
VARIAN

MICROPROGRAMMING

GUIDE

varian data machines ~

VARIAN MICROPROGRAMMING

GUIDE

Specifications Subject to Change Without Notice

~ varian data machines I a varian subsod iary
~ 'c 1973 printed 1n USA

98 A 9906 072

AUGUST 1973

PREFACE

Preface (about the guide itself -- prerequisites, its organiza­
tion and why).

Microprograms are aptly called firmware to place them
between the realms of software and hardware. Where
those two conventional divisions of a computer overlap is
an area which provides many of the best features of both.
The use and benefits of microprogramming depend upon
the user having an understanding of both and their
complex interaction.

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly·language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is that
many more times more needed. Also the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram the des1gner must
be aware of the eventual applications. Combinmg operators
which are often used in the same sequence could form a
single microprogrammed operator with a greater overlap­
ping of actions.

All components of a computer system seem to be
increasingly complex yet easier and easier to use. Though
microprogramming adds more complexity the result 1S to
make a system easier to use. One goal of th1s gutde is to
bring microprogramming into the range of a good program­
mer. To that end the gutde is written in simple language
(with a minimum of exotic terms and a glossary to look up
any of those) and a gradual progress1on from the btg
picture to the details through numerous examples. The
examples are annotated and explained with the same tools
that wili aid in the planning as well as understanding.

Thts guide IS both an introduction and a reference. If
mtcroprogramming is new to you, start at the beginning of

·--- .. -----··---··--~-----·

varian data machines ~

this and use it as a tutorial. Later the book can be used for
reference. The charts and examples are built up in a
logical development so that the complete examples will be
a pattern for your programming.

Varian Data Machmes does not assume responsibility for
microprograms written and implemented according to the
recommendations outlined herein.

To 1mprove the usefulness of this guide please return the
reader questionaire in the back after reading and using
this volume.

Related Documentation

The Wntable Control Store manual (98 A 9906 08x)
provides information about the installation, theory of
operat1on, maintenance and test programs for the
hardware storage of microprograms.

Information about the Varian 73 processor ts contained m
the Varian 73 system handbook (98 A 9906 Olx) and in
more deta1l tn the processor manual (98 A 9906 02x).

The VORTEX Reference Manual (98 A 9952 lOx) descrtbes
the use of the VORTEX operating system. The MOS
(Master Operating System) Reference Manual (98 A 9952
09x) provides Similar information necessary to use
m tcroprogrammtng software with that operatmg system.

The followtng Vanan manuals provtde additional a1ds to the
understandtng of Vanan 73 Computer System.

Title

Core Memory Manual

Semiconductor Memory Manual
Optton Board Manual
Power Supply Manual

Document Number

98 A 9906 03x

98 A 9906 04x
98 A 9906 05x
98 A 9906 06x

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

varian data machines ~

1 . 1 Ad va nta ge s . • • o • . . . • . • 1 - 1
1.2 Guide to this Manual •.•••...•.••..•.•...••..•••. 1-2
1. 3 Notation in this Manual• o •••••••••••••••••••• 1-2
1 . 4 Components ...•••..• o •..••...........•.••..... 1-3
1 . 4. 1 Hardware for Microprogrammed Systems•... 1-3
1.4.2 Writable Control Store .•..... o. o 1-6
1.4.3 SoftwareModules .•..•.... o•••••••o••o••o••••••·1-8

2. 1
2.2
2. 2. 1
2.2.2
2.2.3
2.2.4
2.3
2. 3. 1
2.3.2
2.3.3
2.3.4
2.3.4. 1
2.3.4.2
2.3.5
2.4
2.4. 1
2.4.2

SECTION 2
CAPABILITIES

Genera I Microinstructions .•••.•............... o • 2- 1
Data Transfer and Transformation ...•..•........•.. 2-6
ALU Input Sources . o •••••••••••••••••••••••••••• 2-6
ALU Functions ..•......••........••. o o. o •• o •• o. 2-8
ALU Output Destinations .•........•...••..••• o •• 2-11
Other Registers .•...•.........•...•...• o. o •••••• 2-12
Addressing . o ••••••••••• o •••• o • o • o o ••• o o • o •••••• 2- 13
Genera I . o o ••••••••••• o o •• o o •• o •• o o • o • o • o o • o ••• 2-13
Normal Addressing ..•..•..•.••.•.. o ••• o ••••• o ••• 2-13
Field Select Addressing . o ••••••••••••• o o. o. o o. o o .2-13
Test Addressing .• o o ••••••••• o o o o. o o. o. o 2-14
Conditions .••..... o o ••••••••• o ••••••••••••••••• 2-15
Addresses in Branches .• o o•.•....... o 2-17
Page Jump Addressing. o•.....•............ 2-17
Main Memory Control .••...••••. •••••••o••••···· 2-17
Unconditional Cycle Initiation 2-18
Conditional Cycle Initiation••...•••.••.•••.. 2-19

iii

L--~------ .. ~----~-------- -·-··----.. ---···--·------··---·-------·--------------------------- ·---------------~

2.4.3
2.4.4
2.5
2.6
2.7
2. 7. 1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.8

3. 1

3. 1. 1
3. 1o 2
3. 1. 3
3. 1.4
3. 1.5

3. 1.6
3.2
3.2. 1
3.2.2
3.3
3.4
3. 4. 1
3.4.2
3.4.3
3.4.4

3.4.5

Special Transfer .•...•.•.•.••••. o ••••••••• o. o ••• 2-19
Wait for Memory Done . o o ••• o o • o • o o o • o •••• o ••• o • 2-19
Microprogramming Example .• o •• o •• o ••••••••• o. o o 2-19
Timing Considerations . o ••••••••••••••••••••••••• 2-23
Additional Capabi I ities o • 2-24
Register Field Control .••..••.•••.......•........ 2-24
Memory Addressing to 64K . o ••••••• o •••• o o o. o •••• 2-26
Memory Bus Lockout Status .•• o • o ••••• o • o •• o o ••• o o 2-26
Stack Use . o ••••••••••••••••••••• o •••••••••••••• 2-27
Memory Addressing Using the Optional Memory Map .. 2-28
Memory Protection o •••••• o • o •• o • o o •• 0 0 •••• 0 o •• o • 2-28
Questions About Microprogramming Capabilities . o •• 2-28

SECTION 3
TECHNIQUES

Interface of Microprogramming
Hardware and Software o • o o ••• o ••• o o • o o o •• o • o •• 3-1

Execution of Microprograms o o o. o o •••• o o o. o •• o. o • o 3-1
Steps in Instruction Execution .• o o •••• o ••• o o ••••• o 3-1
Instruction Pipeline o o o • o o •• o •• o • o o o o • o •••• o o • o • o 3-1
ROM Standard States . o ••••••• o • o o • o •••••• o •• o ••• 3-2
Summary of Branches Between WCS and

ROM Control Store .•• o •• o • o • o •• o ••••••••••• o o 3-2
Varian 73 Register Usage .• o • o o • o o o • o o ••• o •••••• o 3-3
F I ow Diagram ..•.. o • o • o • o o o o ••••• o •••••••••• o • • 3-3
RatiorlCIIe •• o ••••••••••••••• o ••• o ••••••••••••••• 3-3
Format . o •••••• o •••••••••• o o •••••••••••• o • o •••• 3-3
Flow Diagram Mnemonics •••••••.• o ••••••• o •••••• 3-5
Flow Diagram Examples o •••• o o •• o •••••••••••••••• 3-8
BCS Entry Point Initialization o o ••• o •••••••• o o •••• 3-8
Memory-to-Memory Block Move .••..• o •••• o •••••• 3-8
Reentrant Subroutine Call and Return .••• o •••••• o o • 3-8
64K-Memory ADD to any of the General-

Purpose Registers .• o ••••• o ••••••• o •••••• o o • o •• 3-11
Cyclic Redundancy Check (CRC) Generation o •••••• 3-15

iv

4.1
4.2
4.3
4.3. 1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.6
4.6. 1
4.6.2
4.6.3
4.7
4.8
4.9

5. 1
5.2
5. 2. 1
5.2.2
5.2.3
5.2.4
5.2.5

·---------------- varian data machines IE

SECTION 4
MICROPROGRAM DATA ASSEMBLER, MIDAS

Basic Elements ..•.......•......... o •••• o •• o •••• 4-1
Genera I Form of Statements .•.............. o ••••• 4-2
Statement Definitions .••.....•.....•.••... o ••••• 4-2
Format Statement .•..•.. o •••••••••••• o • o o o o • o o •• 4-2
Program Statement•...•...••...•.......•... o 4-3
Assembler Directives .•...•..••.....•.•..••.•.•.. 4-5
Comment . o o •••••••••••• o •• o ••••• o o ••• o •••••••• 4-6
Assembly-Language Examples .• o ••••••• o •••••••••• 4-6
Macro Capabi I ity .• o ••••••••••• o •••••••••••••••• 4-7
Operating Instructions .•.....•.•.•....... o ••••• o .4-8
VORTEX Environment . o o •••••• o •••• o o. o o o o o •• o •• .4-8
MOS Environment .• o •• o •• o •••••••••••••••••• o ••• 4-8
Standalone Environment . o • o •••••• o ••• o ••• o o •• o •• .4-8
Assembler Input and Output . o o ••••••••••••• o ••••• 4-9
Adding Midas to VORTEX ..•...•..•••• o •••••• o ••• 4-9
Assembly Error Messages . o •••••••••••••••••• o •••• 4-10

SECTION 5
CODING FROM FLOW DIAGRAMS

Genera I Q o •••••••••••••••••• o •••••• 5- 1
Examples of Microprograms in Assembly Language 5-5
BCS Entry Point Initialization ..•.... o ••••••••••••• 5-6
Memory-to-Memory Block Move . o ••• o •••••••••••• 5-9
Reentrant Subroutine Call and Return . o •••••••••••• 5-12
64K Add to General-Purpose Register .••..•........ 5-15
Cyclic Redundancy Check Generation 5-16

v

____ , __________________ _

6. 1
6.2
6.3
6. 3. 1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6. 3. 10
6.3. 11
6.3. 12
6.3. 13
6.3. 14
6.4
6.4. 1
6.4.2
6.4.3

6.4.4
6.5
6.6
6.6. 1
6.6.2
6.6.3
6.7
6.8
6.9
6.10
6. 11

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

Basic Elements . o •••••••••••••••••••••••••••••••• 6-1
Genera I Form of Statement • o •••••••••••• o •••••••• 6- 1
Statement Definitions .•.••..•••.••.•..••••••.•.•• 6-2
Select Input Media (M) ••••.•.••.••.••••• o ••••••• 6-2
Initialize Simulator (I) •.•••.••.•.•••••.•.••..••.• 6-2
Page Select (P) .• o o . • . • • • • • • • • • • • • • • • • • • . • • • • • • 6-3
Load Control Store (L) •.•••••.••••.•.••.•.• o ••••• 6-3
Alter/Display Simulator Registers (A) •••. o ••••••••• 6-3
Change/Display Memory (C) ..••.•••..••••.•.••... 6-4
Change/Display CCS Word (EC) •.••••••••.•• o ••••• 6-4
Change/Display DCS Word (ED) •••••.•.•• o •••••••• 6-4
Begin Simulated Execution (B) .••..•.•..•..•..•.•• 6-4
CCS Address Halt (H) ••••••.•••••••••.•••••••••.• 6-4
Single Microinstruction Step (S) •.•.•.•••••••••••.. 6-5
Trace (T) ••••••••••••••••••.••••••••••••••••••• 6-5
Dump Contents of CCS (D) •. o • o •• o •••••• o •••••••• 6-6
Exit to VDM, MOS or VORTEX (R) . o o ••••••••• o •• o6-7
Operating Instructions .•• o ••••••••••• o ••••••••••• 6-7
Program Loading •• o ••••••••• o ••••• o ••••••••••••• 6-8
Initial Condition Selection .• o •••••••••••••••••••• 6-8
Loading Simulator Centrol Control Store (CCS)

and Decoder Control Store (DCS) •.••••••••••.•• 6-8
Other Control (As Required) ..•..•••...••.•..•.••• 6-9
Program Execution ..•.••..•. o o •••••••••••••••••• 6-9
After Simulation .••••...•••.•.••.•.•••••.•.••.•• 6-9
Control Store Dump • o • o •••••• o ••••••••• o •••••••• 6-9
In i ti a I i zat ion . • • • • • • • • o o o o o • • • • o •• o o • • • o • • • • •••• 6-9
Return to MOS, VORTEX •.•.••..•.••.....•..•••. 6-9
620 Emulation ... · o ••••••••••••••••••••• 6-9
Adding Simulator to VORTEX •.•••.•..••..•..••.•• 6-9
Main Memory Simulation . o o •••••••••••••••••••••• 6-9
Simulator Error Messages . o ••••••••••••••••• o o •••• 6-10
Example of Simulator Output .••..••••.•.•.••..•.. 6-11

vi

7. 1
7.2
7.3
7. 3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7 .3. 10
7. 3. 11
7. 3.12
7. 3.13
7.4
7 .4. 1
7 .4. 2
7.5
7.6
7.7
7.8

-- varian data machines ~

SECTION 7
MICROPROGRAM UTILITY PROGRAM, MIUTIL

Basic Elements 7-1
General Form of Directive .•..•.•.•..•.•••••••.... 7-1
Directive Definitions .•••.••••.••..•.•.•.•...••.. .7-1
Select Page (P) ..•.•..•..•.•...•.....•..•.•..••.. 7-1
Load Control Store (L) .••••••••••..•••••.••••.... 7-1
Examine/Change Control Store (E) .•............... 7-1
Dump Control Store (D) .•.•..•..•..•••••.•••.•••. .7-2
Return to Operating System (R) .•...........•....•• 7-2
Media Set and Reset (M) .•....•.•.•.•....•.•..••. .7-2
Enable Control Store (N) .•...•.•........•........ 7-2
Trace Execution (T) .•.••••..••••••••••••••••••••. 7-2
Set Micro Execution Address (G) .••............... 7-2
Execute Microinstruction (X) .••...•.....•.•.•...•. 7-3
Initialize WCS (I)•..•.......•.. 7-3
Branch to CCS (B) .•......•••••...••............. 7-3
Set Halt Address (H) ..•..••.•..•.•.......•........ 7-3
Operating Instructions .•......•.•••.•••....•...•. .7-4
Program Loading • . • 7-4
Program Execution .•............•.......•....•.•. 7-4
Debugging Configuration•.....•........ 7-4
Adding Utility to VORTEX•......•............ 7-4
Utility Error Messages•......... 7-5
Exam pies ..•..•••..•.........•..•.••......•..... 7-6

SECTION 8
DECODE CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

8. 1
8.2
8 .2. 1
8.2.2
8.2.3

8.3

Decoder Control Store ...•.•.................•... 8-1
1/0 Control Store .•...........•................ 8-3
Microprogram Initiation .•••••••••••••••.•.••••.. 8-3
1/0 Microprogramming ..•.........•............. 8-4
Example of 1/0 Microprogram: Clear and

Input to A 8-7
Multiple Environment Applications .•.........•.... 8-8

vii

--------------- ····---·--········-·------------------ ·-------------'

1-1

1-2
1-3
1-4
1-5
2-1
2-2

2-3
2-4
2-5
2-6
2-7
3-1
3-2
3-3
3-4
3-5
3-6
3-7

3-8
4-1
6-1
6-2
6-3
8-1
8-2
8-3
8-4
8-5

SECTION 9
GLOSSARY OF MICROPROGRAMMING

LIST OF ILLUSTRATIONS

Simplified Comparison of a Microprogrammed
and a Conventional Computer ..•....•......... 1-4

Varian 73 Processor Block Diagram .•.......•..•... 1-4
Varian 73 Processor Data Paths • . • . . . • . . • 1-5
Control Store Configurations .••..•.••.•.•••••.•••. 1-7
Steps for Realizing Microprograms ..•...........•.. 1-8
Microinstruction .Fields•....•....••••....•..• 2-2
General-Purpose Registers, Operand

Register and ALU Input .••....•...........•..•. 2-7
Field Select Address Contribution .•..........•.... 2-14
Flowchart for LDA Instruction .••...•..•..•..•..••• 2-22
Flow Diagram of LDA Instruction ..•...•.......•... 2-23
Flowchart of Memory Address Control .••••....•..•. 2-26
Memory Bus Lockout .•..•...•.•...•.•.•.•..•.•..• 2-27
Sample Flow Diagram Form .••.......•.••••.•••.•. 3-4
Flow Diagram for BCS Entry Point Initialization .••.• 3-9
Flow Diagram for Memory-to-Memory Block Move .•. 3-10
Flow Diagram for Subroutine Call .••.•.•.......... 3-12
Flow Diagram for Subroutine Return 3-13
ADD from 64K-Memory to General-Purpose Register .. 3-14
Flowchart for Cyclic Redundancy Check

Generation Microprogram .••...............•... 3-18
Flow Diagram of CRC Generation .•........•...... 3-22
Predefined Formats Recognized by Ml DAS .•.....•.. 4-3
Microsimulator Control Flow .•................••. 6-1
Microsimulator Data Flow 6-7
Simulator Output Format .•.............•.•.•..... 6-11
Decoder Control Store Format 8-2
Decoder Address Components .•.......•.•..•.•.••• 8-3
1/0 Microinstruction Format .••..•.•.....•....•.. 8-5
1/0 Control Simp I ified Block Diagram .••...•.•.... 8-6
Flowchart of 1/0 Microprogramming Example•• 8-9

viii

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
5-1
6-1
7-1
8-1

·-- varian data machines ~

LIST OF TABLES

WCS Software Configuration Matrix 1-9
ALU Input A Bus Selections ... o ••• o •••••• o ••••••• 2-6
ALU Input B Bus Selections o. o. o. o. o ••• o. o. 0 o 2-8
A L U Operations .• o o •••• o o •••••••• 0 ••••••••••••• 2-9
Carry Flag Settings 2-10
ALU Output Destinations 0 2-11
Operand Register Shift Operations o •••••• 2-12
Overflow Flag Control o ••••••••• 2-16
Memory Operations ..•.......... o •• o •••••••••••• 2-19
Register Field Control .•.•...........•....•...•.. 2-25
Mnemonics for Microprogramming Flow Diagrams 3-5
Conversion Table•...............•...•.•..•. 5-1
Summary of Microprogram Simulator Directives• 6-1
Summary of Utility Directives ..• o •••••••••••• o ••• 7-1
1/0 Microprogram Example Code ..• 0 •••••••••• 0 •• 8-8

ix

SECTION 1

INTRODUCTION

Most of this book discusses how to microprogram. As an
incentive to read further here are some general reasons
why to microprogram. The advantages of microprogram
ming are based upon a comparison with a conventional
system either completely without microprogramming or
where it is not accessible. After a brief summary of the
advantages a comparison with a conventional system g1ves
more details and a specific picture of a microprogrammed
operation.

1.1 ADVANTAGES

A basic reason to microprogram is the one stated at first.
The mitial 1dea was proposed for a "systematic" approach

to the " usual somewhat ad hoc procedure" used to design
the control system of a machine. The narrow view in the
design of either software or hardware w1thout an.
awareness of the other can lead to a less eff1cent
functioning, like a refrigerator converted into a vacuum
cleaner -- there may be some common useful parts but we
would push around a great deal that d1d not help the
vacuuming. Good bas1c operators which match the eventual
application will improve the entire efficiency.

The usual random logic can be reduced with a more
structured organization. A conventional computer system
uses a collection of counters, special flip-flops. decoding
networks and other components un1que to a particular
purpose for control logic. In contrast a microprogrammed
memory replaces most of this. The microprogram storage
is formed of regular and repetitive un1ts. There are fewer
components thus increasing the reliability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system 1n ways so bas1c that they
are not at all feasible in a fixed mstruction set. Field
changes can be made by merely changing the controlling
microprograms. Final systems defin1t1on can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulat1on of a number of d1verse dev1ces. not only
processors but peripheral controllers for mstance. can be
carried out on a single microprogrammed system
Simultaneous emulation of some devices can be made or
the target system can be changed dependmg upon needs
Th1s would save some reprogramming and retrainmg and
yet gain the speed and reliability of a more advanced
system. Also the documentation and m1nor logistic

problems of a new machine would be avo1ded.

For more reliability and the contmuous performance
necessary in many uses of computers, d1agnost1cs and
servicing aids may be implemented in the control store. To
pinpoint problems the microprocessor can both test and

varian data machines ~

set states not available to the assembly-language program­
mer on a conventional machme.

Execut1on
T1me

Standard
Software
Coding

MICRO­
PROGRAMS

Cost

Spec1al
Purpose
Hardware

Instructions Tailored To Particular Environments

In general. microprogrammed mstruct1ons permit more
compact program representation They use less mam
memory than the equivalent would m conventional code.
Consequently. fewer memory fetches for anythmg other
than data are needed.

As an example of a possible microprogrammed operator
wh1ch reduces memory fetches, cons1der a common use of
arrays. H1gher-level programmmg languages. such as
FOFHRAN, BASIC, COBOL in fact. nearly all- have
faci11t1es for expressmg a repet1t1ve lmear data structure, a
l1st or array. Arrays are an mtegral part of a large class of
techn1ques for d1verse problems. Yet good operators for
arrays as such are not available as s1mple. smgle
mstruct1ons m a convent1onal machme

In usual machme code the funct1on of addmg two
numer1cal arrays of the same s1ze and number of elements
usually requ1res a ser1es of actions as follows for each pa1r
of elements

a. load memory to reg1ster

b. add memory to reg1ster

c store reg1ster result m memory

d. update md1ces and close loop

The f1rst two steps would each require a memory fetch and
the last step as many as three memory fetches.

A microprogrammed mstruction would prov1de init1alizmg
data descnptors and repet1t1vely execut1ng rn1cro-operators

1-1

~ varian data machines

INTRODUCTION

over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array

b. load the result's starting address, increment and
extent

c. define the end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing memory retrieval
of instructions occurs in some special cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose micro­
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored ~s
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data·
transfer and transformations, conditional tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to use flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)
Conversion steps and tables
Examples from section 3

1-2

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

Decoder control store, l/0 control and additional topics
(section 8)

Format and use of optional decoder control store
l/0 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. lX for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High·
order and leftmost are synonymous to select a particular
bit or group of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a required parameter

Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.

For example, the syntax for the MIDAS FORM statement is
as follows

label

Where:

label

eac.h field

Numbers

FORM field(l), field(2), ... , fie/d(n)

is a symbol as defined in MIDAS
basic elements

is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parenthesers

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand­
ing of microprogramming this section clarifies some terms
we use.

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside in the
system's control store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is called
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-length word in control_
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words
look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to plan a

varian data machines ~
INTRODUCTION

good system one needs to be very aware of the actual
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional components of the Varian 73
processor are the central control, the data loop, the
memory control, I 10 data control, and I /0 control. The
processor communicates with the console via the l/0 bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Control

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and l/0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis­
ters. The memory control might be requested to begin the
fetch of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents for
the control buffer. The control buffer is always loaded from
64-bit central control store. Thus, execution of a
microprogram basically consists of the control buffer being
sequentially loaded with the appropriate 64-bit values.
Central control store on the Varian 73 system is divided
into pages, each consisting of 512 64-bit words. Page zero
of central control store always contains a set of
microinstructions which direct the processor components
to behave like a 620/f. This set of 512 microwords is thus
called the 620/f emulation, and resides in read-only
memory (ROM). Other central control store pages may be
added with the writable control store (WCS) option, thus
allowing the user to specify in detail the actions of the
processor components.

The microprograms for the standard instruction set are
described in the V73 microinstruction flowcharts in volume
2 of the Varian 73 Maintenance Manual and in assembly
language in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters.

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

~ varian data machines

INTRODUCTION

1-4

VTII-1500

CONVENTIONAL CONTROL

CONTROL

1 t
MEMORY ARITHMETIC INPUT AND

AND LOGIC OUTPUT

SIMPLIFIED GENERAL MICROPROGRAMMING

MEMORY ARITHMETIC
AND LOGIC

INPUT AND
OUTPUT

Figure 1-1. Simplified Comparison of a Microprogrammed

and a Conventional Computer

VARIAN 73 PROCESSOR
BLOCK DIAGRAM

MEMORY
BUS

Figure 1-2. Varian 73 Processor Block Diagram

varian data machines ~
INTRODUCTION

~~.t::······.' .. '":;C

OJ'

,I

VTIJ-191

Figure 1-3 Var· . Jan 73 Processor Data Paths

1-5

~ varian data machines

such as addition and the common logical functions
including AND and OR. ALU output can be directed to a
number of places, including registers and counters in the
data loop, registers in the l/0 data loop, and to memory
control.

Memory Control

The memory control section of the processor performs
tasks initiated by the central control, l/0 control and
options. These tasks consist of reading a 16-bit word from
memory or writing a word or byte into memory.

Memory control acknowledges receipt of the signal to the
requesting sections and signals when done with the task.
When one request is accepted no others are acknowl­
edged until the current one is completed, but central
control can override its own prior request.

I /0 Data Loop

The l/0 data loop contains a multiplexor, 1/0 data register,
and drivers and receivers. Three sources of data are
applied to the l/0 data loop: data from the l/0 bus, data
from the arithmetic and logic unit, and from the memory
l/0 register (MIOR). The input data is selected by the l/0
multiplexor under control of the I /0 control signals and
transferred on to the bidirectional l/0 bus.

In addition to being applied to the l/0 drivers, the output
of the l/0 data register is applied to the data loop and
memory control sections.

l/0 Control

The I /0 control operates under control of an independent
read-only memory (ROM). It performs I /0 operations
initiated either by the central control or l/0 device activity.
This permits l/0 operations to proceed with minimal
impact on internal processor functions. The l/0 performs
programmed l/0 initiated by the central control. Both
normal and high-speed direct memory access (DMA) are·
handled by the l/0 control. l/0 interrupts are processed
by l/0 control.

1.4.2 Writable Control Store

The Writable Control Store (WCS) extends the Varian 73
processor's read-only control store to permit addition of
new instructions, development of microprogrammed
diagnostics and optimal tailoring of the computer system
to its applications.

Unlike the read-only control store which contains the
Varian 73 standard instruction set and cannot be altered,
the writable control store can be loaded from the

1-6

INTRODUCTION

computer's main memory under control of l/0 instructions.
This capability of altering the contents of the WCS gives

the user complete access to the resources of the Varian 73
computer system.

A test program for the WCS hardware is provided to assist
in maintaining the system. Operating the test program is
described in the maintenance manual for the WCS.

Configurations

The WCS is available in three configurations:

1. One page (512 words) of control store and a subroutine
stack (Model 7040)

2. Half page of control store and a subroutine stack
(Model7041)

3. One page with a subroutine stack, a writable decoder
control store and a writable l/0 control store (Model
7042)

Model 7042 is shown in the block diagram " Control Store
Configurations", figure 1-4. The three control stores shown
in this diagram are the writable counterparts for read-only
components of the processor.

The. decoder control store replaces the instruction buffer,
decoder, and decoding logic in the processor to improve
instruction set changes. It is formed from two 16-word by
16-bit memory arrays with the logic that decodes main
memory instructions into an address for the central
control store.

The central control store is a counterpart of the page zero
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store
to specify the actions to occur. A typical microinstruction
may define several operations such as selecting the next
control store microinstruction to be executed, test condi­
tions for branching, initiating memory operations and
selecting ALU functions.

The l/0 control store contains a 256-word memory array of
16-bit words.

A standard feature with all writable control store models is
the subroutine stack that increases storage efficiency by
providing a call and return capability for suubroutines of
microinstructions. Up to 16 addresses for branches can be
stored in the stack. Operations are provided for pushing,
popping and deleting an entry.

Up to three writable control store pages (2048 words
including the page-zero read-only store) can be installed in
a Varian 73 system. Each writable control store page unit
is contained on a printed-circuit board that plugs into a
Varian 73 mainframe chassis.

.....
'.J

,
ciQ'

~
CD

....
~
(')
0

~
2.
VI

~
CD

(')
0
::a -ciQ'

~
~ a·
::a
Ill

~
i

r--lr
I

I

I

I

I

I

I

L

,_)

0
a:::
I-

z
0
u
0
z
<l:
w
u
<l:
lL
0::
w
I-

z

.... r-

....
1'-

.....

....

~----- ---·--·-----· --~---------·----------------------·

----------l
ADDRESS -- DECODER

DATA CONTROL - r-
STORE

I
DATA

SUBROUTINE ADDRESS ~·
ADDRESS

I ~ ~
r-STACK
lo

I
-

~ DATA CENTRAL
PROCESSOR CONTROL

I
DATA

STORE ADDRESS _.., ..

DATA t l ...
I ...

I

----b I
I/0 BUS

I
~ I

I -

lL
ADDRESS r-

I ADDRESS ... 1/0
1/0 CONTROL DATA ... CONTROL

I (OPTION BOARD)
-..

DATA STORE

I

I DATA ...
WRIT ABLE CONTROL STORE ---- _j

..,

IIIII ·•·

-

I
i

r-

-----l
l

I
I
I

<
Q)

~.
Q)

::::s
c.
Q) -Q)

3
Q)

0
:::r
::J
CD
en

~
I

1.4.3 Software Modules

Microprogram preparation uses a sequence of software
provided with the writable control store. First the program
is written and assembled with a special assembler called
MIDAS. Upon error-free assembly the code is run in a
simulated environment which is completely independent of
a writable control store. The ability to trace and correct
the execution is available with the microsimulator. These
first two steps can occur without a WCS. Then only when
the microprograms are checked completely the code can

be loaded in the WCS with the micro-utility program. In
addition to loading the utility provides some diagnostics.
These steps are depicted in figure 1-5 "Steps for Realizing
Microprograms".

All the components of the microprogramming software were
designed to operate both under operating systems, MOS
and VORTEX, and as stand-alone programs on the 620-
series or 73 computers. Operating systems require a
minimum configuration (see the manual for the particular

USER-DEFINED
MICROPROG
SOURCE

VTII-1799

RECODED
SOURCE

NO

DIAGNOSTIC
AIDS

YES

Figure 1-5. Steps for Realizing Microprograms

ASSEMBLY
LISTING

INTRODUCTION

operating system). Table 1·1 lists the hardware require­
ments for microprogramming software.

Assembler

An assembler is a computer program which translates
symbolic statements into machine instructions. The
symbols are more meaningful than the strings of bit
settings they represent. In addition to simply translating
froin symbolic to the executable code, the assembler
assigns storage locations to the assembled instructions
and produces a form of the instructions for loading into
the processor's writable control store.

The microprogram data assembler (MIDAS) allows the user
to prepare microprograms for the Varian 73 WCS.
Through the use of operation mnemonics, symbolic
addressing, address-field calculation, macro definitions,
error detection and automatic program documentation the
assembler makes writing microprograms easier.

MIDAS is designed to provide the user with a tool for
microprogram implementation. While relieving the user of
much of the tedious housekeeping associated with
generating microinstructions and their data fields, it also
allows the user to describe the microinstructions at their
most fundamental level.

----· varian data machines ~

Simulator

Verifying that the microprogram does indeed solve the ·
problem is the next step. A logical step in implementing a
microprogram is to run it with the microsimulator. The
effects of executing a faulty microprogram are likely to be
worse than those caused by poor assembly-language
coding.

The simulator runs the output from the assembler within
main-memory storage. At selected times conditions and the
contents of data locations can be changed and examined.
Projected changes can be simulated to evaluate eventual
changes to the microprograms.

After determining that the code is error-free the writable
control store can be loaded with the utility program, which
uses a command set as consistent as possible with the
simulator.

Utility

Loading the control store with the assembled and test
microcode is performed by the microprogram utility,
MIUTIL. In addition, on-line debugging directives are
available through the utility.

Table 1-1. WCS Software Confieuratlon Matrix

High-
TTY TTY TTY Speed

Operatine Memory (K) Keyboard/ PT PT PT
Proeram System 8 12 16 20 24 32 Printer Reader Punch Reader

Micro- VORTEX X R 0 0 X N N 0
Assembler
MIDAS MOS X R 0 0 0 0 X X N 0

SA X R 0 0 0 0 X X X 0

Micro- VORTEX X R 0 X N N X
Simulator
MICSIM MOS X R 0 0 X X N R

SA X R 0 0 X X N R

Micro- VORTEX X 0 0 0 X N N X
Utility
MIUTIL MOS X R 0 0 0 0 X X N R

SA X R 0 0 0 0 X X N R

WCS Test X N N N N N R 0 N X
Program

(continued)

19 J
L.·-···---~----···

- ---~------ w ----------------

INTRODUCTION

Table 1-1. WCS Software Configuration Matrix
(continued)

High-
Speed

Operating Memory (K) PT Card Card Line
Program System 8 12 16 20 24 32 Punch Reader Punch Printer

Micro- VORTEX X R 0 0 0 R 0 R
Assembler
MIDAS MOS X R 0 0 0 0 0 R R R

SA X R 0 0 0 0 N R N R

Micro- VORTEX X R 0 N R N R
Simulator
MICSIM MOS X R 0 0 N R N R

SA X R 0 0 N R N R

Micro- VORTEX X 0 0. 0 N R N R
Utility
MIUTIL MOS X R 0 0 0 0 N R N R

SA X R 0 0 0 0 N R N R

WCS Test X N N N N N N N N N
Program

Operating Memory (K) Mag Rotating wcs
Program System 8 12 16 20 24 32 Tape Memory Option

Micro- VORTEX X R 0 0 0 X
Assembler
MIDAS MOS X R 0 0 0 0 X 0

SA X R 0 0 0 0 0 N

Micro- VORTEX X R 0 0 X
Simulator
MICSIM MOS X R 0 0 X 0

SA X R 0 0 0 N

Micro- VORTEX X 0 0 0 0 X X
Utility
MIUTIL MOS X R 0 0 0 0 X R X

SA X R 0 0 0 0 0 N X

WCS Test X N N N N N N N X
Program

Legend:

X - minimum configuration
R - recommended (recommended in place of

its minimum counter part)

0- optional (can be used but program
will function completely
without it)

1-10
-----~·~~

SECTION 2
CAPABILITIES

varian data machines ~

This section describes micro-operations available with the
Varian 73 system. The operations are grouped into the
following categories:

a. data transfer and transformation

b. addressing and conditional actions

c. memory access

d. other controls

A basic example follows these sections. Some important
timing considerations are presented at the conclusion of
this section of capabilities.

This section describes only central control store
programming.

l/0 and decode control store are treated in section 8.

2.1 GENERAL MICROINSTRUCTIONS

The sixty-four bits of the microinstruction are grouped into
fields referenced by either an ordinal number or a two­
letter name for the microprogram assembler. The full
resources of the system can be exploited by the user who is
familiar with all the defined microinstruction fields. To
start most common operations a limited set of fields is
involved.

Whenever a combination of bits is not defined, i.e., of the
264 values of the microword some are not ass1gned a
meaning, the user should be cautious and avoid coding
those settings not defined. Undefined codes for fields may
be assigned new meanings in the future.

2-1

N
r\J

"TT
oti'
c
~

~
3:
n'
0
:r
~
c
~
(5'
::I

"TT
(;;'
c::
VI

s.
w

"' ::::!

