
VARIAN 620

TRAINING MANUAL

~varian data machines/a varian subsidiary
~ (G) 1972

98 A 9902 504

JANUARY 1973

This manual is intended for training purposes only. For detailed
information, refer to the applicable document for the system you are
using.

TABLE OF CONTENTS

CHAPTER I
COMPUTER FUNDAMENTALS

CONTENTS

Section 1 Introduction ; ... 1-1
1.1 General Description .. l-1
1.2 Computer Concepts .. l-2

1.2.1 Central Processing Unit (CPU) ... I-2
1.2.2 Memory ... 1-3
1.2.3 Input Unit ... l-3
1.2.4 Output Unit .. 1-3

Section 2 Numerical Analysis .. 1-4
2.1 .Introduction ; ... 1-4
2.2 Square Root Extraction .. l-4

CHAPTER II
PROGRAMMING

Section 1 lntroduction ... ll-1
1.1 Communication With a Computer ... ll-1
1.2 Mnemonics .. 11-1
1.3 Numerical Code .. ll-1
1.4 Instruction Set .. 11-2
1.5 Preparing the Program .. · ... ll-2

Section 2 Flow-Charting .. 11-3
2.1 lntroduction ... ll-3
2.2 Notation ... 11-6
2.3 Symbols ... 11-7

2.3.1 Functions .. 11-7
2.3.2 Decisions .. 11-8
2.3.3 Input/Output .. :11-9
2.3.4 Start and Stop .. ll-10
2.3.5 Fixed Connectors ... ll-10

iii

CONTENTS

2.4 A Simple Flow Chart ... 11-11
2.4.1 Substitution .. 11-12
2.4.2 Subroutines .. 11-13
2.4.3 Assertions ... 11-14

2.5 A More Complicated Flow Chart .. 11-14

Section 3 Machine Language Preparation ... 11-17
3.1 lntroduction ... ll-17
3.2 Instruction Repertoire .. ll-17

3.2.1 Instruction Types ... 11-18
3.2.2 Addresses ... :11-18
3.2.3 Codes .. 11-18

3.3 Sample Programs ... ll-19
3.4 Machine Language ... ll-30
3.5 Looping ... 11-30
3.6 lndexing .. ll-30

3.6.1 Specifying the Index Register ... 11-33
3.6.2 An Example of lndexing .. ll-33
3.6.3 Address Modification by Indexing .. 11-36

3. 7 Subroutines .. 11-36
3.8 Coding ... ll-37

Section 4 Programming in Assembly Language .. ll-39
4.1 DAS Assembler .. 11-39

4.1.1 DAS 4KA .. 11-39
4.1.2 DAS 8KA .. 11-40
4.1.3 DAS MR .. II-40
4.1.4 Stand-Alone MR ... 11-40

4.2 DAS Source Language ... ll-40
4.3 Statements ... 11-41

4.3.1 Statement Format .. ll-41
4.3.2 Label Field .. ll-41
4.3.3 Operation Field ... ll-41
4.3.4 Variable Field ... 11-42
4.3.5 Comment Field ... ll-42
4.3.6 Comment Statements .. 11-42
4.3.7 Blank Statements .. 11-42

4.4 Programming in Symbolic Assembly Language ... ll-43

iv

CHAPTER Ill
COMPUTER OPERATION

CONTENTS

Section 1 Word Formats ... lll-1
1.1 Introduction ... 111-1
1.2 Single-Word Instructions .. 111-2

1.2.1 Addressable ... 111-2
1.2.2 Nonaddressable ... lll-3

1.3 Two-Word lnstructions .. lll-4
1.3.1 Jump, Jump and Mark, and Execute lnstructions lll-4
1.3.2 Memory In/Out lnstructions .. lll-5
1.3.3 Immediate Instructions .. 111-5

1.4 MACRO-Instructions ... lll-6
1.5 Instruction List .. lll-6

Section 2 Paper Tape Formats .. lll-8
2.1 Source Tape Format ... lll-8
2.2 Bootstrap Format .. lll-8
2.3 Binary Object (Program Object) Format ... lll-8
2.4 MOS Relocatable Object Fo.rmat ... 111-12

Section 3 Operating Sequences for 620/i, 620/L 111-14
3.1 Access Operand in Memory ... lll-14
3.2 Store Operand in Memory ... lll-17
3.3 Indirect Operand Access .. lll-17

Section 4 Computer Failure .. 111-19
4.1 Errors ... lll-19
4.2 Mistakes .. 111-20
4.3 Malfunctions .. lll-21

4.3.1 Diagnostic Routines for Corrective Maintenance 111-21
4.3.2 Diagnostic Routines for Preventive Maintenance 111-21

CHAPTER IV
620 COMPUTER SYSTEMS

Section 1 620/i and 620/L Systems ... IV-1
1.1 Introduction ... IV-1

v

CONTENTS

1.2 Switches and Indicators ... IV-6
1.2.1 Displays .. ; IV-6
1.2.2 Controls .. IV-8

1.3 Manual Operation ... IV-10
1.3.1 Power Control .. IV-10
1.3.2 Manual Program Entry and Execution ... IV-11
1.3.3 Instruction Repeat .. IV-11
1.3.4 SENSE Switches .. IV-12

1.4 Organization .. IV-12
1.4.1 Memory · .. IV-12
1.4.2 Control .. ., ... IV-14
1.4.3 Arithmetic/Logic .. IV-14
1.4.4 Input/Output ... IV-15
1.4.5 Bus Structure .. IV-15

1.5 Timing .. IV-16
1.5.1 Clocks ... IV-16
1.5.2 Clock Modifiers ... IV-18
1.5.3 Sequence Control .. IV-19

1.6 Information Transfer ... IV-21
1.6.1 P Register to Memory ... IV-21
1.6.2 Memory to U Register ... IV-21
1.6.3 U Register to Memory ... IV-21
1.6.4 Memory to R Register ... IV-22
1.6.5 Adder to Operation Registers ... IV-22
1.6.6 Operation Registers to Memory .. IV-22
1.6. 7 Memory to Operation Registers .. IV-22
1.6.8 Input to Memory .. IV-22
1.6.9 Output from Memory ... IV-23
1.6.1 0 Input to Operation Registers ... IV-23
1.6.11 Output from Operation Registers .. IV-23
1.6.12 Operation Register to Operation Register ... IV-23

1. 7 Decoding .. IV-23
1. 7.1 Operation Code Decoding ... IV-24
1.7.2 M Field Decoding .. IV-24

Section 2 620/f, 620/f-100 System .. IV-30
2.1 Introduction ... IV-30

vi

CONTENTS

2.2 Switches and Indicators .. IV-37
2.2.1 Power Switch .. IV-37
2.2.2 STEP/RUN Switch and STEP and RUN lndicators IV-39
2.2.3 BOOTSTRAP Switch ... IV-39
2.2.4 START Switch ... IV-40
2.2.5 REGISTER Switches .. IV-40
2.2.6 Register Entry Switches and Display Indicators IV-40
2.2. 7 LOAD Switch ... IV-41
2.2.8 REPEAT Switch .. IV-42
2.2.9 SENSE Switches ... IV-42
2.2.10 INT (Interrupt) Switch ... IV-42
2.2.11 RESET Switch ... IV-43
2.2.12 OVFL (Overflow) Indicator ... IV-43
2.2.13 ALARM lndicator ; ~ IV-43

2.3 Manual ·operation .. IV-43
2.3.1 Loading Into Sequential Memory Addresses ... IV-43
2.3.2 Displaying From Sequential Memory Addresses IV-44
2.3.3 Manual Execution of Stored Programs .. IV-44
2.3.4 Manual Repetition of lnstructions .. IV-45

2.4 Organization ... IV-45
2.4.1 Control Section ... IV-45
2.4.2 Decoding Section ... IV-45
2.4.3 Arithmetic Unit .. IV-45
2.4.4 Operation Registers .. IV-47
2.4.5 Auxiliary Registers .. IV-47
2.4.6 Data Switch Section .. IV-48
2.4.7 Register Entry Switches/Display Indicators ... IV-48
2.4.8 Shift-and-Rotate Circuit ... IV-48
2.4.9 . Internal Buses .. IV-48

2.5 Timing ... IV-49
2.5.1 Clocks .. IV-49
2.5.2 Clock Modifiers , .. IV-51
2.5.3 Sequence Control ... IV-52

2.6 Information Transfer .. , IV-52
2.6.1 P Register to Memory ... IV-53
2.6.2 Memory to I Register ... IV-53
2.6.3 I Register to Memory .. IV-53

vii

CONTENTS

2.6.4 Memory to R Register ... IV-55
2.6.5 Arithmetic Unit to Operation Registers ... IV-55
2.6.6 Operation Registers to Memory .. IV-55
2.6.7 Memory to Operation Registers .. IV-56
2.6.8 Input to Memory .. IV-56
2.6.9 Output from Memory ... IV-56
2.6.10 Input to Operation Registers .. ~ IV-56
2.6.11 Output from Operation Registers ... IV-56
2.6.12 Operation Register to Operation Register .. IV-56

Section 3 620/L-100 Systems ... IV-57
3.1 Introduction .. IV-57
3.2 System Operation .. IV-62
3.3 Manual Operations .. IV-66
3.4 Central Processing Unit .. IV-69

CHAPTER V
LOGIC DESCRIPTIONS

viii

CONTENTS

LIST OF ILLUSTRATIONS

1-1 Typical Computer System ... 1-2

11-1 Typical Flow Chart ... ll-4
11-2 Flow Chart Symbols ... ll-5
11-3 Flow Chart for T = AX

2 + BX X sin 0 .. 11-15
11-4 Flow Chart for a Positive and Negative Number Count ll-25
11-5 Count of Positive Numbers ... ll-31
11-6 Loop Program ~ · ... ll-32
11-7 Add a Table of Three Numbers ... ll-34
11-8 Subroutines .. 11-38
11-9 Example I, Coding Form ... 11-44
11-10 Example I, Assembly Listing ... ll-46
11-11 Example J, Coding Form ... ll-48
11-12 Example J, Assembly Listing .. 11-51
11-13 Example K, Coding Form .. 11-55
11-14 Example K; Assembly Listing .. 11-56
11-15 Example L, Coding Form ... ll-58
11-16 Example L, Assembly Listing .. 11-59

111-1 Formats for Data Words and Indirect Addresses 111-1
111-2 Single-Word Instruction Format ... lll-2
111-3 Single-Word Nonaddressable Instructions .. 111-3
111-4 Two-Word Instruction Format .. lll-4
111-5 Immediate Instruction Format ... lll-5
111-6 MACRO-Command Format ... 111-6
111-7 620 Series Instruction List .. 111-7
111-8 Source Tape Format ... lll-9
111-9 Bootstrap Format .. lll-10
111-10 Binary Object Format ... lll-11
111-11 MOS Relocatable Object Format ... lll-13
111-12 Operand Access from Memory Sequence ... lll-15
111-13 Operand Storage in Memory Sequence .. lll-16
111-14 Indirect Operand Access Sequence ... lll-18

ix

CONTENTS

IV-1 620/i Outline .. IV-6
IV-2 620/i Control Console .. IV-7
IV-3 620/L Control Console ... IV-7
IV-4 620/i Organization .. IV-13
IV-5 Basic Timing Clocks ... IV-17
IV-6 Example of a Modified Clock Sequence ... IV-10
IV-7 Data 620/L Organization ... IV-21
IV-8 620/f Computer Control Panei .. IV-38
IV-9 620/f Computer Functional Organization ... IV-46
IV-10 Basic Timing Clocks ... IV-50
IV-11 Example of a Modified Clock Sequence ... IV-53
IV-12 620/f Organization , ... IV-54
IV-13 Varian 620/L-100 Mainframe .. IV-61
IV-14 Varian 620/L-100 Control Panei ... ,. .. IV-63
IV-15 Varian 620/L-100 Computer Organization .. IV-70
IV-16 Basic Clock Waveforms .. IV-79
IV-17 Example of a Modified Clock Sequence ... IV-81
IV-18 Accessing on Operand in Memory .. IV-82
IV-19 Storing an Operand in Memory .. IV-83
IV-20 Accessing an Operand lndirectly .. ., ... IV-85

V-1 Quadruple 2-lnput NAND Gate (SN7400N, 7400PC, N'7400A) V-2
V-2 Quadruple 2-lnput Positive NOR Gate (SN7402N, MC7'402P,

7402PC) ... V-2
V-3 Quadruple 2-lnput Positive NAND Gate (Open Collector)

(SN74~03N) .. V-3
V-4 Hex Inverters (SN7404N, MC7404P, N7404A, 7404PC) V-3
V-5 Hex Inverter with Open-Collector Circuit (SN7405J, MC7405L) V-4
V-6 Triple 3-lnput Positive NAND Gate (SN7410N, 7410PC, N7410A) V-4
V-7 Dual 4-lnput Positive NAND Gate (SN7420N, MC7420, 7420PC) V-5
V-8 Dual 4-lnput Positive NAND Buffer (SN7440N, MC7440L, 7440DC) V-6
V-9 Quadruple 2-lnput Positive NAND Gate (SN74HOON, MC3000P) V-7
V-10 Quadruple 2-lnput Positive NAND Gate with Open Colllector

(SN74H01N, MC3004P) .. V-7
V-11 Hex Inverter (SN74H04N, MC30018) ... V-8
V-12 Hex Inverter with Open-Collector Output (SN74H05N) V-8
V-13 Triple 3-lnput Positive NAND Gate (SN74H10N) V-9
V-14 Triple 3-lnput Positive AND Gate (SN74H11N) .. V-9
V-15 Dual 4-lnput Positive NAND Gate (SN74H20N, MC3010) V-10

X

V-16
V-17
V-18

· V-19
V-20

V-21
. V-22

V-23
V-24
V-25
V-26
V-27
V-28
V-29
V-30
V-31
V-32
V-33
V-34
V-35
V-36
V-37
V-38
V-39
V-40
V-41
V-42
V-43
V-44
V-45
V-46
V-47
V-48
V-49
V-50
V-51

CONTENTS

Dual 4-lnput Positive AND Gate (SN74H21N, MC3011) V-11
Dual 4-lnput Positive NAND Gate (SN74H22N) V·12
8-lnput Positive NAND Gate (SN74H30N) .. V-12
Dual 4-lnput Positive NAND Buffer (SN74H40N, MC3024P) V-13
Dual 2-Wide 2-lnput AND-OR-Invert Gates (SN74H50 and 51N,
.MC3020 and 3023) ... V-14
Expandable 2-2-2-3-lnput AND-OR Gate (SN74H52N, MC3031P) V-15
Expandable 2-2-2-3-lnput AND-OR Invert Gate (SN74H53N,
MC3032) ... V-16
3-2-2-3-lnput AND-OR Expander (SN74H62N, MC3018P) V-17
J-K Master-Slave Flip-Flop (SN7472N) ... V-18
J-K Master-Slave Flip-Flop (SN74H72N) ... V-19
Dual J-K Master-Slave Flip-Flops (SN7473 and 74107N) V-20
Dual J-K Master-Slave Flip-Flops (SN74H73N) .. V-21
Dual D-Type Edge-Triggered Flip-Flop (SN7474N) V-22
Dual D-Type Edge-Triggered Flip-Flop (SN74H74N) V-23
4-Bit Binary Counter (SN7493N) ... V-24
4-Bit Right-Shift Left-Shift Register (SN7495N) V-25

· Dual J-K Edge-Triggered Flip-Flop (SN74H108N) V-26
Synchronous 4-Bit Up/Down Counter (SN74193J) V-27
Data Selector I Multiplexor (SN74150N) ... V-28
Arithmetic Logic Unit/Function Generator (SN74181N) V-29
Look-Ahead Carry Generator (SN74182N) .. V-30
Gated Full Adder (SN7480N) ... V-31
256-Bit Read-Only Memory (SN7488N) ... V-33
High-Speed Buffer Memory/Register File (SN74170N) V-35
Quadruple Bistable Latch (SN7475N) ... V-37
Quadruple 2-lnput NAND Gate (SN15846N) .. V-38
Triple 3-lnput NAND Gate (SN15862N) ... V-38
Dual 4-lnput NAND Power Gate (SN6006N) ... V-39
Pulse-Triggered Binary (SN15850N) .. V-40
Monostable Multivibrator (SN 15851 N) .. V-41
Retriggerable Monostable Multivibrator (Fairchild U6A960159X) V-42
Quadruple 2-lnput AND Gate (MC3001P) .. V-42
Quadruple 2-lnput NOR Gate (MC3002P) .. V-43
Dual Sense Amps ... V-43
Binary to Octal Converter (MC4006P) .. V-44
3-Line to 8-Line Decoders .. V-45

xi

CONTENTS

LIST OF TABLES

IV-1 620/i and 620/L Specifications .. IV-2
IV-2 Controls and lndicators ... IV-8
IV-3 Basic Timing Clock .. IV-18
IV-4 Instruction Storage in U Register .. IV-26
IV·5 Operation Code Classes ... IV-27
IV-6 Operation Code Sets .. IV-27
IV-7 Operation Code Groups ... IV-28
IV-8 M Field. Decoding .. IV-28
IV-9 620/f Specifications ... IV-31
IV-10 Basic Timing Clocks .. IV-51
IV-11 620/L-100 Specifications .. IV-58
IV-12 Bootstrap Loader Routines .. IV-67
IV·13 Varian 620/L-100 System Clocks .. IV-78

xii

CHAPTER I

COMPUTER FUNDAMENTALS

SECTION I
INTRODUCTION

1.1 GENERAL DESCRIPTION

CHAPTER I
COMPUTER FUNDAMENTALS

Digital computing devices are not new. The first machine to employ some of the principles
of modern computers was invented by Charles Babbage of England in 1822. His device,
which he called the analytical engine, was a steam-driven assembly of gears that
automatically computed and printed tables. The analytical engine incorporated three
elements used in computers today:

a. Storage (memory for holding information)

b. A mill (arithmetic unit), including the machinery for making decisions, to work
on the information

c. A control to govern the mill automatically and call for the next piece of
information in sequence when required

About the same time, George Boole, an English mathematician, was laying the foundations
of logical algebra. Boolean algebra is the cornerstone of computer logic circuit design.

The era of the modern computer began in 1937 with the Mark 1, an automatic sequence­
controlled calculator. Present electronic computers retain the same operational principles
as earlier machines. The great advances in computer technology have been in the fields of
circuit design and new components.

The digital computer is not a brain, but merely a machine that must be given precise
instructions on what and how to perform. What the human lacks in lightning speed and
unerring memory, the computer has in abundance. What the computer lacks in the ability
to reason, analyze, deduce, organize, and plan, man can supply. The computer is
insensitive to human emotion. When the button is pressed, the computer goes all the way,
given correct instructions, power, and data input. But, for all its merits, the computer is
useless if humans have not analyzed and prepared the problem for the machine and told
the computer exactly what it must do and when, in a language understandable to the
computer. The computer does not need human inspiration, but it must have the explicit
direction and control that can come only from the human brain. Man's role in solving this
problem is to program the computer.

1-1

CHAPTER I
COMPUTER FUNDAMENTALS

1.2 COMPUTER CONCEPTS

A digital computer system can be divided into four basic sections as shown in the figure
below. The computer proper, called the central processing unit (CPU), has three
subsections: the control section, the arithmetic section, and the control panel. The
primary unit for the storage of information is called the memory. The input unit provides
information and instructions to the computer. The output unit gives the user the
processed data or information (answer).

1.2.1 Central Processing Unit (CPU)

The control section coordinates computer operations. It directs data transfers and controls
the manipulation of the data. The control section also interprets and executes the
instructions and information read from memory or received from the input unit.

The arithmetic section performs calculations using basic arithmetic operations. It also
manipulates data under the supervision of the control section. The! arithmetic section
usually contains registers (accumulators) that hold the data and the results of the
calculations and manipulations and logic circuitry that enables the data in the registers to
be combined with information transferred from memory or input devic~es.

INPUT

CPU

CONTROL
SECTION

SECTION

1------·--

OUTPUT t---------+tr--~R;;H~E~~- - t-------1
------------~ ~----------~

J'T/1-090/l

CONTROL
PANEL

M~O~ J
Figure 1-1. Typical Computer System

1-2

CHAPTER I
COMPUTER FUNDAMENTALS

The control panel gives the user direct access to and control over CPU operations and
memory. Switches and indicators on the CPU permit examination or alteration of the
contents of memory or determination of the current status of the CPU and the program
operating in it. The control panel and a keyboard input device (teletypewriter) are often
grouped together under the term cons·ole.

1.2.2 Memory

The memory is a storage device for instructions and data. It is termed permanent storage
because its contents remain unchanged unless alterations are specifically requested by
the program or user. Since all information processed by the computer system passes
through memory, m·emory is considered the heart of any data-processing system.

1.2.3 Input Unit

The input unit receives instructions and data from input devices, e.g., punched card
readers, teletypewriter keyboards, magnetic tape or disc devices, etc. The input unit
translates the information received from these devices into a form that memory can
accept and store.

1.2.4 Output Unit

The ouput unit translates finished, processed data (answers) from the CPU into a form
that can be accepted by output devices, e.g., card punches, line printers, magnetic tape or
disc devices, etc., and transmits the translated data to these devices.

Note that some peripheral devices, e.g., magnetic tape or disc devices, can function both
as input and output devices.

1-3

CHAPTER I
COMPUTER FUNDAMENTALS

SECTION 2
NUMERICAL ANALYSIS

2.1 INTRODUCTION

The numerical analysis of a problem demands mathematical skill and ingenuity from the
digital computer user. Scientific and engineering problems are not expressed in terms that
can be directly handled by the computer. Roots, ·vectors, trigonometric functions,
differential equations, and similar mathematical expressions and operations must be
reduced to (or expressed as) a series of arithmetical operations if thE~ computer is to solve
the problem.

Specialists in the field of numerical analysis seldom actually use a digital computer; their
major concern is to provide the computer user with techniques, algorithms, routines, and
other mathematical assistance to permit computer applica-tions. Computer users, however,
must have an elementary knowledge of numerical analysis.

2.2 SQUARE ROOT EXTRACTION

Extracting the square root of a quantity is a basic mathematical operation that is often
useful. The way in which this operation is executed by a digital computer is presented as
an example of an algorithm provided by the science of numerical analysis. The operation
is known as Newton's algorithm for square roots or the square root algorithm.

To begin, let X represent any number and let Y = X; i.e., Y is approximately equal to Vx
or an approximation of Vx. Y can represent Vx with sufficient precision for the required
purpose. Y will be equal to 0 only if X is equal to 0. For any other value of X, Y is equal to
or less than X (Y ~ X). For example, if X = 25, then Y can initially have any value between
0 and 25.

The formula for the square root algorithm is

Y.
1
+ l = l/2 (Y. + X)

I Y· .I
where i = the order of the approximation; i.e., the number of times the equation has been
solved for Y. The following example shows how the square root of 25 is obtained when 24
is selected as the first approximation.

1-4

y1 1 /2(24 + 25)
24

1 /2(24 + 1.0417)

y1 12.5208

y2 1/2(12.52 + 25)
12.52

1 /2(12.52 + 1.9968)

y2 7.2584

y5 1 /2(5.01

1 /2(5.01

Y5 5

y3

y3

y4

y4

+ l§,)
5.01

+ 4.99)

CHAPTER I
COMPUTER FUNDAMENTALS

1/2(7.26 + 25)
7.26

= 1/2(7.26 + 3.4435)

5.3517

1 /2(5.35 + 25)
5.35

1 /2(5.35 + 4.6729)

5.0114

The fifth approximation in this example gave the exact value of Y, but it is possibJe that an
additional step (or one less) would be required if no roundoffs were made during
computation. Frequently, an exact root cannot be found as square roots are often
irrational numbers.

The value first assinged to Y does not affect the precision with which Vx can be found. Y
represents only the number of approximations to be performed.

The theory of square root extraction by this method states that:

a. When any number is divided by its square root, the quotient is the square root.
25/5 = 5

b. When a square root is added to a square root and the sum divided by 2, the
quotient is the square root.

l/2(5 + 5) = 5

1-5

CHAPTER I
COMPUTER FUNDAMENTALS

c. Therefore
y =

y

1 /2(5 + 25)
5

1/2(10)

5

An equivalent and alternate form of the square root algorithm formula is
Y. + 1 = Y. + 1 /2(X · Y.)

I I Y· I
I

The following is an example of this formula using the same values as the first example.
The results of the first three approximations show the equivalency of the two formulas; the
fourth and fifth approximations are omitted.

24 + 1/2(~ . 24) y2 12.51 + 1/2@ . 12.52)
24 12.25

= 1/2(1.0417 . 24) 12.52 + 1/2(1.9968 . 12.52)

24 . 11.4791 12.52 . 5.2616

12.5209 y2 7.2584

y3 7.26 + 1/2@ . 7.26)
7.26

7.26 + 1 /2(3.4435 . 7.26)

y3 5.3517

In conventional usage of the subscript, i = 0 is the first approximate root as illustrated
below. A formula for successive approximations (iterations) is also shown.

1-6

First Approximation

yi+l = 1/2(Y; + 2Q
Y· I

y1 = 112(Y0 + L)
Yo

yi + 1 yi + 1/2(lL Y.)
y. I

I

CHAPTER I
COMPUTER FUNDAMENTALS

Second Approximation

yi+2 = 1/2(Yi + ~
Yi

y2 = 1 /2(Y 1 + 2$)
y1

yi+2 yi+1+ 112QL -Yi+ 1)
yi+ 1

y2 y1 + l/2~ -Y1)
Y· I

The square root algorithm is particularly applicable for use with digital computers due to
the following advantages:

a. The computer is required to execute only the arithmetic operations of addition,
subtraction, and multiplication or division on the data supplied.

b. The programmer need only approximate the square root, and the closeness of
this fi·rst approximation will not affect the precision of the final result.

The precision of the final result is dependent upon the number of iterations performed.
The first approximation determines the number of iterations required to accomplish this
final precision. As illustrated below, it does not matter whether this first approximation is
larger or smaller than the correct root.

Y, =

Let X = 36, and Y0 4

v 0 + 1 12QL - Y0)
Yo

4 + 1/2(36 - 4)
4

4 - 1/2(9 " 4)

4 + 2.5

6.5

6.5 + 1/2@§.- 6.5).
6.5

6.5 + 1 /2(5.5385 - 6.5)

6.5 + 1/2(-0.9615)

6.5 " 0.48

6.02

The square root algorithm is an example of many such algorithms and similar techniques
developed by the science of numerical analysis for use in digital computer problem solving.

1-7

CHAPTER II

PROGRAMMING

SECTION 1
INTRODUCTION

1.1 COMMUNICATION WITH A COMPUTER

CHAPTER II
PROGRAMMING

Any computer accepts and executes a certain number of instructions (commands). Such
expressions can be plain English words or phrases, e.g., CLEAR AND ADD, MULTIPLY,
STORE WORD, etc. However, because of the length of such expressions and the frequency
of their use in computer programs, abbreviated mnemonic forms are often substituted.

1.2 MNEMONICS

A mnemonic code is usually composed of a two- or three-letter group representing a
specific computer instruction. Each of the letters in the group corresponds to the first (or
key) letter in the complete word or phrase. For example, "the instruction CLEAR AND ADD
can have the mnemonic CAD.

Mnemonics ·simplify the writing of computer programs. However, because the computer
responds only to numerical input, neither the mnemonic nor the full written instruction is
readily understandable to the computer. Each instruction, therefore, has a corresponding
numerical equivalent or numerical code.

1.3 NUMERICAL CODES

The numerical code exists in the computer as a combination of the binary digits 0 and 1.
For simple machines, such codes can be expressed in full binary form. However, for most
computers the codes will be condensed to octal (base 8) or hexadecimal (base 16)
numbers. The use of octal or hexadecimal numbers allows the code groups to be expressed
in fewer digits than required by binary notation.

Octal notation is widely used because of the ease with which octal to binary conversions
can be performed. Thus, data fed into the computer in octal form can be readily converted
by the computer to binary for storage in memory. If the computer is not equipped to
perform this conversion, it can be done mentally by the programmer as he loads the data.

11-1

CHAPTER II
PROGRAMMING

1.4 INSTRUCTION SET

The list of instructions or codes that a computer accepts and e)<ecutes is called the
instruction set (repertoire) for that computer. The binary codes for these instructions
comprise the machine language for that computer, the only language the computer
understands.

1.5 PREPARING THE PROBLEM

The writing of a routine for the solution of a particular problem by a specific computer
requires the formulation of a computer message in its machine language. The message
writing procedure. begins with the numerical analysis of the problem and ends with the
writing of the routine in machine language. One or more people may be involved, each
utilizing his individual area of interest to accomplish a specific part ot the total task.

a. The numerical analyst analyzes the problem and finds the best mathematical
approach for the particular application.

b. The programmer decides:

(1) Operations to be performed and order of performance ..

(2) Addresses for the required number of instructions, and any address
modifications necessary.

(3) Addresses for the required number of data words.

The programmer can use mnemonics for the written routine rather than specify
the actual addresses to be used.

c. The coder prepares the final routine in numerical code with all addresses
designated.

When the entire program is coded in machine language, it is ready to be loaded into the
machine.

11-2

SECTION 2
FLOW-CHARTING

2.1 INTRODUCTION

CHAPTER II
PROGRAMMING

In preparing a problem for the computer, the user must first clearly define the problem
and a method of solving it. The computer can only follow instructions and cannot devise
its own methods of problem-solving. The definition of a simple problem and the method of
solving it may be obvious enough that the program can be ~oded directly as a list of
instructions in mnemonic form. However, if a problem is this simple, use of a computer is
probably unnecessary.

In typical computer problems from the business and scientific worlds, solutions require
many steps and decisions. As an aid to programming the solutions to such problems, the
flow chart is invaluable. The flow chart illustrated in figure 11-1 is a schematic diagram of
the logical steps required to solve the problem. The chart consists of a series of connected
geometric figures, each denoting a step in the solving of the problem. Each geometric
shape has a particular logical significance, e.g., rectangles indicate computer processing
steps, diamonds indicate decisions (refer to figure 11-2). The geometric forms are
annotated with explanations and connected with lines and arrows showing the sequence
and direction of process flow.

Since the flow chart is a tool for analysis and clarification, it generally shows only enough
information to ensure:

a. Correct compilation of the instructions in the program

b. Proper planning for and allocation of memory space

Flow-charting is sometimes considered an art rather than a science because it is unlikely
that two programmers will produce identical flow charts for the solution of the same
problem. Given the various ways of approaching any problem, it is not necessary that such
charts be identical. Even the number of functions considered to be a single step for
inclusion in one geometric figure in the chart will vary. Since flow charts are tools, the way
in which this tool is used depends on the programmer's training, experience, ability,
preferences, and even personality. These differences do not reduce the importance of the
flow chart or the necessity of mastering flow-charting techniques. A good flow chart gives
maximum assistance in compiling a program and allocating memory space. Flow-charting
is thus an art with a sound basis in scientific methods.

11-3

CHAPTER II
PROGRAMMING

NOTE:
CIRCLED NUMBERS
CORRESPOND TO THE
NUMBERED STEPS OF THE
EXAMPLES GIVEN IN THE
TEXT.

