VORTEX 1l

REFERENCE MANUAL

The statements in this publication are not intended to create any warranty, express or im-
plied. Equipment specifications and performance characteristics stated herein may be
changed at any time without notice. Address comments regarding this document to Varian
Data Machines, Publications Department, 2722 Michelson Drive, P.O. Box C-19504, Irvine,
California, 92713.

varian data machines / o varian subsidiary
2722 michelson drive / p.o. box ¢ 19504 / irvine / ulifornmis / 92713

+ 1978 printed in USA

98 A 9952 243

JUNE 1976

This manual explains the Varian Omnitask Real-Time
Executive (YORTEX) and its use, but it is not intended for
a beginning audience. Prerequisite to an understanding of
this manual is a knowledge of general programming
concepts, and preferably some Varian Data Machines 620
series or V70 series computer system is desirable.

NOTATION IN THIS MANUAL

tn the directive formats given in this manual.
- Boldface type indicates an obligatory parameter

« [ltalic type indicates an optional parameter.

+ Upper case type indicates that the parameter is to be
- entered exactly as written.

- Lower case type indicates a variable and shows where
the user is to enter a fegal value for that variable.

a(1),a(2),...,a(n).

Indicates a series of elements separated by commas
repeated and terminated with a period.

if at least one element is required the first element i1s given
in bold. The parentheses are only part of the format
description.
For example

a(,a(2), ..a(n).

where

each a(1) 1s a singfe alphabetic character

allows
ABCFGH
or
.Y X
or
V.
or
blank

as vahd in this position.

A number with a leading zero is octal, one without 2
leading zero is decimal, and a number in binary is
specifically indicated as such.

FOREWORD

CONTENTS

TABLE OF CONTENTS

SECTION 1
INTRODUCTION
1.1 SYSTEM REQUIREMENTS.... ..., O USSR UUUT 1-1
1.2 SYSTEM FLOW AND ORGANIZATIONoooiiiiiosiiii e 1-2
1.2.1 Computer MemOry..........cooo i e 1-2
1.2.2 Rotating Memory Device...............c......ocoiiiiiieiie e 1-4
1.2.3 Secondary STOTage................c.ooiiieiiiiiiiiiieiiie et 1-4
1.3 MEMORY MAP CONCEPT ... e, 1-4
1.4 BIBLIOGRAPHY ...t ettt e . 1-6
SECTION 2
REAL-TIME EXECUTIVE SERVICES

2.1 REAL-TIME EXECUTIVE MACROSoco oo e e 2-1
2.1.1 SCHED (Schedule) Macro............c....oooooeiiiiiiiiieeeee o, 2-2
2.1.2 SUSPND (Suspend) Macro..............c.cooooiviiiiii e 2-3
2.1.3 RESUME MaCrooooooiiiiiiiiii e e e 2-3
2.1.4 DELAY MaCro......ccociiriiiiit i EUTUR 2-3
2.1.5 LDELAY MACIO. ..o e U 2-4
2.1.6 PMSK (PIM Mask) Macro . ..o 2-5
2,17 TIME MACTO ..ottt e e e e e 2-5
2.1.8 OVLAY (Overlay) Macroo 2-5
2.1.9 ALOC (Allocate) Macro..............o e 2-6
2.1.10 DEALOC (Deailocate) Macro................... ..o 2-7
2.1.11 EXIT Macro........................ O OO U PRSPV e 2-7
2.1.12 ABORT MacCro.oocoiiiiiii o e 2-8
2.1.13 IOLINK (170 Linkage) MacCrO..........c..ocvoie oo e e 2-8
2.1.18 PASS MAaCro. ..ot e U 2-9
2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro.......ccccoooviiiiiiooioee 2-9
2.1.16 ALOCPG (Allocate Memory Pages) Macro....c...ccocoereeoeiis e oo 2-9
2.1.17 DEALPG (Deallocate Memory

Pages) Macro...........occoiii i e e 2-10
2.1.18 MAPIN (Map-In Specified Physical

Pages of Memory) Macro e 2-10

2.1.19 PAGNUM (ldentify Physical Page

Number) Macro
2.2 RTE SYSTEM FLOW
2.3 TASK LIMITATIONS AND DIFFERENCES
2.4 ABORT PROCEDURE........... oo
2.5 CHECKPOINTING OF TASKS ... e e
2.6 PAGE ALLOCATION SCHEME

SECTION 3
INPUT/OUTPUT CONTROL

3.1 LOGICAL UNITS ittt 31
3.2 RMD FILE STRUCTURE et 3-4
3.3 170 INTERRUPT S o it ettt b et ettt st ae s 3-5
3.4 SIMULTANEOUS PERIPHERAL OQUTPUT

OVERLAP (SPOOL) ... ittt s
3.4.1 SPOOL Operation.....
382 SPOOL FHES ...ttt sn e s b b s e
3.5 1/0-CONTROL MACROS .
351 OPEN Macro.............cccoceereeiins et ettt et ettt
352 CLOSE MACIO ..o ittt en s v sae s
3.5.3 READ Macro
3548 WRITE MABCIO... oo e e et erate e et et et e s nesesba e eeba e enes
3.5.5 REW (Rewind) Macro. ..ot i et
356 WEOF (Write End of File) Macro............ccocoviiviiinniiininn e 3-12
3.5.7 SREC (Skip ReCord) MABCIOccoooiiiiiiiiiiicetenree et e s e, 3-12
3.5.8 FUNC (Function) Macro.. l
3.5.9 STAT (Status) MACrO ..ot i sa s e s e s et ere e
3.5.10 DCB (Data Control Block) Macro..................... ettt e eaaa et e enans 3-14
3.5.11 FCB (File Control Biock) Macro............ccccooviiiieeiioaeeieeeee et eieeneens 3-14

SECTION 4
JOB-CONTROL PROCESSOR

4.1 ORGANIZATION Lo i et es st s iae s s e e s 4-1
42 JOB-CONTROL PROCESSOR DIRECTIVES .. .ot 4-1
421 /JOB Directive....ooeen IR TR PSP RPR P PRPPIROPRPON
4272 JENDIOB Directive s
423 /FINE (Finish) Directive.. e
424 /C (Comment) Directive
425 /MEM (Memory) DirectiVe...
4.2.6 /ASSIGN Directive.................
4.2.7 /SFILE (Skip Fiie) Directive
428 /SREC (Skip Record) Directive U TP RO TP POUOP PP PRPTURION 4-3
429 /WEOF (Write End of Fue) :

DHreCtIVE . e e 4-4
4.2.10 /REW (Rewind) DIreCHIVE ..ottt ee e e s e 4-4
4.2.11 /PFILE (Position File) Directive.....................ccoooveiiiiieesre et 4-4
4.2.12 /FORM DirOCHIVE. ..ot ettt e 4-4
4213 /KPMODE (Keypunch mode)

DIF@CHIVE ..o e e 4-5
4.2.14 /DASMR (DAS MR Assembler)

DIreCtive ...t e 4-5
4.2.15 /FORT (FORTRAN Compiler)

DIFBCYIVE ... e e 4-5
42.16 /CONC (System Concordance)

Directive 4-6

CONTENTS

CONTENTS

SECTION 4
JOB-CONTROL PROCESSOR (continueo)

4.2.17 /SEDIT (Source Editor) hd

Directive ... e 4-6
4.2.18 /FMAIN (File Maintenance) ..ot e,

Directive e e 4-6
4.219 /LMGEN (Load-Module Generatar).ccocociiimiiiiiinn,

Directivecooccoiii . 4-8
4.2.20 /IOUTIL (1/0 Utility) Directive 4-7
4221 /SMAIN (System Maintenance)

Directive e 4-7
4.2.22 /EXEC (Execute) DireClive e, 4-7
4.2.23 /LOAD Directive 4-8
4.2.24 /ALTLIB (Alternate

Library) Directive.................. 4-8
4.2.25 /DUMP Directive 4-8
4.2.26 /CFILE Directive] L 4-8
4.2.27 /DBGEN (Data Base Generator) Directive......... .. 4-8
4228 /PLOAD Directive 4-9
4229 /FMUTIL Directive. 4-9
4.2.30 /RPG (RPG Il Compiler) Directive } ... 4-9
4.2.31 /P (Pause) Directive.. 4-9
4.3 SAMPLE DECK SETUPS U 4-10

SECTION 5
LANGUAGE PROCESSORS

51 DAS MR Assembler
5.1.1 TITLE Directive..
5.1.2 VORTEX Macros

5.1.3 Assembly Listing Format . .
5.2 CONCORDANCE PROGRAM
5.2.1 INPUL . e et e

522 0ulput ... e

5.3 FORTRAN IV COMPILER. e e,

5.3.1 FORTRAN IV Enhancements 5-13
53.2 Execution-Time 170 Units.
53.3 Runtime 1/O EXCOPUONS 5-22
5.3.4 Reentrant Runtime i/0
5.4 RPG IV COMPILER
5.4.1 Introduction

55 RPG It COMPILER.
551 Introduction

5.5.3 Compiler and Runtime Execution..... 5723

- SECTION 6
LOAD-MODULE GENERATOR (continueq)
6-1
6-3
6-3
6-3
6.2.1 TIDB (Task-ldentification Block)
Directive ..ol . 6-4
6.2.2 1D (Load) Directive 6-4
6.2.3 OV (Overlay) DIir@Ctive ..ot 6-4
6.2.4 LIB (Library) Directive 6-5
6.25 END DIFeCtiVe... ... e 6-5
626 CLD Directive.. 6-5
6.2.7 MEM (Memory) Directive.... 6-6
6.3 SAMPLE DECKS FOR LMGEN
OPERATIONS ... e et 6-6
SECTION 7
DEBUGGING AIDS
7.1 DEBUGGING PROGRAM ..o 7-1
7.2 SNAPSHOT DUMP PROGRAM ... 7-3
SECTION 8
SOURCE EDITOR -
8.1 ORGANIZATION L. e e 8-1
8.2 SOURCE-EDITOR DIRECTIVES. e, 8-2
8.2.1 AS (Assign togical Units) Directive.......... ... RSP SRRRT 8-2
82.2 AD (Add Records) Directive [SR UTRURUORNU RO e 8-3
8.23 SA (Add String) Directive............ e, 823
8.24 REPL (Replace Records) Directive 8-4
825 SR (Replace String) Directive. 8-4
826 DE (Delete Records) Directive 8-4
8.2.7 SD (Delete String) Directive 8-5
828 MO (Move Records) Directive o i . 845
8.2.9 FC (Copy Fite) Directive....... 8-5
8.2.10 SE (Sequence Records) Directive. B
8.2.11 LI (List Records) Directive............... .. . 8-6
8.2.12 GA (Gang-Load All Records) Directive....................ccoo o 8-6
8.2.13 WE (Write End of File)
Directive ... FE TSNP UUPPPUPRPRRN 8-7
8.2.14 REWI! (Rewind) Directive 8-7
8.2.15 CO (Compare Inputs) Directive...... 8-7
83 EXAMPLE OF EDITING A FILE 8-7

CONTENTS

CONTENTS

SECTION 9
FILE MAINTENANCE (continived)
9.1 ORGANIZATION ..o oo e e 9-1
9.1.1 Partition Specification Table R SO RO OO PUPROO 9-1
9.1.2 File-Name Directory.................oooi i e 9-1
9.1.3 Relocatable Object Modulesccoiiiiiiiii oo 9-2
9.1.4 Output Listings.................c..oo O PO PO TSP ST U TR 9-2
9.2 FILE-MAINTENANCE DIRECTIVES .. e, 9-2
9.2.1 CREATE Dir€CtiVeocooooiioe i e 9-3
9.2.2 DELETE Directive....................... e 9-3
9.2.3 RENAME Directive.... . 9-4
9.2.4 ENTER DIreCtive........coovoiiio e e 9-4
9.2.5 LIST Dir€Ctivec..ooviviiiis oot 9-4
9.2.6 INIT (Initialize) Directive... ..., 9-4
9.2.7 INPUT DIr@CtIVE. ..o o o oo 9-5
9.2.8 ADD Directive 9-5

9.3 VORTEX FOREGROUND FILE MAINTENANCE (V$FGFM) 9-5

SECTION 10
INPUT/OUTPUT UTILITY PROGRAM
PO T ORGANIZATION Lo e e e 10-1
102 170 UTILTY DIRECTIVES ... e e, 10-1
10.2.1 COPYF (Copy File) Directiveo 10-1
102.2 COPYR (Copy Record) Directiveccocvoveiioiiie e e 10-2

10.2.3 SFILE (Skip File) Directive...........
10.2.4 SREC (Skip Record) Directive
10.2.5 DUMP (Format and Dump)

Directive ... U 10-3
10.2.6 PRNTF (Print File) Directive.....................oooooiii 10-4
10.2.7 WEOF (Write End of File)

Directive e 10-4
10.2.8 REW (Rewind) Diwrective.... 10-4
10.2.9 PFILE (Position File)

Directive ... e 10-4
10.2.10 CFILE (Close File) Directive e .. 10-5
10.2.11 PACKB (Pack Binary) Directive e —— e 10-5°
10.3 MULTI VOLUME TAPE HANDLING (VSRSW). L ... 10-5

SECTION 11
VSORT (SORT/MERGE)

11.2.1
11.2.2
11.2.3
11.2.4 WORK] WORKZ2,WORK3, Dir€CtiVES.............ocoovoovvieoeoeeeeeeo et eveeeeneeeaeens 11-2
1126 SORTKEY DiIrective.........ccocoooiii it 11-2
11.2.6 INEXIT Directive

Vil

SECTION 11
VSORT (SORT/MERGE) (continusq)

11.2.7 OUTEXIT Directive..........oooiiiiiiiiiiiiii it e 11-3
11.2.8 ENDSORT Dir@CliVettt ee s seen et e ae s 11-3
11,3 USER EXIT S i i veeb e e sttt et enenee 11-3
11.3.1 Calling SEQUEMCE ...ttt nn s s 11-3
11.3.2 Implementation..............ocooii i 11-4
114 VSORT MESSAGES ..o ettt et 11-4

SECTION 12

DATAPLOT 1l
121 SYSTEM FLOW OUTLINE .. . e e 12-1
12.2 HARDWARE REQUIREMENTS ... 12-1
12.3 GENERAL DESCRIPTION. ..ottt e 12-1
12.3.1 DATAPLOT |l Organization ... e 12-1
12.32 Systern Considerationscc.oiiiiiiiieiiuieiireee e e e e 12-3
12.3.3 VORTEX Considerationsc.ccoociiiiiniiiiiiiii e 12-3
12.4 DATAPLOT il SUBROUTINES 12-4
124.1 DPINIT (System File Initiahization)cccoooiooirere e 12-5
12.4.2 PLOTS (Work Butffer Initialization).. 12-5
12.4.3 PLOT (Generate Plot)...........cocooiiiiiii i et ae e e 12-5
12.4.4 SCALE (Generates Scale FActor)ccc.coomiimiiiinic i 12-6
12.4.5 AXIS (Generate Segmental AXiS).............cccccooiriieiriimniiiin e 12-7

12.46 SYMBOL (Generate Symbols)
12.47 NUMBER (Generate Number)
12.4.8 LINE (Generate Graph Line)
12.49 MLTPLE (Muitipte Plot)........................... SRRSO UUUPPUURTSSURTRROY:. e
12.4.10 FACTOR (Alter Plot Size)
12.411 WHERE (Locate Coordinates)
12.4.12 APPEND (Append Fil@)............cooo oot
12.4.13 TOPFRM (Top-of-FOrm)......o et e
12.4.18 CUT (Cut PBPEI) oot e eee e een b e ce e ereeenan e naa e
12.4.15 ENDCUT (Eject and Cut Paper)....
124,16 DPSORT (Sort Plot Fil@).................ccoiivi i
12.4.17 DPPLOT (Output FI@)............oooiiii e
12.4.18 DPCLOS (Close Plot File)
12.4.19 ORIG -- Offsetting the Origin

Entry Point. oo e
12.420 VECT .- Vector Entry Point
12.421 Special SYMBOL Subroutine.................ccooooviii oo s 12-15
125 PLOT FILE DATA FORMAT ... e
125 1 VeCHOIS. oo e s
1252 Characlers.l
1253 End-of Plot INdicator ... e
126 EXAMPLE OF APPLICATION OF DATAPLOT ..o . 12-16
12.6.1 Program to Generate Sine Wave.....................ociiiiiiiiiiiiiiiins 12-16
126.2 Program to Generate Communication Networkccocccoeiiiiee 12-16

CONTENTS

CONTENTS

SECTION 12
DATAPLOT 1l (continued)
12.7 QPERATING PROCEDURES AND ERROR MESSAGES... 1217
12.7.1 VORTEX Operating Procedures 12-17
12.7.2 Unsorted Plot Files. e e e s e 12-17
12.7.3 Presorted Plot FileS.o e e

12.7.4 VORTEX Special Procedures

SECTION 13
SUPPORT LIBRARY
13.1 CALLING SEQUENCE.........ocoocooii e SO 13-1
13.2 NUMBER TYPES AND FORMATS 13-1
13.3 SUBROUTINE DESCRIPTIONS. ..o TR 13-2
13.4 DECIMAL SUBROUTINE...........oiii i e 13-11
SECTION 14
REAL-TIME PROGRAMMING

14.1 INTERRUPTS L s 14-1
14.1.1 External INterrupts ... e 14-1
14.1.2 Internal INterrupts............ooiiiiiii e 14-3
14.1.3 interrupt-Processing Task

INSEAllation ... e 14-4
14.1.4 Interrupt State............o i e 14-4
142 SCHEDULING ...ttt e 14-4
14.2.1 System FlOW.....ooo e e 14-4
14.2.2 PrIOFIHI@S ..o e e 14-5
14.2.3 Timing Considerations (Approximate)...........c.coovriiiiioiiiiii 14-22
14.3 REENTRANT SUBROUTINES ..ot 14-23
14.4 CODING AN /0 DRIVER ... e, . 14-24
14,41 170 TabIeS. ..o
14.4.2 1/0 Driver System Functionsccoooeveeeiiiiiei e .

1443 Adding an 170 Driver to the System File
14.44 Enabling and Disabling PIM

INTeITUPES ...
1445 Directly Connected interrupt Handler
1446 VORTEX Use of BICs and BTCs...........ccoocoere v
1447 VORTEX Il and VORTEX Compatibility
14.4.8 Resident Tasks

SECTION 15
SYSTEM GENERATION

15.1 ORGANIZATION . . et e e 15-1
15.2 SYSTEM-GENERATION LIBRARY ISP UURTURUUTPRN 15-2
15.3 KEY-IN LOADER . e 15-5
154 SGEN 170 INTERROGATION..............oces e 15-6
15.4.1 DIR (Directive-Input Unit)

DG IV oo o e e e 15-7
15.4.2 LIB (Library-Input Unit) Directives 158-7
15.4.3 ALT (Library-Modification

Input Unit) Directive ... s 15-7
15.4.4 SYS (System-Generation

Output Unit) Directive ... 15-7
1545 LIS Directive ... e 15-8
155 SGEN Directive Processing............. RV P UV TUPUOUTORIUUUPRPRURUON 15-8
1551 MRY (Memory) Directive...............ooiiiiin i 15-8
1552 EQP (Equipment) Directive........ 15-9
15.5.3 PRT (Partition) DIFECHVE ...cooooviv oo oooecs oo oereveeeeeveesee e eeeseeess oo . 16-12
15.5.4 ASN (Assign) Directive ...
15.5.5 ADD (SGL Addition) Directive....
1556 REP (5GL Repiacement) Directive ... e
15.5.7 DEL (SGL Deletion) Dir@Ctive ...t
1558 LAD (Library Addition) Directive............cco i
155.9 LRE (Library Replacement) Directive .
15.5.10 LDE (Library Deletion) Directive.................c.ccooiiiiiiiniiiiiie
15.5.11 PIM (Priority Interrupt) Directive....
155.12 CLK (Clock) Directive e
15.5.13 TSK (Foreground Task) Directive. 15-17
15.5.14 DEF (Define External) Directive...... s 18217
15.5.15 EDR (End Redefinition)

Diwrective ... e e e e 15217
15.5.16 Required Directives 15-18
15.6 BUILDING THE VORTEX NUCLEUS. e 15-18
15.6.1 SLM (Start Load Module)

DIFECHIVE .. e 15-19
156.2 TODF (Build Task Identification Block)

Directive . [U UP S PO P PP UP PO 15-19
1563 END Directive.. SO TRV PP USROS 15-20
1564 MEM Directive I . o . .. 1520
15.6.5 Memory Parity Considerations . T L 15-21
15.7 BUILDING THE SYSTEM LIBRARIES AND RESIDENT

TASK CONFIGURATION . 15-21

15.7.1 SLM (Start LMP) DIrective ... 15-22
157.2 TID (TIDB Specification).

Directive ... 15-22
15.7.3 OVL (Overlay) Directive e 15-22
15.7.4 ESB (End Segment) Directive ... TR U UUORPP 15- 23
15.7.5 END (End Library) Directive 156-23

158 SYSTEM INITIALIZATION AND

OUTPUT LISTINGS O OO PO 15-23

159 SYSTEM GENERATION EXAMPLES e e 15-24

Xt

CONTENTS

CONTENTS

SECTION 18 .
OPERATION OF THE VORTEX SYSTEM (continued)

18.1.3 Line Printer ... e 18-1
18.1.4 Statos-31 (Model 70-6602 and -6603)..................... 18-1
18.1.5 33/35 ASR Teletype ..o 18-1
18.1.6 High-Speed Paper-TApe Reader 184
181.7 Magnetic-Tape Unit.... e 1841
18.1.8 Magnetic:-Drum and Fixed-Head

Disc Units....... .. FE TSROSO PSP UP PP PSRRI 18-1
18.1.9 Moving-Head Disc Units... 18-1
18.1.10 Moving-Head Disc Units ... 18-2
18.1.11 Moving-Head Disc Units. 18-2

18.1.12 Moving-Head Disc Units .
18.2 SYSTEM BOOTSTRAP LOADER

18.2.1 Automatic Bootstrap Loader...... ...
18.2.2 Control Panel lLoading
18.3 DISC PACK HANDLINGo
18.3.1 PRT (Partition) Directive
18.3.2 FRM (Format Rotating Memory)
Directive e e ... 1B-4
18.3.3 INL (Initiahize) Directive 1B-4
18.34 EXIT Directive..........c. v TR e 185
184 70-7500 (620-35) DISC PACK
FORMATTING PROGRAM RTUPR T ... 18-5
18.5 70-7510 (620-34) DISC PACK
FORMATTING PROGRAM. i i 18-5
18.6 70.7603/7613 DISC PACK FORMATTING PROGRAM 186
18.7 WRITABLE CONTROL STORE (WCS) ..o 187
SECTION 19
PROCESS INPUT/OUTPUT
19.1 INTRODUCTION....... OO PO PR e 199
19.2 PROCESS OUTPUT.... BRSOV VPP OT R 1941
19.2.1 HAFAWArE. ... oo s e 19-1

19.2.2 SGEN Operations.............. ... o c 190
19.2.3 Output Calls.................. o192

19.3 PROCESS INPUT TR ... 183
19.3.1 Hardware. s e ... 19.3
19.3.2 SGEN Operations................. ... e 1943
19.33 Input Calls.. ... [EE TR e ... 19-4
19.3.4 Low-Level Multiplexor Gain Control...................... .. e 1955
19.4 ISA FORTRAN PROCESS CONTROL

SUBROUTINES. e i 1996
19.4.1 input/Output Calls 198

19.4.2 Bit String Operations
19.5 ERRORS. ... e
19.6 EXTENSIONS

SECTION 16
SYSTEM MAINTENANCE

161 ORGANIZATION L. e 16-1
16.1 1 Control Records TSR [REPTRRO T e e 1822
16.1.2 Object Modules....................... I U PP PO POU ORI PRUON 16-3
16.1.3 System-Generation Library.............. .. 16-3
16.2 SYSTEM-MAINTENANCE DIRECTIVES ..o 16-3
16.2.1 IN (Input Logical Unit) Directive...............ccooiiiiiiii 16-3
16.2.2 OUT (Output Logical Unit) Directiveccooiiiiiii 16-4
16.2.3 ALT (Alternate Logical Unit)

DUFECHIVE ..o e e e e e
16.2.4 ADD DIrective ...t e e
16.2.5 REP (Replace) Directive.......... ...
16.2.6 DEL (Delete) Directive
16.2.7 LIST Directive e .
1628 END DIrective...... oo oo o e
16.3 SYSTEM-MAINTENANCE OPERATION ..ot 16-7
16.4 PROGRAMMING EXAMPLES. ... T OO OO PO PO PO R PP PUUPUPTUP e 16-7

SECTION 17
OPERATOR COMMUNICATION

171 DEFINITIONS ... e 171
17.2 OPERATOR KEY-IN REQUESTS e 171
17.2.1 ;SCHED (Schedule Foreground Task)

Key-1n ReQUEST............oiii i 17-2
17 2.2 ;TSCHED (Time-Schedule Foreground

Task) Key-In Request.. IR RO U ORISR 17-2
17.2.3 ATTACH Key-In ReQUESE e 17-3
17.2.4 ;RESUME Key-in Request i 17-3
17.2.5 TIME Key-In Request.... . . RO e e 17-3
1726 DATE Key-In Request 173
17.2.7 ABORT Key-In Request i 17-4
17.2.8 ;TSTAT (Task Status) Key-In Request ... 17-4

17.2.9 ;ASSIGN Key-in Request
17.2.10 ,DEVDN (Device Down) Key-in

ROQUEST ... e 17-5
17.2.11 DEVUP (Device Up) Key in
REQUEST o e 17-5
17.212 1OLIST (List /0 Key-In
ROQUEBST ... e 17-5
SECTION 18

OPERATION OF THE VORTEX SYSTEM

18.1 DEVICE INITIALIZATION
18.1.1 Card Reader
18.1.2 Card Punch

Xt

CONTENTS

CONTENTS

SECTION 20
WRITABLE CONTROL STORE AND FLOATING-POINT
PROCESSOR

20.1 MICROPROGRAMMING SOFTWARE e 20-1
20.1.1 Microprogram Assembler ... R 20-1
20.1.2 Microprogram Simulator ...t e 20-1
20.1.3 Microprogram ULty ..o 20-1
20.1.4 WCS Reload Task, WCSRLD... . 20-2
20.2 STANDARD FIRMWARE ... e .. 20-2
20.2.1 Fixed-Point Arithmetic

FIrmware ... e . 2052
20.2.2 Floating-Point Arithmetic

FIFMWAIE .o e e e

20.2.3 Data Transfer Firmware..
20.2.4 FORTRAN-Oriented Firmware
20.2.5 Byte Manipulation Firmware ..
20.2.6 Stack Firmware... ...
20.2.7 Firmware Macros ...