"" ~

l63 59

I TS I

l
AB- 01 V 10

SELECTS 4 BITS FROM IR (MASKED BY MRT

TO REPLACE AA OR BB

l
SELECT DECODER AND ENABLE INTERRUPTS

SET ENABLES
XXXI I 0 INTERRUPTS
XXIX 110 INTERRUPTS IF MP
XIX X MP INTERRUPT
lXXX CONSOLE (STEP) INTERRUPT

I
PAGE JUMP

SELECTS PAGE NUMBER

t
I REQUEST I 0 I

BITS 2-5 OF I 0 ADDRESS

ADDRESSING I 110 I CONDITIONAL TESTING 1/0

54 50 49 45 43 41 37

AF I MS 1 MT I FS I TF I SF GF MR -j
J

I
L__

SEE TABLE I CONTROL STORE ADDRESSING I TF = 00 A SF = 00

ll/0 REQUEST J I TEST CONDITION IN GF I XXXI IBR TO IR
00 NO TESTING XXIX SAMPLE CONDITIONAL TEST r 1/0 ADDRESS

1
01 TEST PASSES IF TRUE XIX X SELECT DECODER AND

BIT 7 11 TEST PASSES IF FALSE SAMPLE INTERRUPTS
lXXX SAMPLE OVERFLOW

I FIELD SELECT (5 BITS FROM IR, I I 1/0 REQUEST I l SPECIFIES USE OF IM J lvo ADDREss BIT 6 1 MASKED BY MS) ADDRESS BITS AND GF
FSEL

TABLF I COCCTROL-CTORf ADDRE<SING

I"),' lb 1
''

1
' ltl:l h T~ 11eld '"not used rn btls 14 of address lormatron

..,t,t•r,

1 Regl'>ler fleldextractwn(AB freldequalsOI or IOJ

GEW~""l
t' lrtlerrupl'> lllowed (Sf H l1elds both 00 IM f1eld

equ.il'>lllXJ

I U reque<.l tS~ !reid equals DO IM l1eld equ,1b Ill X l

111liU'-Iot rl Page 1ump (TF !reid equ<tls 00 Sf f•eld equ.JIS 10 Gf

~t~J
l1eldequalsXJXX)

Hulull ,1<::,, e Testaddress,ng,sspec,f+ed(Tfheldnotequ.liOC)

(fS) IS the contents of the f1eld speC1f1ed b~ the f S f1eld

I" 1° I" I" IMTI Mo ~ Mf rs replaced by a zero when an I 0 request IS

present(Sf f1eld equals OO.IMI1eldequals II IX)
FXCLUSIVF OR
PLUS
MINUS

I l INVERSION ONES CO><PLEMENTl

TF = 00 A SF = 01 I I NO 1/0 REQUEST I
XOOX NO STATUS CHANGE I CONTROLS AB I
XOIX SET OVERFLOW

I TF = 00 A SF= 10 I
I XXXI ENABLE START OF PMA OPERATION I

XXIX SAMPLE FALSE CONDITIONS
XIX X PAGE JUMP OPERATION

(TF t O)V (TF = 0 A SF= 3)

0000 OVERFLOW
0001 11 0 SENSE
0010 SS3
0011 SS2
0100 SSl
0101 EMUL 620 F TESTS
0110 ALU ALL ONES
0111 ALU SIGN
1000 ALU CARRY
1001 ALU All ZEROS
1010 DSB
1011 MIR SIGN
1100 SHIFT COUNTER OVERFLOW
1101 GPR 0 SIGN
1110 NORMALIZED SHIFT
1111 QUOTIENT SIGN

i~
r-
=t < ;;; Q)
U) .,

6)"
::::J
c.
Q) ...
Q)

3
Q)
(')
:::T
::::J
CD
en

N
w

"" ao·
~
Ill

~

3: r;·
0
:;·

~
r::
(")

o·
::I

"" n;·
a:
Ill

N

s.
w

"' ~
""

----,
I

• -'l: _- -..-.
~~·""a : ,.... ,.,,. .~~:-~··''1!>·-r~w; « ;:;;...,... ~·cp;;u. a a a~

-.-,
J/0

134
MEMORY l/0 ACTION

130

ALU INPUT

126

REGISTER L3 FUNCTION

119

ALU MODE

.c 28

R1" AB l IM I LB LA I RF I FF I MF <
.* I

I I
I

I I l l
s 0 I II 0 REQUEST' SF 0 '" '"""'. I ((MF o 0\ ;, (LB = 00 v Oil) l LB o 10 VII

I AA-AA; 0000 NO ACTION 00 GPR V (LB o IOVll) 1\ DMODE II I MF IS PART

IR BITS SELECTED BY TS
0001 .VAIT FOR MEMORY ACK, 01 SPECIAL_~E(;_ISTER 0000 A

OF 16-BIT LITERAL;

TO LQ:; ORDER 4 BITS
0010 ,\All FOR I 0 ACK. 10 IR ,\ (MASK)

0001 A VB
MODE OF ALU SET BY

~ OF BB
0011 PAGE BRANCH NO MAIN MEM 1 I LITERAL 0010 A VB

BIT I OF FF

0100 ALU ·-IBR AND INPUT REGISTER 0011 -1

I 2 BB-BB 0101 UNUSED 0100 A '(A;, B)

IR BITS SELECTED BY TS OliO SELECT & RESET INTERRUPT FLAG 0101 lA v B) + (A I B)

TO LOW ORDER 4 BITS
0111 SET INTERRUPT FLAG

I
0110 A-B-1 I LB o 00 V 01

OF AA
1000 LOAD I 0 KEY REGISTER 0111 (A 1\ B) -1

I 1001 UNUSED 1000 A + A 1\ B SETS ALU MODE

3 AA-AA
1010 RESET SUPERVISOR KEY 1001 A • B

1010 SET SUPERVISOR KEY ALU INPUT A 1010 (A'/ B)+ (A 1\ B)
BB-BB 1000 INHIBIT DECODER 00 GPR

1011 (A !• B) -1

1
1101 NCS FUNCTIONS 01 PROGRAM COUNTER

1100 A • A

]])(; REOUEST I 0 & INHIBIT DC\ 10 GPR SHIFTED LEFT
1101 (A V ~ • A

1111 REQUEST I 0 11 GPR SHIFTED RIGHT
1110 (A VB) + A

I I
1111 A- 1

(MR • 01 II lAB o, I 0 REOUEST

I CONTROL STORf OUTPUT -~AA and BB I
(SF=Oli ;, (ITF 00) ! (SF • lOll LA = 10/ II

l
ooxx OVERRIDE MEMORY REQUEST

BIT 0 OF GPR-BYTA I (iMF • 11/\ILB • OOVOlllv

OlXX ALU- ii<MORY ADDRESS (MAD,•
((LB • 10 V 111 II DMODEI'

lUX)(PROGRAM LUUNHK - 1\1\AU' 0000 A
(MR"" 1) 1\ (AB I 0 RfOUEST I lXX MIR -ti\AD' 0001 A v ll

~
AA-AA, lll-BITSI-3ofBB '& START MEMORY 0010 A V B

(Wf- .\ BIT 15 OF AL U OUTPUT'1 \

I
0011 ZEROS

,\BIT I OF OPF -BB Ut.,T
0100 A'/\ s
0101 B

fliT 0110 A'<! B

I 1
SF ~ 00 000 NO ACTION

0111 A 1\ jj

xxoo 001 LOAD PROGRAM COUNTER
1000 AVB

INSTRUCTION FETCH IF
010 LOAD SHIFT COUNTER

1001 A\i-B

XXOI OPERAND FETCH OF
011 LOAD OPR

1010 B

I 0 REQUEST
XXIO 0 PERAND STORE OS 100 INCREMENT PROGRAM COUNTER

lOll A A B

XX II BYTE STORE BS 101 COUNT SHIFT COUNTER
1100 ONES

BIT 0 IS I 0 ADDRESS BIT 1 1101 AVB

I
110 LOAD PROCESSOR KEY REGISTER

BIT 1 IS I 0 CONTROL BIT 111 LOAD OPERAND REGISTER
1110 A VB

AND INCREMENT PROGRAM COUNTER
1111 A

~· (TF>O) (SF • 101

~ ACTION If TESTCONDITION NOT MET

I OOXX OVERRIDE MEMORY REOUEST .. 101: ALU-MAD l START MEMORY , lwxx PROGRAM COUNTER -MAD IF TEST NOT
MIR-MAD MET

<
I» ...
iii'
:J
c.
I» -I»

I
SF• 11 I

MEMORY ACTION AS ABOVE,
IF TEST CONDITION IS MET.

3
I»
(')
:::r
:J

~ _..! __ ·_. .,..i. "f . ..:...~:J.t-; .. ~ ~··· .u ':'><• .~- >J-,_~~rt~'·L4W'"
' . .;' ,, .. a..-~ ,J"!".l..."''l~

n (1)
:Jio en .,

~~
CA

N
.b_

,
tiQ'
~
(D

~
3:
~-
0 :r
~
r:::
!l
5'
::I ,
ii'
a:
Ill

.........
w
s.
w -

~

~
~

~,

~

~~

n

~ > ,
>
1:111 r= -_-~- ~~-~\!"~·~7;-~~.~-~.~~.~~~~-·~r ... - ~~-~~~-:~- ~~·-- .-:--:-"·~~ --~:~~;:._}jF. ~~~;:::~-:~~:-:]~~:;"t,t·~}~~~Of;_l't{"'.tJ~t~~ff.l?Jr'1

ALU REGISTERS L3
SHIFT

~ ~ IB •' 16 15 14 12 10 7 3
'}I CF I WR I sc I VF I WF I XF I SH I BB I AA .. 11

I I I I
I

j

I 1
LB = 00 V 01 I (LB = 00 v 01) 1\ (SC = 0) J (lA = 00) 1\ (1.8 = 00 v 0 1) I LA~ 01 I ~

ALU CARRY-IN I ~ NO ACTION J 000 NO ACTION I SPECIFIES GPR AS ALU I j 00 0 ALU BIT 15- QUOS XOI 0- ALU INPUT A INPUT A

01 STORED CARRY

I
XIX I- ALU INPUT A

I
,1

10 STORED CARRY lXX SPECIAL ALU FUNCTION '.I!
11 I

I ~ I I (LB- OOV01) 1\ (SC-I) I I (LB- 00 v 01) 1\ (INR =I) J

I ~ SHIFT OPR LEFT I I
t

SPECIFIES GPR AS ALU I
I LB = 10 V 11 I SHIFT OPR RIGHT (LA = 10) 1\ (lB = 00 V 01)

DESTINATION

I
oxx A BIT 14- ALU BIT 15

CF IS PART OF 16-BIT LITERAL lXX A BIT 15- ALU BIT 15
ALU CARRY-IN = 0 xoo 0-ALU BITO

I (LB = 00 V 0 I) 1\ IOREOUEST 1\ I
XOI A BIT 15 - ALU BIT 0
XIO OPR BIT 15- ALU BIT 0

(MR =I) 1\ (AB =I)

I 1 I I ~ ALU BIT 15- BIT 0 GPR NO. I
OPR BIT I -BIT 0 GPR NO.

I LB = OOV 01 I

l
(LA= 11)/\ (lB = OOV 01)

I~ NO ACTION
000 MULTIPlY SIGN-A BIT 15 ALU OUTPUT - GPR
001 A BITO-A BIT 15

I I LB = 10 V 11 I 010 A BIT 15-BIT 15

I I
011 OPR BIT O-BIT 15

PART OF 16-BIT LITERAL 100 O-BIT 15

I LB = 10 V 11

I I PART OF LITERAL

I I LB = 10 vII J (LB = 00 V 0 1) 1\ (SC = I) 1\ (INF = 0) I PART OF 16-BIT LITERAL J I 00 OPR BIT 15 SHIFTED TO BIT 0
01 A INPUT BIT 15 SHIFTED TO BIT 0

I LB = 00 V 01 J 10 ALU BIT 15 SHIFTED TO OPR BIT 0

=i < ;;; I»
fn ... ar

::l
c.
I» ...
I»

3
I»
()

2:
::l
~
rn

I 0 NO ACTION I 11 A BIT 0 SHIFTED TO OPR BIT 0

1 SHIFT OPR

I
L LB = 00 J

I lSPECIFIES GPR J
AS ALU INPUT B

I LB = 10 v 11 I (LB = 00 V 0 1) A (SC = I) A (WF - I)

l PART OF 16-BIT LITERAL I 00 OPR BIT 0 SHIFTED TO BIT 15

01 A INPUT BIT 0 SHIFTED TO OPR BIT 15
10 OPR BIT 15 SAME

LB=OI

II DSB- OPR BIT 15 SPECIFIES SPECIAL

I I
REGISTER AS ALU INPUT B

0000 OPR

I LB = 00 V 01 I
0001 MIR

~ 0010 lOR

I ~ NO ACTION J (LB = 00 V 01) 1\ (SC = 0) 0011 STATUS I
BIT 150FGPR-DSB 0100 g~~ ~~~~~~::E f i~~~NDED

--~
00 NO /\CTION 0101

I
01 RESET PROCESSOR INTERRUPT FIF 0110 OPR RIGHT BYTE \ ZERO

10 ENABLE JUMP SIGNAL 0111 OPR RIGHT BYTE I FILL

11 RESET INTERRUPT F f and SHIFTED TO LEFT

I LB = 10 V II I ENABLE JUMP SIGNAL -~
I PART OF 16-BIT LITERAL I I

I LB- 10 V 11 J I LB = 10 V 11 I

L PART OF 16-BIT LITERAL I PART OF 16-BIT I -
LITERAL

THIS PAGE
INTENTIONALLY LEFT

BLANK

·--------------·.

varian data machines ~
CAPABILITIES

2-5

~ vaMandata ~achines ~~~~~~~~~~~~~~~~~~~~~~~

CAPABILITIES

2.2 DATA TRANSFER AND
TRANSFORMATION

2.2.1 ALU Input Sources

Input to the arithmetic and logic unit is selected by a
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the
same sources are not available for both buses. Some
inputs to the ALU can be sent on either bus and some on
both. The general-purpose registers can be selected as
input upon either bus and a specific register selected for
each bus.

Any of the general-purpose registers can be shifted on its
way on the A bus to the ALU. Shifting can be one bit
position to the left or right.

Input to the ALU can be from one or two of the general­
purpose registers. The use of one of these registers .is
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is
specified in AA and/or BB.

For example to use registers R2 and R4 as the input to the
ALU

field LB LA BB AA

value 0 0 2 4

(hex.)

Mnemonic B$GPR A$GPR R2 R4

LA can also specify that the register indicated by AA is
shifted or rotated. Shift left and shift right are indicated in
the LA field and the shift field, SH.

Special Registers as ALU Input

By setting the LB field to one, SREG for special register the
value in the BB field takes on a different meaning:

0 OPR Operand register
1 MIR Memory input register
2 lOR I /0 register
3 STAT Processor status word
4 ORSE Operand right byte sign extended
5 OLSE Operand left byte sign extended
6 ORZF Operand right byte zero fill
7 OLZF Operand right byte in the

left byte position zero fill

2·6

I
I

Table 2-1. ALU Input A Bus Selections

ALU Input A Bus Source Fields

LA SH LB

Program counter 01 XXX XX

Genera 1-purpose 00 Neither ox
register (any one X01 nor
of 16) specified XIX
in AA

Genera 1-purpose 00 XXX IX
register (any one
of 16) specified in
AA

All zeros input 00 X01 ox

All ones input 00 XIX ox

General register (in IO See ox
AA) shifted left below

Bit I5 = register oxx
bit I4

Bit I5 = register IXX
bit I5

Bit 00 = zero xoo
Bit 00 = register X01

bit I5
Bit 00 = operand X10

register bit I5

General register (in 11 See ox
AA) shifted right below

Bit 15 = multiply 000
sign flag

Bit I5 = register 001
bit 00

Bit 15 = register 010
bit I5

Bit 15 = operand OI1
register bit 00

Bit I5 = zero 100

X indicates the bit in that position is of no consequence
to this action.

GPR

16 GENERAL­
PURPOSE

REGISTERS
RO I Rl, 0 0 0 I RF

SHIFT/ROTATE

ALU INPUT A

varian data machines ~
CAPABILITIES

OPR

OPERAND
nrr-rrTrn
f\1-\JlJILf\

.-~----------------------A_L_U_IN_P_U~T-~-=-~------------------~-·~

VTI/-1801

Figure 2-2. General-Purpose Registers, Operand Register and ALU Input

~ varian data machines

CAPAB1LITIES

Table 2-2. ALU Input B Bus Selections

ALU Input B Bus Source Fields

LB BB

General-purpose 00 Specifies
register (any one register
of 16)

Operand register 01 0000
full word

Operand register 01 0100
right byte with
sign extended

Operand register 01 0101
left byte with
sign extended

Operand register 01 0110
right byte with
zeros in left byte

Operand register 01 0111
right byte in left
byte position; zeros
in right

Memory input register 01 0001
(MIR)

I /0 register (lOR) 01 0010

Processor status word 01 0011
(STAT)

Instruction register 10 Part of
masked by 16-bit mask

literal constant
consisting of fields
MF, CF, WR, SC, VF, WF,
XF, SH and 88. A one
in the mask fields
forces the corre-
sponding ALU input
bit to a zero.

16-bit literal 11 Part of
constant consisting constant
of the ones com-
plement of fields
MF, CF, WR, SC, VF,
WF, XF, SH and 88

NOTE: When the 16-bit literal or mask is used, the ALU
mode is forced to the arithmetic mode if the FF field bit 1
is a zero and to the logical mode if the FF field bit 1 is a
one. A carry of zero is forced. The ALU output may not be
written into any general register in this case. The WR field,
which would specify such an operation is disabled for use
as part of the 16-bit literal or mask.

2-8

Processor Status VVord

The processor status word may be applied to the ALU input .
8 bus when the L8 field equals 01 and the 88 field equals
0011. Processor status bits are assigned as follows:

Bit Function Name

00 Not used (logic 1)

01 Supervisor mode flag SUPR

02 ALU zero flag ALUZ

03 Shift counter bit 00

04 Shift counter bit 01

05 Shift counter bit 02

06 Shift counter bit 03

07 Shift counter bit 04

08 Overflow flag OVFL

09 ALU all ones flag ALUO

10 ALU sign flag ALUS

11 ALU carry flag ALUC

12 Processor key register
bit 0

13 Processor key register
bit 1

14 Processor key register
bit 2

15 Processor key register
bit 3

2.2.2 ALU Functions

Two sources for data, an action to be performed by the
arithmetic and logic unit and a destination for the result
are all specified in a single microinstruction.

The ALU function is determined by three fields in
microinstruction. These fields, function, mode and carry,

are grouped together to give meaningful names to some
common operations, like ADD for addition. This entire
group of fields can be set to execute combinations which
do not have convenient names in the assembler.

One basic ALU action or an operator is chosen. There are
three categories of operations. Arithmetic operations
available at this level include addition, subtraction,
increment etc. Logical operators which have convenient

single-word names are AND, OR, exclusive OR, NOT
implication and equivalence. Also the ALU can perform
more complicated logical functions explained later in this
section.

Some general operators for transferring the unchanged
contents of the A or B bus, or all zeros or all ones, or
shifting (though the ALU is not the only place for shifting,
also the operand register is capable of shifting).

Table 2-3. ALU Operations

OP Assembler ALU
field Mnemonic Action FF MF CF

03 INCA A+ 1 0000 0 11

04 N<Z>TA A 0000 1 00

08 <Z>R AVB 0001 0 00

1C ZER<Z> all zeros 0011 00

2C N<Z>TB'' 8 0101 1 00.

33 SUB* A-8 0110 0 11

34 E<Z>R A¥8 0110 00

3C AND AAB 0111 1 00

49 ADD A+ 8 1001 0 00

54 TRNB 8 1010 1 00

60 SHFA A+A 1100 0 00

64 <Z>NES FFFF 1100 1 00

78 DECA A-1 1111 0 00

7C TRNA A 1111 00

*cannot be used when input 8 is mask or literal

varian data machines •

CAPABILITIES

ALU Mode

There are two modes available for the ALU, arithmetic and
logical. In the arithmetic mode the user selects a type of
carry input to the ALU to be used with the arithmetic
action. In logical functions the value of the carry field (CF)
is ignored. The mode is directly set as either arithmetic or
logical by the MF field. Indirectly the mode can be set
when the actual mode field is part of a literal or literal
mask. If the LB field is 10 or 11 in binary, the MF and CF
fields are part of a 16-bit constant. In this case the ALU
mode is taken from the bit 1 setting of the FF field
(consequently this limits the functions available with a
literal or mask).

Carry Flag

The CF field specifies carry input to the ALU as follows:

CF Value of Carry In

00 Zero
01 Stored carry
10 Stored carry complement
11 One

The carry flag ALUC, bit 11 of STAT, is altered only if SF is
set to zero or two, TF to zero and the GF field to XX 1 X.

Under these conditions carry is set or reset to the carry
produced by the ALU. The only meaningful conditions for
carry are the arithmetic functions such as add, increment,
decrement and subtract. For these conditions the carry
flag is set as follows. MF is zero for all of the following.

2-9

~ variandata~achines ~~~~~~~~~~~~~~~~~~~~~~~

CAPABILITIES

Table 2-4. Carry Flag Settings

FF Function If Carry In = 0 If Carry In = 1

0000 A Reset Set if result = 0

0001 AVB Reset Set if result = 0

0010 AVB Reset Set if result = 0

0011 -1 Reset Set unconditionally

0100 A+ (A A B) X X

0101 (A v B) + (A v B) X X

0110 A-B-1 Set if [(A" = B 1,) A (A ~ B)] V Set if [(A 15 = B 15) A (A > B)] V

[(A 1,, -1= B 1,) A (A< 0)]

0111 (A A B) -1 Set if result is -1= -1

1000 A + (A A B) X

1001 A+B Set if [(A<. 0) A (B < O)]V

[(AIC• -1= Bl,.) A

(A 1, = 0) /'c.

(IAI :2: IBI)] V

[(At,. -1= Bt,.) A

(BI, = 0) A

IBI > IAI)]

1010 (A V B) + (A A B) X

1011 (A A B) -1 Set if result -1= -1

1100 A+A Set if A 1,. =

1101 (A VB) + A X

1110 (A v B) +A X

1111 A-1 Set if result -1= -1

Arithmetic Operations

The FF field determines an arithmetic operation as
indicated below when the MF field is 0. Carry input is set
independently. When bit 1 of FF is zero the arithmetic
mode is selected when the actual mode field is part of a
mask or literal. The expressions in parentheses are
evaluated first from left to right. Any further evaluation is
performed from left to right.

Logical Operations

When MF is one, the logical operations occur as indicated
below by FF field settings. The carry field is ignored.
Symbol indicates exclusive OR operation.

2·10

[(At,. -1= B1,.) A (A.< 0)]

Set unconditionally

X

Set if [(A < 0) A (B < 0)] V

[(At,. -1= B 1,) A (A 1,, = O)A

(A 2: B)] V

[(AI, -1= Bl,.) A (BI, = 0) A

(B ~A)] V [Result = OJ

X

Set unconditionally

It AI,. = 1

X

X

Set unconditionally

Arithmetic Functions
FF Value ALU Action

0 A
1 AVB
2 AVB
3 All ones
4 A + (A A B)
5 (A v B) + (A A B)
6 A -B -1
7 A A B-1
8 A + (A A B)
9 A+ B
A (A v B) + (A A B)
B (A A B) -1

c A+ A
0 (A V B) + A
E (A v B) + A
F A -1

SYMBOLS
V Inclusive OR
~ Exclusive OR
+ Addition

Subtraction
logical AND

c complement

varian data machines ~
CAPABILITIES

Logical Functions 2.2.3 ALU Output Destinations
FF Value

0
1

2
3
4
5
6
7
8
9
A
B
c
D
E
F

ALU Action
A
AV B
A/\B
All zeros
A/\8
8
A~B

AAB
AVB
A)Q(B
B
AAB
All ones
AVB
AV B
A

The ALU output will be determined by the function
performed. This data can be directed by the microinstruc­
tion to the general-purpose registers, some of the special
registers, counters, and indirectly to memory and l/0.

A multiple destination can be one of the general-purpose
registers and a special register.

The direct assignments of the ALU result is specified by a
combination of fields, WR, LB. AA and RF. The first three
are used to specify any one of the 16 general-purpose
registers while RF selects sending data to the program
counter, operand register, shift counter or key register.

Table 2-5. ALU Output Data Destination

Destination Control Fields

RF WR SF IM LB

DIRECT CONTROL

General register (any 1 of 1 ox
16) (Specified in AA)

Program counter 001

Operand register 011 or
111

Shift counter 010

Processor key register 110

INDIRECT MEMORY CONTROL

NOTE: Transfer occurs only
if cycle is successfully
mitiated)

Memory data bus Not 00 XXIX

Memory address register Not 00 OlXX

Memory input register and 00 0100
instruction buffer

INDIRECT l/0 CONTROL

I /0 register 00 lllX

NOTE: Transfer is under
direct control of I /0
control. Operation is
specified by TS, AB, MR
fields and contents of
I 10 control store.

2-11
·------------·---·---·---..J

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~
CAPABILITIES

2.2.4 Other Registers

Shift Counter

The shift counter is an 8-bit counter which may be
incremented and tested independent of the ALU. It is thus
useful in keeping track of iteration in a microprogram. The
counter may be tested for overflow using test addressing.
The overflow condition occurs when the shift counter is
minus one.

An instruction which both increments and tests the shift
counter will be testing the old value. If the counter is
loaded with negative number and incremented to 0, the
one instruction delay is no problem. This is because
checking the old value for- 1 produces the same result as
checking the new value for zero.

Program Counter

The program counter is a 16-bit register which can be
incremented and/or used as a memory address, indepen­
dent of the ALU. The following are considerations when
incrementing the program counter:

a. if the same microinstruction uses the P register for a
memory address, the new value of P will be used.

b. if the microinstruction both increments P and uses Pas
an ALU input, unpredicatable results are obtained. In
general, using Pas an ALU input and incrementing P
should not be done in the same instruction.

Processor Key Register (KEY)

A four-bit processor key register supplies signals for
memory operations initiated by the processor. These four
bits in conjunction with the high-order bits of the normal
memory address are used by the memory map option
determine physical addresses. It should be noted that this
key register is different from the map register used under
VORTEX II. The latter is loaded over l/0 and cannot be
conveniently accessed from the micro level.

l/0 Key Register

A similar key register for l/0 is a four-bit register which
supplies signals to the memory map option during memory
operations initiated by the I /0 control.

Operand Register

The operand register is a 16-bit register which has special
shifting abilities. As previously noted, the ALU input A bus
may have any of the 16 general-purpose applied shifted
left or right one-bit position. In addition, the operand
register may be shifted left or right independently or in
conjunction with shifting of any general register. This can
occur any time the 16-bit literal or mask is not in use.

2-12

When the LB field is equal to OX (no literal/mask) the SC,
WF and XF fields define operand register shifting.

When the SC field equals 0 no shifting takes place. When
the SC field equals 1, the operand register is shifted left if
the WF field equals 0 and right if the WF field equals 1.

For left shifts the next contents of the operand register bit
00 is specified by the XF field. If XF equals 00 operand
register bit 15 is copied to bit 00 to permit independent
circular shifting. If XF equals 01 bit 15 of the general
register specified by the AA field is copied to bit 00.

This permits double-length circular shifting. If XF = 10 the
complement of the ALU output bit 15 is copied to bit 00. If
XF = 11 the operand register bit 00 is set to zero.

For right shifts the next contents of the operand register bit
15 is specified by the XF field. If XF equals 00 operand
register bit 00 is copied to bit 15 to permit independent
circular shifting. If XF equals 01 bit 00 of the general

Table 2-6. Operand Register Shift Operations

Control Field

LB sc WF XF

No shifting 0

No shifting 1X

Shifting of operand register Ox 1

Left shifting 0

Bit 00 = operand 00
register bit 15

Bit 00 = general 01
register bit 15
(specified in AA)

Bit 00 = ALU bit 15 10
complement

Bit 00 = zero 11

Right shifting 1

Bit 15 = operand 00
register bit 00

Bit 15 = general 01
register bit 00
(specified in AA)

Bit 15 = operand 10
register bit 15

Bit 15 = SHFT (shift 11
flag)

register specified by the AA field is copied to bit 15 to
permit double-length circular shifting. If XF equals 10 the
operand register bit 15 is maintained at its current state
to permit independent arithmetic shifting. If XF equals 11
the shift flag (SHFT) is copied to bit 15.

2.3 ADDRESS! NG

2.3.1 General

Executing instructions in an order other than strictly
sequential gives programs flexibility and compactness. The
ways in which the order of microinstructions can be varied
are similar to those used in assembly-language programs.
For the microassembler the usual order of execution takes
the next instruction -- the contents of word five after word
four and so on -- unless a jump or branch specifies the
change in order. In reality each and every microinstruction
specifies the next one to be executed, but usually t~e

assembler constructs sequential-execution addressing
automatically.

A jump in a microprogram can be a conditional action
based on the true or false state of flags or signals in the
system. In microinstructions the jump is not a separate
instruction but the sampling and/or testing and the
branch itself are specified in fields of a microword. In
addition to conditional and unconditional branches, the
branch may be from one page to another. The page jump
is described following a few simpler cases and conditions.

Three basic types of addressing create the address of the
next microinstruction to be executed in three ways.
Normal addressing is the simplest case in which the next
address is determined by the current microinstruction and
the instruction register field specify the address for the
next micromstruction. In decode addressing (using the
decoder control store) the instruction buffer specifies the
next address (section 8 in this manual describes the use of
this feature).

Three other types of addressing are similar to the basic
types. Conditional addressing uses testing of various
conditions to choose one of two addresses. The page jump
can specify both the page and word number within the
page for the next microinstruction. Interrupt addressing
uses both the microinstruction and the system's interrupt
logic to determine the next microinstruction.

2.3.2 Normal Addressing

Normal addressing is used to arbitrarily specify the next
microinstruction address. No conditional testing 1s
involved, no interrupts are active or they are disabled and
decoder addressing is not specified. The FS and TS fields
are set equal to 0000 and the MT field equals 0 so the low
order address contribution (bits 0-3) is governed entirely
by the MS field. The high order bits (4-8) are supplied by
the AF field..

varian data machines ~
CAPABILITIES

Control Store Address -­
Normal Addressing

No reset
No interrupts
No decoding
FS = 0000
MT = 0
TS 0000 or
TF = 0

Normal Addressing with TS Field

The TS field may be used to form bits 1 through 4 of the
control store address when none of the following
conditions is true:

a. Register field extraction (AB field equals 01 or 1 0)

b. Interrupts allowed (SF and TF field both 00; GF field
equals X1XX)

c. 110 request (SF field equals 00; IM field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

The address is formed by the inclusive OR of the TS field
into bits 1 through 4 of the address obtained with normal
addressing (FS field equals to 0000; no decodin~S; no
interrupts, MT field equals 0).

Control Store Address
Normal Addressing with
TS Field

2.3.3 Field Select Addressing

inclusive or

The contents of the instruction register and a number of
processor flags may be used to form a control store
address. Any one- to five-bit contiguous field from the
instruction register may also be used in forming the low­
order five bits of control store address. Thus, up to a 32-
way branch may be performed based on instruction
register contents. This permits detailed instruction

2-13
---·---·----------------·---------·-------·---------

-~ varian data machines

CAPABILITIES

decoding. In addition, the interrupt flag, byte address flag,
shift flag and console step mode may be selected to alter
the control store address.

Field select addressing is used any time the FS field is not
equal to 0000. The field select address contribution for all
values of the FS field is shown in the tables below. Any bit
of the field select contribution may be forced to a zero by
use of the MS and MT fields. The field masks bits 0·3 of the
field select contribution. The MT field masks bit 4. A zero

in any bit of the MS and MT fields forces the contribution
of the corresponding field select bit to zero. When an l/0
request is issued (SF field equal to 00 and IM field equal to
111 X) the MT field is used as part of the I /0 operation
specification. In this case, the MT field is ignored and bit 4
of the field select address contribution is masked to zero.

The field select address contribution is shown below fo; all
values of the FS field.

High-order address bits 4 through 8 are provided by the AF
field.

The TS field is logically ORed into the control store address
bits 1 through 4 under the same conditions as normal
addressing into TS field. Thus, the composite field select
address is formed as follows:

Control Store Address Bit

4 3 2 1 0 FS Field

One One One One One 0
One One One One INT 1

, One 01 One SHFT BYTA 2
One One One One STEP 3

04 03 02 01 00 4
05 04 03 02 01 5
06 05 04 03 02 6
07 06 05 04 03 7

08 07 06 05 04 8
09 08 07 06 05 9
10 09 08 07 06 A
11 10 09 08 07 B

12 11 10 09 08 c
13 12 11 10 09 D
14 13 12 11 10 E
15 14 13 12 11 F

Numbers 00 through 15 refer to instruction register bits

INT is the interrupt flag (complement)

BYTA is the byte address flag

SHFT is the shift flag

STEP is true when the console is in the STEP mode

Figure 2-3. Field Select Address Contribution

2-14

817161514 3 2 1

AF 0 0 0

I o I o 1 o I o I TS"'

I o I o I o I o I (FS)':' •:,

I o I o I o I o 1~,~1 MS

0

0 11

lo
~usive1

inclusive
or

~J
and

r--J
Control Store
Address Field
Select

~' TS field is not used in bits 1·4 of address formation
when:

a. Register field extraction (AB field equa Is 01 or 1 0)

b. Interrupts allowed (SF, TF fields both 00, IM field
equals 111 X)

c. l/0 request (SF field equals 00; IM field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

e. Test addressing is specified (TF field not equal 00)

•:"~ (FS) is the contents of the field specified by the FS field

•:":' * MT is replaced by a zero when an I I 0 request 1s
present (SF field equals 00; IM field equals 111X)

Normal addressing and normal addressing with TS field
are a subset of the field select addressing set, i.e. the FS
field equals 0000 and the MT field equals 0.

2.3.4 Test Addressing

Two addresses must be specified when test operations are
performed ·· one for use if the test passes and one for use
if it fails. Testing is specified whenever the TF field is not
equal to 00. If the test is to pass when the condition tested
is true, the TF field must be equal to 10. If the test is to
pass when the condition tested is false, the TF field must
be equal to 11. The condition to be tested is specified by
the GF field.

The address used if the test passes is identical to that
formed by field select addressing. The address used if the

·~----· .. ···-.. -·------------------------ varian data machines ~
CAPABILITIES

test fails is made up of the AF and TS fields as shown
below.

3 2

AF 0 0

TS

Control Store Address ·­
Test Fails

0

0 0

inclusive
or

lor-J

2.3.4.1 Conditions

Whether or not a test is to be done and the way the test
passes are indicated in the test field (TF). Testing is
specified whenever the TF is not zero. If the test is to pass
when the condition is true, the TF is equal to 10. If the test
is to pass when the condition is false, the value of the TF
should be 11.

The condition to be tested is specified in the GF field.

Summary of Conditions Mnemonics

Value of Mnemonic
GF for Assembler

0 OVFL
1 IOSR

2 SSW3
3 SSW2
4 SSW!
5 TFIR
6 ALUO
7 ALUS
8 ALUC
9 ALUZ
A SHFT
8 MIRS
c SFTC
D GPRS
E NORM
F QUOS

Meanings and Use of Conditions

OVFL Overflow may be set and reset unconditionally. It
may sample data-loop conditions. Automatically reset
by system reset or microinstruction in which the GF
value is TFIR and the instruction register bit 0 is set
and the test met.

IOSR l/0 Sense Response (discussed in l/0 section)

SSW3,
SSW2
and
SSW!

Sense switches are set and reset
only by manual manipulation on the
control panel.

TFIR Test from instruction register which determines a
set of conditions tested simultaneously. Nine bits of
the instruction register cause the following tests:
0 Overflow
1 Positive/NOT bit
2 Negative/NOT bit
3 ROof General-purpose registers
4 R 1 of General-purpose registers
5 R2 of General-purpose registers
6 Sense switch 1
7 Sense switch 2
8 Sense switch 3

ALUO ALU all ones

ALUS ALU sign flag

ALUC ALU carry flag

ALUZ ALU all zeroes

SHFT Shift flag copies bit 15 of the general register
specified in the AA field whenever the literal or mask is
not being used and the VF value is 1. This flag may
be shifted into the operand register bit 15. It may be
tested by a microinstruction to cause a branch to
either of two microinstructions.

MIRS Memory input register sign

SFTC Overflow of the shift counter

GPRS General-purpose register 0 bit 15 (sign)

NORM Normalize flag is set after any microinstruction
which the ALU output bus bit 15 is not equal to bit 14. It
will be reset after any microinstruction during which
the ALU output bus bits 14 and 15 are the same.

QUOS Quotient flag copies bit 15 of the ALU output after
a microinstruction in which the literal or mask is not
being used and the WF value is right or 1 and SC
field is zero.

MULS Multiply sign sets any microinstruction during
which any of the following three conditions existed:
1. ALU output bit 15 and ALU input A bit 15 were
both equal to 1

2. ALU output bit 15 and ALU input 8 bit 15 were
both equal to 1
3. ALU input A bit 15 and input 8 bit 15 were both
equal to 1.
This flag may be applied to the ALU input A bus during
right shift operations

2-15

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~
CAPABILITIES

BYTA Byte address flag copies bit 00 of the general
register specified by the AA field whenever a general­
purpose register is specified as shifted input to the
ALU input A bus. This flag may be used to determine
the address of the next microinstruction and for
memory byte store operations (SF not equal to zero
and IM field equal XXll) determines which byte of
the addressed memory location is to be altered. If
BYTA equals zero, the left byte is selected. BYTA
equal to one selects the right byte. BYTA is set or
reset during the microinstruction rather than at the
end.

A wide variety of flags are available for use in micropro­
gramming. In general, they may be tested no sooner than
the microinstruction after which they were set. In other
words, a microinstruction which both changes a flag and
tests will be testing the old value of the flag.

The conditions that cause a flag to be set depend on the
particular flag. In addition some flags require that the
microinstruction specify sampling before they will be set.
For example, the ALU all zeros (ALUZ) flag will not be set

unless the ALU is all zeroes and sampling is requested.

The following table lists some of the major flags. ALUZ,
ALUC, ALUS, and ALUO are sampled together by any'
microinstruction in which SF equals XO, TF equals zero,
and GF equals XXIX.

Summary of flags requiring sampling for microprogrammed
conditions.

Flag Sampling

NORM no
MULS no
SHFT yes
QUOS yes
BYTA no
OVFL yes
ALUZ yes
ALUC yes
ALUO yes
ALUS yes

Table 2-7. Overflow Flag Control

2-16

OVERFLOW FLAG CONTROL

Conditions
Operations Fields Bit 15

ALU Input ALU Output
TF SF GF FF AA BB

Set overflow 00 01 X01X

Reset overflow 00 01 X10X

Sample overflow 00 01 X11X

(ADD) 1XXX

SET 0 0
1 1

DON'T SEP 1 0
0 1

(SUBTRACT) oxxx

SET 1 0
1 0

DON'T SEP 0 0
1 1

Also, reset by system reset or a microinstruction specifying
test of the 620/f test condition with the instruction
register bit 00 on in which the test passes.

Overflow may be sampled to be set if SF = 00 and GF =
lXXX. It will not be reset even if no overflow exists.

•:• If set previously, overflow will remain set regardless of
sampling conditions.

1

0
X
X

0
1
X
X

2.3.4.2 Addresses in Branches

The destination address when the test fails must be an
even word address. The destination addresses of both the
pass and fail conditions must be within 32 words of each
other.

Procedure for Address Assignment

Following completion of a flowchart assignment of control
store, address assignment may be performed. A useful
procedure is:

1. Assign the microprogram entry addresses consistent
with the desired format of the BCS instructions.

2. Assign addresses to microinstructions to be executed
upon receipt of an interrupt. These addresses must be
X XXXX 0111.

3. Assign addresses to all microinstructions to be
executed following those using TEST ADDRESSING
where the "test fails" condition pnvails.