BRING
INSTRUCTION
(W-1)

~~~ 1--------llol 

POSTINDEXING 

BRING ADDRESS 
GIVEN IN 
PREVIOUS 
ADDRESS 

VT/J-0243 

BRING 
ADDRESS 
GIVEN IN 
n+l 

BRING ADDRESS 
GIVEN IN 
PREVIOUS 
ADDRESS 

® 
INDEX 
(R) +(LAST 
ADDRESS) 

NO 

BRING X 
REGISTER 
(X-R) 

YES 

® 

BRING 8 
REGISTER 
(B-R) 

INDEX 

PREINDEXING 

(R) + (n+l) 

BRING 
ADDRESS 
(R) +(n+l) 

Figure 11-1. Typical Flow Chart 

11-4 



u, 

( CARD 
OPERATION 

TAG 

0 LISTING 
DECISION 

MANUAL 

8 COMMUNICATION OPERATION 
LINK OPERATION 8 0 C> G ( START-STOP 

CLOSED 

\1 ) SUBROUTINE 

DIRECTION DECISION 
OF FLOW 

Q 
VT/J-0240 

OR 
SWITCH 

MAGNETIC 
TAPE 

PAPER 
TAPE 

Figure 11-2. Flow Chart Symbols 

0 VISUAL 
DISPLAY 

., 
:::0 
On 
C')::J: 
:::0)> 
)>., 
S:-t 
S:rrt z::o 
C'): 

< 
C» 

""' sr 
::::J 
Q. 
C» ... 
C» 

3 
C» 
(') 
::::r 
::::J 
CD en 



CHAPTER II 
PROGRAMMING 

The completed flow chart should be examined to see that a program based on it will 
actually allow the computer to solve the problem. Alternate methods that might require 
less computer running time and/or memory space should be considered. When these 
considerations have been taken into account and the final flow chart approved, the 
programmer is ready to start writing the program based on the chart. 

2.2 NOTATION 

The following is a list of common notations used to signify the writing of computer 
programs. 

Notation 

( ) 

Al 

A1·5 

Asn 

< 

> 

Meaning 

The content of; (A) indicates the contents of the 
A register. 

A register bit 1 

A register bits 1 through 5 

A register sign bit 

Indicates the transfer of data; (A)--+ (B) means the 
contents of the A register are transferred to the 
contents of the B register. 

The magnitude of; I X I indicates the magnitude 
of X 

Smaller than; (A) < (B) indicates that the 
contents of the A register are smaller than the 
contents of the B register. 

Greater than; {A) > (B) indicates that the conhmts 
of the A register are greater than the contents of 
the B register 

11·6 



2.3 

2.3.1 

SYMBOLS 

Functions 

CHAPTER II 
PROGRAMMING 

The solution of a problem requires the execution of several functional steps. In the context 
of flow-charting, a functional step is one that requires the exectuion of an arithmetical or 
logical operation on the data being processed or the transfer of data within the computer. 
A function box in the flow chart indicates a functional step or operation as illustrated 
below. 

The number of functions in any function box is at the discretion of the programmer. In the 
preliminary part of the analysis, two or more functional operations may appear in a single 
box if the operations are related or sequential, such as those shown in figure 11-3. As the 
analysis progresses and the flow chart becomes more complete and detailed, complexity 
permits only one functional operation per box. 

Not annotated 

Annotated to show the trans­
fer of word A to address Vl 

11-7 

Annotated to show the addition 
of word A to word B 

---+......________.! A + B ~ 
Annotated to show the addition 
of words A and B and the trans­
fer of the sum to address Vl 



CHAPTER II 
PROGRAMMING 

2.3.2 Decisions 
A decision box is used to show a step which requires the computer to make a decision. 
Computer decisions are two-valued (yes or no or true or false); therefore, the decision box 
has one input path and two output paths (see below). For a particular operation, only one 
of the output paths is taken dependent upon the decision. 

Annotated to show a decision 
based on an equality compari­
son of values of words A and 8 

IF A = 8 

IF A¢ 8 

11-8 

Annotated to show a decision 
based on the comparative values 
of words A and 8 

A:>A>B 
AS 8 



2.3.3· Input/Output 

CHAPTER II 
PROGRAMMING 

Whenever problem solution requires that information be received via the input equipment, 
or transmitted via the output equipment, a·n input/output box is used in the flow chart as 
illustrated. 

The input/output box is annotated to indicate: 

a. The operation to be performed by the use of words such as LOAD, STORE, 
PRINT, DISPLAY, etc. 

1 

b. Data involved as stated in the literal term appearing in the equation (a, x, b- ), a 
memory address, or an auxiliary store address. 

c. The input/output equipment involved. The equipment may be implied by the 
operation (PRINT implies a teletypewriter), or explicitly stated. 

Annotated for the loading of 
word A into memory via the 
card reader 

---+ LOAD A FROM 
CARD READER f---+ 

11-9 

Annotated for the printing of 
the word at address V2 

.. .. PRINT V2 __., .. 



CHAPTER II 
PROGRAMMING 

2.3.4 Start and Stop 
Start and stop boxes designate the beginning and the end of a flow chart as illustrated 
below. 

START 

2.3.5 Fixed Connectors 
. A flow chart appears as a sequence of interconnected boxes arranged in either columns or 
rows. It is normally not possible to present an entire flow chart on one page. Therefore, a 
system of fixed connector circles is used to relate the separate sheets of the flow chart. 
These circles are numbered; all fixed connectors with the same number refer to the same 
location on the chart. A fixed connector may have one or more input/output paths as 
illustrated. 

11-10 



2.4 A SIMPLE FLOW CHART 

CHAPTER II 
PROGRAMMING 

Using only the symbols presented so far, it is possible to formulate a simple flow chart to 
solve the equation: 

T = AX~ + BX 

C START )t--•.,1LOAD A, B, AND XI--_.. 
FROM CP IN VM ------

BX --+-V4 

o-AX' + BX-- V6 1-----.1 PRINT V6 ._____...( __ s_To_P _) 

11-11 



CHAPTER II 
PROGRAMMING 

In the preceding flow chart: 

a. FROM CP IN VM ·indicates that data is input from the control panel and stored 
in variable memory. Variable memory is the area of memory reserved for the 
storage of data with variable values, as opposed to data representing 
mathematical constants with fixed values. 

b. BX~ V4 indicates that 8 is to be multiplied by X and the product stored in 
variable memory address V4. V4 is not the actual address 4, but is relative to 
other addresses in the flow chart (all relative addresses are replaced with 
specific memory addresses when the chart is coded). 

This flow chart is only one of many that could be constructed for this particular problem. 
The number of boxes used and the amount of information given in each box is at the 
discretion of the programmer. For instance, the loading of each of the three terms (A, 8, 
and X) could be shown by a separate input box, and each of these boxes could be 
annotated to show the storage address in variable memory. 

The general rule is to show only the information necessary to compile the list of 
instructions and to ensure proper allocation of memory addresses. 

2.4.1 Substitution 
The preceding flow chart does not explicitly show when the value of T is computed but 
implicates it in the function box AX

2 + BX before fixed connector box 2. At this point, a 
substitution box can be used to indicate that a computation has been performed and the 
result can be substituted to simplify the notations that follow. 

Annotated for point of 
computation and substitution 

II 
., 

Ax· + sx~r 

11-12 

Annotated to change the value of 
a subscript 



The substitution box can also be used to: 

a. Advance or change the value o~ a subscript (see above). 

CHAPTER II 
PROGRAMMING 

b. Provide a term or quantity that is equivalent to one that is not available (i.e., the 
cosine of 60° that is available in memory for the sine 60° that is not). 

c. Modify ·an address to effectively substitute one address for another. 

2.4.2 Subroutines 

Often the solution of a problem requires the solution of one or more subordinate or 
auxiliary problems. If these secondary problems appear repeatedly, either within the same 
problem or in different problems, a separate routine is written for each problem and used 
whenever that problem appears. These previously prepared routines for secondary 
problems are called subroutines. 

A flow chart is prepared for a subroutine in the same manner as larger routines except 
that the START and STOP boxes are annotated identically to identify the subroutine. A 
subroutine computation box is used to indicate where the subroutine is to appear on the 
larger flow chart; the subroutine flow chart itself does not appear. 

11-13 



CHAPTER II 
PROGRAMMING 

2.4.3 Assertions 

An assertion box is used to present additional information or expllanatory notes. It is 
appended outside the path of the flow chart to indicate where the information is 
applicable. 

~RFORM 5 
L:'RATIONS 

I 
I 
I 
I 

'---v-_-vx_x----J)>--............ ._ 

2.5 A MORE COMPLICATED FLOW CHART 

Figure 11-3 is a flow chart to solve the problem: 

T = AX
2 + BX + Vx + sin 0 

Subroutines are available for AX
2 + BX, VX, and sin 0. It is assumed that the correct 

values of all terms are stored at a known memory address (any address except 0). A value 
for Y in the square root algorithm must be assigned and stored in memory. 

Between fixed connectors 2 and 3, the value of 1 is added to the subscript value of Y each 
time a square root iteration is performed. This value is then compared with a value in the 
decision box to determine when the required number of iterations (in this case, four) have 
been performed so that the computation can proceed to the next step. During the square 
root computations a closed loop exists in the flow chart between the bottom of the 
decision box and the left end of the square root subroutine computation box (fixed 
connector 2). Such a loop is known as a program loop. 

Since a decision box always has two output paths, the appearance of a decision box in a 
flow chart will always produce a program loop or a program branch; i.e., if one of the 

11-14 



VTI/-1163 

LOAD 0 AND 
Yo FROM 

CP IN VlO,Vll 

PERFORM 
FOUR 

INTERATIONS 

CHAPTER II 
PROGRAMMING 

1----·~0 

i+l-i 

1----+~8 

J------+~01 C + D t----·~8 

8f-----t~~IC+D-V241 t-----.t·~~-----~ ... c STOP ) 

Figure 11-3. Flow Chart for T = AX
2 + B X '\IX sin 0 

11-15 



CHAPTER II 
PROGRAMMING 

output paths does not loop back to a previous point in the. flow chc~rt, then the decision 
rmust be to branch out on one or the other of the two possible output paths. Thus, a 
branch determines which of two possible methods (or program paths), are to be used for 
the remainder of the problem solution. 

11-16 



SECTION 3 
MACHINE LANGUAGE PREPARATION 

3.1 INTRODUCTION 

CHAPTER II 
PROGRAMMING 

After a problem has been analyzed and a method of solution determined by the 
construction of a flow chart, the routine (or program) is prepared. The programmer first 
verifies that: 

a. The flow chart utilizes a method that will actually solve the problem. 

b. This method is presented in its simplest form. 

c. There is not a more efficient method. 

3.2 INSTRUCTION REPERTOIRE 

A program is written for a specific computer in response to the language used and the 
repertoire provided. The number of instructions in a repertorie varies. A large repertoire 
does not necessarily mean that the program will be more complex, only that more 
instructions are available for the programmer's use. A thorough knowledge of the specific 
computer's repertoire is necessary to fully utilize the instructions provided. 

To write a program, the programmer must know: 

a. The name and mnemonic of each instruction in the repertoire. 

b. The result obtained through the use of each instruction. 

c. The conditions governing the use of a particular instruction. 

d. The type and format of the computer's instruction and data words. 

e. The types of addressing available, and the use of addresses with the various 
instructions. 

11-17 



CHAPTER II 
PROGRAMMING 

3.2.1 Instruction Types 
All computer instructions are classified as arithmetic or processing instructions, transfer 
of information instructions, or transfer of control instructions. 

Certain instructions are included in two classifications; i.e., instructions that transfer data 
to the arithmetic unit and perform an operation there. Examples are tlhe ADD, SUBTRACT, 
MULTIPLY, and DIVIDE instructions. This type of instruction always n~quires the use of an 
address in the address part of the instruction word to specify the location of the data 
word. 

SHIFT LEFT and SHIFT RIGHT are examples of instructions that are only arithmetic or 
processing instructions. This type of instruction does not require an address as no data 
are transferred. 

Transfer of information instructions such as LOAD and STORE generally require the use of 
an address in the instruction word to indicate the point of origin 01r destination of the 
word being transferred. An exception is an instruction such as TF~ANSFER where the 
origin and destination are given. 

There are many transfer of control instructions, including all the JUMP instructions. 
These instructions contain an address in the address part of the instruction word to 
indicate the location of the instruction to which the program jumps. This is the address of 
another instruction not a data word. 

3.2.2 Addresses 
A program can use either the actual address or a relative address. If the problem is fairly 
simple, the actual address is used throughout. In more comple>~: problems, relative 
addresses are used until memory requirements are established and a1ctual addresses can 
replace the relative addresses. Actual addresses are expressed in octal or hexadecimal 
notation; relative addresses can use any convenient format. 

3.2.3 Codes 
In the program, instructions are written as mnemonic code references. Each mnemonic in 
turn references a numeric code which is the final input to the computer and constitutes 
the machine language. Mnemonic codes and the associated num1eric codes for each 
instruction are provided by the manufacturer of the specific computer. After the program 
is completed, the mnemonics are coded into the numeric equivalents. 

11-18 



3.3 SAMPLE PROGRAMS 

CHAPTER II 
PROGRAMMING 

The following programs are presented to illustrate a computer repertoire. A specific 
computer repertoire can comprise more or fewer instructions than used in these 
programs. 

A digital computer is normally used only for complex or lengthy problems as operating 
expense does not make it practical for use in simple problems. The examples that follow 
are presented as illustrations of flow charts and repertoires; they are too simple to be 
typical computer problems. For additional information about these problems, refer to the 
applicable system reference manual and to the instruction repertoire (figure 111-7). 

11-19 



CHAPTER II 
PROGRAMMING 

Given: 

Problem: 

PROBLEM 1 

Three constants stored in constant memory locations: 
C40, C41, and C42. 

To store these constants in variable memory locations: 
VlOO, VlOl, and Vl02, respectively. 

Flow chart 

C40-+V100 C41-Vl01 C42_.Vl02 

11-20 



Step No. 

000 

001 

002 

003 

004 

005 

006 

Operation 

LOA 

STA 

LOA 

STA 

LOA 

STA 

HLT 

Repertoire 

Address 

C40 

VlOO 

C41 

VIOl 

C42 

V102 

CHAPTER II 
PROGRAMMING 

Remarks 

This instruction clears the 
accumulator to 0 and loads the 
contents of C40 into the accumu­
lator. 

This instruction stores the con­
tents of the accumulator in VlOO. 

Same operations as step 000, for 
the contents of C41. 

Same as step 001, stored in VIOl. 

Same as step 000, for C42. 

Same as step 001, stored in Vl02. 

Computer stops. End of program. 

NOTE: The step number column is used at the programmers's option to keep track of 
the program and provide a means of reference to a particular operation in the program 
sequence. 

11-21 



CHAPTER II 
PROGRAMMING 

Given: 

Problem: 

PROBLEM 2 

A located in C40, B in C41, and C in C42. 

Write a program to solve for Y and store Y in V200: 
Y = 3A · 28 + C. 

Flow charts 

A·B·B ~3A- 28 + C -

~ v-.v2oo ... _r STOP.) -'" 

(STA_RT )t--.-.·113A- 28 + C - Ylt--~ ..... ~ Y--V200 ] ..... ~-.-..(STOP ) 

Two flow charts are shown; both present the same solution to the problem. The first flow 
chart is more detailed and breaks the operations down into three computation boxes, plus 
a transfer box. The second flow chart places all the computations into one substitution 
box. 

11-22 



Step No. Operation 

000 LOA 

001 ADD 

002 ADD 

003 SUB 

004 SUB 

005 ADD 

006 STA 

007 HLT 

Repertoire 

Address 

C40 

C40 

C40 

C41 

C41 

C42 

V200 

11-23 

CHAPTER II 
PROGRAMMING 

Remarks 

Accumulator register (AR) is cleared. 
Contents of C40 loaded into AR. 

A + A = 2A in AR. 

A + 2A = 3A in AR. 

3A · B in AR. 

3A · 2B in AR. 

3A - 2B + C in AR. 

Y = 3A - 2B + C to V200. 

Computer stops. End of program. 



CHAPTER II 
PROGRAMMING 

PROBLEM 3 

Problem 3 illustrates the use of program tags. Program tags aid the programmer in 
jumping to an unknown program address. They are annotated with one to four 
alphanumeric characters, one of which must be a letter. X, X3, X1~23, XYZ, ABCO, XXX, 
and PB12 are examples of program tag notation. 

Given: 

Problem: 

Five numbers are stored in CO through C4; ClO 
contains 0; Cll contains 1. 

Write a program to place the count of negative numbers 
in VlOO, the count of positive numbers in VIOl. 

To solve the problem, write a program that: 

a. Clears addresses VlOO and VIOl to 0. 

b. Transfers each number to the accumulator to determin1e if it is positive or 
negative. 

c. Stores a one in VlOl if the number is positive, and a one in VlOO if it is 
negative. 

Figure 11-4 illustrates a flow chart that causes the computer to step sequentially through 
the program if all the numbers are positive. If CO is a positive number, the program 
proceeds normally to store a one in VIOl. If CO is negative, however, the computer must 
iump out of the normal sequence to store a one in VlOO. Therefore, provision in made in 
the program to jump to some other step in the case of a negative number. Since it is not 
known when the program is written where a negative number will occur, program tags are 
used. This will allow the programmer to go back and assign a program step number to the 
program tag. 

The reference boxes in the flow chart are annotated to correspond to the step number in 
the repertoire that is associated with the program tag closest to that box. 

11-24 

··-------··-·--· ·"----··---· ···--·-·---------- ----



co--AR 

C2 --AR 

r\:> 
(J1 

C4--AR 

< 
AE m .... c;· 

::I , 0.. 
m 

::tJ ... 
On m 
C>:::x: 3 ::tJ)> 
)>, m 
s:-1 () 

::I" S:l""' :;· -::o z (1) 
G') (I) 

VTJJ-1164 

Figure 11-4. Flow Chart for a Positive and Negative Number Count 

~ 



CHAPTER II 
PROGRAMMING 

Jag Step No. 

000 

001 

002 

003 

004 

005 

006 

007 

AF 010 

011 

012 

013 

014 

AG 015 

016 

017 

Operation 

LDA 

STA 

STA 

LDA 

JAN 

LDA 

ADD 

STA 

LDA 

JAN 

LDA 

ADD 

STA 

LDA 

JAN 

LDA 

Repertoire for Problem 3 

Address Remarks 

ClO 0 in;AR. 

VlOO 0 in VlOO. 

VIOl 0 in VIOl. 

co Contents of CO in AR. 

AA (035) If CO is negative, jump to AA 
·(we learn later in the program 
that AA is step 035 and add the 
step number at that time). 

Cll 1 in AR if CO is positive. 

VIOl Contents of VIOl (0) to contents 
of AR (1). 

VIOl Contents of .AR to VIOl. 

Cl Contents of Cl to AR. 

AB (041) Jumps if Cl is negative. 

Cll 1 in AR if Cl is positive. 

VIOl Add contents of VIOl to AR (1). 

VIOl Contents of AR to VIOl. 

C2 Contents of C2 to AR. 

AC (045) Jumps if C2 is negative. 

Cll 1 in AR if C.2 is positive. 

11-26 



CHAPTER II 
PROGRAMMING 

Repertoire for Problem 3 (continued) 

Tag Step No. Operation Address Remarks 

020 ADD VlOl Add contents of Vl 01 to AR (1). 

021 STA VlOl Contents of AR to VlOl. 

AH 022 LOA C3 Contents of C3 to AR. 

023 JAN AD (051) Jumps if C3 is negative. 

024 LOA Cll 1 in AR if C3 is posifive. 

025 ADD VIOl Add contents of VIOl to AR (1). 

026 STA VIOl Contents of AR to VIOl. 

AI 027 LOA C4 Contents of C4 to AR. 

030 JAN AE (055) Jumps if C4 is negative. 

031 LOA Cll 1 in AR if C4 is positive. 

032 ADD VIOl Add contents of VIOl to AR (1). 

033 STA VIOl Contents of AR to VIOl. 

034 HLT Stops here if C4 is positive. 

AA 035 LDA Cll 1 in AR if CO is negative. 

036 ADD VlOO Contents of VlOO (0) to contents 
of AR (1). 

037 STA VlOO Contents of AR to VlOO. 

040 JMP AF (010) Jumps back to bring in Cl. 

AB 041 LOA Cll 1 in AR if Cl is negative. 

042 ADD VlOO Contents of VlOO added to 

11-27 



CHAPTER II 
PROGRAMMING 

Repertoire for Problem 3 (continued) 

Tag Step No. Operation Address Remarks 

contents of AR ( 1 ). 

043 STA V100 Contents of AR to V100. 

044 JMP AG (015) Jumps back to bring .in C2. 

AC 045 LDA C11 1 in AR if C:2 is negative. 

046 ADD V100 Add contents of V100 to AR (1). 

047 STA V100 Contents of AR to V100. 

050 JMP AH (022) Jumps back to bring in C3. 

AD 051 LDA C11 1 in AR if C:2 is negative. 

052 ADD V100 Add contents of V100 to AR (1). 

053 STA V100 Contents of AR to V100. 

054 JMP AI (027) Jumps back to bring in C4. 

AE 055 LDA C11 1 in AR if 0~ is negative. 

056 ADD V100 Add contents of VlOO to AR (1). 

057 STA V100 Contents of AR to V100. 

060 HLT Stops here if C4 is negative. 

To review this program: 

a. In Step 003, the first number (CO) is transferred to the accumulator. A count 
will be stored in either of two locations, depending upon wlhether this number is 
positive or negative. 

11-28 



CHAPTER II 
PROGRAMMING 

b. In Step 004, the program states that if the number is negative, it will be dealt 
with during a later portion of the program. The step number is not available yet, 
so the programmer tqgs the point as AA and puts a reference box above the 
function box on the flow chart. 

c. Continue the program as though CO and all the other words are positive, but a 
decision box and alternate branch are charted following each function box 
annotated to show the transfer of a word in the AR. 

d. At Step 034, a stop operation is programmed. To be complete, the program must 
now store a count of the negative numbers. 

e. At the first negative number, the computer was directed to jump to AA. 

(1) The programmer can now assign a program step number to AA; this is 
Step 035. 

(2) He goes back to Step 004 and indicates that the address of tag AA is Step 
035. 

(3) He must also complete a cross reference to indicate that Step 035 is AA by 
placing AA in the column to the left of the step number. 

f. Assuming that CO was negative, a one must be stored in V100; this is Step 037. 

(1) The computer must return to examine the second number at Step 010. 

(2) The programmer programs an Unconditional Jump (JMP) to tag AF. 

g. Looking back to where the second number (C1) was brought into the 
accumulator, he finds that this is Step 010. He tags Step 010 with an AF. 

h. He continues with this procedure until he has stored a count of all negative 
numbers in V100 and then programs a HL T operation at Step 060. 

11-29 



CHAPTER II 
PROGRAMMING 

3.4 MACHINE LANGUAGE 

Figures 11-5 and 11-6 apply flow diagrams to problems involving decisions. The problem is 
to make a flow diagram and write the machine language for a program that will count the 
number of positive numbers contained in a group of four core memory words. The count is 
kept in location 600. 

Machine language programs are· written in the language that a specific computer 
understands. In the following programs, the code column numbE~rs are the machine 
language; the mnemonics are nothing more than a memory aid. Hefer to the table in 
figure 11-5 for an example of a program using machine language. 

3.5 LOOPING 

Problems programmed for computer solutions have some repetitious aspects; a repetitious 
process drawn on a flow chart appears as a loop. A single flow chart can have several 
loops, and loops can be nested within one another. 

Looping indicates a return to an earlier operation thus avoiding a sequence of almost 
identical operation boxes. When the return is made, the computation will involve either a 
new data item or a new estimate of a computed quantity. The operation will remain the 
same, however. Looping is used in solving the problem illustrated in the flow chart in 
figure 11-6. 

3.6 INDEXING 

Index registers reference a sequence of memory addresses and are used in nonloop 
situations to permit rapid access to tables in memory and to enable branches beyond 
range limits. Thus, indexing permits a number of operations to be executed rapidly. 

In previous examples involving memory storage and various mathematical processes, 
subscripts were generally assigned to the variables. Operations to be performed were 
indicated in terms of these subscripts. For example, a i represented the i value ~fa series 
of numbers a. To indicate that, after ai was processed ai + 1 was to be processed, 
operation on the subscript was required: i + 1 = i. This means that 1 is to be added to 
the subscript, which generates the address to the next number. 

To process ai as indicated, it is necessary to modify the appropriate instructions. They 
can be modified by treating them as data and adding 1 to the ope1ration and addresses 
once each loop cycle. Three operations on the index register are required: 

11-30 



0 = 0600 

NO 

(0600) + 1 

= 0600 

NO 

(0600) + 1 

= 0600 

NO 

(0600) + 1 

= 0600 

J'TI/-1165 

STEP 

500 

501 

502 

503 

504 

505 

506 

507 

510 

511 

512 

513 

514 

515 

516 

517 

520 

521 

522 

.530-533 

(0600) + 1 

= 0600 

varian data machines ~ 

CHAPTER II 
PROGRAMMING 

MACHINE LANGUAGE 

CODE MNEMONIC REMARKS 

005001 TZA AR·O 

050600 STA AR ML 600 

010530 LDA AR = WORD 1 

001004 JAN IS WORD NEGATIVE 

000506 

040600 INR ADD 1 TO LOCATION 600 

010531 LOA AR = WORD 2 

001004 JAN IS WORD 2 NEGATIVE 

000512 

040600 INR ADD 1 TO LOCATION 600 

010532 LOA AR = WORD 3 

001004 JAN IS WORD 3 NEGATIVE 

000516 

040600 INR ADD 1 TO LOCATION 600 

010533 LOA AR = WORD 4 

001004 JAN IS WORD 4 NEGATIVE 

000522 

040600 INR ADD 1 TO LOCATION 600 

000000 HLT HALT 

DATA LOCATIONS 

Figure 11-5. Count of Positive Numbers 

11-31 



CHAPTER II 
PROGRAMMING 

0 "' 0600 

i = 7 

NO 

(0600) + 1 

:::1 0600 

t•TII-1166 

MACHINE LANGUAGE 

STEP CODE MNEMONIC REMARKS 

500 005001 TZA AR = 0 

501 050600 STA ML6·00 = 0 
A 

502 030515 LOX XR = NUMBER OF WORDS 

503 015520 LOA AR =WORD 

504 001004 JAN IS WORD POSITIVE 

505 000507 

506 040600 INR ADCI 1 TO LOCATION 600 

507 005344 DXR XR = XR·1 

510 001040 JXZ ANY' MORE WORDS TO CHECK 

511 000514 

512 001000 JMP RETURN FOR ANOTHER WORD 

513 000503 

514 000000 HLT HALT 

515 000007 DATA LOCATION FOR NUMBER OF 
WORDS 

520-530 DATA LOCATIONS 

Figure 11-6. Loop Program 

11-32 



a. Setting the index register 
1 = i 

b. Increasing or decreasing the index register 
i + 1 = i or i - 1 = i 

c. Testing the value of the index register 
(i - n) = 0 

CHAPTER II 
PROGRAMMING 

The 620 computer systems include index registers for performing indexing operations. The 
contents of these registers are used to automatically modify the operand address of 
instructions. Index registers are designated by number within the computer. If an 
instruction makes reference to an index register by its number, the contents of its 
operand address are modified by the contents of that register. 

3.6.1 Specifying the Index Reg1ster 

A specified index register is referred to as a tag; a tag is indicated in machine language by 
placing its numerical designator in the M field (bits 9 through 11) of the machine code. 
The first index register (the X register) is designated by a 5 in the M field; the second (8 
register) by a 6. The instruction counter, which is a form of address modification, is 
designated by a 4 in the M field. 

05 4 100 
05 5 100 
05 6 100 

P counter 
X register 
8 register 

In an instruction with no tag (0 in the M field), the address of the word that is processed 
1 is simply the operand address. In an instruction with a tag, however, the aqdress of the 

processed word is given by the sum of the operand address and the contents of the 
modifier. This address modification is automatic and temporary; the instruction does not 
change, but the affect is as though it were changed during the execution of the 
instruction. For example: let XR = 100. The instruction 12 5 000 adds the address 
000 + 100 to form the effective address so that the contents of location 100 will be added 
to the accumulator. 

3.6.2 An Example of Indexing 

Given: A table three registers in length, starting at loca­
tion 0550. The sum is to be placed in register 0600. 

11-33 



CHAPTER II 
PROGRAMMING 

Problem: Write a program to compute the sum of the contents of 
the table. 

The table looks like this 

0550 
3 

0551 
4 

0552 
5 

Refer to figure 11-7 as an aid in following the sequence of events described below. 

a. TZA 005001 clears the accumulator and LDX 030512 sets the first index 
register. The current count of the index register is cleared to 0 and the value 2 
placed in it; thus, the index appears in binary as: 0000000000000010. The 

NO 

f/TI/-/167 

LOAD 

ACCUMULATOR 

I • 2 

ADD CONTENTS 
OF NEXT 

LOCATION 
TO AC 

STEP 

500 

501 

502 

503 

504 

505 

506 

507 

510 

511 

512 

550 

CODE 

005001 

030512 

125550 

001040 

000510 

005344 

001000 

000502 

050600 

000000 

000002 

000003 

000004 

000005 

000000 

PLACE SUM 

IN LOC 600 

MACHINE LANGUAGE: 

MNEMONIC REMARKS 

TZA AR • 0 

LOX PREPARE TO CYCLE 

ADD MAKE ADDITION 

JXZ ANY MORE WORDS TO CHECK 

DXR XR • XR·1 

JMP RETURN FOR NEX1r LOCATION 

STA STORE SUM 

HLT HALT 

DATA NO. CYCLES • 1 

DATA 

DATA 

DATA 

DATA STORAGE LOCATIClN 

HALT 

Figure 11-7. Add a Table of Three Numbers 

11·34 



CHAPTER II 
PROGRAMMING 

index register is set to 2 to cause the program to perform three passes of the 
loop for the three core locations in the table. 

b. The instruction ADD 125550 at core location 0502 is executed next. During the 
interpretation of this instruction, the computer forms the effective address to 
reference core for data. The contents of the address field (0550) are added to 
the contents of the specified index register (the first index register with a 
current count of 2). Therefore, the effective address is 0550 + 2, or 0552. The 
result of the operation of the instruction at 0502 thus causes the contents of 
core location 0552 to be added to the contents of the accumulator (0 at the start 
of the program). 

c. If the currrent count of the specified index register is 0, transfer control to the 
instruction whose location is given in the address field of the jump instruction, 
JXZ. If the current count is not 0, do not jump; continue with the next 
instruction in sequence, DXR. 

d. The DXR instruction subtracts 1 from the current count of the index register. 
The current count is 2; therefore, 2 - 1 = 1. The program goes to the next 
instruction JMP to 0502 which is a loop instruction to ADD 125550. The 
effective address for this instruction is now 0550 + 1 or 0551; therefore, the 
contents of location 0551 are added to the accumulator. 

e. The process is repeated. The JXZ test does not indicate a jump; the DXR 
instruction at 0505 decreases the index register count by 1. The program then 
loops again to ADD 125550 and the resulting effective address of 0550 + 0 
adds the contents of location 0550 to the contents of the accumulator. 

f. This time the JXZ test is positive as the count of the index register is 0. The 
program then jumps to location 0510 and places the total in the accumulator 
register into location 0600. 

g. The program halts at location 0511. 

11-35 



CHAPTER II 
PROGRAMMING 

3.6.3 Address Modification by Indexing 

Indirect addressing is used primarily in address modification. For example, consider a 
situation where five instructions exist in a program, each having DATA 1 in its address 
field. If, for a second pass, we needed to add 1 to the address field of each of these five 
instructions, five or more instructions would be needed to perform the modification. With 
indirect addressing, each of the five original instructions could indin~ctly address DATA 1 
and thus refer to a single register at the end of the program to obtain the effective 
address. Then, if modification is needed, the single register at the end of the program can 
be modified. 

The 620 computer systems have multilevel indirect addressing. In zero-level addressing, 
the operand is located in the address field. In first-level or direct addressing, the address 
of this operand is 'located in the address field; the operand is one level removed from the 
instruction. If an operand is two levels removed, the addressing is second·level or indirect; 
the address of the operand (the indirect address) is located in a word whose address is in 
the instruction. 

To indicate that the operand in an instruction is two levels removed, a special mark 
(called a tag or a flag) is required in the instruction. The 620 computer systems use a 7 in 
the operation field of the instruction word to indicate indirect addressing. The following is 
an example of indirect addressing. For example, the machine language word 010100 
means that the contents of 100 is to be loaded into the accumulator. If this instruction is 
flagged as 017100, the accumulator is to be loaded with the contents of the location 
specified in 1 00; 100 is the operand address of the instruction. 

3. 7 SUBROUTINES 
The programmer can create subroutines when mathematical routines are repeated in 
several places within one program. The subroutine can be entered from each point in the 
program where it is needed; the program returns to that point when the subroutine has 
been executed. The inputs to a subroutine, therefore, are called entrance parameters; the 
outputs from a subroutine are exit parameters. These parameters are sometimes 
contained in a location immediately following the branch to the main program. The 
subroutine branch is referred to as a call. 

Subroutines are considered a single operation or instruction which operates on given data. 
The operation: Sum of the squares of (A), (B), (C), and (D) can be written as: SUMSQ, 
A/8/C/D/E. This instruction operates on four numbers and stores the sum of their 
squares, thus A, B, C, and D are the inputs and E is the address of the answer. 

11·36 



CHAPTER II 
PROGRAMMING 

Figure 11-8 illustrates the control path from a main program to a subroutine at three 
different locations. 

3.8 CODING 

The foregoing examples show routines that consist of a list of mnemonic code groups with 
an associated list of relative addresses. The coder converts each relative address into an 
instruction word so that the routine becomes a list of instruction words with an 
accompanying list of data words. Each of the words in these lists also has an associated 
address specifying where that word is to be stored in memory. 

The numeric code equivalent of a mnemonic code group becomes the operation part of the 
instruction word. An actual address is substituted for the relative address, and this 
becomes the address part of the instruction word. In some cases for the repertoire used in 
the examples, two addresses are used in the instruction word. For example, when a word 
is transferred from a specified address in the input equipment to a specified address in 
the internal memory, the instruction word mu_st have a format that accommodates both 
addresses. However, when either or both of the address parts of an instruction word are 
not used, the coder must fill all the bit positions in the unused parts of the word with 
zeros or an address might be inadvertently specified. 

The instruction words as prepared by the coder can be written in either binary or octal 
notation, depending upon the computer requirements. In any case, the final list of 
instruction words as prepared on paper by the coder must be entirely in numerical 
expressions. Although the work of the coder does not require a high order of ingenuity or 
mathematical ability, it does require painstakingly close attention to detail. If even one 
digit is in error in the final routine, it is quite likely that the solution, if any, will be 
unusable. 

11-37 



CHAPTER II 
PROGRAMMING 

LOCATION 

100 
101 BODY OF 

102 MAIN 

103 PROGRAM 
104 

105 
106 

107 
110 

111 

112 

113 

114 

115 

116 

1 JMPM 

1 JMPM 

I XSQT 

BODY OF 

MAIN 

PROGRAM 

I XSQT 

117 BODY OF 

120 MAIN 

121 PROGRAM 

122 

123 

124 

125 
126 

127 

130 

131 

I JMPM I XSQT 

BODY OF 

MAIN 

PROGRAM 

._______ __ , 
BECAUSE ANY JMPM INSTRUCTION 

SAVES THE NEXT CORE LOCATION 

V,· IN LOCATION 1328 AND THEN 

JUMPS TO THAT Cl: LL + 11 IT IS 

POSSIBLE TO ENTE:R AND RETURN 

WITHOUT LOSING ·rRACK OF 

~.,. WHERE WE ARE. 

132 XSQTI ENTR 1 107-116·125 

133 
134 BODY OF 

135 SUB· 

136 ROUTINE 
137 

140 I JMP* I XSQT 

VT/1-1168 

Figure 11-8. Subroutines 

11-38 



SECTION 4 
PROGRAMMING IN ASSEMBLY LANGUAGE 

4.1 DAS ASSEMBLER 

CHAPTER II 
PROGRAMMING 

The 620 assembler (DAS) permits instructions, addresses, address modifiers and 
constants to be specified in a straightforward manner. 

a. Instruction mnemonics such as STB (Store B Register) are used in place of 
numeric instruction codes. 

b. Addresses can be referenced by labels rather than absolute locations. 

c. Constants can be defined without conversion to binary or octal notation. 

d. Comments can be added either between symbolic statements or with ~: 1e 
statement itself to document the program. 

Several versions of the DAS are available for the 620 computer systems: DAS 4KA, DAS 
8KA, DAS MR (for use with MOS), and stand-alone MR. 

4.1.1 DAS 4KA 

There are two sections to the DAS 4KA assembler. The first section (1/0) allows the user 
to specify the type of I 10 devices to be used. The second section is the assembler to be 
used with 4K of memory and up. DAS 4KA recognizes 620/f mnemonics. 

11-39 



CHAPTER II 
PROGRAMMING 

4.1.2 DAS 8KA 

There are two sections to the DAS SKA assembler. The first section (I /0) allows the user 
to specify the type of I /0 devices to be- used. The second section is the assembler to be 
used with 4K of memory and up. DAS 8KA recognizes 620/f mnemonics. 

4.1.3 DAS MR 

The DAS MR assembler is designed to be used with the Varian Master Operating System 
(MOS). This enables the user to assign different l/0 devices before calling the assembler. 
DAS MR recognizes all instructions used with the various 620 computer systems, plus 
several new ones including micro-programming. 

4.1.4 Stand-Alone MR 

Stand-Alone MR functions in the same manner as DAS MR but it can operate without the 
supervision of MOS thus allowing more memory for user programs. 

4.2 DAS SOURCE LANGUAGE 

DAS translates symblolic instructions (the source program) into binary computer code (the 
object program). Except for certain pseudoinstructions, each symbolic source statement 
will generate one or two computer words. 

Computer codes generated by DAS fall into two categories, instructions and data. A source 
statement consists of several parts, or fields. Each source statement can contain a 
combination of these fields depending on the requirements of the instruction or 
pseudoinstruction being processed. The fields are: the label, instruction, variable and 
remarks fields. 

11-40 



4.3 

4.3.1 

STATEMENTS 

Statement Format 

CHAPTER II 
PROGRAMMING 

A symbolic source statement has four fi.elds: label, operation, variable, and comment. 
Each field is variable in length and terminated by one or more blank characters. The 
label, instruction, and variable fields can also be separated by commas. The label field 
must begin in the first character position and other fields can begin in any remaining 
character position; this is described as free-form. However, for convenience and uniformity 
of the assembly listing output, it is suggested that the beginning of each field appear in 