20.2.8 Commercial Firmware . .

SECTION 21 FILE MAINTENANCE UTILITY

211 ORGANIZATION . . o2k
21.2 PARTITION SPECIFICATION TABLE ... BT 211
213 OUTPUT LISTINGS... . RSP T 21
214 FILE MAINTENANCE UTILITY DIRECTIVES .o . . 21
215 D DIRECTIVE 212
2151 Dump File 212

215 Dump Partition . .. o IO213
2153 Dump Fde-Name Directory

216 L DIRECTIVE . . L B U 216
2161 Lload File . O . . 216
Z1.6.2 Load Partition . . ST RSP . 216
2163 Load Directory TR . . 217
21.7 R DIRECTIVE PSR UP PSR . L 217
21.8 & DIRECTIVE. B TR UU RO - L2 7
21.9 S DIRECTIVF .. . R URUPRER . 217
2110 P DIRECTIVE . e U . ..218
2111 U DIRECTIVE.. USRI, . 218
2112 EXIT DIRECTIVE 218

SECTION 22 COMPRESSION/EDIT SYSTEM (COMSY)

22.1 ORGANIZATION Lo 221
22.1.1 COMSY Compression................... 2240
22.1.2 Sequential Files SRR UO OO . .. 222
22.1.3 Random Files.. U UNURROTU RSN U L2202
22.1.4 Common Files ... O 222
22.1.5 Sequence and Edition Numbers T 2272

222 INPUT OUTPUT i o e 22-2

22.3 COMSY DIRECTIVES 222
22.3 1 ASSIGN Directive 22-3
22.32 UNIT Directive. ..., 224
22.3.3 SET Directive 224
22 3.4 GANG Directive.. . 22-5
22.3.5 DECK Directive . . 22-6
22.3.6 COMDECK Directive o . . 22-6
22.37 COPY Directive e R 22-7
22.3.8 RANDOM Directive . . . 22-7
22.3.9 APPEND Directive . - y . o 22-7
22310 EDIT Directive . 22-8
22311 LIST Directive S . 22-8
22.3.12 CHECK Directive 22-8
22 313 INSERT (ADD) Directive . 22-8
22 314 REPLACE (DELETE) Directive o . 22-9
22 315 COMMQON Directive 22-9
22316 COMSY Directive . . 22-10
22 317 FIiLE Directive 22-10
22 318 END Directive 22-10
204 COMSY LOAD MODULE GENERATION. o22:1
225 COMSY EXECUTION.. .. U YRR 221
226 ERROR PROCESSING ... L2
APPENDIX A
ERROR MESSAGES

Al A-1
A2 A-1
A3 A-4
A4 . A-7
A5 LANGUAGE PROCESSORS ... e A-8
A5 1 DAS MR Assembler ... A-8
A.5.2 FORTRAN IV Compiler and Runtime

Compiler................... ... IR T PO PNt A-9
A5.3 RPG iV Compiler and Runtime

COMPIIBY . e

A6 LOAD-MODULE GENERATOR
A.7 DEBUGGING PROGRAM
AB SOURCE EDITOR.. ... it sisre s s
A9 FILE MAINTEANCE
A.l0
All
A12
A.13
Al4

CONTENTS

CONTENTS

APPENDIX A
ERROR MESSAGES (continued)

A15 SYSTEM GENERATION ..o e e .

A16 SYSTEM MAINTENANCE ... i e
A.17 OPERATOR COMMUNICATION
A.18 RMD ANALYSIS AND INITIALIZATION .
A.19 PROCESS INPUT/OUTPUT ...t e U

A.20 WRITABLE CONTROL STORE ..ot e
A.20.1 Microprogram Assembler ...
A.20.2 Microprogram Simulator............ .

A 20.3 Microprogram UMY ... i

A21 VTAM NETWORK CONTROL MODULE..............o

A.22 FILE MAINTENANCE UTILITY (FMUTIL) ERRORS e AT
A23 COMSY ERROR MESSAGES................ooiii, . A-2B
A24 ERROR CODES.............oecoooo. e e o A28
A24.1 Errors Related to Directives A29
A.24 7 Errors Related to Programs e . A-29
A.24 3 Errors Related to Memory Size o . A-30

A.244 GErrors Related to Hardware A-30

APPENDIX B
I/0 DEVICE RELATIONSHIPS

APPENDIX C
DATA FORMATS
C.1 PAPER TAPE RPN o C1
C.1.1 Binary Mode.............................. [T IO PUE PP ... C4
C.1.2 Alphanumeric Mode... C-1
C.1.3 Unformatted Mode...................... e C-1
C.1.4 Special Characters CA
C2 CARDS ... B U UPUU SRR RPN Cc-2
C21 Binary Mode e G2
C.2.2 Alphanumeric Mode C-2
C.23 Unformatted Mode....... C-4
C.2.4 Special Character................ C-4
C.3 MAGNETIC TAPE................ e e e e e C-4

C.3.1 Seven-Track

C.41 AlphanumericMode............................... ... [RTERTRTTR C-4
C.4.2 Unformatted Mode...................... ... R PR UUUPPURRTPUPRPN e C-4

APPENDIX D
STANDARD CHARACTER CODES

APPENDIX E
ASCil CHARACTER CODES

APPENDIX F
- VORTEX HARDWARE CONFIGURATIONS

APPENDIX G
OBJECT MODULE FORMAT
61 RECORD STRUCTURE . ..ot oo s e G-1
G2 PROGRAM IDENTIFICATION BLOCK ...oooooccosooecoes e G-1
G.3 DATA FIELD FORMATS ..\ o oooooeoooieoesoeseoeiene oo G-1
G4 LOADER CODES... et e . G-t
G5 EXAMPLE .. oo oo e . G3
G.5.1 Source Module.. . .. e e e e e e s ~: G-3
G.5.2 Object Module......................... e e PESUTRUOTRPOUPO. 7 G-3
G.5.3 Core Image......... U e b b e e s G-5
G6 END LOAD RECORD P S P - G-6
INDEX

Xvit

CONTENTS

CONTENTS

LIST OF ILLUSTRATIONS

Figure 1-1. VORTEX System Flow 1.2
Figure 1-2. VORTEX Nucleus. Map 0 1-3
Figure 1-3. VORTEX RMD Storage Map 1-4
Figure 2-1. Matrix of Nucleus Module Access Mode 2-13
Figure 2-2. VSPAGE, Page Allocation Table....... 2-14
Figure 3-1. Spooling Subsystem FIOW ... 3-6
Figure 5-1. VORTEX Macro Definitions for DAS MR 5-2
Figure 5-2. Sample Assembly Listing . 5-10
Figure 5-3. Sample Concordance Listing 5-13
Figure 5-4. FORTRAN 1/0 Execution Sequences 5-14
Figure 6-1. Load-Module Overiay Structure (virtual memory).. 6-2
Figure 12-1. DATAPLOT i Graphics System Data Flow................ ... L1241
Figure 12-2. DATAPLOT 1l Organizationcccoornininiiiioiinnee e i 12-2
Figure 12-3. Minimum and Maximum Plot Values 12-4
Figure 12-4. +x Axis and +y Axis Relative to Paper Direction ... e e 12414
Figure 12.5. Vector-Data Format........... ... PR o 12458

Figure 12-6. Character Data Format.................. e . 12415
Figure 12-7. Character Orientation Data Format e 12215
Figure 12-8. End-of-Plot Indicator....................coooiiiiiiiii 12-16
Figure 129. Sine Wave Plot Generated by DATAPLOT 12-16

Figure 12-10. Communication Network Piot Generated by DATAPLOT H ... 12-17
Figure 14-1. Interrupt Line Handlers

Figure 14.2. VORTEX Memory Map................

Figure 14-3. VORTEX Priority Structure

Figure 14-4 TIDB Description ...

Figure 14-5. Driver interface....... e

Figure 15-1. SGEN Data Flow................. ... TR 15-1
Figure 15-2. System-Generation Library ..., 15-3
Figure 15-3. VORTEX NUCIGUS................ oo e 15-3
Figure 15-4. Load-Module Library ... 15-4
Figure 15-5. Load Module Package for Module Without Overlays.... 15-17
Figure 15-6. Load Module Package for Module With Overlays............. . 15419
Figure 15-7. VORTEX Nucleus Load Map. e C e 15-21
Figure 15-8. Library Processor Load Map... e 0 1521
Figure 15-9. RMD Partition Listing TR 15-21
Figure 15-10. Resident-Task Load Map...............cccccooieiei U e 1521
Figure 15-11. Physical Memory AlOCation ... e 15-21
Figure 16-1. SMAIN Block Diagram ... 16-1
Figure 16-2. SMAIN LIST Directive Listing....................... . [P 16-6
Figure 20-1. Base and Limit of Stack 20-3
Figure 20-2. Stack Control Block........... ... e . 204
Figure 20-3. Stack Multiply 20-4
Figure 20-4. Stack Divide ... e 20-4
Figure 20-5. Stack Push.. e . 20-5
Figure 20-6. Stack POP 20-5
Figure 20-7. Stack Double Push 20-5
Figure 20-8. Stack Double POp.......................... e T 20-5
Figure 22-1. COMSY Data Flow 211
Figure C-1. Paper Tape Binary Record Format............. USRI e C-1
Figure C-2. Paper Tape Alphanumeric Record Format. C-2
Figure C-3. Card Binary Record Format e . -3

Figure C-4. Card Alphanumeric Records Format (IBM 026)..... C-3

X VI

LIST OF TABLES

Table 1-1. Executive Mode States 1-6
Tabie 2-1. RTE Service Request Macros ... 2-1
Table 3-1. VORTEX Logical-Unit Assignments ..., 3-1
Table 3-2. Valid Logical-Unit Assignments..................c 3-3
Table 3-3. FCB Words Under 1/0 Macro Control ... 3-15
Table 5-1. Directives Recognized by the DAS MR Assembler 5-1
Table 5-2. RTE Macros Available Through FORTRAN IV 513
Table 7-1. DEBUG Directives 7-1
Table 13-1. DAS Coded Subroutines 13-2
Table 13-2. OM Library Subroutines 13-6
Table 13-3. FORTRAN Coded Subro 13-8
Table 14-1. Memory Protection Interrupt Address 14-3
Table 14-2. TIDB Description

Table 14-3. Map of Lowest Memory Sector

Table 15-1. SGEN KeyIn Loaders

Table 15-2. Model Codes for VORTEX Peripherals .

Table 15-3. Preset Logical-Unit Assignments................

Table 15-4. Permissible Logical-Unit Assignments

Table 15-5. TiDB Status-Word Bits....... PP UE S RPN PO

Tabie 17-1. Physical 1/0 DeviCes...............oiiiiiiiii e

Table 17-2. Task Status (TIDB Words 1 and 2) ... 17-4
Table 18-1. Key-in Loader Programs.......... ... e 18-2
Table 20-1. Firmware Availability 202
Table 22-1. Default VORTEX e 22-2
Table G-1. Record Control Word Format G-1

CONTENTS

SECTION 1
INTRODUCTION

The Varian Omnitask Real Time EXecutive (VORTEX M) is
a modular software operating system for controlling,
scheduling, and monitoring tasks in real time muitipro-
gramming environment. VORTEX |l supports memory map
operation to a maximum of 256K of central memory.
VORTEX Il also provides for background operations such as
compilation, assembly, debugging, or execution of tasks not
associated with the real-time functions of the system. In
addition, VORTEX 1} supports user tasks using the V75
extended instruction set. Thus, the basic features of
VORTEX Il comprise’’

. Memory map management

. Real-time 1/0 processing

. Provision for directly connected interrupts

. Interrupt processing

. Multiprogramming of real-time and background
i tasks .

. Overlapping output to peripherals with spooh;f;g

. Priority task scheduling (clock tume or

interrupt)
. Load and go (automatic)
. (;entralized and device-independen l/;O:,sEtem

using logical un:t and file namigs #

. Operator communications

. Batch-processing job-control language

. Program overlays

. Background programming aids. FORTRAN and

RPG IV compilers, DAS MR assembler, load-module

generator, library updating, debugging. and
source editor.

. Use of background area when required by
foreground tasks

. Disc/drum directories and references
. System generator
. Individual task protection
NOTE: Throughout this manual, all references to

VORTEX imply VORTEX II.

1.1 SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian V70 series computers with 32K memory

b. 33/35 ASR Teletype or compatible CRT on a priority
interrupt module

c. Priority Interrupt Module (PIM)

d. Rotating memory device (RMD) on a PIM with either a
buffer interlace controller (BIC) or block transfer
controller (BTC)

e. One of the foliowing on a PiM:
(1) Cardreader withaBIC
(2) Paper-tape system or a paper-tape reader
(3) Magnetic-tape umit with a BIC

f. Memory map hardware

“
The system supports and is enhanced by the following
optional hardware items:

a. Additional main mefnory (uptoa totallit. 256K) L
b. Additional rotating memory de"\":ﬁces

c. Automatic bootstrap loader with VORTEX | (device
dependent) system boot

d. Card reader, if one is not included in the minimum
system witg Bl(i{—and PIM

e. Card punc"ﬁ with BIC and PIM *
f. Line printer with BIC and PIM

g. Paper-tape punch. if one s not included In the
minimum system

h. Process inputafd output

1 Data communications multipiexor

. Electrostatic printer/plotter

k. Writable control store . .
. Floating-point processor

m. V75 extended instruction set.

Aill BICs, BTCs, and DCMs must have meémory mapping
capability.

The rotating-memory device (RMD) serves as storage for
the VORTEX operating system components, enabling real-
time operations and a multiprogramming environment for
solving real-time and nonreal-time problems. Real-time
processing is implemented by hardware interrupt controls
and software task scheduling. Tasks are scheduled for

INTRODUCTION

execution by operator requests, other tasks, device inter-
rupts, or the completion of time intervals.

Background processing (nonreal-time) operations, such as
FORTRAN compilations or DAS MR assemblies, are under
control of the job-control processor (section 4) itself a
VORTEX background task. These background processing
operations are performed simultaneously with the real-time
foreground tasks until execution of the former is sus
pended. either by an interrupt or a scheduled task.

1.2 SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job-control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real-time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

During execution, any foreground task can use any real
time executive service (section 2.1).

Figure 1-1 is an overview of the flow in the VORTEX
operating system. Section numbers refer to further discus-
sion of this manual.

1.2.1 Computer Memory

VORTEX requires a minimum of 32K words of main
memory and supports up to a maximum of 256K words

The system generation (SGEN, section 15) programs
execute in a non-memory map environment and conse
quently utilize only the first physical 32K words of main

[VORTEX OPERATING SYSTEM
! -
FOREGROUND , BACKGROUND
t
i H
USER REAL-TIME f LOAD- FORTRAN
NOM- ggiaLciflCAﬂON EXECUTIVE X MODULE - W
RESIDENT INTERRUPT SERVICES : GENERATOR [* COMPILER
TASKS (SICTION 2) i SECTION 6) (SECTION 5.3)
t
T 1
i i
L | ' |
i H i
L____’ . 4,) ! I
USER T ‘ Jos- x
- REAL-TIME | CONTROL USER'S !
?;SSIESENY o EXECUTIVE [¢ T T RO CESSOR % TASKS !
T - - : (SECTION 4) '
4 ! I
I
1
!
!
SYSTEM OPERATOR | DAS MR
NON- /o COMMUNI- i e} ASSEMBLER
RESIDENT CONTROL CATION , UTILITY (SECTION 5. 1)
TASKS (SECTION 3) PACKAGE X (SECTION 10}
(SECTION 17) i
1
' RPG IV
' *| COMPFILER
! (SECTION 5.4)
i
t
USER) VDM \ DE-
SUPPLIED Vo » suppLiED | BUGGING o] LIBRARY
DEVICES DRIVERS DEVICES i (SECTION 7) UP-DATING
X (SECTIONS
‘ 7,8, &9
i
1 j
VTIL-1314

Figure 1-1. VORTEX System Flow

PhbK

V§THC
32K
(a)

v$BtC

(b)

v$GFCB

v$B8TBM

()

VEBVN

V$CROR

(e)

02000

0i000

enti NI e NI N

W

Mapped 1in with all
foreground tasks
referencing blank
Common

toreground Blank Common
(Full Access)

Mapped in with all
background tasks
referencing global
FCBs

Possible unassigned space 1o keep
globat FCBs on the same page {80
words maximum}

Global FCBs

JCP/OPCOM Bufters
DST/LUN/PST COTAD
Controller Tables

TiDBs

User Data (except reentrant
subroutines called with ALQOC)

Mapped in with programs
reterencing ClL labels

Bottom of table region
V$EXEC Real- Time b xecutive
V$i0C Input/Output Countrot
Drivers

Reentrant Subroutines
Reentrant Subroutine Stack

Accessibie only 1o Map O

Bottom of tixed nucleus

Resident Task Directory

Unallocated Memory
Dynamically allocated for
TIDB, 170 requests. map
images. etc

Bottom of nucleus (may
be redefined by EDRR
SGEN directive, which
does not change V$BVN)

Page 1 reserved for OPCOM

Page (0 System Constants

Mapped into all tasks

NOTE- TSK detined resident tasks are loaded upward from
physical address 02000 in the first physical 32K of memory
by SGEN. However, the resident tasks are not mapped in
Map O but in a user map (1:15) as the resident tasks are
scheduled. The physical page numbers defining the
resident tasks are contained in the resident directory
(V$CRDR).

NOTE: VTFC, VBFC, etc. are system pointers in page O
described in section 14, table 14-1.

NOTE: V$TFC, top of nucleus, is specified on SGEN MRY
directive (described in section 15.5.1).

Figure 1-2. VORTEX Nucleus, Map 0

INTRODUCTION

INTRODUCTION

memory. All resident tasks and data reside in the first 32K
of memory. Except for those resident tasks defined by the
SGEN TSK directive, all other resident tasks and data are
considered as part of the VORTEX nucleus. The nucleus 1s
assigned to be in the executive mode, map 0, virtual
memory (see section 1.3).

Figure 12 iliystrates the map O nucleus memory layout.
The 32K words memory space is grouped into severat
modules

a Foreground Blank Common Module: This module 15
mapped with all foreground tasks referencing blank
common.

b Globe! FCB Module This module is mapped with all
background tasks reterencing the global FCBs. it is
read only access mode for priority O tasks and read/
~rite for priority 1 tasks. This module is of approxi
mately 9 words

¢ Nucleus Table Module: This module is mapped with ail
tasks with an external name defined in the CL library.
Read only access mode for priority 0 tasks and read/
write access for all other tasks. The bottom of this
module is defined in V$BTBM and is determined by
SGEN during the nucleus module building. Control
recard CTL.21 specifies the end of the nucleus table
modute. All user data and programs which are to be
included in this module must precede the CTL,21
control record. The approximate size of this module is
1600 words (RMD. line printer, card reader, Teletype.
CRTY

d Nucleus Programs Module: This module consists of
VSEXEC, V$IOC. 1/C drivers, reentrant subroutines,
stacks, and any user programs inserted between the
CTL.21 ard CTL,PARTOD03 SGEN tasks. The bottom
of this mndule is defined by VSCRDR. The approxi
mate size of this module is 6800 words (RMD, line
printer, card reader, Teletype, CRT drivers).

e. Map 0 Allocable Memory Space The virtual memory
space between page two and V$CRDR is available for
dynamic allocation. 170 request block, TIDB block.
and map image memory space are allocated in this
region. Page one Is reserved for the OPCOM task. The
actual physical memory assigned to the virtual
memory space is memory management performed by
the RTE component

f Page O: Always reserved for system constants, interrupt
traps, and background literal pool (a description is
found in section 14, table 14.3).

The unused physical memory in the firs. 32K and !
physical memory above 32K are designated as allocable
memory. This i1s the physical memory which 1s dynamically
allocated for map 0 memory space as described in e, and
which is allocated to a user mode task's logical memory.

1.2.2 Rotating Memory Device

At least one RMD (disc or drum) is required for storage of
VORTEX operating systerm components. The RMD 1s divided
into a fixed number of vanable-length areas called
partitions. These are defined at system-generation time
(section 15).

The tollowing reside on the RMD (figure 1 3)

4. System nutializer, loader and VORTEX nucleus n
absolute format

b. Checkpoint tile

C. Gd file

ad User hibrary

e. Transient files

f. Relocatable object-maodule library

g. Relocatable load-module hibrary

1.2.3 Secondary Storage

The VORTEX operating system supports ary secondary
storage devices that have been specified at system
generation time

System Initializer and
Loader

VORTEX Nucleus in

Absoiute Format

- —
.

CL Directory

Relocatable Object-Module
Library

Relocatable Load Module
Libraries

Checkpoint File

e —-

GO Fite

User Library

Transient Files

Figure 1-3. VORTEX RMD Storage Map
1.3 MEMORY MAP CONCEPT

VORTEX logical (virtuall memory 1s detined to be 32K
words. This is the maximum memory space that any single
task can address, even though the physical memory space
may be as great as 256K words. Where in actual or physical

memory that task resides is transparent to the task and s
a memory management function performed by the RTE
component of VORTEX.

Each logical memory space (32K) is organized into fixed-
size blocks of 512 words (01000 in octal), called logical
(virtual) pages. Hence, there are 64 logical pages within a
32K logical memory space. The size of the logical memory
available to a task is reduced by:

a. Page 0: The first page of 512 words is reserved for
system constants, interrupt trap locations, background
literal pool and communication link for IOC and
VS$EXEC calls. This page is mapped in all logical
memories.

b. Nucleus Modules: A task referencing an external name
which is defined in the CL library will have the
corresponding VORTEX nucleus module mapped in
logical memory for a task. (Section 1.2.1 describes in
greater detail the nucleus modules.) These are:

(1) Foreground blank common module -
{2y Giobal FCB module. and/or
(3) Nucleus table modute

¢c. Any FORTRAN program performing input/output
operation will have the nucleus table module mapped
into its virtual memory. FORTRAN runtime package
requires access to the device specification table
(DST), logical unit tables (LUT), and controllers tables
for linking information. The maximum available
logical memory space available 1s Y$BTBM (bottom of
nucleus table module, location 0331) minus 01000
(program start logical address). V$BTBM is defined
on the SGEN iisting.

d. For background priornity 1 tasks, page O is set to read/
write access mode to permit tasks, e.g., JCP, to modity
low memory pointers V$JCFG, VSCRDM, etc. Hence,
the method of transferring control from user mode to
executive mode for 1/0 and RTE cails is to map in the
pages containing the entry to V$I10C (1/0 calls).
VS$EXEC (RTE calls), and V$IOST (STAT calls).
Theretore a priority 1 task making an 1/0 call (or RTE
call. or STAT call), executes a JSR,X to location 0404,
Because page 0 15 set to read/write access mode, the
instruction at 0404 (JMP V$10C) is executed. The first
instruction in V$|0C (likewise, VSEXEC and V$IOST)
Is a disable PiM (EXC 0444) instruction. Execution of
an 1/0 type instruction in the user map generates a
memory-protection interrupt, which forces the system
to the executive mode and hence the means of
transterring controi to the map 0 tasks. Therefore, the
available memory space for a background task is
from location 01000 to the page where V$10C (which
is lower in memory than V$EXEC) resides. V$iOC
address is defined on the SGEN output listing.

Al user mode tasks are loaded from logical address 01000.
A task not referencing external names defined in the CL
library has all of the logical memory available to it except
page O.

Physical memory is also organized into fixed-size blocks of
512 words, referred to as physical pages. A system with

INTRODUCTION

physical memory size of 256K words contains 512 physicat
pages (64 physical pages for each 32K words of memory).

Aliocation of logical memory to physical memory is
accomplished by pages. A task of 010000 (4096 in decimal)
words will reside in eight physical pages of physical
memory. These physical pages need not be contiguous.
However, that fact is transparent to the task. During
execution, the task assumes that its eight pages are
contiguous. The linking of physical pages is performed by
the memory map hardware. All user program object
modules are assembled relative to location 0. Load modules
are generated by SGEN and LMGEN to be relative to logical
address 01000.

A map defines the 64 logical pages within a logical memory.
Each logical page can be set to one of four possible access
modes:

Unassigned The logicai addresses within that
virtual page are unassigned.
Read/Write All accesses including write operation

permitted to/from the logical page.

