D[o 0 0 1
C 0 0 1 1
A 0 1 0 1 » -
S o9 1 1 1
: 1 0 0 1
c 1 0 1 1 '
1 1 0 1 JA 18 2o 28 2C 2Y GND
1 1 1 0 —

positive logic: 'Y = ABC
Propagation Delay

To logical O typ. 20 ns
To logical 1 typ. 40 ns

VDM 49A0009-000
VII-1707 Figure V-42. Triple 3-Input NAND Gate (SN15862N)

V-38

varian data machines @—-—

CHAPTER V
LOGIC DESCRIPTIONS

TrUth Table Vee 2D ZCTOPZ)YIEWZB 2A 2Y

A B C D E [MHISHIZHII||IO| SHUI
0o o [o [o [1 ﬁ.
0 0 0 1 1
0o o |1 o |1 > |
0 0 1 1 1 ‘
0 1 0 0 1
0 1 0 1 1

1 aflsHef]7
0 1 1 1 1 . 2

1A 18 X 1C 10 1Y GND
1 0 0 0 1
etc. | etc. | etc. | etc. | etc. positive logic: Y = ABCD
1 1 1 1 0

oOw >

Propagation Delay

To logical O typ. 22 ns
To logical 1 typ. 32 ns

VDM 49A0010-000
Open Collector

VTII-1708 Figure V-43. Dual 4-Input NAND Power Gate (SN6006N)

V-39

_@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

PRESET Ncwovguew Ne NC

Vec C
! ll4||13|||2|||l||wl|9||l|
s Qpf—— * ;

)C 6 12 3||4||5||5”7|
Cp. NC Q S m PT; GND
positive Iogic’:f See asynchronous truth table
CLEAR

/

SYNCHRONOUS
TRUTH TABLES
t o+
PULSE INPUT OUTPUT
S ASYNCHRONOUS| [S | C |PT, |PT, | Q g
DIRECT 1{X|X]1 {Qn n
PT1 | I inpuT |OUTPUT I T 7 X [@n | @n
S, [Co |Q |Q ol1{o]|Xx [0
— =D | D
Q 11 |Qn|@n 0 | X |0 |1 (1 0 |
o110 | 1 10 |X {0 {0 1 ‘
110 (|1 |O X {01 {0 |0 1
ofoj1 |1 0 jojo _0 _ Indeterminaie _
Note
1. X indicates that either a logical 1 or a logical 0 may be present.
2. Logical 1 is more positive than logical O.
3. Logical states shown for pulse inputs PT, and PT, indicate that
a transition to that state has just occurred.
4. Truth tables reflect individual conditions at the inpus. Either
direct input may be used to inhibit its corresponding pulse input.
VDM 49A0014-000
VTII-1709

Figure V-44. Pulse-Triggered Binary (SN15850N)

V-40

varian data machines @-—-

CHAPTER V
LOGIC DESCRIPTIONS

TOP VIEW
See Note land 2

PTl Vcc NC NC r___./;‘ NC

||4|||3”|2”"”|0”9”3'
PTo QF——

<l
— ¥
‘gfz:
- lo
] |

0 A Neeg | GND
PT 1
L
Q . {——
e -} Predetermined period of time
TRUTH TABLE
tn st §
INPUT INPUT OUTPUT
A B A B
1 1 1 1 INHIBIT
1 1 1 Y] ONE-SHOT
1 1 0 1 ONE-SHOT
1 1 0 0 ONE-SHOT
0 1 X X INHIBIT
1 0 X X INHIBIT
0 0 X X INHIBIT
NOTES: a. 1, = time before input transition.
b. t,4, = ftime after input tronsition.
¢. X indicates thot cither o logical 1 or o logical O may be prasent.
VDM 49A0018-000
VTII-1710

Figure V-45. Monostable Multivibrator (SN15851N)

V-41

F_‘@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table Cx

1 ‘ Ry
Pin 1 or pin 2 going from 5 Vee

a logical 1 to a logical O 8
will cause a single-shot | Q
3 SS
Pin 3 and pin 4 going to 4 : | 6
a logical 1 will cause a Vee = pin 14 Q
single-shot GRD = pin 7
Pin 1or2 |
£ C
The single-shot can be re- Q] i | I
triggered before time-out Pin 3 and 4 |
causes Q to stay high (¢
Q f iad |
VTII-1722 VDM 49A0524-000