the same character position throughout an assembly. 

4.3.2 Label Field 

A symbolic source statement can be associated with a symbolic name or label which 
allows the statement to be referenced from other statements within the program. A label 
field is usually optional. If used, the label field must begin in the first (left-most) character 
position, and is terminated by a blank character or comma. 

4.3.3 Operation Field 

The operation field begins in the first nonblank character position following the label field, 
if used. If the label field is not used, the operation field begins in the first nonblank 
character position after the first character position. The operation field is terminated by a 
blank character or comma. If the operation field is absent or not definable, the statement 
is in error and two No Operation (NOP) instructions are generated in the object program. 

11-41 



CHAPTER II 
PROGRAMMING 

4.3.4 Variable Field 

The variable field, if used, must begin within the eight nonblank character positions 
following the operation field. If more than eight blank character positions occur after the 
operation field, the variable field is considered void and a value of zero (absolute) is 
assumed. Also, if an invalid term is encountered in the variable field, a value of zero 
(absolute) is assumed. The variable field contains subfields separated by commas. 

4.3.5 Comment Field 

The comment field is optional and is used as a documentation conv~;mience. The contents 
of this field are output on the assembly ,listing, but otherwise have no affect upon the 
assembly process. The comment field begins in the first nonblank character position 
following the variable field, or the operation field if the variable field iis absent. 

4.3.6 Comment Statements 

A statement with an asterisk (':c) character in the first character position is entirely 
commentary and its contents have no affect upon the assembly process. However, the 
statement is output in the assembly listing. 

4.3.7 Blank Statements 

A statement comprising blank characters from the first character position to character 
position 72 is processed as a comment statement. 

11-42 



CHAPTER II 
PROGRAMMING 

4.4 PROGRAMMING IN SYMBOLIC ASSEMBLY LANGUAGE 

Figures 11-9 through 11-16 provide examples ·of symbolic assembly language programs. Each 
example is in two parts: the program as coded on· a DAS coding form, and the program 
as it appears on the assembled listing. Refer to the comment field for a functional 
explanation of each instruction. 

11-43 



II 
""On < ::O::I: I» 
0> ... 
C)""(J iir 
::0-t ::s 
)>1"'1 

Q. 3:X' I» 
~· ... 
z I» 
C) 3 

~· ,., NOGIAM 

I» 
(') 
::r -· ::s 
CD en 

I 1 . i ~;g-~~ · o~s~o~o' 1 1 ~ : : : s:riAiRT a iNiGI ~ o o R!E s1s tl)F P R«H; 
B£6_M~ l_p!\ AIH E I : I A. : A'R i l I I ! ' I i i I i t I I i 

I s:u,s: I BAK.E t i I I I I ; A ·- !8 : ~!R: I I I l I I i • 
! I i i 

I ! 
I 

I I ~ i 

L DIA I IAIBIL E I A : IAR i I 

s u 8 I "~ NID i A - ,. = ,._R j 
JAIN I STRic I I I A.R = NEG c JS LAIRGESIT : I l ! 

i 
: I I 

IS1'tG I ! I 
' ' i I I I i 

I I ~ I i 

r[KdB 1 oiA 1 IB~I! e:. 1 1 1 :. Bl -, 1AR 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 I : I I I I I I I I ! I I I 
iSUIB I ~--~NID i : I I 8 _: _lC! : ~R l ; I 

i JAN l ISh'Rlc. I i I 'j I ~R ~I lrt!EG c ]IS 1 lt~:RiGEST : l 
I I 

1 z 3 • s ' 7 i tj1o u uiu•• 1.5 16 11 lljlt 20l2t~22il 24'2.5 26)27'28!29 JO :Jt'l2·JJ J.4:Js!36il7 31139 .aj.u •2 1 ~:u 45 "'i•7i.&a~49 so 1st152's:Ji5' ssj56 57j58i59 1 6D 61 62 63164 6.5 66 6161 69l70171 12 73!74 75 76 77" ~~~ 

-- >;'I{" 

VT/2-0360 

Figure 11-9. Example I, Coding Form 



OAS CODING FORM 2 
,., Qvarian data machines I 

PAGE 

_Of_L_ ~avanan'St.ll:sldiary 

* i,...Jd I I I; I I' _L__L' I I I I I' I I I 1 I I I. I I I I I I I I: I I I I I I I I 1 'I I I I I I I! I I I 1 I 1 I I I IiI I I 
~ABEL 

6 

~ ~ERATION .<~ VARIABLE AND COMMENT FIELD 

i 1 ' i l Jl~p: : · l -~, ~iTiLiGi
20

' I 1 ' ! I I I I JuiMIP 1;1~1 lsT~IRIEI IL~ 1 RSielsi;l I I : ( II I (I ! l 1.,1 *i I . 1 ' I ! : ; ! ! ' I I i I ' : i I • : I I I ! l ! I ; i . I !. I : I ! 

f*:1 ID.AirA L0CI 1"!1:aNs: · •: · • · : I : I I 

*· . ABLE DATA I : · A I 

i I 

I! ! i I I I; : I i I I I : i : I I i I ; . I ! 
! I I I ! I I i I : I J : i i i j i I I I i i I I 1 I I I I i I I I I : I i I I ; 

:: I i , 
: J 1 : I I I 1-~ 

I 
i i i ! 'i 

: 

; 

I I : i 

l 1 1 1 I I I ! i '· 
I : I I : : I 

, 

I I : I : I 

I I i 
I 

] ! I I ' I : I I: I 
: , I I 

I I 

I ! . ' : 

I I I I 
IDENTIFICATION 

I i 

• 

1 

j ! ! 

I 

I ~---~-+-+-"-~_._--+--l--'-...;.......;...-~~----· -· _ __;___ -+-----~-......._. _______ ....l..~----------1-~-----+--,-'--~ 

I • _ , 

1 ~~-+-j·+ •• : :..:~ : 

1 

J~ .... , _ _l-:]__ , ..l , . . ' • 

2 ' 3 4 , 5 6 7 8 ~ 9 1-0 ! II 12 13 ~.t 15 16 , 17 . 18 
1

19 1 20; 21 j 22 i 23 Z.d : 25 26 , 27' 28 2'9 J0 1 31 32 33 34 : 35 ~ J6: 37 38: .39 40 4 I , A'] 1 43 U i 45 "6 47 A.B 49! 50 51 , 52 SJ 54 j 55: 56 51 58 59 , 60. 61 62 63 64 65 66 til 68 69 70 71 72 1J · 74 75 76 I 71 78 79 80 

VT/2-0361 

Figure 11-9. Example I, Coding Form (continued) 

< 
C» 
""' ii;" 
::::s 
c. 
C» ... 
C» 

3 
C» 
n ::r 
::::s 
(1) 
en 



CHAPTER II 
PROGRAMMING 

000!500 
000500 
000!50t 
000502 
000!503 
ono~o• 
000!50~ 
000~06 
000507 
000~10 
OOO~H 
000!51~ 
000!51:, 
000514 
000~15 
000516 
000!517 
0('0!520 
000!521 
000!52~ 
000!523 
000!52 .. 

000525 
OOO!Ii2~ 
0005'.7 
000~30 

L,ITERAL,S 

:POINTER! 

VTI/-1/69 

THREF. NUMB~PS PROGRAM 

* * GIVEN T~REF. NUMBERS A,~,t, COMPAR! AND STORE THE LARGER 
* OF THE THREE NUMBERS IN LOCATION LRGR, 

* * A•At:tLE 
* FhAAI<E 
* C•CAND 

* 
010525 BEGN 
140!528 
001004 
000!513 R 
010525 
1410527 
ootno.s 
000~22 R 
010525 
0~0530 STLG 
000('107 
010526 CKC9 
140!527 
OOlOOA 
000522 R 
01052(5 
ontnoo 
00051\ R 
010!527 STRC 
001000 
001)511 R 

* 

,ORG 
1 LOA 
,SUB 
1 JAN 

,LOA 
,sue 
,JAN 

,LOA 
,sTA 
,HLT 
,LOA 
1 SUB 
,JAN 

,LOA 
1 ,rMP 

1 LOA 
1 JMP 

,0!500 
,ABLE 
1 fJAI<E 
,CKCB 

,ABI,.E 
1 CANO 
,STRC 

,ABLE 
1 1,.RGR 
,7 
1 8AI<E 
'c ·~1 0 ,sTRC 

1 BAI<E 
1 STLG 

1 CANO 
,sn .. G 

* ~ATA LOCATIONS 

ononot 
000002 
000003 

000500 R 

* ARLE 
BAKE 
CAND 
LRGR 

,OATA 
,DATA 
,DATA 
,RSS 
,END 

,1 
,2 
,3 
' t ,BEGN 

STARTtNG ADDRESS OF PROG 
A • AR 

A • 8 • AR 
AR • NFG, B IS LARG THAN A 

A •AP 
A • C • AR 
AR • NfG, C IS LARGEST 

AR • POS, A !S LARGEST 
LARGEST TO STORE 
FL,AGGEO HALT 
B • AR 
8 • C • AR 
AR • NEG, C IS LARGEST 

AR • P~S, 8 tS LARGEST 
JUMP Tn STORE LARGEST 

C • AR 
JUMP TO STDR~ LARGEST 

A • I 
8 • 2 
e • 3 
STORAGf FOR LARGEST 
AODR OF 'lAST EXFCVTABLE 

Figure 11-10. Example I, Assembly Listinlg 

11-46 



J'T/1-1/70 

SVMBOI..S 

0005~0 R I..RGR 

PAGE 000002 

1 000!527 R CANO 
1 000526 R BAKE 
1 000!5~5 R ASI..E 
1 oon522 R STRC 
1 oon~13 R CKCB 
1 000511 R STI..G 
t noo5no R REGN 

varian data machines ~ 

CHAPTER 1.1 

PROGRAMMING 

Figure 11-10. Example I, Assembly Listing (continued) 

11-47 



DU COOING 1'01111 
·~ _/_ooi @~~~.~.~.machines - •.. fiOGUM 

;MA.M.P~ ~litrtoit- ·· ~--·-· ; : .: _,;__u__.__ • 1 .l~l~1u 1'1~l~~-~.T J:.~·G:R;AM j. , 1 I ~-L.-' ~· .:.....L_L_.;__ 
VARIABLE AND COMMEN FIELD IDENTIFICATION 

I I) 16 "' )0 ,. .. .. "' " "' 
... 10 " .. 

w I ·. : ~ I I I I ! , I ' ! ! \ I 

" IT'J.US IS._A RtJ U ~ I 'N 1E :Tfi ic :All L! iT w~el ~" '•n·E iRtJJ~i ltilCso,ra sulB'~tS!u~Till'iEJ.l I ' 1 l I 

ltU.w.~~ ¢iR. J(E.T_U_R N~¢J~..__.S_~VAlrtJt..RlQ ~lr ~F INEGAlTJI YJ,E: 1NUM8i£l~ .ilJS.,JillfL~A)JL! i I i I 
!.._~_2 C.f1.+.2) •. N 0 ~HAL. _RJ.IJJJUL..fJ~ ~.MJ~~~T II'S: iAT CALLI 1

"- 3i :ltt+3).i I I 

~J:.H 
I ~-~-i~-A ~£_1.§ DESIGNE·D~ T TAKE :r,N:E S Q1UA 1RE- .R.!0~ir: . ' i ; ! i ; i : i 

.... ~F L N lJM 8 E R 5 A N D S rfl!R e- IT'H.E 1 AINSWEiR :1 Nl 4io ~c !T A 1L iL II C! .I I I I I I I I 

* ! I I--,- I ! I! I I I l 
I I j_' 

-+ s rlAIR T 1 IN!G !AiololR E sis ~J~GI ·. Q~o
1

o: I : 
I l I ' 

- 1 , , _L I : X!rl: = C~UHrT_._J::ULU - ~J>~.I~.-4- ,. . U.7 ---l.J i 

~E_;<J~ . ~..D.8. - -· IL0C I! i I . 8~: ci ;{.L~(> ~~ )('RJ' I 1 . J : I ; I I ! I 

lrAL ·L · x s.of· ·0:1:1 1 1 ISu's.R: lcA·LL! 'vJ1lTH' 1 E'RR~IR Rf[ui~!H: I i : 'I 
I 

I S T8' : SQ~r'' ,~ I I 

H·01R MAL 1 IR\E'T tJ:R .. ls!T (/J~iE 1 RE s·u ~r l i 

flf L 
~ .. ~ frE ITM AIT h"H E D~ ~A rls RE IT~ IE VfD !AND SIT lti>IR EO FR ~M 
~ D~ ""''"' T~ IT~c 
~j i I L ._; ! 'J )1~:[:1 I I I I I i I i I ! I I I 

! I JJ.1.. H1ALiT' !,L_: X:R' -=l 10 iE' 1tH> i~fl ~R.¢: lJ Ti I :Ni.E I I i I i I 

I I ~:xR : 
I j 

1 I I ! I r~ Dle'xl -i 1 11 :I I'ti1D:E)(i I 1 
: ! I I 

I 
I 

I I I 

i lrMP NEX trl i i ! 1 t RElT 1

U R N IFJ0!R iNfiX~ !K i I 

llr- tr IHT I I I I N tJCIPi ... lA !uiAIL r I 
[l~ (i QAT~ ~ ~~~P4J3~~Ai1o4l- 1 Jt!ok> -f4olrlolo JoL !4l~J2.olo 

I t IDAT"A- lJ 0 ·Q...iC_;t:..O'J.OP it:-tl'9 ,Oj1 5_0..._+6.0-+--7 1~-:f,r;~{J.O.,llil..Ol~O I i ' ' 
I : i 

I I I DAT-A I ~ o·2pj0lol.,;4B~ .3to ~lo.~o.3~lo1o.., 1 ~~-l-' .7-<~-"Jl3~o+fl1 .. "1;o l I 

I : IDAirA! IT ~. ~ ~P.ft, ~
101~~ JIO {3 ~~o; .f5.3 p. ~f,, ;'~o·t-+3.t~o .-.+'~PtD 4Js"p..._D =I Oi 1 I i L 1 I ' i i 

'I • ' 10 ~.t.~~ ....,.. ; -+ t ·t 
I I a t•l' • 11 ••'" 10 2•jn 11 1• n utz1 1W 141 JOj )I »I J) "'I J~ i ,l6 ]7 :M l J9 rao .. •l 413 •• j 41~ .... 41 .. i .. 50 I sri 52 S1,. ",. 57 151 1 .. 6061 621636.16566 61616910 7172 737• 75 7677 ,.,. ... ... ___ .. 

YTI2-0J62 

Figure 11·11. Example J, Coding Form 

! 
i 

I 

< 
I» ... ;· 
::::J 
a. 
I» ... 
I» 

3 
I» 
n 
";j 

::::J 
(I) 
tn 



r·G· I OAS COOING FORM 2 3 @varian data machines 
_OF_ avanansubs•dtary 

PiOCRio./IAMER JAf!. I'ROGRAM 

* 
L~BEL~-

_[__ i ' _l J ! _l __l _;___j_j__[_J.___l_J_ I I ! I I I I I I I I I . I I I I ! I I I I ' I I I ; I ' I I I I I I I I I I I I I I I I I 
r;? OPERATION 

~ .. VARIABLE AND COMMENT FIELD IDENTIFICATION 
I 6 7 8 20 30 35 40 45 so 55 60 65 70 73 80 

sioiP:T! ! s's!sl i olq 1o : i J I . I ! I I Rle:ls 1
E" 1R'iitd '4lo i¢'c1rA'L 1L 1¢

1

C Air~ ri(I}!N1::.1 ! ! 
' ! i I I I I I I I I 1 I I I I 

~~ I : 
1 I : I 

! 

! i 
I 

I . I ! I ! l 
i ! ! I j I I ! I J 

*i IN T f G-E':R.I S!Oil) lA ~IE' R ,p'~ "t"• SoBRfbU T I INE C ~ L C IJ L Ill" ED~ 1 H E A P'P ~ ~ '1. I,_., AT I 0 N ! i 

I I I 

f*-• : ' I . 

f*. : .14 ( ){ .i'+~)::.)(i' I+ I' (pc /Vtff K.E'f Pl/NC'/1) 

* . : 1 

i 

-*1 I IE'iN T c Rl 'WiliT'lf NUIMIB1E:R :Fid R.
1 

:SIQt>A- RE 'R. ¢1¢1T II :N i TIJ
1

E 's! RIEG r Is rEIR. 'THE I I ! 

' 

I ] ! i 

1*1 I IX! R'E' Gl.L_s ',-:E''R IS 'SAI\"1: D :AiND! RE: P L A:C Eii> ID:N ,f XI :r. E~ R¢RI f,'ETV~N F(JR ' 

: i 

*' I S1QO AR'E M!~'f' OF N fG.Af I vr= Nil t-f6E RS A'T n+2 F'~~M CALL. ! ! 
: 

I 

ilf 
I 

;N,¢1? MAL ~RET\J RN AT h+3 F:RO M rALL WITH. SQIJA!i!f Ror/Jr ¢IF NUMBfK 

* I iN TH'E ~s :f?!F G I 5 T E'1R 
~ ; ' i .i 

x[sQ[T[ ! EIH]T[RI I I 
, I I I PLACE ~H!Ei~IE R E rlu RN Ait>DR J,Sj SA:V ElP ! I I ' j 

; I I I ~rs lZ I I I f!X:rirl+ I I : SQ ;I~ T,. i~F (0.-=0i I 
• ! 

! ' 
i I I : I 

I : : : 1 TB:A! I i i I I ! ti U 1\f,B E' R 1:. BIR :: A!J< 
i 

! I : ' i I I 
JAN.*1 )l.SQi" I E'RR¢R Rt= TU'RN T~ NtZ i 

I 

STB NMB~ ; . SAVE NU'MSER 
: 

I 
I 

~TB APRX NUM8ER = I ST APPR0XlNATicbN 

! 1 I ST)( SAV:E I SAVE X R; I 
I i I I I ' 

I ! 
i LDXI 7: INITIAl IJZE XR F¢.R APPR. I I I 

AGW· ITZA ' ~~~ l£R.~ AR 'EJ~JLJti:t~E . 

: I I 

LDS NMBR. NVMJ~ER = BR 
IDIV APRX NUlM:B~-LAP~~~.N' i 

TBA A I f.., = :s R = AiR i 
l 2 3 . 5 6 7 8 91011121314 151617 !8 19 20 2122 23 24 25 26 27 28 29 Jo 3132 33 3.4 35:36 37j3B 39 .to 4142 43'44:4546 47 •a 49 so.s1 s2 53 54 ss 56 '5758 59 60.6162 63 64 65 66 6768 69 70 n 12 73.74 75 76 n 7s'79!ao 

VT/2-0363 

Figure 11-11. Example J, Coding Form (continued) 

"'tt 
:::0 
On 
C) :::I: 
:::0)> 
)>., 
S:-t 
3:1"'1 z:::o 
C): 

< m ... 
iii" 
:::s 
c. 
m ... 
m 
3 
m 
() 
:::r 
:::s 
CD 
(I) 



~ 

• 
_l__!__l I I I I I I _ll I 

.LAIIEL .~ 
OPERATION 

I . 
IADD 
h'AB 
lAS R8 
STB i 

-
IDX R 
IJxz 
IJMP 

E~ _IT LDX 
lNR 
RE rui* 

YM :BIR IBSS I 

AlP R~ IBSS 
s~ vi~ IBss 

letiO 

I 
! 

I I I 

I I l I 

1l, z ~ . ' . 7 i • 10 III:Z 131• 

•••• 

VTI2-0364 

PAGE 

DAB COOING FORM 2...0fL @v•lan data machines 
awnan~ry 

')AfE PIOGIAM 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

~16 
VARIABLE AND COMMENT FIELD IDENTIFICATION 

20 30 35 ... ., 
"' 55 60 65 70 73 .. 

AP IR..X ~ ~I)( IT")( =~R 
lA/ !)(~)( .. iAR •BR 

I il A I~ +X i) I ll2 =BR 
AP RX NiE l:tT lA 1/tll I AIT riOSIN 

X ill- I :.)(R 

EX 1IT s~ RT =BR 
AGltt ~~ IM1P l £ lTE a. I ... I .. I .. 

I..L N 

s~ IVE 111:11: ""'~I.E XR 
xs !Qr UP 0~ TE E.N TIRV TO n+3 
xls tar Gl~ BA ,.I( T~ M~ TlN j ... l ... 

1 ... 

I I I : I I I 
I ! I. 

I 

[ I I 

I 
I 

N.le lEX E~ VT I~N AD ~R ESS 

! l I 
I I I I I j I 

I I i I I I I I I i I I i i I I I I I I I I I I I I i 
i l ! ! I ' i I I i l I 

1 
I ! 

1 : : I I I i i I j I : I l I I f I I i I i I 

I I l : 

I i I 

i i I 

I I l l ! I ! i I : I I I 

I ! I ! : I i I : / ; ! I I I I I I 
I I I I I :' 

I I : I l l I I I i I I I ! ! ; I I I I I : I 
"16 171119120 21:22123 1 2• »126 27 21 29 30.3132 33 "'13' 36 37 38 J9 40 ., .Q!o(J'44 •s46i"' ..a .,50. 51 •SZS3 5I. 55156 SlrS8 59 60 •• 62 63,64165166 6761169 70 71 nn 7475 7677 ,.,. .. 

Figure 11-11. Example J, Coding Form (continued) 

< r» 
~ 

sr 
::::J 
c. r» ... r» 
3 r» 
() 

=. 
::::J 
CD 
(I) 



PAGE ... oon01 

0('10!500 
ooo~on 006030 
OOO!!'i01 000031 
000502 025!31~ 
000503 Ot'12000 
000504 0001526 R 
ono~o5 000777 
000~06 OM5566 

000!507 001('140 
000510 0(105\4 R 
OOO!':i11 0(15344 
01."0!;12 001000 
000513 01')0!502 R 
000!514 onoooo 
000515 000031 
000516 00003f5 
ono~t7 onoo44 
000~2('1 onoo~o 

000!521 177177 
noo522 1)()0144 
0(')(')523 000001 
000524 000000 
000525 ooonoo 
OOO!':i2ti n.nooo4 
000!527 00031() 
ono53n 001750 
000531 000700 
000532 177730 
000533 000062 
000~34 000074 

VTI/-1171 

"EXAMPLE: J 

* 

varian data machines • 

CHAPTER II 
PROGRAMMING 

SQUAPE R~OT PROGRAM 

* THIS A ROUTINE T~ CALL THE SQUARE ROOT (XS~T' SUAROUTINE. 
• EPROR RETURN FOR SQUARE ROOT nF NEGATIVE NUMBERS !S IN CALL. 
• +2 CN+2' NORMjL RETURN· FROM S~UARE ROOT IS AT CALL + 3 (N+3' 
• THtS ROUTINE IS OEStGNE~ TO TAKE THE 5QUARE ROOT 
* OF 40 OCTAL NUMRERS ANO STORE THE ANSWER IN 40 ~CTAL LOC, 

* 
1 0RG ,oeoo STARTING AnDRESS 
rLO'l(I ,037 )(R • COUNT • 1 

NEXT ,LOR , LOC: ,1 SR • (LOC + Xln 
,C:ALL , )(SlH, 0177 SUAR CALL WITH ERROR RETURN 

1 STA 1 SQRT,1 NORMAL RETURN STORE RESULT 

* * NOTE THAT THF. DATA IS RETRIEVED AN" STORED -FROM 
* BMTTOM TO TOP 
* 

1 JXZ 

H•L.T ,HL.T 
L.MC ,OATA 

,DATA 

,HALT XR • 0 END OF ROUTINE 

INOE~ • 1 • INOEX 
RETURN FOR NEXT NUMBER 

, ~O~MAL HALT 
,25,30,36,o5o,-t,too,ot,oo,o,4,~0o 

Figure 11-12. Example J, Assembly Listing 

11-51 



CHAPTER II 
PROGRAMMING 

PAGE 000002 

000535 
ono53e 
000537 
000540 
000~41 
00054P. 
000543 
000544 
00054!5 
000548 
000!47 
0005!50 
ono55t 
000552 
000!553 
000!55• 
00055!5 

. 0005!58 
000!557 
000!\80 
onos8t 
000562 
000583 
oon58• 
000!58!5 
000!\88 

000628 
oooe21 
000830 
OOOft3t 
OOOf;3? 

000108 
000120 
000132 
000158 
ono110 
000000 
002000 
000002 
000011 
005870 
00~000 
ooont7 
000021 
00020'-
000001 
000204 
000454 
0004~8 
000500 
000512 
000524 
000!538 
000820 
000754 
177788 

000000 
001020 
1)00857 R 
005,21 
001004 

J'T/1-1/"!2 

,DATA 

,DATA 

SORT ... ss AESERVf 40 OCTAL ~OCAT!ON$ 

* * INTEGER SQUARE ROOT SUBROUTiNE CALCULATED BV THE APPROXIHAT%0~ 

* * 1/2 (X + ~) • X + 1 
* Xi i 
* E~T!R WITH NUMAE~ FOR SQUARE ROOT !N T~E 8 REGfSTERa THE 
* X REGlST!R IS SAVED lND REPLACED ON !~tT. ER~OR RETURN 'OR 
•.SQUARE ~DnT OF NEGATIVE NU~BERS AT N+2 ~ROM CALLa 
* NORMA~ R!TURN AT N+3 FROM tALL W!TH SQIJAR~ ROOT O' NUMBE~ 
* lN T~E 8 REGISTER 
*· )(SQT 1 f.NTR 

1 JBl 

1 T8A 
1 JAN'111 ' .~soT 

PLAC~ WH!RE RETUR~ AODR 18 SAVfO 
SQ RT • OF O•~) 

NUMBER • 8R II AR 
f.RROR RETURN TO N+t 

figure 11-12. Example J, Assembly Listing (continued) 

11-52 



PAGF. JOOOO~~ 

0()0633 Hl0~26 R 
00Cfl34 060151'12 
000635 01'!01563 
000636 070664 
O~H'lfll37 O(')f.if)Jf) 
01'10640 00001)7 
OOOfll41 005001 
000~42 020~62 
0(')0643 1701563 
oon644 005(')21 
000154~ 120653 
0001546 Ot'l5012 
000154'1' 0('14101 
00('1650 060663 
0('10651 005344 
OOO~!'l2 001040 
()00653 0()01'1!56 R 
0006~4 001000 
0006!55 0(')0641 R 
()00fl56 030664 
000657 0406215 
000~50 001000 
0001561 100626 R 
000662 
000fl63 
000fil54 

00001')0 

l.ITERAL.S 

PntNTER~ 

SVM~OLS 

t OOOIH54 R SAVE 
1 0006153 R AP~)( 

1 OOMS152 R Nr-1BR 
t 0001'5!56 R EXIT 
t 0(')0fl41 R AGN 
t OOtHS26 R XSQT 
t 000!5fi6 R SQIH 

VT/1-1173 

,sre : 1 NMBR 
,STR ,APRX 
,ST~ ,SAVE 
,LOXI ,,. 

AG~ ,TZA ' ,LOR 1 NMBR 
,nxv ,APRX 
1 TBA , 
,Aon 1 APRX 
,TAB , 
,ASRB I 1 
,STB ,APR)( 
,OXR , 
,JX'Z ,EXIT 

,JMP 1 AGN 

EXIT ,LOX ,5AVE 
,INR 1 XSQT 
,RETU• ,XSCIT 

NMBR ,RSS , 1 
APR)( ,RSS ' 1 SAVE ,FliSS , 1 

,e:Nn 

varian data machines ~ 

SAVE NUMBER 

CHAPTER II 
PROGRAMMING 

NUMBF.R • 1ST APPROXIMATION 
SAVE XR 
tNITIA~lZE XR FOR APPR. 

ZERO AP FOR niVIDE 
NUMBER • BR 
NU~SER I APPROXIMATl~~ 

·A./X •BR •AR 
~/)(+X •AR 
A/X+X •AR •BR 
tA/X+X,l/2 •AR 
NEXT APPROXlMATtON 
XR• t •XR 
SQ RT, •RR 

CO~PLETE APPROXIMATION 

RESTORE XR 
UPOATE ENTRY T~ N+2 
GO BACK TO MAIN PRnGRlM 

NO EXECUTION A.OORESS 

Figure 11-12. Example J, Assembly Listing (continued) 

11-53 



CHAPTER II 
PROGRAMMING 

PAG! 000004 

1 000~15 R LllC 
l 00~514 R H•LT 
l 000502 R NEWT 

VTII-1174 

Figure 11-12. Example J, Assembly Lis·ting (cont'inued) 

11-54 



(J1 
(J1 

PII:OGRA.MMU 

* E~X·AM1P l f. ,jG _;_ I I 
LABEL 

.~ 
OPERATION 

1 a 

0RG I : I 
I ZER 10 I i 

I DEC R: ! I 

!NCR I 

DAR I 
MERGE' 
LiDIA! I 1 

slr'A r I 

J;MiPJ I 
NMSR EQIJ 
L!DC BS.S• 
C¢NT LOA 

siT ~lifj I 

LID ~Il l 
L 1D ~E! 
LOB 
SEN 
N~P 
lJ)tpJ i ! : 

! i 0!MIE, i ! 

l lfiL 1T' I ' 

CHAR DATA 
I END I 
! 

1 2 3_;.1' • 7 8 91011121314 

VT/1-0365 

I'AGE I DAS CODING FORM 
__L _j_ @varian data machines 

OF avanan subsrd1ary 

::-.:.;: PlfOm:AM 

I I I I I I I I I I I II1N1ST R1U'C1T' I 0.NI ·E·X:AMPLE.SI I I I I I I I I I I ' I I I I 

~16 
VARIABLE AND COMMENT FIELD. IDENTIFICATION 

20 ~ M ~ ~ ~ ~ 60 65 70 73 80 

o! Jio 1oiolo· i I i I I ' slriAIR:riJ 1NIG 1 ltlfllc IATI 11J Nl 1o'FI IP:R ~IGIRlAMl I I I i I I I I I 
71 I I 

I I . I ZiEI~~ ~ 8 X 1R1EG 11 STERSI I I 1 I 

: I I I ! I 
I 

I 
: I 

I A1R1 I-I 
, 

I i I i I : ! i 
: : 

2 BR= +I I i i 
AR : AR-1 I I 

034 INClUSIVE 0R ¢F A+B I NT¢> XR I 

.I 

N:M!81R: ! : ! I I I I AIR I I:: I 1N MIBiR I I I · i • 
i I I , 

: I I 

1 I I I I 

L¢Ci , i i 
I : I A 1FT fiRi A s:s E M!BIL 1 Y' T'H IS rls ~·e L I 

• 1 : 
. I . 

I 
I 

C0M.T I 
I I I i l I I I 

I 

10 NMBR : 10 DECIMAL I 

I RESERVE I L0CATION i I I 

L¢C GENERATE INDI RECi P¢INTER I 

IL~ici I I ! ; i I j I I Al.S0 G E NE:R A TIE: 'I 1NID:rR E C1T 'p¢riNTER: : ! 

I i I 

ols:ol 1 I ; · i I I I I : ' i ~ I i I I I I i : I ! : : · I I I I : : i ; ! : : I I 

~IM'B1 R 1 
.. 

11: I I . I IL 'DA 1C 0lN 1T'E 1NITSI <t>·F! l~CA TI..0N '6 12 .¢c T'Al' ! I 
=3 GENERATE LITERAL ! • 

0101 *+5 SENSE WRIIE REGISTER ~F TTY READY I 

.:_ i 
i 

~-3: • ' i ! I i cru:MP BACK rF: N0h" REAiDY I I I I 
! i I : i 

(>!J CHA!R~ ~UT PUT ( C H1A R') TO TTY' I - I 
I I I 

• 

b!777 FLAGGED HALT I i 
I A I ASC'II FOR A I 

I 

i 

' ' 

i 
IS 16171819 20 2122 23 24 25.26 27 28 29 30 3132 33 34 35 36 37 38.39 40 41.42 43 44 A.546 47 48 49 50 5152 53 54

1

55'.56 57.58 59 60 6162 63 64 65 66 6768 69 70 7172 73,74 1s 76 n: 78 ~ 79 eo 

Figure 11-13. Example K, Coding Form 

, 
::0 
On 
"::~: ::0)> 
)>, 
3:-t 
3:1"'1 z::o 
C): 

< 
I» .. 
iii" 
:::s 
c. 
I» ... 
I» 

3 
I» 
(') 
::r 
:::s 
CD en 



CHAPTER II 
PROGRAMMING 

PAGE Jnnnot 

otnnon 
010001'\ on5n~7 
ntnnnt Ot\5301 
Otl'nn~ on5t~2 
010003 005311 
otnn,~ on5~.S4 
t)t0ftt)5 Ol'fttltO 
otnnn~ oonnt2 
osono7 os•oo2 
otnott' OC\tnnn 
ntontt 010013 " 

t)00ft12 
OSOt'l' 
010013 017200 r 
otoot• 057201 I 
otnot5 onfto.Jo 
Ot001fi ooon5o 
otont7 01)6015 
OtOt\20 (HII)t) 12 
otno2t 0?1000 
f)l (\ft2? tntt ,, 
01002~ 010027 A 
otnn2• nnsnon 
OtOn25 ~nt,\)n 

osnn2e 010022 R 
0t01)27 1C\JOI)l 
0\0030 010032 R 
010tl31 Ot\0777 
01003? ono3ot 

ooonnn 

LITEAAL!S 
OOlt\Otl Ot\0003 

Pf'INTFA~ 
nootnn n1 0" 12 
000?01 uono~ 

SYMROLS 

I 010032 R CttAA 

• "111·11 ... ~ 

•EXAMPLE I( INSTRUCTION EXAMPLES 
1 0AG ,ntnooo ~TARTI~G LOCATION OF PROGRAM 
1 7.EAO ,7 Z!AO A,B,X REGtSTE~S 
,DECR ' 1 AR • •t 
,!NCR ,, 8R• ., 
,nAA , Aq • AA•t 
,MERGE ,n;u INCLUSIVE OR OF A+B INTO XR 
,LDAl ,~HI'R AR • NMBR 

,STA ,LOt AFTER •sSEMBLV THIS rs R'-L 
1 JMP ,co~T 

NMBR ,F.QU ,to N~9R • 10 OEtiMAL 
LOC ,RS~ '1 A!SERVF. t LOCATION 
cnNT ,LOA ,LOC GENERATE INDIRECT POINTER 

,STA• eLOC ALSO GENERATE INDIRECT POINTER 
,LOXI ,050 

1 LDAE 1 NM8R 1 l LOA CONTE~TS O' LOCATION 61 OCTAL 

1 LDR ,•3 GENERAl LITERAL 
,SEN ,otot,••S SENSE WRtT! REGISTER 0~ TTV llfEADV 

1 NOP ' ,JMP .... 3 JUMP BACK IF NOT R!'Anv 

1 DME 1 0t,CHAIIf nUTPUT (CHAR) TO TTY 

1 HLT ,n777 'LAGGED HALT 
CHAit ,DATA ,•A• ASCI! FOR A 

,END 

Figure 11-14. Example K, Assembly Listing 

11-56 



P~GE ono(Hf2 

1')10013 R CONT 
n10~12 R L.IJC 
000012 NMAR 

VT/1-1176 

CHAPTER II 
PROGRAMMING 

Figure 11-14. Example K, Assembly Listing (continued) 

11-57 



~ 
-on < ::O::I: 
0)> Q) ... c;,-g 

iii" ::0-t 
l>l""' :l 

DAS CODING FORM 

PAGE 

@varian data rnac:hlnee 
_Of_ 

avaraan substchary 

I I I I I I 

IDENTIFICATION =:::o a. 
I= Q) ... 
z Q) 

c;, 3 
Q) 

/Tz~ 
TZ~ i 

.. .. .. 70 73 10 

10RG · l o 1 soloo 
CAININid~ HAvE ~ VAR iF liE LID 

() 
:::r 
:l 
(1) 
U) 

I 

1 I 1 1 1 It DA 1 o: ~- 1 ~:=lx;p! !2 fiAis T 1 0 BiE, lA 1i lr6R 12 t : I I I i : 

I 1 LD~ ot 11 I : 1 1 ; I 
1 

, 1 1 I I 
I : 1-

I I I I I I 
I 

i I I 
L DAI 7 7777 I lviAIR F ti&IL D lrlo~ L~RGE i I I 
II.. OA I 0 7 771717 I I I . I 

i i I I 
I 

I ; I 

tn ; I I LDAI -l3'27'IB~ Ill •,! 1 ' I iJi '1
11 I , I I I I I 

00 ! I I 

I 
' 

' l I 
I i I 

I I 

I 
M P 8 R A I I 8 RIA: in NiDE iF! 1 NI&ID ! I 1 ! I I i ; : 1 ' 

1 1 

: 
I I I 

I l 
I 

I lTM p 8 R All I : i I I I i I I I I 
~ lA ll F A ID ~IT !A I s l : : i : ; ! ! 

:81~~1) D~ITA 011110~5 I i I ' i i! ; 
: S/TIR? B s s I l I i ! I ! I I : i l i I ! : : i ' I I i i : ! I ' I I • I I I I 

I 2 3 4 S 6 7 I 9 10 II IZ 13 1.41 IS 16 17 II 19 20 21 22 23'2<1 2S 26 "D 21 29 30 31132 33134 35:36 37131;39 40 oll\42 43"" .CS 46; .. , 48 .-jso Stlsz 53i54!SSi5& S1 58 59·60:61162163
164_65:66'67·:-li' 69·70:71,n 73i;4:7S 176'71 71 79j•· j 

~-~·· 

VT/2-0366 

figure 11-15. Example L, Coding Form 



PAGE .100001 

01!5000 
OU5000 OM501l 

•SZ 
015001 005001 

•OO 
01500'- 001411 

•Sl 
015003 000777 
OHS004 01503~ 

•AO 
OU500!5 0060\~ 
01!500~ 01503tl R 
015007 00603C' 
01!5t11t'l 01!5031'1 R 
015011 Ot5t'IOn 

•DO 
01501~ 000004 

•TF 
01!5013 ot5t;oo 
015014 016000 
015.-,,e; 0,41"120 
t'H5(H~ 0(')6010 

•!Z 
01!5017 027721 
015020 006010 
015021 077777 
015(')!22 Ot'16010 
OU502~ 077717 
01!502A 00601(') 
01!5t)2!5 100000 

•nP 
015030 OC'1040 
01!5031 OU5036 R 
01!50:\2 001000 

•sv 
015033 ononoo 
01!5n3.4 001000 
OU5n3~ 015037 R 
01!'1031'5 00000!5 
01!5037 01t404~ 

VTII-1177 

•!XAMPL.F. L 
,ORG ,01!5000 
,TZA ,,HO 

SEC 1 TZA 

1 ML.T ,711 

,HLT ,0777 
,LOA ,AL.FA,t 

1 L.DAE ,.L.II'A,t 

1 LDXI 1 AI.FA 

SEC 1 LDA ,,,1 

1 LDA ,0,4 

,LOA ,o,t 
,LOA ,n,2 
,LOA ,ALII'A 
1 LDAl ,7711'1 

1 L.DAI ·"''''' 
1 LDAl ,32767 

1 L.DAI ,·•3P7ee 

,JZZ 1 Al.FA 

,JX'Z 1 AL.FA 

,JMP ,8RA 

,JMP ,8RAV 

AL.FA ,DATA ,!5 
BRAV ,DATA ,01410.4!5 

varian data machines IE 

CHAPTER II 
PROGRAMMING 

E~AMPLE WITM ERRORS 

CANNnT MAVE ~ VA~. FIELD 

VARIABLE FIELD TO LARGE 

EXP 1 TO LARGE 

nOUBL.E DEFINITION 

EXP 2 HAS TO BE A 1 OR 2 

CREATE A REL ADDRESS 
VAR Fift..D TO LARGE 

ILLEGAL DP!RAT!ON tODE 

BRA UNDEFINED 

Figure 11-16. Example L, Assembly Listing 

11-59 



CHAPTER II 
PROGRAMMING 

01!040 

LtT~RALS 

POINTERS 

SVMAOLS 

nnonon 

0 0150~0 ~ STP 
1 Ot~n37 R ~RAY 
1 01~036 R ALFA 
0 nt5~01 R SEC 

J'Tll-1171 

STA 1 JJSS 
,ENO 

Figure 11-16. Example L, Assembly Listing (continued) 

11-60 



CHAPTER Ill 

COMPUTER OPERATION 





CHAPTER Ill 
COMPUTER OPERATION· 

SECTION 1 
WORD FORMATS 

1.1 INTRODUCTION 

Word formats for the 620 series computers are divided into two categories: data words 
and instruction words. Each category has been optimized for the system environment. 
620/f and 620/L systems are available only in 16-bit word lengths; the 622/i system has 
an 18-bit word length. The data format is extendable for 18-bit words with the sign bit 
in the high-order positions (refer to figure III-I). 

There are four instruction word formats: single-word, double-word, generic, and macro­
instruction. 

17 16 15 14 13 12 ll 10 9 8 7 6 5 4 3 

Lsign (negative No's in 2's complement form) 
Logical data is represented in true form. 

18-bit word length 

INDIRECT ADDRESS FORMAT 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

~ J 

2 

L 15-bit Address Field 

The higher order bit specifies further indirect addressing. 

Figure 111-1. Formats for Data Words and Indirect Addresses 

Ill -1 

0 



CHAPTER Ill 
COMPUTER OPERATION 

1.2 SINGLE-WORD INSTRUCTIONS 

1.2.1 Addressing 

There are 12 basic instructions and two optional instructions that have single-word 
memory reference formats (addressing). The single-word instruction is divided i·nto three 
fields as shown in figure 111-2. There are five addressing modes including: direct 
addressing to 2,048 words, relative to P with a delta range of 512, indexing with the X or 
8 register, and indirect from the contents of the memory location addressed. 

Single-word addressing instructions include: LOA, LOB, LOX, INR, ADD, SUB, MUL, 
STA, STB, STX, ERA, ORA, ANA, and DIV. All basic single-word inst1ructions are executed 
in two cycles (except INR, MUL and DIV), including relative and indexed addressing 
modes~ In addition, one cycle is added for each level of indirect addressing. 

The single-word addressing instruction format is designed to enable the system user to 
write his programs with a minimum number of memory addresses and to execute these 
programs in minimum time. The format is uncomplicated and the fields divide into 
convenient octal groupings so that programs can be written and checked rapidly. 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

-
Op Code Mode Address 

OXX Direct addressing to 2048 
100 Relative- add A field toP 
101 Index (X) - a1dd A. field to X 
110 Index (B) - add A field to B 
111 Indirect 

....._ ____ Not used by the 18-bit instruction word 

Figure 111-2. Single-Word Instruction Format 

111-2 



1.2.2 Nonaddressing 

CHAPTER Ill 
COMPUTER OPERATION 

Twenty-six instructions are single-word nonaddressing. Each divides into three fields of 
class codes, operation codes, and definitions as illustrated in figure 111-3. 

These instructions perform arithmetic unit, control unit, and input/output functions. The 
operations are: halt, register change, shift (12), overflow (2), external control, and 
input/output for the A and B registers (11). 

The shift instructions can shift up to 31 places. The sense and external function 
instructions can address up to 64 peripheral devices and define up to eight functions. The 
input and output commands can select A or B, A and B, and clear and input to A or B, A 
and B. The input/output instructions can address up to 64 devices. (The in-memory and 
out-memory instructions and the sense command are two-word instructions.) 

The single-word nonaddressing instructions are octal-grouped for user convenience. They 
provide flexibility for input/output processing. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

c 0 d 

Class Code Op. Code Definition 

Figure 111-3. Single-Word Nonaddressing Instructions 

111-3 



~w~n~~m~~n~-----------------------

L 

CHAPTER Ill 
COMPUTER OPERATION 

1.3 TWO-WORD INSTRUCTIONS 

There are two classes of two-word instructions and six types: jump, jump and mark, 
execute, immediate, in/out memory, and sense. The 620/f computer has the additional 
two-word instructions IJMP, JSR, SRE, and BT. The two-word instruction format is 
illustrated in figure 111-4. 

There are a total of 45 standard and over 16 optional two-word instructions. The efficiency 
and power of the two-word instructions becomes more and more apparent with use. They 
provide direct and random addressing and accessing of up to 32,768 words. In most 
cases, they permit a two memory location sequence of instruction to replace the usual 
three memory location sequence. The amount of memory conserved and time saved by 
these instructions depends upon the application, and ranges from 5 to 25 percent. 

1.3.1 Jump, Jump and Mark, and Execute Instructions 

The first word of the jump, jump and mark, and execute instructions contains three 
fields: the C field containing the class code, the 0 field containing the operation code, 
and the condition field specifying any combination of nine conditions. The conditions 
are: SSI, SS2, SS3, X = 0, 8 = 0, A = 0, A Negative, A Positive, and Overflow. On the 
620/f, if bits 1 and 2 are on, the other bits specify not conditions. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

~-----C------~------0--~----------c_o_n_d_i_ti_o_n~ lstVVord 

L +1 Wl ADDRESS ~2ndVVord 

L INDIRECT ADDRESS FLAG 

Figure 111-4. Two-Word Instruction Format 

Ill -4 



L 

CHAPTER Ill 
COMPUTER OPERATION 

The second word contains the jump address, the jump and mark address, or the address 
of the instruction to be executed. !f the specified conditions of the first word are met, the 
instruction is executed. If the conditions are not met, the second word is skipped and the 
P register is incremented. 

1.3.2 Memory In/Out Instructions 

The memory in/out instructions have a format similar to that of the instructions 
discussed in section 1.3.1. The condition field of the IME/OME instructions addresses the 
selected device; the second word contains the memory for the data. Indirect addressing 
is not permitted. 

1.3.3 Immediate Instructions 

The immediate instructions have a special two-word format as illustrated in figure 111-5. 
There are 12 immediate instructions plus two that are optional; these are: LDAI, LOBI, 
LDXI, ADDI, SUBI, INRI, MULl, STAI, STBI, STXI, ERAI, ORAl, ANNAl, and DIVI. 

Bits 3 through 6 define one of the immediate instructions listed above. These instructions 
provide literal addressing which contains the operand in the operand address field. They 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

6 Op. Code 0 1st Word 

~-- r-- -~ ' 
L+1 L_s_l ___ s ; OPERAND 

£...:...SIGN OF OPERAND FOR 18 BIT FORMAT 

I 2nd Word 

Figure 111-5. Immediate Instruction Format 

111-5 



CHAPTER Ill 
COMPUTER OPERATION 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00 5 lfl step XBA XBA I 

t 00 Tra~~ource. t 
01 Increment 
10 Complement Destination 
11 Decrement 

0 Execute unconditionally 
1 Execute if overflow set 

Figure 111-6. Macro-Command Format 

automatically increment the P counter after the execution, and the next instruction is 
obtained from P + 2. 

1.4 MACRO-INSTRUCTIONS 

A number of micro-steps are programmable into a macro-instruction with. the single word 
Macro-Command. This command has over 128 useful combinations including those listed 
in the instruction set (section 1.5). The macro-command format is illustrated in figure 111-
6. 

The X, 8, and A Register contents can be logically ORed, cleared, transferred, set to a 
common value, complemented, NORed, incremented, decremented, and, if desired, 
perform the above conditionally on an overflow" Sequences of micro-commands can be 
used to perform additional logical functions customary in a system environment. 

1.5 INSTRUCTION LIST 

F1gure 111-7 provides a list of the instructions available with the 620 series computers. 
Certain instructions are notated for their specific application to the 620/f computer. In 
addition. all multiply/divide and extended addressing is optional in the 620/i and 620/L 
systems. 

Ill -6 



VTII-1831 

lnstn. 

ADD 
ADDE 
ADD I 
ANA 
ANAE 
ANAl 
AOFA 
AOFB 
AOFX 
ASLA 
ASLB 
ASRA 
ASRB 
BT@ 
CIA 
CIAB 
CIB 
CPA 
CPB 
CPX 
DAR 
DBR 
OIV 
DIVE 
DIVI 
DXR 
ERA 
ERAE 
ERAI 
EXC 
HLT 
IAR 
IBR 
IJMP@ 
IME 
INA 
I NAB 
INB 
INR 

CHAPTER Ill 
COMPUTER OPERATION 

Varian 620 and V73 Computer Systems 

Octal Octal Octal Octal 
Code lnstn. Code lnstn. Code lnstn. Code 

120000 INRE 00604z LASR 004500+_n STBI 006060 
00612z INRI 006040 LOA 010000 STX 070000 
006120 IXR 005144 LDAE 00601z STXE 00607z 
150000 JAN 001004 LOA I 006010 STXI 006070 
00615z JANM 002004 LOB 020000 SUB 140000 
006150 JANZ@ 001016 LOBE 00602z SUBE 00614z 
005511 JANZM@ 002016 LOBI 006020 SUB I 006140 
005522 JAP 001002 LOX 030000 TAB 005012 
005544 JAPM 002002 LDXE 00603z TAX 005014 

004200+n JAZ 001010 LOX I 006030 TBA 005021 
004000+n JAZM 002010 LLRL 004440+n TBX 005024 
004300+n JBNZ@ 001026 LLSR 004540+n TSA@ 007402 
004100+n JBNZM@ 002026 LRLA 004240+n TXA 005041 

0064vw JBZ 001020 LRLB 004040+n TXB 005042 
1025xx JBZM 002020 LSRA 004340+n TZA 005001 
1027xx JMP 001000 LSRB 004140+n TZB 005002 
1026xx JMPM 002000 MUL 160000 TZX 005004 
005211 JOF 001001 MULE 00616z XAN 003004 
005222 JOFM 002001 MULl 006160 XANZ@ 003016 
005244 JOFN@ 001007 NOP 005000 XAP 003002 
005311 JOFNM@ 002007 OAR 1031xx XAZ 003010 
005322 JS1M 002100 OAB 1033xx XBNZ@ 003026 
170000 JS2M 002200 OBR 1032xx XBZ 003020 
00617z JS3M 002400 OME 1030xx XEC 003000 
006170 JSR@ 00650x ORA 110000 XOF 003001 
005344 JSS1 001100 ORAE 00611z XOFN@ 003007 
130000 JSS2 001200 ORAl 006110 XS1 003100 
00613z JSS3 001400 ROF 007400 XS2 003200 
006130 JS1N@ 001106 SEN 101xxx XS3 003400 
100xxx JS2N@ 001206 SOF 007401 XS1N@ 003106 
OOOxxx JS3N@ 001406 SOFA 005711 XS2N@ 003206 
005111 JS1 NM@ 002106 SOFB 005722 XS3N@ 003406 
005122 JS2NM@ 002206 SOFX 005744 
00670x JS3NM@ 002406 SRE@ 0066yx XXNZ@ 003046 

1020xx JXNZ@ 001046 STA 050000 xxz 003040 
1021xx JXNZM@ 002046 STAE 00605z W=0-15 Y-1,2,4 
1023xx JXZ 001040 STAI 006050 X=0-7 
1022xx JXZM 002040 STB 060000 Z=4-7 
040000 LASL 004400+n STBE 00606z V=0-3 

@ Instruction unique to 620/f, 620/f-1 00, and V73. 

All MUL/DIVand Extended Addressing is optional with Varian 620/i. 

Figure 111-7. 620 Series Instruction List 

Ill -7 



CHAPTER Ill 
COMPUTER OPERATION 

SECTION 2 
PAPER TAPE FORMATS 

2.1 SOURCE TAPE FORMAT 

Source tapes for the Varian computer systems are normally generated by using a Teletype 
in off-line mode. The Varian 33/35 ASR Teletype will always punch channel 8 as 
illustrated in figure 111-8. 

Source tapes for the 4KA, 8KA, and MR assemblers and the source editor program (EDIT) 
all use the same format. As developed by Varian, this format is a modified ASCII code of 
eight bits, using one frame of tape per character. Varian part numbers for source tapes 
are labled with aT; for example, 92T0201-054A. 

2.2 BOOTSTRAP FORMAT 

The first part of the binary load/dump program and the executive routine require the 
bootstrap format (figure 111-9). This format is loaded with a bootstrap routine, normally 
located in memory location 07756 through 07775. 

Bit 8 is only used for leader and trailer. Bit 7 is always the logical complement of bit _6, 
and bits 6 through 1 contain two octal numbers. Three frames make up one 18-bit word 
(six octal characters). Bit 6 of the first frame is the most significant bit (MSB), and bit 1 
of the third frame is the least significant bit (LSB) of the word. The tirst valid frame (first 
binary frame) is the first channel 7 punch. The feed hole is located between channels 3 
and 4. 

2.3 BINARY OBJECT (PROGRAM OBJECT) FOii~MAT 

All tapes labeled object (except for stand-alone FORTRAN tapes) are in the binary object 
format. These tapes may be identified by the use of a U in the Variian part number; for 
example, 92U0107-001. 

In this format, bit 8 is used only for leader or trailer, bit 7 is always the logical 
complement of bit 6 (except for record marks), and bits 6 through 1 contain data. Three 
frames comprise a word with bit 6 of the first frame as the most significant bit and bit 1 
of the third frame as the least significant bit. 

111-8 



VTJJ.J/87 

• • • • • • •• • • •• • • •• • •• •• •• •• •• • ••• • •• •• • ••• •• • • •• •• • •• •• • •• • • • • •• • •• •• ••• • •• • ••• •• ••••• •• • • •• • • • •• • • • •• • • •• •• • • • •• • •• • •• • ••• •• • •••• •• ••• •• ••• • •• ••• • • •• • • • •• • • • •• • • • • •• •• • •• •• • • •• • •• • •• • ••• • •••• • •••• • • •• • • • • • • • • • • • • 
8 7 654 3 2 1 

CHAPTER Ill 
COMPUTER OPERATION 

-301 302 
-303 

-261 262 . 
-263 

I 

-260 

Figure 111-8. Source Tape Format 

Ill -9 



CHAPTER Ill 
COMPUTER OPERATION 

I . Ill- II NN A 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
: • FIRST BINARY FRAME 

-=-.-- -.-:--- _/ 
• • • 100437 ••••••• - -.- - -.- -
•• • 006010 • •• -.--.--• • • 000223 

- ..! -·- ._ .. ~ -• • • • • 002000 • • --.--.---
•••• •• 007320 • • • -. - -.- - -

• • • • 001100 • • -.--.----
•••• 007012 • • •• - .. - -.- -
• • • 005001 • • • -.--.--

• • • 001000 • • -.- -.--
•••• 007014 

• • •• -.- - .- -
• • 000007 • • ••• -.- -.--

• • • • 005111 • • • • -.- - ..... 
• • •• 054310 • •• -.- - .- -
•• • 006010 • •• - .- .. - -

••••• • • 
87654 321 

Figure 111-9. Bootstrap Format 

Ill -10 



vn J-1189 

• • • • • • • • • • • • • • • • • • 
-.~ .. -.......... 

VISUAL AID ••••• • ••• ••••••••• RECORD MARK-=::.-_-:_---!..---- : = • • 
RECORD SIZE : •: • 000011 

----.---.-~---

ORIGIN ADDRESS ••• • • 027400 • • ---.--.----
DATA ••• • • 007400 • • ----.-- -.--- --

• • • 002000 • • - - - -.- - -. - .- - -
••••• 027434 ••••• ---.-- ... -----

• • 000007 
- - - -·- - ..! ~ '-.•- - -• • ••• • • 007401 • • • ----.---.-----

: • : 002000 
- - - -.- - -. -. - - -

••••• 027434 •••••• ---.-- ..... -----
• • • 001000 • • - - - -.- - - .- ... - - -

DATA ••• • • 027403 • • •• - - - ... -- -.-- - --
CHECKSUM • • • 001014 • • •• -- -..... -.... --
VISUAL AID ••••• • ••• 

RECORD MARK__.- -•-•-•~.!~4!.•-•- ------.--.-----
RECORD SIZE : : 000000 

- - - -.- - -.- .. - - -
EXECUTION ADDRESS ••• • • 027400 • • ----.--.-----CHECKSUM ••• • • 027400 • • - - -.- - - "i - - - - -

• • • • • • • • 
87654 321 

Figure 111-10. Binary Object Format 

Ill -11 

CHAPTER Ill 
COMPUTER OPERATION 



CHAPTER Ill 
COMPUTER OPERATION 

Figure 111-10 locates the following information as it appears in the binary object format: 

Record mark 

Record size 

Origin address 

Checksum 

Execution address 

indicates the start of a record to the binary 
loader 

the number of data words in the record 
0 < n < 62 DAS tape 
0 < n < 65 BLD tape 
0 indicates the end of a program 

the memory address where the binary loader is 
to put the data words 

exclusive-OR of all words in the record (except 
for the checksum word) 

run address in the case of load and execute 

A program can contain many records. 

2.4 MOS RELOCATABLE OBJECT FORMAT 

All tapes produced by the MOS assembler or compiler will have this format (the assembler 
and the compiler produce identical object tapes). Refer to appendix B of the MOS manual 
(98 A 9952 090) for a detailed description of the relocatable MOS object format. Object 
tape produced by the MOS debug program is slightly different (refer to appendix A of the 
MOS manual). 

In this format, blank tape with feed holes is used for leader and trail1er. Bits 7 and 6 are 
not part of the word; they are ignored. Bits 8, 5, 4, 3, 2, and 1 contain data. Three frames 
comprise a word with bit 8 of the first frame as the most significant bit and bit 1 of the 
third frame as the least significant bit. 

Object records have a fixed length of 60 words; the records are separated by three blank 
frames known as the record mark. Program identification and the creation date are in 
packed-ASCII format. 

Figure 111-11 is an illustration of MOS relocatable object format. 

Ill -12 



VT/1-1/90 

varian data machines ~ 

. 
RECORD CONTROL----.-.---.-.-.----

•• • • 060400 