Read Operand Only operand fetches permitted from
Only the logical page.

Read Only Only instruction or operand fetches
permitted within the logical page.

Each logical page, except for the pages with unassigned
status, must be assigned to a physical page. The RTE task
sets the status for each page, allocates a physical page to
each logical page, and loads the corresponding mapping
registers.

The memory map hardware provides a 4-bit map register
for the 16 possible maps. This 4-bit map register is set by
the RTE component to select the proper map (0-15). Map 0
is defined as the executive mode. All other map selections
(1-15) are designated as being in the user mode. However,
when the system is forced to the executive mode. state 0,
by an 1/0, real-time, or memory map interrupt, the map
register will continue to contain the currently executing
user map selection number.

Executive Mode

All instructions except HALT are permitted in this mode.
Any interrupt will force the hardware to enter this mode in
executive mode state 0. The interrupt will not disabie the
map. VORTEX Real-Time Executive (RTE), Input/Qutput
Control (10C), 1/0 drivers, and other resident tasks and
constants are mapped into the executive mode. The
instructions and data which comprise the VORTEX nucleus
are mapped in the executive mode. Any task executing |/0
instructions (EXC, OAR, SEN, etc.) must execute in map 0

A HALT instruction executed in the executive mode with the
map enabled wili generate an interrupt. The HALT s
permitted only in the disabled map state.

INTRODUCTION

There are four executive modes states as shown in table

1-1. A map O task will normally execute in state 0. In state
0, alt instruction fetches and operand fetches and stores
are performed in map O logical memory. If a map 0 task
must fetch and store data to or from a user map (1-15), the
map O task must switch to the proper executive mode state
(1, 2 or 3), then upon completion of the fetch or store,
restore the executive mode to state 0. A convenient way of
switching executive or mode states is to output one of the
control words established by the RTE component in the
page 0 system data region, locations 0334-0337: V$STO,
V$ST1, V$ST2, and V$ST3 for executive mode states O
through 3 respectively. An example of switching to
executive mode 3 is OME 046, V$ST3, where 046 is the
memory-map device address

User Mode

All operands and instructions are mapped in accordance
with the map register contents. Error conditions will cause
interrupts, which force the system to the executive mode.
User mode is entered from the executive mode under
control of RTE.

Priviteged instructions (e.g., EXC, HALT) are not permitted
in this mode. An interrupt is generated if a task attempts
to execute a privileged instruction. Foreground tasks may
execute disable and/or enable PIMS and RT clock
instructions (EXC 0444, EXC 0244, EXC 0147, EXC 0747).
Section 14.4.4 describes this subject further.

Section 2.2, RTE System Flow, describes the user mode and
executive mode tasks.

Table 1-1. Executive Mode States

Instruction Operand
State Fetch Fetch Store
0 MAP 0 MAP 0 MAP 0
1 MAP O MAP 0 *MAP N
2 MAP 0 MAP N MAP 0
3 MAP 0 MAP N MAP N

+MAP O refers to the executive task map.
*MAP N refers to the task map specified by
the map register. (n = 1.15)

1.4 BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the V70/620
computers:

Document
Title Number
V72 Handbook 98 A 9906 20x
V73 Handbook 98 A 9906 01x
V70 Series Memory Map Manual 98 A 9906 10x
620-100 Computer Handbook 98 A 9905 00x

FORTRAN |V Reference Manual
RPG IV User's Manual

VTAM Reference Manual
HASP/RJE Operator's Manual
Microprogramming Guide
VORTEX Installation Manual

98 A 9902 03x
98 A 9947 03x
98 A 9952 22x
98 A 9952 21x
98 A 9952 21x
98 A 9906 07x

Where x is a revision level number subject to change.

Maintenance information is in the following VORTEX and
VORTEX I Software Performance Specifications:

Document
Title Number
VORTEX 1l System Overview 89A0259
VORTEX 1l External 89A0273
Specification
VORTEX 11 Internal 89A0289
Specification
VORTEX External 89A0203
VORTEX Internal Volume 1 89A0231
VORTEX Internal Volume 2 89A0232
VORTEX internal Volume 3 89A0233
VORTEX Internal Volume 4 89A0304
DAS MR Assembler Internal 89A0225
FORTRAN IV Compiler Internai 89A0214
FORTRAN 1V Library Internal 89A0211
RPG IV Runtime/lLoader 89A0234
Internal
RPG IV Compiler Internal 89A0184
FORTRAN Accelerator and 89A0285
VORTEX Spooler Overview/
External

SECTION 2
REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes, upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.
If the task uses the V75 registers 3 through 7, the contents
of R3 through R7 are also saved.

There are 32 priority levels in the VORTEX system,
numbered O through 31. Levels 0 and 1 are for background
tasks and fevels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. Lower numbers
assign lower priority. If more than one task has the same
priority level, they are selected for execution on a first-in,
first-out basis. Background and foreground RTE service
requests are similar.

Table 2-1. RTE Service Request Macros

Mnemonic Description Level 0 FORTRAN
SCHED Schedule a task Yes Yes
SUSPND Suspend a task Yes Yes
RESUME Resume a task No Yes
DELAY Delay a task No Yes
LDELAY Delay and reload from No Yes
specified logical unit
PMSK Store PIM mask register No Yes
TIME Obtain time of day Yes Yes
OVLAY Load and/or execute an Yes Yes

overlay segment

ALOC Allocate a reentrant No Yes
stack
DEALOC Deallocate the current No No

reentrant stack

EXIT Exit from a task (upon Yes Yes
completion)
ABORT Abort a task No Yes

IOLINK Link background 1/0 Yes No
PASS Pass map O data Yes Yes
TBEVNT Set/fetch task’'s TBEVNT Yes No

ALOCPG Allocate memory page(s) Yes No
(Priority 0 in map 0)

DEALPG Deallocate memory Yes No
page(s) (Priority O in
map 0)

MAPIN Map in specified memory No No
page(s)

PAGNUM Identify physical page Yes No
number

Whenever a task is aborted, all currently active 1/0
requests are completed. Pending 1/O requests are de-
queued. Only then is the aborted task released.

There are 18 RTE service request macros. Certain of them
are iliegal in unprotected background (level 0) tasks. Table
2-1 lists the RTE macros, indicates whether they are legal
in level O tasks, and indicates whether there is a FORTRAN
library subroutine (section 13) provided.

Note: A task name comprises one to six alphanumeric

characters (including $), left-justified and filled out with
bianks. Embedded blanks are not permitted.

2.1 REAL-TIME EXECUTIVE MACROS
This section describes the RTE macros given in tabie 2-1.
The general form of an RTE macro is
label mnemonic,p(1),p(2),....p(n)
where

label permits access to the macro from
eisewhere in the program

mnemenic is one of those given in table 2-1

each p(n) is a parameter defined under the
descriptions of the individual macros

The omission of an optional parameter is indicated by
retention of the normal number of commas unless the
omission occurs at the end of the parameter string Thus,
in the macro (section 2.1.1)

21

REAL-TIME EXECUTIVE SERVICES

SCHED 8,,106,, ' TA', 'SK','A’

the first double comma indicates a default value for the
wait option and the second double comma indicates
omission of a protection code.

Error messages applicable to RTE macros are given in
Appendix A.2.

2.1.1 SCHED (Schedule) Macro

This macra schedules the specified task to execute on its
designated priority level. The scheduling task can pass two
values in the A and B registers to the scheduted task (a
task using the V75 registers 3 through 7 can also pass
parameters in R3 through R7). A TIDB is created for each
scheduled task, (see section 14 for a description of TiDB).
The macro has the general form.

label SCHED level wait lun key,'xx’'yy’ ‘2z’
where

level is the value from 0 (lowest) to 31
(highest) of the priority level of the
scheduted task

wait is O (default value) if the scheduling and
scheduled task obtain CPU time based
on priority levels and 1/0 activity, or 1 if
the scheduling task is suspended untit
completion of the scheduled task

lun is the name or number of the logical unit
whose library contains the scheduled
task, zero to schedule a resident
foreground task, or 106 to schedule a
nonresident task from the foreground
library. If a zero is specified and the task
is not found in the resident directory, the
RTE component (SAL) will automatically
search for the task on the foreground
library (FL)

key 15 the protection code, if any, required to
address lun (0306 or 'F' to schedule a
nonresident task from the foreground
library). The foreground library logical
unit and its protection key are specified
by the user at systemn-generation time

xxyyzz is the name of the scheduled task in six
ASCIl characters, coded in pairs
between single quotation marks and
separated by commas; e.g.. the task
named BIGJOB is coded 'BI','GJ','OB’
and the task named ZAP is coded
AP

The FORTRAN calling sequence for this macro 1s
CALL SCHED(level,wait lib key,name)

where lib is the number of the library logical unit
containing the task, and name is the three-word Hollerith

2.2

array containing the name of the scheduled task. The other
parameters have the definitions given above.

Al tasks are activated at their entry-point !ocations, with
the A and B registers (and the V75 registers if available)
containing the value to be passed. The scheduled task
executes when it becomes the active task with the highest
priority.

The specified logical unit (which can be a background
hbrary, a foreground library, or any user-defined library on
an RMD) must be defined in the schedule-calting sequence.

Expansion: The task name is ioaded two characters per
word. The wait option flag is bit 12 of word 2 (w).

8it 15 14 13 312 11 10 9 8 7 6 5 4 3 2 10
Word 0 JSRX
Word 1 C406
T T
Word 2) wlo o o000y tevel
Az._(hl,_,l_ i
Word 3 oy l lun
Word & Task name
o s e s —
Word 5 lask name
Word 6 Task name i

Examples: Schedule the foreground library task named
TSKONE on priority level 5. Use the no-wait option so that
scheduled and scheduling tasks obtain Central-Processor-
Unit (CPU) time based or priority levels and 1/0 activity.

FL BQU 106 (LUN assigned to
foreground library FL)
KEY EQU 0306 (Protection code

for FL)

SCHED S,O,FL,KBY,'TS','KO','NE'
. (Contro! return to
. highest priority)

Note: the KEY line can be coded with the equivalent ASCH
character enclosed in single quotation marks.

KEY EQU "F'
The same request in FORTRAN s

DIMENSION N1,N2(3)

DATA N1/2H F/

DATA N2(1),N2(2),N2(3)/2HTS, 2HKO, 2HNE/
CALL SCHEDI(5,0,106,N1,N2)

or

CALL SCHED(5,0,106,2H F,6HTSKONE)

2.1.2 SUSPND (Suspend) Macro

This macro suspends the execution of the task initiating
the macro. The task can be resumed only by an external
interrupt, a simulated interrupt caused by 10C or /0
completion events for the task, or a RESUME (section
2.1.3) macro. The macro has the general form

iable SUSPND susp

where susp is O if the task is to be resumed by RESUME or
1 if the task is to be resumed by external interrupt, or 2 1f
the task is to be resumed by external interrupt or by 10C or
170 complétion events via a simulated interrupt (i.e.,
TBEVNT word in task's TIDB is set to 1).

The FORTRAN calling sequence for this macro is

CALL SUSPND(susp)
Expansion: The susp flag is bit O of word 2 (s).

B 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Word O iSRX
Word 1

0406
Word 2 ~$—‘2;\7f0 000 1J>§1
Example: Suspend a task from execution. Provide for

resumption of the task by interrupt, which reactivates the
task at the location following SUSPND

SUSPND 1
The same request in FORTRAN is

CALL SUSPND (1)

2.1.3 RESUME Macro

This macrc resumes a task suspended by the SUSPND
macro. The RESUME macro has the general form

iabel RESUME ‘xx','yy’ 'z’
where xxyyzz is the name of the task being resumed,
coded as in the SCHED macro (section 2.1.1).

The RTE searches for the named task and activates it when
found. The task will execute when it becomes the task with
the highest active priority. If the priority of the specified
task is higher than that of the task making the request, the
specified task executes before the requesting task and
immediately if it has the highest priority.

The FORTRAN calling sequence for this macro is
CALL RESUME(name)

where name is the three-word Hollerith array containing the
name of the specified task

REAL-TIME EXECUTIVE SERVICES

Expansion: The task name is loaded two characters per
word.

it 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O
Word 0 JSRX
Word 1 2406
;;Z,

Word 2 \< o 6 01 00 el
o | =
Word 3 Task name

B
Word 4 Task name
Word 5 Task name

Example: Resume (reactivate) the task TSKTWQ, which
will execute when it becomes the task with the highest
active priority.

RESUME 'TS','KT', 'WO'
(Control return)

Control returns to the requesting task when it becomes the
task with the highest active priority. Control returns to the
location following RESUME.
The same request in FORTRAN is
DIMENSION N1(3)
DATA N1{(1),N1(2),N1(3)/2HTS, 2HKT, 2HWO/
CALL RESUME(N1)

or

CALL RESUME(6HTSKTWO)

2.1.4 DELAY Macro

This macro suspends the requesting task for the specified
time, which is given in two increments. The first increment
is the number of 5-millisecond periods, and the second, the
number of minutes. The macro has the genera! form

label DELAY milli,min, type
where
milli is the number of 5-millisecond
increments delay
min is the number of minutes delay
type is 0 (default value when the task is to be

suspended for the specified delay,
remain in memory, and automaticaily
resume following the DELAY macro

1 when the task is to exit from tne
system, relinquishing memory, and

2-3

REAL-TIME EXECUTIVE SERVICES

after the specified delay, be auto
matically rescheduled and reloaded
in a elapsed time mode, or

2 when the task 1s to resume auto
matically after the specitied delay
or upon receipt of an external
interrupt whichever comes first,
and automatically resume following
the DELAY macro; or

3 when the task is to resume auto-
matically after the specified delay,

or upon receipt of an external inter-
rupt, or completion of an 1/0 request
initiated previously, whichever comes

first, and automatically resume following

the DELAY macro.

I0C resumes execution of the task by
setting the TBEVNT word in the task’s
TIDB to 1.

The FORTRAN calling sequence for this macro is
CALL DELAY(mili,min, type)

where the integer-mode parameters have the definitions
given above.

The maximum value for either milli or min is 32767. Any
such combination given the correct sum is a valid delay
definition; e.g., for a 90-second delay, the values could be
6000 and 1, respectively, or 18000 and 0. After the
specified delay, the task becomes active. When it becomes
the highest-priority active task, it executes.

Note that the resolution of the clock is a user-specified
variable having increments of 5 miliseconds. The time
interval given in a DELAY macro must be equal to or
greater than the resolution of the clock. The delay interval
is stored in minute increments and real-time clock
resolution increments.

Expansion: The type flag is bits 0 and 1 of word 2.

! Bit 15 14 313 12 11 10 9 8 7 & 5 4 3 2 1 0
T T e T
Word | o 0406
Word 2 — 5 o 00 xl><’ type
Word 3 it T
Word & min

Examples: Assuming a 5-millisecond clock increment, delay
the execution of a task for 90 seconds. At the end of this
time, the task becomes active. When it becomes the
highest-priority task, it executes.

DELAY 6000,1

Deiay the execution of a task for 90 seconds or untit receipt
of an external interrupt, whichever comes first, at which

2-4

time the task becomes active. Such a technique can test
devices that expect interrupts within the delay period.

DELAY 18000,0,2
Delay the execution of a task for 90 seconds, or until
receipt of an external interrupt, or the completion of a
previously initiated /0 request, whichever comes first.

DELAY 18000,0,3

2.1.5 LDELAY Macro

This macro is a type 1 DELAY macro with additional
parameters to specify the logical unit from which the task is
to be reloaded after the delay. The macro has the general
form:

label LDELAY milli,min,un key
where

milli is the number of 5 millisecond
increments delay

min is the number of minutes delay

fun 1s the number of the logical unit from
which the task is to be loaded after the
delay (DELAY tape 1 reloads from FL
library)

key _Is the protection code for the logical unit

The FORTRAN calling sequence for this macro is
CALL LDELAY (milli, min, lun key)

where the integer mode paraméters have the definitions
given above.

Time is the same as specified for DELAY.

Expansion:

rnn 15 14 i3 12 13 10 9 8 7 6 5 4 3 2 1 0
b e e+ e e e e e e e

Word 0 J S RX

Word 1 0406

Word 2

Word 3

Word 4 min

T
Word 5 hey | lun
L

Example: Assuming a 5-millisecond clock increment, delay
the execution of a task for 30 seconds. At the end of this
time, the task becomes active. When it becomes the
highest priority task, it 1s loaded from logical unit 128
which has protection key A, and executed.

LDELAY 6000,1,128,030"

2.1.6 PMSK (PIM Mask) Macro

Thus macro redefines the PIM (priority interrupt module)
interrupt structure, ie, enables and/or disables PIM
interrupts. The macro has the general form

iabel PMSK pim,mask, opt

where

pim is the number (1 through 8) of the PIM
being modified

mask indicates the changes to the mask, with
the bits indicating the interrupt lines
that are either to be enabled or disabled,
depending on the value of opt, and with
the other ines unchanged

opt is O (default value) if the set bits \n mask
indicate newly enabled interrupt lines,
or 1 if the set bits in mask indicate newly

disabled interrupt lines

The FORTRAN calling sequence for this macro 1s
CALL PMSK(pim,mask,opt)

where the integer-mode parameters have the definitions
given above.

The eight bits of the mask correspond to the eight priority
interrupt lines, with bit O corresponding to the highest-
priority line.

Varsd

VORTEX operates with alf PIM lines epabiad ypless altered
by a PMSK macro. Normal interrupt-processing allows all

interrupts and does one of the following: a) posts (in the
TIDB) the interrupt occurrence for later action if it is
associated with a lower-priority task, or b) immediately
suspends the interrupted task and schedules a new task if
the interrupt is associated with a higher-priority task.
PMSK provides control over this procedure.

Note: VORTEX (through system generation) initializes all
undefined PIM locations to nuliify spurious interrupts that
may have been inadvertently enabled through the PMSK
macro.

Expansion: The opt flag is bit O of word 2 (o).

Bit 15 14 13 12 11 10 9 8 7 6 3 4 3 2 1 0
Word 0 JSRX
Word 1 0406

[.. e 4
Word 2 JO [V ﬂ] Iu
Word 3 pm J mask

Examples: Enable interrupt lines 3, 4, and 5 on PIM 2.
Leave all other interrupt lines in the present states.

PMSK 2,070

REAL-TIME EXECUTIVE SERVICES

The same request in FORTRAN is
CALL PMsk(2,56,0)
Disabie the same lines.

PMSK 2,070,1

2.1.7 TIME Macro

This macro loads the current time of day in the A and B
registers with the B register containing the minute, and the
A register the 5-millisecond, increments. The macro has the
form

label - TIME
The FORTRAN calling sequence for this macro is

CALL TIME(min,milli)

where min is the integer minutes to the 24 hour total. and
milli is the seconds in 5-millisecond integer increments.

Expansion:

}‘&(15 14 3 12 11 10 9 87 6 5 4 3 2 1 !’)1
N —
Word 0 _T ;s RX :

! booe— - -

| wore 1 | 406 i

| -

1 |

+
=
|
i
|

Example: Load the current time of day in the A (b
millisecond increments) and B (1-minute increments)
registers.

TIME
(Return with time in A
and B registers)

2.1.8 OVLAY (Overlay) Macro

This macro loads and/or executes overlays within an
overlay-structured task. it has the general form

label OVLAY type,'xx''yy’, ‘2z’

where

1s O (default value) for load and
execute, or 1 for load and return
following the request. If only

load is specified, the load address
is returned in the X register.

type

is the name of the overlay segment.
coded as in the SCHED macro (section
2.1.D

XXyyzz

2-5

REAL-TIME EXECUTIVE SERVICES

The FORTRAN calling sequence for this macro is
CALL OVLAY(type reload,name)

where type is a constant or name whose value has the
definition given above, reload is a constant or name with
the value zero to load or non-zero to load only if not
currently loaded, and name is a three-word Hollerith array
containing the overlay segment name.

FORTRAN overlays must be subroutines it called by a
FORTRAN call.

Expansion: The overlay segment name is ioaded two
characters per word. The type flag is bit O of word 2 (t).

rﬂll

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
i Word 0 IS RX
| P e S
| Word | 1406
| Wore 2 [T R ST /—< '
. JESOS Y O ot W
Weed 3 Overlay segment name
!
! Wword 4 {veriay segment namne
E S - e
| Word 5 Overlay segment narme
L —— JE U — |

When the load and execute mode is selected in the OVLAY
macro RTE executes an equivalent of a root segment JSR
instruction to enter the overlay segment. Therefore, the
return address of the root segment is available to the
overlay segment in the X register.

Example: Find, load, and execute overiay segment
OVSGO1 without return.

OVLAY 0,'ov,'sGg','01’
{No return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1{1) ,N1(2),N1(3)/2HOV, 2HSG, 2H01/
CALL OVLAY(0,0,N1)

or
CALL OVLAY(0,0,6HOVSGO1)

External subprograms may be referenced by overlays. If a
subprogram S is called in several overlays, and S is not in
the main segment, each overlay will be built with a
separate copy of S.

When using FORTRAN overilays containing 1/0 statements
for RMD files defined by CALL V$OPEN or CALL V$OPNB
statements (described in section 5.3.2), the main segment
must contain an /0 statement so that the runtime |1/0
program (VSFORTIO) will be loaded with the main segment.
FCB arrays must be in the main segment or in common, so
they are linked in memory and cannot be in any overlay.

2.1.9 ALOC (Aliocate) Macro

This macro allocates space in a push-down (LIFO) stack of
variable length for reentrant subroutines. The macro has
the general form

label ALOC address

where address is the address of the reentrant subroutine to
be executed.

The FORTRAN calling sequence for this macro is
EXTERNAL subr

CALL ALOC(subr)

where subr is the name of the DAS MR assembly language
subroutine.

The tirst location ot the LIFO stack 1s V$FLRS, and that of
the current position in the stack is VSCRS. The first word of
the reentrant subroutine, whose address 1s specified in the
general form of ALOC, contains the number of words to be
allocated. if fewer than five words are specified. five words
are allocated

Control returns to the location following ALOC when a
DEALOC macro (section 2.1.10) is executed in the called
subroutine. Between ALOC and DEALOC, (1) subroutine
cannot be suspended, (2) no I0C calls (section 3) can be
made, and (3) no RTE service cails can be made.

Reentrant subroutines are normally included in the
resident library at system.generation time so they can be
concurrently accessed by more than one task. The
maximum size of the push-down stack is aiso defined at
system-generation time

Expansion:
LD 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 S RX
b s [
Word 1 LR)
Word 2 e g © S)
| T
Word 3 Reertrant subroutine address

Reentrant subroutine: The reentrant subroutine called by
ALOC contains, in entry location x, the number of words to
be allocated. Execution begins at x + 1. The reentrant
subroutine returns control to the calling task by use of a
DEALOC macro.

The reentrant stack is used to store register contents and
allocate temporary storage needed by the subroutine being
called. The location V$CRS contains a pointer to word O of
the current allocation in the stack. By loading the vaiue of
the pointer into the X (or B) register, temporary storage
cells can be referenced by an assembly language M feld of
5,1 for the first cell; 6,1 for the second: etc.

A stack allocation generated by the ALOC macro has the
format:

8it 15 14 13 312 11 10 9 8 7 6 5 4 3 2 1 0
Word © Coritents of the A register
Word 1 Contents of the B register
Word 2 Conzents of the X register
Word 3 ovil J Contents of the P register
Word 4 Stack-control pointer (for RTE use only)
Word 5 For reenirant subroutine use (temporary slorage)
Word n
- -

Words n+ 1

to V75 registers 37

n+5

where ovil is the overfliow indicator bit.

The current contents of the A and B registers are stored in
words 0 and 1 of the stack and are restored upon execution
of the DEALOC macro. The same procedure is used with the
setting of the overfiow indicator bit in word 3 of the stack.
The contents of word 2 (X register) point to the location of
the reentrant subroutine to be executed following the
setting up of the stack. The contents of word 3 (bits 14-0)
point to the return location following ALOC.

Example: Allocate a stack of six words. Provide for
deallocation and returning of control to the location
following ALOC.

EXT SUB1
ALOC SUB1
(Return Control)

NAME SUB1
SUB1 DATA 6

DEALOC

END

Each time SUBI is calied, six words are reserved in the
reentrant stack. Each time the reentrant subroutine makes
a DEALOC request {section 2.1.10), six words are deallo-
cated from the reentrant stack. If the calling task uses the
V75 registers, 11 words are allocated/deallocated.

2.1.10 DEALOC (Deallocate) Macro

This macre deallocates the current reentrant stack,
restores the contents of the A and B (and V75) registers
and the setting of the overflow indicator to the requesting

REAL-TIME EXECUTIVE SERVICES

task, and returns controt to the location specified in word 3
(P register value) of the reentrant stack (section 2.1.9). The
macro has the form

Iabel DEALOC
Expansion:
o 15 14 12 12 11 10 9 8 7 6 5 4 3 210
Word 0 1S RX
Word 1 0406
Word 2 ><Io o 01 1 1

Example: Release the current reentrant stack, restore the
contents of the volatile registers and the setting of the
overflow indicator and return control to the location
specified in word 3 of the stack.

. (Reentrant subroutine)
DEALOC
END

2.1.11 EXIT Macro

This macro is used by a task to signal completion of that
task. The requesting task is terminated upon completion of
its 170. The macro has the form

label EXIT

The FORTRAN calling sequence (no parameters specified)
is

CALL EXIT
If the task making the EXIT is in unprotected background

memory, the macro schedules the job-control processor
(JCP) task (section 4).