Figure V-46. Retriggerable Monostable Multivibrator (Fairchild U6A960159X)

A 7 - . .
—_— C 14 13 12 11 10 9 8 I
__B Vee ' I

Propagation Delay
To logical”0" typ. 12 ns P
To logical”1"” typ. 15 ns

Truth Table L — | S

A = S l GND
0 0 0 1 2 3 4 5 6 7
0 1 1] o0 i _
1 0 0 Positive logic: 3 = 1«2
1 1 1
VDM 49A0104-000
VII-171 Figure V-47. Quadruple 2-input AND Gate (MC3001P)

V-42

varian data machines @——

CHAPTER V
LOGIC DESCRIPTIONS

Propagation Delay
To logical’0" typ. 12 ns
To logical’1” typ. 15 ns

Truth Table

A B C

0 0 1

0 1 0

1 0 0

1 1 0
VTII-1720

Propagation Delay
From input Al-A2 to
output W typ 20 ns
same for strobe

14 13 12 11 10 9 8
Vce l I I

’ | l GND
|1| |2| |3| |4| |5| |6| |7| ‘

Positive logic: 3 =1 + 2

VDM 49A0105-000

Figure V-48. Quadruple 2-Input NOR Gate (MC3002P)

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)
OUTPUT OUTPUT
STROBE |y GND ,y STROBE GND
Vees 1S 2 25 NC 1

16 15 {14 J13p {12 11| {100 {9

TRUTH TABLE 3
-4 Leem
INPUTS OUTPUT
A S W
H H H 1 2 3 4 8
L X L Coxt 1Al 1A2 Vo Ve 2A1 242 Veeo
X L L INPUTS INPUTS
positive logic: W = AS
‘ NC- No internal connection
VTIL-1712 VDM 49A0043 (SN7525) VDM 49A0043 (SN7524)

Figure V-49 Dual Sense AMPS
V-43

———@ varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

Octal 5o (D) ——————{H »——100Q0
Outputs Enable _@»—011 Q1
Binary O——— = 12 @2
Input X O——— 7_:@,__013 Q3
Y O =)— 10
—Z O— —H)— 305
D—__
Enabl L o
| Ve = pin 14

Input loading factor = 1
Output loading factor = 11

Truth Table
X Y Z Q0] 01 | 92] @3] 04| o5 | 06 | Q7
0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0
1 = high state 0 = low state
VTI1-1721 VDM 49A0086-000

Figure V-50. Binary to Octal Converter (MC4006P)

V-44

Propagation Delay INPUTS OUTRUTS
To logical O typ. 23 ns Vo B B € O & 5 7
To logical 1 typ. 26 ns CRARERERTARERNRFASRINARI NN
[-
-
A B Cc D
01 2 3 45 6 789
ST
{2 3[laf]1s5(]s6ll7[]8
0 1 2 3 4 5 6, GND
QUTPUTS
positive logic: see truth tables
SN5442/SN7442 ALL TYPES
BCD DECIMAL
INPUT OUTPUT
D|C]| B]| A 0j1|2]|3|4]5|6|7}8]9
ojolol o ol vyl
0 JO0fO] 1 vjojrfrfrfrfrfrir}i
0 j o0} 1 0 I AEEIREREREREEEERE
0011 1 Tirprfofrpr|rp1{1j
of1j01] o0 irprfrjolrfrrig
0 1|0 1 Tl afrf1jofr]1f1}|1
ol 111l o IBRERIRIRIRIEIRIRIn
o] 1]1 1 Tirfijrfafrjrfofra
1100 o AR RERERERE R RN
1ttolo] virfrrfabrfrjiji]o
1T {of1] o0 Vv
1101 1 ARERRRERERERREEERE
1 1{o{ o0 IR RN R ERERR
1 1101} 1 IRIRIRERNRERERRARE
1 111)]0 tfaprppajrfrfrfa
1 i 1 IRIRIRIRI RN RNARE
VTII-1713 VDM 49A0544 and 49A0044

Figure V-51. 3-Line to 8-Line Deocoders

varian data machines
@

CHAPTER V
LOGIC DESCRIPTIONS

J OR N DUAL-IN-LINE
OR W FLAT PACKAGE (TOP VIEW)

V-45

_ varian data machines

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-00a
	01-00b
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00a
	02-00b
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	03-00a
	03-00b
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-00a
	04-00b
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	05-00a
	05-00b
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	Blank Page