WORD ___ -:-:- ~~ -.-.· --

CHECKSUM ••• • • 132252 •••••• --- .... --.-----
PROGRAM SIZE •• • 000002 •• • • - - - -.... - i ... - - - - -

PROGRAM LD ••• • •• 142305 
--- -·~- -·-·- ·--­••••• •• •• •• 141315 --- -c-s~.:-:- ... --

••••• •• 143640 ••• • -- - -.-.- i .. -.-- --
•• • • 120240 ••• • PROGRAM CREATION ----.-.- -.-.- 'ii" --

DATE .::. : • 130270 -- --.-.-1.- -.- --
•••••• •• 127661 -- -·-:-~~.:- .s- --
••• • •• 132657 

-- -·-:-1-l;..•-:-c---
••••• • 133271 

-- -·-:;!.•-:- -~ --
DATA •• • 010000 •• • -- --.• - -.. -

CHAPTER Ill 
COMPUTER OPERATION 

••• • • 022226 
--- -·-·~- ~·-·-•• • • •••• • • • 026547 ••• • ••• 
---~-----•• 000000 •• • - - - ... -.-.- - - - -

•• • 100001 •• • • --- ~--.-- --
•• • • 002000 •• • --- .. - ..... -- --
•• • 000000 •• • ---.. - -.--- --

•••••• 007000 ----:-1--:-- - --
• 

87654 321 

Figure 111-11. MOS Relocatable Object Format 

Ill -13 



CHAPTER Ill 
COMPUTER OPERATION 

SECTION 3 
OPERATING SEQUENCES FOR 620/i, 620/L 

Three typical operating sequences are described in the following paragraphs. There are 
variations to these sequences, depending upon the particular instruction being executed; 
however, an understanding of these fundamental operations will enable the user to 
quickly understand the timing of each individual instruction sequence. 

3.1 ACCESS OPERAND IN MEMORY 

The simplest and most basic sequence is one in which a single-word, directly-addressed 
operand is read from memory. This is typical of the load, arithmetic (excluding multiply 
and divide), and logic type instructions. 

The timing of the suboperations of this sequence is illustrated in figure 111-12. At time 0, 
the instruction cycle (ICYX +) for the nth instruction is initiated. Note that the n - 1 
instruction is being executed (IEPX +)while the current instruction (n) is being read from 
memory. At time 0.9, the instruction is transferred to the U register. During the 
instruction address phase (IAPX + ), which occurs while the instruction just read is being 
restored to memory, the operand address is generated. 

Since the operand is not indirectly addressed, the operand cycle (OCYX +) is initiated at 
time 1.8. After the operand has been read from memory and stored in the R register, the 
address of the next instruction, n + 1, is generated (normally by adding 1 to the P 
register) and transferred to the memory L register. This suboperation is performed while 
the operand is being restored in memory. The instruction cycle (ICYX +) for n + 1 is then 
initiated at time 3.6. 

Note that the operation to be peformed upon the operand now contained in the R register 
is executed during the instruction execution phase (I EPX +) of ICYX + for n + 1. This 
operation could be, for example, adding the operand value to contents of the A register 
and storing the result in A (ADD), or simply transferring the operand to one of the 
operation registers (LOA, LOB, or LOX). 

Ill -14 



1-' 
(J1 

MEMORY CYCLEs (l.8J.Ls) _ QEAo !mroRE 1 READ :-REsr<5RCrREA0:REsToRE 1 READ : REsToRE 1 
n n+l 

START INSTRUCTION CYCLE 1\ (\ 

READ INSTRUCTION 

STORE INSTRUCTION 
IN U REGISTER 

GENERATE OPERAND 
ADDRESS 

START OPERAND CYCLE 

READ OPERAND 

LOAD OPERAND 
IN REGISTER 

GENERATE INSTRUCTION 
ADDRESS 

EXECUTE INSTRUCTION 

CllX+ 

CL2X+ 

ICYX+ 

OCYX+ 

IEPX+ 

lAP X+ 

TIME (J.Ls) 

VTI/-1183 

I n · J L_ n"-l l 
~ 1\.n+l 

l n I I n+l I 
t:::._ ~ n+ l 

1 n I I n+l 1 
~~ ~n+l 

1 n+l l I n+2 I 

~-n=f.- I ( - n J 

1 --==fl=56NS (TYPICALLY>n n ll 
__ :-=11--___, 56 NS (TYPICALLY) n n n..._ __ _ 
_j I I I I 
I I t I L 

I 
0 

I 
0.9 

I 
1.8 2.7 

I 
3.6 

I 
4.5 

Figure 111-12. Operand Access from Memory Sequence 

I 
5.4 

I 
6.3 

I 
7.2 

(') 

0 
s: 
"'tt 
c: 
-1 , 
::en 
o::I: 
"ttl> 
f'TI"'tt 
::C-1 
)>f'TI 
=!:::a 
o= z-

< m ... 
iii" 
::::s 
c. 
m .. 
m 
3 
m 
(') 
::::T 
::::s 
~ en 

~ 



~ 

O'l 

MEMORY CYCLEs (l.SJJs) I READ i RESTORE I CLEAR : WRITE I READ i RESTORE I CLEAR :wRITE J 

START INSTRUCTIONS /\" /\n+l f:::. 
CYCLE 
READ INSTRUCTION ( n ( ( n+ 1 I 

1\. n ~n+l STORE INSTRUCTION 
IN U REGISTER 

GENERATE OPERAND ADDRESS I n I I n+l I 
START OPERAND CYCLE 

TRANSFER OPERAND TO 
MEMORY (W REG) 

t:;;_ ~ n+l 

1 n I I n+l I 
WRITE OPERAND IN MEMORY I n ) [ ~ -] 

GENERATE INSTRUCTION 
ADDRESS 

EXECUTE INSTRUCTION 

CLlX+ 

CL2X+ 

ICY X+ 

OCYX+ 

IEPX+ 

lAP X+ 

TIME (~s) 

Vri 1-1/84 

I n+l 1 I ~2---l 

I ~-1 r----, 
I I 

1 ---fl=-56 NS (TYPICALLY) n n fl._ 
___ --n-__. 56 NS (TYPICALLY) n n nL-__ _ 
_j I I I I 
I I I I L 

0 0.9 i.8 2.7 ') L v.u A t::. ... ..~ 

Figure 111-13. Operand Storage in Memory Sequence 

5.4 6.3 

I 

. I 
702 

(")(") 

O:J: 
S:J> 

"" c-4 
-4f'TI 
JTI:::O 
:::0-

0 
"'tJ 
fTI 
:::0 
J> 
:::! 
0 
z 

~ 
< m ... 
ar 
::l 
a. 
m .... m 
3 
m 
() 
:::T :;· 
CD 
en 



3.2 STORE OPERAND IN MEMORY 

CHAPTER Ill 
COMPUTER OPERATION 

The sequence for storing an operand in memory (STA, STB, STX) is essentially identical 
to that for accessing an operand, except that the specified memory cell is cleared and the 
operand written into it. The sequence of suboperations is shown in figure 111-13. 

The nth instruction is accessed and the operand address generated during ICYX + as 
before; execution of the n - 1 instruction occurs during I EPX + of the nth cycle as 
indicated. However, during the operand cycle (OCYX + ), the operand is transferred to 
memory while the referenced cell is being cleared. During the last half of the cycle, the 
operand is stored into the cleared cell. During this time, the address for the next 
instruction is generated. Note that there is no execution, as such, for this type of 
instruction (indicated by dashed lines) because the execution has already been 
accomplished in effect by the transfer and storage of the operand in memory. 

3.3 INDIRECT OPERAND ACCESS 

The third basic sequence involves indirectly accessing an operand in memory by a single­
word instruction. In this case, an address cycle (ACYX +) is required to read the indirect 
address word from memory before performing the operand cycle (OCYX-). 

The sequence of suboperations is illustrated in figure 111-14. During the instruction cycle 
(ICYX + ), the nth instruction is read from memory and stored in the U register as before. 
The previous instruction, n - 1, is executed during I EPX +. During the instruction address 
phase, IAPX +, the location of the (indirect) address word is generated. This address 
word is read from memory and stored in the R register as indicated in the timing 
diagram. For the case illustrated, the address word accessed contains the address of the 
operand (otherwise, another address cycle would be initiated to access a second address 
word, and so on). The operand address is transferred to the memory L Register during 
the last half of ACYX + to locate the operand read out during the succeeding OCYX +. 
The generation of the address for instruction n + 1 and the execution of instruction n are 
then performed as in the simple operand access instructions (section 3.1 ). 

111-17 



...... 
(X) 

MEMORY CYCLES (1.8~s) I READ ! RESTORE I READ ! RESTORE I READ i RESTORE I READ ! RESTORE I 
START INSTRUCTION n n+l 
CYCLE 

READ INSTRUOION I n I I n I 
STORE INSTRUCTION /\." 1\.n+ 1 
IN U REGISTER 

GENERATE MEMORY ADDRESS I n I c~ n I 
START ADDRESS CYCLE 

READ ADDRESS 

GENERATE OPERAND 
ADDRESS 

START OPERAND CYCLE 

READ OPERAND 

GENERATE INSTRUOION 
ADDRESS 

n n 
fi. _h 

I " I 
I n - ) 

~n 

I " I 
! n+l ! 

EXECUTE INSTRUCTION I n-1 I [ -n-- 1 
CLlX+ I -=fl=-56 NS (TYPICALLY) n n fl._ 
CL2X+ =fl=-56 NS (TYPICALLY) n n n~---

ICY X+ 

ACYX+ 

OCYX+ 

IEPX+ 

lAP X+ 

TIME {,.ts) 

VT/1-1185 

~ L 

I 
0 

I 
0.9 

I 
1.8 

I 
2.7 

I 
3.6 

I 
4.5 

Figure 111-14. Indirect Operand Access Sequence 

I 
5.4 

I 
6.3 

I 
7.2 

('")(") 
O::I: 
S:> ,, 
c-t 
-trrl 
rr~:::tJ 
:::C-
o­, 
r"'' 
::::0 
)> 

::! 
0 
z 

~ 
< 
I» 
~ 

ii"i" 
::s 
Q. 
I» ... 
I» 

3 
I» 
n 
::J" 
::s 
CD 
(I) 



CHAPTER Ill 
COMPUTER OPERATION 

SECTION 4 
COMPUTER FAILURE 

When a computer fails to produce a result (stops before completing the routine), or when 
the result produced is obviously incorrect; it is because of an error, a mistake, or a 
malfunction. 

a. An error is a fault that can be attributed to the numerical analysis or the 
method chosen for solution of the problem: The computer is operating correctly 
and the routine is exactly what the programmer wants it to be, but the results 
are incorrect because the wrong methods or techniques of problem solving were 
chosen. 

b. A mistake is an inadvertent fault in the routine. The computer is doing exactly 
what it is being instructed to do, but the routine is not what the programmer 
thinks it is. A mistake can be made in writing the mnemonic routine, in coding 
the routine, in loading the routine into the computer, or all three. This entire 
process can be a lengthy one, and the opportunities for making mistakes are 
abundant. 

c. A malfunction is a fault in the computer itself; i.e., some electrical or mechanical 
fault in the computer causes it to stop or to produce incorrect results. 

According to these definitions, a computer cannot make mistakes and a programmer 
cannot malfunction. 

4.1 ERRORS 

Errors probably account for the least amount of computer failures. This is because a 
programmer will not usually attempt to write a routine until he is convinced that he knows 
how to solve the problem. Also, the algorithms and other tools provided by the numerical 
analyst have been proven in use many times over and have been refined to mathematical 
perfection. Therefore, one should not look for errors until the possibility of a mistake or 
malfunction has been eliminated. 

Ill -19 



CHAPTER Ill 
COMPUTER OPERATION 

4.2 MISTAKES 

Mistakes account for the largest amount of computer failures. Many routines work 
incorrectly the first time they are put into the computer. The computer may stop when it 
encounters an instruction that is not in its repertoire; or, if it does succeed in completing 
the program, the result may be so large or so small that it is clearly unreasonable. 

The process of locating and correcting the mistakes in a routine is known as debugging. It 
is a good idea to first ensure that the routine stored in the computer is the same as the 
one written down on paper. Therefore: 

a. If the routine was loaded into the computer manually through a control panel or 
some other punchkey or punchbutton system, it is advisable to load the program 
a second time to see if the second results are identical to the first. 

b. If the routine was loaded by magnetic or punched pap1er tape, it might be 
advisable to prepare the tape a second time. However, if the equipment for 
verification is available, load the prepared tape in the verification equipment 
and have a printed routine produced. Verification equipment is designed to read 
a tape and produce a typed or printed copy of the information on the tape. The 
printed routine and the original manuscript of the routine can be compared to 
see if any mistakes were made in transcribing the routine on the tape. 

The specific actions and procedures followed in debugging a routine are determined by 
the characteristics and design features of the computer being used. Some computers have 
a display system which can be used to show the word stored in the accumulator (and 
possibly other registers) at any given time. Other computers have a step-by-step feature 
that uses the signal from a manually operated switch to cause the computer to execute 
one instruction and stop. If both of these features are present, the operator can observe 
the results produced by the execution of each step. This provides a very thorough, although 
time consuming, debugging method. 

Regardless of the specific techniques used, the object of debugging a routine is to ensure 
that the routine is properly coded, that the routine and associated data words are 
correctly stored in memory, and that the routine does not exceed the computer's 
capability; e.g., additions do not cause a computer overflow. It is also necessary to 
determine that the proper instructions have been chosen. 

When the programmer and computer operator are convinced that the routine is correct, 

Ill -20 



CHAPTER Ill 
COMPUTER OPERATION 

that it has been accurately coded, and properly loaded into memory, and that the results 
(if obtained) are still wrong, it is time to check for a malfunction. 

4.3 MALFUNCTIONS 

In the case of a malfunction, corrective maintenance of the computer is indicated. The 
first step in most corrective maintenance procedures is the location and isolation of the 
fault. This is accomplished in digital computers through use of diagnostic or check 
routines. 

4.3.1 Diagnostic Routines for Corrective Maintenance 

Diagnostics are routines of proven quality and correctness that have been prepared for the 
specific purpose of determining the operating condition of one or more computer units or 
sections. A library of diagnostic routines is an essential part of the maintenance 
equipment for a computer. 

The diagnostics for a given computer differ as to length and specific purpose. One routine 
can be designed to check the control section, another for the arithmetic unit, etc.; and 
several routines may be required to obtain an indication of the malfunction and its 
location. For example, a specific diagnostic can determine that a malfunction exists in a 
certain register, and other diagnostics can then be used to localize the trouble to a 
particular flip-flop in that register. When the maximum amount of information has been 
obtained by use of the diagnostic routines, the malfunction can be further isolated 
through use of the available electronic test equipment. 

4.3.2 Diagnostic Routines for Preventive Maintenance 

As well as being important to corrective maintenance, diagnostic routines are valuable for 
use in preventive maintenance. A well-designed diagnostic (check) routine used with 
reasonable frequency provides an excellent method of GO/NO-GO checking of the 
computer. 

In addition to the use of check routines, a method known as marginal checking is 
frequently a part of the preventive maintenance procedures. The object of marginal 
checking is to determine and measure the amount of variation in the operating voltages 
(and perhaps frequencies) from their normal levels and values. These variations occur 
before a malfunction is caused; the operating conditions of the circuits to be checked are 
deteriorated in a controlled manner until a malfunction occurs. 

111-21 



CHAPTER Ill 
COMPUTER OPERATION 

Marginal checking operates in the following manner: 

a. The value of the parameters being varied is read and recordE~d. This is done in a 
systematic and automatic manner, and a day-by-day record is kept of the values 
at which failure occurs. 

b. These daily values can be compared with previously determined values of the 
maximum margins or tolerances allowed to determine when a component has 
deteriorated to the point that it should be replaced. 

Marginal checking is most effective in· detecting gradually deteriorating components 
before the deterioration has become severe enough to cause a mal1~unction. It will not 
necessarily prevent abrupt failures, such as shorted elements or wiring, but it can be used 
as a means of diagnosis and fault location once a malfunction has occurred. 

Ill -22 



CHAPTER IV 

620 COMPUTER SYSTEMS 





SECTION 1 
620/i AND 620/L SYSTEMS 

1.1 INTRODUCTION 

CHAPTER IV 
620 COMPUTER SYSTEMS 

The 620/i and 620/L computers are system-oriented, high-speed parallel binary 
computers. Modular design and extensive use of integrated circuits permit a compact 
package, occupying only 10.5 inches of rack space. With flexibility built-in, the 620/i and 
620/L computers are ideally suited for use as general-purpose computers or as on-line 
system devices. 

The 620/i and 620/L computers feature: 

1.8-microsecond memory cycle 

16- or 18-bit words 

Nine hardware registers 

Six addressing modes 

Over 100 basic instructions 

Memory sizes of 4,096 words minimum, 32,768 words maximum 

The 620/i and 620/L systems are designed to be user-oriented. Input/output flexibility 
allows a wide selection of option facilities including: Direct Memory Access, Real-Time 
Clock, Power Failure/Restart, and Buffer Interlace Controller. These features combined 
with priority interrupts, external sense lines and external control lines enable the systems 
to meet every possible 1/0 requirement. Specifications for the 620/i and 620/L computers 
are listed in table IV-1. 

IV-1 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-1. 620/i and 620/L Specifications 

Description 

Memory 

Arithmetic 

Word Length 

Speed 
(Fetch and execute) 

Operation Registers 

Buffer Registers 

System-oriented, general-purpose digital 
computers, designed for on-line data system 
requirements, utilizing magnetic core memory, 
binary, parallel, single-address, with bus 
organization and micro-control 

Magnetic core, 16 bits (18 bits optional), 1.8 
microseconds full cycle, 700 nanoseconds 
access time, 4,096 words minimum expandable to 
32,768 words maximum 

Parallel, binary, fixed-point, two's complement 

16 bits standard, 18 bits optional 

Add or subtract 
Multiply (optional on 620/i) 

Divide (optional) 

Register change class 
I I 0 · from A or 8 
Memory 

3.6 microseconds 
18.0 microseconds, 

16-bit 
19.8 microseconds, 

18-bit 
18.0 to 25 microsec-

onds, 16-bit 
1.8 microseconds 
3.6 microseconds 
5.4 microseconds 

A register: accumulator, input/output, 16/18 
bits 

8 register: double-length accumulator, 
input/output, index register, 16/18 bits 

X register: index register, 16/18 bits 
P register: program counter, 16/18 bits 

R register: operand register, 16/18 bits 
U register: instruction register, 16/18 bits 
S register: shift register, five bits, oper-

ates with the U register for executing 
shift instructions 

L register: memory address regisjter, 16 bits 
W register: memory word register, 16/18 bits 

IV-2 



Control 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-1. 620/i and 620/L Specifications (continued) 

Addressing Modes: 
Direct addressing: to 2,048 words 
Relative to P register: 512 words 
Index with X register: hardware, does 

not add to execution time 
Index with 8 register: hardware, does 

not add to execution time 
Multilevel indirect addressing 
Immediate 
Extended addressing (optional) 

Instruction Types: 
Single-word, addressing 

.·Double-word, addressing 
Single-word, nonaddressing 
Double-word, nonaddressing 

Instructions: 
Over 100 standard instructions as listed 

below, plus more than 128 m i era­
instructions 

Load (three) 
Store (three) 
Arithmetic (five, two optional on 620/i) 
Logical (three) 
Jump (10) 
Jump and mark (10) 
Execute (10) 
Immediate (14, two optional on 620/i) 
Input/output (13) 
Register change (26) 
Logical shift (six) 
Arithmetic shift (six) 
Control (two) 
Extended addressing (14 optional on 620/i) 
Micro-instructions (over 128) 

Micro-EXEC (Optional): 
Facility and hardware to construct a 

IV-3 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-1. 620/i and 620/L Specifications (continued> 

Input/output 

Physical 

hardware program external! to the. 620/i 
eliminates stored program memory accessing 
by use of hardware program 

Console: 
Display and data entry switches for all 
operation registers, three sense switches, 
instruction repeat, single step, run, and 
power on I off 

Processor input/output: 
Programmed data transfer 
Single word to/from memory 
Single word to/from A and 8 registers 
External control lines 
External sense lines 

Automatic data transfer 
Direct memory access facility transfer with 
rates over 200,000 words per second· 

Priority interrupts {optional): 
Group enable/disable, individually 
arm/disarm, single instruction interrupt 
capability 

Real-time clock (optional): 
Adjustable time base: can be programmed 
as multiple internal· timer 

Power failure/restart (optional): 
Interrupts on power failure and auto­
matically restarts on power recovery 

Dimensions: 
Mainframe: 10-1/2 inches high, 19 inches 
wide, 15 inches deep 

IV-4 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-1. 620/i and 620/L Specifications (continued) 

Mainframe 

Logic and signals 

Weight: 

Power: 

Mainframe: 35 pounds 

3 amps 115V ac, 60 Hz (340 watts). 
115 ± 10V, 60 ± 2 Hz. Power supplies 
are regulated; additional regulation is 
not required under normal commercial 
power sources. Conversion for 50 Hz and 
other voltages available at added cost. 

Expansion: 
Main processor contains provisions and 
space for all internal options 

Installation: 
Mounts in standard 19-inch cabinet, no 
air conditioning, sub-flooring, special 
wiring, or site preparation required 

Environments: 
0 to 45 degrees C; 0 to 90 percent rela­
tive humidity 

Integrated circuit, 8.8-MHz clock, logic 

levels OV false, + 5V true 

Figure IV-1 presents an outline of the 620/ i computer. 

IV-5 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.2 SWITCHES AND INDICATORS 

The 620/i and 620/L control consoles, as illustrated in figures IV-2 and IV-3, provide for 
operator communication with the computer. This communication is accomplished through 
use of the register displays and control switches. 

1.2.1 Displays 

The contents of all operation registers in the computer (including the instruction register), 
are displayed in binary-octal form when selected by the registE!r display switches. 
Indicators and switches permit independent control over each bit in table IV-2. During 
normal operation (run mode) the display is active; however, the register entry and reset 
switches are deactivated to prevent accidental alternation of the register contents. 

/ 

POWI:RSUI'f\Y I L 
--21· --·-~T 

![r=l 
~-'-:"" -_':.: "::-- J L _J _________ J! 

i 
.J 2· r----- IT -- --- ---i 

I"III-09JJ' 

Figure IV-1. 620/i Outline 

IV-6 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Figure IV-2. 620/i Control Console 

Figure IV-3. 620/L Control Console 

IV-7 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.2.2 Controls 

Control switches permit the operator to manually alter normal program operation. These 
switches, also described in table IV-2, provide considerable control flexibility for 
maintenance, troubleshooting, and program debugging. The sense s\r~~itch controls are also 
useful in normal program operation to allow operator selection of particular program 
sequences to be executed. 

Control or indicator 

A Register 

8 Register 

Instruction 
Register (U) 

Instruction 
Counter (P) 

Table IV-2. Controls and Indicators 

Function 

Illuminated indicators display the contents of 
the A register upon selection of A from the console. 
Pressing a switch enters a one into the correspond­
ing bit position; pressing RESET clears the regis­
ter. The overflow light is set or reset by exe-
cution of the set overflow (or arithmetic condition) 
and reset overflow instructions, or by pressing 
SYSTEM RESET. 

Illuminated indicators display the contents of 
the 8 register upon selection of 8 from the con­
sole·. Pressing a switch enters a one into the 
corresponding bit position. Pressing RESET clears 
the entire register. 

Illuminated indicators display the current instruc­
tion being held in the instruction (U) register 
during execution. Pressing a switch enters a one 
into the corresponding bit position, and pre·ssing 
RESET clears the entire register. 

Illuminated indicators display the memory location 
of the next instruction to be executed when the 
computer halts. Upon selection of P from the con­
sole, pressing a switch enters a one into the 
corresponding bit position. Pressing RESET clears 
the entire register. 

IV-8 



Control or indicator 

Index Register(X) 

SYSTEM RESET 

RUN 

STEP 

REPEAT 

SENSE SWITCHES 
1, 2, and 3 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-2. Controls and Indicators (continued) 

Function 

Illuminated indicators ·display the contents of the 
index (X) register upon selection of X from the 
console. Pressing a switch enters a one into the 
corresponding bit position, and Pressing RESET 
clears. the entire register. 

Momentary-contact switch that permits manual reset 
following memory temperature overload condition, 
also used to initialize computer and peripheral 
equipment. 

Momentary-contact switch that sets computer to 
normal operation mode. Indicator is off and opera­
tion is halted when the STEP switch is pressed or 
a program halt instruction is executed. 

Momentary-contact switch that permits operation 
to be halted and the program executed one instruc­
tion at a time. Pressing this switch in the RUN 
mode stops operation, turns the RUN indicator lamp 
off, and turns STEP indicator lamp on. The in­
struction register display indicates the next 
instruction to be executed when STEP is pressed 
and the program counter indicates the location of 
the next instruction to be executed after the in­
struction in the instruction register 
is executed. Normal operation is started and STEP 
turned off when the RUN switch is pressed. 

Toggle switch that permits the manual repetition 
of an instruction in the instruction register. 
Pressing STEP executes the instruction. and advances 
the program counter; however, the contents of the 
instruction register are left unchanged. The 
switch on the control console is activated only 
when the STEP switch is on (operation halted). 

Toggle switches permitting manual program control 
whenever the sense switch jump, jump-and-mark, or 
execute instructions (JSSI, JSS2, JSS3, JSI M, 

IV-9 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-2. Controls and Indicators (continued) 

Control or indicator Function 

POWER: 
620/i 

620/L 

1.3 

JS2M, JS3M, XS1, XS2, and XS3) are executed only 
if the corresponding SENSE switch is set on. 

Alternate-action switch/indicator turns memory and 
logic power supplies on and off, also controls 
Teletype controller power. Switch indicator lamp 
lights when memory and computer power are both on; 
indicator is off when power is turned off. 

Key-operated power switch controls the ac input 
to the 620 power supply: PWR OFF position, dis­
ables ac input to the power supply primary; in 
the PWR ON position, supplies ac powe1r to the 
power supply primary to make the system fully 
operational; and, in the PWR ON DISABLE. position 
supplies ac power to the power supply primary 
to make the computer operational; however, disables 
all control console switches execpt the power 
switch itself so that pressing any other switch 
at this time has no effect. The control panel 
and power supply indicator lights are functional 
when the POWER switch is in PWR ON or PWR ON 
DISABLE. The key can be removed from the power 
switch in any of the three positions. To turn 
off the computer, place the power switch in the 
PWR ON position, lift the STEP/RUN switch then 
turn the power switch to PWR OFF. 

MANUAL OPERATIONS 

Control console operation is simple and can be understood by reference to table IV-1 and 
figures IV-2 and IV-3. The following paragraphs describe typical operation sequences that 
illustrate normal computer use. 

1.3.1 Power Control 

Power to the computer, the memory, and control logic for the Teletype is turned on and off 
by the POWER switch: the 33 ASR Teletype has a separate power switch. Provision is 
also made for controlling power to other I 10 device controllers from the control console 
switch. If the memory temperature sensor detects an overload condition, the ALARM 
indicator on the console illuminates; the memory should be disabled and power turned off. 
Power should not be restored until the temperature is returned to normal. 

IV-10 



1.3.2 Manual Program Entry and Execution 

CHAPTER IV 
620 COMPUTER SYSTEMS 

When the computer is halted (step mode), programs and data can be read from memory 
and entered into memory, and a prestored program manually executed. To load words into 
memory (either instructions or data), set the desired word in the A, 8, or X register, set up 
the appropriate store instruction (STA, STB, STX) with the desired operand address in the 
instruction (U) register, and press STEP to execute the store operation. 

To display the contents of any memory cell in the A, B, or X register display, set the 
appropriate load instruction (LOA, LOB, LOX) with the proper memory address in the 
instruction register, and press STEP to load the selected word into the register. 

To manually execute a program stored in memory, set the starting location of the program 
in the program counter. When STEP is pressed, the instruction contained in the 
instruction register is executed, and t~e instruction of the selected loaction is transferred 
to the instruction register for execution when the switch is again pressed. Repeated 
operation of STEP will then step through the program one instruction at a time. All 
operations such as multilevel indirect addressing will be performed for each instruction 
each time STEP is pressed. Note that I /0 instructions involving an asynchronous device 
that transfers data in a block (such as a magnetic tape unit or the Teletype) generally 
cannot be operated in a single-step mode. 

1.3.3 

Note 

To select a register from the console, place the desired register 
switch in the UP position on the 620/i and in the DOWN 'position on 
the 620/L. Select only one register at a time. 

Instruction Repeat 

In the step mode, the instruction register contains the next instruction to be executed 
when STEP is pressed, and the program counter contains the location of the next 
instruction to be transferred to the instruction register after the current instruction is 
executed. In some cases, it is desirable to manually execute an instruction several times. 
When REPEAT is on, instruction register loading is inhibited even through the instruction 
counter is advanced each time STEP is pressed. This mode is particularly useful for 
loading words into sequential memory locations, and for displaying the contents of 
sequential memory cells. 

IV-11 



CHAPTER IV 
620 COMPUTER SYSTEMS 

To load a group of sequential memory cells, set the appropriate store instruction (STA, 
STB. STX) in the instruction register with the relative address mode in the M field, the A 
field set to 0, and the base address in the program counter. Repeated operation of STEP 
will store the contents of A, 8, or X into sequential memory locations. The word loaded on 
each step can be changed by entering the desired value into the operation register for 
each step. 

To display the contents of a group of sequential memory cells, set the appropriate load 
instruction (LOA, LOB, LOX) in the instruction register, in the relative address mode, with 
the base address in the program counter, and the A field set to 0. The contents of the 
sequential location will be displayed in the selected operation register each time STEP is 
pressed. 

1.3.4 SENSE Switches 

The SENSE switches allow the operator to dynamically alter a program sequence in either 
run or step mode. The three SENSE switches provide a logical-AN 0 function with bits 6 
through 8 of the instruction word and, consequently, can be used for various logical 
branches as set up on the console. 

1.4 ORGANIZATION 

A block diagram of the 620/i computer is shown in figure IV-4. The computer is composed 
of four major sections: memory, control, arithmetic/logic, and input/output. 

1.4.1 Memory 

The basic memory module contains a minimum of 4,096 words; total memory capacity can 
be expanded in 4,096-word increments to a maximum of 32,768 words. As illustrated in 
figure IV-4, each memory module is connected with the same location (L) and word (W) 
register. The L register contains the location of the word to be accessed in memory during 
either a clear /write or read/restore cycle. The W register receives words read from 
memory during a read/restore cycle and receives words from the c:entral bus (C bus) 
during a clear /write cycle. The W register is 16 or 18 bits long. Outputs from W register 
are gated onto the W bus through line drivers by appropriate timing signals. 

IV-12 



< 
......... 
w 

VTII-1285 

---l 
I 
I 
I 
I 
I 
I 
I 

C-BUS 

W-BUS (MEMORY DATA) 

l-BUS {MEMORY ADDRESS) 

Figure IV-4. 620/i Organization 

~-i~ VO CONNECTOR 

CONTROL BUS 

} 
vo 

I I E-BUS \._ CABlE 

{'). I I {'). t>. 

C-BUS 

I I 
L_J 

0'\ 

< 
1\) 

m 0 ... n 
iii" 0 

s: :::l 
c. "'tJ 
m c ... --1 m 1"1n 
3 :::c:::I: 
m CJ)l> 
(') -<"'tJ 

=. CJ)--1 
--11"1 

:::l 1"1:::0 
CD S:- en CJ'J< 

ri 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.4.2 Control 

The control section provides the timing and control signals required to perform all 
operations in the computer. The major elements are the instruction register and the 
ttming and decoding logic. 

a. The instruction (U) register is 16 or 18 bits long. This negister receives each 
instruction from memory and holds the instruction during its execution. The 
control fields of the instruction word are routed to the decoding and timing logic 
where the codes determine the required timing and control signals. The address 
field, used for various addressing operations, is also routed to the arithmetic/ 
logic section. 

b. The decoding logic decodes the fields of the instruction word held in the 
instruction register to determine the control signal levels required to perform the 
operations specified by the instruction. These levels select the timing signals 
generated by the timing logic. 

c. The timing logic generates the basic 2.2-Mc system clock. From this clock, the 
timing logic develops the timing pulses which control the sequence of all 
operations in the computer. 

1.4.3 Arithmetic I Logic 

The arithmetic/logic section is the part of the computer that performs numeric and logical 
calculations. (Refer to figure IV-4 for the important components of this section.) The 
arithmetic unit is functionally composed of several subsections, a number (R) register, 
adder. and control and arithmetic logic. The R register receives the operands read from 
memory and holds these words during the execution of an arithmetic or logical instruction. 
The R register gates allow selection of the R register contents, the R register complement, 
or the instruction register for an operation. This selection depends on whether an operand 
stored in the R register or the A field of the instruction word stored in the instruction 
register is to be used. The adder generates the arithmetic sum and carry. The logic gates 
allow shifting of the bits. the forming of a logical product and logical masking; these gates 
are used to implement the shifts required for multiplication and division. 

IV·14 



1.4.4 Input/Output 

CHAPTER IV 
620 COMPUTER SYSTEMS 

The 620/i 1/0 section facilitates integration of the computer into an overall system. The 
110 section of the computer communicates with the operation registers and the memory 
through the internal C bus (refer to figure IV-4). Data and control signals are transmitted 
to and from external peripheral devices through the 1/0 bus. Standard or special 
peripheral devices are in parallel on the l/0 bus, and any number of logical devices up to 
a total of 64 can be added. Such devices could include teleypewriters, high-speed printers, 
analog/digital converters, disc memory, common carrier interface, magnetic tape 
transports, and plotters. 

1.4.5 Bus Structure 

There are four buses in the 620/i and 620/L computer systems: 

a. The W bus provides the parallel path and selection logic for routing data and 
instructions between memory, the l/0 unit, the control unit, and the arithmetic 
unit; it also provides a direct path to memory for the IN MEMORY and OUT 
MEMORY I /0 instruction; and, with the interlace option, allows I /0 operations 
to occur simultaneously with extended arithmetic and shift commands. 

b. The C bus provides the parallel path and selection logic for routing data between 
the arithmetic unit, the l/0 unit, the memory bus, and the operation registers . 

. This bus permits data to be uniquely or commonly transferred to the operation 
registers, and performs the distribution function for microprogramming. The C 
bus also provides a bidirectional parallel word path to the party-line bus and the 
W bus. The C bus is the .central communication avenue and connects with all 
internal elements of the 620/i or 620/L computers. 

c. The S bus provides the parallel path and selection logic for routing data between 
the operation registers and the arithmetic unit. 

d. The party-line bus provides a 16-bit parallel bidirectional 1/0 communication 
path. This bus includes the control lines for transfer ready, sense, control, 
interrupt address, and acknowledge and information drop-ins. The party-line 
bus is packaged as one cable. Each peripheral device has a party-line connector 
and a party-line extender connector; the device and the party-line form a link 
whereby additional subsystems can be added at the site on a plug-in basis. 

IV-15 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.5 TIMING 

The 620/i and 620/L systems operate on a basic 1.8-microsecond machine cycle; that is, a 
full memory cycle (read/restore or clear /write) is performed in each 1.8-microsecond time 
interval (except for some special cases in which this period is extended as discussed in 
subsequent paragraphs). All operations performed by the comput1er are accomplished 
within some multiple of this basic timing period. , 

To execute the various operations, several suboperations are pe~rformed during the 
memory cycle time. Timing of these suboperations is controlled by the internal 2.2-MHz 
master clock. The period of this master clock is 0.45 microseconds, or one-fourth of the 
basic 1.8-microsecond machine cycle; this permits multiple suboperations to be executed 
during the memory cycle period. Note that the first half-cycle (0.9 microseconds) of the 
memory period is used to access a word (read) or to clear a cell (cle~ar); the second half­
cycle is used to restore a word (restore) or to write a new word (write) into the cell. 

1.5.1 Clocks 

The clocks which control the timing of all operations in the computer are generated by the 
timing and control logic. These clocks are illustrated in figure IV-5 and listed in table IV-3. 

IV-16 



'CU 
1-
C2 
~ 

UJ 
0.: 

0 
1-
VI 
UJ 
0.: 

2 
<( 
UJ 
~ 

~ 

0 
<( 
UJ 
0.: 

+ + + + X I 
~ 0 w X X ~ u :r: :r: 
~ 

:r: ~ 0.. 0.. ~ 

0.. u UJ UJ u 

IV-17 

varian data machines ~ 

CHAPTER IV 
620 COMPUTER SYSTEMS 

., 
...:.:: 
u 
0 u 
tlD 
c ·e 
i= 
u 

f 

·c;; 
(Q 

Ill 

u;; 
> 

"' "'tJ c cv 0 
u llo. 

~ :s 
E • tlD 
u i.i: .E -o c 
~ 0 

0 
~ 

j 
E 
u .E 
~ 
0 

' 

+ 
X 
N ..,. 
~ .... u 

~ .... 
!::: 
:::... 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Clock 

Master Clock 
(MCLX +) 

Phase Clock 
(PHCX +) 

Address Phase 
(EPHX-) 

Execute Phase 
(EPHX +) 

Clock 1 

Clock 2 
(CL2X +) 

Table IV-3. Basic Timing Clocks 

Description 

Crystal-controlled timing signal for entire system 
2.2-MHz 

Ll-MHz timing signal (counted down and synchronous 
with MCLX + ); used to time the basic e>cecute and ad­
dress phases of the computer 

Basic timing phase, synchronous with restore or 
write half cycles of memory; all transfers of, in­
struction and operand addresses to memory are per­
formed during this period 

Basic timing phase, synchronous with read or clear 
half cycles of memory; all operations on words 
(transfers of data to and from memory and execution 
of instructions) are performed during this period 

Basic timing pulse used to initiate memory cycle 
and all operations synchronous with start of 
memory cycle 

Basic timing clock used to initiate all operations 