Expansion:
Bt 15 14 13 312 11 10 9 8 7 & 5 4 3 2 1 0
Werd O +SRX
Werd | 0406
Werd 2 e 0 ¢ 0 ! O

Example: Exit from a task. The task making the EXIT call
is terminated upon completion of its /0 requests.

.
-

.

EXIT (M return)

2-7

REAL-TIME EXECUTIVE SERVICES

2.1.12 ABORT Macro

This macro aborts a task. Active 1/0 requests are
completed, but pending 1/0 requests are dequeued. The
macro has the general form

iabel ABORT xx','yy',';’

where xxyyzz is the name of the task being aborted, coded
as in the SCHED macro (section 2.1.1).

The FORTRAN calling sequence for this macro is

CALL ABORT(name)

where name is the three-word Hollerith array containing the
name of the task being aborted.

Expansion: The task name is loaded two characters per
word.

L 15 14 13 12 1 10 9 8 7 6 4% 4 3 2 1 0O

Word 0 J S RX

Word 1 0406

T"‘ T - . E— - T

Word 2 o 0 01 01

Word 3 Task name

Word 4 Task name

_. - PR S A

i Word 5 Task name
i

Example: Abort the task TSK and return control to the
location following ABORT.

ABORT ‘rs','K',"’ '
. (Controt return)

The same request in FORTRAN is

DIMENSION N1(3)
DATA N1{(1),N1(2),N1(3)/2HTS,2HK ,2H /
CALL ABORT(N1):

or

CALL ABORT{6HTSK)

2.1.13 IOLINK (1/0 Linkage) Macro

This macro enables background tasks to pass buffer
address and buffer size parameters to the system back
ground giobal FCBs. It has the general form

labei {OLINK ungsd, butioc, bufsiz

where

lungsd is the logical unit number of the global
system device

bufloc is the address of the input/cutput buffer

bufsiz is the size of the buffer (maximum and
default value: 120

ABORT ‘rs'," ', !

Global file control blocks: There are eight global FCBS
(section 3.5.11) in the VORTEX system reserved for
background use. System background and user programs
can reference these global FCBs. JCP directive /PFILE
(section 4.2.11) stores the protection code and file name in
the corresponding FCB before opening/rewinding the
logical unit. The [OLINK service request passes the buffer
address and the size of the record to the corresponding
logical-unit FCB. The names of the giobal FCBs are SIFCB,
PIFCB, POFCB, SSFCB. BIFCB, BOFCB, GOfFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Bit 15 14 13 12 11 10 9 8 7 6 35 4 3 2 1 0O
,,,,,,, T e e e+ e e e e e

Word 0 1S RX

Word 1 0406

= I

Word 2 o —— "i 4 1 0 01! ungsd

Word 3 bufioc

Word 4 butsiz

Example: Pass the address and size specifications of a
40-word bufter at address BUF to the Pi global FCB.

PI BQU 4
EXT PIFCB
. (P! logical-unit number 4)

IOLINK PI,BUP,&0

READ PIFCB,P1,0,1
. (Read 40 ASC!l words
from Pl)
BUF BSS 40
END

If the Pi file is on an RMD, reassign the Pi to the proper
RMD partition, and then position the P! file using JCP
directive /PFILE.

2.1.14 PASS Macro

This macro fetches map O data into the user map. It has
the general form

label PASS count,from,to
where
count is the number of words to be passed
from is the map O fetch address
to is the user map store address

The FORTRAN calling sequence for this macro is:
CALL PASS(count, from,to)

Expansion:

Bit 15 14 13 12 11 0 9 8 7 &6 5 4 3 210

Word 0 1S RX

Word 1 06406

R T
->< 0 01 1 10

count

Word 2

Word 3

Word 4 from

b e

Word 5 10
i
b

SNV

if a negative or zero word count is specified, an EX16 error
message is posted and the task aborted. Any memory
protection violation will result in an EX20-EX25 error
message.

Example: Pass the TIDB information into PBUF

0300

V$CTL EQU
LDA VS$CTL (Get TIDB address)
ETA P1+8

p1 PASS 29,%,PBUF

PBUF BSS 29
END

2.1.15 TBEVNT (Set or Fetch TBEVNT) Macro

This macro tetches or sets the requesting task's eveni
TBEVNT, as well as alters other TIDB entries. It
should be noted here that most changes to TIDB entries

REAL-TIME EXECUTIVE SERVICES

could cause irrecoverabie errors, so TBEVNT shouid be
used with caution.

The macro has the general form:

label TBEVNT value, disp, ¢c/s
where:
value is 0-0177777 (mask)
disp is the TIDB word ordinal number
(displacement) to be altered
c/s is the clear/set indication
Explanation:

i disp = 0, the following is done according to the value
parameter. If value is 0-0177776 it is set into the
requesting task's TIDB event word, TBEVNT. If the value is
0-017777, the request wilt fetch TBEVNT from the request-
er's TIDB and return with the A register set to the TBEVNT
content. (See section 14 for information on use of the event
word.)

If disp % O, the action depends on the c¢/s indication.

When c¢/s = 1 (i.e., set), the corresponding TIDB (word U4

number displacement) bits are set according to the ones in
the mask value.

When c/s < 0 (i.e., reset), the corresponding TIDB (word tips

number dispiacement) are reset according to the zero bits
in the mask value.

Bt 15 14 u_l;ﬁn 109075541210j
R |

Word 0 J S RX

word 1 0406

Word 2 - o 01 1 11

Werd 3 Vatue

Word 4 disp

Word 5 o ars

Default values: disp = 0 ¢c/s = 0

Example: Reset TBPL (word 2 of TIDB) bit 8 and then

set it again.

TBEVNT 0177377, 2, 0 AMD (reset)
TBEVNT 0400, 2,1 ‘of (set)

2.1.16 ALOCPG (Allocate Memory
Pages) Macro

This macro allocates in physical pages from the pool of
availabie pages to logical pages starting at the specified
logical address, modulo 01000. The logical pages to be
mapped must not have been previously assigned. The
logical pages are assigned as read/write access mode. if an

2-9

REAL-TIME EXECUTIVE SERVICES

error condition occurs, an £X27 error message is output
and the task resumes operation at the specified reject
address. The general form is

label ALOCPG n jogical addr,reject addr
where
n is the number of pages to be allocated

logical addr is the logical address, modulo 01000,
where the n pages are allocated. If the
logical address is negative (1's comple-
ment) the address is assumed to be in
map 0. If the logical address is positive,
the address is assumed to be the
requestor's map (priority tasks cannot
allocate memory in map 0)

reject addr is the error return address when a task
exits or is aborted all ALOEPG pages are
automatically dealiocated.

Expansion:
[15 14 13 12 11 10 9 8 7 65 4 3 21 0
Word 0 J 5 RX
Word 1 0406
Word 2 - i 1 9 0 0 0
e IETEX:
j Word 3 "
! Word 4 logical addr
Wors S reject addr

Example: Allocate 4 pages of memory to the requesting
task’s virtual memory starting at logical address 06000. Hf
error, go to ERRO1.

ALOCPG 4,06000,ERR01

ERRO 1 STA (Error routine)

2.1.17 DEALPG (Dealiocate Memory
Pages) Macro

This macro deallocates n pages of memory starting at the
specified logical address, modulo 01000. The deallocated
logical pages are set to unassigned access mode. Deallo-
cated physical pages, which were not assigned by MAPIN
requests, are returned to the pool of available pages
Specifying logical page 0 or non-read/write page results in

2-10

CALL ﬂ‘ﬁu’j

EX30 error message to be posted and the task’s operation
resumed at the reject address. The general form is

label DEALPG nlogical addr reject addr

where
n is the number of pages to be deallocated

logical addr is the logical address, modulo 01000,
where the n pages are deaflocated if
negative, 1's complement of map 0
logical address (illega! for prionity 0
tasks)

reject addr s the error return address

Expansion:

Bit IS 14 13 12 11 W0 987 6 S 43 210
Word 0 JSRX

b e e e e e]
Word 1 0406

> o =

Word 2 \’I o 1 60 o 1J><;_\
Woed 3 n
Word 4 fogical addr
Word S reject addr

Example: Deallocate 4 pages of memory in the requesting
task’s virtual memory starting at logical address 06000. if
error, go to ERRO2. i

DEALPG 4,06000,ERRO2

ERRO2 LDA (Error routine)

2.1.18 MAPIN (Map-in Specified Physical
Pages of Memory) Macro

This macro allows the requestor to specify physicail pages of
memory to be assigned to the requestor's logical memory
starting at the specified logical address, modulo 01000.
Priority O tasks are not permitted to execute the MAPIN
request. The specified logical pages to be mapped must not
have been previously assigned except by a previous MAPIN
request. All logical pages are set to the read/write access
mode. Fires mapped in by this request do not effect the
pool of . . ."able pages. The requested physical pages
cannot inciuc . age 0 nor any of the pages assigned 1o the
nuci=zus progras module. Any error condition causes EX31

to be output and the task resumed at the reject address.
The general form is

label MAPIN n,logical addr,
buffer or page,
reject adde
where
n is the number of pages of memory to be
allocated

togical addr is the requestor's logical address,
modulo 01000, where the specified
physical pages are to be mapped

buffer address is the actual physical page number to

or physical be mapped or the address of the buffer

page number containing the physical page numbers.
If the value is positive and less than 512,
it is assumed to be a physical page
number. If n is greater than 1, ali physi-
cal pages assigned will be consecutive.
If the value is positive and greater than
511, it is assumed to be a map 0 buffer
address, e.g., TIDB map image address
If the value is negative, it is assumed
to be the one’s complement of the buffer
address within the requestor's logical
space, which contains the physical page
numbers

reject addr is the error return address
Expansion:
Bit 15 14 13 12 11 10 9 ? 6§ % 43 210
Word 0 J S RX
Word | 0406
Word 2 0] 001 0
Word 3 n
Word 4 logical addr
Word 5 butter addr of physcal page
Wo" [3 reject addr

Example: Copy the same 2 physical pages as used by task
A, logical address ABUF, into task B's logical memory at
logical address BBUF. Task A scheduled task B, passing
task A's TIDB address to task B.

REAL-TIME EXECUTIVE SERVICES

TASK A
NAME TASKA
TITLE TASKA
FL QU 106
KEY B2QU 0306
VSCTL BQU 0306
LDBI ABUF {B = Buffer Address)
LDA vsCcTL (A = Task Aa's TIDB)
SCHED 2,0,FPL, KEY, TASK' B’
. (Schedule task B, pass
parameters in A B)
ABUPF BSS 02000
END
TASK B
NANME TASKB
TITLE TASKS
TBMING ‘BQU 27
TASKB ETA Pt+a {Set task As TiDB addr)
|) PASS 29, ,PBUF (Pass task A's TiDB
into -PBUF)
. .
TBA (B = ABUF addr)
TZB
LLSR 9 (A = Page number 8 =
offset «n page)
ADDE TBMING+PBUF
STA M1+5 (Add task A's map image
addr
M MAPIN 2, BBUF , » (MAPIN same 2 phys«cal
pages at BBUF shared by
TBA task A at ABUF)
LSRA 7 (B = Oftset into page)
ADDI BBUP (Add BBUF addr)
TAB (B = Start ot ABUF)
PBUF BSS 29 (TIOB buffer)
BSS TASKB-#+512 (Set to page boundary}
aRUP BQU . (Assume task B < 512
words)
END

2.1.19 PAGNUM (lidentify Physical Page
Number) Macro

This macro allows the requestor to identify the physical
page number assigned to a specitied logical address. |f an
uwhassigned logical address is specified, return is to the
requestor with the A register = 0. Otherwise, return is
made with the A register set to the physical page number
and the B register set to the task's map image address for
the specified logical address. The general form is

* label - PAGNUM logical addr

where logical addr is the address where the identity of the
assigned physical page is requested.

REAL-TIME EXECUTIVE SERVICES

Expansion:
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 JSRX
Word 1 0406
Word 2 0o t+ 0 0 1 1
Word 3 logical addr

Example: identify the physical page assigned to PBUF.

LDAI PBUF (Get RBUF addr)

8TA P1+3
P1 PAGNUM = (Identify physical page)
PBUP BSS 100

2.2 RTE SYSTEM FLOW

The RTE component loads and executes a task depending
on the category of that task:

Executive Mode Tasks

These are the VORTEX systemn and user tasks designated
during system generation (SGEN) to be resident (excludes
tasks specified on SGEN TSK directives). The RTE, 10C, 1/0
drivers, and common interrupt processors are examples of
system executive mode tasks (map 0). OPCOM is loaded
into and executed from page 1 of map 0. All other non-
resident tasks are defined to be user mode tasks.

User Mode Tasks

a. Background tasks with a priority of zero: Tasks that are
executed via a DASMR or FORTRAN load-and-go
operation and those that are loaded and executed
from the BL library with a JCP/LOAD directive are in
this group.

These tasks are loaded with the first page of physical
memory (0-0777) designated as read operand only. The
literal and indirect pointer poo! is loaded in the first
page at locations 0500-0777. The remainder of the
background task is loaded in whatever physical pages
are available at the time the task is loaded. These
pages are designated as read/write access. f a
nucleus module is referenced, that module is mapped
as read operand only. All other pages in the logical
memory are designated as unassigned. The RTE

component designates an available map key (1-15) to
the background task and sets the appropriate
mapping registers to reflect the task's logical memory.

b. Background priority 1 tasks: System tasks such as the
Job-Control Processor (JCP), Input/Output Utiity
(IOUTIL), System Maintenance (SMAIN), Source
Editor (SEDIT), DAS MR, FORTRAN, RPG iV, MIDAS,
MICSIM, and File Maintenance (FMAIN) require full
access to the nucleus (to modify tables or utilize the
giobal FCBs). These tasks are ioaded with the
required nucleus modules designated as read/write
access mode permitting fetches and stores into these
areas. The literal and indirect pointer pool is loaded
in the first page at locations 0500-0777. The task is
ioaded starting at logical address 01000.

c. Foreground tasks: Page O is mapped read operand only
for a foreground task. Nucleus modules (including
blank common) referenced by foreground tasks, are
mapped in the read/write access mode (see figure
2-1). The maximum logical memory space available to
a foreground task is thus dependent on the number
and type of nucleus module referenced by the task.
The pages within the logical memory not utilized are
mapped as unassigned. All foreground tasks are
loaded at logical memory address 01000.

d. Read-only pages: During the creation of a load module
by LMGEN, the user has the capability to specify pages
within the load module as read-only pages. The
designated read-only pages are indicated in the
pseudo TIDB block. When the task is loaded, the RTE
component will designate those pages in the task’s
logical memory as read-only pages.

2.3 TASK LIMITATIONS AND DIFFERENCES

In VORTEX the following differences and features are
apparent between a background task and a foreground
task:

a. A background task has a priority level of 0 or 1. A
foreground task can have a priority of 2 through 31.

b. Only one background task can be executed at a time.
Excluding the RTE, |OC, and [/0 driver tasks, a
maximum of 15 (user mode of 1 through 15) user
foreground tasks can be in operation concurrently,
provided physical memory size is adequate. See
section 2.5 for a description of checkpointing of tasks.

c. A background task can be checkpointed and its
operation pre-empted by a foreground task. A
foreground program memory space i3 no! check-
pointed (see section 2.5).

d. A background task can have literals and indirect

pointers, a foreground task cannot

. All tasks whether background or foreground have
individual task protection.

If allocable memory is not available to load a
background task, the RTE component will output an
error message (EX05) and abort the operation. If a
foreground task is to be loaded and allocatable
memory is not available, the RTE component will
reattempt the load when memory becomes available.

Background
Priority
Nucleus Modules 0
Foreground
Blank COMMON UN
Nucleus Module
Global FCT ROP
Nucleus Module
System Table ROP
Nucteus Module
System Resident
Tasks Nucleus UN
Module
Page O ROP

System Constants

REAL-TIME EXECUTIVE SERVICES

Background level 0 or 1 task can schedule a task from
the background library only. Foreground tasks cannot
schedule a task from the background library.

Foreground tasks can utilize foreground blank
common. Background tasks cannot.

Background level 0 tasks have restricted RTE requests
(see table 2-1). Foreground tasks have no restriction on
RTE service requests.

Priority of Task

Background Foreground
Priority Priorities

1 2:31

UN RW

RW UN

RW RW

UN UN

RW ROP

Key: RW Read-Write Access Mode
ROP Read Operand Only Access Mode
RO Read-Only Access Mode
UN Unassigned Access Mode

Note: Since the upper three modules are defined contigu-
ously, without regard to page boundaries, and since maps
are fuli pages, a map for any of these modules may include
a partial page of an adjoining module, with the same

access mode.

Figure 2-1. Matrix of Nucleus Module Access Mode

REAL-TIME EXECUTIVE SERVICES

2.4 ABORT PROCEDURE

Whenever a task is aborted, all currently active 170
operations are allowed to complete. All 1/0 requests that
are threadad (queued, or waiting to be activated) are not
activated. Upon completion of all active |/0 operations and
after all pending requests are dethreaded, the aborted task
is released.

2.5 CHECKPOINTING OF TASKS

A background task’s memory space and/or assigned map
may be checkpointed for use by a foreground task. The
background task is restarted when memory space and/or a
map key becomes available.

A foreground task may be checkpointed by a higher priority
foreground task. {t may aiso be checkpointed by a lower
priority task depending on the value of TBST bit 8. The
default value of this bit is on (=1) ie, "may be
checkpointed by a lower priority task'". in order to turn this
bit off, a usage of TBEVNT (2.1.15) is recommended. The
foreground task's memory space is never checkpointed.
More than one foreground task's map may be
checkpointed.

2.6 PAGE ALLOCATION SCHEME

The page allocation routine scans the page bit mask table,
V$PAGE (figure 2-2) to determine the allocable physical
pages. To expedite the process, the allocation routine first
checks the page 0 system word VENPAG to find the total
number of allocable pages in VSPAGE. it the required
number of pages exceeds V$NPAG, scanning of VSPAGE is
not attempted. The allocation routine scans V$PAGE
starting with the word number specified in VSLPP (page O
system pointer). The system generation program initially
sets VSLPP to 0. The allocation routine updates VSLPP
during the scanning while the page deallocation routine
sets VSLPP to the dealiocated pages.

Bit Position
15 14 210
Word
0 Size of VSPAGE
1 jO 1 increasing Page 15
Numbers
First
2 (16 » 31 { Physical
3 {32 - 47 | 32K Words
3 |48 - 63
5 |64 - 79
29 |448 463 | Llast
Physical
35 464 479 | 32K Words
(Maximum
31 480 - 455 256K)
32 1496 - 511
Corresponding Page Bit Positions:
1 = Page is allocatable
0 = Page is unallocatable
VS$PGT Address of VEPAGE
vsLPP 0, Pointer to last word tested

VSNPAG Number of available pages

Figure 2-2. VSPAGE, Page AMNocstion Table

The size of V$PAGE is determined by SGEN based on the
physical memory size specified on the MRY directive.

SECTION 3
INPUT/OUTPUT CONTROL

The VORTEX input/output-control component (10C)
processes all requests for 1/0 to be performed on
peripheral devices. The IOC comprises an i/0-request
processor, a find-next-request processor, an 1/0-error
processor, and |/Q drivers. The |0C thus provides a
common /0 system for the overall VORTEX operating
system and eliminates the programmer's need to under-
stand the computer hardware.

At 1/0 with remote devices connegted through the Data
Communications Multiplexor (DCM) uses the VORTEX
Telecommunications Access Method (VTAM). VTAM inter-
faces with (OC. Use of VTAM is described in the VTAM
Reference Manual.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any tOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the 1/0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the [/0 driver stores the
error status in the user 1/0-request block, and the I/0-error
processor posts the error on the OC logical unit. The user
can then try an_.her physical device or abort the task.

3.1 LOGICAL UNITS

A logical unit is an 1/0 device or a partition of a rotating-
memory device (RMD). It is referenced by an assigned
number or name. The logical unit permits performance of
1/0 operations that are independent of the physical-device
configurations by making possible references to the logical-

unit number. The standard interfaces between the program
and the I0C, and between the iOC and the (/0 driver,
permit substitution of peripheral devices in |/0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the units are determined by their
reassignability:

a. Logical-unit numbers 1-100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 17) or the job-control
processor {JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

¢. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number O indicates a dummy device. The
I0C immediately returns control from a dummy device
to the user as if a real |/0 operation had been
completed.

VORTEX logical-unit assignments for all systems are
specified in table 3-1. All logical-unit numbers that are not
listed are available to the reassignability scheme above.

Table 17-1 shows the scheme of system names for physical
devices. Table 3-2 shows the possible logical-unit
assignments.

Table 3-1. VORTEX Logical-Unit Assignments

Number Name Description
0 DUM Dummy
1 oC Operator

communication

2 S| System input
3) System output
4] Processor input

Function
For 1/0 simulation

For system operator
communication with immediate
return to user control;
Teletype or CRT only

For inputs of all JCP control
directives to any device

For dispiay of all input
control directives and output
system messages; Teletype or
CRT only

For input of source statements

from all operating system
language processors (continued)

31

INPUT/OUTPUT EONTROL

H

Number

11

101

102

1 03‘

Table 3-1. VORTEX Logical-Unit Assignments

Nhme

Lo

BI

BO

SS

GO

PO

Dl

DO

cu

SW

CL

(continued)

Description

List output

Binary input

Binary output

System scratch

Go unit

Processor output

Debugging input

Debugging output

Checkpoint unit

System work

"Core” -resident
library

Function

For output of operating system
input control directives,
system operations messages,
and operating system language
processors’ output ligtings

>

For input of object-module
records from operating system
processors

For output of object-module
records from operating system
language processors

For system scratch use; all
operating system language
processors that use an inter-
mediate scratch unit input
from this unit

For output of the same infor
mation as the BO umit by the
system assembier and compiler;
RMD partition or MT.

'For processor output; alt

operating system language
processors that use an inter.
mediate scratch unit output to
this unit; PO and SS are
assigned to the same device
at system-generation time

For all debugging inputs
For afl debugging outputs

For use by VORTEX to
checkpoint a background task;
partition protection key S;
RMD partition only

For generation of a load module
by the system load module
generator component. or for
cataloging. loading. or

execution by other system
cof‘ﬁponen\s: partition protec-
tion key B; RMD partition only

For all "core’ -resident system
entry points; partition protec-
tion key C: RMD partition only
(12 names per 2 sectors)

INPUT/OUTPUT CONTROL

Table 3-1. VORTEX Logicai-Unit Assignments

(continued
Description

Object-module

Number Name
104 oM
105 BL
106 FL

library

Background library*

Foreground library*

)

Function

For the VORTEX system object-
module tibrary; partition
protection key D; RMD partition
only

For the VORTEX system background
library; partition protection
key E; RMD partition only

For the VORTEX system fore-
ground library; partition
protection key F; RMD
partition only

» Other units can be assigned as user foreground libraries
provided they are specified at system-generation time.
However, there is only one background library in any case.

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Logical Unit
Unit No.

Device

Dummy

Card punch

Card reader

CRT device

RMD (disc/drum)
partition

Line printer

Magnetic-tape unit

Paper-tape reader/
punch

Teletype

Remote Teletype

Table 3-2. Valid Logical-Unit Assignments

CT

TY

PO
10

DUM
cpP

LP
MT
PT

TY

CR
CT

mMT
PT

TY
TC
Dl
11

CR
cT

TY
TC

$O
3

CcT

TY
TC

12

DUM

CcT

LP

TY
TC

Pi
a

DUM

CR
cT

MT
PT

TY
TC
cu
101

Lo Bl BO SS GO
5 6 7 8 9
DUM DUM DUM DUM
cp cp

CR
cT
D D D D D
LP
MT MT MT MT MT
PT PT PT
184
TC
SW CL OM BL FL 17 -
102 103 104 105 106
D D DO D D

33

INPUT/OUTPUT CONTROL

3.2 RMD FILE STRUCTURE

Each RMD (rotating-memory device) is divided into up to
-20 memory areas called partitions. Each partition is
referenced by a specific logical-unit number. The bounda
ries of each partition are recorded in the coreresident
partition specification table (PST). The first word of the
PST contains the number of VORTEX physical records per
track. The second word of the PST contains the address of
the bad-track table, if any, or zero. Subsequent words in
the PST comprise the partition entries. Each PST entry is in
the format:

Bit 151413 1211109876543210

Word 0| Beginning partition address (track number)

Word 1 |ppb Protection key

Word 2 Number of bad tracks in the
partition

Word 3 Ending partition address + |

Section 9.1 describes the full PST format.

The partition protection bit, designated ppb In the above
PST entry map, when set, requires the correct protection
key to read/write from this partition.

Note that PST entries overlap. Thus, word 3 of each PST
entry 1s also word O of the following entry. The length of the
PST 1s 3n + 2, where n is the number of partitions in the
system. The relative position of each PST entry is recorded
in the device specification table (DST) for that partition.

The bad-track table, whose address is in the second word
of the PST, is a bit string constructed at system-generation
time and thereafter constant. The bits are read from right
to left withuin each word, and forward through contiguous
words, with set bits flagging bad tracks on the RMD.

tach RMD partition can contain a file-name directory of
the files contained in that partition. The beginning of the
directory is in the first sector of that partition. The
directory for each partition has a variable number of
entries arranged in n sectors, 19 entries per sector. Sectors
containing directory information are chained by pointers in
the last word of each sector. Thus, directory sectors need
not be contiguous. (Note: Directories are not automati-
cally created when the partitions are defined at system.
generation time. It is possible to use a partition with no

34

directory, e g., by a foreground program that is collecting
data in real time.) Each directory entry is in the format.