4. Assign addresses to all microinstructions to be
executed by field Select Addressing. If field selection
specifies test of the interrupt, byte address, shift, or
console step flags assign addresses to the microin­
structions to be executed in accordance with the
following restrictions:

Flag On Flag Off

Interrupt X XXXXXXXXO XXXXXXXX1
Byte Address X XXXXXXXXl xxxxxxxxo
Shift X XXXXXXX1X xxxxxxxox
Console Step X XXXXXXXX1 xxxxxxxxo

5. Recheck all field select and test addressing
microinstructions for addressing consistency. Prepare
a list of assigned addresses and corresponding
microinstruction numbers labels (keyed to the flow­
chart) to avoid duplicate assignments.

6. Other microinstructions may have their addresses
arbitrarily assigned by the programmer or the
assembler.

varian data machines ~
CAPABILITIES

2.3.5 Page Jump Addressing

The microinstruction specifies a branch to a location in
another 512-word page by executing a page jump. In this
case, a 13-bit address is generated which sets a new active
page number and specifies an address within that page.
The page number is specified by the TS field. The word
address is specified by field select addressing.

12

TS Address modified field
select addressing

Control store address
page jump

0

A Page Jump with memory is specified by the TF field equal
to 00; the SF field equal to 1 0; and the GF field equal to
X1XX.

A page jump without initiating a memory cycle is specified
by setting the TF and SF fields to zero, IM = 0011, and bit
2 of GF to zero.

2.3.6 Interrupt Addressing

When interrupts are allowed and an interrupt is active in a
class which is enabled by the TS field, the low-order four
bits of the control store address are supplied by the
interrupt logic and the high order bits from the AF field.

8 0

AF I lA

IIA is supplied by interrupt log1c.

IIA is 7 for I /0 interrupts and 1 for second tests of I /0
interrupts after initiation of the l/0 interrupt sequence.

The TS field enables interrupts whenever bits are set as
follows:

Bit Set Enables

0 I/ 0 interrupts
1 l/0 interrupts only if memory

protect is installed
2 Memory protect interrupt
3 STEP, console step mode interrupt

2.4 MAIN MEMORY CONTROL

Memory access may be initiated in a microinstruction
which indicates the type of operation and the address

2-17

~ varian data machines

CAPABILITIES

source. Main memory access includes the fetching and
storing of data to and from the memory through the
memory buses. Memory can either be the core or
semiconductor variety (as distinct from the disc or drum
storage often called rotating memory, which is accessed as
a peripheral device through l/0 facilities).

When a microinstruction initiates an access, the memory
control section handles the complete operation. This
permits the microprogram to initiate access to/from
memory and perform other functions (ALU etc.) while the
access actually occurs the microprogram can detect the
completion of the memory access by specifying a wait for
memory done.

Two different types of fetches can be requested. The
instruction fetch (IF) moves the contents of a 16-bit word
from main memory to the memory input register (MIR)
and the instruction buffer (IBR). The operand fetch (OF)
moves a 16-bit word to the memory input reg1ster and does
not change the instruction buffer. Instruction fetches are
usually used for fetching 16-bit macroinstructions for
decoding from the IBR. The operand fetch is used for
general data and address fetches. The microword which
requests a fetch provides the address in main memory.
After the request is made it is handled completely by
memory control and requires no further actions in the
following microinstructions.

Example of fetch sequence

n n+1 n+2

request wait for (data is
instruction memory ready for
fetch done use in MIR)

Memory requests to store data are of two types. The first is
the operand store (OS), which stores a 16-bit word in main
memory. The second is the byte store (BS), which stores
only an 8-bit byte. As with the fetch operations, the
microinstruction which requests the store must furnish the
main-memory address for the operation. Microinstructions
following the request for a store must provide the data to
be stored on the ALU until the memory operation is
complete.

Example of store sequence

n n+l n+2

request store RO ---+ ALU (operation
using P as wait for complete)
address memory

done

Completion of a memory operation is detected either with
the wait-for· memory-done function or by requesting
another memory operation. Wait· for-memory-done sus·
pends microinstruction execution until the memory
operation is complete. Requesting another memory opera·
tion has the same effect because microword cannot

2·18

complete until its memory request is acknowledged by
memory control and requests are not acknowledged until
any previous request is complete.

Override

An active memory access may have the type of operation
changed by the next microinstruction. By making an
immediate change the immediately prior action is
overridden. This can be conditional upon the result of the
same test available for addressing (GF field).

Example:

Microinstruction
Cycle n

Initiate
memory
store

Microinstruction
Cycle n + 1

memory
store
starts

override
possible

Microinstruction
Cycle n +2

memory
store
continues

too late
to override

Memory cycles may be initiated by microinstructions either
unconditionally or depending on the results of a test.

2.4.1 Unconditional Cycle Initiation

A memory cycle is unconditionally initiated or overridden
when the SF field equals 01 or if the SF field equals 10 and
the TF field equals 00.

The I M field specifies the type of operation and the address
source. Permitted operations are:

IM
Value Action

XXOO Read data from memory into the instruction
buffer and memory input register (instruction fetch).

XX01 Read data from memory into the memory input
register (operand or address fetch).

XX10 Write the full word output of the ALU into memory.

XX11 Write the byte from the ALU specified by the byte
address flag (BYTA) into the corresponding memory
byte. The other memory byte at the designated word

address is unaffected. If BYTA is false, the left byte is
written. If BYTA is true, the right byte is written.

BYTA, the byte address flag, copies bit 0 of the general
register specified by the AA field whenever a general·
purpose register is specified as shifted input to the
ALU input A bus.

The operation may be changed by the following microin­
struction by specifying the new operation with the IM field
equal to OOXX. This permits, for example, conversion of a
store cycle into a fetch or an instruction fetch into an
operand fetch.

The data to be written to memory must be maintained at
the ALU output by the microinstruction(s) following
initiation until the cycle is complete.

The source to be used for loading the memory address
register is specified as follows:

IM
IM
IM

01XX
10XX
llXX

ALU output
Program counter
Memory input register

2.4.2 Conditional Cycle Initiation

A memory cycle may be initiated (or overridden) or not
depending on the results of a test specified by the GF field.
Conditions tested were described previously in the section
of test addressing.

If the TF field is not equal to 00 and the SF field equals 10,
the cycle will be initiated (or overridden) if the tested
condition is false.

If the SF field is equal to 11, the cycle will be initiated (or
overridden) if the tested condition is true.

In either case, the IM field specifies the operation to be
performed and the address source to be used as described
in the previous section.

2.4.3 Special Transfer

ALU output data may be transferred to the instruction
buffer and memory input register by using the memory
data bus. This does not involve activation of any memory
module. To initiate this transfer the SF field must be equal
to 00 and the IM field equal to 0100. The ALU output data
must be set up by the initiating microinstruction and
maintained for one more microinstruction.

2.4.4 Wait for Memory Done

The wait-for-memory-done function suspends microinstruc­
tion execution until memory control signals completion of
central control's prior request. This function is SF = 0
and IM = 0001. If no central control has no prior request
active, the wait-for-memory-done has no effect.

varian data machines ~
CAPABILITIES

Table 2·8. Memory Operations

Control Field

Function SF TF IM

UNCONDITIONAL INITIATION r- 01 r_
10 00

CONDITIONAL INITIATION
Condition True 11

Condition False 10 Not 00
(Condition Specified in GF)

EITHER

Operation xxoo
Read memory data into
instruction buffer and
memory input register

Read memory data into XXOl
memory input register

Write ALU word output XXlO

Write ALU byte output XXll

Address Source or Override
Override operation ooxx

ALU output OlXX

Program counter 10XX

Memory input register llXX

SPECIAL TRANSFER
(ALU output to instruction 00 0100
buffer and memory input
register)

2.5 MICROPROGRAMMING EXAMPLE

General

As an example of instruction implementation using Varian
73 microprogramming, the steps of a single-word address­
ing load accumulator LOA in the direct address mode will
be traced.

SSlM

Initially the instruction pipeline is assumed to be empty so
a new instruction must be fetched from main memory. The

~ varian data machines

CAPABILITIES

first microinstruction studied will be that obtained from
control store location 13E (all addresses are given in
hexadecimal). This location has the label SSlM, which is
one of the microprogram's standard states.

The microinstruction fields at 13E are:

TS AF MS MT FS TF SF GF
0000 01001 0010 0 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 000 0000 00

CF WR sc VF WF XF SH BB AA
0 0 0 0 0 00 000 0000 0000

The function of this microinstruction is to initiate an
instruction fetch from the memory address specified by
the program counter. Note that the SF field equal to 01
specifies unconditional initiation of the memory cycle. The
I M field specifies use of the program counter for an
address source and the instruction buffer and memory
input register as destinations for data received from
memory. The FS, MT, TS and TF fields contain all zeros so
normal mode addressing is specified. The next control store
address will be 092. No other fields of the microinstruction
are pertinent.

SS2M

Location 092 is another microprogram standard state
labeled SS2M. It continues the process of filling the
pipeline by initiating another instruction fetch using the
incremented contents of the program counter.

The microinstruction fields at 092 are:

TS AF MS MT FS TF SF GF
0000 00010 1 1 0 1 0 0000 00 0 1 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 0

CF WR sc VF WF XF SH BB AA
00 0 0 0 0 00 000 0000 0000

Again the SF field is equal to 01 and the IM field is equal to
1000 specifying another instruction fetch using the
program counter. In this case, however, the RF field equals
100 specifying that the program counter will be incre­
mented before it is used an address. This microinstruction
will not be immediately executed as the previous microin-
struction initiated memory activity and the memory
interface will remain busy until the first instruction from
memory is loaded into the instruction buffer and the
memory input register. At the time, the current microin­
struction completes and the next microinstruction from
location 020 becomes active. Normal addressing occurs
again due to FS, TS, MT and TF fields being zero. No other
fields of the microinstruction are pertinent.

2-20

SS3M

Location 020 is another microprogram standard state ·
labeled "SS3M". It causes decoding of the instruction
fetched from memory while checking for interrupts. It also
copies the instruction buffer into the instruction register to
make room for the next instruction from memory.

The microinstruction fields at 020 are:

TS AF MS MT FS TF SF GF
1 1 1 0 0 11 0 1 0 110 0 0000 00 00 0 1 0 1

MR AB IM LB LA RF FF MF
0 00 0 11 0 00 00 000 0000 0

CF WR sc VF WF XF SH BB AA
00 0 0 0 0 00 000 0000 0000

This microinstruction manipulates no data paths nor does
it initiate any memory cycles. Its sole purpose is to check
for interrupts and, if there are none, cause a branch to the
required microsequence. The TF and SF fields are both
equal to 00 and the GF field bit 0 is a one causing transfer
of the instruction buffer to the instruction register. The GF
field bit 2 is a one, thus enabling interrupts and decoder
addressing. The TS field defines the interrupts which are
enabled ·· all except l/0 interrupts unless the memory
protect option is installed. The IM field specifies selection
of the interrupt flag. If this flag were set, interrupts would
be suppressed. The flag is reset by this microinstruction. If
an interrupt were active and the interrupt flag had not
been set, the next control store address would be OOX
where X designates the four bits supplied by the interrupt
logic. This would produce a branch to the interrupt
microprogram sequence.

Assuming no interrupts are present, the new control store
address will be determined by the decoder logic. The
instruction fetched from memory is assumed to be 10F9
(hexadecimal) or 010371 (octal). This is a V73 "LOA"
instruction with direct addressing of location OOF9 (hex­
adecimal). The most significant four bits of the instruction
buffer address the first decode control store at location
one. The next four bits address the second decode control
store at location 00. The decode control store contents are:

1st decode

Control store
location 1

2nd decode

Control store
location 0

812 = 1
88-BO = 110000010

A8-AO 010000000

Since 812 equals 1, the 88-80 and A8-AO address
components are logically ORed to produce an address of
182.

SWAlO

Location 182 contains the first microinstruction of the
single word addressing sequence (SWA10) for the
instruction fetched from memory. It forms the effective
address by masking bits 00 through 10 from the
instruction register. It also initiates the operand fetch.

The microinstruction fields at 182 are:

I

MR AB IM
0 00 0101

LB LA RF
10 00 011

FF
1010

MF CF WR SC VF WF XF SH BB AA
1 11 1 1 0 0 00 000 0000 0000

'-------- 16-bit mask literal-------- .J

The LB field equals 10 so the ALU B input bus will have the
contents of the instruction register masked by the 16 bits
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a
zero in the mask enables the corresponding instruction
register bit). The mask equals F800 so the low order 11 bits
of the instruction are used.

The ALU mode is determined by the FF field (1010) rn
conjunction with the LB field (forces logical mode)
resulting in an ALU function of the ALU = B.

The RF field equals 011 so the ALU output is copied rnto
the operand register.

The SF field equals 01 so unconditional memory control IS

specified by the IM field (0101) to be fetch an operand
rnto the memory input register using the ALU output for
an address source. Th1s microinstruction will complete
when the memory cycle initiated by the microinstruction at
092 completes.

The FS, TS, TF and MT fields all contain zeros so normal
addressing is used and the AF and MS fields spec1fy the
next control store address of 12F.

SWA20

Location 12F contains the second microinstruction of the
srngle word addressing sequence (SWA20). It decodes bits
13-15 of the instruction register contents to determine the
class of the single word addressing instruction.

The microinstruction fields at 12F are:

TS AF MS MT FS TF SF GF
0000 11110 1100 1 1111 00 00 0000

MR AB IM LB LA RF FF MF
0 00 0000 00 00 000 0000 0

varian data machines ~
CAPABILITIES

CT WR SC VF WF XF SH BB AA
00 0 0 0 0 00 000 0000 0000

No data manipulation or memory control operations are
performed by this mic:cllnstruction. It serves only to
branch to the specific m1crosequence for the class of
single-word addressing instruction contained in the
instruction register. Field select addressing is used to
perform this decoding (FS field is not equal to 0000). The
FS field is equal to 1111 so the selected f1eld is bits 11
through 15 of the instruction register. The composite
address format1on is illustrated:

AF f1eld contribution:

TS field contribution:

F1eld selected from
instruction register:
(I = 10F9)

Mask consisting of MT
and MS fields

or

and

8 7 6 5 4 3 2 1 0
1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0

Final effective address
produced by inclusive or

1 1 1 1 0 0 0 0 0

The address of the next microinstruction IS then 1 EO.

LDAI

Location 1 EO is the first m icroinstruct1on specifiC to the
LDA instruction (LDA1).

This microinstruction increments the program counter and
rn1tiates another instruction fetch from ma1n memory.

TS AF MS MT FS TF SF GF
0000 01011 0 1 0 1 0 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 0

CF WR sc VF WF XF SH BB AA
00 0 0 0 0 00 000 0000 0000

The RF field equals 100 specifying that the program
counter will be incremented during this microinstruction.

The SF field equals 01 so unconditional memory control 1s
specified by the IM field (1000) to fetch an rnstruction rnto
the instruction buffer and memory input register using the
program counter for an address source. (Note that the

··-- -----··---.. -·-···- ·-----·--·---------·- ""'" -----····----·· ----· """"'" ---·-·-·-· ------·-------------------.... _______ _J

~ varian data machines

CAPABILITIES

program counter is incremented during the microinstruc­
tion so the new value will be used for the memory cycle)_

Normal addressing is used to specify the next microinstruc­
tion address (TF, TS, FS, MT fields are all zero)_ The AF
and MS fields define the address to be 085_

LOA2

Location 085 is the second microinstruction specific to the
LOA instruction (LDA2)- This microinstruction transfers
the contents of the memory input register to the
accumulator, RO; transfers the instruction buffer contain­
ing the next instruction to the instruction register to make
room for the instruction whose fetch was initiated by the
microinstruction 1 EO; decodes the instruction buffer to
determine the starting address of the next microsequence
and checks for interrupts_

The microinstruction fields at 085 are:

TS AF MS MT FS TF SF GF
1111 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 10 00 000 1010 1

CF WR SC VF WF XF SH BB AA
00 1 0 0 0 00 000 0001 0000

The ALU 8 input is specified by the L8 field (equal to 10) to
be one of the special registers_ The 88 field (equal to
0001) defines the memory input register as the source.

The ALU operation is specified to be in the logical mode
(MF = 1) with the ALU output equal to the ALU 8 input
(FF = 1010).

The WR bit equals a one so the ALU output data will be
written into the register specified by the AA field (AA =
0000) which is the accumulator (A register). This is the
execution phase of the LOA instruction.

The SF and TF fields are both equal to 00 and the GF field.
bit 0 is a one so the instruction buffer contents are copied
into the instruction register. The GF field bit 2 is a one so
the instruction decoder is enabled and interrupts are
checked.

The IM field equal to 0110 with the SF field equal to 00
selects and resets the interrupt flag. This will suppress
interrupts if the flag is set. All interrupt classes are
enabled as the SF field contains all ones. If an interrupt
was active and the interrupt flag was off, the decode
address would be suppressed and the next microinstruction
would be fetched from the address specified by the AF
field and the interrupt logic. This would be ODX where X is
the address supplied by the interrupt logic.

If no active enabled interrupts exist the next microinstruc­
tion will be fetched from the address specified by the

2-22

VTI/-/938

SSl.'v\ (13E)

INITIATE INSTRUCTION
FETCH USING P

SS2M , (092)

INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

SS3M ,~ (02D)

DECODE INSTRUCTION
BUFFER

TRANSFER BUFFER TO
INSTRUCTION REGISTER

ENABLE INTERRUPTS

SELECT AND RESET
INTERRUPT FLAG

_...

SWA10 , (182)

INSTRUCTION REGISTER
BITS 00 THRU 10 ALU

LOAD OPERAND REGISTER

START MEMORY OPERAND
FETCH USING ALU

SWA20 , (12F)

FIELD SELECT INSTRUCTION
REGISTER BITS 13 - 15

I
13- 15

= 000

LDA1 , (1 EO)

INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

LDA2 ,, (OB5)

COPY MEMORY INPUT
REGISTER INTO RO

TRANSFER BUFFER TO
INSTRUCTION REGISTER

DECODE INSTRUCTION
BUFFER

SELECT RESET INTERRUPT
FLAG

DECODED SING
ADDRESSING IN

LE WORD
STRUCTION

Figure 2-4. Flowchart for LOA Instruction

I

I DENT SS1M SS2M SS3M
(hex. addr.) (13E) (92) (20)

FUNCTION fetch fetch
LOA next

in st.

REQUEST IF IF

ADDRESS p p

INPUT A

INPUT B

OUTPUT

DESTINATION

SAMPLE
TEST

DEC0DE
MODE

ADDRESS SS2M SS3M from
decoder

SPECIAL INCP enable
ACTIONS inter-

rupts
IBR--+ I

SWA10
(182)

fetch
next
mst.

0F

ALU

I /\ 07FF

TRNB

see
below

FIELD
SELECT
113-115

SWA20

NOTE:

varian data machines ~
CAPABILITIES

SWA20 LDA1 LDA2
(12F) (1 EO) (085)

fetch fetch fetch
operand operand third

in st.

IF

p

MIR

TRNB

RO

DEC0DE

LDA1 + X LDA2 from
where X = decode
0.4,8, . . 28

INCP IBR~I

enable
interrupts

Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond
memory cycle time is assumed).

~ "11/-2026
Figure 2-5. Flow Diagram of LDA Instruction

decode control store logic. If the mstruct1on buffer
contains another single-word addressing mstruction, the
next address will be 182 (SWAlO) and the sequence will be
repeated.

Figures 2-4 and 2-5 show a flowchart and flow diagram of
the microinstruction sequence described. Note that the
pipeline effect of buffering instructions perm1ts efficient
use of the memory. (A 330 nanosecond semiconductor
memory was assumed).

2.6 TIMING CONSIDERATIONS

Most microinstruction operations take place at the conclu­
sion of the cycle. Certain exceptions do exist. ALU inputs
are sampled at the midpoint in time of the cycle. Control
store address information, memory addresses, and most
register and flag changes occur at the end of the
microinstruction execution. The areas below should be
considered while planning microprograms.

Program counter increment at ion (R F = 100 or 111)
lncrementation takes place at the midpoint of the

microinstruction. Thus the program counter value
applied to the ALU input will not be the incremented
value. The new value will be used as a memory
address, if the program counter is specified as an
address source.

Byte address flag
The byte address flag IS set or reset at the temporal
m1dpoint of the microinstruction. Thus 1ts new value
may be used to determine the byte of the addresses
memory location to be altered.

Memory write operations
ALU inputs, function, mode and carry must be
maintained constant throughout any memory wr1te
cycle. This is accomplished by specifymg another
memory cycle immediately following the current cycle
thus interlocking execution of the next microinstruc­
tion with completion of the memory cycle m progress
or by using the wait for memory done function (SF
00, IM = 0001).

Special transfers
The transfer of ALU data to the instruct1on buffer and

2-23
·-·--------------·- ·---· ····----··--·-·-·--···------····-··· ·---·--·--·----·---------·-··· ····---------------

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~
CAPABILITIES

memory input register requires ALU data to be
maintained for two microinstructions.

1/0 operations
If the l/0 section is not idle when a new l/0 operation is
specified, microinstruction execution will not occur

until the 1/0 becomes idle. A wait for l/0 done
function (SF = 00, and IM = 0010) will cause a
similar wait condition until the l/0 DN bit becomes
true.

Use of the 1/0 register
If direct memory access or similar 1/0 operations are
possible the I /0 register may be altered. Care in use of
this register is indicated. Control of the I /0 register is
described in the l/0 section of this guide.

2.7 ADDITIONAL CAPABILITIES

2. 7.1 Register Field Control

Many types of instruction words contain fields which
specify registers which contain operand data. If all
combinations of operations on all possible registers had to
be specified by individual microinstructions, the control
store size would be quite large.

The Varian 73 system permits three- or four-bit fields to be
selected from the instruction register and stored and
maintained in the control-buffer-register specification
fields. This permits a single microinstruction to handle all
combinations of registers for any operation.

This register field extraction is performed independently of
the field select addressing function and both may be used
simultaneously.

The AA and BB fields of the microinstruction contained in
control store are copied into their corresponding positions
in the control buffer any time the AB field equals 00 and
the MR field equals 0. This is the normal mode of
operation.

2-24

When the SF field equals 00 and no 1/0 request is active,
the AB field equals 01 or 10; the TS field specifies a four
bit field of the instruction register to be loaded into the
control buffer's AA or BB field. The field not being loaded
will be loaded into the control buffer's AA or BB field. The
field not being loaded will be maintained at its last value.
A code of AB equals 01 and loads the field selected into
the BB field. A code of AB equals 10 and loads the field
selected into the AA field.

The MR bit is used to mask the most significant bit of the
selected field. If MR equals zero, the most significant bit of
the selected field will be treated as a zero. If MR equals
one, the most significant bit of the selected field will be
loaded into the designated field.

The AA and BB fields can be maintained in their current
state by specifying and AB field equal to 11 while the SF
field equals 00 and no l/0 request is present.

If no I /0 request is present, the AB field equals 00 and the
MR field equals 1, the control buffer AA field will be
maintained at its current value and the BB field will be
forced to either of two addresses depending on data loop
conditions and the WF field.

WF field equal to 1

Operand register bit 01 1; BB 1111

Operand register bit 01 0; BB 1110

WF field equal to 0

ALU bit 15 1; BB 1111

ALU bit 15 0; BB 1110

This function is used by the Varian 73 standard instruc·
tions microprograms for multiply and divide.

Register field control operations are summarized in the
tables following.

varian data machines ~
CAPABILITIES

Table 2-9. Register Field Control

TS Field

000
001
010
011
100
101
110
111

Function

Load A and B fields from
control store

Inhibit loading of A field
and place selected 4 bit
field (masked) from in­
struction register into
B field

Inhibit loading of B field
and place selected 4 bit
field (masked) from in­
struction register into
A field

Inhibit loading of A and
B fields

Inhibit loading of A field
and force B field to 111 0
if ALU output bit 15 = 0 or
to 1111 if ALU bit 15 = 1

Inhibit loading of A field
and force B field to 1110
if operand register bit
01 = 0 or to 1111 if operand
register bit 01 = 1

All functions are inhibited
if an I /0 request is issued.

Table 2-10. Register Field Selection

Bits Selected From
Instruction Register
for register file

03 02 01 00
04 03 02 01
05 04 03 02
06 05 04 03
07 06 05 04
08 07 06 05
09 08 07 06
10 09 08 07

Other Controls

Transfer instruction buffer to instruction register

SF

00

00

00

00

The contents of the instruction buffer will be transferred to
the instruction register when TF and SF both equal zero,
and GF has a low-order bit set to 1.

AB

00

01

10

11

00

00

Control Fields
MR

0

Mask most
significant
bit of B B field

Mask most
significant
bit of AA field

Enable Jump Signal

TS

Selects
field

Selects
field

WF

0

A signal is sent to the memory-protect option designating a
jump instruction by setting the LB high-order b1t to zero
and the SC field to zero and the XF field equal to 11 or 10.
If the XF field equals 11. the interrupt flag will be reset.

Reset Interrupt Flag

The interrupt flag will be reset 1f the LB field equals 00 or
01 and the XF field equals 11 or 01.

Enable Special ALU Mode

(This feature is useful for the standard instruction set, but
not generally suggested)

The ALU mode, carry input and overflow sampling may be
forced according to the contents of the instruction register
by setting the LA and LB fields equals to either 00 or 01

2-25
_______________________________ ___J

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~~~
CAPABILITIES

(high-order bit equals zero) and the SH high-order bit
equal to 1. In this case, the ALU function will be as follows:

Bit

3 As specified by FF field
2 most significant 2 bits

Instruction register bit 7

0 Instruction register bit 7
complemented

2.7.2 Memory Addressing to 64K

The standard instruction set has addressing capability to
32K words with 15-bit addresses. The use of bit 15 to
select indirect addressing mode removes it from use as an
address bit. The memory modules can recognize a 16-bit
address which increases the range of addresses to 64K
words.

The most significant bit of the memory address bus is
normally grounded to prevent any address generated by
the standard instruction set from attempting to access
above 32K words. This is necessary since the high-order bit
can be set by indirect memory reference in the host
instruction set.

The WCS permits use of the full 16-bit addressing
capabilities of the V73. This enabling is automatically
inhibited while executing from page zero so standard 620
programs will execute correctly in the lower 32K words of
memory.

User-written microprograms in the WCS can generate 16-
bit addresses to cause access to the full 64K words. This
mode is enabled or disabled with a group of control fields
in the microinstruction. Once enabled this mode is
retained until explicitly disabled as described below or a
system reset occurs. The enabled mode is not effective
when page zero is active.

64K Mode of Memory Addressing

Enable Disable

SF=O SF=O
TF=O TF=O
IM = 1101 IM = 1101
LB = 11 LB = 11
MF=1 CF = 11 or 10

Changing the memory mode requires all the
conditions set as indicated. Figure 2-5 illus­
trates memory bus control.

2.7.3 Memory Bus Lockout Status

Systems in which multiple processors share the use of
common memory modules often require the capability of

2-26

VTI/-JIJ06

SYSTEM RESET

64K
ADDRESSING

DISABLED

64K
ENABLED

IF PAGE 0

ENABLE= IM = 11011\ (T = 0) 1\
(S=O)/\(LB= 11)/\(MF= 1)

DISABLE= (IM = 1101) 1\ (T = 0) 1\
(S = 0)/\ (LB = 11) 1\ (C = 10V11)

Figure 2-6. Flowchart of Memory Address Control

testing the contents of some memory locations and
modifying those contents (if the results of the test indicate)
without the possibility of another processor gaining access
to that location between the test and the change.

WCS Implementation

The writable control store permits use of a function
allowing the processor it controls to temporarily lockout all
memory modules connected to its memory bus. While the

--"--~ "--"-~- -----------------~"

memory system is locked out on one port, no accesses are
permitted on the other port. To prevent simultaneous
lockout from both processors the lockout mode for any
memory bus only becomes enabled when the requesting
bus actually gains access to the memory (so the other bus
cannot establish the lockout mode). The memory lockout
mode is set or reset with the following microinstruction
fields:

Set Reset
Field LOCKOUT LOCKOUT

SF 0 0
TF 0 0
IM 1101 1101
LB 11 11
CF X1 xo
AA xxxo XXXI

X indicates a bit position not involved in this operation.

PROCESSOR
A MEMORY

t t t
PORT A

varian data machines ~

CAPABILITIES

If priority memory access (PMA) is present in the system,
caution must be exercised to prevent the PMA from
establishing its own lockout mode while either processor is
in lockout mode. Simultaneous lockout would prevent all
further accesses to memory and "lock-up" the system.
Figure 2-6 illustrates memory bus lockout.

Lockout is removed by system reset.

2.7.4 Stack Use

Three stack operations, branch/push, branch/pop and
branch/delete are used on the microprogram-return stack.
All are global and effect a page selection. On the branch/
push and branch/delete, the TS field gives the new page
number. On the branch/pop, the word at the top of the
stack gives the new page number. The return address
which is pushed is an independent 13-bit specification

PROCESSOR
B

t
PORT B

MEMORY BUS LOCKOUT STATUS

MEMORY CYCLES MEMORY CYCLES
PERMITTED FORBIDDEN

_t •
PROCESSOR A PROCESSOR A

ACCESSES ACCESSES
FOR TEST FOR TEST

,, ,,
PROCESSOR A

MODIFIES

PROCESSOR B
ACCESSES
FOR TEST

,, ,

PROCESSOR A
MODIFIES

,.

VT/1-/808

Figure 2-7. Memory Bus Lockout

2-27

~ varian da~ ~achines ~~~~~~~~~~~~~~~~~~~~~~~~
CAPABILITIES

provided by mask field of microinstruction from the
destination of the branch. The 13-bit specification is made
up from the following fields of the microinstruction:

PAGE Word

12 11 10 9 8 7 6 5 4 3 2 1 0

WR SC VF WF XX BB

All stack operations have a value of zero for the SF and TF
fields, IM set to 1110 and LB set to 3. Push requires bit 1
of the AA field set to 1. Pop is designated by bit 2 of the AA
field set to 1 and bit 0 of the BB field set to 0. Branch/
delete is the same as branch/pop except bit 0 of the BB
field is set to 1.

TF SF IM LB AA BB
Branch/push 0 0 D 3 bit 1

= 1
Branch/pop 0 0 D 3 bit 2 bit 0

= 1 = 0
Branch/delete 0 0 D 3 bit 2 bit 0

= 1 = 1

In initializing the stack an error branch can be pushed into
the first location. If a microinstruction tries to "pop" this
return, an underflow condition will occur and the error
branch will be taken. An attempt to "push" one more level
than the sixteen allowed causes a branch to the address at
stack location zero.

In addition to pop and push operations on the stack, a
stack entry delete operation is provided. This causes a
page branch to the address specified by the processor and
deletes one entry from the top of the stack.

All stack return addresses including the error return are
restricted to the WCS. This avoids conflicts with processor­
generated addresses during the pop operation.

Questions and Answers About Microprogramming Stack

Q: The WCS stack push and pop operations do not appear .
to be mutually exclusive. If both are specified, would the
stack first pop the new address then push the return
address?

A: Such pn operation is undefined and should be avoided.

Q: Do micro stack operations proceed at full speed?

A: The stack operates at the same speed as other writable
control store operations-- 190 nanoseconds.

2. 7.5 Memory Addressing Using the
Optional Memory Map

The processor key register is four bits which may be applied
to the ALU input bus B as part of the status word. It is

2-28

loaded from ALU output bus bits 12·15 and applied to the
memory address bus as a four-bit extension to the 15-bit
memory address register. The key register provides bits 15-
18.

118 17 16 15114

key register Memory Address Register

memory map input
19 bits

o)

when 64K mode is enabled, bit 15 of the memory address
register is also ORed into the effective map input bit 15.

During memory cycles initiated by l/0 (DMA), the l/0 key
register is applied instead.

Care must be taken in using the processor key register as
an input to the ALU input bus B. No l/0 initiated memory
bus activity must take place during application of the
status word or the value of the l/0 key register may be
used instead of the processor key register.

As an option, the map can be wired to operate with the
processor key register. This mode is not supported by
standard Varian software.

2.7.6 Memory Protection

If the memory protection is enabled, write operations are
automatically inhibited. A memory-protection internal
interrupt is generated as well as an I /0 interrupt request.
The memory-protection option may be disabled only by
appropriate I /0 instructions, not by microinstructions. Care
must be taken in using the memory protection if more
than 32K words of memory are to be addressed (bit 15 of
memory address is enabled). Such use is very specialized
and should only be undertaken after consultation with
Varian Data Machines.

2.8 QUESTIONS ABOUT
MICROPROGRAMMING CAPABILITIES

Q: If a current memory cycle is to alter the memory input
register, and the memory input register is specified as
the memory address source by the current microin­
struction (awaiting memory cycle completion), are the
old or new contents of the memory input register

used for the next cycle's address? Does the
situation change if the memory input register is an
ALU input and the ALU is selected as an address
source? Does the WCS clock rate affect this?

A: The new value of the memory input register is used
when the memory input register is used as an address
source. The memory input register should not be
used through the ALU to determine the address of the
next memory cycle when it can be altered by the

current memory cycle. The WCS clock rate does not
affect this.

Q: What is the standard entry point to branch to when an
interrupt is detected?

A: Interrupts, when enabled, cause a branch to the
address specified by the AF field and interrupt address
supplied by the l/0 control. Standard l/0 interrupts
supply an address component of 0111 to the least
significant four bits. The most significant five bits are
specified by the user (AF field) and may be anywhere
in the currently active control store page. At that
address. the microprogram should perform the
functions of the V73 !WAIT microinstruction (location
007 on page zero) and then branch to INTI (001
page zero) or perform in the current page the
functions of INTI, INT2, INT3 and INT4.

Q: Is data in the memory input register protected agamst
DMA and PMA operations?

varian data machines ~
CAPABILITIES

A: Yes, DMA and PMA operations do not alter the memory
input register.

Q: When reading data from memory is the data available
in the memory input register at a fixed number of
microinstructions following memory initiation, or
must a wait for memory done be placed before using
the data or starting another memory cycle?

/J\: Data arrives m the memory input register no sooner
than the second microinstruction after its initiation. It
may arrive after that. The access time depends upon
DMA or PMA or other memory bus cycles. semicon·
ductor memory refresh cycles or core memory rewrite
cycles in progress at the time. If a new memory cycle
IS to be initiated immediately following complet1on of
the current cycle, interlocking is automatic as the
execution of microinstructions will cease until the
new cycle initiation is accepted by memory control.
Otherwise a wait-for-memory-done function must be
specified.

2·29

-----·-··-·----------·--·····--· ·- ----·-·-·

SECTION 3

TECHNIQUES

This section describes the use of flow diagrams in writing
update microprograms and the interface of microprogram­
ming hardware and software. Several detailed examples of
flow diagrams for sample microprograms are included
here. These examples will be continued in later sections,
where the flow diagrams will be translated into assembly
language.

3.1 INTERFACE OF MICROPROGRAMMING
HARDWARE AND SOFTWARE

3.1.1 Execution of Microprograms

Branch to Control Store Implementation

The V73 instruction which causes a branch to the writable
control store (BCS) always goes to page one. The control
store word in page one is specified in bits 0 - 4, allowing a
branch to one of the first 32 words, which contain vectors
to microprogrammed rountines. The BCS instruction is a
special coding of an l/0 instruction and, as such, is not a
generic mnemonic within the DAS assembler language.
This instruction for use in symbolic DAS coding must be
defined by the user.

The BCS macro is decoded directly on the WCS page during
primary decode time as defined by the processor log1c. A
BCS is performed only if decoder control store page zero is
currently selected. Any other control store selected causes
the macro to be taken as part of a different instruction set.
The BCS page branch does not change the decoder control
store selection. A local page-branch micro-operation can
change the selection of a decoder control store to page
one.

The BCS will only perform from decoder page zero of the
control store. Page one of central control store becomes.
enabled at the time the BCS is performed. A pnmary
decode should never be allowed to occur in the micro­
operation fol!owing the BCS decode.

3.1.2 Steps in Instruction Execution

The following are the general stages in the execution of a
16-bit macro instruction:

1. A microinstruction initiates an instruction fetch.

2. The instruction is transferred from memory to the
instruction buffer.

3. The instruction is copied into the instruction register
and a request is made for a decode of the instruction

varian data machines ~

buffer contents. This decode simply identifies the
instruction to be a member of a certain class of
instructions and effectively causes a branch to a
microroutine which does any work common to that
class; for example, single-word memory-addressing
instructions may use the same microroutine for
computing the effective memory address.

4. Secondary decoding of the instruction determines its
exact identity. This is done by such features as field­
select addressing, which allows using bits from from
the instruction register to determine a microprogram
branch address. Using such methods, the microin­
structions which complete the actual execution of
the instruction are reached.

5. Microinstructions which form the instruction are
executed.

3.1.3 Instruction Pipeline

In our system, the term instruction pipelining refers to the
technique of fetching the next instruction from memory
before the current one has finished executing. This is
possible due to the availablility of two 16-blt registers for
holding instructions. The first is the instruction buffer
(IBR), which receives the instruction being fetched from
memory. In IBR the next instruction IS held while the
current instruction being executed is in the instruction
reg1ster (I). When ready, the instruction buffer is
transferred to the instruction register and the next
mstruction may be fetched from memory.

The chief advantage of this method lies in the fact that the
micromstructions are much faster than the fetches from
memory.

Thus, without the pipeline, a one or two microinstruction
delay would be added to the execution of each instruction
while the processor waited for the instruction from
memory.