synchronized with start of memory write or restore 
half-cycle 

1.5.2 Clock Modifiers 

All functions performed by the 620/i and 620/L occur in two basic phases: 

a. The transfer of addresses to the memory L register (address phase) 

b. Operation upon words read from memory, or the storing of words into memory 
(execute phase). 

These basic address and execution phases can be modified by certain program 
instructions or by signals received from devices external to the computer. The conditions 
under which the periods of the basic clocks are modified are: 

IV-18 



Shift 

Interrupt 

Trap 

Halt 

CHAPTER IV 
620 COMPUTER SYSTEMS 

During shifting operations with words contained in the 
A and B Registers, the execution phase (EPHX +) is ex­
tended by the number of rt:laster clock periods (0.45 
microseconds) equal to the specified number of shifts 

When an external interrupt is received, the address 
phase (EPHX-) is extended 0.9 microseconds to accommo­
date delays in receiving the interrupt address from 
the external device 

When a buffer interlace controller requests a transfer 
to or from memory, EPHX- is extended 3.15 microseconds 
to permit the execution of the full trap sequence 
(routing of address and data from the external device) 

On a halt instruction, clocks CL1X + and CL2X + are 
inhibited; this prevents any further operations until 
the STEP or RUN switch is pressed. 

Modification of the execute phase of an instruction is illustrated in figure IV~6. This 
modified sequence is typical of a shift instruction. At time 0, the instruction has been 
fetched from memory. Starting at time 0.9, the instruction is executed; however, the 
normal 0.45-microsecond execute phase is extended 0.45 microseconds for each shift (six, 
in this illustration). Note that clocks 1 and 2 (CL1X + and CL2X +) are inhibited during 
the extended execution period. In a similar manner, the address phase is extended when 
required by the conditions defined above. 

1.5.3 Sequence Control 

The basic clocks generated from the master clock are. used to time three operating 
sequences: instruction cycle, operand cycle, and address cycle. All operations performed 
by the computer are timed by one or more of these timing sequences. 

IV-19 



< 
r\l 
0 

MEMORY 
CYCLE 

MCLX+ 

PHCX+ 
(CLEI+) 

CLlX+ 

CL2X+ 

READ 
(CLEAR) EXTENDED I 

____ll n n n __ 
I I 
~SHIFT OPERATION--f ___ __.n 1 1 n n n_ 
I I 
!--EXTENDED EXECUTE PHASE---I 

I I 
.EPHX+ I I I I I I I L 

EPHX- 1 1 1 1 1 1 1 r 

VTII-1193 

I -o~9 1~a 2~7 3!6 4!s s!4 6!3 1!2 a!J 
I 
To 

Figure IV -6. Example of a Modified Clock Sequence 

0\(") 
N:I: 
ol> 
(")""0 
0-4 
3:r'l"' 
""0::0 
c­
-4< 
r'l"' 
::0 
tA 
-< 
tA 
-4 
r'l"' 
3: 
tA 

~ 
< 
I» ... 
iii" 
:1 
Q. 
I» ... 
I» 

3 
I» 
() 
:1"' s· 
(I) 
en 



< 
N 
....... 

r---
1 

- DM2951 
I 
I 
I 
I 
I 
I 
I 
I 
I 

C BUS 

VT/3-026/J 

A BUS 

INVERSION 
BETWEEN 
A BUS AND C BUS 

SSLl 

C BUS 

W BUS (MEMORY DATA) 

DM286 
DM287 
DM288 
STACK 

l BUS (MEMORY ADDRESS) 

SSLI 

BIDIRtCTIONAl 

r-l /VO CONNECTOR 
I 1.6. 

I l 
--~ , ... ,...-._. .. I 

~ ItO 
I I .... IJV..I ; CABlE 

A j 

A BUS 

C BUS 

TPOX 

DMI21 

Figure IV-7. Data 620/L Organization 

"" N 
0 < 

C» 
(j ... 
0 a;· 
s: :::::J 
""0 
c Q. 

-I C» ... 
f'T1(j 
:::oz 

C» 

CJ)l> 3 
-<""0 C» 
CJ)--1 n 
--lf'T1 :r 
f'T1:::0 :::::J s- CD 
CJ)< en 

I ~ 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.6 INFORMATION TRANSFER 

All data communication between the basic functional elements of the machine is through 
the three data buses C, S, and W. The C and S buses are internal to the computer. The W 
bus is external and bidirectional; that is, a single set of lines is used to carry information 
both to and from the memory. The following paragraphs outline the major data transfer 
paths in the computer (refer to figure IV-7). 

1.6.1 P Register to Memory 

As an instruction cycle begins, the location of the next instruction is transferred from the 
P register to the L register. The contents of P are transferred thrOIJgh the S bus to the 
adder. The adder increments the location address with the arithmetic gates, and restores 
the incremented count to the P and. L registers. The memory address register, L, now 
contains the address of the next instruction word to be fetched from memory, and the P 
register holds the updated address. 

1.6.2 Memory to U Register 

During the instruction cycle, the instruction word located by the address in the L register 
is read out on the W bus and read into the W register (memory data register). It's then 
transferred out to the U register. 

1.6.3 U Register to Memory 

For many instructions requiring an operand, the address of the operand is contained in 
the instruction word held in the U register. This operand address is transferred to the L 
register through gates in the arithmetic logic and the C bus. The address from U can be 
modified during the transfer to L as follows: 

a. Direct Address. No modification; bits 0 through 10 transferred from U to L 
directly address the operand in the first 2,098 memory locations. 

b. Relative Address. The effective operand address transferred to L is formed by 
adding bits 0 through 8 from U to the contents of P. Addition is performed by 
selecting the contents of P and U and bringing them into the adder. This 
permits addressing any word up to 512 locations ahead of the current program 
location. 

IV-22 



CHAPTER IV 
620 COMPUTER SYSTEMS 

c. Index Address. The effective operand address transferred to L is formed by 
adding bits 0 through 8 from U to either the contents of X or B. 

d. Indirect Address. Same transfer as direct address, but the word read from 
memory will be the address of an operand rather than the operand itself. 

1.6.4 Memory to R Register 

Operands read from memory into the W register are transferred to the R register. The 
op'erands are stored in R while an arithmetic or logical operation is being performed. 

For indirect addressing, and for instructions whose operand address is stored in the 
memory location following the instruction word, the operand address will be read from 
memory into the W register and then transferred to the R register. The address is then 
routed to the L register through the C bus. 

1.6.6 Operation Registers to Memory 

The contents of any one of the operation registers are transferred to memory by selecting 
the register onto the S bus and routing the word through the adder C bus, and W register. 
The contents of the P register can be transferred to the L register to address an 
instruction as previously explained. The contents of the P register and other registers can 
be stored in memory by the same path, except that the word is entered into the W 
register. Note that an address cycle must precede this transfer to place the storage 
address in the L register. 

1.6.7 Memory to Operation Registers 

The contents of a memory location can be transferred to any of the operation registers 
through the W, G, and C buses. Note that an address transfer must precede the data 
transfer to place the memory address in the L register. 

1.6.8 Input to Memory 

Input data from the E bus can be routed directly to memory through the C and W buses. 
Data transfer must be preceded by an address transfer to load the memory location into 
the L register. When the transfer is under control of an instruction, the memory address 
will be generated as a normal operand address. 

IV-23 



CHAPTER IV 
620 COMPUTER SYSTEMS 

1.6.9 Output from Memory 

Output words can be transferred directly from memory to the I /0 cable through the W, G, 
and C buses. A storage address must first be transferred to the L register by an 
instruction. 

1.6.10 Input to Operation Registers 

Input words can be transferred directly to the A or B register through the E and C buses. 
These transfers are always controlled by an instruction, with the instruction designating 
the operation register to receive the word. 

1.6.11 Output from Operation Registers 

Words can be transferred directly from the A or B registers to the I /0 cable through the 
S, C and E buses. These transfers are controlled by an instruction which connects the 
selected register on the S bus. 

1.6.12 Operation Register to Operation Register 

The contents of an operation register can replace or modify the contents of the register 
itself or another register. The process of incrementing and restoring the contents of the P 
register has been previously described. The contents of the A, B, and X registers can be 
transferred, incremented, complemented, decremented, or shifted. All these operations 
involve selecting the register onto the S bus, processing in the adder, and transferring 
back through the C bus. Note that shifting is performed in this transfer· path. The 
contents of the selected register are shifted left or right as they are gated from the 
arithmetic logic gates to the C bus. This transfer path is involved in all register change 
instructions. 

1.7 DECODING 

The operation code and M fields of the instruction words (refer to Chapter Ill, section 
1.2.1) stored in the U register are decoded to provide static control levels used throughout 
the execution of the instruction. In the following discussion, reference will be made to the 
following logic diagrams contained in the 620/i maintenance manual Volume 2. 

Op. Code Decoding 
Address/Function Decoding 

DM110, sheet 2 
DM110, sheet 1 

Note that the gating terms shown in these diagrams correspond to the U register bit 
positions. These bit positions correspond to the instruction fields discussed in chapter Ill 
and summarized in table IV-4. 

IV-24 



~---------------------~WriM~~m~Wn~~ 

CHAPTER IV 
620 COMPUTER SYSTEMS 

for double-word instructions where the second word is an address (e.g., jump) by placing 
a one in the I bit of the second word. 

1.7.1 Operation Code Decoding 

The instructions operation code contained in bits 12 through 15 of the instruction word is 
decoded in three functional categories: class, set, and group. These three categories, 
which encompass all types of instruction performed by the computer, have been chosen to 
minimize the gating required to implement the program operations by generating terms 
common to many instructions. Tl:le complete operation code decoding structure is shown 
in drawing DM110 in the maintenance manual. The three categories of decoding are 
summarized in tables IV-5, IV-6, and IV-7. 

a. Class decoding separates instructions into three classes: 
addressing, single-word nonaddressing or double-word and I /0. 

single-word 

b. Set decoding simplifies gating requirements for the execution of the si~gle-word 
addressing instructions. Sets H1XX + through H4XX + define subcategories of 
the single-word addressing instructions. Timing functions are used to select the 
appropriate phase for executing the instruction. 

c. Group decoding is an arbitrary structure. One of the group terms is true for all 
single-word addressing instructions. These terms are used in various gating 
structures to implement the separate operations. 

1.7.2 M Field Decoding 

The M field of the instruction word (bits 9 through 11) is decoded to specify the following 
according to the instruction class defined in the operation code: 

Class K1 
Class K2 
Class K3 

Addressing Mode 
Instruction Type 
Instruction Type 

Note that for class K1 instructions, the instruction type (load, store, arithmetic, or logic) 
is specified by the operation code; and for class K2, the instruction type is specified by 
the M field. Class K3 contains all l/0 type instructions, and the M field specifies a 
subtype. M field decoding as a function of the class is summarized in table IV-8. 

In class K1 instructions, the indirect addressing mode is specified by 07 in the M field 
(AC7X + ); the indirect addressing level is extended by placing a one in the I bit of the 
indirect address words read from memory . Indirect addressing may also be accomplished 

IV-25 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-4. Instruction Storage in U Register 

U Register Instruction 

Output Bit No. Field 

U15X + 15 
U14X + 14 Operation Code 
U13X + 13 
U12X + 12 

U11X + 11 
U10X + 10 M Field 
U09X + 9 

U08X + 8 
U07X + 7 
U06X + 6 
U05X + 5 
U04X + 4 A Field 
U03X + 3 
U02X + 2 
U01X + 1 
uoox + 0 

IV-26 



Class 
Code Desig. 

01-07, 
11-17 K1 

00 K2 

10 K3 

Code Set 
(octal) Desig. 

00-03 Hl 

04-07 H2 

11-15 H3 

16-17 H4 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-5. Operation Code Classes 

Gating 
Terms Description Instruction Types 

K1XX+ All single- Load, Store, Arith-
K1XX+ word address- metic Logical 

ing instruc-
tions 

K2XX+ Single-word Jump, Jump and Mark, 
non address- Execute, 
ing and immediate 
double-word. Register change, 

Logic, Shift, Arith-
metic shift, control 
extended 

K3XX+ All l/0 in- Input/Output 
structions 

Table IV-6. Operation Code Sets 

Gating 
Terms Description 

HlXX + Instruction cycle execute 
I 

phase of all load instructions. 

H2XX + Operand cycle execute phase on 
all store instructions 

H3XX + Instruction cycle execute phase 
of all arithmetic and logic 

H4XX- instructions. (Except IN R) 

IV-27 



CHAPTER IV 
620 COMPUTER' SYSTEMS 

Table IV-7. Operation Code Groups 

Code Group Gating 
(octal) Desig. Terms 

01, 05, G1 GlXX + 
11, 15 

02, 06, G2 G2XX + 
12, 16 

03, 07, G3 G3XX + 
13, 17 

04, 14 G4 G4XX + 

Table IV -8. M Field Decoding 

Addr. Mode, 
Class M Field Gating Type, or 
Desig. (Octal) Terms Subtype [)escription 

0·3 ACOX+ Direct address 
to 
AC3X+ 

F~efer to 
4 AC4X+ Relative ad· chapter Ill, 

K1 dress section 1.2.1 

5 AC5X+ Index, index/ 
indirect (X 
register) 

6 AC6X+ Index, index/ 
indirect (8 
register) 

7 AC7X+ Indirect 
address 

IV-28 



Class 
Desig. 

K2 

K3 

M Field 
(Octal) 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

varian data machines ~l 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-8. M Field Decoding (continued) 

Gating 
Terms 

ACOX+ 

AC1X+ 

AC2X+ 

AC3X+ 

AC4X+ 

AC5X+ 

AC6X+ 

AC7X+ 

ACOX+ 

AC1X+ 

AC2X+ 

AC3X+ 

AC4X+ 

IV-29 

Addr. Mode, 
Type, or 
Subtype 

Control 

Jump 

Jump and 
mark 

Execute 

Shift 

Register 
change 

Immediate 

Miscellaneous 

External 
control 

Sense 

Data input 

Data output 

Extended 
external 
control 

Description 

HLT only 

All 

All 

All 

Arithmetic and logic 

All 

All 

Set/ reset OF 

EXC 

SEN 

Operation 
registers and 
memory 

Operation 
register~ and 
memory 



CHAPTER IV 
620 COMPUTER SYSTEMS 

SECTION 2 
620/f, 620/f-100 SYSTEMS 

2.1 INTRODUCTION 

The Varian 620/f computer is a high-speed, general-purpose, digital computer for scientific 
and industrial applications, its features include: 

Fast Operation 

Large Instruction Set 

Word Length 

Modular Core Memory 

Automatic Data 
Transfer 

Multiple Addressing 

Flexible l/0 

Extensive Software 

750-nanosecond memory cycle 

142 plus 8 optional instructions 

16 bits 

Expandable to 32,768 words in 4,096- or 8,192-
word increments 

Direct memory access (DMA) faCiility provides 
automatic data transfers with rates to 275,000 
words per second; priority memqry access (PMA) 
for transfer rates to 1.3 million words per 
second 

Direct, indirect, relative, preindexed and 
postindexed, immediate, extended, and indirect 
indexed 

64 devices can be placed on the partyline I /0 
bus. The I /0 system can easily be expanded to 
include features such as automatic block trans­
fer, multilevel priority interrupt, and cycle­
stealing data transfers 

DAS 4A, DAS 8A, and DAS MR (macro) assemblers; 

IV-30 



CHAPTER IV 
620 COMPUTER SYSTEMS 

binary load/dump (BLD II); debugging (AID II); 
computer diagnostics (MAINTAIN II); mathematical 
subroutines; real-time monitor (RTM); source 
program editor (EDIT); master operating system 
(MOS) for fixed- and moving-head discs, drum, 
and magnetic tape; ANSI FORTRAN IV; conversational 
BASIC; report generator (RPG IV, a business-
oriented language); and an extensive library of 
programs in the VOICE users' group 

Table IV-9 lists the 620/f specifications. 

Parameter 

Type 

Memory (Read/Write) 

Word Length 

Machine Cycle 
Speed 

Operation 
Registers 

Table IV-9. 620/f Specifications 

Description 

General-purpose, parallel-operation 
digital computer 

A 3-wire/3D magnetic core memory 
with a 16-bit word length, ?50-
nanosecond full cycle time, 400-
nanosecond access time, 4,096-word 
basic and expandable to 32,768 
words in 4,096 increments, asynchronous 
with CPU operation 

16 bits 

750 nanoseconds 

A register: 

IV-31 

16-bit accumulator 
and shift register 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Parameter 

Auxiliary 
Registers 

Arithmetic 

Arithmetic Operation 
Times 

Logic Levels 

Description 

B register: 

X register: 
P register: 

I register: 

L register: 

R register: 

D register: 

16-bit accumulator 
and shift register 
(least significant 
half of doubiE~-
Iength accumiUiator) 
or index register 
16-bit index register 
15-bit program counter 
and index register for 
relative addressing 
16-bit instruction 
register 
15-bit memory address 
register 
16-bit arithmetic 
buffer register 
16-bit input/output 
register 

Binary, two's complement notation 

Add or Subtract 
Multiply (optional) 
Divide (optional) 
Register Change 
Input/Output 

Positive Logic: 
(Internal) 

1. 5 microseconds 
6.4 microseconds 
6.4 microseconds 
l50 nanoseconds 
!From A or B reg­
iister, 1.5 micro­
seconds 
!From memory, 
:2.25 microseconds 

True = + 2.4V minimum, + 5V maximum 
False = -0.5V minimum, + 0.5V maximum 

Negative Logic: 
(1/0 Bus) 
True = -0.5V minimum, + 0.4V maximum 
False = + 2.8V minimum, + 3.6V maximum 

IV-32 



Parameter 

Addressing Modes: 

Instructions 

Instruction Types 

Input/Output 

I /0 Program Control 
Instructions 

Computer Options 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Description 

Direct: to 2,048 words 
Relative to P register: to 512 words 
Pre- and postindexed with X register hardware: 

to 32,768 words (does not add to execution 
time) 

Pre- and postindexed with 8 register hardware: 
· to 32,768 words (does not add to execution 

time) 
Multilevel indirect: to 32,768 words 
Immediate 
Indirect indexed: to 32,768 words 
Extended: to 32,768 words 

142 plus 8 optional instructions 

One-word addressing 
One-word nonaddressing 
Two-word addressing 
Two-word nonaddressing 

Asynchronous 

Data transfer in: 
One-word nonaddressing 
Two-word addressing 

Data transfer out 
One-word nonaddressing 
Two-word addressing 

External control 
One-word nonaddressing 

Program sense 
Two-word addressing 

Memory protection (MP) 
Teletype Controller (TTY) 

Buffer interlace controller (BIC) 
Power failure/restart (PF /R) 
Real-time clock (RTC) 
Automatic bootstrap loader (ABL) 

IV-33 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Parameter 

Software 

Description 

Priority interrupt module (PIM) 
Priority Memory Access (PMA) 
Optional instruction set: 

Hardware multiply/divide (MID) 
Bit test (BT) 
Skip if register equal (SRE) 

SYMBOLIC ASSEMBLER: 
Modular two-pass symbolic assembler 
operating in the basic 4,096-word 
memory. Includes 17 basic pseudo­
operations. The 8, 192-word memory 
version includes over 30 pseudo­
operations 

FORTRAN: 
Modular one-pass compiler; subset 
of ANSI FORTRAN for 8, 192-word 
memory 

AID: 
Program analysis package that assists 
programmers in operating the machine 
and debugging other programs. In­
cludes basic operational executive 
subroutines 

DIAGNOSTICS: 
Software package that provides fast 
off-line verification of CPU and 
peripheral operation and assists in 
isolating and correcting suspected 
faults 

SUBROUTINES: 
Complete library of basic mathemati­
cal, fixed- and floating-point, 
single- and double-precision, number 
conversion and peripheral communi-

IV-34 



Parameter 

Dimensions 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Description 

cation subroutines plus provisions 
for adding application-oriented 
routines 

MOS: 
The master operating system (MOS) 
provides for automatic batch processing 
that includes a minimum 8K core 
memory 

BASIC: 
BASIC is an easy-to-use programming 
language for business and scientific 
applications, permitting an inexperienced 
operator to program the system with 
only a few hours training 

RPG IV (optional): 
The report program generator 
(RPG IV) system, a hardware/software 
package, produces reports, financial 
statements, sale records, and other 
commercial documents in tabular form 

The mainframe and expansion chassis' 
I, II, and Ill are 10.5 inches (26.6 em) 
high, 19 inches (48.1 em) wide, and 
21 inches (53.1 em) deep (expansion 
chassis Ill is 15 inches (37.9 em) deep). 
The mainframe power supply is approxi­
mately 5.25 inches (13.3 em) high, 
19 inches (48.1 em) wide, and 21 inches 
(53.1 em) d.eep. The expansion power supply is 
approximately 5.25 inches (13.3 em) high, 19 
inches (48.1 em) wide, and 18 inches (45.7 em) 
deep. The 620/f-100 mainframe power supply 
is located in the mainframe chassis with the 
CPU tray. 

IV-35 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Parameter 

Weight 

Input Voltage 

Input Current 

Temperature 
Operating 
Storage 

Mainframe Power 
Supply Outputs 

Expansion Power 
Supply Outputs 

Humidity 
Operating 
Storage 

Description 

The mainframe and expansion chassis 
each weigh approximately 65 pounds 
(29.3 kg). The mainframe power supply 
weighs approximately 80 pounds (36.2 kg). The 
expansion power supply weighs approximately 60 
pounds (28.6 kg). 

105 to 125V ac or 210 to 250V ac 
at 50 or 60 Hz (For compatibility with the tele· 
type, frequency must be either 50 or 60 ( + 1/2, 
-0) Hz.) 

The mainframe power supply requires 
approximately 15 amperes ac; each 
expansion frame· power supply requires 
approximately 4 amperes ac 

0 to 50 degrees C 
-20 to 70 degrees C 

+ 3V at 5 amperes 
+ 5V at 50 amperes 
-5V at 2 amperes 
+ 12V at 4 amperes 
-20V programmed at 6 amperes 
+ 40V at 2 amperes 
(The ·20V output is controlled by a sensistor 
in the memory stack to regulate the current in 
memory-inhibiting lines.) 

+ 5V at 20 amperes 
-5V at 4 amperes 
+ 12V at 4 amperes 
-12V at 4 amperes 

To 90 percent without condensation 
To 95 percent without condensation 

IV-36 



Parameter 

Vibration 

Shock 

2.2 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-9. 620/f Specifications (continued) 

Description 

3 to 10 Hz at 1g force or 0.25 double 
amplitude, whichever is less. Ex­
ponentially raised frequency from 
3 to 10 Hz and back to 3 Hz over a 
10-minute period, three complete 
cycles. This specification applies 
for all three principal axes 

4g for 5 to 11 milliseconds, essentially 
sine shock waveform (all three princi­
pal axes; both directions in each axis) 

SWITCHES AND INDICATORS 

Figure IV-8 shows the switches and indicators on the control panel of the 620/f computer. 
Their uses are discussed individually in the following subsections. Used with a 
teletypewriter and peripheral devices, the control panel contains all controls necessary to 
operate the 620/f computer. 

The front panel of the power supply has an AC PWR ON indicator light. 

2.2.1 Power Switch 

The key-operated power switch controls the ac input to the 620/f power supply. 

In the PWR OFF position, ac input to the power supply primary is disabled. 

In the PWR ON position, there is ac power to the power supply primary and the system 
should be fully operational. 

In the PWR ON DISABLE position, there is ac power to the power supply primary and the 
computer is operational. However, all control console switches are disabled except the 
power switch itself. Pressing any other switch while the power switch is in PWR ON 
DISABLE has no effect. 

The control panel and power supply indicator lights are functional when the POWER 
switch is in PWR ON or PWR ON DISABLE. 

The key can be removed from the power switch in any of the three ·positions. To turn off 

IV-37 



CHAPTER IV 
620 COMPUTER SYSTEMS 

IV-38 

.. 
Q) -::s 
a. 
E 
0 
(,) 



CHAPTER IV 
620 COMPUTER SYSTEMS 

the computer, place the power switch in the PWR ON position, lift the STEP /RUN switch, 
then turn the power switch to PWR OFF. 

2.2.~ STEP/RUN Switch and STEP and RUN Indicators 

When the STEP/RUN switch is up, the 620/f is in step mode and the STEP indicator is lit. 
When the switch is dciwn, the computer is in run mode. The RUN indicator lights after 
START is depressed. 

If the computer is in step mode: 

a. Pressing the STEP/RUN switch to RUN position puts the computer in run mode. 

b. Pressing the START switch executes the instruction in the I register~ and fetches 
the next instruction from the address specified by the contents of the P register 
and places it in the I register. 

If the computer is in run mode: 

a. Lifting the STEP /RUN switch to STEP position halts the 620/f after completing 
the execution of the current instruction and fetches the next instruction and 
sets it in the I register. The RUN indicator goes out and the STEP indicator 
lights. 

b. Pressing the START switch starts the program at the address specified by the P 
register after executing the instruction in the I register. 

2.2.3 BOOTSTRAP Switch 

BOOTSTRAP is a momentary, spring-loaded switch that is functional in 620/f systems 
containing the optional automatic bootstrap. In other 620/f systems, this switch is present 
on the control panel, but it is not connected. 

The bootstrap program enables the loading of the binary load/dump program into 
memory. Before the automatic bootstrap is loaded into memory, the binary load/dump 
tape should be inserted into the paper tape reader with the first binary frame at the read 
station. 

To load the automatic bootstrap program: 

IV-39 



~ varian data machines 

CHAPTER IV 
620 COMPUTER SYSTEMS 

a. Set the power switch to PWR ON. 

b. Set the STEP/RUN switch to RUN. 

c. Press and release BOOTSTRAP. 

If the system does not contain an automatic bootstrap, load the provided bootstrap 
program manually. 

2.2.4 START Switch 

START is a momentary, spring-loaded switch. Pressing it when the 620/f is in the run 
mode starts the program. Pressing the START switch when the computer is in the step 
mode executes the instruction in the I register (except HL T), and fetches the next 
instruction from the address specified by the contents of the P register and places it in the 
I register. 

2.2.5 REGISTER Switches 

Pressing one of the five REGISTER switches selects the designated register (X, 8, A, I, or 
P) for display or entry. 

Only one register can be selected at a time. Simultaneously pressing two or more 
REGISTER switches disables the selection logic and ORs the front panel register display. 

2.2.6 Register Entry Switches and Display lndicato1rs 

The 16 indicators across the top of the 620/f control panel display the contents of a 
selected register. Data are entered into registers on the corresponding register entry 
switches located under the indicators. The indicators and switches an~ read from left to 
right, bits 15 to 0. An illuminated indicator shows that that bit contains a one. For 
negative data, the sign bit (bit 15) is a one. The indicators and switch~~s are divided into 
groups of three for ease in reading octal configurations. 

2.2.6.1 REGISTER DISPLAY 

To display the contents of a register, switch the STEP/RUN switch to STEP and press the 
REGISTER switch for the desired register. 

The display indicators light when they correspond to register bits that: contain ones. To 
remove the display, pull up on the REGISTER switch and the indicators go out. 

IV-40 



2.2.6.2 DATA OR INSTRUCTION ENTRY 

To enter data or instructions in a register: 

a. Display the contents of the register. 

CHAPTER IV 
620 COMPUTER SYSTEMS 

b. Enter ones by pressing down on the register entry switches corresponding to the 
bits to be set. 

c. Enter zeros in the other bits by pulling up on all other register entry switches. 
The indicator lights do not change when the register entry switches are 
manipulated. They still display the contents of the register. 

d. When the desired configuration is entered on the register entry switches, press 
LOAD. This loads the register with the configuration entered on the switches, 
and the indicators change to display this new configuration in the register. 

To enter data into core memory: 

a. Load into the I register a storage instruction (STA, etc.). 

b. Select the register specified by the storage instruction in step a. 

c. Load the selected register using the data entry switches. 

d. Press START to execute the instruction in the I register. This stores the contents 
of the specified register at the effective memory address. 

The TSA instruction can also transfer data entered on the control panel switches to the A 
register. 

2.2.7 LOAD Switch 

LOAD is a momentary, spring-loaded switch. When the 620/f is in step mode and a 
register has been selected, pressing this switch loads the register with the bit 
configuration entered on the register entry switches. 

IV-41 



~ varian data machines 

CHAPTER IV 
620 COMPUTER SYSTEMS 

2.2.8 REPEAT Switch 

REPEAT is a toggle switch that is operative in both step and run modes. To repeat an 
instruction contained in the I register, press REPEAT, and then press START. The 
instruction is executed again and the program counter advances. 'HowE~ver, the contents of 
the I register remain unchanged. 

To run a program, REPEAT must be off. 

2.2.9 SENSE Switches 

The three SENSE switches are toggle switches permitting program modification by the 
operator. When the program contains instructions dependent on the setting of these 
switches, jumps and executions occur when the switch condition is met and do not occur 
when the switch condition is not met. 

To set a SENSE switch, press down. To reset it, lift. Operations dependent on the position 
of this switch will be executed if the switch is in the position indicated by the instruction. 

2.2.10 

EXAMPLE 

A program can be written so that the operator can obtain a partial 
total of a column of figures being added by use of the JSS1 (jump if 
SENSE switch 1 is set) instruction. The program writes individual 
entries as long as SENSE switch 1 is not set. When the operator 
wants a partial total, he sets the switch. The program then jumps to 
an instruction sequence that prints the desired information. 

INT (Interrupt) Switch 

I NT is a momentary, spring-loaded switch used to interrupt the 620/f computer. It is 
functional only when the 620/f is in the run mode. 

In systems that do not contain the optional priorty interrupt module (PIM), pressing INT 
interrupts to memory address 0. 

In systems containing a PIM, pressing INT interrupts to an even-numbered memory 
address specified by the PIM. 

IV-42 



2.2.11 RESET Switch 

CHAPTER IV 
620 COMPUTER SYSTEMS 

RESET is a momentary, spring-loaded switch used for initialization control and for 
stopping I /0 operations. Pressing this switch halts the 620/f and initializes the computer 
and peripherals. This switch is electrically interlocked with the STEP /RUN switch and is 
disabled when the latter is in RUN. 

Note that this switch is not a display reset. 

2.2.12 OVFL (Overflow) Indicator 

OVFL lights whenever an overflow condition exists. 

2.2.13 ALARM Indicator 

ALARM lights to signal an overheated system. If the POWER switch key is accessible, turn 
the power ~witch to PWR OFF and call the Varian customer service engineer. 

If the power switch key is not accessible,. turn off the power switch located on the back of 
the power supply, or pull the main plug, and call the Varian customer service engineer. 

2.3 MANUAL OPERATIONS 

With the 620/f in step mode, data or instructions can be manually transferred to or from 
memory or stored programs can be manually executed. 

Note that the I register contains the instruction being executed, while the P register points 
to the address of the following instruction. 

To load data or instructions into memory, to display the contents of memory, or to alter 
the contents of memory, follow the procedures in Register-Entry Switches and Display 

Indicators. 

2.3.1 Loading Into Sequential Memory Addresses 

To load a sequential group of memory addresses: 

a. Set STEP/RUN to STEP and press REPEAT. 

b. Load the P register with the base address. 

IV-43 



~WriM~~m~h~M----------------------~ 

CHAPTER IV 
620 COMPUTER SYSTEMS 

c. Load into the I register a storage instruction (STA, etc.) with 100 in the M field 
(relative addressing), and zero in the A field. 

d. Select the register specified by the storage instruction in step c. 

e. Load the selected register using the data entry switches. 

f. Press START to execute the instruction in the I register. 

g. Repeat steps e and f until all instructions are loaded. The next cell to be loaded 
can be observed by displaying the P register. 

2.3.2 Displaying From Sequential Memory Address;es 

To display the contents of a group of sequential memory addresses: 

a. Place STEP/RUN in STEP, and press REPEAT. 

b. Load the P register with the base address. 

c. Load into the I register a loading instruction (LDA, etc.) with 100 in the M field 
(relative addressing), and zero in the A ·field. 

d. Select the register specified by the loading instruction in step c. 

e. Press START once for each memory location to be displayed. 

2.3.3 Manual Execution of a Stored Program 

To execute a stored program manually: 

a. Select step mode and turn off REPEAT. 

b. Set the P register to the first address of the program. 

c. Clear the I register. 

d. Press START. 

IV-44 



CHAPTER IV 
620 COMPUTER SYSTEMS 

e. Press START again to execute the instruction and to load the next instruction 
into the I register. 

f. Repeat step e once for each instruction. 

2.3.4 Manual Repetition of Instructions 

To repeat an instruction manually: 

a. Press the REPEAT switch down. 

b. Press START. This advances the P register but inhibits loading the I register. 
Thus; pressing START again executes the same instruction. 

2.4 ORGANIZATION 

The functional sections of the computer are illustrated in figure IV-9. 

2.4.1 Control Section 

The computer control section generates the basic 9.0-MHz system clock that provides the 
timing and control signals for all computer operations. It directs the transfer of data 
between the registers and controls CPU operations. It also interprets instructions read 
from memory and provides the necessary gating logic for executing them. Information 
from the instruction (I) register is used to generate the timing and control signals. 

2.4.2 Decoding Section 

The decoding section decodes the fields of the instruction word held in the I register to 
determine the control signal levels. These levels select the timing signals generated by the 
timing unit in the control section. 

2.4.3 Arithmetic Unit 

The arithmetic unit contains the adder, gating, and control circuits required for all 
arithmetic and logic operations except shifting. 

IV-45 



< 
~ m 

PERIPHERAL 

TO/FROM 
INTERNAl 
OPTIONS 

AB 
BUS 

CONTROLLERS 

0 SECTION r--------, 
I 

TO/FROM l 
(VO BUS) I tl 

'CONTROL 
LINES 

I 
I 
I 
I 
I 
I 

MB BUS 

VOTIMING & 
CONTROL 

8.8 MHz 

lcloc"'K'"C'ARo----- ---, I 

MD BUS 
ABS BUS 

MEMORY 
SECTION 

L ________ B_:t 
l MAIN CLOCK 1/0 ClOCK l I -

_j 
L _____ _ 

L___ -----
18MHz 

VT/2-028/B 

_ __ oA~o~c~~ L_o~A~AR~ 

----, 

CPU SECTION 

Figure IV-9. 620/f Computer Functional Organization 

II 
~(") 
N:J: 
ol> < 
(")"'0 

I» 

O"""' 

~ 

3:1"1 

a;· 

"'0::0 
::l 
a. c:-

"""'< 
I» 

1"1 
.. 
I» 

::0 3 
tJ) I» 
-< () 
tJ) 

"""' 1"1 

::J" 

3: 

:; 
tJ) 

CD 
tn 



2.4.4 Operation Registers 

CHAPTER IV 
620 COMPUTER SYSTEMS 

The operation registers are designated A, B, X, and P. The A, B, and X registers are 
directly accessible to the programmer. The P register is accessible indirectly to the 
following: 

a. Jump instructions that modify the program sequence 

b. The relative addressing mode of the ~rithmetic/logic instructions that uses the 
contents of the P register to modify the operand address 

A register. This 16-bit register is the upper half of the accumulator and accumulates the 
results of logical and addition/subtraction operations, the most significant half of the 
double-length product in multiplication, and the remainder in division. The A register can 
also be used for I /0 transfer under program control. 

B register. This 16-bit register is the lower half of the accumulator and accumulates the 
least significant half of the double-length product in multiplication and the quotient in 
division. It can also be used for I /0 transfers under program control and as a second 
hardware index register. 

X register. This 16-bit register permits indexing of operand addresses without adding 
time to the execution of indexed instructions. 

P register. This 15-bit register holds the address of the current instruction and is 
incremented before each new instruction is fetched. A full complement of instructions is 
available for conditional and unconditional modification of this register~ The P register is 
also used in relative addressing. 

2.4.5 Auxiliary Registers 

The auxiliary registers are designated I, L, R, and D. 

I register. This 16-bit instruction register receives each instruction from memory through 
the W bus and holds the instruction during its execution. Instructions can be loaded in 
the I register from the C bus via the control panel register entry switches. The control 
fields of the instruction word are routed to the decoding section to determine the required 
timing and control signals. The five least significant bits of the I register are transferred 
into a shift counter to shift-count-control the shift instructions. 

IV-47 



CHAPTER IV 
620 COMPUTER SYSTEMS 

L register. This 15-bit address register contains the address of the memory location 
currently being accessed during either a clear /write or read/restore cycle. 

R register. This 16-bit buffer register holds the second and subsequent words of a 
double-word instruction. It also holds the multiplicand and divisor in arithmetic 
operations. The R register buffers the arithmetic unit from memory to permit interlace l/0 
operations on a memory cycle-stealing basis. 

D register. This 16-bit register stores l/0 information. 

2.4.6 Data Switch Section 

The data switch section provides gating logic for operand data being 1·ead from or written 
into memory via l/0. CPU information does not pass through this section. 

2.4.7 Register Entry Switches/Display Indicators 

The register-entry switches enter data and instructions, via the control panel, in the A, 8, 
X, I, or P register. The display indicators display the contents of the A, 8, X, I, or P register 
as selected on the control panel. 

2.4.8 Shift-and-Rotate Circuit 

The shift-and-rotate (SIR) circuit is a special data path to shift or rotate the contents of 
the A and 8 registers. 

2.4.9 Internal Buses 

The basic computer contains eight buses designated as C, AY, AZ, MB, MD, A8S, A8, and 
l/0. 

C bus. The C bus provides the data path and selection logic for routing data from the 
arithmetic unit to the operation registers (A, 8, X, and P), the auxiliary registers (D, I, and 
L), and register display. 

AY bus. The AY bus routes selected data from either (or any combination of) the A, 8, X, 
or P register, or I /0 data (D) register to the AY input of the arithmetic unit. 

AZ bus. The AZ bus routes selected data from the I and R registers and register-entry 
switches. 

IV-48 



CHAPTER IV 
620 COMPUTER SYSTEMS 

MB and MD buses. The MB and MD buses provide data paths to and from memory, 
respectively. 

ABS bus. The ABS bus routes address information into memory from the address (L) 