Bit 1514131211 109876543210
Word 0 File name
Word 1 Fite name
L.
Word 2 Fiie name
Word 3 Current position of fiie
Word 4 Beginning file address
Word 5 Ending file address

The file name comprises six ASCH characters packed two
characters per word. Word 3 contains the current address
at which the file is positioned, is initially set to the ending
file address, and 1s manipulated by the OPEN and CLOSE
macros (sections 3.5.1 and 3.5.2). The extent of the file is
defined by the addresses set in words 4 and 5 when the file
1s created, and which remain constant.

At system-generation time, the first sector of each partition
ts assigned to the filename directory and a zero written
into the first word. Once entries are made in the file-name
directory. the first word of each sector contains a count of
the entries in that sector.

The last entry in each sector 1s a one-word entry containing

next sector of the file-name directory.

The file-name directories are created and maintained by
the VORTEX file-maintenance component (section 9) for
10C use. User access to the directories is via the [OC, which
references the directories in response to the {/O macros
OPEN and CLOSE. The file-maintenance component sets
words 0, 1, 2, 4, and 5 of each directory entry, which then
remain constant and unaffected by 10C operations. The
10C can modify only the current position-of-file parameter.

In the case of a file containing a directory. an OPEN is
required before the file is accessible. The macro searches
the file directory for the entry corresponding to the name in
the file-control block (FCB) in use. When the entry is found,

the file boundary addresses and the current position-of-file
value from the directory entry are stored in the FCB. If the
OPEN macro

a. Specities the option to rewind, the FCB current position
is set equal to the address of the beginning of file.

b.. Specifies the option not to rewind, the FCB current
position is set equal to the address of the position of file.

Once a file is thus opened, READ and WRITE operations
are enabled. The 10C references the file by the file
boundary values set by the OPEN, rather than by the file
name. READ and WRITE operations are under control of
the FCB current position value, the extent of the file, and
the current record number.

A CLOSE macro disables the I0C and user access to the file
by zeroing the four file-position parameters in the FCB. If
the CLOSE macro

a. Specifies the option 1o update, the current position-of-
file value in the directory entry is set to the value of the
FCB current position, aliowing reference by a later
OPEN.

1, Specifies the option not to update, the file-directory
entry remains unmodified.

Special directory entries: A blank entry is created when a
file name is deleted, in which case the file name is #***%*
and words 3 through 5 give the extent of the blank file. A
zero entry is created when one name of a multiname file is
deleted, in which case the deleted name is converted to a
blank entry and ali other names of the multiname file are
set to zero.

3.3 170 INTERRUPTS

VORTEX uses a complete, interrupt-driven 170 system, thus
optimizing the allocation of CPU cycles in the multipro-
gramming environment.

INPUT/OUTPUT CONTROL

3.4 SIMULTANEOQUS PERIPHERAL OUTPUT
OVERLAP (SPOOL)

The VORTEX spooler is a generalized set of routines which
permit queuing of a task's output to intermediate RMD
files. This avoids the user task waiting for the device
transfer completion. Total system throughput wili be
increased because waiting for transfers to be compieted,
both in the use of {/0 calls with suspended returns and
that of tasks which are terminating, will be minimized.

Also, non-resident tasks may transfer to a spooled device
and immediately exit, instead of remaining resident until
completion of the transfer.

At system generation, the user may have the output of
some logical units, such as LO, automatically spooled.
During operation, the operator may assign device outputs
to the spooler through JCP or OPCOM assign directives.

Components

The SPOOL subsystem consists of two components: (1) an
10C driver to which data output may be assigned and which
transfers output for its associated iogical unit to a circular
RMD file or directly to the output listing task, and (2) and
output listing task which accepts messages from this
circular RMD file or directly from the IOC driver and
transfers them to the appropriate output device.

Communication between these two tasks is accomplished
through parameters within the listing rask which are
established by the 10C driver. When these and other
system parameters indicate that the listing task has caught
up with the spoolout task, output messages wiil be
transferred directly to the listing task, instead of going
through the RMD SPOOL file. (This avoids the overhead of
two RMD transfers).

All data records transterred to the circular RMD file will
contain record length and a key signifying whether the
transfer is to be write or a function as well as other
synchronization data. Data will be transferred to RMD in
an unpacked mode (one record per sector) in order to avoid
delays caused by unwritten still-to-be packed records.
SPOOL. file overfiow messages will be output when appropri-
ate after allowing the RMD circular file certain amounts of
time to remove its oldest entry.

Figure 3-1 shows a simplified flow of output data through
the SPOOL subsystem.

35

INPUT/OUTPUT CONTROL

USER
TRANSFER TO
LOGICAL UNIT
1
SPOOLER 10C CONTROLLER
DRIVER TABLE CTSPnA
VZSPOA)
DATA DIRECTLY TRANSFER IF
TO SPOOLOUT SPOOL STREAM
BUFFER n* 1S BUSY
A
RESIDENT RMD FiLt
LISTER TASK SPOOL n*
A

TRANSFER TO
LOGICAL UNIT |q—
180 + n*

* WHERE n IS AN INTEGER FROM ZERO TO SEVEN

VI8

Figure 3-1. Spooling Subsystem Flow

3.4.1 SPOOL Operation

During the system generation. up to eight spool pseudo
devices may be defined. These pseudo-devices, SPOA
through SP7A are dummies which can be assigned to any
logical unit used only for output. Such assignments can be
made permanently at SGEN time, or dynamically through
JCP or OPCOM.

Each pseudo-device, SPIA, has a corresponding RMD file
name, SPOOLi. These files must be defined on an RMD
partition which is permanently assigned to logical unit 107
(named SX). Each spool pseudo-device and file is then
associated with a logical unit (180-187) to which the
LISTER writes unit record output. For example, a user
issuing a WRITE request to an LUN assigned to device
SPiA, will have data transferred to file SPOOLi on RMD.

The data will be read from the RMD and written to LUN
180 + i, whose name is Si, as time and the device allow

3-6

It the oulput device is not busy when a user request is
made, and if the RMD stream_is inactive, the user data 1s
. _moved directly to the output device via a SPOOL bu buffer In

this case, the user request is sef complete as soon as the
buffer is queued for the device.

It a user’'s 1/0 requests are made and a spool pseudo-
device number for the appropriate SPOOLI file could not be
found, of if the RMD is inoperative for any reason, the RMD
is bypassed. That is, each user request causes a SPOOL
buffer containing the user's data to be queued directly to
the output device, up to a maximum of two buffers per
stream. If the user should issue a request that would
require a third buffer for that_ streamanen _the SPOOL

driver enters a delay loop until the two buffer limit can be
salisfied. During this wait tume ‘the t user's |/0 is active.

If the output device to which a user is spooling output
shouid go down or become not ready, data continues to be
accepted and spooled to RMD, but not more than two
SPOOL buffers will be tied up waiting for the device to
become usable. If an RMD is down when this case occurs,
user's requests will be delayed after twoc buffers are
allocated to the stream.

Should the user fill the RMD file for a stream with data
before the device can catch up, the next user request
remains active until space is available in the RMD.

3.4.2 SPOOL Files

Certain RMD files are required for maximum spooler
operation. Without these, the SPOOL subsystem will
function at a reduced rate. Files SPOOLO through SPOOL7,
where the last digit is the SPOOL stream number, are used
as circular files and may be established at varying lengths
to improve system performance. SPOOL operation will be
slower if RMD files are totally filled with data to be output.

Files must be created after SGEN but before the first user
of the SPOOL program. To establish files in a manner
consistent with SPOOL, an exact procedure must be
followed. If LO is assigned to SPOOL, it must be reassigned
temporarily to a non-spooled device through OPCOM using
a command such as:

;ASSIGN,LO=LP

where LP is not a spooled device. After this step, the actual
file or files must be created using FMAIN in the following
manner:

/FMAIN

INIT, 107,S

CREATE, 107,S,SPOOLO, 120,n
CREATE, 107,S,SPOOL1, 120,n

CREATE, 107,S,SPOOL7,120,n
/FINI

s,

The last parameter n of the CREATE directives is the
number of records. A CREATE directive is required for each
data stream. As many CREATE directives as data stréams
are required.

The number of 120-word records to be established within
the file ts given as the last parameter of the CREATE
directive. SPOOL files are circular files; entries are being
placed on one end while being removed from the other end.
When the SPOOL subsystem determines that the file is full,
i.e,, that another entry cannot be placed on the file without
destroying one which has not been removed, transfers to
the spooler driver will not be completed until a new file
entry becomes available (the oldest entry has been
removed from the file). As file size is increased, the
likelihood of a full file is decreased. File size should be a
tunction of expected stream utilization and device output
speed, which determines how quickly entries are moved
from circular spooler files. The 1060 error message
indicates that a file is full. if this message is received
frequently the number of records in that file should be
increased for maximum spooling efficiency.

This procedure tor creation of SPOOL files needs to be
done only once. It 1s performed immediatqly after comple-
tion of SGEN when the “VORTEX SYSTEM READY' mes-
sage is output. If these file sizes are found to be unsatisfac-
tory, the system may be rebooted and file sizes moditied
by executing the procedure again.

As part of the SGEN for systems using the SPOOL program,

- controller table O (stream 0) must be included since the

inifialization routine is included in its buffers. Additional
controller tables may be included as desired. However,
storage requirements may be varied by using different
controller tables: all even addresses contain four 74-watd
butfers, and odd streams contain only two /4 word buffers.
For systems with a large amount of SPOOL throughput, it is
recommended that four buffers be specified for controlier
tables, otheérwise two-buffer tables should be sufficient.

3.5 170-CONTROL MACROS

1/0 requests are written in assembly language programs as
t/0 macro calls. The DAS MR assembler provides the
following 1/0 macros to perform (/0 operations, thus
simplifying coding:

INPUT/OUTPUT CONTROL

. OPEN Open file

. CLOStE Close tile

. READ Read one record

. WRITE Write one record

. REW Rewind

. WEOF Write end of file

. SREC Skip one record

. FUNC Function

. STAT Status

- . DbCB Generate data control block
. FCB Generate file controf biock

The 10C performs a validity check on all {/0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controlier assigned to the
specified logical unit. Finally, the |OC schedules the
appropriate 1/0 driver to service the queued request.

The assembler processes the {/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

Certain 1/0 operations require parameters in addition to
those in the 1/0 macro. These parameters are conlained in
a table, which, according to the operation requested, is
called either a file control block (FCB, section 3.5.11) or a
data control block (DCB, section 3.5.10). Embedded but
omitted parameters (e.g., default vaiues) must be indicated
by the normal number of commas.

Error messages applicable to these macros are given In
Appendix A.3.

1/0 Macros: The general form of 110 macros is:

{abel name ¢b,lun,wait, mode

where the symbols have the definitions given in section
35.1.

if the cb is for an FCB, 1t 1s mandatory. If it is for a DCB, it
is optional.

37

INPUT/OUTPUT CONTROL

The expansion of an 1/0 macro is: e. Bits 4 through 0 indicate the priority level of the task
making the request.

-—lldl“— 15 14 13 12 ll—‘l_o “'9‘"."—7'_;"‘5'“ 7 J“ 2 I Q “
- 1 Word 3 contains the following information:
Word O J S RX
Word 1 0404 Bits 0-7 Logical Unit (LUN)
Word 2 € Status e < I Prionity*
e ——] When an |/0 request is made to V$10C, V$IOC uses the
Word 3 i s] O code R e] LUN as an index into the logical unit table (LUT). V$IOC
Word 4 FCB or DCB address then uses the current assignment pointer of that entry in
e the LUT to determine the address of the DST on which the
Wore 3 User task denttca e ek e] 1/0 is to be performed. To determine the DST address, the
Word 6 10C thread address® current assignment value less one is multiplied by the
: tength of a DST (3 words) and added to the base address
of the DST block. V$I0C verifies the validity of the specified
where LUN.
¢ set indicates completion of 1/0 tasks If the LUN is invalid, a parameter error has occurred (refer
to sections 3.1 and 3.3).
Status is the status of the 1/0 request
e set indicates an irrecoverable 1/0 Bits 8-11 Op-Code
error
) Op-codes can range in value from 0 to 15; however, not ail
cc s the completion code op-codes are applicable for every device. V$10C, using the
o i o . _op-code as an index gets an entry from a bit table. This
Priority is the priority level of the task) gfword contains a 1 in the bit position associated with the op-
making the request icode and is compared with the controller table item
) o]) . §CTOPM. if the corresponding bit in CTOPM is set to 1, it
w is the wait/immediate-return option 'means that the device connected to the controller can
.) éperform the requested operation. If the corresponding bit
Mode is the mode of operation in CTOPM is zero, the 1/0 request is not performed, and

the 170 complete indicator (bit 15) set.
Op-code specifies the 1/0 operation to be

performed Bit 8-11 Meaning
d indicates an item whose initial 0000 Read
value is zero 0001 Write
0010 Write EOF
0011 Rewind
The wait option causes the task to be suspended untit its 0100 Skip record
170 is complete. The immediate option causes control to be 0101 Function
returned immediately to the task after the 1/0 request is 0l10 Open
queued. Therefore, to multiprogram effectively within 0111 Close
VORTEX, the wait option is preferred. 10001111 Not used
Word 2 contains the following information: Bits 12-14 Mode .

a. Bit 15indicates whether the |/0 st lete. ’
o er thel/Lrequest is complete The mode bits are not used by V$1OC nor VSFNR. The 1/G .

driver use this information whenever applicable to the op-

b. Bits 14 through 9 contain one of the error-message de
coqde. —_

status codes described in Appendix B.2.

c. Bit 8 indicates an irrecoverable I/0 error. .
Bit 15 Wait Option

d. Bits 7 through 5 contain a completion code: 000

indicages a normal return; 101, an error; 110, an end of V$I0C uses this bit to determine whether the requesting
file, beginning of device, or beginning of tape: and task is to be suspended until 170 is completed or whether
111, end of device, or end of tape. an immediate return is required.

3-8

Bit 15 = 0 Suspend until 1/0 completed. V$10C
sets bit 14 in TBST in the requesting
task's TIDB.

Bit 15 = 1 Immediate return required (via V$DISP).

V$I0C clears bit 14 in TBST in the
requesting task's TIDB.

Word 5 initially points to the user's task identification
block. Upon completion of a READ or WRITE macro
(sections 3.5.3 and 3.5.4), the 10C sets word 5 to the actual
number of words transmitted.

Status macro: The general form of the status (STAT)
macro is:
label STAY req,err,aaa bbb busy

where the symbois have the definitions given in section
359

The normal return s to the first word following the macro
expansion.

The expansion of the STAT macro is:

=t 15 14 13 12 11 10 9 8 7 6 3 4 3 2 10
Word 0 JSRX

Word 1 0373

Word 2 Address of the I/0 macro

Word 3 Address of the 170 error routine

Word 4 aaa

Word S bbb

Word 6 Address of the busy or i/0-not-compiete routing

where aaa is the address of the end of file, beginning of
device or beginning of the tape routine and bbb is the
address of the end of the tape or end of the device routine.

Control biock macro: The general form of the DCB macro
[N

label DCB rl,butf,fun

where the symbols have the definitions given in section
3.5.10.

The expansion of the DCB macro is:

B 15 14 13 312 11 10 9 8 7 6 5 4 3 2 10
Word 0 Record length

Word | Direct Address of user data area

Word 2 Function code

INPUT/OUTPUT CONTROL

The function code applies only to 1/0 drivers that aliow:

a. The line printer to slew to top of form or to space
through the channel selection for paper-tape form
control.

b. The papar-tape punch to punch teader.

c. Thecard punch to eject a blank card as a separator.

The general form of the FCB macro is:
label FCB

rl,buff,acc key,'xx",'yy’,' 2z’

where the symbols have the definitions given in section
3.5.11

The expanSion of the FCB macro is:

.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Word 0 Record length
Word 1 Address of user data area
- i - -
Word 2 Access method Protection key
Word 3 Current record number
Word 4 Current end-of-file address
Word 5 Beginning file address
Word 6 Encing tie address
Word 7 File name
Word 8 File name
Word 9 file name

The access method (word 2, bits 15 through 8) specifies
one of the four methods of reading or writing a file:

a. Direct access by logical record: The 1/0 driver uses

the contents of FCB word 3 as the number of the logical
record within a file to be processed, but does not alter
word 3 after reading or writing. Word 3 is set by the
user to the desired record number prior to each read/
write.
Specifying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

b. Sequential access by logical record: The 1/0 driver
uses the contents of word 3 as the number of the logical
record within 3 file to be processed, then increments
the contents of word 3 by one. Word 3 is set initially
to zero when the FCB macro expands. Successive
reading and writing thus accesses records
sequentially.

39

INPUT/OUTPUT CONTROL

c. Direct access by physical record: The 1/0 driver uses

the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), but does not alter word 3 after a
read or write. Word 3 is set by the user to the desired
record number prior to each read/write.
Specitying FCB word three to zero will cause access to
the partition directory. Care should be taken when
supplying this value so that directories are not
accidentally destroyed.

d. Sequential access by physical record: The I/0 driver
uses the contents of FCB word 3 as the number of the
VORTEX physical record to be processed within a file
(120-word length), then increments the contents of
word 3 by one. Word 3 is set initially to zero when the
FCB macro expands. Successive reading and writing
thus accesses records sequentially.

3.5.1 OPEN Macro

Thus macro, which applies only to RMDs or magnetic-tape
units, enables 1/0 operations on the devices by initializing
the file information in the specified FCB. The macro has
the general form

label OPEN fcb,lun.wait mode
where

teb 1s the address of the file controt block

un 1s the number of the logical unit being
opened

wait is 1 for an immediate return, or 0O
(default value) for a return suspended
until the {70 is complete

mode is O (default value) for rewinding or 1 for

not rewinding. In the former case, word
3 (current record number) of the FCB is
set to 1, word 4 (current position-of-file
address) is set to the current position-of-
file address given by the RMD file
directory, and rewinds the magnetic-
tape unit. In the latter case, the current
position-of file address given by the
RMD file directory is copied into word 4,
converted to a record number and
stored in word 3 of the FCB, thus
initializating the user FCB, enabling
reading or writing from a previously
specified tocation, and the magnetic-
tape position is left unchanged (not
rewound).

OPEN must precede any other 1/0 request (except REW)
because the FCB file information must be complete before
any file oriented 170 is possible. If a file has already been
opened, an OPEN will be accepted.

310

The OPEN macro is file-oriented, while the REW macro is
oriented to the logical unit. An REW destroys information
completed by a previous OPEN on the same logical unit.

The OPEN macro changes words 3, 4, 5, and 6 of the FCB
(section 3.5.11).

if an attempt is made to apply the OPEN macro to any
device other than an RMD or a magnetic-tape unit, the I/0
request is processed internally by the 10C but not by an
170 driver. The 10C indicates the status as |70 complete.

Example: Read a 120-word record from the FI10 on logical
unit 18, an RMD partition with sequential, record-oriented
access. BUFF is the address of the user’s buffer area. Use
the wait and rewind options, and set the logical-unit
protection key to 1.

X1 EQU 18 (LUN assigned to unit X1)
RL EQU 120 (Record length 120)

WAIT EQU 0 (Wait option)

REW BQU 0 (Rewind option)

KEY EQU 1 (Logical-unit protection key)
SEQR EQU 1 (Sequential, record-oriented

access)
OPEN OPEN FCB,X1,WAIT,REW
READ READ PCB,X1,WAIT

FCB FCB RL,BUFF, SEQR,KEY,
"FI1',"10", "

3.5.2 CLOSE Macro

This macro, which applies only to RMDs or magnetic-tape
units, updates information in the specified FCB file. This
records and retains the current position within the file. The
mode option ignores the updating, thus retaining the
breviously defined position in the file. The macro has the
general form

label CLOSE fcb,lun,wait, mode
where
fcb is the address of the FCB
un is the number of the logical unit being
closed
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the 170 is complete

mode 15 O (default value) for not updating, or 1
for updating In the former case, there s
no change to the current position-of-file
address in the RMD file directory, words
3,4, 5, and 6 of the FCB are set to zero,
and the magnetic-tape position is left
unchanged (not rewound). In the latter
case, the contents of FCB word 3
(current record number) are converted
to an address and stored in the current
position-of-file address in the RMD file
directory, words 3, 4, 5, and 6 of the FCB
are set to zero, and an end-of-file mark
written on the magnetic tape.

The CLOSE macro cannot be used if there is no such file
defined in the FCB (section 3.5.11).

It an attempt is made to apply the CLOSE macro to any
device other than an RMD or magnetic-tape unit, the 1/0
request is processed internally by the {OC, but not by an
170 driver. The 10C indicates the status as !/0 complete.

Example: Close the file MATRIX on logical unit 180, an
RMD partition with sequential, record-oriented access. Use
the wait and update options.

SEQR EQU 1 (Sequential, record-
oriented access)
(Update option)

(Wait option)

UPDATE EQU
WAIT EQU 0

-

.
.

CLOSE

CLOSE FCB, 180 ,WAIT,UPDATE

.

FCB FCB ,+SEQR,, 'MA','TR', "IX'

3.5.3 READ Macro

This macro retrieves a record of specified length from the
specified logical unit, and places it in the specified area of
main memory. The macro has the general form

fabef READ cb,lun,wait, mode

where

cb is the address of the data control block,
or of the file control biock

lun is the number of the logical unit from
which the record is read

wait is 1 for an immediate return, or O
(default value) far.a_return_suspended

until !hg 1/Q is complete

mode specifies the /0 mode: 0 (default vaiue)
for system binary, 1 for ASCI, 2 for BCD,
or 3 for unformatted |/0 (see appendix
C for format)

INPUT/OUTPUT CONTROL

The number_of words read 1s stored n word 5 of the 1:0
macro.
nacrag;

Example: Read a record trom logical unit 4, a magnetic
tape unit. Use system binary mode and the immediate
return option. The record length is 60 words, and the
address of the user's data area is BUFF.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 4 (LUN assigned to
magnetic-tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE,MT,IM,BIN

TAPE DCB RECL, BUFF (Data control block)
BUFF BSS 60 (User data area)

Note that the READ macro had a mode value of zero. Since
this is the default value, the macro could have been coded:

MTRD READ TAPE , MT, IM

3.5.4 WRITE Macro

This macro takes a record of specified length from the
specified area of main memory, and transmits it to the
specified logical unit. The macro has the general form

label WRITE cb,lun,wait. mode

where the parameters have the same definitions and take
the same values as in the READ macro (section 3 5.3).

The number of wo the 110

macrg, The first byte of each print line is treated as a print
control character and not echoed when outputting to a
listing device.

Example: Obtain a system binary record 60 words In
length from the user's data area BUFF, and transmut it to
logical unit 16, a magnetic-tape unit. Use the immediate
return option.

IM EQU 1 (Immediate return)

BIN EQU 0 (System binary mode)

MT EQU 16 (LUN assigned to magnetic
tape unit)

RECL EQU 60 (Record fength 60 words)

MTWT WRITE TAPE ,MT, IM,BIN

TAPE DCB RECL,BUFF (Data control bilock)
BUFF BSS 60 (User data area)

311

INPUT/OUTPUT CONTROL

3.5.5 REW (Rewind) Macro

This macro, which applies only to magnetic-tape or
rotating-memory devices, repositions the specified logical
umt to the beginning-of-unit position. It has the general
torm

tabel REW cb lun,wait
where
cb 1s the address of the FCB or DCB, which
1S oplronal
lun 1s the number of the logical unit being
rewound
wait is 1 for an immediate return, or O

(default vaiue) for a return suspended
until the /015 complete

Note that the DCB address i1s an optional parameter, but
that the FCB address is mandatory.

To reposition a named file on an RMD, use the OPEN
macro (section 3.5.1).

Magnetic-tape devices: REW rewinds the specified unit
and. upon successful compietion of the task, returns a
beginning-of-device (BOD) status.

Rotating-memory devices REW places the start.-RMD
partition and end-RMD-partition addresses in words 5 and
6, respectively, of the FCB (section 3.5.11)

Examples: Rewind logical unit 23, a magnetic-tape unit.
Use the wait option, here specified by default

MT EQU 23
tape unit)

REWT REW , MT

Rewind logical unit 10, an RMD partition. Use the wait
option, here specified by default. Note that the REW for an
RMD must have an associated FCB (section 3.5.11).

DISC EQU 10 (LUN assigned to RMD
partition)

RECL EQU 120

REWD REW FCB,DISC

FCB FCB RECL,BUFF,,,'SY','ST‘,‘EM'

(section 3.5.11)
BUFF BSS 120

312

(LUN assigned to magnetic

3.5.6 WEOF (Write End of File) Macro

This macro writes an end of file on the specified logical
unit. It has the general form

label WEOF cb,lun,wait
where
cb 1s the address of the control block
lun 1s the number of the affected logical unit
wait 15 1 for an immediate return, or Q

(default value) for a return suspended
until the 170 is complete

Example: Wnite an end of file on logical untt 10. Use the
wait option, here specified by defauit.

TAPE EQU 10

EQF WEOF CB, TAPE

3.5.7 SREC (Skip Record) Macro

This macro, which applies only to magnetic-tape, card
reader, or rotating-memory devices, skips one record in
either direction or the specified logical unit. it has the
general form

Iabel SREC cb,lun.wa:l,rﬁode
where

cbh 1s the address of the control block

lun 1s the number of the logical unit being
manipulated

wait 1is 1 for an immediate return, or 0
(default value) for a return suspended
until the 1/0 s complete

mode specifies the direction of the skip: 0

(default vatue) for a forward skip, or | for
a reverse skip. Reverse skip does not
apply to the card reader.