Interfacing with the Pipeline

The instruction pipeline is crucial to the execution of the
standard instruction set. Thus, any new instructions
being added through microprogramming must consider
and be cautious of the effects and requirements of the
pipeline. Because of the pipeline, user's microroutmes in
WCS can rely on certain things being true when they
receive control from page zero. Likewise they must make
sure certain techniques are used when they exit to read­
only memory.

3-1

~ varian data machines

TECHNIQUES

Upon entry to WCS by a BCS instruction, the following
conditions exists:

a. The program counter (P) is pointing to the word
following the BCS.

b. The BCS command will be in the instruction register.

c. The word following the BCS will be on its way from
memory to the instruction buffer and memory input
buffer.

On exit from WCS the microprogram must set conditions
for the next command, and maintain the pipeline. In
particular the following are required:

a. The next instruction to be executed is in the instruction
buffer. This will often be the word after the BCS, which
was already on its way there on entry. If the BCS has
a parameter, or if the instruction buffer was
modified, then the instruction may have to be
fetched.

b. The program counter should be incremented to one
beyond the location of the next instruction and an
instruction fetch initiated. This will not only preserve
the pipeline but will also make sure any memory
activity necessary to complete setup of condition
(a).

c. The instruction buffer should be copied into the
instruction register in preparation for its execution.

d. A request for decoding of the instruction buffer
contents should be made along with a page branch
back to page zero, i.e., ROM. The decode w1ll result in
the correct microroutine getting control for execution
of the next instruction.

In most cases, the preceding steps can be summarized by
the rule:

The second to last microinstruction should
increment P and do an instruction fetch.

The last microinstruction should transfer I BR to
I and request decode addressing.

3.1.4 ROM Standard States

Much of the interfacing with the pipeline can be done by
using standard microinstructions (standard states) in
page zero. These were developed explicitly for this purpose
for use by the 620/f emulation. The most common ones
make up the three microword sequence listed below. They

3·2

may be used simply by doing a page jump directly to
whichever microword is appropriate.

Address Label

13E SSlM

92 SS2M

20 SS3M

Function

Restarts the pipeline at P with
an instruction fetch by P. It
then branches to SS2M.

Maintains the pipeline by tncre­
menting P and requesting an
instruction fetch. It branches
to SS3M.

This instruction decodes the
IBR contents to determine the
next microinstruction to execute.
It also copies the IBR into I.

3.1.5 Summary of Branches Between WCS and
ROM Control Store

From ROM to WCS

BCS Macro (from Decoder Page Zero Only)

This macro ensures the start of a processor fetch dunng
the primary decode of the BCS according to the V73

pipeline rule. The clock change and page select1on occur
during the pnmary decode microinstruction.

1/0 Branch

Control is transferred to the selected page of central
control store during the data phase of the I 10 command.
I /0 branch can go to any central control store page and
does not select a decoder.

This mechanism assures that no DMA I 10 memory
transfers and no processor memory transfers are tn
process during the clock change.

From WCS to ROM

The l/0 branch is not a viable mechanism from WCS to
ROM.

A micro level page branch is the standard method for going
from WCS to ROM. This operation IS the converse of the
BCS disscussed above.

Standard state sequences tn the ROM provide ptpeltne
start up and various other housekeeping functions for the
standard instruction set. These may be of interest for
particular microprogramming entrances.

3.1.6 Varian 73 Register Usage

The 620 emulation on the Varian 73 system uses some
general-purpose registers. Using the standard instructions
with his own microprograms a user is responsible for
preserving the settings and restoring those necessary to
their original conditions. The use and requirements for
particular registers are described below. All others are only
used by user's microprograms.

Reg1sters 0, 1, and 2 are used for the emulation of the A, B,
and X registers respectively. These need not be restored
by user's microprograms.

Register 3 is forced to all zeros by the halt microprogram
and used as a source of zeros by the standard instruction
set Its restoration is required.

Register 4 is also used by the halt program and saves the
contents of the instruction register. While the standard
microprograms are running it is not used and therefore
does not require resetting.

Register 5 is a source of ones for the standard micropro­
grams and must be reestablished as such by a user's
microprogram.

Registers E and F (15 and 16) are used as temporary
storage for some standard instructions yet their use does
not extend beyond the particular single instruct1on so
these two do not need to return to a set value.

Register Usage

Number Standard Use Restore

0 A register no
B register no

2 X register no

3 All zeros yes
4 Saves I no
5 All ones yes
6-D None no
E Temporary no
F Temporary no

3.2 FLOW DIAGRAM

3.2.1 Rationale

As the reader should now be aware, the 64-bit m1croword IS

both extremely powerful and extremely complex. This
results in several problems. A beginning microprogrammer
can be completely baffled how to start. Intermediate
m1croprogrammers tend to be confused about how much
or how little can be done in single microinstruction.

The microprogram flow diagram is designed to minimize
these problems. Making a flow diagram for a micropro-

varian data machines IE
TECHNIQUES

gram is roughly comparable to the low-level flowcharting
of an assembly language program. The flow d1agram,
however, is designed to provide special assistance to the
microprogrammer. It gives the basic capabilities of the
standard microword. thus providing reminders of both
what can be done and what should be done in each
microword.

3.2.2 Format

A sample blank microprogram flow diagram form can be
seen in f1gure 3-1. The vertical columns each represent a
smgle microinstruction.

The horizontal rows are divided into the type of operations
that can be performed. A microinstruction IS created by
going down a column and filling in the appropnate boxes
with the specific operations desired 1n each general
category. Many of these operations can be specified usmg
the mnemonics introduced in the previous section. Table
3-1 provides an ordered list of mnemonics.

Spec1f1cally, the first row of the flow d1agram IS used for
identifying the particular microword. Labeled IDENT, this
row is usually left blank unless the microword is
referenced elsewhere in the microprogram. Such reference
occurs most often when the m1croword IS the target of a
11ump from another microword. When not empty the box
usually contains the label which will be earned through to
the actual assembly language version. Dependmg upon the
programmers preference absolute or relative addresses
could also be assigned here.

The group of three rows under MEMORY specifies both the
current state of memory and the requests for memory
operations being made in the current m1croword. The
fUNCTION row specif1es the former. It IS useful for
charting out memory activity and optimizing the memory
usage. In microprograms where memory act1v1ty is not
critical, th1s row could be left blank.

The REQUEST row indicates the type of memory request
bemg made in the microword. The ADDRESS row specif1es
the source of the memory address for the requested
operation. If no request IS made, then both these rows can
be blank.

The ALU section of the flow diagram consists of four rows.
These rows specify the two inputs for the ALU. the
operation to be performed on them, and the destination of
the result.

Two rows are mcluded in the STATUS sect1on. The f1rst.
SAMPLE, spec1fies which flags and status bits are to be
sampled during that microinstruction. Sampling is usually
necessary before the flag or status indicators can be
tested. The TEST row specifies which flag or status bit, if
any, is being tested in the current microword. This testing

3-3

~ varian data machines

TECHNIQUES

'I ,
I I

i-----*-----·_;_ __ -+----- ~-- +- --
!1 I

I

z
0
~ 1- u z z w
~ e LL

I

- -t

I

I

I
I

I

!
i

I

1-
f/)
w
~
0
w
a:

At:IOW3W

I

f/)
f/) < CD
w 1- 1-a:
0 ~

I

~
Q. Q. 0

<
I

~ ~

I

-+-- -

i

I 1-
~

i

Q.
1-
~
0

n1v

-- -1

-- -~---~

I

I
i

I

1
-- J_ -- t ~----·-

- - :----~ z I I

0 I

I ~
<

I
I cn I _.cn I I w

i
I

I f/) I <Z z I ...J I w
I "' I -o i

~ Q. 1- ! a: U-
f/) I

:=; f/) 0 o wt- 1

I

I 0
I

w
I

< I w

I

0 Q.U I
0 f/) I 1- :e < I fl)< I

!
I I I

I

SnlVlS ~NISS3t:IOOV I t:I3Hl0
I

I I

Figure 3-1. Sample Flow Diagram Form

3-4

--~---------------------- ------ ------

r----
1

may be used both for conditional memory requests and
conditional addressing.

The two rows of the ADDRESSING section specify the
addressing method or mode being used and the resulting
effective address or addresses. These boxes are often left
blank to signify normal addressing with the next column
on the right to be executed next. The label contained in the
I DENT row can also be used here.

The SPECIAL ACTIONS section is provided for the micro·
operations which do not fit conveniently into the other
sections. Most common among these are the operations on
the special registers and counters. These include the

varian data machines ~
TECHNIQUES

operand register, program counter, and shift counter. Such
things as register field control or even general comments
could also be included here.

3.3 FLOW DIAGRAM MNEMONICS

The following table 3·1 lists the sections of the flow
diagram and some applicable· mnemonics. These
mnemonics represent the most common values and should
be sufficient for many microprograms. Other functions
without mnemonics can be described in whatever way the
user finds clearest. The ways could range from actually
writing the field values to putting in verbal commentary.

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams

Row

I DENT

MEMORY
FUNCTION

MEMORY
REQUEST

MEMORY
ADDRESS

ALU
INPUT A

ALU
INPUT 8

Mnemonic

None

None

IF
OF
OS
BS
TESTF,-

TESTT,-

WAIT, MEMDN

ALU
p

MIR
OVR

Rn (n = 0,1,2, ... ,F)
Rn, SL

Rn, SR

p

ZERO
ONES

Rn (n

MIR

0,1,2, ... ,F)

Comments

User-supplied labels and addresses

User-supplied commentary on memory
operat1ons

Instruction fetch
Operand fetch
Operand store
Byte store
Conditional request (on test conditi
false)

Conditional request (on test conditi
true)

Wa1t for memory done (before gomg
to next microword)

ALU output
Program counter
Memory input reg1ster
Override memory operation of the pre
microword using its memory address

General register 'n'
General reg1ster 'n' shifted left on
b1t pos1t1on.
General register 'n' shifted right o
b1t position
Program counter
All zeros (0)
All ones (FFFF)

NOTE: When us1ng a shifted general
reg1ster. user must specify conditio
of h1gh and low bits.

General register 'n'
Memory 1n put register

(continued)

3-5

~varian data machines~~~~~~~~~~~~~~~~~~~~~~~~
TECHNIQUES

3-6

Row

ALU
OUTPUT

ALU
DESTINATION

STATUS,
SAMPLE

STATUS,
TEST

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Mnemonic

lOR
STAT
LIT
MSK
OPR
ORSE

OLSE
ORZF

OLZF

ZERO
ONES
TRNA
TRNB
INCA
I NCB*
DECA
DECB

ADD
SUB*
SHFA
AND
OR
EOR
NOTA
NOTB'~

TCB':'

l/0 register
Status word

Comments

The 16-bit value from 0 to FFFF
Instruction register masked by 'xxxx
Operand register
Operand register right byte, sign
extended
Operand register left byte, sign ext
Operand register right byte, zeros i
left byte.
Operand register right byte in left
byte position, zeros in right byte

NOTE: When using MSK or LIT, caution
be used to avoid field conflicts wit
other mnemonics.

All zeros (0)
All ones (FFFF)
A (transfer input A)
B (transfer input B)
A + 1
AV B + 1 (B + 1 when A = 0)
A- 1
A + B (B - 1 when A = FFFF)

A + B
A- B
A + A (shift A left one)
A/\B
AVB
A¥B (exclusive OR)
A
8
A VB + 1 (two's complement B
when A = 0)

'~cannot be used when input B is MSK or LIT.

Rn (n = 0,1,2, ... ,F)
Special registers

SHFT

OVFL
ALU

OVFL
IOSR

General register 'n'
Refer to special actions row

NOTES:
1) general register cannot be used
here 1f input B was LIT or MSK.
2) general registers used for both
input A and destination must be the
same general register.

Set shift flag

Set overflow flag
Set ALU related flags (i.e., ALUO,
ALUS, ALUC, and ALUZ)

Overflow flag
l/0 sense response

(continued)

Row

ADDRESSING,
MODE

ADDRESSING,
ADDRESS

SPECIAL
ACTIONS

varian data machines ~
TECHNIQUES

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Mnemonic

SSW3
SSW2
SSWl
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC

GPRS
NORM
QUOS

PJMP to n
FSEL

INT
DECODE
TESTT

TESTF

POPJMP

p-

F-

POUT
SCOUT
OPROUT
INCP
INCSC
INCP, OPROUT

SHFTOP, LFT

SHFTOP, RGHT

IBR to I

PUSH,X

POPDEL

Comments

Sense switch three
Sense switch two
Sense switch one
Test from instruction register
ALU ones flag
ALU sign flag
ALU carry flag
ALU zeros flag
Shift flag
Memory input register s1gn
Shift counter all ones flag (i.e.,
overflow)
General register 0 sign
Normalize flag
Quotient flag

Page JUmp to page 'n'
Field select addressing

Interrupt addressing
Addressmg by decode controi store
test addressing; pass if test con·
dition true
Test addressing: pass if condition
false
Branch/pop to an address specified
by stack

NOTE: these are only a basic set of
abbreviations, to be used alone or i
combination.

Test pass address
Test fail address

Load program counter with ALU output
Load sh1ft counter with ALU output
Load operand register with ALU outpu
Increment the program counter
Increment the shift counter
Does both.

Shift operand reg1ster left one b1t
pOSitiOn
Sh1ft operand reg1ster nght one
b1t pOSitiOn

NOTE: high/low b1ts must also be
specified by user on these two
operations

Transfer Instruction buffer to
mstruct1on reg1ster.
Push value x on the stack (requires
PJMP addressing mode)
Delete entry at top of stack
(requires PJMP addressing mode)

3·7

~ varian data machines

TECHNIQUES

3.4 FLOW DIAGRAM EXAMPLES

The following examples are included:

L BCS Entry Point Initialization

2. Memory-to-Memory Block Move

3. Reentrant Subroutine Call

4. Fixed-point ADD to any of 16 general registers with
direct addressing to 64K.

5. Cyclic Redundancy Check (CRC) Generation.

Each of the examples includes a description of the problem,
a description of how it was handled, and a flow diagram.
Later in this manual, the examples will be continued in the
form of assembler listings of the code produced from each
of the flow diagrams in section 5.

3.4.1 BCS Entry Point Initialization

This is essentially an example of making a micro subrou­
tine which is simply a NOP. From the standpoint of being
an example, it details how to reach WCS and then return
to the macro level. From a functional standard point, it
provides meaningful initialization for the 20 (hex) BCS
entry points in WCS. By loading this program before all
others, any unused BCS entry points will have meaningful
contents (as opposed to possibly fatal random contents).

Referring to the flow diagram, (figure 3-2) the thirty·two
entry points are all initialized to the same microinstruc·
tion. It is simply a page branch to a standard microword,
SS2M, on page zero. This will result in a return to the
macro level by maintaining the pipeline and returning
control to the ROM central control store.

3.4.2 Memory-to-Memory Block Move

This microprogram is designed to move a block of n words
from one area in memory to another.

For purposes of this example, the microprogram is called by
executing a BCS to word zero of WCS page one. It takes its
arguments in the following format:

A register (RO):
B register (R 1):
X register (R2):

to address
from address
block length

When called, words are sequentially copied from their old
location (from address) to their new position (to address).
The number of words moved is equal to the block length.

The following commentary describes how the microprogram
operates. Refer to the flow diagram figure 3·3.

3-8

Word zero in page one is the entry point for the BCS
instruction. It contains a branch to a microword labeled
MBM, which may be on any WCS page. This is the actual
beginning of block move and no further decoding of the
BCS is done.

The microprogram starts by setting up its parameters. The
current program counter value is saved in R7. Next, the
from address minus one is put in its place. Having it in the
program counter will allow easier use of it as an address
source for memory requests. The to address is also
decremented. These addresses are decremented because
they are incremented in the instructions which request
the memory operations.

After this initialization, a three microinstruction loop is
entered which does the actual block move. The first
microword, (MBMA), increments the from address in the
program counter. It then requests that the word at that
address be fetched from memory. It also puts the memory
input register (MIR) onto the ALU output. Once the looping
is begun, the MIR will contain the word just fetched from
memory. Placing it on the ALU will cause it to be stored at
the to address, since the previous micro in the loop
requested a write of ALU output into memory.

The second mircoword in the loop decrements the block
length in R2. The ALU output (i.e., the new value) is
sampled for testing in the next microword.

The next microword, the third and last in the loop,
increments the to address in RO and tests the ALU sign
flag. If it is off, then the block length has not yet become
negative and the necessary number of words has not yet
been moved. In this case, an operand store is requested
using the to address as the destination. The next
microword will have to specify the the value to be stored,
so a loop is made back to MBMA which will do this. This
loop also causes the next word to be fetched and the
process continues until the block length goes negative. In
that case the loop is exited and the extra memory fetch
requested is simply forgotten.

Microword MBMB receives control after the loop is exited.
The necessary number of words have now been moved and
a return can be made to ROM. MBMB maintains the
pipeline and restores the program counter. Then, a branch
is made directly to SS3M on page 0. That ROM standard
state will decode the next 'macro' instruction currently 1n

the IBR, and will result in control returning to ROM central
control store.

3.4.3 Reentrant Subroutine Call and Return

This example provides call and return microprograms for
reentrant subroutines. The subroutine call stores its return
address in the X register (R2) and saves the original
contents of X on a stack pointed to by the B register (R 1).

The subroutine return simply pops the stack back into the
X register and branches back to the return address.

varian data machines ~­
TECHNIQUEs

----~

--+- - +- -- ·--

~--+---+------+--- +-----+-+~---+-1----+-----+-------1

!r 1

~!I
!i .

II I

II
I I r----++--
11 il

II
II

l_if
:I
I!

l- 1- --t

-1 --- ~-

1,

i II '
I 'I i I

I ~t tl, ~-~- I [1----~~~-
~ ' I I ' I ' I I

~0
> 0 a..-

VT/1-1018

1-z
w
9

z
0
i=
0
z
::J
LL

I r- t- 1 ~ ~ t---+ --- -----~---------1
:;; ~ I ~ I CD I 1- I ~ w I ~ ..J~
~ w I 1- 1- ~ ; ~ ~ 1- w ~ ~0
0 ~ ~ ::J ir ,.... t; :E U) 0 0 ~t=
=~-~~~~~~~~-~~L_s_L-~--+--~~--~--~--~---~---~-~-----~~

At:tOW3W sn.1v.1s 9NISS3t:tOOV t:t3H.l0

Figure 3-2. Flow Diagram for BCS Entry Point Initialization

3-9

~ -0

"TT
ciii'
~
CD

w
~
"TT
0
~

c
iii'
~
I»
3

~
3:
CD
3
~
~
0
3:
CD
3
0 .c
Ill
0
n
71:'

3:
0
<
CD

I DENT

FUNCTION

> a:
0
::E

REQUEST

w
::E

ADDRESS

INPUT A

INPUT B
::J
..J
4:

OUTPUT

DESTINATION

(/) SAMPLE
::J
~
4:
~

TEST (/)

CJ MODE
z
u;
(/)
w
a:
Q
Q

ADDRESS 4:

a: SPECIAL w
l: ACTIONS
~
0

--...........-... ~-~----------- ~-----

word 0
page 1 MBM

I
I

p RO R1

TRANA DECA DECA

R7 RO see below

PJMP

I

MBM

l
PCZlUT

MBMA

storing fetching fetching

data data data

TESTF
<2>F

CZlS

p ALU

- R2 RO

MIR

TRANS DECA INCA

- R2 RO

ALU

ALUS

TESTT

P-MBMB
F-MBMA

INCP

MBMB

IF

ALU

R7

INCA

see below

PJMP
to 0

SS3M
(020)

PCZlUT

-

~~
-g <
"' C»
fit '""'

Cii"
:J
c.
C»
C»

3
C»
(")
:::r :;·
CD
en

For purposes of this example, the subroutine call is
executed by doing a BCS to word 1 of WCS page 1. The
word following the BCS is taken as the effective address of
the subroutine being called. The subroutine return IS

made by executing a BCS to word 2 of WCS page 1.

The stack operations are performed in the following way. A
push causes the B register to be decremented and the X
register stored at the resulting address. A pop causes the
X reg1ster to be loaded from the memory location pointed
to by the B register followed by the B register being
incremented.

The following is a detailed description of the subroutine
call. Refer to the flow diagram in figure 3-4.

The first microinstruction of the routine is at the BCS entry
pomt. On the memory-to-memory block move, this first
m1croword of the program did nothing but branch to the
actual microroutine. The only reason for not combining it
w1th the next microinstruction was to clarify the relation­
ship of the entry point and the rest of the program. In an
actual application where execution time is critical, the
microwords would have been combined. This is done on
the subroutine call example. The first microword decre­
ments the stack pointer (Rl) and begins saving the
contents of R2 at the resulting address. It then does a
page branch to the rest of the microroutine which could be
on any WCS page.

The second microword places R2 on the ALU so that it will
be stored by the memory request in the first m1croword.
R2 must be on the ALU for the entire duration of the wnte
into memory. Since this could take a variable amount of
time, (depending on the type of memory in the system), a
request is made to wait for the memory-done signal. Th1s
means the next microword will not be executed until the
write operat1on is complete and thus, R2 will stay on the
ALU for the necessary time.

The third microword saves the return address 1n R2. The
program counter is currently pointmg to the word after th
BCS instruction. That word contains the effective address
of the subroutine to be called. Thus, the return address 1s
obtamed simply by incrementing the program counter and
then stonng it in R2. This m1croword also begins the
actual transfer to the subroutine to be called. Th1s is done
by restarting the pipeline at the address of the subroutine
That address is already 1n the M I R due to the fact 1t was
the word after the BCS.

The fourth microword sets the program counter to the
second word in the subroutine call and requests 1t be
fetched. This completes the restarting of the instruction
pipeline and a return can be made to ROM control. This is
done with a page jump to SS3M on page 0. Note that the
fourth microword has performed all the funct1ons of SS2M.

The following is a detailed description of the subroutine
return. Refer to the flow diagram 1n figure 3-5.

varian data machines ~
TECHNIQUES

The first microword begins restarting the instruction
pipeline at the return address. Also, the program counter is
restored.

The second microinstruction begins the fetch of the original
contents of R2 off the stack.

The third microword increments the stack pomter to f1nish
the pop of the stack. It also finishes the restart of the
instruction pipeline by requesting another instruction
fetch by the incremented program counter.

The last microword restores the old contents of R2, which
by now have been transferred from memory to the memory
input register (MIR). Since the pipeline has now been
restored, the microword can return to ROM using a page
jump and with request for decode address1ng. The decode

w1ll generate the next address in page zero based on the
next 'macro' instruction to be executed.

Note that the second to last microword performs the
functions of SS2M and the last microword performs the
functions of SS3M.

3.4.4 64K-Memory ADD to any of the
General-Purpose Registers

This example adds the contents of any location 1n 64K
words of memory to the contents of any of the 16 general­
purpose registers. RO, Rl, ... ,RF. The sum replaces the
previous contents of the specified register. If overflow
occurs, the overflow status bit will be set. The addressing
mode for this example will be indexing by general register
Rl.

In execution the contents of LOC bit 8 - 15 specify a branch
to control store (BCS) instruction. 81ts 0 "' defme the
operation to the performed and the addressmg mode to be
used. Bits 4- 7 specify the general register affected.

With indexing the contents of all LOC + 1 are added to the
contents of the register (Rl), and the 16-blt sum IS used
as the effective address of the operand. The operand 1s
fetched from memory and is added to the contents of the
register specified by the LOC 4 - 7.

A flow diagram follows as f1gure 3-6.

The strategy used for the operation descnbed above has
the followmg steps:

1. (ADl or ADlA) enter from decode of BCS in page zero.
Address fetch cycle has been initiated. lnit1ate next
instruction fetch and increment P.

2. Transfer contents of MIR (address value) to OPR to
preserve against alteration by previously mit1ated

instruction fetch.

3. Perform indexing by adding contents of Rl to contents
of OPR. Initiate operand fetch using ALU output as
effective address.

(continued)

3 11
----------·-··-----------~-~------· --···----------·- < ·-------------------- ----·· ----------·------------------·

~
f\)

..,
g'Q'

~
CD

w
~ ..,
0
:e
c
iii'
~
I»
3

~
CJ)
c
c::r
0
s.
:r
CD

0
~

I DENT

FUNCTION

> a:
0
::E

REQUEST

w
::E

ADDRESS

INPUT A

INPUT B
;:)
.....
Cl:

OUTPUT

DESTINATION

U) SAMPLE
;:)
1-
Cl:
1-

TEST U)

CJ MODE
z
;;
U)
w
a:
Q
Q
Cl: ADDRESS

a: SPECIAL w
%: ACTIONS
1-
0

word 1
page 1

LAB1

store of
R2 on stock

WAIT
0S MEMDN

ALU

R1 R2

DECA TRNA

R1

PJMP

I

I

LAB1

fetch of
first

subr. inst.

i
I

IF IF

MIR ALU

p ZERO

MIR

INCA I NCB

R2
see

below

PJMP

I
to 0

SS3M
(020)

I

P0UT
I

I

I

I
+--~--

!

I

I

I

!

~~
!:
0 < c I» "' ... en -· I»

::::s
Q.
I» ...
I»

3
I»
(')
::::r
:;·
CD
t/)

I

I ~ ,W

.,
a'Q'
~
~

w
~ .,
0
::e
c
iij'

C1!l
Q.l

3

~
V'l
c:
0"

0
s.
:;·
~

::0
!!
~
:I

-ID_E_N_T-~---~ ~:~~ ~ LAB2 ~---· r----- --1 ----
-----+-~-----L-- =F-- ---·;··r-: ·- -,.:.:=-.=--: -~ ' ------- fetchmg

FUNCTION ! fet.ch of fetch. of second

> ---~. ---i--- n't 'nst' ~ R~; __'_nst,uct,on

~ I REQUEST I IF OF IF
w
::::E 1------+-- - +-- - +

I

ADDRESS ALU ALU p

1------+--- -- ---+-

INPUT A R2 R1 R1

---+- -r-

INPUT B MIR

~ ~--- ----T
OUTPUT l

I _[o~STI~ATioN[
U) SAMPLE I,

:::> I

~ r
~ TEST I

TRNA INCA TRNB

R1 R2

TRNA

I

I

+-

r-- -+----- -- -- I

" [ODE I ~ I
U) '
U) - - - ---t--
~ I
o I
~ ADDRESS I

r -

PJMP
PJMP
to 0.

DECODE

from IBR
by decode

LAB2

I

l

I

I

-i

-- ---1

-1
PI
(')
%
z
.0 c:
PI
CA

<
Q) ..,
a;·
:::J
c.
Q) -Q)

3
Q)
(')
:::r

1

IBR

ffi !SPECIAL PG)UT INCP lo ~
~ ACTIONS L__ l I L I ~i7.

:::J
CD
en

.--,
I

~

~

"TT
ciQ'

~
CD

w
~
):lo
c
c -.... 0
3

~
"' 3:
CD
3
~
'<

0
C>
CD
:ll

~
~
;,
~

"0
0
Ill
CD

:::0
CD

O'Q
iii'

~

I DENT

FUNCTION

> a:
0
:I

REQUEST

w
:I

ADDRESS

INPUT A

INPUT B
:::::1
...J
cC

OUTPUT

DESTINATION

rn SAMPLE
:::::1
cC

TEST rn

"
MODE

z
u;
rn
w
a: c c

ADDRESS cC

a:
w SPECIAL
::z::: ACTIONS
0

ADI I AD I A':' AD2 AD3

ADDRESS
I AF IF

FETCH

IF <Z>F

p ALU

I R1

I MIA <Z>PR

TRNB ADD

I

i
AD2 AD3 AD4

INC P
':'located at

<ZlPR<Z>UT
page 1 word I

I
00 and 10

'------------------------------- --"---- ----

~~
0 c <
~ f» ... c;·

:::::J

Q.

AD4

I

AD5

<Z>F IF I

f»
-~ -f»

3 IF
I

f»
(')

p :::::J" s·
CD
en Rx':'

I

MIA MIR':'

ADD

Rx

<Z>VFL. ALU

I

PJMP to 0
I

DEC<Z>DE I

I

I

I
!

W<Z>RD 0
AD5

PAGE 0

IBR to I
INCP ':'from previous

register field select micro
Bits 14-7 register

field select

. ~- ~-----·-·

4. Wait for completion of operand fetch by specifying next
instruction fetch with incremented program counter
and field select register specifications from instruc­
tion bits 4- 7 into AA field. Set BB field to select MIR.

S. Add contents of MIR to contents of previously selected
register and store sum in selected register_ Sample
overflow condition. Page jump to V73 page zero with
decoding of instruction fetched by step 1.

Execution Time Estimate

Execution time depends upon the memory speed involved.
With 330 nanoseconds semiconductor memory the pipeline
is kept fulL The number of microinstruction times from
decode to decode is 6. All of these are from writable
control store. The execution time is therefore 6 times 190
or 1140 nanoseconds. Since 3 memory cycles are involved
the effective cycle time is 1140 divided by 3, or 380
nanoseconds.

3.4.5 Cyclic Redundancy Check (CRC) Generation

INSTRUCTION FORMAT

15 9 8 7 4 3 0

1 0 5 l I CRC Vector l LOC

Data Array Word Address LOC +

Byte Count LOC + 2

DATA FORMAT: Packed 2 bytes tn each word as follows:

Byte 1 Byte 2

Byte 3 Byte 4
L--------J.-------·--.

Byte N-1
may be last
byte

Byte N

The packed byte array at the specified address 1s scanned
and the 16-bit cyclic redundancy check is performed. The
16-bit CRC is left 1n the accumulator (A register or RO). If
the accumulator is not cleared before entry, the accumula­
tor's contents will be included m the CRC.

I h

The CRC polynomial word is X + X
1

+ X· + 1 ,
which is commonly used in binary synchronous

commun1cation.

Since array size can be quite large, the instruction can be
interrupted after serv1ce of every two bytes. When
interrupt service is completed, the process of CRC
generation is resumed and runs to completion (except as
interrupted). The overflow flag is used to signal an
interrupted instruction. If it is set, contents of the B and X

varian data machines ~
TECHNIQUES

registers are taken as data address and byte count
respectively.

RO, R1 and R2 {A, B and X) registers are used by th1s

instruction. RO is the current CRC value. Rl is the current
data array address. R2 is the current byte count value. RF
contains the CRC polynomial (octal 100005). The overflow
flag is used to designate an incomplete instruction.

The calling sequence normally used would be:

TZA
ROF
BCS
Address
Byte count

(clear accumulator)
(reset overflow flag)
CRC
(data array address)
(number of bytes 1n array)

Detailed Description of Procedure

1 _ Enter from decode of BCS in page zero. Address fetch
cycle has been initiated. The overflow flag is used to
designate an incomplete instruction, i.e., one which
was interrupted before the entire byte array was
scanned for CRC generation. If such an interrupt had
occurred the current data array address and byte
count in registers R 1 and R2 should be used rather
than the corresponding values used when the mstruc­
tion was initiated. A memory cycle to fetch the byte
count IS initiated conditionally. The overflow flag IS

tested for an "off" condition_ The l6-b1t word
representing the CRC polynomial is placed in OPR_ If
the overflow flag is off, the next step is step 2. If 1t is
on, step 1A is executed_

2. The data array address is copied from MIR into Rl.

3.

4_

5.

The contents of R1 is used as an address (through the
ALU) and the first pair of bytes IS fetched. The overflow
flag is set to indicate that the mstruction 1s
incomplete.

The byte count is copied from MIR into R2. ALU status
IS sampled so that the byte count can be tested for zero
in stepS.

The shift counter is loaded with- 8 (the number of bits
per data byte). The ALU zero status flag is tested to see
if the byte count was zero. Execution is suspended
(by a "wait for memory done") until the two data
bytes are fetched. If the ALU zero flag is off. the next
step is SA; otherwise, step 18 is next

SA. The CRC polynomial placed in OPR in step 1 1s now
placed in RF.

6. The data bytes in MIR are copied into OPR.

(continued)

3-15
-- '"'""" -- _________ __J

~ varian data machines

TECHNIQUES

7. Steps 7, 8, 9, 10, lOA, and 11 constitute the iterative
loop which accumulates the CRC for the left data byte.
In step 7, RO (the CRC) is shifted one bit left and
applied to the ALU input A while the shift counter is
incremented. Bit 15 of RO is copied into the shift flag
(DSB). Bit 15 of OPR is applied to ALU input A bit
00. OPR is also shifted one bit left. The CRC
polynomial in RF is applied to ALU input B. The
exclusive OR is performed by the ALU and the result
is placed into RO. The shift counter is tested to see if
the eighth bit of the left byte has been processed. If it
has, step 10 is executed next; if not, step 8 is next.

8. The DSB flag is tested to see if a correction cycle is
needed. (If bit 15 of the old CRC was a zero, the
exclusive OR operation of step 7 must be cancelled.)
If a correction cycle is necessary, step 9 is executed
next; otherwise, the next bit of the data byte is
processed by returning to step 7.

9. This correction cycle exclusively ORs the CRC in RO with
the polynomial in RF. The result is placed in RO. When
this is done the resulting CRC is that which would
have been obtained if step 7 had not performed an
exclusive OR. The next bit of the data byte is next
processed by returning to step 7.

10. This step is entered from step 7 after the last bit of the
left data byte is processed. The DSB flag is tested to
determine the need for a correction cycle. The byte
count in R2 is decremented. The ALU status is
sampled so that it can be tested for zero in step 11. If
a correction cycle is necessary, step 1 OA is executed;
otherwise, step 11 is next.

lOA. This is a correction cycle identical to step 9.

11. The shift counter is reinitialized to- 8 for processing
the right data byte. The ALU zero status flag is tested to
determine if the right byte should be processed. If
ALUZ is not equal to one, the next step is 12; if ALUZ
equals one, the next step is 18.

12. This step is identical to step 7. The right data byte
which has been shifted left in OPR is now processed.

13. This step is identical to step 8.

14. This step is identical to step 9.

15. The operations of step 10 are performed. The DSB flag
is tested as in step 10. If it is set, step 15B is next;
otherwise, the correction cycle of step 15A is next.

15A. This step is identical to step lOA.

15B. This step tests for interrupts. If an interrupt is
present, step 20 is next; otherwise, step 16.

16. The data array address pointer in Rl is incremented
and used as an address for a fetch of the next operand
byte pair, if the ALU zero flag is off (indicating the
decremented byte count at step 25 was not zero). If

3-16

the byte count was not zero, step 17 is next;
otherwise, step 18 is executed.

17. The shift counter is initialized to- 8 and execution is
suspended until the next pair of data bytes is fetched
from memory. Step 6 is next.

lA. If step 1 determines the overflow flag to be set
indicating an incomplete instruction, step lA initiates
the fetch of a data word from memory using the
contents of R 1 as an address. Step 17 is executed
next.

18. If step 16, 11, or 5 determines the byte count to be
zero, step 18 resets the overflow flag to indicate
completion of the instruction. The program counter is
incremented and the net instruction fetch is
initiated.

19. A page jump to ROM (page zero) V73 standard state
/SS2M, is executed. /SS2M will initiate another
instruction fetch to fill the pipeline.

20. If an interrupt was detected at step 158, the interrupt
status must again be tested by step 20. This is because
interrupts can be overriden by DMA traps and must
be checked twice to ensure that a trap has not
occurred which would abort the interrupt. The I /0
control is requested to perform an I /0 interrupt
sequence. Decoding is inhibited since only the
interrupt status is to be tested. If an interrupt is
found, step 21 is next; otherwise, step 16 is next.

20B. The cycle is performed as in step lOA.

21. If an interrupt was found at step 20, the data array
address in Rl is incremented and the ALU zero flag is
tested to determine if the byte count at step 15 was
zero. If it was not zero, step 22 is next; otherwise,
step 24 is executed.

22. The program counter is reduced by 3 to point to the
BCS instruction. After completion of the interrupt
routine this instruction will be refetched and the
overflow flag will be tested in step 1 to determine the
need to initialize Rl and R2 from the instruction
second and third words.

23. Execution is suspended until the l/0 control signals
completion of the interrupt sequence; then a page
jump to ROM V73 standard interrupt state/INT2 is
performed.

24. If the byte count was zero, the overflow flag is reset
and an instruction fetch is initiated with the
incremented program counter value.

CRC Generation Timing

Execution time depends on memory speed and data array
size. If no interrupts occur the timing cons1sts of (a)
initialization -- fetch of BCS, address and byte count and
first byte pair. This involves one ROM decode cycle and
WCS micromstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at
190 nanoseconds (assuming a 330 nanoseconds main
memory cycle). Initialization thus amounts to 1520

varian data machines ~
TECHNIQUES

nanoseconds. (b) CRC processing -- each byte takes 16 to
24 steps with the average 20 plus steps 10, 11, 15, 158

and 16 all at 190 nanoseconds. Processing takes an
average of 8550 nanoseconds for each byte pair. (c)
cleanup involves steps 18 and 19 from WCS at 190
nanoseconds, and the memory cycle of SS2M at 330
nanoseconds. Clean up takes a maximum of 710 nanonec
onds. Altogether the timmg for an array of N bytes
averages (2230 + 1/2(N- 2)) t1mes 8550 nanoseconds.