register and the D register. 

AB bus. The AB bus provides data paths between the computer and the internal options 
(real-time clock, power failure/restart, and Teletype controller). 

Input/output bus. The l/0 bus is a party-line, bidirectional bus. It permits programmed 
data transfers between peripheral devices and the computer. The 1/0 bus also permits 
plug-in expansion of all peripheral controllers. Part of the I /0 bus is an E bus used for 
bidirectional data transfer. 

2.5 TIMING 

The 620/f operates on a basic 750-nanosecond machine cycle. That is, a full m.emory cycle 
(read/restore or clear/write) is performed in each 750-nanosecond time interval (except in 
some special cases in which this period is extended as discussed in subsequent 
paragraphs). All operations performed by the computer are accomplished within some 
multiple of this basic timing period. 

To execute the various operations, several suboperations are performed during the 
memory cycle time. Timing of these suboperations is controlled by the internal 18-MHz 
master clock. The period of this master clock is 55 nanoseconds; this permits multiple 
suboperations to be executed during the memory cycle period. Note that the first half-cycle 
(approximately 400 nanoseconds) of the memory period is used to access a word (read) or 
to clear a cell (clear); the second half-cycle is used to restore a word (restore) or to write a 
new word (write) into the cell. 

2.5.1 Clocks 

The clocks which control the timing of all operations in the computer are generated by the 
timing and control logic. These clocks are illustrated in figure IV-10 and listed in ·table 
IV-10. 

IV-49 



CHAPTER IV 
620 COMPUTER SYSTEMS 

u 
Q 

u 
...J 

< 
u. 
X 

I 

u. 
X 

IV-50 

< u. 
X 

\ f ~ 
l ~ 

c5 
N 
N 

~ w 

~ 
X 
0 

·~ 8: 

j j 

en 
~ 
u 
0 
(j 
bO 
c ·e 
i= 
u ·c;; 
CQ 

al 

0 .... 
> -
Q) .. 
:I 
bO 

i&: 



Clock 

Master Clock 
(IOC) 

Alternate Clock 
(ALC) 

Sequence State 1 
(XFl +) 

Sequence State 2 
(XFl-) 

Sequence State 3 
(XFA) 

CHAPTER IV 
620 COMPUTER SYSTEMS 

Table IV-10. Basic Timing Clocks 

Description 

Crystal-controlled timing signal (18 MHz) for 
the entire system 

9-MHz timing signal (counted down and synchro­
nous with IOC); used to time the basic execute 
and address phases of the computer 

Basic timing phase, synchronous with read or 
clear half-cycle of memory; all operations on 
words (transfers of data to and from memory) 
are performed during this period 

Basic timing phase, synchronous with restore 
or write half-cycle of memory; all transfer 
of instruction and operand addresses to 
memory are performed during this period 

Basic timing phase used for execution or 
instructions and other operations 

2.5.2 Clock Modifiers 

All functions performed by the 620/f occur in two basic phases: 

a. Transfer of addresses to the memory L register (address phase) 

b. Operation upon words read from memory, or the storing of words into memory 
(execute phase) 

These basic address and execution phases can be modified by certain program 
instructions or by signals received from devices external to the computer. The conditions 
under which the periods of the basic clocks are modified are: 

Shift During shifting operations with words contained in the 
A and B Registers, sequence states 2 and 3 are extended 
by the number of alternate clock periods (11 0 nanoseconds) 
equal to the specified number of shifts -1. 

IV-51 



CHAPTER IV 
620 COMPUTER SYSTEMS 

Interrupt When an external interrupt is received, sequencE~ states 
2 and 3 are extended 0.9 microsecond to accommodate 
delays in receiving the interrupt address from the ex­
ternal device 

Trap When a buffer interlace controller requests a transfer 
to or from memory, sequence states 2 and 3 ane extended 
3.15 microseconds to permit the execution of the full 
trap sequence (routing of address and data from the 
external device) 

Halt On a halt instruction (STl ), the alternate clock 1is 
inhibited; this prevents any further operations until 
the STEP or RUN switch is pressed. 

Modification of the execute phase of an instruction is illustrated in figure IV-11. This 
modified sequence is typical of a shift instruction. At time 0, the instruction has been 
fetched from memory. Starting at time 400, the instruction is executed; however, the 
normal 220-nanosecond sequence state 2 is extended 110 nanoseconds for each shift 
(six, in this illustration). In a similar manner, sequence state 3 is extended when required 
by the conditions defined above. 

2.5.3 Sequence Control 

The basic clocks generated from the master clock are used to time! three operating 
sequences: instruction cycle, operand cycle, and address cycle. All opE~rations performed 
by the computer are timed by one or more of these timing sequences. 

2.6 INFORMATION TRANSFER 

All data communication between the basic functional elements of the machine is through 
the three data buses C, AY, and W. The C and AY buses are internal to the computer. The 
W bus is external and bidirectional; that is, a single set of lines is used to carry 
information both to and from the memory. The following paragraphs outline the major 
data transfer paths in the computer. Refer to figure IV-12. 

IV-52 



CHAPTER IV 
620 COMPUTER SYSTEMS 

XFI- ----(~-----' 

XFA 

VTJJ-1195 

2.6.1 

--------SHIFT OPERATION-------
6 PLACES 

II On sec x 6 = 660nsec 
INSTRUCTION EXTENDED 550nsec 

Figure IV-11. Example of a Modified Clock Sequence 

P Register to Memory 

As an instruction cycle begins, the location of the next instruction is transferred from the 
P register to the L register. The contents of P are transferred through the A Y bus to the 
arithmetic unit which increments the location address with the arithmetic gates, and 
restores the incremented count to the P and L registers. The memory address register, L, 
now contains the address of the next instruction word to be fetched from memory, and the 
P register holds the updated address. 

2.6.2 Memory to I Register 

During the instruction cycle, the instruction word located by the address in the L register 
is re~d out on the W bus and read in to the I register. 

2.6.3 I Register to Memory 

For many instructions requiring an operand, the address of the operand is contained in 
the instruction word held in the I register. This operand address is transferred to the L 
register through gates in the arithmetic unit and the C bus. The address from the I 
register can be modified during the transfer to Las follows: 

IV-53 



< 
01 
.,1:::. 

VO SECTION 
r----- ---.., 

I 
I 
I 

TO/FROM { 
PERIPHERAL 
CONTROLLERS 
(VO BUS) 

CONTROL 
LINES 

--------

MB BUS 

MD BUS 
ABS BUS 

EADS 

VO TIMING & 
CONTROL 

8.8 MHz 

MEMORY 
SECTION 

DATA OUT 

r--------
1 1 

DATAINI I 
TO 1/0 { ----i I 
SECTION ADDRESS I PMA I 
~ I 

I I 
I I 
'---------' 

1 DIS I I 
I I 
I c BUS : 

I I 
I I I . 

I 
l __ ---~------~ I 

r.....J~· .... r----- -----, I I 
I ABL or MP : 

1 I I I 
L __ _J :_ _ ____ j L ________ DA~O~c~~ L_o~A~~ 

IBMHz 

9MHz I 
r-+-r-------r---, 

CN TWING I I I I I I AND CONTROL ... I CONTROL• DECODE• I 
L ________ ~R~~~~ 

CPU SECTION 

VT/2-198 

Figure IV-12. 620/f Organization 

<l'C'l ~ 
N:J: 
0)> < 
n-o I» 

o-t 
~ 

3:1""1 
-· I» 

-o::o ::l 

c-
-t< 

Q. 
I» ... 

1""1 
::0 

I» 

tA 3 
-< 
tA 

I» 

-t 
(') 

1""1 
:::T 

3: 
S' 

tA 
CD en 



CHAPTER IV 
620 COMPUTER SYSTEMS 

a. Direct Address. No modification; bits 0 through 10 transferred from I to L 
directly address operand in the first 2,098 memory addresses. 

b. Relative Address. The effective operand address transferred to L is formed by 
adding bits 0 through 8 from I to th~ contents of P. Addition is performed by 
selecting the contents of P and I and bringing them into the arithmetic unit. 
This permits addressing any word up to 512 locations ahead of the current 
program location. 

c. Index Address. The effective operand address transferred to L is formed by 
adding bits 0 through 8 from I to either the contents of X or B. 

d. Indirect Address. Same transfer as direct address but the word read from 
. memory will be the address of an operand rather than the operand itself. 

2.6.4 Memory to R Register 

Operands read from memory are transferred to the R register. The operands are stored in 
R while an arithmetic or logical operation is being performed. 

For indirect addressing, and for instructions whose operand address is stored in the 
memory location following the instruction word, the operand address will be read from 
memory and then transferred to the R register. The address is then routed to the L 
register through the C bus. 

2.6.5 Arithmetic Unit to Operation Register 

Outputs from the arithmetic unit, generated as a result of an arithmetic operation 
involving the R register and one of the operation registers, are stored in an operation 
register through the C bus. 

2.~.6 Operation Register to Memory 

The contents of any one of the operation registers are transferred to memory by selecting 
the register onto the AY bus and routing the word through the arithmetic unit, C bus, and 
W data switch register. The contents of the P register may be transferred to the L register 
to address an instruction as previously explained. The contents of P and other registers 
can be stored in memory by the same path, except that the word is entered into W the 
data switch register. Note that an address cycle must precede this transfer to place the 
storage address in the L register. 

IV-55 



~w~nd~am~h~~----------------------~ 

CHAPTER IV 
620 COMPUTER SYSTEMS 

2.6.7 Memory to Operation Registers 

The contents of a memory location can be transferred to any of the operation r~gisters 
through W, AZ, and C buses. Note that an address transfer must precede the data 
transfer to place the memory address in the L register. 

2.6.8 Input to Memory 

Input data from the E bus can be routed directly to memory through the data switch 
register and W bus. Data transfer must be preceded by an address transfer to load the 
memory location into the L register. When the transfer is under control of an instruction, 
the memory address will be generated as a normal operand address. 

2.6.9 Output from Memory 

Output words can be transferred directly from memory to the 1/0 cable through the W 
and C buses and the data switch register. A storage address must first be transferred to 
the L register by an instruction. 

2.6.10 Input to Operation Register 

Input words can be transferred directly to the A or 8 registers through the E and C buses 
and the data switch register. These transfers are always controlled by an instruction, with 
the instruction designating the operation register to receive the word. 

2.6.11 Output from Operation Registers 

Words can be transferred directly from the A or B registers to the I /0 cable through the 
AY, C, and E buses. These transfers are controlled by an instruction which connects the 
selected register on the AY bus. 

2.6.12 Operation Register to Operation Register 

The contents of an operation register can replace or modify the contents of the register 
itself or another register. The process of incrementing and restoring the contents of P has 
been previously described. The contents of the A, 8, and X registers can be transferred, 
~incremented, complemented, or decremented. All these operations involve selecting the 
register onto the AY bus, processing in the arithmetic unit, and transferring back through 
the C bus. 

IV-56 

~-----------



SECTION 3 
620/L-100 SYSTEM 

3.1 INTRODUCTION 

varian data machines ~l 

The Varian 620/L-100 Computer is a general-purpose digital computer, designed for a 
variety of system applications. 

The computer processes 16-bit words in a full-cycle execution time of 950 nanoseconds, or 
over one million cycles per second. 

The instruction set of the Varian 620/L-100 comprises 133 standard, instructions, many of 
which can be microcoded to extend the effective repertoire to several hundred 
instructions. 

Core memory can be expanded in 4,096 word (4K) increments, from a minimum of 4K to a 
maximum of 32K. Improved design allows the packaging of a fully expanded 32K system in 
two 10-1 /2-inch high, standard rack enclosures. 

The central processing unit (CPU) features four user-accessible operation registers, five 
buffer registers, an overflow indicator, and convenient operator's control panel. 

Six addressing modes can be implemented: direct, multilevel indirect, immediate, indexed, 
relative, and extended forms that permit direct addressing of any area of the fully 
expanded 32K system. 

One power supply can furnish all the power required to maintain the maximum 32K 
system plus a number of peripheral controllers. 

The computer mainframe chassis accommodates the circuitry for the CPU, an 8K master 
memory, all the available mainframe (internal) option, and up to nine peripheral 
controllers. 

Mainframe standard features include: hardware multiply/divide and extended addressing 
(MID), memory protection (MP), real-time clock (RTC), and power failure/restart (PF /R). 

The standard Varian 620/L-100 party-line input/output (1/0) bus can interface a 
maximum of ten peripheral controllers. Additional peripheral controllers can be 
accommodated by including an I /0 buffer card. 

IV-57 



~wrlMd~am~~n~-----------------------

System l/0 options include: priority interrupt module (PIM) and buffer interlace controller 
(BIC). The PIM establishes eight levels of interrupt priority for selected peripheral 
controllers and places interrupt requests on the l/0 bus in order of priority. The BIC 
implements the direct memory access (DMA) capabilities of the basic computer, 
permitting cycle-stealing l/0 data transfers between memory and peripheral controllers at 
rates of up to 382,720 words per second. 

Description 

Memory 

Arithmetic 

Word Length 

Machine Cycle Speed 
(Fetch and Execute) 

Instruction Set 

Instruction Types 

Table IV-11. 620/L-100 Specifications 

System-oriented, general-purpose digital computer 
for on-line data processing 

Magnetic core, with a 16 .. bit word length, 950-
nanosecond full-cycle time, 425-nanosecond access 
time, and expandable from the basic 4,096-word 
(4K) minimum to a maximum of ~32,768 words (32K) 

Parallel, binary, fixed-point, two's complement 

16 bits 

Add it ion I subtraction 
Multiplication (optional): 
Division (optional): 
Register modification: 
A/8 register input/output: 
Memory input/output: 

L9 microseconds 
9.5 microseconds 
9.5 .. 13.2 microseconds 
0. 9!5 microseconds 
1.9 microseconds 
2.8!5 microseconds 

115 standard, and 18 optional, instructions, many 
of which can be microcoded for extended operations 

One- and two-word addressing, and one- and two­
wora nonaddressing instructions performing the 
following functions: 

Load/store 
Shift I rotation 
Register modification 
Arithmetic 
Logic 

IV-58 

Jump 
Jump and mark 
Execution 
Control 
Input/output 



Addressing Modes 

Operation Registers 

Auxiliary Registers 

Control Panel 

Logic and Signals 

Input/Output 

Direct, to 2,048 words 
Relative to P register, to 512 words 
Indexed with X or 8 register, to 32,768 words 

(does not add to execution time) 
Multilevel indirect 
Immediate 
Extended 

A register: 16-bit accumulator and shift register 
8 register: 16-bit accumulator and shift register 

(low-order half of the double-length accumulator), 
or index register 

X register: 16-bit index register 
P register: 16-bit program counter 

U register: 16-bit instruction register 
L register: 15-bit memory address register 
W register: 16-bit memory data register 
S register: 5-bit shift register 
R register: 16-bit operand register 

Register entry switches and display indicators; 
overflow (OVFL), STEP, and RUN indicators; 
REGISTER select and bit RESET switches; three 
SENSE switches; instruction REPEAT, STEP, and 
RUN switches; SYSTEM RESET, and three-position 
power switch 

Integrated circuits and 4.211 MHz clock 
Internal logic levels: OV = false (zero), 

+ 5V = true (one) 
Memory data logic levels: OV = true (one), 

+ 5V = false (zero) 
1/0 bus logic levels: +3 = false (zero), 

OV = true (one) 

Programmed I /0 operations: external control, pro­
gram sense, data transfer in, and data transfer 
out 

Automatic data transfers: direct memory access 
(DMA) with transfer rates over 382,720 words 
per second 

IV-59 

~l 



~w~nd~am~~nM---------------------~ 

/ 

Standard Features 

Computer Option 

1/0 Options 

Input Voltage 

Input Current 

Dimensions 

Weight 

Temperature 

Humidity 

Interrupt system: allows computer options and 
peripherals to interrupt CPU operations 

Multiply/divide and extended addressing: 
simplifies the programming of a1rithmetic 
and addressing operations 

Real-time clock: user-selected variclble time base 
for time and event accumulation 

Power failure/restart: protects a program in 
progress during power failures 

Bootstrap protection: protects the memory address 
containing the bootstrap loader routine and the 
binary load/dump program 

Priority interrupt module: establishes and imple­
ments interrupt priorities for peripherals 

Buffer interlace controller: permits direct access 
to memory for block data transifers 

105 to 125V ac, or 210 to 250V ac, at 50 or 60 Hz 

Power supply requires 5 amperes at 115V, and 3 
amperes at 230V 

Mainframe and expansion chassis: 10.5 inches 
(26.6 em) high, 13 inches (32.9 em) deep, 
and 19 inches (48.1 em) wide 

Power supply: 10.5 inches (26.6 em) high, 7.5 
inches (18.9 em) deep, and 17.1'5 inches (44.9 em) 
wide 

Mainframe and expansion chassis: approximately 
35 pounds (15.9 kg) without circuit cards 

Power supply: approximately 36 pounds (16.3 kg) 

Operating: 0 to 50 degrees C 
Storage: - 20 to 70 degrees C 

Operating: to 90 percent without condensation 
Storage: to 95 percent without condensation 

IV-60 



Vibration 

Shock 

varian data machines ~~ 

3 to 10 Hz at 1g force or 0.25 double amplitude, 
whichever is less; exponentially raised frequency 
from 3 to 10 Hz and back to 3 Hz for 10 minutes, 
three complete cycles; applies to all three prin­
cipal axes 

4g for 11 milliseconds, essentially sine shock 
waveform (all three principal axes, both directions 
in each axis) 

Figure IV-13 presents an outline of the 620/L-100 computer. 

VHT0-0171 

Figure IV-13. Varian 620/L-100 Mainframe 

IV-61 



3.2 SYSTEM OPERATION 

Program Execution 

The Varian 620/L-100 requires very little preparation before a program can be executed. 
Assuming that the system, including peripherals, is properly installed a1nd connected to an 
ac power source, the following procedure is followed to make a cold sta1rt (i.e., when a new 
system is being initialized or the contents of memory are unknown). 

a. Turn on computer power by placing the power keyswitch on the control panel (figure IV-
14) to PWR ON. 

b. Initialize the system by pressing SYSTEM RESET, then reset all registers using the 
REGISTER selection and BIT RESET switches. 

c. Load the appropiate bootstrap loader routine (table IV-12) from the control panel. 

d. Load the binary load/dump program (BLD II,) using the Teletype or high-speed paper 
tape reader (depending on the bootstrap loader selected). Verify after loading that 
the P register contains the proper starting address. 

e. Load the object program using the same paper tape reader as that UISed for BLD II. 

f. Press the RUN switch on the control panel. 

This section describes control panel switches and indicators, and implementation of the 
above procedure and manual operations. 

Switches and Indicators 

The control panel of the Varian 620/L-100 is illustrated in figure IV-14. 

Power Switch 

The key-operated power switch controls the ac inpUit to the power supply. 

In the OFF position, ac input to the power supply primary is disabled. In the PWR ON 
position, there is ac power to the power supply primary and the system should be fully 
operational. In the CONSOLE DISABLE position, there is ac power to the power supply 

IV-62 



@varian data machines 

VTI/-1810 

15 14 13 12 

PWRON 
I 

OFF-9 -CONSOLE I 
DISABLE 

11 10 9 8 7 6 

SENSE 
1 2 3 REPEAT 

lc::::uc::::JI~:::::::~I lc::::Jl 

varian data machines ~l 

1 62o1L-1oo 1 

5 4 3 2 1 0 

___ REGISTER BIT 

X B A u p RESET 

lc::J I c:::JI a:::::1l c::::~l c::::::tl r:::::~l 

STEP RUN 

1 c::::J u=~l 
SYSTEM 
RESET 

I c:::::~l 

Figure IV-14. Varian 620/L-100 Control Panel 

primary and the computer is operational. However, all control panel switches are disabled 
except the power switch itself. Pressing any other switch while the power switch is in 
CONSOLE DISABLE has no effect. The control panel indicators are functional when the 
power switch is in either the PWR ON or CONSOLE DISABLE position. 

The power switch key can be removed in any of the three positions. To turn off the 
computer, place the sw1tch 1n PWR ON, press the STEP sw1tch, then turn the power switch 
to OFF. 

STEP Switch and Indicator 

Pressing the momentary, spring-loaded STEP switch when the computer is in run mode 
(RUN indicator on) halts the computer after execution of the current instruction. Pressing 
STEP when the computer is halted executes the instruction currently in the instruction (U) 
register (step mode). 

When STEP is pressed, the STEP indicator lights; it goes out when the RUN switch is 
pressed. 

IV-63 



RUN Switch and Indicator 

Pressing the momentary, spring-loaded RUN switch executes the instruction currently in 
the U register and starts automatic processing of the stored program at the address 
specified by the P register. 

When RUN is pressed, the RUN indicator lights; it goes out when the STEP switch is 
pressed. 

REGISTER Selection Switches 

Pressing one of the five toggle-action REGISTER selection switches sel•~cts the designated 
registers (X, 8, A, u, and P) for display or entry. 

Only one register can be selected at a time. Simultaneously pressing two or more 
REGISTER switches disables the selection logic and the register display indicators. 

Register Entry Switches and Display Indicators 

The 16 indicators across the top of the control panel display the contents of a selected 
register. Data are entered into registers on the corresponding register entry switches 
located under the indicators. The indicators and switches are read from left to right (bits 
15 through 0). A lighted indicator shows that bit contains a one. For negative data, the 
sign bit (bit 15) is a one. The indicators and switches are divided into groups of three for 
ease in reading octal configurations. 

To display the contents of a register, press STEP and select the de!sired register. The 
display indicators light when they correspond to register bits that contain ones. To remove 
the display, pull up on the REGISTER switch. 

To enter data or instructions in a register: 

a. Display the contents of the selected register~ 

b. Clear the register to all zeros by pressing the BIT RESET switch. 

c. Enter ones by pressing down on the register entry switches corresponding to the bits to 
be set. The associated display indicator lights for each switch pressed. 

IV-64 



To enter data into computer memory: 

a. Load a storage instruction (e.g., STA) into the U register. 

b. Select the register specified by the storage instruction. 

c. Load the data word into the selected register using the data entry switches. 

d. Press STEP to execute the instruction in the U register. This stores the contents of the 
specified register at the effective memory address. 

BIT RESET Switch 

Pressing the momentary, spring-loaded BIT RESET switch when the computer is in step 
mode resets all bits of the selected register to zero. All register display indicators go out. 

REPEAT Switch 

The toggle-action REPEAT switch permits manual repetition of an instruction in the U 
register. When REPEAT is down, pressing STEP executes the instruction and advances the 
P register to the next program address. The U register contents remain unchanged. 
REPEAT is disabled when the computer is in run mode. 

SENSE Switches 

The three toggle-action SENSE switches permit program modification by the operator. 
When the program contains instructions dependent on the setting of these switches, 
jumps and executions occur when the switch condition is met and do not occur when the 
condition is not met. 

To set a SENSE switch, press down. To reset it, lift. Operations dependent on the position 
of this switch are executed if the switch is in the position indicated by the instruction. 

EXAMPLE 

A program can be written so that the operator can obtain a partial total of a 
column of figures being added by use of the JSS1 (jump if SENSE switch 1 is 
set) instruction. The program writes individual entries as long as SENSE switch 
1 is not set. When the operator wants a partial total, he sets the switch. The 
program then jumps to an instruction sequence that prints the desired 
information. 

IV-65 



SYSTEM RESET Switch 

The momentary, spring-loaded SYSTEM RESET switch is used for initiialization control and 
for stopping l/0 operations. Pressing this switch halts the computer and initializes it and 
all peripherals. Note that SYSTEM RESET does not reset the registers. 

OVFL (Overflow) Indicator 

OVFL lights when a program overflow condition exists. 

3.3 MANUAL OPERATIONS 

Loading the Bootstrap Loader 

After computer power is turned on and the system initialized, load the bootstrap loader 
routine (table IV-12): 

a. In step mode, load a .store A register relative to P instruction (054000) into the U 
register. 

b. Press the REPEAT switch. 

c. Load the starting memory address of the bootstrap loader (007756) into the P register. 

d. Load the first bootstrap loader instruction into the A register. If the high-speed paper 
tape reader is to be used for subsequent program input, select the column headed 
High-Speed Reader Code in table IV-12; if using the Teletype paper tape reader, 
select the column headed Teletype Reader Code. 

e. Press STEP to load the A register contents into the address speci1fied by the P register, 
which is incremented by one after the instruction is loaded. 

f. Clear the A register by pressing BIT RESET. 

g. Repeat steps d, e, and f for each bootstrap loader instruction. 

IV-66 



varian data machines ~l 

Table IV-12. Bootstrap Loader Routines 

High-Speed Teletype 
Address Reader Code Reader Code Symbolic Coding 

007756 102637 102601 READ CIB RDR 
007757 004011 004011 ASLB NBIT -7 
007760 004041 004041 LRLB 1 
007761 004446 004446 LLRL 6 
007762 001020 001020 JBZ SEL 
007763 007772 007772 (Memory address) 
007764 055000 055000 STA 0,1 

.007765 001010 001010 JAZ LHLT + 1 
007766 007000* 007000 (Memory address) 
007767 005144 005144 IXR 
007770 005101 005101 ENTR I NCR 1 
007771 100537 102601 SEL SEL RDON 
007772 101537 101201 SEN IBFR,READ 
007773 007756 007756 (Memory address) 
007774 001000 001000 JMP •:c -2 
007775 007772 007772 (Memory address) 

NOTE 

The bootstrap loader routine is always loaded into the highest addresses of the 
first 4K memory increment, regardless of available memory. 

•:c Replace this code with 007600 if the test executive of MAINTAIN II (refer to document 
number 98 A 9952 060) is to be loaded and executed. 

To determine that the bootstrap loader is correctly loaded: 

a. Initialize the system by pressing SYSTEM RESET. 

b. Clear all registers by momentarily pressing each REGISTER selection switch, pressing 
BIT RESET each time. 

c. Load LDA instruction 014000 (load A register relative toP) into the U register. 

1 

IV-67 
_______________ ,j 



d. Load the bootstrap loader's starting memory address (00775,6) in the P register, 
keeping the REPEAT switch in the down position. 

e. Select the A register and press STEP. The contents of each memory address are 
displayed sequentially each time STEP is pressed. 

f. If an error is found, load the correct instruction code into memory. 

NOTE 

The P register error address is always the error address plus one. 

Loading, Displaying, and Altering Memory 

To load data or instructions into memory, to display the contents of memory, or to alter 
the contents of memory, follow the procedures given in the description of the register entry 
switches and display indicators above. 

Loading Sequential Memory Addresses 

To load a sequential group of memory addresses, follow the procedures for loading the 
bootstrap loader routine using the A, 8, or X register and loading the base address of the 
instruction group into the P register. 

Displaying Sequential Memory Addresses 

To display the contents of a group of sequential memory addresses: 

a. Press STEP and REPEAT. 

b. Load the base address of the instruction group into the P register. 

c. Load into the U register a relative-addressing load instruction (LDA, LDB, or LDX). 

d. Select the register specified by the instruction in step c. 

e. Press STEP once for each memory address to be displayed. 

IV-68 



varian data machines ~l 

Executing a Stored Program 

To execute a stored program manually: 

a. In step mode, load the first address of the program into the P register. 

b. Clear the U register. 

c. Press STEP. 

d. Press STEP again to execute the instruction and to load the next instruction into the U 
register. 

e. Repeat step d once for each instruction. 

Repeating an Instruction 

To repeat an instruction manually: 

a. In step mode, press REPEAT. 

b. Press STEP. 

This procedure advances the P register each time STEP is pressed, but inhibits the loading 
of the U register with the next instruction in sequence. 

3.4 CENTRAL PROCESSING UNIT 

The Varian 620/L-100 computer is organized in three major functional sections: 

• The Central Processing Unit (CPU) 

The Memory 

• The Input/Output (I/O) System 

Figure IV-15 illustrates the functional sections of the CPU and their interaction with 
memory and the I /0 system. 

IV-69 



~ 
'J 
0 ~-- -u- 44~5·~ 

VT/3-0288 

I 
I 
I 
I 
I 
I 
I 
I 

C BUS c sus C BUS 

I!' " I -44~599 
-44~505 

-44~506 

STACK 

L BUS (MEMORY ADDRESS) 

Figure IV-15. Varian 620/L-100 Computer Organization 

l vo 
I CABLE 

IPQA 

I 
~ 

< m ... 
ar 
::l 
a. 
m ... m 
3 m 
(') 

2: 
::l 
<» en 



varian data machines ~l 

The CPU can be grouped, for descriptive purposes, into five functional sections: the 
control section, the arithmetic/logic section, operation registers, auxiliary register, and 
internal buses. 

Control Section 

The control section generates the timing and control signals for all computer operations. 
The major elements in this section are the· instruction (U) register, the timing and 
decoding logic, and the shift control logic. 

The U register receives each 16-bit instruction from memory through the W bus and holds 
the instruction during its execution. 

The control fields of the instruction word are routed from the U register to the timing and 
decoding logic, where they are decoded to determine the signal levels required to perform 
the operations specified by the instruction. 

The address field of the instruction word held in the U register is used for addressing 
operations. The information contained in this field is then routed to the arithmetic/logic 
section. 

Timing logic generates the 4.211 MHz master clock from which the signals that control the 
sequence of computer operations are derived. 

The shift control section contains the shift counter and logic to control shifting, 
multiplication, and division operations. 

Arithmetic/Logic Section 

The arithmetic/logic section comprises the operand (R) register and the arithmetic unit. 

The R register receives operands from memory and holds them during instruction 
execution. The operand can be either data or address words. This register also permits 
transfe~s between memory and the l/0 bus during the execution of the optional extended­
addressing instructions. 

The arithmetic unit contains gating required for arithmetic, logical, and shifting 
operations. Indexed- and relative-addressing modifications take place in this section 
without adding to the instruction execution time. 

IV-71 



The arithmetic unit also controls the gating of words from the operation registers and the. 
I /0 bus to the C bus, where they are distributed to the operation registers or to memory 
buffers. This facility implements various microcoded instructions. 

Operation Registers 

The CPU contains four operation registers, designated A, 8, X, and P. 

The A, 8, and X registers are directly accessible to the operator. The P register is indirectly 
accessible through the use of the jump instructions, which modify the program sequence. 

A Register 

This 16-bit register is the upper-half of the accumulator. It holds the results of arithmetic 
and logic operations referring to operands stored in memory. During multiplication, it 
holds the most significant half of the double-length product The A and 8 registers can 
also be used for I /0 transfers under program control. 

B Register 

This 16-bit register serves as an extension of the accumulator and as a second index 
register. Instructions that shift the contents of the A and 8 registers simultaneously are 
available. 

X Register 

This 16-bit register permits indexing of operand addresses without adding time to the 
execution of indexed instructions. 

P Register 

This 16-bit register holds the address of the current instruction. It is incremented before 
each new instruction is fetched. A full complement of instructions is available for 
conditional and unconditional modification of this register. The P register is also used in 
relative addressing. 

IV-72 



~l 

Auxiliary Registers 

The auxiliary registers are designated U, S, L, W, and R. None are directly accessible to 
the operator. 

, U Register 

This 16-bit register holds the instruction being executed. The U register acts as a buffer 
between the control unit and memory to permit l/0 operations on. a memory-cycle-by­
memory-cycle basis. 

S Register 

This five-bit register, in combination with the U register, works as a shift counter. The S 
register also acts as a buffer between memory and the control unit. 

L Register 

This 16-bit memory address register holds the address of the location in memory being 
accessed during memory cycles. 

W Register 

The W register is the 16-bit memory buffer register. 

R Register 

This 16-bit buffer holds the multiplicand and divisor in arithmetic operations. The R 
register acts as a buffer between the arithmetic unit and memory to permit 1/0 
operations. 

Internal Buses 

The CPU contains five buses, designated C, S, W, L, and E. 

IV-73 

i 



C Bus 

This bus provides the parallel path and selection logic for routing data between the 
arithmetic unit, the l/0 bus, the operation registers, and the memory (W) register. The 
register display indicators on the computer control panel are also driv~en from the C bus. 
Collection and distribution of data simultaneously from and to ope!ration registers is 
facilitated by the C bus. 

S Bus 

This bus provides the parallel path and selection logic for routing data from the operation 
registers to the arithmetic unit. 

W Bus 

The W register is directly connected to memory through the W bus to provide paths for 
data in and out of memory. 

L Bus 

The L register is directly connected to memory through.the unidirectional L bus. 

E Bus 

This bus is a bidirectional input/output bus. It permits data transfers between peripheral 
devices and the computer. The E bus is an integral part of the I /0 system. 

Information Transfer 

All communication between the functional section of the CPU is through the C, S, and W 
buses. The C and S buses are internal to the CPU. The W bus is external and 
bidirectional; that is, one set of lines carries information both to and from memory. The W 
bus provides a direct path to memory for data transfers and, in combination with the 

IV-74 



varian data machines ~l 

buffer interlace controller (BIC), allows l/0 operations to occur simultaneously with 
extended arithmetic and shifting operations. 

P Register to Memory 

As an instruction cycle begins, the address of the next instruction is transferred from the 
P to the L register. The contents of the P register are transferred through the S bus to the 
adder. The adder increments the address by one and transfers the incremented count to 
the P register. The L register then contains the address of the instruction to be fetched 
from memory, and the P register holds the updated address. 

Memory to U Register 

During the instruction cycle, the instruction address in the L register is read out on the W 
bus to the W register, from which it is transferred out to the U register. 

U Register to Memory 

For many instructions requiring an operand, the address of the operand is in the 
instruction word held in the U register. This operand address is transferred to the L 
register through gates in the arithmetic logic and the C bus. The address from the U 
register can be modified during the transfer to the L register as follows: 

a. Direct Address. No modification; bits 0 through 10 are transferred from the U register 
to the L register to directly address an operand in the first 2,098 memory locations. 

b. Relative Address. The effective operand address transferred to the L register is formed 
by adding bits 0 through 8 from the U register to the contents of the P register. This 
permits addressing a word up to 512 locations above the current program location. 

c. Indexed Address. The effective operand address transferred to the L register is formed 
by adding bits 0 through 8 from the U register to the contents of either the X register 
or the 8 register. 

d. Indirect Address. The word read from memory is the address of an operand rather than 
the operand itself. 

Memory to R Register 

Operands read from memory into the W register are transferred to the R register. They are 
stored in the R register during an arithmetic or logical operation. 

IV-75 
__________ , __ , ____ , _____ _ 

I 
! 

I 
1 
l 

I 

---- j 



For direct addressing (and for two-word addressing instructions in which the operand 
address is the second word}, the operand address is read from memory into the W regiSter 
and then transferred to the R register; it is then routed to the L registe1· via the C bus. 

Adder to Operation Register 

Outputs from the adder, generated as a result of an arithmetic operat~ion involving the R 
register and one of the operation registers, are transferred to an operation reg.ister via the 
C bus. 

Operation Register to Memory 

The contents of an operation register can be transferred to memory by gating those 
contents of the S bus and routing the word through the C bus and W register. Note that 
an address cycle must precede this transfer to load the storage address in the L register. 

Input to Memory 

Data from the E bus are routed directly to memory through the C and W buses. A data 
transfer is preceded by an address transfer to load the memory address into the L 
register. When . the transfer is controlled by an instruction, the memory address is 
generated as a normal operand address. 

Output From Memory 

Data are transferred directly from memory to the I 10 cable through the W and C buses. A 
storage address is first transferred to the L register by an instruction. 

Input to Operation Registers 

Data are transferred directly to the A or 8 register through the E and C buses. These 
transfers are always controlled by an instruction designating the register to receive the 
information. 

Output From Operation Registers 

Data are transferred directly from the A or 8 reg.ister to the l/0 cable through the S, C, 
and E buses. These transfers are controlled by an instru_ction that connects the selected 
register to the S bus. 

IV-76 