It applied to an RMD, SREC adds or subtracts from the
value of word 3 of the FCB (section 3.5.11).

If an attempt 1s made to apply this macro 10 a device other

mmagnetic-tape or rotating-memory unit, the /0
request is processed internally by the I0C but not by an
170 driver. The 10C indicates the status as 1/0 complete

Example: Skip back one record on logical unit 57, a
magnetic-tape unit. Use the immediate-return option.

MT EQU 57 (LUN assigned to magnetic-
tape unit)

REV EQU 1 (Reverse)

IM EQU 1 (lmmediate return)

SKIP SREC

CB,NMT, IM,REV

.

3.5.8 FUNC (Function) Macro

This macro performs a miscellaneous function on a
specified logical unit. The function (when.present) cannot
be defined by any of the preceding /0 control functions.
The macro has the general form

label FUNC deb,lun,wait
where
dcb is the address of the data control block
un is the number of the logical unit being
manipulated
wait is 1 for an immediate return, or O

(default value) for a return suspended
until the /0 is complete

FUNC causes certain 1/0 drivers to perform special
functions specified by the function code fun in a DCB
macro (section 3.5.10):

Function
1/0 Driver Code Function
Card punch 0 Eject blank card
Paper-tape punch 0 Punch 256 blank frames
for leader
Line printer and 0 Advance paper to top of
Teletype printer next form, or on Tele-
type 3 lines x
1 Advance paper one line
Advance paper two lines
Statos 31 7 Advance paper to bottom
of form
8 Normal print size*
9 Large print size*

*Only for software character generator.

INPUT/QUTPUT CONTROL

Function
1/0 Driver - Code Function
Statos 31/42 00 Advance paper to top

of form

01 Advance paper one line

02 Advance paper two lines

07 Advance paper to bottom
ot form

08 Step plotter one raster
line

10 Select small/upright

11 Small/ +90 degrees

12 Small/ 180 degrees

13 Small/ -90 degrees

i4 Large/upright

15 Large/ + 90 degrees

16 Large/ 180 degrees

17 Large/~90 degrees

20 Cut paper

21 End cut

Plot data may be transmitted to the Statos 31 by specifying
unformatted mode, 3, in the WRITE macro. Each 1 bit will
cause a dot to be printed in its corresponding position in
the output line. The most significant bit in the first word
output represents the left-most dot position.

Statos 31/42 The WRITE macro enables the transfer
of one data buffer to the printer/
plotter and allows for five different
modes of operation:

Mode 1 -~ Compatible line printer
(70-6701) mode

Mode 3 - Plot (raster) mode (binary
raster data transfer)

Mode 4 -~ Print mode selectabie size
and orientation

Mode 5 - Simultaneous print/plot
mode (ASCIi data transfer)

Mode 6 - Simultaneous print/plot
mode (binary raster data)

ANl other modes default to mode 1.

It an attempt is made to apply the FUNC macro to any
other device, the 170 request is processed internally by the
{OC but not by an (/0 driver. The 10C indicates the status
as |/0 complete.

313

INPUT/OUTPUT CONTROL

Example: Skip two lines on the printer, which 1s logical
unit 5. Use the wait option, here specified by default.

LP EQU ’ 5 (LUN assigned to line

CNT EQU 2 printer) (Paper-tape
channel 2)

UpPSP FUNC DCB,LP

DCB DCB + 1 CNT

3.5.9 STAT (Status) Macro

This macro examines the status word in an 1/0 macro to
determine the result ot an 1/0 function request. The STAT
macro has the general form

label STAT req,err,aaa bbb, busy
where

req is the agdress of the 10 macro (e.g.,
READ)

err is the address of the 1/0-error routine

aaa is the address of the end of file,
beginning of device. or beginning of
tape routine

bbb is the address of the end of device or
end of tape routine

busy is the address of the 1/0-not-compiete

routine

All parameters (except the label) are mandatory. The
contents of the overflow indicator and the A and B registers
are saved. Upon normal completion, control returns to the
user at the first word after the end of the macro expansion.

CAUTION

Foreground tasks should not loop to check for
completion of 1/0 tasks because this inhibits ali
lower-level tasks.

Example: Rewind logical unit 12, a magnetic-tape unit,
and check for beginning of device (load point). Use the
immediate-return option.

MT EQU 12 (LUN assigned to magnetic-
tape unit)

IM EQU 1 (Immediate return)

REW REW ,MT,IM (DCB can be omitted

for REW)

BUSY STAT REW, ERR, BOT, EQT, BUSY

BOT

ERR

3.5.10 DCB (Data Control Block) Macro

This macro generates a DCB as required by I/0 macro
requests to devices other than RMDs. Note that not all
such requests (e.g., rewinding a magnetic-tape unit)
require a DCB. The macro has the general form

label DcB rl,buff,fun

where

rl is the length, in words, of the record to
be transmitted

butt is the address of the user's data area

fun is the function code for a FUNC request
and is unused for other requests (section
3.58)

Example: Read a record from logical unit 4, a magnetic-
tape unit. Use system binary mode and the immediate-
return option. The record length is 60 words, and the
address of the user’s data area is BUFF.

M EQU 1 (Immediate return)

BIN BQU 0 (System binary mode)

MT BQU 4 (LUN assigned to magnetic-
tape unit)

RECL EQU 60 (Record length 60 words)

MTRD READ TAPE ,MT,IM,BIN

TAPE DCB
3.5.11 FCB (File Control Block) Macro

This macro generates an FCB required by any /0 macro
request to an RMD. The macro has the generai form

RECL, BUFF (Data contro! block)

where

rl

buff

acc

key

xxyyzz

Word

FC8 rl,butf,acc key, 'xx'.'yy', ‘2z’

is the length, in words, of the record to
be transmitted

is the address of the user’s data block

specifies the access method and is 0
(defauit value) for the direct access by
fogical record, 1 for sequential access
by logical record, 2 for direct access
using the relative sector number
(beginning with 1) within the file, or 3 for
sequential access using the relative
sector number within the file

is the protection code, if any, required to
address that logical unit. This is a single
alphanumeric ASCHl character coded
between single quotation marks (e.g.,
the protection code H would be coded
'H') or as the eight-bit octal equivalent,
in which case no quotation marks are
used (e.g., 0310 for the protection code
H). The default vailue is binary zero (not
the character 0).

is the name of the file being referenced.

INPUT/OUTPUT CONTROL

by commas, e.g., the file named ARRIBA
is coded ' AR' ,'RI' | ' BA' . Embedded
blanks are itiegal.

Table 3-3 shows the use of FCB words 3, 4, 5, and 6 for the
170 macros.

Example: Create an FCB for the file FILEXX. Use the
logical-record-oriented, sequential-access method with a
record length of 120 words. The user's data area is BUFF
and the protection code is Z.

SEQR EQU 1 (Sequential, record-
oriented access)
RECL EQU 120 (Record iength 120
. words)
DISC FCB RECL,BUFF,SEQR, '%',
. 'FI','L!','XX'
BUFP BSsS 120

Note that the protection code character Z is coded between
single quotation marks, i.e., 'Z', but it can also be coded as
the octal vaiue of the ASCIl character, in which case no
quotation marks are used, i.e., 0332. Thus, the statement
given in the example above is equivalent to

The file name is one to six ASCit DISC FCB RECL, BUFF, SEQR,
characters, coded in pairs between 0322,'FPI','LB', "XX'
single quotation marks and separated
Table 3-3. FCB Words Under {/0 Macro Control
OPEN READ WRITE CLOSE REW
Sequential-Access Method
Set to Incre- incre- Adds or Put into Current
position ments ments subtracts position record set
of cur- record record of file (directory
rent rec- number number on direc- partition)
ord by by one by one tory by to one or
mode mode beginning
chosen chosen address of
logical
unit (non-
directory
partition)
Set to Checks No Checks Cleared Set to
current end of action end of ending
position file file address
of file of logi-
as noted cal unit
on direc-
tory

315

INPUT/OUTPUT CONTROL

Tabie 3-3. FCB Words Under 1/0 Macro Control (continued)

Word OPEN

5 Set to
beginning
of file
address
put in
this word

6 Set to
end of
file ad-
dress

3 Set to
position
of cur-
rent rec-
ord by
mode
chosen

4 Set to
current
position
of file
as noted
on direc-
tory

5 Set to
beginning
of file
address

6 Set to
end of
file ad-
dress

3-16

READ

No
action

No
action

No
action

No
action

No
action

No
action

WRITE

No
action

No
action

SREC CLOSE
No Cleared
action

No Cleared
action

Direct-Access Method

No
action

No
action

No
action

No
action

No Put into

action position
of file
on direc-
tory by
mode
chosen

No Cleared

action

No Cleared

action

No Cleared

action

Set to
beginning
address
of logi-
cal unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Current
record set
(directory
partition)
to one or
beginning
address of
logical
unit (non-
directory
partition)

Set to

ending
address
of logi-
cal unit

Set to
beginning
address
of logi-
cat unit
(non-
directory
partition)

Set to

ending
address
of logi-
cal unit

REW

Skip first
directory
sector
(directory
partition)

Skip first
directory
sector
(directory
partition)

SECTION 4
JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background task that
permits the scheduling of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and 1/0-device
assignments.

4.1 ORGANIZATION

The JCP is scheduled for execution whenever an unsolicited
operator key-in request to the OC logical unit has a slash
(/) as the first character.

Once inttiated, the JCP processes all further JCP directives
from the S! logical unit.

If the St logical unit is a Teletype or a CRT device, the
message JC** is output to indicate the S| unit is waiting
tor JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input 1s keyed in.

it the Si logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
/ASSIGN directive (section 4.2.6).

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

Alt JCP directives are echoed to the SO logical unit if S| »
SO. All directives, except /C and /P have the time of day
append onto the front of the directive when echoed to SO.
The format is

HH:MM:SS /JCP directive

4.2 JOB-CONTROL PROCESSOR DIRECTIVES
This section describes the JCP directives:

a. Job-initiation/termination directives:

/JOB Start new job

/ENDJOB Terminate job in progress
/FINI Terminate JCP operation
/C Comment

/P Pause

/MEM Allocate extra memory for

background task

b. 1/0-device assignment and control directives:

/ASSIGN Make logical-unit assignment(s)
/SFILE Skip file(s) on magnetic-tape unit

/SREC Skip record(s) on magnetic-tape unit
or RMD partition

/WEOF Write end-of-file mark

/REW Rewind magnetic-tape unit or RMD
partition

/PFILE Position rotating memory-unit file

/FORM Set line count cn LO logical unit

/KPMODE Set keypunch mode

/OPEN Open VTAM line or terminal

/CLOSE Close VTAM line or terminal

/CFILE Close file on global logical unit

c. Language-Processor directives:

/DASMR Schedule DAS MR assembler
/FORT Schedule FORTRAN compiler

d. Utility directives:

/CONC Schedule system-concordance program
/SEDIT Schedule symbolic source-editor task
/FMAIN Schedule file-maintenance task
/LMGEN - Schedule load-module generator
/IOUTIL Schedule 170-utility processor

/SMAIN Schedule system-maintenance task

e. Programioading directives:

/EXEC Schedule loading and execution of a
load-modute from the SW unit file
/LOAD Schedule loading and execution of a

user background task

/ALTLIB Schedule the next background task
from the specified logical unit
rather than from the background
library

/DUMP Dump background at compietion ot
task execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (=). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i.e., before or after commas (or equal signs).
Aithough not required. a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash (/).

The general form of a job-controi statement is

/name,p(l1),p(2). .p(m

4.1

JOB-CONTROL PROCESSOR

where
name is one of the directive names given (any
other character string produces an
error)
each p(n) is a parameter required by the JCP or by

the scheduled task and defined below
under the descriptions of the individual
directives

Numerical data can be octal or decimal. Each octal number
has a leading zero.

For greater clarity in the descriptions of some directives,
optional periods, optional blank separators between

character strings, and the optional replacement of commas
by equal signs are omitted from descriptions.

Error messages applicable to JCP directives are given
Appendix A.4.

4.2.1 /JOB Directive*
This directive initializes all background system pointers

and flags, and stores the job name if one is specified. It
has the general form

/JOB,.name
where name is the name of the job and comprises up to
eight ASCI characters (additional characters are permitied
but ignored by the JCP).

The job name, if any, is then printed at the top of each
page for all VORTEX background programs

The occurrence of the /JOB directive causes the scheduling
of the background task V$ACT1. VSACT! s a dummy task
on BL which only performs an EXIT. However, VSACT1 may

be replaced by a user task to perform any desired
accounting function.

Example: Initialize the job TASKONE.

/30B, TASKONE

4.2.2 /ENDJOB Directive®

This directive initializes all background system pointers
and flags, and clears the job name. it has the form

/ENDJOB

42

The occurrence of the /ENDJOB directive causes the
scheduling of the background task VSACT2. VSACT? is a
dummy task on BL which only performs an EXIT. However,
V$ACT2 may be replaced by a user task to perform any
desired accounting function.

Example: Terminate the job in process.

/ENDJOB

4.2.3 /FINI (Finish) Directive*

This directive terminates all JCP background operations
and makes an EXIT request to the real-time executive RTE
component (section 2.1.11). i1t has the form

/FINI

To rescheduie JCP after a FINI, input any JCP directive
from the OC unit

The occurrence of the /FINI directive causes the scheduling
of the background task VSACT3. V$ACT3 is a dummy task
on BL which only performs an EXIT. However, VSACT3 may
be replaced by a user task to perform any desired
accounting function.

Exampie: Terminate JCP operations.

/FINI

* The JCP directives JOB, ENDJOB, and FINI reset ali
logical units and tabie 1 units to their default (system)
values. JOB and ENDJOB do not set the S logical unit.

4.2.4 /C (Comment) Directive

This directive outputs the specified comment to the SO and

LO logical units, thus permitting annotation of the listing. It

is not otherwise processed. It has the general form
/C,comment

where comment is any desired free-form comment.

Example: Annotate a listing with the comment Rewind all
mag tapes.

/C,REWIND ALL MAG TAPES

4.2.5 /MEM (Memory) Directive

This directive assigns additional 512-word blocks of mamn
memory to the next scheduled background task. It has the
general form

/MEM,n

where n is the number of 512-word blocks of main memory
to be assigned.

/MEM permits larger symbol tables for FORTRAN compila-
tions and DAS MR assemblies.

The total area of the 512-word blocks of memory plus the
background program itself cannot be greater than the total
area availabie for background and nonresident foreground
tasks. An attempt to exceed this timit causes the scheduled
task to be aborted.

Example: Allocate an add:tiona! 1024 words of main
memory to the next scheduied task.

/MEM, 2

4.2.6 /ASSIGN Directive

This directive equates and assigns particular logical units
to specific 1/0 devices. It has the general form

/ASSIGN, K1) =r(1).1(2) =1(2), . W(n)=r(n)

where

each Kn) is a logical-unit number (e.g., 102)
or name (e.g., SI)

each r(n) 1s a logical-unit number or name, or

a physical-device system name (e.g.,
TYQO, table 17-1)

The logical unit to the left of the equal sign in each pair is
assigned to the unit/device to the right.

If the controlier and unit numbers are omitted from the
name of a physical device, controller 0 and unit O are
assumed.

An inoperable device, i.e., one declared down by the
;DEVDN operator key-in request (section 17.2.10), cannot
be assigned. A logical unit designated as unassignable
cannot be reassigned.

Example: Assign the Pl logical unit to card reader CROO
and the LO logical unit to Teletype TY0O

/ASSIGN,PI=CR,LO=TY

JOB-CONTROL PROCESSOR

4.2.7 /SFILE (Skip File) Directive

This directive, which applies only to magnetic-tape units
and card readers, causes the specified logical unit to move
the tape forward the designated number of end-of-file
marks. It has the general form

/SFILE lun,neot

where

lun 15 the number or name of the
affected logical unit

neof is the number of end-of-file

marks to be skipped

It the end-of-tape mark 1s encountered betore the required
number of files has been skipped. the JCP outputs to the
SO and LO logical units the error message JCO5,nn. where
nn is the number of files remaining to be skipped.

Example: Skip three tiles on the Bl logical unit.

/SFILE,BI1,3

4.2.8 /SREC (Skip Record) Directive

This directive, which apphes only to magnetic-tape units,
card readers, and RMDs, causes the specified iogical unit
to move the tape the designated number of records in the
required direction. In the case of RMDs, word 4 of the FCB
is adjusted the appropriate number of records. It has the
general form

/SREC lun,nrec direc

where

lun ts the number or name of the
affected logical unit

nrec is the number of records to be
skipped

direc indicates the direction to be

skipped; F (default value) for
forward, or R for reverse.
Reverse skip does not apply to
the card reader.

it a file mark. end of tape, or beginning of tape s
encountered before the required number of records has
been skipped, the JCP outputs to the SO and LO logical
units the error message JCOS5,nn, where nn is the number
of records remaining to be skipped.

o
W

JOB-CONTROL PROCESSOR

Example: Skip nine records forward on the BO logical
urnt.

/SREC,BO, 9

4.2.9 /WEOF (Write End of File)
Directive

This directive writes an end-of-file mark on the specitied
logical unit. it has the generai form

/WEOF lun

where lun is the number or name of the affected logical
unit. (Not accepted for RMD.)

Example: Write an end-of-tile mark on the BO logical unit.

/WEOF , BO

4.2.10 /REW (Rewind) Directive
This directive, which applies only to magnetic-tape units

and RMDs, causes the specified logical unit(s) to rewind to
the beginning of tape. it has the general form

/REW un,lun, . fun
where lun is the number or name of a logical unit to be
rewound.
Example: Rewind the BO and PI logical units.

/REW, BO,PI

4.2.11 /PFILE (Position File) Directive

This directive, which applies only to RMDs and MT
assigned to global logical units causes the specified logical
unit to move to the beginning of the designated file. It has
the general form

/PFILE, lun,key,name
where
fun is the number or name of the
aftected logical unit. The
logical unit must be one of

the system defined logical
units which has a global FCB

44

key is the protection code required
to address lun

name is the name of the file to which
the logical unit is to be
positioned

Global file control blocks: There are eight giobal file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are SIFCB,
PIFCB, POFCB, SSFCB, BIFCB, BOFCB, GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

/PFILE lun key, name

where

lun is the number or name of the atfected
logical unit. The logical unit must be one
of the system defined logical units which
has a global FCB

key is the protection code required to
address lun

name 1s the name of the file to which the

logical umit is to be positioned

Global file control blocks: There are eight global file
control blocks (FCB, section 3.5.11) in the VORTEX system
that are reserved for background use. System background
and user programs can reference these global FCBs. The
/PFILE directive stores key and name in the corresponding
FCB before opening/rewinding the logical unit. To pass the
buffer address and size of the record to the corresponding
logical-unit FCB, make an RTE IOLINK service request
(section 2.1.13). The names of the global FCBs are S/IFCB.
PIFCB, POF(LB. SSFCB. BIFCB, BOFCB. GOFCB, and
LOFCB, where the first two letters of the name indicate the
logical unit.

Example: Position the P! logical unit to beginning of file
FILEXY, whose protection key is $

/PFILE,PI,$, FILEXY

4.2.12 /FORM Directive

This directive sets the specified hine count on the LO logical
unit. This is the number of lines printed by DAS MR

assembler or FORTRAN compiter before a top of form is
issued. The directive has the general form

/FORM lines

where tines is the number (from 5 to 9999, inclusive) of
iines to be printed before a top of form is 1ssued.

The default value of lines is defined at system-generation
time. If the directive contains a value outside the legal
range, the default value is used.

Example: Set a line-count value of 100.

/FORM, 100

4.2.13 /KPMODE (Keypunch mode)
Directive

This directive specifies the mode, 026 or 029, (BCD or

EBCDIC respectively) in which VORTEX is to read and
punch cards. It has the general form

KPMODE,m

where m s O for 026 mode, or 1 for 029 mode

Example: Specify that cards be read and punched in 029
keypunch mode.

/KPMODE, 1

4.2.14 /DASMR (DAS MR Assembler)
Directive

This directive schedules the DAS MR assembler (section
5.1) with the specified options for background operation on
priority level 1. It has the general form

/DASMR,p(1).p(2). ..p(n)

where each p(nj}, 1f any, 15 a single character specitying one
of the foillowing options:

Parameter Presence Absence

B Suppresses binary Output binary object
object

L Cutputs binary Suppresses output of
object on GO file binary object on GO

file

M Suppresses symbol- Output symbol-tabie
table histing listing

N Suppresses source Outputs source

hsting listing

JOB-CONTROL PROCESSOR

Parameter Presence Absence
\ E Assembles V75 Flags V75 extended
] extended instru instructions with
ctions. "*OP error’.
| Flags implicit Assembles implicit

indirect instru- indirect instructions
uctions with

“*il error’

The /DASMR directive can contain up to four such
parameters in any order.

The DAS MR assembler reads source records from the Pl
logical unit on the first pass. The PiI unit must have been
set to the beginning of device before the /DASMR directive
This can be done with an /ASSIGN (section 4.2.6), /SFILE
(section 4.2 7), /REW (section 4.2.10), or /PFILE (section
4.2.11) directive.

A load and-go operation requires, in addition, an EXEC
directive (section 4.2.22)

Example: Schedule the DAS MR assembler with no source
listing, but with binary-object output on the GO file.

/JOB,EXAMPLE
/PFILE,BO, ,BO
/DASMR,N,L

JOB initializes the GO file to start of file. If BO is assigned
to a rotating memory partition, a /PFILE.BO,,BO must pre-
cede the /DASMR directive to initialize the file (uniess the
assembly 1s partof a stacked job - see section 4 3 for sample
deck setup).

4.2.15 /FORT (FORTRAN Compiler)
Directive

This directive schedules the FORTRAN compiler (section
5.3) with the specified options for background operation on
priority level 1. It has the general form

/FORT p(1).p(2). .p(n)

where each p(n). if any, 1s a single character specifying one
of the following options:

Parameter Presence Absence
B Suppresses binary Output binary object
object
D Assigns two words Assigns one word to

to integer array
items and to inte
ger and logical
variables (ANSI
standard)

integer array items
and to integer and
logical variables

JOB-CONTROL PROCESSOR

Parameter

H

Presence

Generate code

using Floating

Point Processor
(FPP)

Outputs binary
object on GO file

Absence

Generate no FPP
instructions

Suppresses output of
binary object on GO
file

M Suppresses symbol Outputs symbol-table
table listing histing

N Suppresses source Outputs source
listing histing

o} Outputs object Suppresses object-
module listing module listing

X Compiles condi Compiles normally
tionally

F Generates code Generates subroutine

with calls to
faster firmware
routines (see
section 202)

calls

The /FORT directive can contain any or all such parame-
ters in any order.

Sampile deck formats are itlustrated in section 4.3.

The FORTRAN compiler reads source records from the Pl
logical unit. The Pt unit must have been set to the
beginning of device before the /FORT directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
42.7). /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.

A load-and-go operation requires, in addition, an /EXEC
directive (section 4.2.22)

Example: Schedule the FORTRAN compiler with binary
object, source, symboltable, and object-module
istings, normal compilation; and no binary-object output
un the GO file.

/FORT, O

4.2.16 /CONC (System Concordance)
Directive

This directive schedules the system concordance program
(section 5.2) for background operation. it has the form

/CONC,L

46

where L is an optional parameter to request that all
symbols in a source program be listed. Normally, CONC
only lists those symbols which were referenced.

The concordance program inputs from the SS logical unit
and uses the same source statements that are input to the
DAS MR assembiler. it outputs to the LO logical unit a
hsting of all symbols and their referenced locations in the
same mput program

The SS unit is set to the beginning of device before the
/CONC directive.

Example: Schedule the system concordance program.

/ASSIGN,PI=MT00
/REW,PI

/DASMR
/PFILE,SS,,SS
/CONC, L

4.2.17 /SEDIT (Source Editor)
Directive

This directive schedules the symbolic source editor (section

8) for background operation on priority level 1. It has the
form

/SEDIT
Schedule the symbolic source editor

Example:

/SEDIT

4.2.18 /FMAIN (File Maintenance)
Directive

This directive schedules the file maintenance task (section
9) for background operation on priority levet 1 It has the
form

/FMAIN
Schedule the file maintenance task

Example:

/FMAIN

4.2.19 /LMGEN (Load-Module Generator)
Directive

This directive schedules the load-module generator (section
6) for background operation on priority level 1 A memory
map 1s output unless suppressed The directive has the
general form

/LMGENM

where M, if present, suppresses the output of a memory
map

Example: Schedule the load module generator lask with
out a memory map.

/LMGEN , M

4.2.20 /IOUTIL (1/0 Utility) Directive

This directive schedules the 170 utility processor (section
10) for background operation on priority level O. The
directive has the form

/10UTIL
Example: Schedule the 1/0 utility processor.

/I0UTIL

4,2.21 /SMAIN (System Maintenance)
Directive

This directive schedules the system maintenance task
(section 16) for background operation on priority level 1.
The directive has the form

/SMAIN
Example: Schedule the system maintenance task

/SMAIN

4.2.22 /EXEC (Execute) Directive

This directive schedules the load-module loader to load and
execute a load module from the SW logical unit file. Add
LMGEN and GO usage since this is not a VORTEX system
task, execution is on priority level 0. The directive has the
general form

/EXEC,D

Where D, if present, dumps all of the background upon
completion ot execution. The dump format consists of eight
memory locations per line. Both octal and ASCII represen-
tation appear in the dump. During ASCIl dump non-ASCIi
characters appear as blanks. ASCHl dump is suppressed if
dump i1s to a TY or CT device.