3 17

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~

TECHNIQUES

ENTER
FROM DECODE
OF BCS

1
Al

(ADDRESS FETCH IS UNDERWAY)

000

START BYTE COUNT FETCH IF INCOMP
FLAG IS OFF (OVERFLOW)

INCREMENT P
POLYNOMIAL TO OPR
TEST INCOMPLETE FLAG (OVERFLOW)

INITIAL SETUP

CALLING
SEQUENCE

TZA (OPTIONAL- SEE TEXT)

ROF (OPTIONAL- SEE TEXT)

BCS CRC

DATA ARRAY ADDRESS

BYTE COUNT

DATAARRAYI BYTE1 BYTE2
FORMAT ~_---B-Y_T_E-3--~----B-Y-TE--4--~

2 L---------~~--~----~ 021

FETCH DATA
WORD

ADDRESS STEP #

d

VTI2-402

3-18

.---------------------~~

SAVE ADDRESS IN Rl

033 3

FETCH DATA WORD
SET INCOMPLETE FLAG (OVERFLOW)

023 4

SAVE BYTE COUNT IN R2
SAMPLE ALU STATUS

024 5

INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR ZERO BYTE CT
WAIT MEMORY DONE

BYTE N-1
(MAY BE LAST BYTE)

DURING EXECUTION

BYTE N

RO (A REGISTER CONTAINS CRC
R1 (B REGISTER) CONTAINS THE CURRENT

ADDRESS OF DATA
R2 (X REGISTER) CONTAINS THE CURRENT

BYTE COUNT

1
F5

022 17

INITIALIZE SHIFT COUNTER
WAIT MEMORY DONE

026 5A

TRANSFER OPR
TO RF

027 6

TRANSFER DATA TO OPR

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 of 4)

2
Al

02A 7

SHIFT RO LEFT TO ALU A INPUT
SHIFT OPR LEFT
RO(l5) --DSB
OPR (15) ----ALU INPUT A BIT 00
POLYNOMIAL (RF) TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO
INCREMENT SHIFT COUNTER
TEST SHIFT COUNT OVERFLOW

02E 8

TEST DSB FLAG

PROCESS FIRST
BYTE

RO TO ALU A INPUT

028

RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO
(CORRECTION CYCLE)

9

030 10

RO TO ALU A INPUT
RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO
!CORRECTION CYCLE)

varian data machines ~
TECHNIQUES

029 10

DECREMENT BYTE COUNT (R2)
SAMPLE ALU STATUS
TEST DSB FLAG

032 i 1

INITIALIZE SHIFT COUNTER
TEST ALU , 0 FLAG FOR

ZERO BYTE COUNT

3
Al

VT/2-400 Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (2 of 4)

3-19

~ varian data machines

TECHNIQUES

VT/1-401

SAME AS 0

SAMEAS 0

E5

INCREMENT ADDRESS (Rl)
FETCH DATA WORD IF ALU =0

FLAG IS OFF

03E 16

TEST ALU = 0 FLAG (BYTE COUNT~ 0)

RESET OVERFLOW
INCREMENT P
FETCH NEXT INSTRUCTION

PAGE JUMP TO ROM

SS2M
(060)

PROCESS
SECOND
BYTE

SAME AS 0
038 14

035 15

DECREMENT BYTE COUNT
SAMPLE ALU STATUS
DSB FLAG TEST
ENABLE INTERRUPTS

03C 15/>i

SAME AS 8

15B

TEST INTERRUPTS

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (3 of 4)

3-20

VTI/-1803

INTERRUPT

037 20

ENABLE
INTERRUPTS DISABLE DECODE
START I/0 INT SEQUENCE

031 21

INCLEMENT ADDRESS (R 1)
TEST ALU = 0 FLAG (BYTE COUNT= 0)

02D 24

RESET OVERFLOW
INCREMENT P
INSTRUCTION FETCH START

varian data machines ~
TECHNIQUES

~
~

P-3-+P

02C 22

(RESET PROGRAM COUNTER TO
CAUSE REFETCH OF BCS)

WAIT FOR I/0 DONE

PAGE JUMP TO ROM

/INT 2
(OFF)

036

Figure 3-7_ Flowchart for Cyclic Redundancy Check Generation

Microprogram (4 of 4)

3 21
--··----··-·-··- -·---------·--------'

w
r\>
1\)

..,
ciQ'
c
;;
w
9o
"" 0
1£
c
iii'

OQ

i»
3
2.
(")
::a
(")

C)
tD
:I
~
~
5'
:I

--.

~

~

I DENT

FUNCTION

> a:
0 REQUEST
:IE
w
:IE

ADDRESS

INPUT A

INPUT B
::J
..J
C(

OUTPUT

DESTINATION

rn SAMPLE
::J ...
C(...

TEST rn

CJ MODE
z u;
rn
w
a:
Q
Q

ADDRESS C(

a: SPECIAL w
::E: ACTIONS ...
0

CRC1 CRC2

I
ARRAY BYTE COUNT

ADDRESS
FETCH FETCH

<Z>F
TESTF

p

- t
I

I MIR

MSK. 8005 TRNB

TRNB R1

0VFL

I
TESTF N0RM

I

I
T-CRCIA CRC3
F-CRC2

I
INCP. I

0PR0UT

~~
0 c < '" u. Q)

CRC3 CRC4 CRC5 CRC5A CRC6 CRC1A

...
DATA ar

::::J

c. I FETCH

Q)
Q)

3
Q)
()
::::T

!

I

I

I 0F WAIT 0F

ALU I MEMDN ALU
I

s·
CD rn

I

I
I
i

I
I

R1
I

MIR MSK, FFFB 0PR MIR R1

I
TRNB TANS TRNB TANS TRNB TRNB

I

R2 RF

ALU

ALUZ

N0RM

I
TESTT N0RM N0RM

T-CRCIB CRC4 CRC7 CRC17
F-CRC5A ;

SET SC0UT 0PR0UT
Q.lVFL

w
r\..>
w

.,
ciii'
c:
;D
w
!» .,
0
~

c
iii'
~
Ill
3

2.
(")
:::tJ
(")

C)
(II

:I

~
~
cs·
:I

1\J
~

~

> a:

IDE NT

FUNCTION

0 I REQUEST
:E
w
:E

ADDRESS

INPUT A

INPUT 8

CRC7
i r
I

I
I

RO.SL

RF
::l
...J
c:(

OUTPUT I EOR

DESTINATION I
t

RO

~ i SAMPLE
1-
c:(

:n I TEST

" I MODE
z
c;;
en
w
a:
0

~ !ADDRESS

ffi I SPECIAL
J: ACTIONS
1-
0

SHFT

SFTC

TESTT

I

I T-CRC10

I F-CRC8

I
I

SHFTOP.LFT
0 +0 PROO

·oPR15+ALUA 00

INCSC

CRC8

FSEL
MS = 2

CRC9

1

CRC9

RO

RF

EOR

RO

NORM

CRC7

,--

t-~-

~- ---- ----- ----.---- -- --------,--- -----

CRC10 CRC10A CRC11 CRC25

--+- ----------+- --~------ ----t---------1

--+--------

-- -- ---+--- --- --- -- -- -----+----------+--------1

R2 RO

R3

FF6 EOR - ~K~F~-1- --__ -_-=r~---
RO _ J -- --;_ -
RF

R2

ALU

FSEL
MS = 2

NORM

X '032 CRC11

-- __ _l
ALUZ

I

TESTT --~
__ j_----+

T-CRC18

I

:

PJMP

INT2

-- +---- - --- ------1----- ----- -

~C-R:2 __ i I (page o, x'FF) I

____ l___

SCOUT ! _l __
l __ ~ -

-1

<
Q)
iii'
:::l
c.
Q) -Q)

3
Q)
(')
:::r
:::l
CD en

~~
~ I

I

•i

w
N .,.

..,
fiii'
~
CD

w
~ ..,
0
~

c
iii'
~
I»
3

2.
(")
::a
(')

C')
CD
:I
~
~ s·
:I

w
st
~

I DENT

FUNCTION

> a:
0
:I

REQUEST

w
:I

ADDRESS

INPUT A

INPUT B
:::)
..J
...:

OUTPUT

DESTINATION

0 SAMPLE
:::): ...

TEST 0

"
MODE

z c;;
0 w
a:
Q
Q
...: ADDRESS

a: SPECIAL w
2: ACTIONS ...
0

CRC12 CRC13 CRC14

RO.SL RO

RF RF

E<Z>R EC2>R

RO RO

SHFT

SFTC

TESTT FSEL NC2>RM
MS = 2

T-CRC15
F-CRC13 CRC14 CRC12

SHFT<Z>P,LFT
0-+<Z>PROO

<Z>PR15+ALUAOO
INCSC

~~
.0 c < 1"1
U) I»

CRC15 CRC15A CRC15B CRC16 CRC17

... or
:::J
Q.
I» -<Z>F

TESTF WAIT I»

3
I»
() ALU MEMDN

2:
:::J
~

R2 RO R1
(I)

R3 RF MSK. FFF8

FF6 EC2>R FFO,CF3

R2 RO R1

ALU
!

ALUZ I

FSEL
MS = 2

NC2>RM N<Z>RM TESTT NC2>RM

T-CRC18
CRC15B CRC15B CRC16

F-CRC17
CRC6

ENABLE
INTERRUPTS
SUPPRESS SC<Z>UT

DECC2>DE

w
N
U1

.,
ciQ'
~
I'D

w
~ .,
0
~

c
iii'
~
I»

3

2.
(")
::c
(")

::;')
I'D
::I

~
2!.
a·
::I

~

8,

-::

IDENT CRC18 CRC19 I r
I !