~~~~~~~~~~~~~~~~~~~~~- varianda~mac~nes ~~ 
j

Register to Register

The contents of an operation register can be used to replace or modify the contents of any
register. The process of incrementing and restoring the contents of the P register is
described above. The contents of the A, 8, and X registers can be transferred,
incremented, complemented, or decremented. The overflow indicator can be set and reset.
These operations are implemented by gating the register contents to the S bus, processing
them in the adder, and returning the result via the C bus. Note that shifting occurs in this
data path. The contents of the selected register are shifted to the left or right as they are
gated from the arithmetic/logic gates to the C bus. Note that all register modification
instructions use this data path.

Instruction Field Decoding

The operation code and mode (M) fields of the instruction word stored in the U register
are decoded to provide static control levels used throughout the execution of the
instruction.

Operation Code

The instruction's operation code has three functional categories: class, set, and group.

a. Class designates one of three types of instructions: one-word addressing, one-word
non addressing or two-word, and I /0.

b. Set decodes simplify gating requirements for the execution of one-word addressing
instructions. Timing specifications select the appropriate phase for executing the
instruction.

c. Group decoding is any arbitrary designation to describe the gating of computer
operations according to the desired function. One of the group terms is true for all
one-word addressing instructions.

M Field

The M field of an instruction word specifies the addressing mode or the instruction type,
according to the instruction class defined in the operation code.

L __ ----------- IV-77

~wrlM~~m~~n~----------------------~

Timing

The Varian 620/L-100 operates on a basic 950-nanosecond machine cycle. That is, a full
memory cycle (read/restore or clear/write) occurs in each 950-nanosecond interval. All
computer operations take place within some multiple of this basic timing period.

During a full-cycle memory operation, suboperation timing is controlled by an internal·
. 4.211 MHz master clock. The pulsewidth of this master clock is 237 nanoseconds, or one­

fourth of the basic 950-nanosecond machine cycle; this permits the E~xecution of various
suboperations during the memory cycle. Note that the first half-cycle (475 nanoseconds)
of the period is used to access a word (read) or to load zeros into an address in memory
(clear). The second half-cycle is used to reload a word (restore) or to write a new word
(write) into the address.

System Clocks

The clock signals that control the timing of computer operations are !listed in table IV-13
and their waveforms are illustrated in figure IV-16.

Signal

Master Clock

Phase Clock

Address Phase

Execution Phase

Clock 1

Clock 2

Table IV-13. Varian 620/L-100 System Clocks

Mnemonic

MCLX+

PHCX+

EPHX-

EPHX+

CL1X+

CL2X+

IV-78

Description

Crystal-controlled 4.211 MHz timing signal
for the entire system

The 2.105 MHz timing signal (counted down
and synchronized with MCLX +) used to time
the basic address and execution phases of
computer operations

Basic timing phase that corresponds to the
memory restore or write half-cycle; instruc­
tion and operand addresses are transferred
to memory during thiis period

Basic timing phase that corresponds to the
memory read or clear half-cycle; data are
transferred to and from memory and instruc­
tions are executed during this period

Signal that initiates a memory cycle and
operations that are synchronized with the
start of the memory cycle

Signal that initiates operations that are
synchronized with the! start of a memory
write or restore half-cycle

<
..:...
'-'>

MEMORY
CYCLE

MCLX+
(MASTER CLOCK)

PHCX+ - CLEI+
(PHASE CLOCK)

- -·---~~---·~·---~~~-~ ·-~----- ---~--------

950 1900 2850 3800

I I I

45 NANOSECONDS
CLlX+
(CLOCK l)

___jl (TYPICALLY) :=ft= ___jl n nL------
45 NANOSECONDS

CL2X+
(CLOCK 2)

n n (TYPICALLY) =n= n fL_

EPHX+ __j -~ - l 1- - I I l I --L__
(EXECUTE PHASE)

EPHX- ~ I I I I I I I I r--
(ADDRESS PHASE)

ICYX+ __j
(INSTRUCTION CYCLE)

IEPX+
(INSTRUCTION EXECUTE __ ___.
PHASE)

lAP X+
(INSTRUCTION ADDRESS -----___J
PHASE)

ACYX+
(ADDRESS CYCLE)

OCYX+
(OPERAND CYCLE)

VT/2-0380

NOTE: IF NO ADDRESS IS NEEDED FOR THE INSTRUCTION, OCYX+
OCCURS AT ACYX+ TIME, OTHERWISE AS SHOWN. ,-------

1

Figure IV-16. Basic Clock Waveforms

--~~-- ·-~~--·~~------~---~=- .. ----~~--- ----~---,--- ---·

<
Q) .. ;·
:::s
c.
Q) ...
Q)

3
Q)
n =r
5'
(1)
en

~
~----~~------~---~~~

~wriMd~am~~nM-----------------------

A memory cycle in the Varian 620/L-100 comprises two phases:

a. Fetching an instruction from memory

b. Executing the fetched instruction

Clock Modifiers

The memory-cycle phases are modified by certain instructions or by signals received from
devices external to the computer. The conditions under which the clock periods are
modified are:

Shift

Interrupt

Trap

Halt

During the shifting of words contained in the A .
and B registers, the execution phase is extended
by the number of master clock periods (237.5 nano­
seconds) equal to the number of shifts specified.

When an external interrupt is requested, the address
phase is extended 475 nanoseconds to~ accommodate
delays in receiving the interrupt address from the
external device.

When a BIC requests a transfer to or from memory,
the address phase is extended 1.66 microseconds to
permit the execution of the trapping St~quence (i.e.,
the routmg of the address and data from the
external device).

On a halt instruction, clock CL1X + and CL2X + prevent
any further operations until the STEP or RUN switches
are pressed to resume program execution.

Modification of the execution phase of an instruction is illustrated in figure IV-17. The
illustration is typical of a shift instruction. At time 0, the instruction has been fetched
from memory. Starting at time 475, the instruction is executed. However, the normal
237.5-nanosecond execution phase is extended 237.5 nanoseconds f:or each shift (six are
illustrated). Note that CLlX + and CL2X + are inhibited during tht~ extended execution
phase. In a similar manner, the address phase is extended when required by the
conditions defined above.

IV-80

MEMORY
CYCLE

MCLX+

PHCX+

CLEI

CLJX+

CL2X+

EPHX+

EPHX-

VTI2-0384

(EXTENDED)

____jl n n
I I
I

n
I SHIFT OPERATION I

n n I I

I
EXTENDED EXECUTE PHASE I

__j

~

I 475 950 1425 1900 .2375 2850 3325

To TIME IN
NANOSECONDS

Figure Vl-17. Example of a Modified Clock Sequence

Operation Sequences

n

IL

L

r
3800 4275

The basic clock signals generated from the 4.211 MHz master clock time three operation
sequences: instruction cycl.e (ICYX +), operand cycle (OCYX +), and address cycle
(ACYX +). All computer operations are timed by one or more of these signals.

The following paragraphs describe typical operation sequences. Variations of these
sequences depend on the instruction being executed. However, a study of these
fundamental operations will aid the user in understanding the timing of a specific
instruction sequence.

IV-81

Accessing an Operand in Memory

The simplest and most basic operation sequence is one in which a one-word, directly
addressed operand is read from memory. This is typical of the load/store, arithmetic
(excluding multiplication and division), and logic instructions. The timing o·f the
suboperations of this sequence is illustrated in figure IV-18. At time 0, the instruction
cycle (ICYX +) for the nth (current) instruction is initiated. Note that instruction n - 1 is
being executed (I EPX +) while the nth instruction is being read from memory. At time
475, the instruction is transferred to the U register. During the instruction address phase
(IAPX +), when the instruction just read is being restored to mE~mory, the operand
address is generated.

Since the operand is not indirectly addressed in the illustrated caSE!, the operand cycle
(OCYX +) is initiated at time 950-nanoseconds. After the operand has been read from
memory and stored in the R register, the address of the next instruction (n + 1) is

MEMORY CYCLES (950 nsec) READ RESTORE READ RESTORE READ RESTORE READ RESTORE

n+l
START INSTRUCTION CYCLE

READ INSTRUCTION n+l

STORE INSTRUCTION 1\n+l
IN U REGISTER
GENERATE OPERAND n+l J
ADDRESS

START OPERAND CYCLE 1\.n+l

READ OPERAND n+l

LOAD OPERAND ~n+l
IN REGISTER
GENERATE INSTRUCTION c=n+c~ n+2
ADDRESS

EXECUTE INSTRUCTION I
CLl X+ I --=::ll=: 45 NANOSECON~

(TYPICALLY) ll n_
45 NANOSECONDS n n CL2X+ (TYPICALLY)

ICY X+ _j l I
OCYX+ I J L
IEPX+ _j I
IAPX+ _I

I I I I I I I I
TIME (nsec) 0 475 950 1425 1900 2375 2850 3325 3800

VTI2-0381A

Figure IV-18. Accessing on Operand in Memor)'

IV-82

varian data machines l]l

generated (normally by incrementing the P register) arid transferred to the L register. This
suboperation is executed while the operand is being restored to memory. The i"nstruction ·
cycle (ICYX +)for n + 1 is then initiated at time 1900.

Note that the operation to be performed on the operand contained in the R register is
executed during the I EPX + phase of the instruction cycle for n + 1. Thls operation could
be, for example, adding the operand value to the contents of the A register and storing the
result in that register (ADD instruction), or simply transferring the operand to one of the
operation registers (LDA, LDB, and LDX instructions).

Storing an Operand in Memory

The sequence for storing an operand in memory (STA, STB, and STX instructions), is
essentially identical to that for accessing an operand, except that the specified memory
address is cleared and the operand written into it. The sequence of suboperations is
shown in figure IV-19.

MEMORY CYCLES (I .SfJsec)

START INSTRUCTIONS
CYCLE
READ INSTRUCTION

STORE INSTRUCTION
IN U REGISTER

READ RESTORE CLEAR WRITE READ RESTORE CLEAR WRITE

GENERATE OPERAND ADDRES_S -------~---------__.__ __ ____. ______ _

START OPERAND CYCLE

TRANSFER OPERAND TO
MEMORY (W REG)

WRITE OPERAND IN MEMORY _________ __._,__.__ ___ _________ ___._ __ ___,J

GENERATE INSTRUCTION
ADDRESS n+l

EXECUTE INSTRUCTION 1'-_n_-l_......_ ___ ~:::-:-:-~::-:::::-::::-:::-:-~----L-j_-_-__._-_-,_.!L___ ________ _

cu X+ '~--------:-=--:---=n--'7"" 0-5y~~~~B.~coNDSn n IL
CL

2
X+ -=n--45 NANOSECONDSn .___ __ n ___ _.. '---------'

_ _(TYPICALLY) . . . '"-· ____ ;....___Jn.._ __ _
ICY X+

OCYX+

IEPX+

lAP X+

TIME (nsec) 0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2

VTI2-0141A

Figure IV-19. Storing an Operand in Memory

JV-83

~w~n~~m~~nM----------------------~

The nth instruction is accessed and the operand address generated during the instruction
cycle as described above; execution of the n - 1 instruction occurs during I EPX- of the
nth cycle as indicated. However, during OCYX +, the operand is transferred to memory
while the referenced address is being cleared.

During the last half of the cycle, the operand is stored in the address just cleared. During
this time, the address for the next instruction is generated. Note that there is no
execution, as such, for this type of instruction (indicated by dashed lines in the
illustration) because the execution has already been accomplishted, in effect, by the
transfer and storage of the operand in memory.

Accessing an Operand Indirectly

In this case, an address cycle (ACYX +) is requried to read the indire!ct address word from
memory before performing the operand cycle (OGYX-).

The sequence of suboperations for accessing an operand indirectly is illustrated in figure
IV-20.

During the instruction cycle, the nth instruction is read from memory and stored in the U
register. The previous instruction, n - 1, is executed during IEPX +. During the
instruction address phase (IAPX +), the location of the (indirect) address word is
generated. This address word is read from memory and stored ·in the R register.

For the case illustrated in figure IV-20, the address word contains the address of the
operand. If this were not the case, another address cycle would be initiated to access a
second address word, etc. The operand address is transferred to the L register during the
last half of ACYX + to locate the operand read out during the succeeding OCYX +. The
address for instruction n + 1 is generated and instruction n is exec:uted, completing the ·
sequence.

IV-84

<
00
(.11

MEMORY CYCLES (950 nsec) I READ i RESTORE I READ -1 RESTORE I READ ! RESTORE I READ: RESTORE I
START INSTRUCTION n n+ l
CYCLE

READ INSTRUCTION I n I l n I
STORE INSTRUCTION ~n An+l
IN U REGISTER -- - I'-

GENERATE MEMORY ADDRESS L_n J r ~
START ADDRESS CYCLE

READ ADDRESS

GENERATE OPERAND
ADDRESS

START OPERAND CYCLE

READ OPERAND

GENERATE INSTRUCTION
ADDRESS

EXECUTE INSTRUCTION

CLlX+

CL2X+

ICY X+

ACYX+

OCYX+

IEPX+

lAP X+

TIME (nsec)

VTI2-0383A

n K A

I n I
I n I

/"'+...n

l n l
I n+l I

L n-~---J I n I
I -=rt-<i~~~~a~~CONDSn n n_
___ -:n--__. ~~~I~~~~~CONDSn n n~..... ___ _
_j- -----

I
0

I
475

I
950

I
1425

I
1900

I
2375

Figure IV-20. Accessing an Operand Indirectly

I
2850

I
3325

I
3800

<
I» ...
ar
:l
c.
I» ...
I»

3
I»
()
=r
:l
~ en

~
J

CHAPTER V

LOGIC DESCRIPTIONS

CHAPTER V
LOGIC DESCRIPTIONS

LOGIC DESCRIPTIONS

DTL and TTL integrated circuits (ICs) are used throughout the 620 series computer
systems. These circuits are general-purpose digital logic units packaged to simplify
maintenance. The IC board layout uses a " bit-slice" technique in which all register and
gating circuits associated with six bits are packaged on one board. figure V-1 through
V-49 describe the basic logic packages used in the 620 series computers.

The following abbreviations are used in the following figures:

AY

HD

Tl

TR

SN74

SN15

MC

N

u

Logical 0
(normal)

Logical 1
(normal)

Logical 0
(1/0 bus)

Logical 1
(1/0 bus)

General Instrument

Harris Semiconductor

Texas Instruments part

Western Digital

In Tl part number, indicates TTL logic
(same number used by National Semiconductor)

In Tl part number, indicates DTL logic

Motorola part

Signetics

Fairchild part one-shot
Number followed by PC or DC Fairchild

Ground

+5V

+3V

Ground

V-1

CHAPTER V
LOGIC DESCRIPTIONS

A
c

8

Propagation Delay

To logical 0 typ. 7 ns
To logical 1 typ. 11 ns

VTII-1713

Truth Table

A 8 c
0 0 1
0 1 1
1 0 1
1 1 0

VDM 49A0007-000

J ,OR N DUAL-IN-LINE, PACKAGE
(,rOP VIEW)

lA 18 IV 2A 28 2Y GNO

Figure V-1. Quadruple 2-lnput NAND Gate (SN7400N, ~7400PC, N7400A)

A
c

8

Propagation Delay

To logical 0
To logical 1

VTII-1714

typ. 8 ns
typ. 12 ns

c

Truth Table

A 8 c
0 0 1
0 1 0
1 0 0
1 1 0

VDM 49A0032-000

J OR N-DUAL-IN-LINE PACKAGE
(TOP VIEW)

Vee 4Y 4B 4A 3Y 38 3A

IV IA IB 2Y 2A 28 GND

Figure V-2. Quadruple 2-lnput Positive NOR Gate (SN7402N, MC7402P, 7402PC)

V-2

Propagation Delay

To logical 0
To logical 1

A

8

VTIJ-1715

typ. 8 ns
typ. 35 ns

c

Truth Table

A B c
0 0 1
0 1 1
1 0 1
1 1 0

VDM 49A0081-001

CHAPTER V
LOGIC DESCRIPTIONS

J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

Vee 4B 4A 4Y 38 3A 3Y

lA lB lY 2A 2B 2Y GND

positive logic: Y = AB

Figure V-3. Quadruple 2-lnput Positive NAND Gate (Open.Collector) (SN7403N)

Propagation Delay

To logical 0
To logical 1

VTIJ-1716

typ. 8 ns
typ. 12 ns

Truth Table

VDM 49A0040-000

J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

Vee 6A 6Y 5A 5Y 4A 4Y

lA 1 Y 2A 2Y 3A · 3Y GN D

Figure V-4. Hex Inverters (SN7404N, MC7404P, N7404A, 7404PC)

V-3

CHAPTER V
LOGIC DESCRIPTIONS

Propagation Delay

to logical 0 typ. 8 ns
To logical 1 typ. 40 ns

VTI/-1727
VDM 49A0575-000

J OR N DUAL-IN-LINE PACKAGE
(TOP VIEW)

Vee 6A 6Y 5A 5Y 4A 4Y

1 A 1 Y 2 A 2 Y 3A 3 Y G N 0

positive loqic: Y • A

Figure V-5. Hex Inverter with Open-Collector Circuit (:SN7405J, MC7405L)

A
0
0
0
0
1
1
1
1

Propagation Delay

To logica I 0 typ. 7 ns
To logical 1 typ. 11 ns

VTI/-1728

Truth Table

8 c D
0 0 1
0 1 1
1 0 1
1 1 1
0 0 1
0 1 1
1 0 1
1 1 0

VDM 49A0005-000

J OR N DUAl.-IN-LINE PACKAGE
(TOP VIEW)

1 v 3(38 3A 3 Y

lA 18 2A 28 2C 2Y GND

positive lc.gic: Y = AEiC

Figure V-6. Triple 3-lnput Positive NAND Gate (SN74101~, 7410PC, N7410A)

V-4

~--------------------------------------

VT//-16%

A
0
0
0
0
0
0
0
1
etc.
1

Truth Table

8 c
0 0
0 0
0 1
0 1
1 0
1 0
1 1
0 0
etc. etc.
1 1

D
0
1
0
1
0
1
1
0
etc.
1

E
1
1
1
1
1
1
1
1
etc.
0

CHAPTER V
LOGIC DESCRIPTIONS

J OR N DUAL-IN-LINE PACKAGE

(TOP VIEW)

20 2C NC 2B 2A 2Y

lA IB NC lC 10 lY GND

positive logic: Y = Ai3C5

~ ==--=--=-~..r~--)----- E

Propagation Delay

To logical 0
To logical 1

typ. 8 ns
typ. 12 ns

VDM 49A0006-000

Figure V-7. Dual 4-lnput Positive NAND Gate (SN7420N, MC7420, 7420PC)

V-5

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table J OR N DUAL-IN-LINE PACKAGE

(TOP VIEW)

A 8 c D E vee 20 2C NC 2!1 2A 2Y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 0 1
etc. etc. etc. etc. etc. lA 18 NC 1C J[) IY GND
1 1 1 1 0

·~· ::.:_:_-:.r,----.)--- E

Propagation Delay

To logical 0 typ. 8 ns
To logical 1 typ. 13 ns

VDM 49A0504-000

VT/1-/697

Figure V-8. Dual 4-lnput Positive NAND Buffer (SN7440N, MC7440L, 7440DC)

V-6

Propagation Delay

To logical 0
To logical 1

VTII-1715

typ. 6.2 ns
typ .. 5.9 ns

Truth Table

A B c
0 0 1
0 1 1
1. 0 1
1 1 0

VDM 49A0039-000

CHAPTER V
LOGIC DESCRIPTIONS

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

V CC 48 4A 4Y 38 JA 3Y

lA IB IY 2A 28 2Y GND

Figure V-9. Quadruple 2-lnput Positive NAND Gate (SN74HOON, MC3000P)

Truth Table JOR N

DUAL-IN-LINE PACKAGE (TOP VIEW)

A B c VCC 48 4A 4Y JB 3A 3Y

0 0 1
0 1 1
1 0 1
1 1 0

Propagation Delay

To logical 0
To logical 1

VTII-1698

typ. 7.5 ns
typ. 10 ns

VDM 49A0042-000

lA fB TY 7.A 2B 2Y GNO.

Figure V-10. Quadruple 2-lnput Positive NAND Gate with Open

Collector (SN74H01N, MC3004P)

V-7

CHAPTER V
LOGIC DESCRIPTIONS

Propagation Delay

To logical 0
To logical 1

VTil-1716

typ. 6.5 ns
typ. 9 ns

Truth Table
JOR N

DUAL-IN-LINE PACKAGE (TOP VIEW.

6V 5A 5V 4A 4V

1A 1V 2A 2V 3A 3V GND

VDM 49A0023~000

Figure V-11. Hex Inverter (SN74H04N, MC30018)

Propagation Delay

To logical 0
To logical 1

A

VT/1-1699

typ. 10 ns
typ. 13 ns

8

JOR N

Truth Table DUAL·IN·LINE PACKAGE (TOP VIEW)

6V 5A 5V 4A 4V

1A 1V 2A 2V 3A 3V GND

VDM 49A0061-000

Figure V-12. Hex Inverter with Open-Collector Output (SN74H05N)

V-8

A
8
c

D

D

Propagation Delay

To logical 0
To logical 1

VTJJ-1717

typ. 6.3 ns
typ. 5.9 ns

A
0
0
0
0
1
1
1
1

Truth Table

8 c D
0 0 1
0 1 1
1 0 1
1 1 1
0 0 1
0 1 1
1 0 1
1 1 0

VDM 49A0054-000

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

V CC 1C 1 Y 3C 38 3A 3 Y

lA 18 2A 28 2C 2Y GND

Figure V-13. Triple 3-lnput Positive NAND Gate (SN74H10N)

A
8
c

D

Propagation Delay

To logical 0
To logical 1

VTII-1700

typ. 8.8 ns
typ. 7.6 ns

A
0
0
0
0
1
1
1
1

Truth Table JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

B c D VCC lC IY 3C 38 3A 3Y

0 0 0
0 1 0
1 0 0
1 1 0
0 0 0
0 1 0
1 0 0
1 1 1

lA IB 2A 2B· 2C 2Y GND

VDM 49A0022-000

Figure V-14. Triple 3-lnput Positive AND Gate (SN74H11N)

V-9

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JOR Nl
DUAL·IN-LINE PACKA1GE (TOP VIEW)

Vl'//-1701

A 8 c
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
etc. etc. etc.
1 1 1

D E vee 20 2e Ne 28 2A 2Y

0 1
1 1
0 1
1 1
0 1
1 1
0 1
1 1
0 1 1A 18 NC 1C 10 1Y GND

etc. etc.
1 0

Propagation Delay

To logical 0
To logical 1

typ. 7 ns
typ. 6 ns

~-p,___-E
VDM 49A0056-000

Figure V-15. Dual 4-lnput Positive NAND Gate (SN74H~~ON, MC3010)

V-10

VTI/-1702

Truth Table

A B ·C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
etc. etc. etc. etc.
1 1 1 1

A
B
c
D

To
To

A
8
c
D

E
0
0
0
0
0
0
0
0
etc.
1

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

v CC 20 2C NC 28 2A 2Y

lA IB NC IC ID IY GND

) E

Propagation Delay

logical 0 typ. 8.8 ns
logical 1 typ. 7.6 ns

~ > E

VDM 49A0094-001

Figure V-16. Dual 4-lnput Positive AND Gate (SN74H21N, MC3011)

V-11

CHAPTER V
LOGIC DESCRIPTIONS

A--.r--.......
8---t
C---t
D --"l_ _ _..

Propagation Delay

E

To logical 0
To logical 1

typ. 7.5 ns
typ. 10 ns

A

~) 8 E

c
D

VTIJ-1718

Truth Table

Same as that in
figure IV-26-

VDM 49A0038-000

JOR N
DUAL-IN-PACKAGE (TOP VIEW)

Vee 2D 2e Ne 2B 2A 2Y

lA 18 NC lC lD lY G~~D

Figure V-17. Dual 4-lnput Positive NAND Gate (SN74H22N)

A---t
8----t
c---t-----
D---1
E---1
F--,_ _ __.
G----t
H----f

Propagation Delay

To logical 0
To logical 1

VTI/-/703

typ. 8.9 ns
typ. 6.8 ns

Truth Table

Same as that in
figure IV-26 except
for extra inputs

VDM 49A0060-000

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

vee NC H G Ne NC Y

A e D F GND

p05itlve lloglc: Y = ABCDEFGH

Figure V-18. 8-lnput Positive NAND Gate (SN74HI30N)

V-12

A
0
0
0
0
0
0
0
1
etc.
1

VTII-1704

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table JORN

B c
0 0
0 0
0 1
0 1
1 0
1 0
1 1
0 0
etc. etc.
1 1

DUAL-IN-LINE PACKAGE (TOP VIEW)

D E Vee 20 2e Ne 28 2A 2Y

0 1
1 1
0 1
1 1
0 1
1 1
1 1
0 1
etc. etc. 1A 18 Ne 1e 10 1Y GNO

1 0
positive logic: v = Aaco

1 ---r--)......__E_

Propagation Delay

To logical 0
To logical 1

typ. 6.5 ns
typ. 8.5 ns

A

~) B E

c
0

VDM 49A0019-000

Figure V-19. Dual 4-lnput Positive NAND Buffer (SN74H40N, MC3024P)

V-13

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table

A B c D
0 0 1 1
1 1 0 0
1 1 1 1

All other cases E is
equal to a logical 1

x--------­
x--------

Note

X = 1 and X
causes E = 0

E
0
0
0

E

0

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

Vee 18 X X 10 1e IY

·positive logic: v = (AB} + (CD} + (X}

(X = Output of SN7'4H60 or SN7 4H62}

Propagation Delay

To logical 0 typ. 6.2 ns
To logical 1 typ. 6.8 ns .

1. Both expander inputs are used simultaneously for expanding.
2. If expander is not used, leave X and X pins open.
3. Expander inputs X and X are functional on SN75H50N circuits only.

Make no external connections to X and X pins of SN74H51.
4. A total of four SN74H60 expander gates or one SN741H62 expander

gate can be connected to the expander inputs.

VTI/-1705
VDM 49A0093-001 and 49A0041-000

Figure V-20. Dual 2-Wide 2-lnput JlND-OR-Invert GatE!S (SN74H50

and 51 N MC3020 and 3023)

V-14

Truth Table

Any AND gate with all
logical 1 inputs causes
K to be logica I 1

logical 1 on J input
causes K to be logical 1

A----t

8----t '-------
c----t

0----t

E---t

F ----t '-------
G-----t
H---t
1----t

~--

Note

CHAPTER V
LOGIC DESCRIPTIONS

JORN
DUAL-IN-LINE PACKAGE (TOP VIEW)

Vee I H G; F X Y

A e 0 NC GND

positive logic:

Y = (AB) + (CDE) + (FG) + (HI) + (X)

(X = Output of SN1.4H61)

\----K

Propagation Delay Using Expander Pin

To logical 0 typ. 9.8 ns
To logical 1 typ. 14.8 ns

1. A total of six expander gates can be connected to input J.
2. No internal connection.

VDM 49A0095-000
VTII-1729

Figure V-21. Expandable 2-2-2-3-lnput AND-OR Gate (SN74H52N, MC3031P)

V-15

CHAPTER V
LOGIC DESCRIPTIONS

A----t

B-----1

c-----1

0-----t

E -----t

F -----t

Truth Table

Any AND gate with all
logical 1 inputs causes
J to be logical 0

Logical 1 on X and ·
logical 0 on X causes
J to be logica I 0

x---

G-----1
H-----1
I -----t ----

Note

jQFfN
DUAL-IN-LINE PACKt~GE (TOP VIEW)

y

(See Note
~
X X H

positive logic: Y = (AB) + (CC1) + (EFG) + (HI) + (X)

(X = Output of SN74H~IO,or_SN74H62)

--J

Propagation Delay

To logical 0
To logical 1

typ. 7.4 ns
typ. 11.4 ns

1. Both expander inputs are used simultaneously for expanding.
2. If expander is not used, leave X and X pins open.
3. Expander inputs X and X are functional on SN74H53 circuits only.

Make no external connection to X and X pins of SN74H54.
4. A total of four SN74H60 expander gates or one SN74H62 expander

gate can be connected to the expander inputs.

VDM 49A0106-000

VTI/-1730

Figure V-22. Expandable 2-2-2-3-lnput AND-OR Invert Gate (SN74H53N, MC3032)

V-16

Truth Table

Any AND gate with all
logical 1 inputs causes
~ to be logical 1 and
X to be logical 0 when
X and X are connected
to SN74H50 or SN74H53

A---t
8----t
c----~ '-------
,0---t

E---t '----
F __,.

G---t '-------
H---t
1---t J __,.

'-----

Note

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

Vee J H G X

A C D X GND

positive logic:
X = (AB) + (CDE) + (FGH} + (IJ)
when connected to X and X pins of

SN7 4H50 or SN7 4H5-J circuit.

'\----X

----X
Propagation Delay

' As listed in figures
IV-31 or IV-33

1. Connect to X input of SN74H50 or SN74H53.
2. Connect to X input of SN74H50 or SN74H53.

VDM 49A0098-000

For Use With SN74H50 and SN74H53 Cir,cuits

VT/1-1731

Figure V-23. 3-2-2-3-lnput AND-OR Expander (SN74H62N, MC3018P)

V-17

I

CHAPTER V
LOGIC DESCRIPTIONS

PRESET

I {)

' J Q

cKl~-CLO

L.~
u

K Q
r--- ./

I
()

CLEAR

CLOCK __________ ~r---1~--------

Q

TRUTH TABLE

J can be removed after
the leading edge of clock

tn tn+1
J K a
0 0 On
0 1 0

NOTES:

1. J = J1 • J2 • J3
2. K=K1•K2•K3

1 0 1 3. tn = Bit time before clock pulse.

1 1 On
4. tn+1 = Bit time after clock pulse.
5. NC = No Internal Connection. ·

.. OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

VCC PRESETCLOCK K3 K2 K1 0

NC CLEAR J1 J2 J3 0 GND

: positi,re logic:
Low input to preset sets a to logical 1
Low input to clear sets a to logical 0
Preset and clear are independent of clock

HIGH 1 2~3 4

LOW_:_~ ~
CLOC:K WAVEFORM

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave

VDM 49A0003-000
VT/J-1732

Figure V-24. J-K Master-Slave Flip-Flop (SN7472NI)

V-18

J

0

0

1

1

PRESET

Q 1--..,_--+--

K Ql--+--4--

CLEAR

CLOCK __________ ~r---l~--------

Q

TRUTH TABLE

tn tn + 1

K Q

0 Q.

1 0

0 1

1 Q"

Minimum clock 12 ns

NOTES: 1. J ·= Jl • J2 • J3
2. K = Kl • K2 • K3
3, t. = Bit time before clock pulse.