The dump format consists of eight memory locations per
line as follows

JOB-CONTROL PROCESSOR

XXXXXX AAAAAA BBBBBB . HHHHHH

where XXXXXX is the starting memory address location of
the eight following data words and AAAAAA through
HHHHHH are the octal values of those locations. The
occurrence of an asterisk between two lines indicates that
all dump lines between those lines have the same value as
the previous line.

/EXEC can be used to create a load module (named SW)
on the SW logical unit and then schedule i1, or to execute
an existing load module on the SW logical unit. The action
taken depends on the setting of bit 2 of the low core flag
V$JCPF. if the bit is set. LMGEN is scheduled to read
binary from the GO logical unit and catalog the task on SW
f the bit is not set, the current load module on SW s
executed. This bit is set by perforrming a “'load and go”
assembly or compulation using the 'L option flag. This bit
is cleared by the loading of any background program.
(Note: JCP directives which do not load tasks, for
example, /ASSIGN, /PFILE, do not clear this bit.). The load
module on SW may be executed at anytime until SW s
modified (i.e., another load and-go, LMGEN, COMSY. or any
other task that writes to SW).

Example: Schedule the loading of a user icad module
from the SW unit file without a background dump

/EXEC

Schedule a FORTRAN load and go operation

/FORT, L
/EXEC

When a dump has been specified the dump wili be output
to the tist Output unit after the task exits or i1s aborted
Once the dump has started, it may be terminated by use of
the Operator Communication ;ABORT. When the dump is
aborted in this manner, it is required that the executing
task be aborted by a previous action

Example:

/EXEC,D Executes a load module
from SW unit tile re
questing background
dump on exit

3} ABORT, SW Causes the task to abort
and dump the background

; ABORT, JPDUMP Causes the background
dump to be aborted

; ABORT, SW Causes the task to be

released and JCP to be
reloaded

JOB-CONTROL PROCESSOR

4.2.23 /LOAD Directive

This directive schedules a user task, which must be present
in the background fibrary or alternate library, for back
ground execution on priority level 0. The directive has the
general form

/LOAD,name,p(1).p(2). .p(3)

where
name is the name of the user task being
scheduied
each p(n) is a parameter required by the user
(it any) task

tach parameter specified, if any, will be in the job-controt
buffer when the user task is scheduled. The parameter
string, which can extend to the end of the 80-character
buffer, will appear in the buffer exactly as it does in the
input directive. The address of the first word of the
parameter string is in location V$JCB.

Example: Schedule the user task TSKONE with parame-
ters ALPHAL and ALPHA?2

/LOAD, TSKONE , ALPHA 1, ALPHA2

4.2.24 /ALTLIB (Alternate
Library) Directive

This directive replaces the background hbrary with the
specified alternate library unit as the unit from which a
background task is to be loaded The directive has the
general torm:

/ALTLIB lun key

where

un 1s the number or name of the
alternate library logical unit

key s the protection code required

to address tun

This directive affects the ioading of the next task which
would normally be loaded from the background ibrary. It
affects the loading of VORTEX language processors and
utility tasks in addition to user tasks loaded with the . LOAD
directive.

"t has no effect on a /EXEC directive. After execution of the
background task, the background library is restored as the
logical unit from which background tasks are to be loaded.

4-8

Example: Schedule the user task TSKONE from logical unit
25, protection key N

/ALTLIB, 25,N
/LOAD, TSKONE

4.2.25 /DUMP Directive

This directive causes all of background to be dumped upon
completion of execution of a task executed from the
background tibrary or an alternate library. The dump
format is the same as the format for /EXEC.D (see section
4.2.22).

Example: Scheduie the execution of user task TSKONE with
a dump at completion of execution

/DUMP
/LOAD, TSKONE

4.2.26 /CFILE Directive

This directive, which applies only to RMDs and MTs
assigned to global logical units, causes the designated file
on the logical unit to be ciosed with update. It has the
general form

/CFILE lun key,name

where
lun 1s the name or number of the a*fected
logical unit. The logical unit must be
one of the global fogical units
key 1s the protection code required to
address lun
name is the name of the file on lun to

be closed with update.

Exampie: Close the file FILEA on logical unit PO with no
protection code.

/CFILE PO, FILEA

4.2.27 /DBGEN (Data Base Generator) Directive

This directive schedules the Data Set Generator Program

(see TOTAL Manual for more detailed information) for

background operation on priority level 1. {t has the form
/DBGEN

Example: Schedule the Data Base Generator for TOTAL

/DBGEN

4.2.28 /PLOAD Directive

This directive schedules a user task, which must be present
in the background library or alternate library, for back
ground execution on priority ievel 1. The directive has the
general form

/PLOAD xxxxxx,p(1),p(2). .p(n)
where

AXXXXX is the name of the user task being
scheduled. The name must not con-
tain numeric characters.

p(n) is a parameter required by the user
task.

tach parameter specified, if any, will be in the job-control
hutter when the user task is scheduled. The parameter
string, which can be extended to the end of the 80
character buffer, will appear in the butfer exactly as it does
in the input directive. The address of the first word of the
parameter string is in location V$JCB.

4.2.29 /FMUTIL Directive

This directive causes files, directories, and/or partitions to
be dumped or loaded from RMD's or magnetic tapes, and
schedules the file maintenance utility (section 21) for
background operation on priority level 1. The directive has
the form

/FMUTIL
Examples: Schedule File Maintenance Utility.

/PMUTIL

4.2.30 /RPG (RPG Il Compiler) Directive

This directive schedules the RPG ! compiler (section 55)
with the specified options for background operations on
priority level 1. It has the general form

/RPG,p(1),p(2).. .p(n)
where

p(n) is a single character specifying one
of the following options:

JOB-CONTROL PROCESSOR

Parameter Presence Absence
B Suppresses binary Output binary object.
object.
[0} Include RPG debug Suppress debug features.
features in object
module.
t Outputs binary Suppresses output of

object on GO file.

M Suppresses symbol Outputs symbol table
tabie listing. listing.

N Suppresses source Outputs source listing.
listing.

The /RPG directive can contain up to five such parameters
in any order.

Sample deck formats are illustrated in section 4 3
The RPG Il compiler reads source records from the Pl
logical unit. The P!{ unit must have been set to the
beginning of device before the /RPG directive. This can be
done with an /ASSIGN (section 4.2.6), /SFILE (section
4.2.7), /REW (section 4.2.10), or /PFILE (section 4.2.11)
directive.
Example: Schedule the RPG tI compiler with binary object.
source, and symbol-table listings; normal compilation; and
no binary object output on the GO file.

/RPG

Example: Schedule RPG 1! for normal compilation but with
binary object output on the GO file instead of the BO file.

/RPG,L,B

4.2.31 /P (Pause) Directive

This directive outputs the specified comment to the SO and

LO logical units and then causes JCP to be suspended. in

addition to the specified comment. instructions are output

to SO on how to resume JCP. It has the general form
/P,comment

where

comment is any desired free-form
comment

Example: Request that the current job requires MT = 800
on MTO0O0 before 1t continues.

/P, Mount MT #800 on MTO0O0

binary object on GO file.

JOB CONTROL PROCESSOR

in addition, JCP will output:

Pause~--WHEN READY, TYPE --;RESUME, JCP

4.3 SAMPLE DECK SETUPS

The batch-processing facilities of VORTEX are invoked by
JCP control directives in combination with programs and
data. These elements form the input job stream to
VORTEX. The input job stream can come from various
peripherals and be carried on various media. These
examples illustrate common job streams and deck prepara
tron techniques.

Example 1 - Card Input: Compile a FORTRAN [V main
program (with source listing and octal object listing), and
assemble a DAS MR subprogram. Then load and execute
the linked program

/JOB,EXAMPLE 1
/FORT,L,0

{Source Deck)

/DASMR, L

(Source Deck)

/EXEC
/ENDJOB

Exampie 2 - Card Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The DAS MR program is cataloged on
RMD partition DOOK under file name USER1 with protec-
tion key U. Assign the P! logical unit to RMD partition
DOOK, open file name USER1 for the assembler, assemble
the program, and execute the program with a dump.

/JOB, EXAMPLE2
/ASSIGN,PI=DOOK
/PFILE,PI,U,USER
/DASMR, L
/PPILE,SS,,SS
/CONC

/EXEC,D

/ENDJOB

Example 3 - Card input: Assemble a DAS MR program
(with source listing and object-module output on the BO
logical unit). Assign the Pl logical unit to magnetic tape
unit MT00, the PO fogical unit to dummy device, the SS
logical unit to the PI logical unit, the BO logical unit to
RMD partition DO0J, and output the object module to file
name USER2 with no protection key. Before assembly,

posttion the Pl logical unit to the third file. Allocate four
additional 512 word blocks for the DAS MR symbol-table
area.

/JOB,EXAMPLE3
/ASSIGN,PI=MT00,PO=DUM,SS=PI,BO=D00J
/REW,PI

/SFILE,PI,2

/PFILE,BO, ,USER2

/MEM, 4

/DASMR

/ENDJOB

Example 4 - Card Input: After generation of a VORTEX
system, use FMAIN to initialize and add object modules to
the object-module library (OM) with protection key D.
Assign the Bi logica! unit to CROO.

/JOB, EXAMPLEY
/ASSIGN,BI=CRO0
/FMAIN
INIT,OM,D
INPUT,BI
ADD,OM,D

(Object Modules)

(2789 EOF Card)

/ENDJOB

Example 5 - Card Input: Load and go operation. Compile a
FORTRAN IV main program, a subprogram and assemble a
DASMR subprogram. Save output on BO. Execute the
linked programs

/JOB,EXAMPLES
/PFILE,BO, ,BO
/FORT,L

.
»
.

{Source deck FORTRAN main program)

{Source deck FORTRAN subprogram)

/DASMR, L
(Source deck DASMR subprogram)

/EXEC
/FINI

SECTION 5
LANGUAGE PROCESSORS

The VORTEX operating system supports three language
processors: the DAS MR assembler (section 5.1), the
FORTRAN IV compiler (section 5.3), and the RPG IV
compiler (section 5.4), plus the ancillary concordance
program (section 5.2.).

5.1 DAS MR Assembler

DAS MR is a two-pass assembler scheduled by job-controt
directive /DASMR (section 4.2.14). DAS MR uses the
secondary storage device urut for pass 1 output. It reads a
source module from the Pl logical unit and outputs it on
the PO umit. The source input for pass 2 i1s entered from
the SS fogical unit.

When an END statement is encountered. the SS unit 1s
repositioned and reread. During pass 2, the output can be
directed to the BO and/or GO units tor the object module
and the LO unit for the assembly listing. The SS or PO file,
which contains a copy of the source module, can be used as
input 10 a subsequent assembly.

A DAS MR symbol consists of one to six characters, the
first of which must be alphabetic, with the rest alphabetic
or numeric. Additional aiphanumeric characters can be
appended to the first six characters of the symbol to form
an extended symbol up to the limit imposed by a single line
of code. However, only the first six characters are
recognized by the assembler.

DAS MR symbols may also be formed from the pound sign,
exciamation mark or dollar sign, in tial and other
positions

Since the DAS MR assembler is used within the VORTEX
system under VORTEX /0 control, the VORTEX user can
specify the desired 1/0 devices. However, the PO and SS
logical units must be the same magnetic-tape unit or RMD
partition. Except when Pi is equal to SS as shown in section
4.3 (example 3).

DAS MR has a symbol-table area for 175 symbols at five
words per symbol. To increase this area, input before the
/DASMR directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, and object modules are blocked two 60
word modules per record. However, in the case where S| =
Pl = RMD, records are not blocked but assumed to be one
per VORTEX physical record. When an input file contains
more than one source module each new source module
must start at a physical record boundary. Unused portions
of the last physical record of the previous source modules
should be padded with blank records. Proper blocking may

be ensured by following the END statement of the previous
source module with two blank records.

Detailed references to the DAS MR assembly language are
given in the appropriate Varian reference manuals (see
section 1.3). These references include descriptions of the
directives recognized by the assembler (table 5-1), except
for the title directive which is discussed below. DAS MR will
assemble the entire V75 extended instruction set if the E
parameter is specified in the /DASMR directive.

Table 5-1. Directives Recognized by the DAS MR

Assembler
BES IFF
BSS IFT
CALL LIST
COMN LOC
CONT MAC
DATA MZ2E
DETL NAME
DUP NLIS
EJEC NULL
END OPSY
EMAC ORG
ENTR PZE
EQU RETU
EXT SET
FORM SPAC
GOTO SMRY

TITLE

Error messages applicable to the DAS MR assembler are
given in Appendix A.5.1

5.1.1 TITLE Directive

This directive changes the htle of the assembly hsting and
the identification of the ohject program It has the general
form

TITLE symbol

where symbol is the new title of the assembly hsting: the
label field being ignored by the assembler. There are a
maximum of eight characters in symbol.

At the beginning of assembler pass 1. the title of the
assembly listing and the identification of the object
program are initialized as blanks. When a TITLE directive
i1s encountered, title and 1dentification assume the symbol
given in the directive.

Examples: Entitle the assembly fisting and object pro
gram NEWTITLE.

TITLE NEWTITLE

Reinitialize the title and 1dentitication, obliterating the ol¢
title.

TITLE

LANGUAGE PROCESSORS

5.1.2 VORTEX Macros

The DAS MR assembler contains macro definitions for the
real-time executive (RTE, section 2.1) and i/0 control (IQC,
section 3.5) macros. Figure 5-1 iliustrates these definitions.

5-2

L IR IR B R 2N 4

READ

L B R K R - B 2

WRITE

S PR

L - 2R B 2R 3R

REW

* B % B % % %

MAC

EXT vV$1I0C

JSR 0404,1

DATA 0100000

FORM 1,3,4,8

P P(1),P(2),P(3),P(4)
DATA P(5),0,0

EMAC

VORTEX READ MACRO DEFINITION
READ DCB,LUN,W M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),p(u4),0,P(2),P(1)
EMAC

VORTEX WRITE MACRO DEFINITION
WRITE DCB,LUN ,W ,M
WHERE DCB = FPCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),p(4),4,p(2),P(1)
EMAC

VORTEX WRITE END OF FILE MACRO DEFINITION
WEOF DCB,LUN,W

WHERE DCB = PCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.,
, W = WAIT OPTION
MAC ! 3 . '
M1 P(3),0,2,P(2),P(1)
EMAC

VORTEX REWIND MACRO DEFINITION
REW DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,3,P(2),2(1)
EMAC

VORTEX SKIP RECORD MACRO DEFINITION

SREC DCB,LUN,W, M
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
M = I/0 MODE

Figure 5-1. VORTEX Macro Definitions for DAS MR

SREC

#* % B % BB RESEE R

STAT

* % B ¥ @

DCB

LANGUAGE PROCESSORS

MAC
M1 P(3),P(4),4,p(2),P(1)
EMAC

VORTEX FUNCTION MACRO DEFINITION
FUNC DCB,LUN,W
WHERE DCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.
W = WAIT OPTION
MAC
M1 P(3),0,5,P(2),p(1)
EMAC

VORTEX OPEN MACRO DEFINITION
OPEN FCB,LUN,W M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = 1/0 MODE
MAC
M1 P(3),P(4),6,P(2),P(1)
EMAC

VORTEX CLOSE MACRO DEFINITION

CLOSE FCB,LUN,W,M
WHERE FCB = FCB OR DCB ADDRESS
LUN = LOGICAL UNIT NO.

W = WAIT OPTION

M = I/0 MODE
MAC
M1 P(3),P(4),7,p(2),p(1)
EMAC

VORTEX STATUS MACRO DEFINITION
STAT FCB,ERR,EOF ,EOD, BUSY
WHERE FCB = FCB OR DCB ADDRESS
ERR = ERROR RETURN ADDRESS
EOF = END OF FILE, BEGINNING
OF DEVICE, OR BEGINNING OF
TAPE RETURN ADDRESS
EOD = END OF DEVICE OR END OF TAPE
RETURN ADDRESS
BUSY = BUSY RETURN ADDRESS

MAC .
EXT V$10ST P
JSR 0373,1 S

DATA P(1),P(2),P(3),P(4),P(5)

EMAC

VORTEX DEVICE CONTROL BLOCK MACRO DEFINITION
DCB RL, BUF,CNT
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS

CNT = COUNT
MAC
DATA P(1),P(2),P(3)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-3

LANGUAGE PROCESSORS

5-4

*® % % R B 8 % F 8

FCB

M2

LK R BE BN AR 2R 2R 2R B)

SCHED

* % & *»

EXIT

* % %

SUSPND

LR SR R R 3N)

VORTEX
FCB

DATA
FORM

DATA
EMAC

MAC
EXT
JSR
EMAC

VORTEX
SCHED

MAC
M2
FORM
F
FORM
F
DATA
EMAC

VORTEX
EXIT

MAC
M2
DATA
EMAC

VORTEX
SUSPND

MAC
M2
FORM
F
EMAC

VORTEX
RESUME

FILE CONTROL BLOCK MACRO DEFINITION
RL,BUF,AC,KEY, 'N1’','N2', 'N3"'
WHERE RL = RECORD LENGTH

BUF = DATA ADDRESS
AC = ACCESS MEBTHOD
KEY = PROTECTION KEY
Nt = FIRST 2 ASCII FILE NAME
N2 = SECOND 2 ASCII FILE NAME
N3 = THIRD 2 ASCII FILE NAME

P(1),pP(2)

6,2,8

0,P(3),P(4)
0,0,0,0,P(5),P(6),P(7)

VSEXEC
0406, 1

SCHEDULE MACRO DEFINITION
PL,W,LUN,KEY, 'N1', 'N2' K 'N3’

WHERE PL = PRIORITY LEVEL
W = WAIT OPTION
LUN = LOGICAL UNIT NO.
KEY = PROTECTION KEY
N1 = FIRST 2 ASCII TASK NAME
N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

3,1,6,1,5
o,p(2),1,0,P(1)
8,8

P(4),pP(3)

P(5),P(6),P(7)

EXIT MACRO DEFINITION

0200

SUSPEND MACRO DEFINITION
T
WHERE T = TYPE OF SUSPENSION

RESUME MACRO DEFINITION
"N1','N2','N3"’
WHERE N1 = FIRST 2 ASCII TASK NAME
N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

RESUME

L B B BN R B

ABORT

* # # ® »

ALOC

* & %

DEALOC

L 2R JEE IR JNE I)

PMSK

F1

LI B IR R JEE Y 3

DELAY

LANGUAGE PROCESSORS

MAC

M2

DATA o400,P(1),P(2),P(3)
EMAC

VORTEX ABORT MACRO DEFINITION
ABORT 'N1','N2", 'N3’
WHERE N1 = FIRST 2 ASCII TASK NAME

N2 = SECOND 2 ASCII TASK NAME
N3 = THIRD 2 ASCII TASK NAME

MAC

M2

DATA 0500,P(1),P(2),P(3)

EMAC

VORTEX ALLOCATE MACRO DEFINITION

ALOC ADDR
WHERE ADDR = ADDRESS OF REENTRANT
SUBROUTINE
MAC
M2
DATA 0600,P(1)
EMAC

VORTEX DEALLOCATE MACRO DEFINITION
DEALOC

MAC

M2

DATA 0700
EMAC

VORTEX PRIORITY INTERRUPT MASK MACRO DEFINITION
PMSK NUM, MSK, TYP
WHERE NUM = PIM NUMBER

MSK = PIM LINE MASK

TYP = ENABLE OR DISABLE TYPE
MAC
M2
FORM 4
F1 0
FORM 8

P

EMAC

VORTEX DELAY MACRO DEFINITION
DELAY T5,TM,DT
WHERE T5 = DELAY TIME IN 5 MILLI-
SECOND INCREMENTS
TM = DELAY TIME IN 1 MINUTE
INCREMENTS

DT = DELAY TYPE
MAC

M2

FORM 4
F 0
DATA | 4
EMAC

Figure 5-1. VORTEX Macro Detinitions for DAS MR (¢ ntinued)

(¥
o

LANGUAGE PROCESSORS

5-6

L
- VORTEX LDELAY MACRO DEFINITION
- LDELAY T5, TM, LUN,KEY
* WHERE TS5 = DELAY TIME IN 5-MILLISECOND
. INCREMENTS
- TM = DELAY TIME IN 1-MINUTE
. INCREMENTS
* LUN = LOGICAL UNIT NUMBER FOR TASX LOAD
- KEY = PROTECTION KEY
LDELAY MAC
M2
DATA 01107,P(1),P(2)
FORM 8,8
| 4 P(4),p(3)
EMAC
-
. VORTEX TIME REQUEST MACRO DEFINITION
* TIME
L
TIME MAC
M2
DATA 01200
EMAC
»
* VORTEX OVERLAY MACRO DEFINITION
» OVLAY TF, 'N1','N2’, 'N3’
* WHERE TF = TYPE PFLAG
* . N1 = PIRST 2 ASCII TASK NAME
* N2 = SECOND 2 ASCII TASK NAME
* N3 = THIRD 2 ASCII TASK NAME
*
OVLAY MAC
M2
F FORM 4,6,5,1
F 0,013,0,P(1)
DATA P(2),P(3),P(4)
EMAC
*
* VORTEX IOLINK MACRO DEFINITION
* IOLINK LUN, BUF, NUM
* WHERE LUN = LOGICAL UNIT NO.
* BUF = USER'S BUFFER LOCATION
* NUM = BUFFER SIZE
IOLINK MAC
M2
F FORM 4,6,6
F 0,014,p(1)
DATA P(2),P(3)
EMAC
L
-
» VORTEX PASS MACRO DEFINITION
. PASS COUNT, FROM, TO
* WHERE COUNT = WORD COUNT
* PROM = PROM ADDRESS
* TO = TO ADDRESS
»

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

PASS

* % % % @

TBEVNT

MAC
M2
FROM
3
DATA
EMAC

4,6,6
0,016
plt),

LANGUAGE PROCESSORS

. 0
p(2),p(3)

VORTEX TBEVNT MACRO DEFINITION
(TBEVNT) VALUE, x DISP, ,C/S

WHERE

VALUE = IS A BIT MASK

DISP =

c/s

OPTIONS:

IMPLEMENTATION:

MAC
M2
DATA
DATA
EMAC

01700
P(1),

1S THE TIDB WORD TO BE ALTERED.
IT IS EXPRESSED BY WAY OF A NUMBER,
THE DISPLACEMENT (OR POSITION) OF THIS
WORD IN THE TIDB.

IS THE CLEAR/SET INDICATION (0 = CLEAR,
1 = SET)

BOTH DISP AND C/S ARE OPTIONAL AND
THE DEFAULT FOR BOTH IS 0.

WHEN DISP = 0 THE ACTION DEPENDS ON
THE VALUE OF VALUE:

VALUE, IF 0-177776, IS SET INTO
THE REQUESTING TASK'S TIDB TBEVNT
WORD. IF VALUE IS 0177777, RETURN
IS WITH THE REQUESTOR'S TBEVNT IN
THE A REGISTER

WHEN DISP = 0, DISP WILL BE ALTERED
ACCORDING TO VALUE AND C/S.

C/s = 0, ALL THE BITS IN DISP CORRESPONDING

TO THE Z2ERO (0) BITS IN VALUE
WILL BE RESET TO 0.

C/S = 1, ALL THE BITS IN DISP CORRESPONDING

TO THE ONE (1) BITS IN VALUE
WILL BE SET TO 1.