~ ~ -t--1
--~---- ----~ -r- - - -

,---- ==~--=-:c-::-=-~=c=:_c=__r~=c-:-

FUNCTION I
I

NEXT

INSTR

FETCH

..___~I
> a:
0 I REQUEST
~
w
~ ·--

1
I -+---

ADDRESS I

- -----+------- -

INPUT A

INPUT B r
~ 1- -- - f

OUTPUT I

~~~~~~~l 
~ I - - + 
t; I TEST 

f--- - -

CJ I MODE 
z 
u; 
f/) 
w 
a: 
0 

t-
1 

I 

IF 

p 

NORM 

~ \ADDRESS I CRC19 

; -

; -

PJMP 

i 

I SS2M I 

- j(:AGEO X92) I 
RESET I ' 

a: I SPECIAL I OVFL I ~ ACTIONS INCP l - --

CRC20 

NORM 

CRC16 

ENABLE 

INTERRUPTS 

SUPPRESS 

DECODE 

START I 0 
INT CYCLE 

l CRC21 

R1 

FFO .MFO. 

CFO 

R1 

ALUZ 

TESTT 

T-CRC24 

F-CRC22 

CRC24 

IF 

p 

RESET 

OVFL 

lNCP 

CRC23 

_J-
1 

NEXT 

INSTR FETCH 

NORM 

CRC25 

WAIT 10 
DONE 

CRC22 

-J 

p 

MSK.FFFC 

ADD 

POUT 

I 

I 

j_ 
I 

_j 

< 
Q) .... 
iii' 
::J 
c. 
Q) -Q) 

3 
Q) 
() 

~ 2: 
1"'1 ::J £ ~ 
z en 

a~ 





SECTION 4 

MICROPROGRAM DATA ASSEMBLER, 

MIDAS 

For execution the microprograms must be expressed in the 
internal machine language, yet during their development it 
is advantageous to express the program in a symbolic 
language which has more meaning to the person writing 
the program. This symbolic language is then translated into 
the executable machine language by the assembler. 

In addition MIDAS assembler provides 

symbolic addressing 

macro-definition capability 

user-defined microword formats 

user-defined opcodes 

address field calculations 

error detection 

concordance listing with MOS or VORTEX using the 
concordance program CONC 

4.1 BASIC ELEMENTS 

The source language input to the assembler consists of a 
sequence of records. Each record contains 80 character 
positions. These characters are represented internally in 
standard 8-bit ASCII codes. The following paragraphs 
describe the content and format of the input to MIDAS. 

Characters 

The characters forming the symbolic source statements are 
described below. Characters not in this set can appear 
only in the comment field. 

Alphabetic: 
Numeric: 

Special 
Characters: 

A through Z 
0 through 9 

I slash 
':' asterisk 
+ plus sign 

- minus sign 
space (blank) 

' apostrophe 
( left parenthesis 
) right parenthesis 

MIDAS statements are formed from the character set 
above. The comment field can contain valid 73/620 ASCII 
characters in addition to any from the MIDAS character 
set. Literals may be formed from any ASCII characters. 

varian data machines ~ 

Symbols 

The programmer may create symbols to be used for 
statement labels or to define numeric values. A symbol 
may contain one to six characters from the alphabetic or 
numeric subset. The first character of a symbol must be 
alphabetic. 

Examples of correctly formed symbols 

ABC4 INPUT1 SAVE4X P23456 

Symbols may also use the pound sign (#)or dollar sign ($) 
character in any character position. 

Example 

A$BHC1 $RUN A$TOP #FIVE 

Constants 

A constant is a self-defining term. Four types of constants 
are available: decimal integer, hexadecimal, octal and 
binary. 

A decimal constant is an unsigned sequence of decimal 
digits. The value of a decimal constant may not exceed 
32767. 

A hexadecimal constant is an uns1gned sequence of 
hexadecimal digits, base 16, preceded by the letter X and 
an apostrophe. The maximum hexadecimal number 
processed by the assembler is X'7FFF. 

An octal constant is an unsigned sequence of octal digits, 0 
through 7, preceded by the letter 0 and an apostrophe. An 
octal constant can not exceed 0'77777. 

A binary constant is an unsigned sequence of ones and 
zeros preceded by the letter B and an apostrophe. Binary 
constants may be as large as 16 bits. 

Expressions 

An expression is a single term or a series of terms 
connected by the following operators. All are integer 
operators. 

+ Addition 
- Subtraction 
':' Multiplication 
I Division 

A term is a symbol, constant, or a special symbol, ':'. which 
denotes the program location counter. A term IS associ­
ated with a value inherent to the term in the case of a 
constant, or assigned by the assembler. 

4-1 



• varian data machines 

MICROPROGRAM DATA ASSEMBLER, MIDAS 

Multi-term expressions are evaluated from left to right. No 
parentheses are allowed. Expressions are reduced to a 
single value by the procedure below. 

1. Each term is given a value 

2. Multiplication and division are performed from left to 
right 

3. Addition and subtraction are performed left to right 

4. If an expression has a leading minus sign, the value is 
computed as though a zero term preceded the minus 
sign. A leading plus sign is ignored. 

5. The value resulting is right-justified in its generated 
resultant field. Unspecified leading bit positions 
contain zeros. 

Program Location Counter 

The assembler maintains a program location counter which 
is automatically initialized to zero at the start of each 
assembly. As program statements are processed the 
assembler assigns consecutive memory (WCS) addresses to 

the microinstructions generated, unless the program 
location counter is explicitly modified. The counter may be 
modified by the ORG and ALOC directives. The asterisk C) 
character as a label denotes the current value of the 
program location counter. 

4.2 GENERAL FORM OF STATEMENTS 

Input to the assembler is in the form of statements in 
punched-card images. The statement is contained in a 
fixed format in character positions 1 through 72. 73 
through 80 are reserved for sequencing information and 
have no effect on the generated microprogram. 

A statement is divided into a label, operation, continuation, 
operand, and comment field. These are discussed in order 
below. 

Label 

A source statement can be associated with a symbolic 
label, which allows the statement to be referenced from 
other statements in the program. The label, if present, 
must begin in character position 1 and is terminated by a 
space. A label may be a one to six character symbol. 

Operation 

The operation field may consist of the format-defining 
operator FORM, the label of a predefined or user-defined 
format statement, a macro name or an assembler 

directive. The operation field begins in position 8 and is 
terminated by a space. 

Continuation 

Continuation lines may be used when additional lines of 
coding are required to complete a statement originating on 
one line. There can be up to three continuations per 
statement. This is designated by the character C in 
position 15. The actual statement continues in positions 16 
through 72. Continuation lines are only valid for the 
format and program statements. 

Operand 

The operand field begins in position 16 and is terminated 
by a space. The operand field may contain subfields 
separated by commas. 

Comment 

The comment field is optional for documenting programs. 
The content of this field is output on the assembly listings 
but in no way has an effect upon the assembly process. 
The comment field begins with the first non-blank 
character following the operand field. 

4.3 STATEMENT DEFINITIONS 

MIDAS processes four types of statements: format, pro· 
gram, assembler-directive and comment. 

4.3.1 Format Statement 

The format statement labels and describes a structure for 
the microinstruction generated by the program statement. 
Each program statement specifies a format in which the 
user has grouped and broken up fields within the 
microword to set values. Two predefined formats are GEN 
and GMSK, "standard" formats shown in figure 4-1. The 
user may define additional formats through the use of the 
format statement. 

The general form of the format statement begins with a 
required label followed by the word FORM followed by the 
field identifiers separated by commas. A field identifier 
consists of a field length in decimal, which may be followed 
by a hexadecimal constant enclosed in parentheses. 

label FORM field(l) , field(2), ... , field(n) 

Where: 

label is a symbol formed according to 
the basic elements 

each field is a field identifier which is the 
field length in decimal, followed 
by an optional hexadecimal constant 
enclosed in parentheses 

length (constant) 



ordinal field 
field size 
number name in bits 

TS 4 
2 AFIMS 9 
3 MT 1 
4 FS 4 
5 TF 2 
6 SF 2 
7 GF 4 
8 MR 1 
9 A8 2 

10 IM 4 
11 L8 2 GEN 
12 LA 2 
13 RF 3 
14 FF 4 
15 MF 1 
16 CF 2 
17 WR 1 
18 sc 
19 VF 
20 WF 1 
21 XF 2 
22 SH 3 
23 88 4 
24 AA 4 

ordinal field 
field size 
number name in bits 

1 TS 4 
2 AF/MS 9 
3 MT 
4 FS 4 
5 TF 2 
6 SF 2 
7 GF 4 
8 MR 1 GMSK 

9 A8 2 
10 IM 4 
11 L8 2 
12 LA 2 
13 RF 3 
14 FF 4 
15 MK 16 
16 AK 4 

Figure 4-1. Predefined Formats Recognized by MIDAS 

Field length can not exceed 16 bits. Fields are specified 
from left to right. Each field identifier has an implicit 
ordinal field number associated with it for reference. All 
64 bits of the microinstruction word must be allocated. 
Fields to which constant values have not been assigned are 
initialized to zero. 

Possible errors in the format statement include allocating 
more than or less than 64 bits and using a constant value 

'"-----------·-·-----·---··-------------·--"·---------

varian data machines ~ 
MICROPROGRAM DATA ASSEMBLER, MIDAS 

exceeding the size of the field. If an attempt is made to 
redefine a format, an error is indicated and the format is 
ignored. 

Continuation lines can be used on the format statement 
but a field identifier may not be carried across lines. A 
comma must complete the field Identifier before continuing 
the statement on the next line. If the last non-blank 
character of the operation field is a comma, it implies the 
next record will be a continuation. 

Example: 

LIST FORM 14,4,2(X' 3) ,2,4, 1 ,2, 
C4, 2 '2, 7, 16 (X I 1 FFF) '4 

4.3.2 Program Statement 

The program statement represents the encoding of the 
microinstructions in symbolic notation. Each program 
statement references a format statement to be used in 
building the microinstruction. The format of the program 
statement is an optional iabei foiiowed by a tormat label 
followed by a program field. 

label format program-field 

Where: 

the program-field consists of one or more of the following 
separated by commas. 

One address expression 
Predefined opcode 
User-defined opcode 
Field constant 

The single address expression specifies the mode of 
addressing to be used in fetching the next microsinstruc­
tion. The address expression, if present, must be the first 
item in the program field. The format of an address 
expression is: 

/mode (expression, fail address) 

Where mode is a key denoting the following possible 
address modes: 

N 
T 

F 
s 
p 

Normal addressing 
Test 
Field Select 
Test and field select 
Page jump 
Implicit 

The value of the first expression in parentheses is the an 
address of the next instruction under non-test conditions, 
or if the test passes. The value of the second expression is 
the address of the next instruction if the test fails. 

4-3 



~ varianda~mac~nes~~~~~~~~~~~~~~~~~~~~~~~~ 

MICROPROGRAM DATA ASSEMBLER, MIDAS 

Modes N, F and P require only the first expression. T and S 
must use both expressions. None is given for the implicit 
mode. 

Address evaluation is performed with the following 
considerations: 

When the address mode uses field selection (modes F and 
S), the value of the expression must refer to the 
lower address selected in that field. This address 
must be an even numbered address. 

The contents of the mask field (MS) and the mask exten­
sion field (MT), which provide the mask for the 
field address, must be defined by the user. 

In the test or the test-and-field·select modes of addressing, 
the fail address must be an even numbered word and 
must be greater than pass address taken modulo 16. 

For example, if the pass address is X'16, the range of the fail 
address must be from X'10 to X'1E and an even wol'd. 
If the pass address is X'26, the fail address may 
range (on even words only) from X'20 to X'3E. 

The value is 13 bits with the high-order four bits specifing 
a page number and the low-order 9 a word within 
the page. 
The implicit mode generates normal addressing to the 
program location counter plus one. 
In a page jump the expression specified must produce a 
value which contains both the page and word 
addressing information. This destination can be 
defined through use of the EQU directive. 
If the test field (TS) is being used to select interrupts or 
to specify AA or 88 field definition, its value must be 
defined by the user. 

Predefined Opcodes 

When a predefined opcode is used in the program field, it 
specifies that a particular value be placed in a field of the 
microinstruction as defined by the format statement. 

Predefined opcodes are symbols consisting of three to six 
characters. The first two characters identify a field of the 
defined formats and the following characters specify the 
value in hexadecimal notation to be placed in the field. 
These field names must not be used as labels in user· 
defined opcodes. The two·character names for fields and 
the permissible range for each is given below. 

Predefined opcodes may be used with user·defined formats 
since each of these opcodes has an ordinal field number 
associated with it. There is no predefined opcode for the 
combined address field AF /MS. 

4-4 

Fields of the Microinstruction 

Ordinal 
Name Number Range 

TS 1 0 - F 
MT 3 0 - 1 
FS 4 0 - F 
TF 5 0-3 
SF 6 0-3 
GF 7 0 · F 
MR 8 0 . 1 
A8 9 0·3 
IM 10 0 · F 
L8 11 0-3 
LA 12 0-3 
RF 13 0 - 7 
FF 14 0 - F 
MF 15 0 . 1 
MK 15 0 FFFF 
CF 16 0·3 
AK 16 0 · F 
WR 17 0 - 1 
sc 18 0 - 1 
VF 19 0 - 1 
WF 20 0 - 1 
XF 21 0-3 
SH 22 0 . 7 
88 23 0 · F 
AA 24 0 · F 

User-Defined Opcodes 

Users can assign values to symbols through the EQU 
directive. The opcode is placed in parentheses and 
preceded by the decimal ordinal field number designating 
the format field for the value. 

Statement labels and user-defined opcodes must avoid 
naming conflicts. 

Field Constant 

A field constant denotes a value to be placed in a 
microinstruction field. Either decimal, hexadecimal, octal 
or binary constant is placed in parentheses and preceded 
by a decimal ordinal field number. 

Error Conditions 

The effect of error conditions upon the continuing assembly 
depends upon the type of error. The errors listed below are 
indicated on the listing. The action shown in parentheses 
is taken in the program statement. 

a. Reference to a non·existent format (program statement 
is ignored) 

b. Value exceeds the size of field (value truncated) 
(continued) 



c. Both operand in the program f1eld and a format 
constant are specified for the same field (inclusive OR 
of the values inserted) 

d. Multiple values generated for a field (first used) 

e. Inconsistency between the address mode specified and 
the values of the address control fields e.g., normal 
addressing and test field (TF) non·zero. (Mode is 
used to generate address) 

Additional Considerations 

The assembler evaluates each operand in the program 
field, and then uses the format indicated to form a 
microinstruction. Operand values and format field 
constants are placed in the appropriate fields. 

Values computed for a field are inserted in the field right· 
justified. Fields whose values are not explicitly defined in 
either the format or program statement are set to zero. 

A program statement may have continuation lines, but an 
operand may not be carried across lines. A comma must 
complete the operand before continuing the statement on 
the next line. If the last non·blank character of the 
op~ration field is a comma, it implies the next record will 
be a continuation line. 

Example: 

EXC1 GMSK /N(EXC2),LB3,RF3,FFA, 
CMKF7FF 

4.3.3 Assembler Directives 

Instructions to the assembler are known as directives. 
These statements have label, operation, operand and 
comment fields. The operation field contains the name of 
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MAC 
and EMAC. 

The directives for macro definition MAC and EMAC are 
described in a later section. Other assembler directives are 
discussed in order below. 

EQU -- Equate 

The EQU directive is used to assign symbols to a given 
value or the value of another symbol. The symbol in the 
label field is required in this directive. It is defined to have 
the value of the expression in the operand field. 

The format of the EQU directive requires both a symbol in 
the label field and expression in the operand field. If the 
expression in the operand field contains a symbol, it must 
have been previously defined. 

varian data machines ~ 
MICROPROGRAM DATA ASSEMBLER, MIDAS 

If the symbol in the label field has been previously defined 
or if there is no label, an error is indicated and the 
statement is ignored. 

Examples: 

THREE 
scz 
v 

EQU 
EQU 
EQU 

ORG -- Origin 

3 
X'FE 
THREE+2 

The ORG directive sets the program locat1on counter to the 
value of the expression in the operand field. 

A symbol in the label field is optional in the ORG directive. 
The expression to which the program location counter is 
set must be in the operand field. 

If an expression in the operand field contains a symbol, it 
must have been previously defined. A value of zero or a 
negative value in the operand field causes an error to be 
indicated and the statement is ignored. If the expression 
exceeds the page size, it is an error and causes the 
assembly to be terminated. 

At the beginning of each assembly pass the assembler 
initializes the program location counter to zero. 

Examples: 

ORG 
ORG 

ALOC -- Allocate 

X I 1EO 

BEGIN 

The ALOC directive informs the assembler that it is to skip 
over previously allocated locations as it is assigning 
sequential addresses to the generated microinstructions. 

From the beginning of an assembly pass until the 
occurrence of the ALOC directive the assembler will keep a 
list of all assigned locations. After the ALOC directive is 
processed the assembler will test each new program 
location counter setting against the list of allocated 
locations. If a new value is in allocated space, the 
assembler will increment the counter and again make the 
test. The sequence will continue until unallocated space is 
found. 

The format of the ALOC directive requires an expression in 
the operand field, but the symbol in the label field is 
optional. 

An error is indicated and the statement ignored, if the 
operand field contains a negative value, zero or exceeds 
the page size. 

4-5 



~ varian data machines 

MICROPROGRAM DATA ASSEMBLER, MIDAS 

In the implicit addressing mode the address of the next 
instruction is the next allocatable location. 

Examples: 

ALOC 
ALOC 

SPAC ·• Space 

FIELD*4 
ZER0'20 

The SPAC directive provides a blank line on an assembly 
listing to improve readability. 

Both the label and operand fields of the SPAC directive are 
ignored. A symbolic source listing shows a blank line in 
place of SPAC directives. 

Examples: 

SPAC 
SPAC 

EJEC ·· Eject 

ADD HERE LATER 

The EJEC directive causes the assembly listing device to 
advance to the first print location of the next output page. 

Both the label and operand fields are ignored. EJEC is 
listed. 

END ·· End 

The END directive causes an assembly to be terminated. 
An END directive is required as the terminal source 
statement for each assembly. 

A symbol in the label field is optional and assigned the 
value of the program location counter. The operand field. 
is ignored. 

4.3.4 Comment 

A statement with an asterisk in the first character position 
is entirely commentary. Its contents have no effect upon 
the assembly process, however the statement is output to 
the listing. 

4.4 ASSEMBLY-LANGUAGE EXAMPLES 

These examples of microinstruction implementation use 
MIDAS. The following examples show how representative 

4-6 

-~ - ---------

microinstructions in the WCS could be coded as source 
statements for MIDAS. 

Example 1: 

EXC1 GMSK /N(EXC2),LB3,RF3,PPA,KKP7PP 

This example uses the normal mode of addressing. 

Example 2: 

LASL1 GEN /T(LASL2,LASL1),TP2,GPC,LA2, 
CRF5,WR1,SC1,XF3,SH6 

This example shows the use of the test mode of addressing, 
and the use of a cntinuation record. 

Example 3: 

BT10 GEN /F(BT20),2(X'F),FS4,RF4,XP1 

This example shows the use of the field select mode of 
addressing. The field address mask is provided by the 
hexadecimal field constant. 

Example 4: 

SWA22 GEN /S(LDA2,SWA26),2(X'C),MT1,PSF, 
CTF3,GFB,LB1,RF3,FFA,MP1,BB1 

This example shows the use of the test and field select 
mode of addressing. The field address mask is provided by 
the hexadecimal field constant and the predefined opcode 
MT. 

Example 5: 

SEN2 GEN I•, 1 ( B' 1), IMF, LB 1, FFA, MP 1, WR 1, 
CXF1 ,AAE 

This example shows the use of the implicit mode of 
addressing. The instruction initiates l/0 activity and the 
binary field constant provides part of the l/0 control store 
starting address. 

Example 6: 

p EQU X'200 PAGE ADDRESS (PAGE 1) 

GMSK /P(DIV+P),IMD,LB3, 
C15(*+1+Pl ,AK2 

This example shows the use of the branch/push operation. 
The operation effects a page selection and the destination 
and return addresses are global. The destination address 
is generated by the address expression. Note the page 
address contribution of P. The expression for field 15 
generates the global address which is pushed on the 
microprogram return stack. P contributes to this again. 



I 

Control returns to the instruction immediately following 
the branch/push instruction in this example. 

Example 7: 

This example shows the use of the branch/pop operation. 
The global return address used is the last item pushed on 
the stack. 

Example 8: 

SS1M BQU X' 13E 

GBN P(SS1Ml,SF2,GF 

This example shows the use of the page jump mode of 
addressing. In page selection the value in the address 
expression must contain both the page and word 
contribution to the global address. In this example the page 
jump is to a standard state in the central control store 
{page 0) from some other page. 

Example 9: 

SS3M GMSK /N(SS2MI),1(X'El,GFS,IM6 

This example uses the normal mode of addressing but 
selects the decode-ROM and samples interrupts (GF field 
bit 2 is true). The hexadecimal constant defines the 
interrupts which are enabled. 

The following examples show the use of page branch, 
branch/push, and branch/pop operations. 

Example 10: 

SS2M EQU X'092 

MW1 GEN /P(SS2M) ,IM3,SFO,TFO 

Th1s example of a microword, labeled MWl, does a page 
jump to one of the standard states in read-only memory. 

Example 11: 

PAGE BQU X'200 PAGE ONE SPECIFICATION 

MW2 GMSK /P(SUBR+PAGE),TFO,SFO, 
CIMD,LB3,AK2,15(MW2+1+PAGE) 

SUBR GEN 

EXIT GEN TFO,SFO,IMD,LB3,AA4,BB0 

L. ----------··--·--·~----------··---------.......... -···-------· 

varian data machines ~ 
MICROPROGRAM DATA ASSEMBLER, MIDAS 

This example calls a micro subroutine and uses the stack 
to save the return address. The subroutine call is labeled 
MW2. It forms the return address by adding the word and 
page numbers, and then pushes the address on the stack. 

Likewise, the address of the subroutine is formed by 
adding page and word numbers, the subroutine returns by 
a microinstruction labeled EXIT which does a pop jump. 

4.5 MACRO CAPABILITY 

A macro provides a convenient way to generate a sequence 
of assembler source statements many times in one or more 
programs. The macro definition is written only once, and a 
single statement, the macro reference, is written each time 
the user wishes to generate the desired sequence of 
statements. These statements are then processed like any 
other assembler statements. Macro definition uses the 
MAC and EMAC directives. 

MAC -- Macro 

The MACRO directive introduces a macro definition. This 
definition is terminated by the EMAC DIRECTIVE. The 
name of the macro is the symbol which appears in the 
label field of the MAC directive. Operand lield J.Jarcnneiers 

may be passed from the macro-reference source statement 
to the macro through use of the special parameter symbols 
P(l) through P(n). 

A macro is invoked by the appearance of the macro name 
in the operation field of a statement. 

The label field must contain a symbol. 

In the macro-reference statement the operand field may 
contain a list of parameters. At the time the r--~;· _, 0 

reference is encountered, each parameter is evaluated and 
stored into a table within the assembler. The parameters 
may be labels, constants, or user-defined opcodes. Prede­
fined opcodes are not permitted. The macro definition is 
then processed with the values in the table being 
substituted for the special symbols P{l) through P(n). For 
example, if the operand field of a macro-reference state­
ment appears as: 

2,ABC,X'EO 

then within the generated macro the value of P(l) is 2, P(2) 
is the value of the symbol ABC, and the value P(3) is 224. 

All arguments in the macro-reference parameter list are 
evaluated prior to invoking the macro. 

An error is indicated and the MAC direction ignored, if the 
label field does not contain a symbol. Also an error is 
indicated and the reference is ignored if the macro has not 
been defined prior to its being referenced. 

If a symbol is present in the label field of a macro-reference 
statement, it is assigned the value of the program location 
counter at the time the macro is invoked. 

4-7 J 



~ varian data machines 

MICROPROGRAM DATA ASSEMBLER, MIDAS 

A macro definition may contain a reference to another 
macro definition, nesting definitions. However, a macro 
may not be called recursively. 

EMAC -- End Macro 

The EMAC directive terminates a macro definition. The 
contents of both the label and operand fields are ignored. 

Example: 

The following example shows the use of macro definition 
and reference. 

ONE 
TWO 
THREE 
FOUR 

EQU 
EQU 
EQU 
EQU 

SHFT MAC 

2 
3 
4 

GEN /T(*,SS3M1),TF3,SF3, 

EMAC 

ASLB SHFT 

LRLB SHFT 

ASRB SHFT 

CGFC, IM8 , 1 2 ( P ( 1 ) ) , RF 5 , 
CWR1,22(P(2)),AA1 

TWO,FOUR 

TWO,ONE 

THREE,TWO 

4.6 OPERATING INSTRUCTIONS 

This section describes the operating procedure for MIDAS 
in each of its three environments: VORTEX, MOS and as a 
standalone program. 

MIDAS runs under VORTEX as a level 0 background task 
and may be cataloged into the background library using 
the procedures described in the VORTEX Reference 
Manual (Varian document 98 A 9952 lOx). 

MIDAS under MOS must be added to the system file using 
the system preparation Program as described in the 
Varian Master Operating System Reference Manual 
(Varian document 98 A 9952 09x). 

MIDAS in the standalone environment makes use of the 
Standalone FORTRAN IV loader, runtime I /0 and runtime 
utility. Use of the components are describe in the Varian 
620 FORTRAN IV Reference Manual (Varian document 98 
A 9902 03x). 

4-8 

4.6.1 VORTEX Environment 

Ml DAS is scheduled from the background library at level 0 
by the /LOAD,MIDAS directive. MIDAS terminates when 
the END statement is encountered, and exits to the 
executive. Only one source program can be assembled for 
each load of MIDAS. 

MIDAS inputs symbolic source statements from the 
processor Input device (PI) and outputs these statements 
on the processor output device (PO). When the END 
statement is encountered, MIDAS rewinds the PO file and 
commences pass two. During pass two, it inputs source 
statements from the system scratch device (SS) and 
produces an assembly listing on the list output device 
(LO), and object records on the Binary Output device (80). 

PO and SS devices not only must be the same physical 
device, but the same magnetic tape, drum or disc unit. If 
PI is assigned to a Rotating Memory Device (RMD) 
partition, MIDAS assumes the source records are blocked 
three 40-word records per RMD 120-word physical record. 
However, if PI is the same logical unit as the System Input 
Device (SI), and it is assigned to a RMD partition, MIDAS 
assumes the source records are not blocked but consist of 
one source record per RMD 120-word physical record. If 80 
is assigned to a RMD partition, the output is blocked two 
60-word object records per RMD 120-word physical reocrd. 
The assembler's table space may be expanded and 
consequently larger source programs assembled by use of 
the VORTEX /MEM directive. 

4.6.2 MOS Environment 

MIDAS is loaded from the system file by the system loader 
by means of the /ULOAD,MIDAS directive. 

It reads the source records from PI and outputs them to 
PO. Pass two source input is from SS. When the END 
statement is encountered on pass one, the SS file is 
repositioned and reread. During pass two, the output can 
be directed to 80 for the object module and to LO for the 
assembly listing. When an END statement is encountered 
on pass two, control is returned to MOS. Therefore, it is 
necessary to reload MIDAS with another /ULOAD directive 
if multiple assemblies are desired. 

4.6.3 Standalone Environment 

MIDAS is loaded by the 620 Standalone FORTRAN IV 
loader, along with the runtime l/0 and runtime utility. The 
description of this loading procedure and subsequent 
execution is described in the Varian 620 FORTRAN IV 
Reference Manual, where MIDAS is substituted for the DAS 
MR Assembler. Upon execution, MIDAS will input source 
records from logical unit 3 (PI), output source records for 
pass two to logical unit 9 (PO), input pass two source 
records from logical unit 8 (SS), output binary object 
records to logical unit 2 (80), and output assembly listing 
to logical unit 4 (LO). When the first assembly is 



completed, subsequent assemblies may be performed by 
restarting MIDAS at location 0541. 

4.7 ASSEMBLER INPUT AND OUTPUT 

The following section contains a description of the source 
records required for assembler input and the object 
records and listing produced by the assembler. 

Source Records 

The assembler input consists of a sequence of logical 
records containing 80 character positions. If a logical 
record contains more than 80 positions, only the first 80 
are input and the remainder are ignored. If a record 
contains less than 80 positions, blank characters are 
supplied by the assembler to fill 80 character positions. . 

Only the first 72 are considered in the assembly process. 
Character positions 73 through 80 may be used as 
desired. 

listing Format 

An assembly-listing page consists of 44 lines per page with 
each line containing no more than 120 characters. The 
lines per page count may be changed when running under 
an operating system. Each page contains the following: 

Page number and title line followed by a blank line 
Program listing containing two less than the current 
lines/page count 

At the end of an assembly a symbol table will be printed 
followed by a line containing the message "mmmm 
ERRORS ASSEMBLY COMPLETE" where mmmm is the 
accumulated error count expressed as a decimal number. 

The line format for the title line is a function of the 
environment in which MIDAS runs. The following descrip­
tion pertains to the standalone and MOS versions, with the 
comments in parentheses referring to VORTEX. Beginning 
with the first character position the format is illustrated 
below. 

Object Code Records 

MIDAS produces object code which is input for the 
microsimulator and the microutility programs. Logical 
records of the object code are a fixed length of 60 words. 
Word 1 is the record control word. Word 2 contains an 
exclusive OR checksum of word 1 and the remaining words 
of the record. Word 3 through 11 optionally contain a 
program identification block. Words 12 through the end of 
the record (or 3 through end of record if there is no 
program identification block) contain data fields. 

varian data machines ~­
MICROPROGRAM DATA ASSEMBLER, MIDAS 

Record Control Word Format 

The format of the record control word is as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
a b c 1 0 0 d d d d d d d d 

where a is 1 if the checksum is suppressed, b is 1 if not 
starting record, c is 1 when it is not the last record, and d 
is binary record number modulo 256. 

Program Identification Block 

This block appears in words 3 through 11 of the starting 
record of each program. Word 3 contains the highest value 
of the program counter during the assembly, words 4 
through 7 contain an eight-character ASCII program 
identification, and words 8 through 11 contain an eight­
character ASCII program creation date. 

Data Field Format 

Data fields contain either one- or four-word entries. One­
word entries are loader control words, and four-word 
entries consist of data words. 

The format of the loader control word is code in bits 13-15 
and an address/count in the low-order 13 bits. A code of 
zero instructs the loader to ignore this entry. One is the 
code for setting the loading location counter to the value 
contained in bits 0 through 12. A value of two indicates 
the following microinstructions should be k 3ded. The 
number of microinstructions minus one is spec1fied in bits 
1 through 12. 

Data Words 

Data words contain microinstructions. Each microinstruc­
tion is comprised of four 16-bit words. Word 1 contains bits 
63 through 48 of the microinstruction while word 4 
contains bits 15 through 0 of the microinstruction. A 
microinstruction will not be carried across a logical record 
boundary. If insufficient space remains on a logical record 
for the four-word microinstruction, the remaining space 
will be ignored and the microinstruction started on the 
next logical record. 

4.8 ADDING MIDAS TO VORTEX 

The micro assembler resides on the background library 
under VORTEX. After system generation, the user must 

4-9 

'---------·-----·-· -·-·---------·---- -·------·---·----·------------···-----·- . 



~ varian data machines 

MICROPROGRAM DATA ASSEMBLER, MIDAS 

catalog it in the background library. The following 
procedure is used to do this. 

1. Position the 81 device to the microassembler object 
material. 

2. Issue the following directives: 

ILMGEN 
TIDB,MIDAS,ONE,ZERO 
LD,BI 
LIB 
END,BL,E 

Detailed descriptions of these directives are in the VORTEX 
Reference Manual. 

4.9 ASSEMBLY ERROR MESSAGES 

During assembly the symbolic statements are checked for 
syntactic errors. In addition, a condition may occur where 
the assembler is unable to determine the correct meaning 
of the symbolic source statements. 

Either case is indicated as an error and up to eight error 
codes will be output beneath the source statement 
incorrectly constructed. 

NR, LC and 10 errors terminate the assembly. 

Each error code with the exception of 10 is followed by a 
space and two decimal digits indicating the character 
position the assembler was scanning when the error was 
detected. 

The error codes and their meanings are listed below. 

Error 
Code Meaning 

AD Address expression or associated fields in error 
(see below) 

CC Continuation not expected 

CE Numeric conversion error 

DD Illegal redefinition of a symbol 

ER Syntax error 

4-10 

EX An expression contained an illegal construction 

FN Field number inconsistent with format 

10 l/0 error 

LC Program location counter setting exceeds the 
maximum WCS page size (512 words) 

MF Duplicate field reference 

NR No memory available for addition of an entry to 
assembler's tables 

NS No symbol in the label field where required 

OP Operation field undefined 

SE Symbol in label field has a value during pass 2 that 
is different from the value determined in pass 1 

SY Undefined symbol. A value of zero is assumed 

SZ A value too large for the size of a field, or the fields 
defined in a format statement do not equal 64 bits 

The AD error may occur under these circumstances: 

a. With the character pointer in, or at the end of, an 
address expression: 

1. A test fail address is not on an even num­
bered word. 

2. A field select origin address is not on an 
even boundary. 

3. The displacement between the test pass and 
the test fa i I addresses is too great. 

b. With the character pointer at the end of the 
operand field: 

1. Normal addressing mode and the FS or MT 
or TF field is not equal to zero. 

2. Test addressing mode is used and the TF 

3. 
field is equal to zero. 
Field select addressing is the mode and the 
FS field is equal to zero. 

4. Test and field select addressing mode and 
either the FS or TF field equals to zero. 

5. Page-jump addressing mode and either the 
FS or TF field is not equal to zero. 



SECTION 5 

CODING FROM FLOW DIAGRAMS 

5.1 GENERAL 

This section details the conversion of flow diagrams, (as 
developed in section 3), into code which MIDAS accepts. 
As examples actual assembler listings of the sample 
microprograms discussed in section 3 are included. 

Flow diagram conversion is basically a matter of table· 
lookup. Tables are included in this section which list the 
standard mnemonics and the corresponding assembler 
code. 

Assembler code produced is given in two different formats. 
The first format produces code using only the predefined 
assembler opcodes for the GEN or GMSK statements. The 
second format is based around user-defined opcodes 
which follow the mnemonics developed thus far as closely 
as possible. As these are not predefined, some burden is 
placed on the user to include the necessary EQU directives 
(these EQUs are available from Varian as a software part). 
However, the resulting code is considerably more readable 
than that produced in the first format. 

varian data machines ~ 

Each column in the flow diagram will produce a single 
assembler program statement. This transformation can 
be performed as follows: 

1. Fill in the label field if necessary, this will often be from 
the I DENT section. 

2. Choose either GEN or GMSK as format label. The latter, 
GMSK, is used only when the 16-bit literal/mask is 
needed. 

3. Derive the appropriate address expression 

4. For each of the standard mnemonics in the column, 
add the statements shown in the conversion tables. 

5. Replace any nonstandard mnemonics with appropriate 
field value assignments. 

In addition to this translation, other assembler directives 
must be included to set the location of the program in 
WCS. In doing this, addressing considerations must be 
taken into account. For example, 1n test addressing the 
failure branch must always be to an even location. 

The following table (5-l) lists the standard mnemonics and 
the assembler code they produce. Following the table, the 
EQU statements which define the format II opcodes are 
listed in table 5·2. 

Table 5-l. Conversion Table 

Row Mnemonic 

IDENT None 

MEMORY None 
FUNCTION 

MEMORY: 
REQUEST, 
ADDRESS 

IF,OVR 
IF,ALU 
IF,P 
IF,MIR 
OF,OVR 
OF,ALU 
OF,P 
OF,MIR 
OS,OVR 
OS,ALU 
OS,P 
OS,MIR 
BS,OVR 
BS,ALU 
BS,P 
BS,MIR 

Unconditional 

Format I 

IMO 
IM4 
IM8 
IMC 
IMl 
IM5 
IM9 
IMD 
1M2 
IM6 
IMA 
IME 
1M3 
IM7 
1MB 
IMF 

SFl (or SF2,TFO) 

Format II 

10(1F$0VR) 
10(1F$ALU) 
10(1F$P) 
10(1F$MIR) 
10(0F$0VR) 
10(0F$ALU) 
10(0F$P) 
10(0F$MIR) 
10(0S$0VR) 
10(0S$ALU) 
10(0S$P) 
10(0S$MIR) 
10(8S$0VR) 
10(BS$ALU) 
10(8S$P) 
10(BS$MIR) 

6(MEMC)[or 
6(MEMC$,5(0)] 

(continued) 

5·1 



~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~ 

CODING FROM FLOW DIAGRAMS 

Table 5-l. Conversion Table (continued) 

Row Mnemonic Format I Format II 

TESTT SF3 6(TESTT) 

TESTF SF2 (and not TFO) 6(TESTF) 

WAIT,MEMDN SFO,IMl 6(SPEC), 1 O(WA I TM D) 

ALU Rn LAO,AAn 12(A$GPR),24(Rn) 

INPUT A Rn,SL LA2,AAn 12(A$GPRL),24(Rn) 

Rn,SR LA3,AAn 12(A$GPRR),24(Rn) 
p LAl 12(A$P) 

ZERO LAO,SHl 12(A$SPEC),22(AZERO) 

ONES LAO,SH2 12(A$SPEC),22(AONES) 

Note: 1) when using 
shifted general register 
user must specify high-
low bits through SH f1eld 

2) when using the GMS 
use 16(Rn) instead of 24(Rn) 
and AKn instead of AA 

ALU Rn L80,88n 11(8$GPR),23(Rn) 
INPUT 8 MIR L81,881 11(8$SPEC),23(MIR) 

lOR L81,882 11(8$SPEC),23(10R) 
STAT L81,883 11(8$SPEC),23(STAT) 
LIT,x L83,MKy ll(LIT),15(y) 
MSK,x L82,MKy ll(MSK),15(y) 

Note: y is the one's 
complement of x 

OPR L81,880 11(8$SPEC),23(0PR) 

ORSE L81,884 11(8$SPEC),23(0RSE) 
OLSE L81 ,885 11(8$SPEC),23(0LSE) 
ORZF L81,886 11(8$SPEC),23(0RZF) 
OLZF L81,887 11(8$SPEC),23(0LZF) 

ALU ZERO FF3,MF1 14(ZERO), 15(LOG) 
OUTPUT ONES FF3 14(0NES) 

TRNA FFF,MFl 14(TRNA), 15(LOG) 
TRN8 FFA,MFl 14(TRN8), 15(LOG) 
INCA CF3 14(1NCA), 16(CRY1) 
INC8 FF1,CF3 14(1NC8), 16(CRY1) 
DECA FFF 14(DECA) 
DEC8 FF9 14(DEC8) 
ADD FF9 14(ADD) 
SUB FF6,CF3 14(SUB), 16(CRY1) 
SHFA FFC 14(SHFA) 
AND FFB,MFl 14(AND),15(LOG) 
OR FFl 14(0R) 
EOR FF6,MF1 14(EOR),15(LOG) 
NOTA FFO,MFl 14(NOTA), 15(LOG) 
NOT8 FF5,MF1 14(NOT8), 15(LOG) 
TC8 FF2,CF3 14(TCB ), 16(CRY 1) 

Note: The mnemonics 
INC8 and TC8 require 
input A to be ZERO. 
Mnemonic DEC8 require 
input A to be ONES. 

(continued) 

5-2 



Row 

ALU 
DESTINATION 

STATUS 
SAMPLE 

STATUS 
TEST 

ADDRESSING: 
MODE, 
ADDRESS 

SPECIAL 
ACTIONS 

L ______ 

varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

Table 5-l. Conversion Table (continued) 

Mnemonic Format I Format II 

Rn WRl,AAn 17(GPROUT),24(Rn) 

SHFT VFl 19(S$SHFT) 

OVFL Refer to Table 2-7 

ALU TFO,SFO,GF2 TFO,SFO, 7(S$ALU) 

OVFL GFO 7(0VFL) 

IOSR GFl 7(10SR) 

SSW3 GF2 7(SSW3) 

SSW2 GF3 7(SSW2) 

SSW! GF4 7(SSW1) 

TFIR GF5 7(TFIR) 

ALUO GF6 7(ALUO) 

ALU5 GF7 7(ALU5) 

ALUC GF8 7(ALUC) 

ALUZ GF9 7(ALUZ) 

SHFT GFA 7(SHFT) 

MIRS GF8 7(MIRS) 

SFTC GFC 7(SFTC) 

GPRS GFD 7(GPRS) 

NORM GFE ?(NORM) 

QUOS GFF ?(QUOS) 

Note: TF field must 
also be set in test 
addressing. 

blank I,, I':' 

FSEL IF(base),FSx IF(base),FSx 

INT user supplied user supplied 

PJMP to n: 

1) using stack IN(word),TSn IP(word +page) 

2) without memory IN(word),TSn, IP(word +page), 
SFO,TFO 1 O(PJMP),SFO,TFO 

3) with memory IN(word),GF4, IP(word +page), 

SF2,TFO 7(P JMP$),6(MEMC$),TFO 

POPJMP TFO,SFO,IMD, 10(STACK),24(POPJMP), 
L83,AA4,880 L83, TFO,SFO, 880 

DECODE 
1) with 18R to I TFO,SFO,GF5 5(0),6(0), 7(DECOD$) 
2) without 18R to I TFO,SFO,GF4 5(0),6(0), ?(DECODE) 

TESTT IT(pass,fail), IT(pass,faii),5(TT) 
TF2 

TESTF IT( pass, fail), IT(pass, fa il),5( FT) 
TF3 

POUT RFl 13(POUT) 
SCOUT RF2 13(SCOUT) 
OPROUT RF3 13(0PROUT) 
INCP RF4 13(1NCP) 
INCSC RF5 13(1NCSC) 
INCP,OPROUT RF7 RF7 

(continued) 

5-3 
-··---M-·-- ----~----·---------·------•-•• 



~varian data machines~~~~~~~~~~~~~~~~~~~~~~~ 

CODING FROM FLOW DIAGRAMS 

Row 

ADD EQU 
ALUC EQU 
ALUO EQU 
ALUS EQU 
ALUZ EQU 
AND EQU 
AONES EQU 
AZERO EQU 
A$GPR EQU 
A$GPRL EQU 
A$GPRR EQU 
A$P EQU 
A$ SPEC EQU 

BS$ALU EQU 
BS$MIR EQU 
BS$0VR EQU 
BS$P EQU 
B$GPR EQU 
B$SPEC EQU 

CRY1 EQU 

DECA EQU 
DECB EQU 
DECODE EQU 
DECOD$ EQU 

EOR EQU 

FT EQU 

5-4 

Table 5-l. Conversion Table (continued) 

Mnemonic 

SHFTOP,LFT 
SHFTOP,RGHT 

IBR to I 
with decode 
without decode 

PUSH,x 

POPDEL 

Format I 

SCl,WFO 
SCl,WFl 

TFO,SFO,GF5 
TFO,SFO,GFl 

TFO,SFO,IMD, 
LB3,AK2,MKx 

TFO,SFO,IMD, 
8Bl,AA4,LB3 

Format II 

18(SHFTOP),20(LFT) 
18(SHFTOP),21(RGHT) 

Note: on shifting OPR 
XF and AA fields used 
to determine high/low 
bits. 

TFO,SF0,7(DECOD$) 
TFO,SF0,7(1BR$1) 

lO(STACK), 16(PUSH), 
15(x), LB3, TFO,SFO 

10(STACK),23(POPDEL), 
LB3, TFO,SFO,AA4 

Table 5·2 is the assembler directives needed for the user 
defined opcodes of format II. These are available on 
request as released software parts. 

Table 5-2. User-Defined Opcodes 

9 GPROUT EQU 
8 GPRS EQU X'D 
6 
7 IBR$1 EQU 
9 IF$ALU EQU 4 
X'B IF$MIR EQU X'C 
2 IF$0VR EQU 0 

IF$P EQU 8 
0 INCA EQU 0 
2 INCB EQU 
3 INCP EQU 4 

INCSC EQU 5 
0 lOR EQU 2 

IOSR EQU 
7 
X'F LFT EQU 0 
3 LIT EQU 3 
X'B LOG EQU 
0 

MEMC$ EQU 2 
MEMC EQU 

3 MIR EQU 
MIRS EQU X'B 

X'F MSK EQU 2 
9 
4 NORM EQU X'E 
5 NOTA EQU 0 

NOTB EQU 5 
6 

OF$ALU EQU 5 
3 OF$MIR EQU X'D 

(continued) 



Table 5-2. User-Defined Opcodes (continued) 

OF$0VR EQU 1 
OFSP EQU 9 
OLZF EQU 7 
OLSE EQU 5 
ONES EQU 3 
OPR EQU 0 
OPROUT EQU 3 
OR EQU 1 
ORSE EQU 4 
ORZF EQU 6 
OSSALU EQU 6 
OS$MIR EQU X'E 
OS$0VR EQU 2 
OSSP EQU X'A 
OVFL EQU 0 

PJMPS EQU 4 
PJMP EQU 3 
POPDEL EQU 1 
POPJMP EQU 4 
POUT EQU 
PUSH EQU 2 

QUOS EQU X'F 

RO EQU 0 
R1 EQU 1 
R2 EQU 2 
R3 EQU 3 
R4 EQU 4 
R5 EQU 5 
R6 EQU 6 
R7 EQU 7 
R8 EQU 8 
R9 EQU 9 
RA EQU X'A 
RB EQU X'B 
RC EQU X'C 
RD EQU X'D 
RE EQU X'E 

(continued) 

varian data machines ~ 
·CODING FROM FLOW DIAGRAMS 

RF EQU X'F 
RGHT EQU 

SCOUT EQU 2 
SFTC EQU X'C 
SHFA EQU X'C 
SHFT EQU X' A 
SHFTOP EQU 
SPEC EQU 0 

SSW1 EQU 4 
SSW2 EQU 3 
SSW3 EQU 2 
STACK EQU X'D 
STAT EQU 3 
SUB EQU 6 
S$ALU EQU 2 
S$SHFT EQU 

TCB EQU 2 
TESTT EQU 3 
TESTF EQU 2 
TFIR EQU 5 
TRNA EQU X'F 
TRNB EQU X'A 
TT EQU 2 

WAITMD EQU 

ZERO EQU 3 

5.2 EXAMPLES OF MICROPROGRAMS IN 
ASSEMBLY LANGUAGE 

The five examples of section 3 were coded using the 
techniques outlined in this section. Comments on the 
encoding and actual assembler listings follow. 

The first three examples use the equates in table 5-2. 

5-5 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

5·6 

5.2.1 BCS Entry Point Initialization 

Since physical addresses were assigned at the flow diagram 
level, the transformation was quite straightforward. Note 
that a standard deck of all the EQU statements was used 
though not all were needed. 

0009 
0008 
0006 
0007 
0009 
OOOB 
0002 
0001 
0000 
0002 
0003 
0001 
0000 
0007 
OOOF 
0003 
OOOB 
0000 
0001 
0003 
OOOF 
0009 
0004 
0005 
0006 
0003 
0001 
OOOD 
0001 
0004 
oooc 
0000 
0008 
0000 
0001 
0004 

0005 
0002 
0001 
0006 
0000 
0003 
0001 
0001 
0002 
0001 
OOOB 
0002 
OOOE 
0000 
0005 
0005 
OOOD 
0001 
0009 
0007 
0005 
0003 
0000 
0003 
0001 
0004 
0006 
0006 
OOOE 
0002 

1 * 
2 * 
3 THIS IS INITIALIZATION FOR BCS ENTRY POINTS 
4 
5 * 

7 
8 
9 

* 
* THE FOLLOWING ARE SUPPLEMENTAL OPCODES 

FOR USE WITH THE MICRO ASSEMBLER 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 
43 
44 
45 
46 
47 

ADD 
ALUC 
ALUO 
ALUS 
ALUZ 
AND 
AONE 
A ZERO 
ASGPR 
ASGPRL 
A$GPRR 
ASP 
AS SPEC 
BSSALU 
BSSMIR 
BSSOVR 
BSSP 
BSGPR 
B$SPEC 
CRY1 
DECA 
DECB 
DECODE 
DECODS 
EOR 
FT 
GPROUT 
GPRS 
IBRSI 
IFSALU 
IFSMIR 
IF$0VR 
IFSP 
INCA 
!NCB 
INCP 

EQU 9 
EQU 8 
EQU 6 
EQU 7 
EQU 9 
EQU X'B 
EQU 2 
EQU 1 
EQU 0 
EQU 2 
EQU 3 
EQU 1 
EQU 0 
EQU 7 
EQU X'F 
EQU 3 
EQU X'B 
EQU 0 
EQU 1 
EQU 3 
EQU X'F 
EQU 9 
EQU 4 
EQU 5 
EQU 6 
EQU 3 
EQU 1 
EQU X'D 
EQU 1 
EQU 4 
EQU X' C 
EQU 0 
EQU 8 
EQU 0 
EQU 1 
EQU 4 

48 INCSC EQU 
49 IOR EQU 
50 IOSR EQU 
51 KOUT EQU 

5 
2 
1 
6 

52 LFT EQU 
53 LIT EQU 
54 LOG EQU 
55 MEMC EQU 
56 MEMCS EQU 
57 MIR EQU 
58 MIRS EQU 
59 MSK EQU 
60 NORM EQU 
61 NOTA EQU 
62 NOTB EQU 
63 OFSALU EQU 
64 OFSMIR EQU 
65 OFSOVR EQU 
66 OFSP EQU 
67 OLZF EQU 
68 OLSE EQU 
69 ONES EQU 
70 OPR EQU 
71 OPROUT EQU 
72 OR EQU 
73 ORSE EQU 
74 ORZF EQU 
75 OSSALU EQU 
76 OS$MIR EQU 
77 OSSOVR EQU 

0 
3 
1 
1 
2 
1 
X'B 
2 
X'E 
0 
5 
5 
X'D 
1 
9 
7 
5 
3 
0 
3 
1 
4 
6 
6 
X'E 
2 

(continued) 



OOOA 78 OSSP 
0000 79 OVFL 
0003 80 PJMP 
0004 81 PJMPS 
0001 82 POUT 
OOOF 83 QUOS 
0000 84 RO 
0001 85 R1 
0002 86 R2 
0003 87 R3 
0004 88 R4 
0005 89 R5 

0006 90 R6 
0007 91 R7 
0008 92 R8 
0009 93 R9 
OOOA 94 RA 
OOOB 95 RB 
oooc 96 RC 
OOOD 97 RD 
OOOE 98 RE 
OOOF 99 RF 
0001 100 RGHT 
0002 101 SCOUT 
oooc 102 SFTC 
oooc 103 SHFA 
OOOA 104 SHFT 
0001 105 SHFTOP 
0000 106 SPEC 
0004 107 SSW1 
0003 108 SSW2 
0002 109 SSW3 
0003 110 STAT 
0006 111 SUB 
0002 112 S$ALU 
0006 113 SSOVFL 
0001 114 SSSHFT 
0002 115 TCB 
0003 116 TESTT 
0002 117 TESTF 
0005 118 TFIR 
OOOF 119 TRNA 
OOOA 120 TRNB 
0002 121 TT 
0001 122 WAITMD 
0003 123 ZERO 

125 • 
126 • 
127 • 

013E 128 SS1M 
0092 129 SS2M 
002D 1 3 0 SS3M 

0000 132 

0000 0490000180000000 13 4 
0001 0490000180000000 13 5 
0002 0490000180000000 136 
0003 0490000180000000 13 7 
0004 0490000180000000 138 
0005 0490000180000000 139 
0006 0490000180000000 140 
0007 0490000180000000 141 
0008 0490000180000000 142 
0009 0490000180000000 143 
OOOA 0490000180000000 144 
OOOB 0490000180000000 145 
oooc 0490000180000000 146 
OOOD 0490000180000000 14 7 
OOOE 0490000180000000 148 
OOOF 0490000180000000 149 
0010 0490000180000000 1 50 
0011 0490000180000000 151 
0012 0490000180000000 152 
0013 0490000180000000 153 
0014 0490000180000000 154 
0015 0490000180000000 155 
0016 0490000180000000 156 
0017 0490000180000000 157 
0018 0490000180000000 15 8 
0019 0490000180000000 159 
00 1A 0490000180000000 160 
001B 0490000180000000 161 
001C 0490000180000000 162 
001D 0490000180000000 163 

-------~~~·---~, ••·-~·~·--V~"·--- .. ----.~··----· 

.,__ ....... =-.. .. - ... "'""''""·'"--"'--" 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

X' A 
0 
3 
4 
1 
X'F 
0 
1 
2 

6 
7 
8 
9 
X'A 
X'B 
X'C 
X'D 
X'E 
X'F 
1 
2 
X'C 
X'C 
X'A 
1 
0 
4 
3 
2 
3 
6 
2 
6 
1 
2 
3 
2 
5 
X'F 
X'A 
2 
1 
3 

varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

FOLLOWING AJ<E ROM STANDARD STATE ADDRESSES 

EQU X' 13E RESTART PIPELINE @ p 

EQU x'092 MAINTAIN PIPELINE 
EQU X'02D DECODE NEXT INSTRUCTION (IN IBR) 

ORG 

GEN /N(SS2M), 10(PJMP) ,1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP) ,1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM 
GEN /N ( SS2M) , 10 ( PJMP) , 1 ( 0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP) ,1(0) RETURN TO ROM 
GEN /N(SS2Ml, 10(PJMP), 1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP) ,1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM 
GEN /N ( SS2M) , 10 ( PJMP) , 1 ( 0) RETURN TO ROM 
GEN /N( SS2M), 10 ( PJMP), 1 ( 0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N ( SS2M) , 10 ( PJMP l , 1 ( 0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM 
GEN /N ( S S 2M) , 1 0 ( PJMP) , 1 ( 0) RETURN TO ROM 
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP), 1(0) RETURN TO ROM 
GEN /N(SS2Ml, 10(PJMP), 1(0) RETURN TO ROM 
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM 

(continued) 

5-7 
~- ·------·-v-••·-••~-·---- ~----·---·- -~----·-------



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

001E 0490000180000000 164 
001F 0490000180000000 165 

167 
SYMBOLS 
0000 A$GPR 0002 A$GPRL 0003 
0009 ADD 0008 ALUC 0006 
OOOB AND 0002 AONE 0001 
0007 BS$ALU OOOF BS$MIR 0003 
OOOF DECA 0009 DECB 0005 
0003 FT 0001 GPROUT OOOD 
OOOC IF$MIR 0000 IF$0VR 0008 
0004 INCP 0005 INCSC 0002 
0000 LFT 0003 LIT 0001 
0001 MIR OOOB MIRS 0002 
0005 NOTB 0005 OF$ALU OOOD 
0005 OLSE 0007 OLZF 0003 
0001 OR 0004 ORSE 0006 
0002 OS$0VR OOOA OS$P 0000 
0001 POUT OOOF QUOS 0000 
0003 R3 0004 R4 0005 
0008 R8 0009 R9 OOOA 
OOOD RD OOOE RE OOOF 
0006 S$0VFL 0001 S$SHFT 0002 
OOOA SHFT 0001 SHFTOP 0000 
002D SSJM 0004 SSW1 0003 
0006 SUB 0002 TCB 0002 
OOOF TRNA OOOA TRNB 0002 

0 ERRORS ASSEMBLY COMPLETE 

5-8 

GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM 
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM 

END 

A$GPRR 0001 ASP 0000 A$SPEC 
ALUO 0007 ALUS 0009 ALUZ 
A ZERO 0000 B$GPR 0001 B$SPEC 
BS$0VR OOOB BS$P 0003 CRY1 
DECOD$ 0004 DECODE 0006 EOR 
GPRS 0001 IBR$I 0004 IF$ALU 
IF$P 0000 INCA 0001 INCB 
IOR 0001 IOSR 0006 KOUT 
LOG 0001 MEMC 0002 MEMC$ 
MSK OOOE NORM 0000 NOTA 
OF$MIR 0001 OF$0VR 0009 OF$P 
ONES 0000 OPR 0003 OPROUT 
ORZF 0006 OS$ALU OOOE OS$MIR 
OVFL 0003 PJMP 0004 PJMP$ 
RO 0001 R1 0002 R2 
R5 0006 R6 0007 R7 
RA OOOB RB oooc RC 
RF 0001 RGHT 0002 S$ALU 
SCOUT oooc SFTC oooc SHFA 
SPEC 013E SS1M 0092 SS2M 
SSW2 0002 SSWJ 0003 STAT 
TESTF 0003 TESTT 0005 TFIR 
TT 0001 WAITMD 0003 ZERO 



varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

5.2.2 Memory-to-Memory Block Move 

The subroutine was assigned physical location 101, page 1 
as its first address. This places word MBMA on an even 
word, as it must be. Since the microroutine is on page 1, 
the need for the page jump from the BCS entry point no 
longer exists. It was included never the less. 

0001 

0009 
0008 
0006 
0007 
0009 
OOOB 
0002 
0001 
0000 
0002 
0003 
0001 
0000 
0007 
OOOF 
0003 
OOOB 
0000 
0001 
0003 
OOOF 
0009 
0004 
0005 
0006 
0003 
0001 
OOOD 
0001 
0004 
oooc 
0000 
0008 
0000 
0001 

0004 
0005 
0002 
0001 
0006 
0000 
0003 
0001 
0001 
0002 
0001 
OOOB 
0002 
OOOE 
0000 
0005 
0005 
OOOD 
0001 
0009 
0007 

2 
3 • 
4 • 
5 • 
6 • 
7 • 

MEMORY-TO-MEMORY BLOCK MOVE 

CALL: BCS TO WORD 0 

PARAMETERS: A REG - 'TO' ADDRESS 
8 * 
9 

10 * 
11 • 

R1 

* 
EQU 

B REG - 'FROM' ADDRESS 
X REG - BLOCK LENGTH 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

• 
* 

THE FOLLOWING ARE SUPPLEMENTAL OPCODES 
FOR USE WITH THE MICRO ASSEMBLER 

• 
• 
ADD 
ALUC 
ALUO 
ALUS 
ALUZ 
AND 
AONE 
AZERO 
ASGPR 
A$GPRL 
ASGPRR 
ASP 
AS SPEC 
BSSALU 
BSSMIR 
BS$0VR 
BSSP 
BSGPR 
BSSPEC 
CRY1 
DECA 
DECB 
DECODE 
DECODS 
EOR 
FT 
GPROUT 
GPRS 
IBRSI 
IFSALU 
IF$MIR 
IFSOVR 
IFSP 
INCA 
!NCB 

EQU 9 
EQU 8 
EQU 6 
EQU 7 
EQU 9 
EQU X'B 
EQU 2 
EQU 1 
EQU 0 
EQU 2 
EQU 3 
EQU 1 
EQU 0 
EQU 7 
EQU X'F 
EQU 3 
EQU X'B 
EQU 0 
EQU 1 
EQU 3 
EQU X'F 
EQU 9 
EQU 4 
EQU 5 
EQU 6 
EQU 3 
EQU 1 
EQU X'D 
EQU 1 
EQU 4 
EQU X'C 
EQU 0 
EQU 8 
EQU 0 
EQU 

54 INCP EQU 
55 INCSC EQU 
56 !OR EQU 
57 IOSR EQU 
58 KOUT EQU 

4 
5 
2 
1 
6 

59 LFT EQU 
60 LIT EQU 
61 LOG EQU 
62 MEMC EQU 
63 MEMCS EQU 
64 MIR EQU 
65 MIRS EQU 
66 MSK EQU 
67 NORM EQU 
68 NOTA EQU 
69 NOTB EQU 
70 OF$ALU EQU 
71 OF$MIR EQU 