4. tn +, = Bit time after clock pulse.

HIGH

LOW

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL·IN·LINE PACKAGE (TOP VIEW)

V CC PRESET CLOCK K3 K2 Kl 0

NC CLEAR Jl J2 JJ Q GND

positive logic:
Low input tp preset sets Q to ~ogical 1
Low input to clear sets Q to logical 0
Preset and clear are independent of clock

I
I
l MINIMUM
' t __ ...,..
1.,.._ setup

CLOCK WAVEFORM

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:

1. Isolate slave from master
2.
3.
4.

Enter information from AND gate inputs to master
Disable AND gate inputs
Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change when the clock pulse is
in a high state.

VDM 49A0520-000
VT/1-1733

Figure V-25. J-K Master-Slave Flip-Flop (SN74H72N)

V-19

CHAPTER V
LOGIC DESCRIPTIONS

\
~

J Q
CLOCK ... -.,

..

' ..
K

../
Q

(.}

CLEAR

TRUTH TABLE

(Each Flip-Flop)

tn tn+1
J K a
0 0 On
0 1 0

1 0
NOTES:

1

1 1 On
1. tn = Bit time before clock pulse.
2. tn+1 = Bit time after clock pulse.

SNE141 01, SN741 oi .
J OR N DUAL:IN:-IONE PACRAGE_li.QPYIEW).

V CC CL.EARCLQICK K CLEAR CLOCK J

J Q Gl K Q Q GND

8~15473, SN7473
J OR N [)l!~~!J_~!=-~~~J(~G].(TOP VI~W)

a a GND K a a

CLOCK CLEAR K V CC CLOCK CLEAR J

pos,itive logic:
Low input to clear sets 0 to logical 0.
Clear is indepetndent of clock.

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:·
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave

VDM 49A0002-000 an~ 49A0100-000
VTll-1734

Figure V-26. Dual J-K Master-Slave Flip-Flops (SN7473N, 74107N)

V-20

.... ..
CLOCK

... ..

TRUTH TABLE

tn tn + 1

J K Q

0 0 Q"

0 1 0

1 0 1

1 1 Qn

' J Q
_/

' -
K Q

./
()

CLEAR

NOTES:

1. In = Bit time before clock pulse.
2. In+ 1 = Bit time after clock pulse.

HIGH

LOW

varian data machines ~

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW) _

1J lQ lQ GND 2K 2Q 2Q

positive logic:

Low input to clear sets Q to logical 0
Clear is indepel'!dent of clock

I
I
l MINIMUM

:...,__tsetup --11'

CLOCK WAVEFORM

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for
entry into the master section are controlled by the clock pulse. The clock pulse also
regulates the circuitry which connects the master and slave sections. The sequence of
operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change when the clock pulse is
in a high state.

Minimum clock time = 12 ns

VDM 49A0036-000
VTll-1735

Figure V-27. Dual J-K Master-Slave Flip-Flops (SN74H73N)

V-21

CHAPTER V
LOGIC DESCRIPTIONS

PRESET

----10

-----tC

CLEAR

Q...,.... __ _

Qt----

J OR N DUJ!~L-IN-LINE PACKAGE
,(TOP VIEW)

p~rtive logic:

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Preset and clear are independent of clock

Propagation Delay Using Clock Input

D

CLOCK

Q

VTI/-1736

To logical 0 typ. 20 ns
To logical 1 typ. 14 ns

TRUTH Ti~BLE (Each Flip-Flop)

tn tn+1

INPUT OUTPUT OUTPUT

D a a
0 0 1

L_ 1 1 0

NOTES: 1. tn =' bit time before clock pulse,

2. tn+ 1 = bit time after clock pulse.

Clock triggering occurs at a voltage level of the clock pulse and is
not directly related to the transition time of the positive-going pulse.
After the clock input threshold voltage has been passed, the data
input (D) is locked out.

VDM 49A0012-000

Figure V-28. Dual D-Type Edge-Triggered Flip-Flop (SN7474N)

V-22

PRESET

---~ D Q t-----

___ ,.... c Q 1-----

CLEAR

Propagation Delay Using Clock Inputs

To logical 0 typ. 8.5 ns
To logical 1 typ. 13 ns

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

2 2 2
Vee CLEAR 20 CLOCK PRESET 20 20

1 10 1 1 10 10 GNO
CLEAR CLOCK PRESET

Low input to preset sets 0 to high level
Low input to clear sets 0 to low level
Preset and clear are independent of clock

TRUTH TABLE (Each Flip-Flop)

tn tn+1

INPUT OUTPUT OUTPUT

D a 0

0 0 1

Width of clock pulse minimum of 15 ns 1 1 0

VTI/-1737

NOTES: A. tn =bit time before clock pulse.

B. tn+1 = bit time after clock pulse.

Information at input D i transferred to the Q output on the positive­
going edge of the clock pulse. Clock triggering occurs at a voltage
level of the clock pulse and is not directly related to the transition
time of the positive-going pulse. When the clock input is at either
the high or low level, the D input signal has no effect.

VDM 49A0082-001

Figure V-29. Dual D-Type Edge-Triggered Flip-Flop (SN74H74N)

V-23

~wrl~d~am~~n~----------------------~

CHAPTER V
LOGIC DESCRIPTIONS

,-
1

I
I
I
I
I
L_

14 2 3

TRUTH:.,TABLE'~(See Notes 1, 2, and 3)

OUTPUT

COUNT 0 c B A

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 I 1 0

7 0 1 1 I

8 1 0 0 0

9 1 0 0 1

10 1 0 I 0

11 1 0 1 I

12 1 1 0 0

13 1 1 0 I

14 1 I I 0

15 1 1 I I

JOR N,
l1 DUAL·IN·LINE PACKAGE (TOP VIEW)

I
I
I
I
I
I
I

___ _j

INPUT
A NC A D GND C

Propagation Delay From
Input Clock A to Output D

To logical 0
To logical 1

typ. 75 ns
typ. 75 n·s

NOTES: 1. Output A connected to Input B

2. To reset all outputs to logl'cal 0 both

Ro(1) and Ro(2) Inputs must be at

logical 1.

3. Either (or both) reset Inputs Ro(1)

and Ro(2) must be at a lolltlcal 0 to count.

VT/1-1738. Figure V-30. 4-Bit Binary Counter (SN7493~~)

V-24

CLOCK

A,B,C, or D
Output

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
~:JN_:b!~_!; .. Pft,._~~~GE (TOP Y·~~l

A,B,<:;, or D
Input M

SERIAL A B C D MODE GND
INPUT '----INPUTS-----" CONTROL

Propagation Delay From Clock 1 or 2
-positive logic:

To logical 0 typ. 24 ns
Mode control = 0 for right shift

To logical 1 typ. 26 ns Mode control = 1 for left shift or parallel load

Information transferred when clock input goes low

VTJI-1739

When a logical 0 level is applied to the mode control input, the
number 1 AND gates are enabled and the number 2 AND gates are
inhibited. In this mode, the output of each flip-flop is coupled to the
R-S inputs of the succeeding flip-flop and right-shift operation is
performed by clocking at the clock 1 input. In this mode, serial data
'is entered at the serial input. Clock 2 and parallel inputs A through
Dare inhibited by the number 2 AND gates.

When a logical 1 level is applied to the mode control input, the
number 1 AND gates are inhibited (decoupling the outputs from the
succeeding R-S inputs to prevent right-shift) and the number 2 AND
gates are enabled to allow entry of data through parallel inputs A
through D and clock 2. This mode permits parallel loading of the
register; or, with external interconnection, shift-left operation. In
this mode, shift-left can be accomplished by connecting the output
of each flip-flop to the parallel input of the previous flip-flop (D
output to input C, etc.) and serial data are entered at input D.

VDM 49A0090-001

Parallel-In Parallel-Out Register

Figure V-31. 4-Bit Right-Shift Left-Shift Register (SN7495N)

V-25

CHAPTER V
LOGIC DESCRIPTIONS

PRESET TRUTH TABLE JOR N

~
J Q

CLOCK ,..
"'

K Q

CLEAR

tn tn+1
J K a
0 G On
0 1 0

1 ·o 1

1 1 On

NOTES:

1. tn = Bit time before

clock pulse

2. tn+ 1 = Bit time
after clock pulse

DUAL-IN-LINIE PACKAGE (TOP VIEW)

2
2J PRESET CLOCK 2K

lK 10 1<::) 1J 20 20 GND

pCl•sitive logic:

Low input to pre,set sets Q to logical 1
Low input to clear sets Q to logical 0
Preset and clear are in~ep_endent of clock i

Propagation Delay Using Clock MINIMUM 1 I

To logical 0 typ. 16 ns
tsetup __..,. ,......_

J~DATA To logical 1 typ. 10 ns
J-K I OUT

INPUTS I
ENABLE() +t

Minimum T Setup
J-K INPUTS t_ J-K INPUTS
INHIBITED INHIBITED

Logical 1 10 ns CLOCK WAVEF:ORM
Logical 0 13 ns

VTII-1740

These dual monolithic J-K flip-flops are negative edg1e-triggered.
They feature individual J, K, and asynchronous preset inputs to
each flip-flop as well as common clock and asynchronous clear
inputs. When the clock goes high, the inputs are enabled and data
will be accepted. The logical state of the J and K inputs may be
allowed to change when the clock pulse is in a high state and
bistable will perform according to the truth table as long as
minimum set-up times are observed. Input data are transferred to
the outputs on the negative edge of the clock pulse.

VDM 49A0099-000

Figure V-32. Dual J-K Edge-Triggered Flip-Flop (SN74H108N)

V-26

LOAD A 8 C D

CHAPTER V
LOGIC DESCRIPTIONS

JOR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

------tUP CARRY~>-----

VTII-1741

CLEAR QA QB Qc QD

logic: Low input to load sets QA =A,

0 8 = 8, QC = C, and 0 0 = D

The outputs of the four master-slave flip-flops are triggered by a low­
to-high transition of either count (clock) input. The direction of
counting is determined by which count input is pulsed whtle the
other count input is high.

All four counters are fully programmmable; that is, the outputs may
be preset to any state by entering the desired data at the data
inputs while the load input is low. The output will change to agree
with the data inputs independently of the count pulse. This feature
allows the counters to be used as modulo-N dividers by simply
modifying the count length.

A clear input has been provided which forces all outputs to the low
level when a high level is applied. The clear function is independent
of the count and load inputs. An input buffer has been placed on
the clear, count, and load inputs to lower the drive requirements to
one normalized Series 54/74 load. Th•s is important when the
output of the driving circuitry is somewhat limited.

VDM 49A0091-000
Dual Clock With Clear

Figure V-33. Synchronous 4-Bit Up/Down Counter (SN74193J)

V-27

- varian data machines

CHAPTER V
LOGIC DESCRIPTIONS

8
7
6
5
4
3
2
1

23
22
21
20
19
18
17
9

15
14

} Data 13 Select
11
16

Allows user to sample bit
specified by data select
for a 1 or 0
Example:

12
24

10

If data select was equal to
7, then pin 1 would be tested
for a 1 or 0 and the results
of the test put on pin 10.

Propagation Delay

Through 4 selects
Through 3 selects
Data input to output

28 ns
20 ns
10 ns

0 C II A

X X X X

0 0 0 0

0 0 0 0

0 0 0 1
0 0 0 1

0 0 1 0

0 0 1 0

0 0 1 1

0 0 1 1

0 1 0 0

0 1 0 0

0 1 0 1

0 1 0 1

0 1 1 0

0 1 1 0

0 1 1 1

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1

1 0 0 1

1 0 1 0

1 0 1 0

1 0 1 1

1 0 1 1

1 1 0 0

1 1 0 0

1 1 0 1

1 1 0 1

1 1 1 0

1 1 1 0

1 1 1 1

1 1 1 1

STI'IOIIE Eo E1

1 X X

0 0 X

0 1 X

0 X 0

0_ X 1

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

D X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X

0 X X
0 X X

0 X X
0 X X

0 X X

0 X X

0 X X

N DUAL-IN-LINE PACKAGE (TOP VIEW)

DATA INP'UTS

positive logic:
w • s(AIU~l5e0 ; A-lel5e ,- + .iael5E2 +-Aael5ea.

+ il~l5e4 +. AlcOe5 ·~ ABCf>E6 +~Aicl5e 7 ~ifo.Ea 1
+ Ai~DEg + AB~DE 1 o + Aafoe-;;-~ ~BCDE 12.
·- + ABCDE13 + Al!tCDE14 + ABCDE15) .

TRUTH TABLE:

INPUTS OUTrUT

Ez E3 E4 Es Es E7 Ea E11 E1o En E12 E13 E14 E15 w

X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X 0
X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X 0
0 X X X X X X X X X X X X X 1
1 X X X X X X X X X X X X X 0
X 0 X X X X X X X X X X X X 1
X 1 X X X X X X X X X X X X 0
X X 0 X X X X X X X X X X X 1
X x 1 X X X X X X X X X X X 0
X X X 0 X X X X X X X X X X 1
X X X 1 X X X X X X X X X X n
X X X X 0 X X X X X X X X X 1
X X X X 1 X X X X X X X X X 0
X X X X X 0 X X ·x X X X X X I

X X X X X 1 X X X X X X X X 0
X X X X X X 0 X X X X X X X 1
X X X X X X 1 X X X X X X X 0
X X X X X X X 0 X X X X X X 1
X X X X X X X 1 X X X X X X 0
X X X X X X X X 0 X X X X X 1
X x X X X X X X 1 X X X X X 0
X X X X X X X X X 0 X X X X 1
X X X X X X X X X 1 X X X X 0
X X X X X X X X X ·x 0 X X X 1
X X X X X X X X X X 1 X X X 0
X X X X X X X X X X X 0 X X 1
X X X X X X X X X X X 1 X X 0
X X X X X X X X X X X X 0)(1
X X X X X X X X X X X X 1)(0

X X X X X X X X X X X X X 0 1
X X X X X X X X X X)(X X 1 0

When used to Indicate an Input condltlon,X :z LOG.ICAL 1 OR LOGICAL 0

VDM 49A0097-000

VTII-1742 Figure V-34. Data Selector/Multiplexor (SN74150N)

V-28

vanan data machines ~-

CHAPTER V
LOGIC DESCRIPTIONS

N. DUAL-IN-LINE PACKAG~
'(TOPVIEW)

IW\lfl OUTI'Utl

TABLE OF ARITHMETIC TABLE OF LOGIC ~ ·r~ I I I I I I I I~ OPERATIONS FUNCTION:S

FUNCTION FUNCTION

SELECT
OUTPUT FUNCTION

SELECT
OUTPUT FUNCTION

S3 S2 S1 so LOW LEVELS ACTIVE HIGH LEVELS ACTIVE S3 S2 S1 so NEGATIVE LOGIC POSITIVE LOGIC

~,H,H,HaH•H•oHnH~tt-
ni~~~~

L L L L F =A minus 1 F=A L L L L F=Ji.. F•A lotic: see function tables
L L L H F = AB minus 1 F = A+B L L L H F = AB F~ A+B

L L H L F • Al'l minus 1 F = A+B L L H L F = A+B F • AB

L .L H H F =minus 1 (2's complement) F =minus 1 (2's complement) L L H H F =Logical 1 F =Logical 0

L H L L F • A plus (A+BJ F =A plus AS L H L L F = A+ii F =An
PIN DESIGNATIONS

L H L H F = AB plus (A+BJ F = (A+BJ plus·AB L H L H F=B F=ll

L H H L F ""' A minus B minus 1 F = A minus 8 minus 1 L H H L F=A(DB F•A(DB

L H H H F = A+B F =AS minus 1 L H H H F = A+B F = AB

H L L L F =A plus (A+BJ F =A plus AB H L L L F = AB F = A+B

DESIGNATION PIN NOS. FUNCTION

J.J, J.2, 111,AO 19, 21, 23, 2 WORD A INPUTS

1!3,li2, 81,80 18, 20, 22. 1 WORD B INPUTS

53, 52, 51, SO 3, 4, 5, 6
FUNCTION-SELECT

INPUTS
H L L H F • A plus B F =A plus B H L L H F=A(DB F =A(i)B

H L H L F =All plus (A+BJ F = (A+Bl plusAB H L H L F=B F•B

H L H H F = A+B F = AB minus 1 H L H H F = A+B F • AB

Cn 7 CARRY INPUT

M 8
MODE CONTROL

INPUT

H H L L F =A plus At F =A plus At H H L L F =Logical 0 F =Logical 1 F3, F2, F 1, FO 13,11,10, 9 FUNCTION OUTPUTS

H H L H F = AB plus A F = (A+BJ plus A H H L H F = AB F = A+B A•B 14 COMPARATOR OUTPUT

H H H L F =AS plus A F = (A+lil plus A H H H L F = AB F •.A+B

H H H H F=A F =A minus 1 H H H H F=A F•A
'I' 15

CARRY PROPAGATE

OUTPUT

Cn+4 16 CARRY OUTPUT

With mode control (M) and Cn low With mode control (M) high: Cn irrelevant

For positive logic: logical 1 =high voltage

logical 0 = low voltage

G 17
CARRY GENERATE

teach bit is shifted to the next more significant position.

Vee 24

GND 12

The SN74181 are high-speed arithmetic logic unit (ALU)/fu!1ction
generators which have a complexity of 75 equivalent gates on a
monolithic chip. This circuit performs 16 binary arithmetic
operations on two 4-bit words as shown in the function table. These
operations are selected by the four function-select lines (SO, S1, S2,
and S3) and include addition, subtraction, decrement, and straight
transfer. When performing arithmetic manipulations, the internal
carries must be enabled by applying a low-level voltage to the mode
control input (M). A full carry look-ahead scheme is made available
in the SN74181 for fast, simultaneous carry generation with a group
carry propagation (P) and carry generate (G) for the four bits in the
package. When used in conjunction with the SN74182 full carry
look-ahead circuits, high-speed arithmetic operations can be
performed. For example, the typical addition time for the SN74181
is 24 nanoseconds for four bits. When expanding to 16-bit addition
with the SN74182, only 13 nanoseconds further delay is added so
that the total addition time is 35 nanoseconds, or 2.2 nanoseconds
per bit. One SN74181 is needed for every 16 bits (four SN74181

circuits). VDM 49A0096-000

OUTPUT

SUPPLY VOLTAGE

GROUND

VTIJ-1743 Figure V-35. Arithmetic Logic Unit/Function Generator (SN74181N)

V-29

CHAPTER V
LOGIC DESCRIPTIONS

PIN DESIGNATIONS

DESIGNATION PIN NOS. FUNCTION

GO, G1, G2, G3 3, 1, 14, 5
ACTIVE-LOW

CARRY GENERA:rE INPUTS

'Po, P1, P2, P3 4, 2, 15,6
ACTIVE-LOW

CARRY PROPAGATE INPUTS

Cn 13 CARRY INPUT
-

Cn+x, Cn+y,
12, 11,9 CARRY OUTPUTS

VTI/-1744

Cn+z

Ci 10
ACTIVE-LOW

CARRY GENERATE OUTPUT

p 7
ACTIVE-LOW

CARRY PROPAGATE OUTPUT

Vee 16 SUPPLY VOLTAGE logic: see description

GND 8 GROUND

The SN74182 is a high-speed, look-ahead carry generator capable of
anticipating a carry across four binary adders or group of adders. It
is cascadable to perform full look-ahead across n-bit adders, with
only 13 nanoseconds delay for each level of look-ahead. Carry,
generate-carry, and propagate-carry functions are provided as
enumerated in the pin designation table above"

The SN74182, when used in conjunction with the SN74181
arithmetic logic unit (ALU), provides full high-speed carry look-ahead
capability for up to n-bit words. Each SN74182 generates the look­
ahead (anticipated carry) across a group of four ALUs and, in
addition, other carry look-ahead circuits may be employed to
anticipate carry across sections of four look-ahead pacl~ages up to
n-bits. Applications data for the SN74181 illustrates cascading of
SN74182 circuits to perform multi-level look-ahead.

Carry inputs and outputs of the SN74181 are in their true form and
the carry propagates (P) and carry generates (G) are in negated
form; therefore, the carry (input, outputs, generate, and propagate)
functions of the look-ahead circuit are implemented in the
compatible forms. Reinterpretations of carry functions at the
SN74181 are also applicable and compatible with the look-ahead
package. Logic equations are:

Cn+x ~Go+ PoCn
Cn+y "G1 + P1G0 + P1P0Cn
Cn+z = G2 + P2G1 + P2P1G0 + P2P1PoCn

G" = G3 + P3G2 + i,3P2G1 + P3P2P1Go

P = P3P2P1P0

VDM 49A0102-000

Figure V-36. Look-Ahead Carry Generator (SN74H32N)

V-30

Cn

0

0

0

0

1

1

1

1

NOTES:

TRUTH TABLE
(See Notes 1, 2, and 3)

-B A Cn+1 :E

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

0 1 0 1

1 0 0 1

1 1 0 0

:E

0

1

1

0

1

0

0

1

1 A • A*·A B'"' B*=if' where A*= ;::-:p;:- B* • e-:B

varian data machines ~

CHAPTER V
LOGIC DESCRIPTIONS

~OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

positive logic: See truth table

' C' C __ 1 2' _ 1 2
2. When A* or 8* are used as Inputs, A

1
and A

2
or 8

1
and 8

2
respectively must be connected to GND.

3. When A
1

and A
2

or 8
1

and 8
2

are used as Inputs, A*or 8* respectively must be open or used to perform, Oot .. QR)
logic.

14 13 12 11 10 9 8

5] '--""T-"--' '---r-.....1 &....-..,.--..J _,..-.~~ ...__-r-~ ... __ ,__

~--------------------------

Even-Bit Adder
2 3 4 5 6

--

VDM 49A0001-000

VTII-1745 Figure V-37. Gated Full Adder (SN7480N)

V-31

GND

7

(continued next page)

CHAPTER V
LOGIC DESCRIPTIONS

Odd-Bit Adder

VTIJ-1746

2 3 4 5 6 7

Operation: This gated full adder is used in the 620/i and 620/L
systems for both even and odd bits, differing only in the input pins
used.

Figure V-37. Gated Full Adder (SN7480N) (continued)

V-32

Truth Table

The truth table shown is the
high-speed paper tape boot­
strap for the 620/f (16 words
of 16 bits).

INPUTS

BINARY SELECT
Word Byte

E D c B

f---0
0 L L L L

1 L L L L

f-1
2 L L L H

3 L L L H

1-2
4 L L H L

5 L L H L

r-3
6 L L H H

7 L L H H

-4.
8 L H L L

9 L H L L

-5
10 L H L H

11 L H L H

12 L H H L
-6

13 L H H L

14 L H H H
-7

15 L H H H

16 H L L L
f---8

17 H L L L

18 H L L H
f---9

19 H L L H

20 H L H L
i-10

21 H L H L

22 H L H H
i-ll

23 H L H H

24 H H L L
1--12

25 H H L L

26 H H L H
r--13

H 27 H H L

28 H H H L
1-14

29 H H H L

30 H H H H
t-15

31 H H H H

ALL X X X X

H = high level, L = low level, X ~ irrelevant

ENABLE MSB

A G VS V7

L L 1 0

H L 1 0

L L 0 0

H L 0 0

L L 0 0

H L 0 0

L L 0 0

H L 0 0

L L 0 0

H L 0 0

L L 0 0

H L 1 0

L L 0 1
H L 0 0
L L 0 1---Q-
H L 0 0 -- ----
L L 0 0

--~--

H L 0 0

L L 0 0

H L 0 1

L L 0 0

H L 0 1

L L I 0

H L 0 I

L L 1 0

H L 0 1

L L 0 0

H L 1 0

L L 0 0·

H L 0 0
L L () 0

H L 1 0

X H H H

varian data machines ~

V6

0

0
--

0

0

0

1

0

I

0

0

0

0

0

__ _Q____
0

1-----

0

0

0

0

I

0

0

0

0

Q_l-
0

0

0

0

0

0

0

H

CHAPTER V
LOGIC DESCRIPTIONS

Access time = 40 ns

32 words of 8 bits
16 words of 16 bits

H logical 1
L logical 0

OUTPUTS
LSB

V5 V4 V3 V2 V1

0 0 . I
_ ____(} --- _!_ ---

I I I I I --1------- ---~·--

0 I 0 0 0
-----1-----1----

0 I 0 0 I
--t----

0 I 0 0 ~---- f-------

0 0 0 0 I

0 I 0 0 I

0 0 I I. 0

0 0 0 I 0

1 0 0 () --~
0 0 0 0 ()

- ·-·-·-

0 1 I 0 ()

1 1 0 1 ()

0 0 ~- 0 ()
-- 1-------~- f------ -

0 0 0 1 ()
--1------ ----1-----

0 1 0 0 0
- -----I---- - -·~ --

0 1 1 I 0
·-- -

0 0 0 () 0

0 1 0 I ()
-- ---

0 0 I 0 ()

0 I 0 I ()
-- '------- '--~--

0 10 0 () I
---- --- ----

0 0 0 0 I

I 1 1 1 I

0 0 0 1 I

I 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 I 0

0 0 0 0 0

0 0 0 0 0

0 1 I 0 0

H H H H H
--

VDM 49A0113-000 (as selected)
VTII-1747 Figure V-38. 256-Bit Read-Only Memory (SN7488N)

(continued next page)

V-33

CHAPTER V
LOGIC DESCRIPTIONS

VTI/-1748

The SN7488 circuit is a customer-programmed, 256-bit, read-only
memory organized as 32 words of eight bits each. This monolithic,
high-speed, transistor-transistor logic (TTL), 32-word memory array
is addressed in straight 5-bit binary with full on-chip decoding. An
overriding memory-enable input is provided which, when taken high,
will inhibit the 32 address gates and cause all eight outputs to
remain high. Data, as specified by the customer on the illustrated
truth table/order blank, are permanently programmed into the
monolithic structure for the 256 bit locations. This organization is
expandable to n-words of N-bit length.

The addressing of an eight-bit word is accomplished through the
buffered, binary select inputs which are decoded by the 32 five­
input address gates. When the memory-enable input is high, all 32
gate outputs are low, turning off the eight output buffers.

Data are programmed into the memory at the emitters of 32 eight­
emitter transistors. The programming process involves connecting
or not connecting each of the 256 emitters. If an emitter is
connected, a low-level voltage is read out of that bit location when
its decoding gate is addressed. If the emitter is not connected, a
high-level voltage is read when addressed. Those decoding-gate
output emitters which are used are connected to their n~spective bit
lines to drive the eight output buffers. Since only one decoding gate
is addressed at a time, only one of the 32 transistors can supply
current to the output buffers at a time.

N
DUAL-IN-LINE PACKAGE (TOP VIEWI

positive logic: See description

Figure V-38. 256-Bit Read-Only Memory (SN7488N) (continued)

V-34

varian data machines -

CHAPTER V
LOGIC DESCRIPTIONS

WA WB GW

-----440

-----430

-----120

-----410

()

4Qt-----

3Qt-----
2QI----
1QI----

()

RA RB GR

,-

'WRITE FUNCTION TABLE
(SEE NOTES A,B, AND C).

-· ·-

C12l CIJl C14l C4l C5l C11l

Gw w~ ~
WAITE INPUT READ II'II'UT

Pin (16) =Vee. Pin (8) = GND

_READ FUN-CTION TAB·'I!:.·E·
r-{SEE NOTES A AND.-DJ

IQ

20

JQ

4Q

..,
WRITE INPUTS WORD READ INPUTS OUTPUTS ff 1f

we WA Gw 0 l, 2 3 Re RA GR 10 20 3Q

L L L 0=0 On On On L L L WOB1 WOB2 WOBJ

L H L On 0•0 On On L H L W181 W182 W183

H L L On On 0=0 On H L L W281 W282 W283

H H L On On On OrO H H L W381 W382 W383

)()(H On On On On)(X H H H H

NOTES: A. H = hi.gh level, L =low level, X= irrelevant

VTIJ-1749

B. (Q = D) = The four selected internal flip-flop outputs will·

assume the states applied to the four external data inputs.

C. On = No change.

0. __ WOB L~ .Ihaiir.s1 bit of wq_r_c:f Q. __ etc,

VDM 49A0108-000
Organized 4 Words of 4 Bits

Figure V-39. High-Speed Buffer Memory/Register File (SN74170N)

•a
WOB4

W184

W284

W384

H

i

:

(continued next page)

V-35

CHAPTER V
LOGIC DESCRIPTIONS

The SN74170 MSI 16-bit TTL register files are organi:zed as 4 words
of 4 bits each and separate on-chip decoding is provided for
addressing the four word locations to either write-in or retrieve data.
This permits simultaneous writing into one location and reading
from another word location.

Four data inputs are available which are used to supply the 4-bit
word to be stored. Location of the word is determined by the write
address inputs A and B in conjunction with a write-enable signal.
Data applied at the inputs should be in its true form. That is, if a
high-level signal is desired from the output, a high-level is applied at
the data input for that particular bit location. The latch inputs are
arranged so the new data will be accepted only if both internal
address gate inputs are high. When this condition exists, data at the
D input are transferred to the latch output. When the write enable
input, GW, is high, the data inputs are inhibited and their states
can cause no change in the information stored in the internal
latches. When the read enable input, GR, is high, the data outputs
are inhibited and remain high.

The individual address lines permit direct acquisition of data stored
in any four of the latches. Four individual decoding gates are used
to complete the address for reading a word. When the read address
is made in conjunction with the read-enable signal, the word
appears at the four outputs.

This arrangement (data-entry addressing separate from data-read
addressing and individual sense lines) eliminates re~covery times,
permits simultaneous reading and writing, and is limited in speed
only by the write time (45 nanoseconds) and the read time (35
nanoseconds). The register file has a nondestructive readout in that
data are not lost when addressed.

V-36

varian data machines ~

CHAPTER V
LOGIC DESCRIPTIONS

This complex-function IC is a monolithic, quadruple, bistable latch
with complementary Q and Q outputs.

Information at the Q output follows that present at the data input
(D) as long as the Clock remains high. When the clock goes low, the
information that was present at the time of transition is retained
until the clock returns to high.

CLOCK 1-2 -_...~

INPUT 1

INPUT 2

CLOCK 3-4 CP Q 3Q

INPUT 3 D Q 3Q

CP Q 40

I

I

10 10 .20 ClOCK Vee
J-4

INPUT 4 D Q 4Q

TRUTH TABLE

(Each Latch)

tn tn+1

D Q

1 1

0 0

JO 40

positive logic: see truth table ·
SN5475 Logic

Q Q
(S N5475/SN 7 475)

CLOCK DATA

VDM 49AOOOO-OOO
VTI/-1706 Figure V-40. Quadruple Bistable Latch (SN7475N)

V-37

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table

As____. I)-c A 8 c
0 0 1
0 1 1
1 0 1

_: ~).....,____c
1 1 0

Propagation Delay lA iB 'IY 2A 28 2Y GND

To logical 0 typ. 20 ns
To logical 1 typ. 40 ns

positi\1'8 logic: v = AIJ

VDM 49A0008-000
VT/1-1719 Figure V-41. Quadruple 2-lnput NAND Gate (SN15U46N)

Truth Table TOP VIEW
I C I Y JC 38 JA JY

A A 8 c D
D 0 0 0 1

c 0 0 1 1
0 1 0 1

A
0 1 1 1

B
1 0 0 1

c 1 0 1 1
1 1 0 1 lA 18 2A 2B 2C 2Y GND

1 1 1 0
positivEt logic: Y = ABC

Propagation Delay

To logical 0 typ. 20 ns
To logical 1 typ. 40 ns

VDM 49A0009-000

VT/1-1707 Figure V-42. Triple 3-lnput NAND Gate (SN158Ei2N)

V-38

A
0
0
0
0
0
0
0
1
·etc.
1

VTIJ-1708

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table

B c
0 0
0 0
0 1
0 1
1 0
1 0
1 1
0 0
etc. etc.
1 1

D E
0 1
1 1
0 1
1 1
0 1
1 1
1 1
0 1
etc. etc.
1 0

A-----1
8------t
c-----1
D---J-~-

x----

1A 18 1X 1C 10 1Y GND

positive logic: v = Aaco

,___ __ E

Propagation Delay

To logical 0 typ. 22 ns
To logical 1 typ. 32 ns

VDM 49A0010-000
Open Collector

Figure V-43. Dual 4-lnput NAND Power Gate (SN6006N)

V-39

CHAPTER V
LOGIC DESCRIPTIONS

s
PT1

PT2

c

s

Q

PRESET
So NC NC

Q

Q
Co. NC Q rr, PT2 GND

positive logic: See asynchronous truth table

CLEAR

SYNCHRONOUS
TRUTH TABLES

tn tn+1
PULSE INPUT OUTPUT

ASYNCHRONOUS s c PT1 PT2 Q Q
1 X X 1 Qn Qn

X 1 1 X Qn Qn
DIRECT

OUTPUT INPUT

So Co Q Q 0 1 0 X 1 0
1 1 Qn ~n 0 X 0 1 1 0
0 1 0 1 1 0 x. 0 0 1

1 0 1 0 X 0 1 0 0 1

0 0 1 1 0 0 0 0 Indeterminate
--·-· --- . -

Note
1. X indicates that either a logical 1 or a logical 0 may be present.
2. Logical 1 is more positive than logical 0.
3. Logical states shown for pulse inputs PT 1 and PT2 indicate that

a transition to that state has just occurred.
4. Truth tables reflect individual conditions at the inpus. Either

direct input may be used to inhibit its corresponding pulse input.

VDM 49A0014-000
VTII-1709

Figure V-44. Pulse-Triggered Binary (SN158501N)

V-40

'

I

Q

VTII-1710

Qt------

Qa-----

Vee NC

CHAPTER V
LOGIC DESCRIPTIONS

0 X A B See
Note3

GND

-, -------c~ ~s --,
lt--.-----------•-+1-- Predetermined period of time

TRUTH TABLE

tn tn+ 1 r

INPUT INPUT OUTPUT

A 8 A B
1 1 1 1 INHIBIT

1 1 1 0 ONE-SHOT
1 1 0 1 ONE-SHOT

1 1 0 0 ONE-SHOT

0 1 X X INHIBIT

1 0 X X INHIBIT

0 0 X X INHIBIT

NOTES: a. tn = time before input transition.
b. t" + 1 = time after input transition.
c. X indicates that either a logical 1 or a logical 0 may bt present.

VDM 49A0018-000

Figure V -45. Mono stable Multivibrator (SN15851 N)

V-41

~wriM~~m~~n~----------------------~

CHAPTER V
LOGIC DESCRIPTIONS

Truth Table Cx

Pin 1 or pin 2 going from
a logical 1 to a logical 0

8 will cause a single-shot Q
3 ss

Pin 3 and pin 4 going to 4 6 Q a logical 1 will cause a Vee = pin 14
single-shot GRD -· pin 7

Pin 1 or 2 I
The single-shot can be re- Q _j ----is
triggered before time-out Pin 3 and 4 I
causes Q to stay high

Q s s

VTI/-1722 VDM 49A0524-000

Figure V-46. Retriggerable Monostable Multivibrator (Fairchild U6A960159X)

A
c

B

Propagation Delay
To logicai"O" typ. 12 ns
To logical"!" typ. 15 ns

Truth Table

A B c
0 0 0
0 1 0
1 0 0
1 1 1

Positive logic: 3 = 1 • 2

VDM 49A0104-000
VTI/-1711 Figure V-47. Quadruple 2-lnput AND Gate (MC3001P)

V-42

Vee

Propagation Delay
To logicai"O" typ. 12 ns
To logical"!" typ. 15 ns

Truth Table

A 8 c
0 0 1
0 1 0
1 0 0
}. 1 0

CHAPTER V
LOGIC DESCRIPTIONS

Positive logic: 3 = 1 + 2

VDM 49A0105-000
VTll-1710

Figure V-48. Quadruple 2-lnput NOR Gate (MC3002P)

Propagation Delay
From input Al-A2 to
output W typ 20 ns
same for strobe

TRUTH TABLE

INPUTS OUTPUT
A s w
H H H
L X L
X L L

J OR N
DUAL-IN-LINE PACKAGE (TOP VIEW)

OUTPUT
STROBE lW GND

INPUTS INPUTS

positive logic: W = AS
NC- No internal connection

VTll-1712 VDM 49A0043 (SN7525) VDM 49A0043 (SN7524)
Figure V-49 Dual Sense AMPS

V-43

CHAPTER V
LOGIC DESCRIPTIONS

Bin
lnp

ary
ut

VTJJ.J711

X
0
1
0
1
0
1
0
1

X
y

z

Enable
~)

y

0
0
1
1
0
0
1
1

1

~
~
n. ,_
n.
~
h

~
~
~

~ ,..,

z
0
0
0
0
1
1
1
1

Octal
Outputs

QO
0
1
1
1
1
1
1
1

high state

Truth Table

_Q1 Q2 Q3
1 1 1
0 1 1 .

1 0 1
1 1 0
1 1 1
1 1 1
1 1 1
1 1 1

Input loading fac:tor = 1
Output loading f;aetor = 11

Q4 Q5 Q6
1 1 1
1 1 1
1 1 1
1 1 1
0 1 1
1 0 1
1 1 0
1 1 1

0 = low state

VDM 49A0086-000

Figure V-50. Binary to Octal Converter (MC4006P)

V-44

Vee = pin 14
GND = pin 7

. Q7

1
1
1
1
1
1
1
0

10 QO

11 Q1

12 Q2

13 Q3

4 Q4

3 Q5

2 Q5

1 Q7

Propagation Delay
To logical 0
To logical 1

SN5442/SN7442
BCD

INPUT
D c B A

0 0 0 0

0 0 0 1

0 0 1 0
0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

VTll-1713

typ. 23 ns
typ. 26 ns

varian data machinevs ~l

CHAPTER
LOGIC DESCRIPTIONS

J OR N DUAL-IN-LINE
OR W FLAT PACKAGE (TOP VIEW)

INPUTS ,
B C

OUTPUTS

• o' fg a

positive logic: see ·truth tables

0 1

0 1

1 0

1 1
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

ALL TYPES
DECIMAL

OUTPUT

2 3 4 5 6

1 1 1 1 1

1 1 1 1 1

0 l 1 1 1
1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

1 1 J T 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

7 ·a .9

1 1 1

1 1 1

1 1 1
1 1 1

1 1 1

1 1 1

1 1 1

0 1 1

1 0 1

1 1 0
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

VDM 49A0544 and 49A0044

Figure V-51. 3-Line to 8-Line Deocoders

V-45

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-00a
	01-00b
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00a
	02-00b
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	03-00a
	03-00b
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-00a
	04-00b
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	05-00a
	05-00b
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	Blank Page