P(2),P(3)

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-7

LANGUAGE PROCESSORS

. VORTEX ALLOCATE PAGE MACRO DEFINITION
» ALOCPG N,LOGICA ADDR,REJECT ADDR
* WHERE N = NUMBER OF PAGES TO ALLOCATE
* LOGICAL ADDR = LOGICAL ADDRESS
. MODULO 01000, WHERE
. PAGES ARE ALLOCATED
. REJECT ADDR = ERROR RETURN ADDRESS
»
ALOCPG MAC
M2
DATA 02000
DATA P(1)
DATA p(2)
DATA P(3)
EMAC
.
. VORTEX DEALLOCATE PAGE MACRO DEFINITION
. DEALPG N,LOGICAL ADDR,REJECT ADDR
. WHERE N = NUMBER OF PAGES TO DEALLOCATE
. LOGICAL ADDR = LOGICAL ADDRESS,
. MODULO 01000, WHERE
* PAGES ARE TO BE
* DEALLOCATED
. REJECT ADDR = ERROR RETURN ADDRESS
»
|
DRALPG MAC
M2
DATA 02100
DATA P(1)
DATA P(2)
DATA P(3)
EMAC
*
* VORTEX MAPIN MACRO DEFINITION
* MAPIN N,LOBICAL ADDR,BUFFER ADDR,REJECT ADDR
* WHERE N = NUMBER OF PAGES TO BE MAPPD
. LOGICAL ADDR = LOGICAL ADDRESS, MODULO
* 01000, WHERE PAGES ARE TO
. BE ALLOCATED
. BUFFER ADDR = PHYSICAL PAGE NUMBER
* OR BUFFER ADDRESS CON-
. TAINING PHYSICAL PAGES
hd TO BE MAPPED
* REJECT ADDR = ERROR RETURN ADDRESS
»
*
MAPIN MAC
M2
DATA 02200
DATA P(1)
DATA P(2)
DATA P(3)
DATA Pla)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-8

LANGUAGE PROCESSORS

* VORTEX PAGE NUMBER MACRO DEFINITION
» PAGNUM LOGICAL ADDR
* WHERE LOGICAL ADDR = ADDRESS WITHIN THE
. REQUESTING TASK'S VIRTUAL
. MEMORY WHERE IDENTIFICATION
. OF THE ASSIGNED PHYSICAL
. ' PAGE IS REQUIRED
] j
Y /’\"/ I
PAGNUM MAC Y
M2
DATA 02300
DATA P(1)
EMAC

Figure 5-1. VORTEX Macro Definitions for DAS MR (continued)

5-9

LANGUAGE PROCESSORS

5.1.3 Assembly Listing Format constant V$PLCT, with each line containing no more than
120 characters. Each page has a page number and title
Figure 5-2 is a sample listing following the format described line followed by one blank line, and then the program
in this section. listing containing two lines less than the number specified
by VSPLCT. (This specification can be changed through the
Page format: The assembly listing is limited to the job-control processor (JCP).)

number of lines per page specified by the VORTEX resident

PAGE 23 01/22/72 PROG1 VORTEX DASMR vV$JCP
588 BJEC
589 »
590 = SUBROUTINE PRINTS JCP DIRECTIVE ON SO AND LO DEVICE
591 =)
000660 074056 A 592 JCPRT STX JSPRX
000661 064056 A 593 STB JCPRB
000662 010412 A 594 LDA V$JCB GET BUFFER ADDRESS
000663 005311 A 595 DAR
000664 054003 A 596 STA 4l SETUP LOFCB
597 IOLINK LO,*, 41
000665 006505 A
000666 000604 E
000667 001405 A
000670 000665 R
000671 000051 A
000672 030400 A 598 LDX VSLUT1 ADRS OF LOG UNIT TBL
000673 015003 A 599 LDA SO, X
0006784 150463 A 600 ANA BM377 SO CUR ASSIGNMT
000675 058274 A 601 STA JCTA
000676 015002 A 602 LDA SI,X
000677 150463 A 603 ANA BM377 SO CUR ASSIGNMT
000700 144271 A 604 sSuUB JCTA SO, SI SAME LUN
000701 001010 A 605 JAZ JCPR1
000702 000714 R
000703 017000 I 606 LDA JCFBCS+3 STORE 'LOFCB' ADRS IN CALL
000704 054004 A 607 STA *45
608 WRITE LOFCB,S$0,0,1 NG - WRITE TO SO
000705 006505 A
000706 000630 E
000707 100000 A
000710 010403 A
000711 000633 E
000712 000000 A
000713 000000 A
000714 030400 A 609 JCPR1 LDX VSLUT1
000715 015005 A 610 LDA LO,X
000716 1508463 A 611 ANA BM377 LO CUR ASSIGNMT
000717 1844252 A 612 SUB JCTA LO, SO SAME LUN
000720 001010 A 613 JAL JCPRE YES
000721 000733 R
000722 017000 A 614 LDA JCFCBS+3 STORE 'LOFCB’ ADRS IN CALL
000723 054004 A 615 STA 5
616 WRITE LOFCB,L0,0, 1 NO - WRITE TO LO

Figure 5-2. Sample Assembly Listing

At the end of the assembly, the following information is
printed after the END statement:

a. Aline containing the subheading ENTRY NAMES

b. All entry names (in tour columns), each preceded by its
value and a flag to denote whether the symbol is
absolute (A), relocatable (R), or common (C).

¢. Alinecontaining the subheading EXTERNAL NAMES

d. All external names (in four columns), each preceded by
its value and a fiag to denote that the symbol is external
()

e Aline containing the subheading SYMBOL TABLE

t. The symbol table (in four columns), each symbol
preceded by its value and a flag to denote whether the
symbol is absolute (A), relocatable (R), common (C),
or external (E) -

g A line containing the subheading mmmm ERRORS
ASSEMBLY COMPLETE, where mmmm is the
accumulated error count expressed as a decimal
integer, right-justified and left-blank-filled

Line format: Beginning with the first character position,
the format for a title line is:

a. Oneblank

b. The word PAGE

¢. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

t. Eight character positions that contain the current date
obtained from the VORTEX resident constant VSDATE

g. Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant VSJNAM

i. Twoblanks

)} Theword VORTEX

k. Two blanks

I. Theword DASMR

m. Two blanks

n. Eight character positions that contain the program titie
from the TITLE directive

0. Blanks through the 120th character position

LANGUAGE PROCESSORS

Beginning with the first character position, the format for
an assembly line is:

a. Oneblank

b. Six character positions to display the location counter
(octal) of the generated data word

¢. Oneblank

d. Six character positions to display the generated data
word (octat)

e. Oneblank

f. One character position to denote the type of generated
dataword: absolute (A), relocatable (R), common (C),
external (E), literal (L), or indirect-address pointer
generated by the assembier ()

g. Oneblank

h. Four character positions containing the decimal
symbolic source statement line number, right-justified
and left-blank-filled

i. Oneblank

j. Eighty character positions that contain the image of the
symbolic source statement. (If the symbolic source
statement is not a comment statement, the label,
operation, and variable fields are reformatted into
symblolic source statement character positions 1, 8,
and 16, respectively. If commas separate the label,
operation, and variable fields, they are repiaced by
blank characters.)

k. Blanks, if necessary, through the 120th character
position

Error Chaining: !f syntax errors occur during an assembly
error, chaining is provided to assist in finding the errors. If
errors occur, the error message at the end of the assembly
contains a decimal value within parentheses corresponding
to the source line number at which the last error occurred.
The line number referenced in turn references the next line
number containing an error. The last line number
containing an error does not have a chaining reference. If
no errors occurred, the error message does not contain a
chaining reference.

5.2 CONCORDANCE PROGRAM

The background concordance program (CONC) provides an
indexed listing of all source statement symbols, giving the
number of the statement associated with each symbol and
the numbers of all statements containing a reference to the
symbol. CONC is scheduled by job-controf directive /CONC
(section 4.2.16). Upon completion of the concordance
listing, control returns to the JCP via EXIT.

input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system

5-11

LANGUAGE PROCESSORS

global file control block SSFCB. If the SS logical unit is an
RMD, a /REW or /PFILE directive (section 10) establishes
the FCB before the /CONC directive is input to the JCP.

CONC has a symbol-table area to process 400 no-reference
symbols at five words per symbol, plus 400 referenced
symbols (averaging five references per symbol) at ten
words per symbol. To increase this area, input before the
/CONC directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
approximately 75 symbols.

CONC processes both packed records (three source
statements per 120-word VORTEX physical record) and
unpacked records (one source statement per record).

5.2.1 fnput

CONC receives source-statment input from the SS logical
unit. There is, however, no positioning of the SS unit prior
to reading the first record. The source statements are
identical with those input to the VORTEX assembler and
thus conform to the assembler syntax ruies.

As the inputs are read, each source statement is assigned
a line number, 1, 2, etc., which is identical with that
printed on the assembly listing. When a symbol appears in
the label field of a symbolic source statement, the line
number of that source statement is assigned to the symbol.
When the symbol appears in the variable field of a source
statement, the line number of that statement is used as a
reference for the symbol.

5.2.2 Output
CONC outputs the concordance listing on the LO logical
unit. Output begins when one of the foliowing events
OCCurs.

a. CONC processes the source statement END

b. Another job-control directive is input

c. An SSend of file or end of device is found

d. Areading error is found

e The symbol-table area is filled
It the output occurred because the symboi-table area of
memory was full, CONC clears the concordance tables,
outputs error message CNO1, and continues until one of
the other terminating conditions is encountered. In all

other cases, CONC terminates by calling EXIT.

The concordance listing is made in the order of the ASCII
values of the characters comprising the symbols.

Beginning with the first character position, the format for a
title line is:

a. Oneblank
b. The word PAGE
¢. Oneblank

d. Four character positions that contain the decimal page
number

e. Twoblanks

f. LEight character positions that contain the date
obtained from the VORTEX resident constant VSDATE

g Twoblanks

h. Eight character positions that contain the program
identification obtained from the VORTEX resident
constant V§JNAM

i. Two blanks

j. Theword VORTEX

k. Two blanks

1. Theword CONC

m. Blanks through the 72nd character position

Beginning with the first character position, the format for a
concordance cross-reference listing is:

a. Twoblanks

b. Four character positions that contain the decimal line
number of the source statement assigned to the symbol
in item (e) below

c. Onebilank

d. One character position containing an asterisk (*) if
there are no references to that symbo! (otherwise
blank)

e. Six character positions containing the symbol being
listed

f. Two blanks

g Four character positions that contain the decimal line
number of a source statement referencing the symbol
in item (e) above

h. ltems (f) and (g) are repeated as necessary for each
source statement referencing the symbol in item (e)
above, where up to nine references are placed on the
first line, and subsequent references on the next
line(s). Continuation lines that may be required for
ten or more references to the same symboi do not
repeat items (a) through (e)

i. Bianks through the 72nd character position of the last
line of the entry

Figure 5-3 illustrates the concordance listing.

PAGR 1 09/22/71

509 B 841 859 879
1074 1112 1230

261 B10O *

262 B .

263 B12 b

1206 ODATE 1180 1182 1190

1937 ONUM 895 928 936
1406 1418

LANGUAGE PROCESSORS

V$OPCM VORTEX CONC

990 1001 1Q02 1012 1068 1072

1017 1182 1190 1196 1254 1284

Figure 5-3. Sample Concordance Listing

5.3 FORTRAN |V COMPILER

The FORTRAN IV compiler is a one-pass compiler sched-
uled by job-control directive /FORT (section 4.2.15). The
compiler inputs a source module from the Pl logical unit
and produces an object module on the BO and/or GO units
and a source listing on the LO unit. No secondary storage
is required for a compilation.

It a fatal error is detected, the compiler automatically
terminates output to the BO and GO units. LO unit output
continues. The compiler reads from the Pi unit until an
END statement is encountered or a control directive is
read. Compilation aiso terminates on detection of an /0
error or an end-of-device, beginning-of-device, or end-of-file
indication from 1/0 control.

The output comprises relocatable object modules under all
circumstances: main programs and subroutines, func-
tion, and block-data subprograms.

Error messages applicable to the FORTRAN IV compiler are
given in Appendix A.5.2.

FORTRAN 1V has conditional compilation facilities imple-
mented by an X in column 1 of a source statement. When
the X appears ia the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a biank). When the X is not present, all
conditional statements are ignored by the compiler. X lines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present.

FORTRAN 1V has a symbol-table area for approximately 70
symbols (i.e.,, names), if none of the logical units used is
assigned to an RMD device. Each RMD assignment
requires buffer space of 120 words (except when BO = GO
= RMD, in which case BO and GO use the same buffer)
and the symbol capacity is reduced by 24 symbols per
butfer. To increase the symboi-table area, input before the
/FORT directive a /MEM directive (section 4.2.5), where
each 512-word block enlarges the capacity of the table by
100 symbols. !t a larger symbol-table is used, greater
subexpression optimization is possible.

A VORTEX physical record on an RMD is 120 words. Source
records are blocked three 40-word records per VORTEX
physical record, object modules are blocked two 60-word
modules per record, and list modules are output one record
per physical record. However, in the case where S| = P} =

RMD, records are not blocked but assumed to be one per
VORTEX physical record. When the file contains more than
one source module, each new source module must start at
a physical record boundary. The unused portion of the last
physical record of the previous module should be padded
with blanks.

Table 5-2 lists the VORTEX realtime executive (RTE)

service request macros available through FORTRAN V.
These macros are detailed in section 2.1.

Table 5-2. RTE Macros Available Through FORTRAN 1V

ABORT EXIT SCHED
ALOC OVLAY SUSPND
DELAY PMSK TIME
LDELAY RESUME PASS

5.3.1 FORTRAN |V Enhancements

The VORTEX FORTRAN IV language additions and en-
hancements make the VORTEX FORTRAN compiler more
consistent with IBM FORTRAN (level G). Except for these
additions and enhancements, FORTRAN compilation and
execution with the VORTEX operating system is the same
as with the Master Operating System (MOS) described in
the FORTRAN |V Reference Manual (98 A 9902 03x).

FORTRAN-.complied programs can execute in either fore-
ground or background.

Detailed information on the VORTEX FORTRAN [V lan.
guage additions and enhancements are given in the
VORTEX FORTRAN |V Reference Manual (98 A 9902 04x)

5.3.1.1 Variables

VORTEX FORTRAN |V variables are identifiers which
consist of a string of one to six alphanumeric characters
and correspond to the type of data the variable represents
Variables are classified into the following five fundamental
types: INTEGER. REAL. DOUBLE PRECISION, COMPLEX.
and LOGICAL

The following list shows each variable type with its
associated standard and optiona! length (in bytes):

LANGUAGE PROCESSORS

Variable Type Standard Optional
INTEGER 2 4
REAL 4 8
COMPLEX 8

LOGICAL 2

DOUBLE PRECISION 8

5.3.1.2 Constants

There are four categories of VORTEX FORTRAN IV con-
stants: NUMERICAL, LOGICAL LITERAL, and HEXADECI
MAL. These four constant data constructions are discussed
below.

NUMERICAL constants are integer, real, or complex
numbers. Integer constants may be positive, zero, or
negative. If the constant has so sign, it is interpreted as
representing a positive value. |f a zero is specified, with or
without a preceding sign, the sign will have no effect on the
value zero. The constant has the general form

sn
where
s is the optional signed character
(+ or).
n is a decimal character string

(maximum magnitude 1s 1073741823).

LOGICAL constants allow for the use of logical operations
through the medium of the logical expression. Thus, two
logical constants are provided to represent the "'true’ and
“talse’ logical values. The constant has the general form

.TRUE. or .FALSE.

LITERAL constants are a string of alphanumeric and/or
special characters. .If apsostrophes delimit the literal, a
single apostrophe within the literal is represented by two
apostrophes. The number of characters in a string,
including blanks, may not be less than 1 or greater than
255. Blanks within the character string will be considered
part of the string. The constant has the general form

wHs or 's’
where

w is a positive non-zero constant denoting
the width of the character string.

s denotes the character string.
HEXADECIMAL constant consists of the letter Z followed by
1 to 16 hexadecimal digits. The constant has the general

form

In

where
n is a 1 to 16 hexadecimal digit string.

The maximum number of digits allowed in a hexadecimal
constant depends on the length specification of the
variable being initialized. If the number of digits is greater
than the maximum, the ieft-most digits are truncated. If
the number is less than the maximum, the left-most
positions are filled with zeros.

5.3.1.3 IMPLICIT Statement

The IMPLICIT statement must be the first statement in a
main program or the second statement in a subprogram.
The statement enables the user to specify the type,
including length of ali variables, arrays, and function
names. The statement has the general form

IMPLICIT type *s(al,...)

where

type is a type name.

*s is optional; and, represents one of the
permissible length specifications (see
variable).

a is an initial character string

(A, B,...2,$,)) in that order.

5.3.1.4 Explicit Type Statements

The Explicit Type Specification statement declares the type
of variable, function name, statement function name, or
array by its name rather than by its initial character.
Optionally, it may also initialize the variable. The statement
overrides the IMPLIC!IT statement, which in turn overrides
the predefined convention. The statement has the general
form

type*s al*sl(kl)/xl/,...
where
type is a type name.

*s is optional; and, represents one of
the permissible length specifications.

a is a variable,.array, or function
name.
(k) 1s optional;, and, gives dimension

information for arrays. When the
TYPE statement in which it appears
is in a subprogram, k may contain

integer variables of length 2
(section 5.3.1.1), provided that
the array is a dummy argument.

is optional;, and, represents
initial data values (see DATA
statement).

2 7

5.3.1.5 DOUBLE PRECISION Statement

The DOUBLE PRECISION statement overrides any specifi
cation of a variable made by either the predefined
convention or the IMPLICIT statement. The statement has
the general form

DOUBLE PRECISION a(k)....,

where
a represents a variable, array, or
function name.
(k) 1s optional; and, 15 composed of

one to seven unsigned integer con
stants that represent the maximum
value of each subscript in the
array. k may contain integer
variables of length 2, provided

that the array is a dummy argument.

5.3.1.6 PAUSE Statement

The execution of the PAUSE statement causes the uncondi-
tional suspension (SUSPND) of the object program being
executed pending operator action. To resume the sus-
pended task, input the operator-communication key-in
request RESUME. The statement has the general form

PAUSE
or
PAUSE n or PAUSE m

where
n is a string of one to five
decimal digits.
m is a literal constant enclosed

in apostrophes.

5.3.1.7 STOP Statement

The execution of the STOP statement causes the uncondi
tional termination of the execution of the object program
beging executed. The statement has the general form

STOP
or
STOP n or STOP m

LANGUAGE PROCESSORS

&
where
n 1s a string of one to five decimal
digits.
m is a literal constant enclosed in

apostrophes.

5.3.1.8 CALL Statement

The execution of the CALL statement causes the specified
subroutine to be executed. The CALL statement arguments
must agree in number and order of appearance with the
dummy arguments in the SUBROUTINE statement. The
statement has the general form

CALL name (al,a2),..,

where
name is the name of a SUBROUTINE
subprogram.
a is an actual argument that is

being supplied to the SUBROUTINE
subprogram. The argument may be
a variable array element, array
name, literal, or arithmetic or
logical expression. Each a may

also be of the form n, where n
is a statement number.

5.3.1.9 RETURN Statement

The RETURN statement provides the method by which the
callirig"program 1s reentered following the execution of a
subprogram. The normal sequence of execution following
the RETURN statement of a SUBROUTINE subprogram is
to.the next statement following the CALL statement in the
cafling program. The statement has the general form

RETUIN or RETURN |
where®:.

i is an integer constant or variable
whose value, for exampie n, denotes
the n-th asterisk in the argument
list of a SUBROUTINE statement.
RETURN i may be specified only in

; a§UBROUTINE subprogram.

#,

e

-

5.3.1.10 READ/WRITE Statements

VORTEX FORTRAN IV allows two optional parameters to
the READ/WRITE statements. These optional parameters
allow for conditional exits on an end-of-data or transnws-
sion error.

o
w

LANGUAGE PROCESSORS

Example: READ(4,10,ERR = 105,END = 200)A.B

In the above example, control will be transferred to
statement 105 if an 170 error occurs, or to statement 200 if
an end-of-data occurs on unit 4.

5.3.1.11 ENCODE/DECODE Statement

ENCODE/DECODE statements perform data conversion
according to a FORMAT statement without performing
external 170 operations. ENCODE statement takes an 1/0
list, converts each element and places it in a specified
buffer. DECODE statement words from the buffer into the
170 list. For example:

DIMENSION 1(40)
READ(CDR, 10)1
10 FORMAT(U40A2)
DECODE(10,20,1)K,L
20 FORMAT(2I5)

These statements read an ASCil card image into array |.
The first two fields of five ASCIl characters are then
decoded into their integer equivalent and placed into the
variables K and L.

5.3.1.12 Direct-Access INPUT/OUTPUT
Statements

The direct-access INPUT/OUTPUT statements allows a
programmer to go directly to any point in a file which
restdes on an RMD, and process a record without having to
process all the records within the file. To use direct-access
INPUT/OUTPUT statements (READ, WRITE, and FIND),
the file(s) to be operated on must be described with a
DEFINE FILE statement. The statement has the general
form

DEFINE FILE al(ml,r1 fl,vl),...
where
F] specifies the unit number.

m represents the relative position
of a record within the file.

r specifies the maximum size of
each record in the file.

f specifies whether the file is
to be read or written with or
without format control.

v specifies an integer variable

(not an array element) called
an associated variable, which

516

points to the record immediately
following the last record
transmitted.

5.3.1.13 Direct-Access READ Statement

The READ statement causes data to be transferred from a
direct-access device into internal storage. The statement
has the general form

READ(a'r,b,ERR = ec)list
where

a specifies the unit number
and must be foliowed by an
apostrophe.

r represents the relative
position of a record within
the file.

b is optional; and, if given,
is either the statement
number of the FORMAT state-
ment, or the name of an array
that contains an object-time
format.

ERR= €c is optional; and, specifies
the number of a statement to
which control is given when
an error condition is
ericountered

list is optional; and, 1s an 170
list. The 1/0 list must not
contain the associated
variable.

5.3.1.14 Direct-Access WRITE Statement

The WRITE statement causes data to be transferred from
internal storage to a direct-access device. The statement
has the general form

WRITE (a'r b)list

where
a specifies the unit number and
must be followed by an apostrophe
r represents the relative position

of a record within the file.

b is optional; and. if given. is
either the statement number of
the FORMAT statement, or the

name of an array that contains
an object-time format.

list is optional; and, is an |/0
list. The list must not
contain the associated vari-
able.

5.3.1.15 FIND Statement

The FIND statement causes the next input record to be
found while the present record is being processed. The
statement has the general form

FIND (a'r)
where

a specifies the unit number and must
be followed by an apostrophe.

r represents the relative position of
a record within the file.

At the conclustion of a FIND operation, the associated
variable points to the record found.

5.3.1.16 DATA Statement

The DATA statement is used to define initial values of
variables, array elements, and arrays. This statement
cannot precede any specification statement that refers to
the same variables, array elements, or arrays. The DATA
statement may not precede an IMPLICIT statement. It has
the general form

DATA ksd/....
where
k 1s a list containing variables,
array elements. or array names.
d is a list of constants (integer,

real, complex, hexadecimal, logical,
or literal), any of which may be
preceded by i*, where i*

indicates that the constant is to
be specified i times.

5.3.1.17 TITLE Statement

The TITLE statement declares a module name which is
output to the top of each page of the source listing and to
the object module. It has the general form

TITLE name

LANGUAGE PROCESSORS

where
name is the title to be output.
The title_ contains up to
eight_characters, and is .
_output in_the object text *

as the .name _hy which the
_program is to_be_referenced
by SMAIN..)

Hf a TITLE statement is used, it must be the first source
statement. A TITLE statement forces a page eject on the LO
listing.

5.3.1.18 Subprogram Multipie Entry

VORTEX FORTRAN IV facilitiates multipie entry into
SUBROUTINE and FUNCTION subprograms by specitying a
CALL statement or a FUNCTION reference that refers to an
ENTRY statement in the subprogram. Entry is made at the
tirst executable statement following the ENTRY statement.
The statement has the general form

ENTRY name(al, a2 a3),...
where
name is the name of an entry point
a is a dummy argument corresponding

to an actual argument in a CALL
statement or FUNCTION reference

5.3.1.19 SUBROUTINE Subprogram

The SUBROUTINE subprogram may contain any FORTRAN
iV statement except a FUNCTION statement, another
SUBROUTINE statement, or an BLOCK DATA statement. |f
an IMPLICIT statement is specified, it must immediately
foliow the SUBROUTINE statement. SUBROUTINE has the
general form

SUBROUTINE name(al,a2,a3)....
where
name is the SUBROUTINE name.
a is a distinct dummy argument.

Each argument used must be a
variable or array name, the dummy

name of another SUBROUTINE, FUNCTION

subprogram, or an asterisk "*"
which denotes a return point specified
by a statement number in the calling

program.

The actual arguments can be:

517

LANGUAGE PROCESSORS

A literal, arithmetic, or logical constant
* Any type of variable or array element
+ Anytype of array name
+ Any type of arithmetic or logical expression

The name of a FUNCTION or SUBROUTINE
subprogram

+ Astatement number

5.3.1.20 FUNCTION Subprogram

The FUNCTION subprogram is an independent subprogram
consisting of a FUNCTION statement and at least one
RETURN statement. It has the general form

type FUNCTION name*s(al,a2,a3),...,
where

type is INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or
LOGICAL. its inclusion
is optional.

name is the name of the
FUNCTION.

*s represents one of the
permissible length
specifications.

a is a dummy argument or
dummay SUBROUTINE name or
other FUNCTION subprogram.

5.3.1.21 Subscripts

A subscript is a set of integer subscript quantities that are
associated with an array name to identify a particular
element of the array. A maximum of seven subscript
quantities, separated by commas, can appear in a
subscript. The following rules apply to the construction of
subscript quantities:

+ Subscript quantities may contain arithmetic
expressions that use any of the arithmetic operators:

+, -, .' /. (2]

+ Subscript quantities may contain FUNCTION
references

*+ Subscript quantities may contain array elements

+ Integer and real mixed-mode expressions within
subscript quantities are evaluated according to normal

518

FORTRAN rules. If the evaluated expression 1s real, it
is converted to integer

» The evaluated result of a subscript quantity should
always be greater than zero

5.3.1.22 Z Format Code

The hexadecimal Z format code causes a string of
hexadecimal digits to be interpreted as a hexadecimal
value and to be associated with the corresponding 1/0 list
element for purposes of data transmitting. It has the
general form

Iw .
where

w denotes a string of hexadecimal
digits. The maximum value that
can be read is FFFFFFFFFFFFFFFF

On input, if an input field contains an odd number of
digits, the number will be padded on the left with a
hexadecimal zero when it is stored.

On output, if the number of characters in the storage
location is less than w, the left-most print positions are
filled with blanks. if the number of characters in the
storage location is greater than w, the left-most digits are
truncated and the rest of the number is printed.

5.3.2 Execution-Time 1/0 Units

All FORTRAN 1/0 statements (FORTRAN |V manual)
include 2 FORTRAN unit number (FUN) or name, which
may or may not be identical with the logicai unit containing
the required file(s). Four different cases of FORTRAN units
must be distinguished as indicated in figure 5-4.

Case 1, non-RMD unit: The logical-unit number is
assigned to the device by SGEN (section 15) or by the JCP
/ASSIGN directive (section 4.2.6), where the FORTRAN unit
number is identical with that of the file unit. Thus, to
rewind the P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>