72 OFSOVR EQU 
73 OF$P EQU 
74 OLZF EQU 

0 
3 
1 
1 
2 
1 
X'B 
2 
X'E 
0 
5 
5 
X'D 
1 
9 
7 

(continued) 

5·9 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

5-10 

0000 

0005 75 
0003 76 
0000 77 
0003 78 
0001 79 
0004 80 
0006 81 
0006 82 
OOOE 83 
0002 84 
OOOA 85 
0000 86 
0003 87 
0004 88 
0001 89 
OOOF 90 
0000 91 
0002 92 
0003 93 
0004 94 
0005 95 
0006 96 
0007 97 
0008 98 
0009 99 
OOOA 100 
OOOB 101 
oooc 102 
OOOD 103 
OOOE 104 
OOOF 105 
0001 106 
0002 107 
oooc 108 
oooc 109 
OOOA 110 
0001 111 
0000 112 
0004 113 
0003 114 
0002 115 
0003 116 
0006 117 
0002 118 
0006 119 
0001 120 
0002 121 
0003 122 
0002 123 
0005 124 
OOOF 125 
OOOA 126 
0002 127 
0001 128 
0003 129 

13 1 
132 
1 3 3 

013E 134 
0092 135 
002D 136 

138 

14 0 
141 

OLSE EQU 
ONES EQU 
OPR EQU 
OPROUT EQU 
OR EQU 
ORSE EQU 
ORZF EQU 
OS$ALU EQU 
OSSMIR EQU 
OS$0VR EQU 
OS$P EQU 
OVFL EQU 
PJMP EQU 
PJMP$ EQU 
POUT EQU 
QUOS EQU 
RO EQU 
R2 EQU 
R3 EQU 
R4 EQU 
R5 EQU 
R6 EQU 
R7 EQU 
R8 EQU 
R9 EQU 
RA EQU 
RB EQU 
RC EQU 
RD EQU 
RE EQU 
RF EQU 
RGHT EQU 
SCOUT EQU 
SFTC EQU 
SHFA EQU 
SHFT EQU 
SHFTOP EQU 
SPEC EQU 
SSW1 EQU 
SSW2 EQU 
SSW3 EQU 
STAT EQU 
SUB EQU 
S$ALU EQU 
S$0VFL EQU 
S$SHFT EQU 
TCB EQU 
TESTT EQU 
TESTF EQU 
TFIR EQU 
TRNA EQU 
TRNB EQU 
TT EQU 
WAITMD EQU 
ZERO EQU 

5 
3 
0 
3 
1 
4 
6 
6 
X'E 
2 
X'A 
0 
3 
4 
1 
X'F 
0 
2 
3 
4 
5 
6 
7 
8 
9 
X'A 
X'B 
X'C 
X'D 
X'E 
X'F 
1 
2 
x'c 
X'C 
X'A 
1 
0 
4 
3 
2 
3 
6 
2 
6 
1 
2 
3 
2 
5 
X'F 
X'A 
2 
1 
3 

* FOLLOWING ARE ROM STANDARD STATE ADDRESSES 
* 
SS1M 
SS2M 
SS3H 

EQU 
EQU 
EQU 

ORG 

X I 13E 
X'092 
X I 02D 

0 

RESTART PIPELINE @ P 
MAINTAIN PIPELINE 
DECODE NEXT INSTRUCTION (IN IBR) 

FOLLOWING IS BCS ENTRY POINT 

0000 1808000180000000 143 GEN IN ( MBM) , 1 0 ( PJHP) , 1 ( 1 ) BRANCH TO BLOCK MOVE ROUTINE 

0101 

14 5 
146 
14 7 

149 

151 
152 * 

0101 0810000008F90007 154 HBH 

156 
15 7 

0102 OB18000000F10000 159 

161 * 
162 * 

FOLLOWING IS ACTUAL BLOCK HOVE ROUTINE 

ORG X' 101 

SAVE P IN R7 

GEN 1•, 12(A$P), 14(TRNA), 15(LOG), 17(GPROUT) ,24(R7) 

DECR 'TO' ADDR 

GEN 1•, 12(A$GPR) ,24(R0), 14(DECA), 17(GPROUT) 

DECR 'FROM' ADDR ; PUT IT IN P 

(continued) 



varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

0103 0820000001F00001 164 GEN 1•,12(A$GPR),24(R1),14(DECA),13(POUT) 

166 • 
167 * FIRST LOOP MICROWORD; STORE AT 'TO'; REQUEST FETCH OF !NCR 'FROM' 

169 MBMA GEN I•, 10 ( OFSP), 6 ( MEMC), 11 ( BSSPEC), 23 ( MIR), 14 ( TRNB), 15 (LOG), 
C13(INCP) 0104 08280404A4A80010 17 0 

17 2 • 
17 3 * SECOND LOOP MICROWORD; DECR BLOCK LENGTH; SAMPLE RESULT FOR TEST 

0105 0830008000F10002 17 5 GEN /•,12(A$GPR) ,24(R2), 14(DECA), 17(GPROUT),7(S$ALU) 

17 7 • 
17 8 FINAL LOOP MICROWORD; EXIT OR CONTINUE THE LOOP WITH REQUEST 

17 9 * FOR A STORE AT INCREMENTED 'TO' ADDR 

181 GEN /T(MBMB,MBMA) ,5(TT),10(0S$ALU),6(TESTF), 
0106 2B3829C300070000 182 C 12 ( ASGPR), 24 ( RO), 14 (INCA), 16 (CRY 1), 17 ( GPROUT), 7 ( ALUS) 

184 * 
185 EXIT MICROWORD ; RESTORE P AND THE PIPELINE 

187 MBMB GEN /N(SS3M), 7(PJMP$), 1(0), 10(IF$ALU) ,6(MEMC$) ,5(0), 
C 12 ( ASGPR) , 2 4 ( R 7) , 1 4 (INCA) , 1 6 (CRY 1 l , 1 3 (POUT l 0107 0168090201060007 188 

190 END 

SYMBOLS 
0000 A$GPR 0002 ASGPRL 0003 ASGPRR 0001 ASP 0000 A$ SPEC 
0009 ADD 0008 ALUC 0006 ALUO 0007 ALUS 0009 ALUZ 
OOOB AND 0002 AONE 0001 A ZERO 0000 B$GPR 0001 B$SPEC 
0007 BSSALU OOOF BSSMIR 0003 BS$0VR OOOB BSSP 0003 CRY1 
OOOF DECA 0009 DECB 0005 DECOD$ 0004 DECODE 0006 EOR 
0003 FT 0001 GPROUT OOOD GPRS 0001 IBR$! 000~ IFSALU 
oooc IFSMIR 0000 IFSOVR 0008 IFSP 0000 INCA 0001 !NCB 
0004 INCP 0005 INCSC 0002 IOR 0001 IOSR 0006 KOUT 
0000 LFT 0003 LIT 0001 LOG 0101 MBM 0104 MBMA 
0107 MBMB 0001 MEMC 0002 MEMC$ 0001 MIR OOOB MIRS 
0002 MSK OOOE NORM 0000 NOTA 0005 NOTB 0005 OF$ALU 
DODD OFSMIR 0001 OFSOVR 0009 OFSP 0005 OLSE 0007 OLZF 
0003 ONES 0000 OPR 0003 OPROUT 0001 OR 0004 ORSE 
0006 ORZF 0006 OSSALU OOOE OS$MIR 0002 OS$OVR OOOA OS$P 
0000 OVFL 0003 PJMP 0004 PJMP$ 0001 POUT OOOF QUOS 
0000 RO 0001 R1 0002 R2 0003 R3 0004 R4 
0005 R~i 0006 R6 0007 R7 0008 R8 0009 R9 
OOOA RA OOOB RB oooc RC OOOD RD OOOE RE 
OOOF RF 0001 RGHT 0002 SSALU 0006 S$0VFL 0001 S$SHFT 
0002 SCOUT oooc SFTC oooc SHFA OOOA SHFT 0001 SHFTOP 
0000 SPEC 013E SS1M 0092 SS2M 002D SS3M 0004 SSW1 
0003 SSW2 0002 SSW) 0003 STAT 0006 SUB 0002 TCB 
0002 TESTF 0003 TESTT 0005 TFIR OOOF TRNA OOOA TRNB 
0002 TT 0001 WAITMD 0003 ZERO 

0 ERRORS ASSEMBLY COMPLETE 

5-11 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

5-12 

0009 
0008 
0006 
0007 
0009 
OOOB 
0002 
0001 
0000 
0002 
0003 
0001 
0000 
0007 
OOOF 
0003 
OOOB 
0000 
0001 
0003 
OOOF 
0009 
0004 
0005 
0006 
0003 
0001 
OOOD 
0001 
0004 
oooc 
0000 
0008 
0000 
0001 
0004 

0005 
0002 
0001 
0006 
0000 
0003 
0001 
0001 
0002 
0001 
OOOB 
0002 
OOOE 
0000 
0005 
0005 
OOOD 
0001 
0009 
0007 
0005 
0003 

5.2.3 Reentrant Subroutine Call and Return 

These routines were assigned locations beginning at word 
110, page 1. As with the previous example, the page jumps 
are no longer necessary since the routines are on the same 
page as their BCS entry points. In this case they were 
simply coded using normal addressing. 

1 * 
2 * 
3 * 
4 * 

REENTRANT SUBROUTINE CALL AND RETURN 

5 * 
6 * 
7 * 
8 * 
9 

CALL: FOR SUBROUTINE CALL : BCS TO WORD 1 
FOR SUBROUTINE RETURN: BCS TO WORD 2 

PARAMETERS: B REGISTER - STACK POINTER 

10 * 

* 12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

* 
* 

THE FOLLOWING ARE SUPPLEMENTAL OPCODES 
FOR USE WITH THE MICRO ASSEMBLER 

* 
* 
ADD 
ALUC 
ALUO 
ALUS 
ALUZ 
AND 
AONE 
AZERO 
ASGPR 
A$GPRL 
ASGPRR 
ASP 
A$ SPEC 
BSSALU 
BS$MIR 
BSSOVR 
BS$P 
B$GPR 
B$SPEC 
CRY1 
DECA 
DECB 
DECODE 
DECOD$ 
EOR 
FT 
GPROUT 
GPRS 
IBRSI 
IF$ALU 
IFSMIR 
IF$0VR 
IFSP 
INCA 
!NCB 
INCP 

EQU '9 
EQU 8 
EQU 6 
EQU 7 
EQU 9 
EQU X I B 
EQU 2 
EQU 1 
EQU 0 
EQU 2 
EQU 3 
EQU 1 
EQU 0 
EQU 7 
EQU X'F 
EQU 3 
EQU X'B 
EQU 0 
EQU 1 
EQU 3 
EQU X'F 
EQU 9 
EQU 4 
EQU 5 
EQU 6 
EQU 3 
EQU 1 
EQU X'D 
EQU 1 
EQU 4 
EQU X'C 
EQU 0 
EQU 8 
EQU 0 
EQU 1 
EQU 4 

53 INCSC EQU 
54 lOR EQU 
55 IOSR EQU 
56 KOUT EQU 6 
57 LFT EQU 
58 LIT EQU 
59 LOG EQU 
60 MEMC EQU 
61 MEMC$ EQU 
62 MIR EQU 
63 MIRS EQU 
64 MSK EQU 
65 NORM EQU 
66 NOTA EQU 
67 NOTB EQU 
68 OF$ALU EQU 
69 OF$MIR EQU 
70 OFSOVR EQU 
71 OFSP EQU 
72 OLZF EQU 
73 OLSE EQU 
74 ONES EQU 

0 
3 
1 
1 
2 
1 
X'B 
2 
X'E 
0 
5 
5 
X'D 
1 
9 
7 
5 
3 

(continued) 



DDDD 75 
DD03 76 
DDD1 77 
0004 78 
OOD6 79 
OOD6 8D 
DDDE 81 
DOD2 82 
OOOA 83 
DODO 84 
0003 85 
DDD4 86 
D001 87 
DDDF 88 
0000 89 
DDD1 9D 
DDD2 91 
OD03 92 
DDD4 93 
DD05 94 

0006 95 
0007 96 
DDD8 97 
0009 98 
OODA 99 
DDDB 1 DO 
DDDC 1 D 1 
DODD 102 
DDDE 1 D 3 
DDDF 10 4 
0001 10 5 
ODD2 1D6 
DDDC 1D7 
DDOC 108 
DOOA 109 
ODD1 11 D 
OOOD 111 
0004 112 
DDD3 11 3 
DDD2 114 
DD03 115 
0006 116 
0002 1 1 7 
OD06 118 
0001 119 
OD02 120 
0003 121 
0002 122 
0005 123 
OOOF 12 4 
OOOA 125 
0002 126 
ODD1 127 
D003 128 

1 3 0 
1 3 1 
13 2 

D13E 1 3 3 
0092 1 3 4 
002D 1 3 5 

1 3 7 
13 8 
13 9 

0001 14 1 

14 3 
14 4 

14 6 
0001 OBB0040300F10001 1 4 7 

14 9 
15 D 
1 51 

0110 1 53 

15 5 
15 6 

0110 0888000080F80002 15 8 

OPR 
OPROUT 
OR 
ORSE 
ORZF 
OS$ALU 
OS$MIR 
OS$0VR 
OS$P 
OVFL 
PJMP 
PJMP$ 
POUT 
QUOS 
RO 
R1 
R2 
R3 
R4 
R5 

R6 
R7 
R8 
R9 
RA 
RB 
RC 
RD 
RE 
RF 
RGHT 
SCOUT 
SFTC 
SHFA 
SHFT 
SHFTOP 
SPEC 
SSW1 
SSW2 
SSW3 
STAT 
SUB 
S$ALU 
S$0VFL 
S$SHFT 
TCB 
TESTT 
TESTF 
TFIR 
TRNA 
TRNB 
TT 
WAITMD 
ZERO 

SS1M 
SS2M 
SS3M 

LAB1 

varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

6 
6 
X'E 
2 
X'A 
0 
3 
4 
1 
X'F 

7 
8 
9 
X'A 
X'B 
X'C 
X'D 
x:E 
X'F 
1 
2 
X'C 
X'C 
X'A 
1 
0 
4 
3 
2 
3 
6 
2 
6 
1 
2 
3 
2 
5 
X'F 
X'A 
2 
1 
3 

FOLLOWING ARE R0M STANDARD STATE ADDRESSES 

EQU 
EQU 
EQU 

X' 13E 
X'092 
X' 02D 

RESTART PIPELINE @ P 
MAINTAIN PIPELINE 
DECODE NEXT INSTRUCTION (IN IBR) 

FOLLOWING IS CODE FOR SUBROUTINE CALL 

ORG 

BCS ENTRY POINT PUSHES OLD R2 ON STACK 

GEN /N(LAB1), 1D(OS$ALU),6(MEMC) ,12(A$GPR),24(R1),14(DECA), 
C17(GPROUT) 

REST OF ROUTINE 

ORG X' 110 

WAIT ON STORE OF R2 

GEN /•,6(SPEC), 10(WAITMD) ,12(A$GPR) ,24(R2) ,14(TRNA) ,15(LOG) 

(continued) 

5-13 
------------------------------------------------------..J 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

160 * 
161 * 

163 
0111 0890040608070002 164 

166 * 
167 * 
169 
170 

0112 0168090221160110 171 

173 
174 
175 

0002 177 

179 
180 

182 
0002 08A8040201F80002 183 

185 
186 
187 

0115 189 

191 
192 

* 
* 
* 

* 
* 

* 
* 
* 

* 
* 

FETCH FIRST INSTRUCTION OF SUBR ; STORE INCR P IN R2 

GEN 1•, 10( IFSMIR) ,6(MEMC), 12(A$P), 14( INCA), 16(CRY1), 
C17(GPROUT),24(R2) 

FETCH SECOND INST OF SUBR; SET NEW P; BACK TO ROM 

GEN /N(SS3Ml, 7(PJMP$), 1 (0), 10(IFSALU) ,6(MEMC$) ,5(0), 
C12(ASSPECl,22(AZEROl, 
C11 (BSSPEC) ,23(MIR), 14( INCB), 16(CRY1), 13(POUT) 

FOLLOWING IS CODE FOR SUBROUTINE RETURN 

ORG 2 

BCS ENTRY POINT - BEGINS FETCH OF INST AT RETURN ADDRESS 

GEN /N(LAB2), 10(IF$ALU),6(MEMC),12(A$GPR),24(R2), 
C14(TRNA),15(LOG),13(POUT) 

REST OF THE ROUTINE 

ORG :X' 115 

FETCH OLD R2 VALUE FROM STACK 

0115 08B0040280F80001 194 LAB2 GEN /•,10(0F$ALU) ,6(MEMC),12(A$GPR),24(R1),14(TRNA),15(LOG) 

196 * 197 * FETCH SECOND INSTRUCTION AT RETURN ADDRESS ; INCR STK PTR 

199 GEN I•, 10 ( IFSP l , 6 ( MEMC l , 12 ( ASGPR l , 24 ( R 1) , 14 (INCA l , 16 (CRY 1) , 
0116 08B8040404070001 200 C17(GPROUT),13(INCP) 

202 * 203 * RESTORE R2 ; BACK TO ROM 

205 GEN 10(PJMP), 1 ( 0), 7 (DECOD$), 11 (BSSPEC), 23(MIR), 
0117 00000141AOA90012 206 C14(TRNBl,15(LOGl,17(GPROUTl,24(R2) 

208 END 
SYMBOLS 
0000 ASGPR 0002 ASGPRL 0003 ASGPRR 0001 ASP 0000 A$ SPEC 
0009 ADD 0008 ALUC 0006 ALUO 0007 ALUS 0009 ALUZ 
OOOB AND 0002 AONE 0001 A ZERO 0000 BSGPR 0001 BSSPEC 
0007 BSSALU OOOF BSSMIR 0003 BSSOVR OOOB BSSP 0003 CRY1 
OOOF DECA 0009 DECB 0005 DECOD$ 0004 DECODE 0006 EOR 
0003 FT 0001 GPROUT 0000 GPRS 0001 IBRSI 0004 IFSALU 
OOOC IFSMIR 0000 IFSOVR 0008 IFSP 0000 INCA 0001 INCB 
0004 INCP 0005 INCSC 0002 IOR 0001 IOSR 0006 KOUT 
0110 LAB1 0115 LAB2 0000 LFT 0003 LIT 0001 LOG 
0001 MEMC 0002 MEMC$ 0001 MIR OOOB MIRS 0002 MSK 
OOOE NORM 0000 NOTA 0005 NOTB 0005 OF$ALU 0000 OF$MIR 
0001 OFSOVR 0009 OFSP 0005 OLSE 0007 OLZF 0003 ONES 
0000 OPR 0003 OPROUT 0001 OR 0004 ORSE 0006 ORZF 
0006 OSSALU OOOE OSSMIR 0002 OSSOVR OOOA OSSP 0000 OVFL 
0003 PJMP 0004 PJMP$ 0001 POUT OOOF QUOS 0000 RO 
0001 R1 0002 R2 0003 R3 0004 R4 0005 R5 
0006 R6 0007 R7 0008 R8 0009 R9 OOOA RA 
OOOB RB oooc RC 0000 RD OOOE RE OOOF RF 
0001 RGHT 0002 SSALU 0006 SSOVFL 0001 S$SHFT 0002 SCOUT 
oooc SFTC oooc SHFA OOOA SHFT 0001 SHFTOP 0000 SPEC 
013E SS1M 0092 SS2M 0020 SS3M 0004 SSW1 0003 SSW2 
0002 SSW3 0003 STAT 0006 SUB 0002 TCB 0002 TESTF 
0003 TESTT 0005 TFIR OOOF TRNA OOOA TRNB 0002 TT 
0001 WAITMD 0003 ZERO 

0 ERRORS ASSEMBLY COMPLETE 

5-14 



0000 

0000 0100040404000000 

0010 

0010 0100040404000000 

0020 

0020 0108000023A80010 

0021 01100402A0900001 

0022 4118043404000010 

0023 000003C1A0910000 

SYMBOLS 
0000 A01 
0023 AD5 

0010 AD1A 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 

43 

varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

5.2.4 64K Add to General-Purpose Register 

*ADD TO ANY REGISTER FROM 64K MEMORY INDEX BY R1 

ORG 

AD1 GEN /N(AD2),SF1,IM8,RF4 
• 
*THIS ENTRY USED FOR EVEN REGISTER ADDRESSES. 
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER. 
• 

ORG X'010 

AD1A GEN /N(AD2) ,SF1,IM8,RF4 

*THIS ENTRY USED FOR ODD REGISTER ADDRESSES. 
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER. 

• 
AD2 

ORG X'020 

GEN I•,LB1,RF3,FFA,MF1 ,BB1 

*TRANSFER MEMORY INPUT REGISTER TO OPERAND REGISTER TO PREVENT LOSS 
*DUE TO PREVIOUSLY INITIATED FETCH. THIS IS THE BASE ADDRESS. 

AD] GEN I•,SF1,IM5,LB1,LAO,FF9,AA1 
• 
*PERFORM INDEXING BY ADDING R1 TO OPERAND REGISTER. INITIATE OPERAND 
*FETCH USING ALU OUTPUT. 
• 
AD4 GEN I•,TS4,MR1,AB2,BB1,SF1 ,IM8,RF4 

*FIELD SELECT REGISTER SPgCIFICATION FROM INSTRUCTION BITS 4-7 TO 
*A FIELD OF MICROINSTRUCTION. SET B FIELD TO SELECT MEMORY INPUT 
*REGISTER. INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED 
*PROGRAM COUNTER. 
• 
ADS 
• 

GEN /P(X'OOOO) ,LB1,LAO,FF9,GFF,WR1,IM3 

*ADD CONTENTS OF MEMORY INPUT REGISTER TO THAT OF PREVIOUSLY SELECTED 
*REGISTER AND STORE BACK THE SUM. PAGE BRANCH TO ZERO AND DECODE 
*INSTRUCTION PREVIOUSLY FE:TCHED. OVERFLOW AND CONDITION CODES ARE 
*SAMPLED. TRANSFER INSTRUCTION BUFFER TO INSTRUCTION REGISTER. 

END 

0020 AD2 0021 AD3 0022 AD4 

0 ERRORS ASSEMBLY COMPLETE 

5-15 
··----·-··-----·- .. ----·--·-----------·-···--··-···-·------------- -------------------------------------' 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

0000 
0000 01083804E7A7FFAF 

0020 
0020 0110040280A80010 

0021 0198000020A90011 

0022 01380000E2A00070 

0023 0120008020A90012 

0024 31282240E2A00070 

0025 0158050404000000 

0026 0138000020A9000F 

0027 0150000023A80010 

0028 01500000006900FO 

5-16 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

5.2.5 Cyclic Redundancy Check Generation 

*THIS MICROPROGRAM COMPUTES THE CYCLIC REDUNDANCY CHECK WORD ON A 
*PACKED BYTE ARRAY USING THE POLYNOMIAL: 
* X**16+X**15+X**2+1 
*ENTRY IS VIA A BCS TO LOCATION 0 OF PAGE 1 
*THE WORD FOLLOWING THE BCS IS THE DATA ARRAY ADDRESS 
*THE WORD FOLLOWING THE DATA ARRAY ADDRESS IS THE BYTE COUNT 
• 
*THE 16 BIT CRC IS LEFT IN RO 
*RO,R1,AND R2 ARE ALL USED BY THIS INSTRUCTION (A,B,X). RF IS ALSO USED. 
*RO IS THE CURRENT CRC 
*R1 IS THE CURRENT WORD ADDRESS OF THE DATA 
*R2 IS THE CURRENT BYTE COUNT 
*RF CONTAINS THE CRC POLYNOMIAL B' 1000000000000101 
*THE MICROPROGRAM MAY BE INTERRUPTED AFTER EVERY TWO BYTES ARE PROCESSED 
*IF THE OVERFLOW FLAG IS SET UPON ENTRY THE CURRENT VALUES OF R1 AND 
*R2 ARE USED INSTEAD OF THOSE SPECIFIED BY MEMORY CONTENTS. 
*THE ACCUMULATOR (RO) SHOULD BE CLEARED PRIOR TO ENTRY UNLESS CRC IS TO 
*BE ACCUMULATED WITH A PRIOR CRC VALUE. 
• 
• 
*TYPICAL ENTRY 
* TZA 
* ROF 
* DATA 
* DATA 
* DATA 
• 
• 
*CRC GENERATION 
• 
CRC1 

ORG 
GMSK 

SEQUENCE IS: 

0105000 
ADDR 
COUNT 

X' 0 
/T(CRC2,CRC1A) ,TF3,SF2,IM9,LB3,RF7,FFA,MK7FFA,AKF 

*ENTRY IS FROM DECODE OF THE BCS. THE ADDRESS FETCH HAS BEEN INITIATED. 
*OVERFLOW FLAG IS TESTED TO DETERMINE IF INSTRUCTION WAS INTERRUPTED 
*FETCH OF BYTE COUNT IS INITIATED USING INCREMENTED PROGRAM COUNTER 
*THE POLYNOMIAL IS PLACED IN OPR 
*IF OVERFLOW IS ON GO TO CRC1A OTHERWISE CRC2 
• 

ORG 
CRC1A GEN 
• 

X'020 
/N(CRC17) ,SF1,IM5,FFA,BB1,MF1 

*COME HERE IF OVERFLOW FLAG WAS ON WHEN INSTRUCTION WAS FETCHED 
*FETCH DATA BYTE PAIR 
• 
CRC2 GEN /N(CRC3) ,LB1,FFA,WR1,BB1,AA1,MF1 

*SAVE DATA ARRAY ADDRESS IN R1 (FROM MIR) 
• 
CRC17 GMSK /N(CRC6) ,IM1,LB3,RF2,FFA,MK0007 
• 
*SET SHIFT COUNTER TO -8 
*WAIT FOR MEMORY DONE FROM DATA FETCH 
• 
CRC4 GEN I•,GF2,LB1,FFA,BB1,MF1,AA2,WR1 
• 
*SAVE BYTE COUNT IN R2 
*SAMPLE ALU STATUS TO CHECK FOR ZERO BYTE COUNT 
• 
CRC5 GMSK /T(CRC18,CRC5A),TF2,GF9,IM1,LB3,RF2,FFA,MK0007 

*PUT -8 IN SHIFT COUNTER (8 BITS PER BYTE) 
*TEST ALU ZERO STATUS FLAG TO SEE IF BYTE COUNT WAS ZERO 
*WAIT FOR MEMORY DONE FROM DATA FETCH 
*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC5A 
• 
CRC18 GEN /N(CRC19l,SF1,GF4,IM8,RF4 
• 
*WHEN BYTE COUNT WENT TO ZERO RESET OVERFLOW TO INDICATE COMPLETION 
*START NEXT INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER 

CRC5A GEN I•,FFA,MF1,AAF,WR1,LB1 
• 
*MOVE POLYNOMIAL (IN OPR) TO RF 

CRC6 GEN /N(CRC7l,LB1,RF3,FFA,BB1,MF1 
• 
*TRANSFER DATA BYTES FROM MIR TO OPR 
• 
CRC9 
• 

GEN /N(CRC7) ,FF6,MF1,WR1,BBF 

*THIS IS A CORRECTION CYCLE 
*RO TO ALU INPUT A 

(continued) 



r 
I 

I 0029 0190808000610032 

84 

85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

002A 714823001569DAFO 95 
96 
97 
98 
99 

100 
101 
102 
103 
10 4 
10 5 

002B 0490090000000000 106 
107 
108 
1 0 9 

002C 0178000069900030 110 
111 
112 
1 1 3 
114 

002D 0178050404000000 115 
002E 4110800000000000 116 

1 1 7 
118 
119 
120 
121 

002F 01B0000100000000 122 
123 
124 
125 

0030 01900000006900FO 126 

127 
128 
129 

0031 6168224000070001 130 
1 3 1 
132 
1 3 3 
1 3 4 
1 3 5 

0032 D128224062A00070 136 
1 3 7 
1 3 8 
1 3 9 
14 0 
14 1 

0033 0118048280A80010 142 
14 3 
14 4 
14 5 
14 6 

0034 4190800000000000 147 
148 
14 9 
15 0 

0035 41F0808000610032 151 
152 
1 53 
1 54 
1 55 

0036 156 
0036 07F8000180000000 157 

1 58 
1 59 

*RF TO ALU INPUT B 

*EXCLUSIVE OR ALU INPUTS TO RO 

varian data machines ~ 
CODING FROM FLOW DIAGRAMS 

CRC10 GEN 2{X'032),MTO,FS2,GF2,FF6,MFO,AA2,BB3,WR1 

*AFTER LAST BIT IS PROCESSED TEST DSB FLAG FOR A CORRECTION CYCLE 
*DECREMENT BYTE COUNT 
*SAMPLE ALU STATUS TO ALLOW CHECK FOR BYTE COUNT ZERO 
*IF CORRECTION CYCLE NECESSARY GO TO CRC10A OTHERWISE CRC11 

CRC7 GEN /T{CRC10,CRC8) ,TF2,GFC,LA2,RF5,FF6,MF1,WR1,SC1,VF1, 
CXF3,SH2,BBF 

*SHIFT RO LEFT TO ALU INPUT A 
*SHIFT OPR LEFT 
*R0{15) TO SHIFT FLAG {DSB) 
*OPR{ 15) TO ALU INPUT A BIT 00 
*POLYNOMIAL {RF) TO ALU INPUT B 
*EXCLUSIVE OR ALU INPUTS TO RO 
*INCREMENT SHIFT COUNTER 
*TEST FOR SHIFT COUNTER OVERFLOW, IF OVERFLOW GO TO CRCB OTHERWISE CRC10 

CRC19 GEN /P(X'0092) ,SF2,GF4 

*PAGE JUMP TO PAGE 0 LOC 060 (SS2M) 

CRC22 GMSK /N{CRC23),LB3,LA1,RF1,FF9,MK0003 

*SUBTRACT 4 FROM PROGRAM COUNTER TO CAUSE REFETCH OF THE BCS INSTRUCTION 
*AFTER INTERRUPT ~ROCESSING 

CRC24 GEN 
CRC8 GEN 

/N{CRC23), SF1 ,GF4, IM8 ,RF4 
/F{CRC9) ,FS2,2(X'022) ,TS4 

*TEST SHIFT {DSB) FLAG TO SEE IF CORRECTION CYCLE IS NEEDED. IF BIT 15 
*OF THE OLD CRC WAS A ZERO THE EXCLUSIVE OR PERFORMED AT CRC7 MUST 
*BE CANCELLED. IF DSB WAS 1 GO TO CRC7 OTHERWISE CRC10 

CRC23 GEN /N(CRC25) ,IM2 

*WAIT FOR IO DONE 

CRC10A GEN /N { CRC 1 1 ) , FF6, MF 1 , WR 1 , BBF 

*THIS IS CORRECTION CYCLE SIMILAR TO CRC8 

CRC21 GEN /T{CRC24,CRC22) ,TF2,GF9,FFO,MFO,CF3,WR1,AA1 

*INCREMENT DATA ARRAY ADDRESS (R1) 
*TEST ALU ZERO FLAG FOR ZERO BYTE COUNT IF ALU ZERO IS ON GO TO CRC24 
*OTHERWISE CRC22 

CRC 11 GMSK /T(CRC18,CRC121 ,TF2,GF9,LB3,RF2,FFA,MK0007 

*PUT -8 INTO SHIFT COUNTER 
*TEST ALU ZERO STATUS FLAG TO SEE IF RIGHT BYTE SHOULD BE PROCESSED 
*IF SO GO TO CRC12 OTHERWISE CRC18 

CRC3 GEN /N ( CRC4) , SF' 1, GF2, IM5, FFA, BB 1, MF 1 

*USING R1 AS ADDRESS INITIATE FETCH OF TWO BYTES. 
*SET OVERFLOW FLAG TO INDICATE INCOMPLETE INSTRUCTION 

CRC13 GEN /F(CRC14) ,F'S2,2(X'032) ,TS4 

*IDENTICAL TO CRC8 

CRC15 GEN 1{X'4) ,2(X'03E) ,MTO,FS2,GF2,FF6,MFO,AA2,BB3,WR1 

*PERFORM OPERATIONS OF' CRC10. IF' DSB IS SET GO TO CRC15B OTHERWISE 
*CRC15A 

ORG X' 0 3 6 
CRC25 GEN /P(X'OOF'F) ,IM3 
*PAGE JUMP TO PAGE 0 LOC OFF (INT2) 

0037 160 ORG 
0037 71FC012700000000 161 CRC20 GEN 

162 

X'037 
2 ( CRC 16 I, 1 (X' 7 J , MT 1, GF4, MR 1, IME 

1 6 3 
16 4 
16 5 
166 
16 7 

0038 01D00000006900FO 168 

16 9 

*WHEN CRC15 DETECTS AN INTERRUPT CHECK IT AGAIN TO SEE IF IT WAS 
*OVERRIDEN BY A DMA TRAP. 
*START IO INTERRUPT SEQUENCE 
*IF INTERRUPT GO TO CRC21 OTHERWISE CRC16 

CRC14 GEN /N(CRC12l ,FF6,MF1,WR1,BBF 

(contl-·n_:ed_·l_:_ J 



~ varian data machines 

CODING FROM FLOW DIAGRAMS 

170 
17 1 

003E 172 
173 

003E 71F8010600000000 174 
175 
176 
17 7 
178 

003F 11282A4280070001 179 
180 
181 
182 
183 
184 

003A 185 
186 

*IDENTICAL TO CRC9 
• 

ORG X'03E 
• 
CRC15B GEN 1 ( X ' 7 ) , 2 ( X ' 0 3 F ) , G F 4 , I MC 
• 
*LOOK FOR INTERRUPT 
• • 
CRC16 GEN /T(CRC18,CRC17),TF2,SF2,GF9,IM5,FFO,CF3,AA1,WR1 
• 
*INCREMENT ARRAY ADDRESS (R1) 
*FETCH NEXT BYTE PAIR IF ALU ZERO FLAG IS OFF (BYTE COUNT NOT ZERO) 
*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC17 
• 

ORG 
CRC12 GEN 

• 

X'03A 
/T(CRC15,CRC13),TF2,GFC,LA2,RF5,FF6,MF1,WR1,SC1,XF3, 

CSH2,BBF,VF1 003A 21A823001569DAFO 187 
188 
189 
190 
191 

*IDENTICAL TO CRC7. THIS PROCESSES THE RIGHT BYTE OF DATA WHICH HAS 
*BEEN SHIFTED LEFT IN OPR 

003C 192 
003C 01F00000006900FO 193 

• 
ORG 

CRC15A GEN 

• 
X'03C 
/N(CRC15Bl,FF6,MF1,WR1,BBF 

194 
195 
196 
197 
198 

*IDENTICAL TO CRC10A 
• 
• 

END 
SYMBOLS 
0000 CRC1 0029 CRC10 0030 CRC10A 0032 CRC11 003A CRC12 
0034 CRC13 0038 CRC14 0035 CRC15 003C CRC15A 003E CRC15B 
003F CRC16 0022 CRC17 0025 CRC18 0028 CRC19 0020 CRC1A 
0021 CRC2 0037 CRC20 0031 CRC21 002C CRC22 002F CRC23 
002D CRC24 0036 CRC25 0033 CRC3 0023 CRC4 0024 CRC5 
0026 CRCSA 0027 CRC6 002A CRC7 002E CRC8 0028 CRC9 

0 ERRORS ASSEMBLY COMPLETE 

5-18 



SECTION 6 
MICROPROGRAM SIMULATOR, MICSIM 

The Microprogram Simulator (MICSIM) helps the user find 
and correct microprogram bugs. Any program develop· 
ment includes some time to verify that the program solves 
the problem. Testing may find that it does not. Running 
the microprogram simulator aids in both the discovery and 
correction of microprogram errors. 

When the microprogram is free of errors, the simulator can 
be used to determine the performance before the design is 
final, measure the efficiency of the technique and evaluate 
changes and extensions. 

MICSIM runs on all V73 system. Microprograms can also 
be simulated on 620 systems without WCS. The hardware 
requirements depend upon the operating system used. 

6.1 BASIC ELEMENTS 

In general this simulator provides the basic facilities for 
inputting, modifying and outputting the contents of the 
simulated control store, tracing, and address halt of the 
microinstructions. 

The fundamental program blocks of the simulator are: 

a. Simulation control, inputs the Simulator commands 
and directs their execution. 

b. Simulator command execution represents the actual 
execution of the simulator commands. 

c. Microinstruction execution, executes a m1cro· 
Instruction by simulating its effect. 

d. Simulation information accumulator and I 1st output. 

The relationships of the basic program blocks are illus· 
trated in figure 6·1. 

Note: The 110 functions of the computer are not simulated 

6.2 GENERAL FORM OF STATEMENTS 

The simulator processes three types of direct1ves. All 
directives begin with a single letter indicating the type. 
The following types of actions are handled by the 
simulator 

L__ __ _ 

a. Initialize simulator and storage 

b. change and examine storage 

c. trace, dump and control execution 

Table 6·1 summanzes the directives for qu1ck reference; 
section 6.7 provides detailed description and examples. 

------·-------

varian data machines ~ 

VT/ 1-/8/0 

MICRO 
SIMULATION 

CONTROL 

~l 

.,, 
SIMULATOR 
CONTROL 
EXECUTIVE 

! 
INTERFACE 
PROGRAM 

! 
OPERATING 

SYSTEM 

! 
PERl PHERAL 

1/0 

Figure 6·1. Microsimulator Control Flow 

Table 6·1. Summary of Microprogram Simulator 
Directives 

A. Initialize Simulator and Storage 

Initialize simulator 

Pn Select page n (o through 4) 

LC Load central control store (CCS) 

LDA Load decoder control store (DCS) A 

6·1 



~ varian data machines 

MICROPROGRAM SIMULATOR, MICSIM 

LOB Load decoder control store (DCS) B 

MS Select PI as input device 

MR Select Sl as input device 

B. Change and Examine Storage 

c. 

Ar 

ARn 

AJn 

Cm 

ECn 

Alter/Display register r, where r is 

A ALU output 
C Shift counter 
I Instruction register 
K Key register in data loop 
M Memory input register 
0 Operand register 
P Program counter 
S Status register 

Alter/Display general register n 
(0 through F hexadecimal) 

Alter I Display stack position n 
(0 through F hexadecimal) 

Change/Display main memory word 

Change/ Display CCS word n 

m 

EDdn Change/ Display DCS d (A or B) word n 

Trace, Dump and Control Execution 

D Dump complete CCS 

Om Dump contents of CCS starting at CCS 
word m 

Dm,n Dump contents of CCS from word m to n 

D,n Dump from word zero to n 

TS Trace set 

TR Trace reset 

TSn,m Trace from CCS word n to word m 

Bn Begin simulated execution at CCS word n 

Hn,n Halt at CCS address(es) n 

SS Single step set 

SR Single step reset 

R Return to MOS or VORTEX; Halt ih 
standalone 

Two methods of correcting typographical errors are availa­
ble to the operator. An entire line can be deleted by 
typing the backslash character (shift/L). The backslash is 
output as a visual aid. A line feed and a carriage return 

6-2 

are output to indicate that the line has been deleted. A 
character just entered can be deleted by typing the 
backarrow character. The backarrow character is printed 
on the Teletype page printer as a visual indicator of the · 
deletion. As many backarrows as necessary can be entered; 
each deletes one character (but not beyond the beginning 
of the line). 

Each simulator directive is checked for syntax errors as the 
input is interpreted. When an error is detected by the 
simulator an error message is output to the Teletype page 
printer. The simulator then is ready to receive the corrected 
directive. 

The simulator will operate under VDM MOS or VORTEX. For 
the MOS or standalone versions the hardware is described 
in VDM document number 98 A 9952 09R, VDM 620 
Master Operating System. For the VORTEX version the 
hardware is described in VDM document number 98 A 
9952 lOR, VORTEX Reference Manual. In addition, the 
computer must have the arithmetic option, at least 16K 
(20K for VORTEX) of memory and for two control store 
pages another 4K of memory is needed. The input/output 
interface for the MOS and standalone versions is 
described in the document 98 A 9952 09R and VDM 
document number 89A0023 VDM 620 MOS Input/Output 
Control System. 

The input/output interface for the VORTEX version is 
described in the above document number 98 A 9952 lOR 
and VDM document number 89A0202, system external 
Specification for the VORTEX Operating System. 

6.3 STATEMENT DEFINITIONS 

In the following discussion of simulator dialog, simulator 
input will be in bold type. This will not appear during 
actual runs. 

All numeric values denoted in the following discussion of 
the simulator directives are hexadecimal (0-F). Numeric 
values which are entered on Sl are right justified with 
unspecified leading bit positions containing zeros. 

6.3.1 Select Input Media (M) 

The select input media directive is used to select the device 
from which simulator directives will be entered. Normal 
operation uses the Sl device assigned at load time. Using 
this directive, the PI device assigned at load time can be 
used as an alternate input device. 

The two formats of the directive are: 

MS Select PI as input device 
MR Select Sl as input device 

6.3.2 Initialize Simulator (I) 

The initialize directive is used to initialize to zero the 
contents of the simulator registers, the test condition 



flags, CCS control buffer and the CCS word execution 
count table. Also, the single step option is reset, the trace 
option is set and the CCS address halt is set to 200 hex. 
This directive is normally used at the beginning of each 
simulation run. The simulator CCS's are not initialized. 

6.3.3 Page Select (P) 

This directive is used to select the control store page upon 
which the simulator directive will be executed. lnitializa· 
tion selects page 0. Once a page is selected, all directives 
will refer to that page until it is change by a new P 
command or until the system is reinitialized. The format 
for this command is: 

Pn where n = 0, 1, 2, or 3. 

6.3.4 Load Control Store (L) 

This command is used to read the micro assembler outpu!, 
assemble the data into usable 64-bit (CCS) words or 16-bit 
(DCS) words and store the words into the simulator control 
store. 

The format for this command is: 

LC -- Load Central Control Store (CCS) 
LOA -- Load Decoder A Control Store (DCS) 
LOB ··- Load Decoder B Control Store (DCS) 

The statement LOAD COMPLETE will be output to the 
Teletype following successful loading of the control store. 

6.3.5 Alter /Display Simulator Registers (A) 

This directive is used to display and change, or display 
only, the contents of general registers, stack positions and 
any of the following simulator registers: 

Program Counter (P) 

Instruction Register (I) 

Status Register (S) 

Operand Register (0) 

Shift Counter (C) 

Memory Latch (M) 

Processor Key Register (K) 

ALU Output (A) 

a. The format for display or change of the registers above 
in this directive is: 

Ar 
mmmm 

c 

varian data machines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

Where r is one of the register letters above and c is a 
comma, carriage return, a value followed by a comma or a 
value. mmmm is the contents of that register (output by 
the simulator) and nnnn is the desired contents. If the 
command is terminated with a comma (,), the simulator 
will output the letter A (signifying you are still in this 
routine) and wait for another register designator. If the 
directive is terminated with a carriage return (clr), the 
simulator returns to the executive. If no change value is 
input, the contents remain the same. 

For the file registers and jump stack, the specific file 
register or stack position must also be designated upon 
initial entry. 

b. For general-purpose registers 

ARi 
mmmm 

c 

Where n is a hexadecimal number 0 through F designating 
the specific register and c is a comma, carriage return, a 
value or a value followed by a comma. 

c. For stack positions 

AJn 
mmmm 

c 

Where n is a stack position and c is a comma, carriage 
return, a value or a value followed by a comma. 

The rest of the format is identical to that for the other 
registers except that the comma terminator causes the 
display of the number and contents of the next sequential 
file register or stack position. A comma terminator to 
register or stack position F effects a return to the simulator 
executive. 

Example 1: 

AP 
0776 

Display Program Counter 

No change, stay in command 

A M Display Memory Latch 
14FC 
(clr) No change, return 

Example 2: 

AS 
0000 

Display Status Word 

FFFF Change Status to All Ones 

Example 3: 

ARA Display General register 10 
FFFF 
0000, Change to all zeros 

(continued) 

6-3 



~varian data machines~~~~~~~~~~~~~~~~~~~~~~ 

MICROPROGRAM SIMULATOR, MICSIM 

B 
1234 
(c/r) 

Display general register 11 

No change, return 

6.3.6 Change/Display Memory (C) 

This directive is used to display or display and change a 
memory location. Both the location and its contents are in 
hexadecimal notation. 

The format of the command is: 

Cmmmm 
hhhh 

c 

Where c is as defined above and mmmm is the hexadecimal 
address of the memory location, hhhh is the contents of 
that word output by the simulator. If the simulator 
directive is terminated with a comma, the simulator will 
display the contents of the next memory location. If the 
simulator directive is terminated with a carriage return, 
the change/display memory directive is terminated. If no 
change value is input, the contents remain the same. 

6.3. 7 Change/Display CCS Word (EC) 

The change/display CCS word simulator directive is used to 
display and/or change the contents of a CCS word. 

The format for the change/display CCS word simulator 
directive is: 

ECmmmm l nnnnnnnnnnnnnnnn 
hhhhhhhhhhhhhhhh Where b = nnnnnnnnnnnnnnnn, 

b 1 

(c/r) 

Where mmmm is the (hexadecimal) address of a CCS word, 
hhhhhhhhhhhhhhhh is the contents of that CCS word 
(output by the simulator) and nnnnnnnnnnnnnnnn is the 
desired contents of that CCS word. If the simulator 
directive is terminated with a comma, the simulator will 
display the contents of the next CCS word. If the simulator 
directive is terminated with a carriage return (c/r), the 
change/display CCS word simulator directive is terminated. 
If no change value is input, the contents remain the same. 

If less than 16 digits are input for a change, the digits are 
right justified and zeros will appear in the most significant 
bits not specified. 

Example 1 

EC8A 

0123456789ABCDEF 
FEDCBA9876543210 

6·4 

Example 2: 

ECDC 
FFFFFFFFFFFFFFFF 

0 

DO 
AAAAAAAAAAAAAAAA 

6.3.8 Change/Display DCS Word (ED) 

This directive is used to display and change, or display 
only, the contents of a DCS A or DCS B word. 

The format for the directive is: 

EDdi 
mmmm Where c 

I 

nnnn 
nnnn, 

· ( c/r) 
c 

Where d is the letter A or B designating DCS A or B, i is the 
DCS address (O·F), mmmm is the contents of the location 
and nnnn is the desired contents. A comma terminator 
causes the display of the next sequential address and its 
contents. A comma terminator to address F effects a return 

to the simulator executive as does the carriage return 
terminator. If no change value is 1nput the contents 
remain the same. 

6.3.9 Begin Simulated Execution (B) 

The begin-simulated-execution simulator directive is used 
to start the simulated execution of the CCS 
microinstructions. 

The format for the begin-simulated-execution directive is: 

Bmmm 

Where mmm is the control store memory address for the 
start of the simulated execution. If no CCS address is 
given, then the starting address is the CCS address 
generated as the next CCS address from the last 
microsimulation. However, if the simulator is initialized in 
the meantime, the address will be word zero. 

Examples: 

BO Begin at word 0 of current page 
B7F 
B Begin from last calculated address 

6.3.10 CCS Address Halt (H) 

The CCS address halt simulator directive is used to set an 
address into the simulator such that whenever that CCS 
address is accessed by the simulator, the simulation 
process will stop. Since control store addresses are between 



0 and 1 FF (hexadecimal), specifying an address outside 
this range effectively "turns off" the address halt. Up to 5 
halt addresses may be set per page. The default value is 
200 (CCS word 512). 

The format for the CCS address halt simulator directive is: 

Hnnn ,nnn .. 

Where nnn is the (hexadecimal) halt address. 

NOTE: To set multiple halts all addresses must be entered 
under the same H command. 

The halt addresses are set in the page currently selected. 
To set halt addresses in another page that page must be 
selected with the "P" command. 

Example: 

H3A9 
H100, 10.A.,IFF,O 

When the halt address is reached, the location and control 
buffer f1elds are listed on the line printer if the trace 
opt1on is ON. Also, the message "CCS HALT" is output to 
the TTY and line printer. Then the simulator returns to the 
executive. 

6.3.11 Single Microinstruction Step (S) 

The single microinstruction step simulator directive is used 
to set or reset the single step option in the simulator. When 
the single step option is on, instruction simulation IS 
ceased after the execution of each microinstruction. 

The formats for the smgle micromstruction Simulator 
directive are: 

ss 
SR 

Single step ON 
Single step OFF 

The f1rst control store word to be executed must be 
specified via the begin (B) command. To continue with the 
next microword enter the B command without an address. 

A spec1al form of the SR directive (set single step OFF) can 
be used to set a limit on the number of microinstructions 
to be executed before returning to the simulator executive. 

The format of th1s directive is: 

SRnnnn 

Where nnnn is 1-4 hex digits specifying the execut1on limit. 
When this limit is reached, control is returned to simulator 
execut1ve. Omission of nnnn results in an unlimited run 

count. 

6.3.12 Trace (T) 

The trace direct1ve controls output to the line printer. The 
trace opt1on is normally ON and pertinent data and 

varian data machines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

execution results are listed on the line printer after the 
simulated execution of each control store instruction. 

The format for the directive is: 

TS Set trace ON 
Set trace OFF TR 

TS,nnn,mmm Set trace ON from word nnn 
to word mmm 

If nnn is missing, its value is defaulted to zero. If mmm is 
missing, its value is defaulted to 200 hex (word 512). If TS 
is specified with bounds, the current and next CCS 
addresses are output to LO regardless of whether or not 
the address is within the bounds: however. the remamder 
of the trace is suppressed. 

The following information is listed on the line printer (LO) 
for each control store word executed: 

1. CCS word address 

2. List of CCS word fields and their values 
NOTE: Fields AA, BB, and FF are dynamically altered 
and need not be equal to the value of the CCS word. 

3. Next CCS word 

4. Current top of stack 

5. Number of items on stack 

6 ALU A input 

7. ALU B input 

8. ALU output 

9. Carry in status (CF) 

10. Carry out status (ALUC) 

11. Contents of the 16 general-purpose registers (RO-RF). 
(4per lineby41ines) 

12. Contents of the following registers and flip-flops: 

p 

sc 
OPR 
KREG 
IOKR 
IBR 

STAT 
lOR 
SHFT 
QUOS 

Program counter 
Shift counter 
Operand register 
Key register processor 
I 10 key register 
Instruction buffer 
Instruction register 
Status register 
110 data register 

Sign store of register A bit 15 
Storage of sign bit (DAL 15) of 
ALU output 

13. Memory Operations Data 
The values listed are the values at the end of the 
memory operations for that CCS word. The memory 

6-5 
--·----·-----·--··· ... , ______________ .. _________________ ---------·----·- . --·-·-·-·-···-··-·----------------



~ varian data machines 

MICROPROGRAM SIMULATOR, MICSIM 

operations performed are a function of conditions/ 
codes upon entry (values from the last CCS word 
executed). 
When MCCO = 2 the following memory operations 
data will appear twice per microword trace. The first set 
is an intermediate value while the second set 
represents the values at the end of the memory 
operation. 

Memory Condition Code 

MCCO 
MCCO 
MCCO 

0 
1 
2 

Idle 
Active but not done 
Active and done 

Memory Operation Code 

MOPC 0 Transfer ALU output to MIL 
and IBR 

MOPC Read from main memory to 
MIL and IBR 

MOPC 2 Read from main memory to 
MOPC 3 Write 16-bit ALU output to 

main memory 
MOPC 4 Write a byte of ALU output 

to main memory (byte is 
specified by MBYC) 

Main Memory Address Source 

MADS 0 Address is ALU output 
MADS 1 Address is program counter 
MADS 2 Address is memory input 

register (MIR) 
MADS X Invalid address source 

Byte Designator for Write Operations 

MBYC 0 Right byte 

MBYC Left byte 

MIL 

NOTE: The byte (of the memory word) not designated is not 
altered. 

Memory Interface Registers 

The contents of registers MIL and IBR are listed. 

6·6 

Main Memory Address (MMAD) 

The main memory address (as specified by MADS) is listed .. 
It is listed for every CCS word executed regardless of the 

actual memory operation as specified by MCCO and 
MOPC. 

Status of test conditions (test inputs). Each status bit 
stored in a separate word of memory and the 16-bit word 
is listed (XXXX). The 16 test conditions are listed on 2 
lines, 8 per line. Each test bit is listed as 0000 = false 
condition; or 0001 = true condition. 

Test Bits 

0 ALU overflow 
1 l/0 sense 
2 SSW3 
3 SSW2 
4 SSW1 
5 620/f test (for JMP, JMPM, 

XEC groups of instructions) 
6 ALU equals 
7 ALU sign 
8 ALU carry 
9 ALU zero 
10 DS bit 
11 MIL 15 (sign bit of memory input register) 
12 Shift count = - 1 
13 A15 - sign of A register for multiply 

operations 
14 DAL 15/DAL 14 (ALU output bits 15 and 14) 
15 QS bit 

6.3.13 Dump Contents of CCS (D) 

The dump CCS directive is used to list on the line printer 
selected contents of the simulator control CCS and the 
count of the number of times each word was executed. 

The formats for the directive are: 

Dmmm,nnn 
Dmmm 
D,nnn 
D 

Where mmm and nnn are the beginning and ending 
hexadecimal CCS address to dump. If mmm is omitted, 
dump begins at CCS word 0. If nnn is omitted, the 
complete contents of the simulated CCS table is dumped 
starting at mmm. If both m and n are omitted, the 
complete simulated CCS table, starting at location zero is 
dumped. 



The line printer list format is: 

ADDR HEXADECIMAL BINARY 

varian data machines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

EXECUTED 

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb xxxx 
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb 

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb 

Where (aaaa) is the address of the CCS word in hexadeci­
mal. (hhhhhhhh hhhhhhhh) is the contents of the CCS 
word m hexadecimal, (bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb 
bbbbbbbbbbbbbbbb) is the contents of the CCS word in 
b1nary and xxxx is the execution count in hexadecimal. 

The f1eld identifier words and the contents and count of up 

to 14 locations are listed on each page. 

6.3.14 Exit to VDM, MOS or VORTEX (R) 

The exit to VDM MOS or VORTEX simulator directive is 
used to effect a transfer of control from the simulator to 
MOS or VORTEX. NOTE: The use of this directive with the 
standalone version will produce a halt. 

6.4 OPERATING INSTRUCTIONS 

The simulator program operates under either VDM MOS, 
VORTEX, or standalone environments. The simulator 

executive communicates with the software environment in 
which it is running by means of the appropriate interface 
program, INTR, provided with the simulator. The user 
communicates to the program via the system Teletype. The 
BLD II loader is required when loading of MIDAS object 
programs for execution under the simulator (MOS or 
standalone only). 

When operating under VORTEX, the five background global 
control blocks (FCB's) are used when the logical unit is an 
RMD thus permitting the stacking of jobs. The following 
restraints are made on the use of RMD logical units: 

1. Sl, PI, and LO are to be in unblocked format. 

2. Bl must be blocked. 

The simulator data flow is shown in figure 6-2. 

OPERATING 

n 11-1809 

51 
DEVICE I 

SYSTEM 

~. 

~, 

.... ..... 

.... SIMULATOR 

... 
["''Il" 

~r ~r 

LO so 
DEVICE DEVICE 

Figure 6-2. Microsimulator Data Flow 

PI 
DEVICE 

Bl 
DEVICE 

6·7 



~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~~ 
MICROPROGRAM SIMULATOR, MICSIM 

6.4.1 Program Loading 

Under VORTEX, MICSIM can be scheduled from the 
background library at level zero by the /LOAD,MICSIM 
directive. Before scheduling, the number of WCS pages in 
addition to page zero which will be needed should be 
determined and a /MEM,X directive given. In the /MEM 
directive, X should be the number of additional WCS pages 
(beyond page zero) times 4. 

Under MOS, each time the simulator is to be executed its 
relocatable binary object deck should be positioned on the 
81 device and the /LOAD directive given. 

In the standalone environment, MICSIM is loaded by the 
620 standalone FORTRAN IV loader, along with the 
runtime I /0 and runtime utility. (Refer to VDM document 
number 89 A 0226, Overview and External Specification for 
information on the Varian 620 Standalone FORTRAN IV 

Loader.) The simulator uses logical unit numbers 2, 3, 4, 5, 
and 6 for Sl, SO, PI, LO, and 81. The standalone loader 
should be instructed to assign these units to meaningfl.JI 
devices. 

Examples: 

Sample Loading Procedures 

1. VORTEX 
/JOB,SIM 
ILMGEN 

TIDB,SIM,1,0 
LD,6 

Test Program (optional) 
Simulator 
EOF (2-7-8-9 multi·punch) 
LIB 

END,BL,E 
/MEM,x 
/LOAD,SIM 

x value = 0, only 1 WCS page; = 4, 2 WCS 
pages; = 8, 3 WCS pages; = 12, 4 WCS pages. 

2. MOS 
/JOB,SIM 

/LOAD 
Test Program (optional) 
Simulator 
EOF (2-7-8-9 multi-punch) 

3. STANDALONE 
Load Standalone Loader 
With AID II change absolute location 7 (SPED) 

to the desired start load address 

6-8 

Return to the loader 
Enter the following: 
200300402504602 (c/r) 

(to set Sl = TY, SO = TY, PI 
= - 77, 81 = PT) 

Mount simulator tape in reader 
Enter the following: 

PT, LO 

PM 
Load Runtime I /0 
Load Runtime Utility 

6.4.2 Initial Condition Selection 

After loading, the simulator program is automatically 
entered and outputs the following to SO: 

VARIAN 73 MICROSIMULATOR 
INPUT HIGHEST NUMBER WCS PAGE DESIRED 

The user then inputs on Sl one of the following: 

0 
1 
2 
3 

(for ROM page only) 
(for ROM and WCS page 1) 
(for ROM and WCS pages 1 and 2) 
(for ROM and WCS pages 1, 2, and 3) 

Any other input is an error and the request will be 
repeated. Following a correct input, the following is output 
to SO: 

SI** 

An Sit'·~ indicates that the program is in the simulator 
executive awaiting a user command. Control is returned to 
the executive following execution of each command. 

All simulator dialog is entered through the Sl device and 
echoed on the SO and LO devices. Dialog may be either 
conversational or batch depending on the Sl device 
assignment. All of the simulator directives must be 
terminated with a carriage return; the simulator will output 
a line feed. 

6.4.3 Loading Simulator Central Control Store 
(CCS) and Decoder Control Store (DCS) 

Use the P directive to select the WCS page in which 
simulation is to take place. 

Use the L directive to load the micro assembler output into 
the specified simulator control store (central or decoder). 

Use the M directive to select the input device; either Sl or 
Pl. 

Use I directive to initialize to zero all the simulator 
registers, test conditions, control store buffer, status 
registers and execution count table. 

Use the A directive to initialize the program counter, file 
registers, and instruction register as required. 

Position the 620173 sense switches as required. The 
simulator program monitors the 620173 sense switches 
similar to the Varian 73 sensing of its console sense 
switches. 



6.4.4 Other Control (As Required) 

Use the E directives to make any patch corrections to the 
CCS or DCS. 

Use H directives to set simulation halts when the specified 
control store address is reached. The initialized address is 
200 hex. and will remain such until specified otherwise. 

Use S directives to specify single step operation as 
required. The initialized condition is run (not step). 

Use T directives to specify operation with or without trace 
l1stmg as required. The initialized condition is with trace. 

6.5 PROGRAM EXECUTION 

After all initialization and start-up conditions are specified, 
use the B directive to begin execution at the specified 
control store address. 

6.6 AFTER SIMULATION 

6.6.1 Control Store Dump 

Use the D directive to dump the control store words and 
the execution counts for each control store. 

6.6.2 Initialization 

Use I directive to initialize registers, tables, etc. pnor to 
making another run. 

6.6.3 Return to MOS, VORTEX 

Use the R' directive to return to MOS or VORTEX as 
required. (NOTE: In the standalone version this command 
effects a halt). 

6.7 620 EMULATION 

To run programs using the 620/f emulation ROM, the 
following sequence of events must be done: 

1. Load CCS page 0 and DCS page 0 with the 620/f 
emulation microinstructions. 

2. Set CCS halt to 080 (hex) via H command. 

3. Set R5 to FFFF (- 1) via AR5 command. 

4. Set other registers and sense switches as needed. 

5. Set pseudo P register to location (hex) of first macro to 
be executed via AP command. 

6. Set trace and step/run mode as needed. 

7. Begin at 13E via B command. 

varian data machines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

The sequence of events 1 through 6 may be in any order 
but must be done · before event 7. Event 7 begins 
simulation at standard state 1. 

6.8 ADDING SIMULATOR TO VORTEX 

The microsimulator resides on the background library 
under VORTEX. After system generation, however, the user 
is responsible for cataloging it into the background library. 
The following procedure may be used to do this. First. 
position the Bl device to the simulator object material. 
Then, issue the following directives: 

ILMGEN 
TIDB, MICSIM, 1, 0 
LD,BI 
LIB 
END,BL,E 

(For detailed descriptions of these directives, refer to the 
VORTEX Reference Manual.) 

6.9 MAIN MEMORY SIMULATION 

Simulation of main memory operations is restricted so that 
a simulation run does not destroy the simulator or related 
programs. This is accomplished by not simulating writes 
to memory addresses below 1000 octal or above the start 
of the simulator. Any attempt to do this will be flagged as 
an error and the write not be performed; simulation will 
continue however. A read may be made anywhere in 
available memory. Memory addressing above 32K will 
effect wraparound if available on the computer. 

Creation of a Main Memory Block 

VORTEX: 

Since VORTEX does not allow a start load address (it is 
always 1000 octal) for background tasks, the user must 
create a load module with an empty block at the beginning 
of the module. A possible way to do this is to set up an 
object stream as below: 

Macro Test Program 
BSS Block 
DATA 0 
Simulator 
EOF 

Using the BSS block effectively moves the simulator higher 
in core and thus leaves the memory between 1000 (octal) 
and the start of the simulator available for main memory. 
The size of the BSS block depends on the amount of 
memory available for background and the needs of the 
user. Too large of a BSS block will cause the load module 
to abort loading. 

MOS: 

The same method can be used for MOS as was used for 
VORTEX or at load time. The start load address may be set 



~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~~ 

MICROPROGRAM SIMULATOA, MICSIM 

to some value larg,r than the default value (500 octal). For 
example, to g~t a main memory block of 10~4 words, the 
load directive might l;>e /L,PR ;;o: 2500. 

6.10 SIMULATOR ERROR M~SSAGES 

MESSAGE REASON 

General 

MS01 Input could not be interpreted as a valid 
command. 

MS02 A non-hex character was encountered when 
hex expected. 

Initialization 

MS03 Insufficient common area to contain specified 
number of pages. 

MS04 The selected page numper was not valid. 

CS Addressing 

MS05 An attempt was made to jump to an unavail­
able WCS page. 

MS06 A BCS instruction was encountered when WCS 
page 1 is unavailable. 

6-10 

CS Loading 

M$07 Read error on 81 d$vice. 

MSOS EOF e11ce~untered before IQ~d cpmplate. 

MS09 EOO/aeoo encounten;td beforre IQad CQmplete. 

M$10 Sequence error Qn 61 1 

MS11 Invalid load'r code. 

M$12 Checksum err(!)r. 

Memory 

MS13 Undefined macro opcode. 

M$14 Attempted to 'flrlte tQ memory ~ytsic:le c:l~finec:l 
main memory, 



·--- varian data machines ~ 

6.11 EXAMPLE OF SIMULATOR OUTPUT 

Figure 6-3 shows the simulation listing of the LOA example 
developed in section 2. 

PAGE 0000 og/07/73 VORTEX MICSIM 

VARIA~ 73 MICRO SIMULATOR 
lNPUT HIGHEST NUMBER WC5 PAGE DESIRED 
0 

MS** 
..,0 
MS** 
L.C 
LOAD 
MS** 
L.DA 
LOAD 
MS** 
LD8 
I,.OAO 
MS** 
C400 
0000 
10F9 
MS** 
t.:FQ 
003b 

MS** 
AP 
0000 
400 
MS•• 
5R7 

MS** 

COMPL.ETE 

COMPLETE 

COMPLETE 

SELECT PAGE ZERO 

LOAD CENT~AL CONTROL STORE, 520 EMULATION 

LOAD OECOOfR A, 620 EMUL.ATION 

LOAD OECOOER 8, 620 EMU~ATION 

PUT A~ 'LJA' INSTRUCTION IN MEMORV FOR SIMULATION 

LOA FROM ~EM LOC tFgf 

CHECK WHAT~ TO BE LOADED 

SET P~OGRAM COUNTER TO T~E 'LOA' 

EXECUTE SEVEN MICRO'S 

tllJE START EXECUTION AT STA~OARO STATE ONE, SS1M 

Figure 6-3. Simulator Output Format 

6·11 
-----------------··-------------------------·-··-·---- --------------' 



~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~ 
MICROPROGRAM SIMULATOR, MICSIM 

PAGE 0001 09101113 VORTEX MICSIM 

l;CS L.OC 013E PAGE 0 

TS AF MS MT FS TF SF GF MR AB IM LB L.A 
00 09 02 00 00 00 01 00 00 00 08 00 00 

RF FF MF CF WR sc \IF WF )(, SH BB AA 
00 00 00 00 00 00 00 00 00 00 00 00 

~EXT ccs •DORESS 0092 PAGE 0 

~URRfNT TOP OF STACK 0000 
NUMBER OF ITEMS ON STACK 0 

ALU INPUT A 0000 
ALU INPUT 8 0000 

AL.lJ OUTPUT 0000 

CIN 0 
COUT 0 

RO 0000 Rt 0000 ~2 0000 R3 0000 
RA 000(') R5 0000 R6 0000 R7 0000 
R8 0000 R9 ooon RA on on R8 onoo 
RC 0000 RO 0000 RE 0000 ~F 0000 

p sc OPR t<REG IOKR IBR I STAT lOR SMFT QUOS 
0400 0000 0000 0000 0000 onoo 0000 0000 0000 0000 0000 

MCCO 1 
MQPC 1 
MAOS 1 
MBYC 0 
MJR 0000 
lBR 0000 
MMAD 0400 

TEST CONDITION STATES 
UVFL SENS SSW3 SSW2 SSw! EMUL ALUO Al.US 
0000 0000 ooon 0000 0000 ooon 0000 0000 

ALUC 4L.UZ SHfT MIRS SFTC ROAO NORM QUOS 
0000 ooon 0000 0000 onoo 0000 0000 0000 

Figure 6-3. Simulator Output Format (continued) 

6-12 



PAGE 0002 09/0i'/73 

CCS LOC ooga PAG! 0 

TS AF MS MT FS TF SF 
00 02 00 on 00 00 01 

RF FF MF CF WR sc VF 
04 00 00 00 on 00 00 

NEXT ccs ADDRESS 0020 PAGE 

CURRENT TOP OF STACK 0000 
NU"BER OP ITEMS ON STACK 0 

ALU INPUT A 0000 
ALU INPUT B 0000 

AL.U OUTPUT 0000 

CI~ 0 
couT o 

RO 0000 R1 0000 R2 0000 
R4 0000 R5 0000 ~e onoo 
R8 nooo R9 0000 RA onoo 
RC 0000 RD 0000 RE 0000 

p sc QP~ KREG IOt<R 
0401 0000 0000 0000 0000 

MCCO 2 
MOPC 1 
MAOS t 
MBYC () 

MIR 0000 
lBR 000~ 
MMAO 0400 

--- varian data machines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

VORTEX MICSIM 

GF MR AB IM LB L,A 
00 00 oo 08 00 00 

WF Xf SH 88 AA 
00 00 00 00 00 

0 

R3 0000 
R1 0000 
RB 0000 
RF 0000 

IBR I STAT lOR SHFT QUOS 
0000 0000 0000 0000 0000 0000 

Figure 6-3. Simulator Output Format (continued) 

6-13 J 
·-·-



~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~ 
MICROPROGRAM SIMULATOR, MICSIM 

PAGE 0003 09107113 VORTE)( MICSlM 

MCCO 1 
MOPC \ 
MADS t 
MBVC n 
MlR 10F9 
lBA t0F9 
MMAO 0401 

TEST CONDITION STATES 
UVFL SENS SSW3 S~W2 SSilft EMUL ALUO ALUS 
0000 0000 0000 ooon 0000 0000 ooon 0000 

Al.UC AL.UZ SHFT MIRS SFTC ROAO NORM QUOS 
0000 0000 0000 ooon 0000 ooon 0000 0000 

Figure 6-3. Simulator Output Format (continued) 

6-14 



~~~~--~~~~~~~~~~~~-~~~~varian data ~achines ~ 
MICROPROGRAM SIMULATOR, MICSIM

PAG! ooo• OtJ/0711~ VORT!X M!CSIM

~ea LOC ooao PAGE 0

TS AI' MS MT prs T' s, GF MR AB IM L.B L.A
0! 00 oe 00 00 00 00 05 00 00 oe 00 00

RF ,,
"' c,. WR IC v, "''

)(, SH 88 AA
00 00 00 00 00 00 00 00 00 00 00 00

NfXT ccs ADOR!SS 0182 PAGI. 0

CURRENT TOP OF STACK 0000
NUMB!R 0, ITIMI ON STACK 0

AL.U INPUT A 0000
ALU INPUT I 0000

AL.U OUTPUT 0000

CIN 0
COUT 0

RO 0000 Rl 0000 R2 0000 R3 0000

"' 0000 R5 0000 Aft 0000 R7 0000
R8 0000 R9 0000 RA 0000 RB 0000
RC 0000 RD 0000 R! onoo R' 0000

PI sc OPR KREG IOKR IBA I STAT !DR IHFT QUOS
o•ot 0000 0000 0000 0000 lOFD lO'D 0000 0000 0000 0000

JlltCCO 2
,..or-e 1
r1AOS 1
MBVC 0
MIR 10'SJ
lBR 10,0
MMAD 0401

Figure 6-3. Simulator Output Format (continued)

L ____________ --
----------· ---

6-15

~varian data machines~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0005 0&10111~ VORTEX MICS!M

MCCD 0
MOPC 1
MAOS 1
f-'BYC n
MIR 0000
lBR 0000
111M AD 0401

TEST CONDITION STATES
UVFL SfNS SSW3 SSW2 SSWt !MUL ALUO ALUS
0000 0000 0000 0000 0000 0000 000t) 0000

•LUC AL.UZ SHFT MIRS SI"TC ROAD NORM QUOS
0000 ooon 0000 0000 0000 ooon onoo 0000

Figure 6·3. Simulator Output Format (continued)

6-16

f'AGE oooe og/07/73

c;cs L.OC 0182 PAGE 0

TS AF MS MT FS TF SF
00 12 OF 00 00 00 01

RF FF MF Cfl' WR sc 'IF
03 OA 01 03 01 01 00

NEXT ccs ADDRESS 012F PAGE

~URRENT TOP OF STACK 0000
NUMBER OF ITEMS ON STACK 0

ALU INPUT A 0000
ALU INPUT 8 OOFg

ALU OUTPUT OOF9

CIN 0
COUT 0

RO 0000 Rl 0000 R2 0000
RA 0000 R5 0000 RS 0000
R8 0000 RQ 0000 RA 0000
RC 0000 RO 0000 RE 0000

p sc OPR KREG IOKR
0401 0000 OOf'g 0000 0000

MCCO 1
MOPC a
"AOS " MBYC 0
MJR 0000
lBR 0000
"MAD OOFD

·--- varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

VORTEX MICSIM

GF MR AB IM L.8 I., A
00 00 00 oe 02 00

w, XF SH 88 AA
00 00 00 00 00

0

H3 0000
R7 onoo
R8 0000
RF 0000

I8R I STAT IOR SH,T QUOS
ooon lOf"O 0000 0000 0000 0000

TEST CONDITION STATES
OVFL. 8ENS SSW3 SSW2 SSWl !MUL ALUO ALUS
uooo 0000 0000 0000 0000 0000 0000 0000

AL.UC AL.UZ SHFT M!RS S'TC ROAO NORM QUOS
0000 0000 0000 0000 0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)

6-17

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0001 09107113 VORTEX M!CSI~

CCS t.OC 012F PAGE 0

TS AF MS MT FS TF Sf' GF MR A8 IM L.B LA
00 tE oc Ot OF 00 00 00 00 00 00 00 00

RF FF MF CF IIIR sc v~ WF XF SH 88 ,.
00 00 00 00 00 00 oo on 00 00 00 00

NEXT ccs ADDRESS OlEO PAGE 0

~URRENT TOP OF STACK 0000
NUMBER OF ITEMS ON STACK n

ALU INPUT A 0000
ALU INPUT 8 0000

AL.U OUTPUT 0000

CIN 0
COUT 0

RO 0000 Rl 0000 ~2 0000 RJ 0000
R4 0000 R5 ooon Rfi ooon R7 OtlOO
R8 0000 R9 0000 RA 0000 RA 0000
RC 0000 RO 0000 RE 0000 Rf' 0000

fJ sc OPR KREG lO(R IBR I STAT lOR SHFT QUOS
U401 0000 OOF9 onoo 0000 onoo lOFY 0000 0000 0000 0000

MCCO 2
MOPC 2
MADS 0
MBYC 0
MlR 0000
lBR 0000
MMAO OOFg

Figure 6-3. Simulator Output Format (continued)

6·18

PAGE oooa

MCCO 0
MOPC 2
MAO! 0
111BVC 0
"'IR 0036
18R 0000
ft'IMAO oo,g

UVFL S£NS
0000 0000

AL.UC ALUZ
0000 000()

·---------------- varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

OQ/07173 VORTEX MICSIM

TEST CONDITION STATES
SSW3 SSW2 SSW I EHUL ALUO ALUS
0000 0000 0000 0000 0000 0000

SHFT HIRS SFTC ROAO NORM QUOS
0000 0000 0000 0000 0000 ooon

Fieure 6-3. Simulator Output Format (continued)

6-19

~ vaMandata ~achines ~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM SIMULATOR, MICSIM

t'AGE ooog 09101173 VORTEX MJCSIM

CCS I.OC OlEO PAGE 0

TS AF MS MT FS Tf SF GF MR AB IM LB LA
00 oa 05 00 00 oo 01 00 00 00 oe 00 00

RF FF MF Cf' WR sc VF WF XF SH 88 AA
04 00 00 00 00 0(') 00 00 00 00 00 00

NEXT ccs ADDRESS ooae, PAGE 0

CURRENT TOP OF STACK 0000
NUMBER OF ITEMS ON STACK 0

ALU INPUT A 0000
AL.IJ INPUT 8 0000

Al.U OUTPUT 0000

CIN 0
COIJT 0

RO 0000 ~1 0000 R2 0000 RJ 0000
RA 0000 R5 000('1 R6 ooon R7 onoo
R8 0000 RQ 0000 RA 0000 RA 0000
RC 0000 RO 0000 RE on on R, 0000

.., sc OPR K~EG tOt<R 18R I STAT tOR SHFT QUOS
0402 0000 OOfY 0000 0000 0000 10FQ 0000 0000 onoo 0000

MCCO 1
MQPC 1
MAOS 1
MBYC (')

MJR 0036
1RR 0000
MMAO 0402

TEST CONDITION STATES
UVFL. SENS SS\1113 SSW2 SS111t EMUL AL..UO AL.US
0000 0000 0000 0000 onoo 0000 0000 ooon
ALUC ALUZ SHFT MIRS SFTC ROAO NORM QUOS
0000 0000 0000 0000 0000 noon ooon 0000

Figure 6-3. Simulator Output Format (continued)

6-20

-------------- varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0010 og10111J VORTEX MICSIM

CCS L.OC 0085 PAGE 0

TS AF MS MT FS TF SF GF MR AB IM L.B LA
OF 00 oe 00 00 00 00 0~ 00 00 oe 01 00

RF FF Mf CF wR sc VF WF XF 5.., BB AA
00 OA 01 00 01 00 00 00 00 00 01 on

NEXT ccs ADDRESS 0080 PAGE 0

CURRENT TOP OF STACK 0000
NUMBER OF JT!~S ON STACK 0

ALU INPUT A 0000
AlU INPUT 8 0036

ALU OUTPUT 0038

CIN 0
COUT 0

RO ooJe R1 0000 R2 0000 R3 0000
R4 0000 R5 0000 Re 0000 R7 0000
R8 0000 Rg 0000 RA 0000 RB 0000
AC 0000 RD 0000 RE 0000 R, 0000

p sc CPR KREG IOKR IBR I STAT lOR SHFT QUOS
0402 0000 ooFg 0000 0000 0000 0000 0000 0000 0000 0000

MCCO 2
MQPC 1
MAOS 1
MBYC 0

"'IR 0036
lBR 0000
MMAO 0402

Figure 6·3. Simulator Output Format (continued)

6-21

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM SIMULATOR, MICSIM

tiAGE 0011 og/0717'!1 VORTEX MICSIM

MCCO 0
MOPC 1
MADS 1
MBYC 0
fi'IIR 0000
18R 0000
fi'IMAO 0402

TEST CONOITION STATES
UVFI. SENS SSWJ SSW2 SS~t EMUL. ALUO ALUS
0000 0000 0000 0000 0000 0000 0000 0000

ALUC AL.UZ SHFT 11IRS SFTC ROAO NORM QUOS
0000 0000 0000 ooon 0000 noon o·ooo 0000
t.XECUTION L.IMIT SATI$FlEO
MS**
N

Figure 6-3. Simulator Output Format (continued)

6-22

-- ------ --~-------- --

SECTION 7

MICROPROGRAM UTILITY PROGRAM,

MIUTIL

The microprogram utility (MIUTIL) loads information into
writable control store and provides an interface with
hardware features of the WCS.

Two sets of directives are provided. The basic set will allow
the user to load the WCS with microassembler output,
examine single WCS words and list WCS contents. The
second group of directives gives the user access to the
debugging features of the control store. With these
directives single microstep execution can be done.

The utility operates in three environments, under the
VORTEX operating system, MOS operating system and as
a standalone program. A standard interface program
provides compatibility.

7.1 BASIC ELEMENTS

The microprogram utility accepts directives as similar as
possible to those of the microprogram simulator.

7.2 GENERAL FORM OF DIRECTIVE

In general a utility directives consists of a unique first
character, followed by a string of parameters, terminated
by a carriage return. The following sections describe the
meaning of each of these first characters and permissible
parameters. Table 7·1 summarizes the utility directives.

The following are the utility directives available to the user:

Table 7-1. Summary of Utility Directives

A. Basic Command Set

Pn
LC
LDA
LDB
MS
MR
Exm
Dxm,n
R

Page select
Load central control store (CCS)
Load decoder control store (DCS) A
Load decoder control store (DCS) B
Media set, selects PI for input
Media reset, selects Sl for input
Examine/change control store x word m
Dump control store x word m through n
Return the operating system or exit from
utility in standalone environment

B. Debugging Directives

Nx
TS
TR
Gn

Enables control store x
Trace set
Trace reset
Set microprogram execution at CCS word

(continued)

varian data machines ~

Xn
I
Bn

Execute n microinstructions
Initialize CCS
Branch to CCS word n

Hn Halt execution at word n

7.3 DIRECTIVE DEFINITIONS

In the following discussion of utility directives, the
characters the user inputs are in bold-face type and
explanation of the action in regular type.

All numeric values are hexadecimal.

7.3.1 Select Page (P)

This directive selects a particular WCS page for the
commands which follow. the commands for ioading, and
dumping do not accept a page number and thus rely on
the previous P command for page selection.

Before the first P command is given by the user, a default
page value of 1 assumed.

The letter P is followed by a hexadecimal digit for the page
number. For example P3 would select page 3.

7.3.2 Load Control Store (L)

This command loads microassembler output into the
writable control store. The user specifies which page is to
be loaded by the prior P command. The user specifies
which control store should be loaded by the one parameter
following the letter L. C indicates central control store, DA
or DB for decode control store A or B, and I for I 10 control
store.

For example, after P2 a command LC would load page two
of the central writable control store.

7.3.3 Examine/Change Control Store (E)

Through this command a single word of WCS may be either
examined or changed. The user specifies which control
store and the word number. The page is obtained through
the previous P command.

The form of the E command is Exmmm where x is either C,
DA, DB or I for central, decode and I /0 control stores
respectively, and mmm is the address of the control store
word in hexadecimal notation.

7·1

~ varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

The utility will type out the contents of the location followed
by a carriage return. The user must then do one of the
following:

1. Change the contents of the location by typing a new
hexadecimal value followed by a carriage return

2. Change the contents of the location and then examine
the next location by typing a new hexadecimal value,
followed by a comma, followed by a carriage return

3. Examine the next location by typing a comma followed
by a carriage return

4. Type a carriage return

For example

Pl
E129
12A3
0,
1233
0
ECF

Action Caused

selects page
Examine l/0 control store location 29
computer types contents
user changes contents to zero
computer types location 2A
user changes its contents to zero
utility accepts another command

7.3.4 Dump Control Store (D)

The dump directive provides a listing of the control store
contents. The page is determined by the prior P command.
The user specifies the locations and control store type in
the parameters.

The general format for the dump command is:

Dxmmm,nnn

where x is C, DA, DB or I for the specific control store (as
above), mmm is the hexadecimal location where the dump
is to start, and nnn is last location to be dumped. If the
final location is missing, the last location of the page is
assumed. If the first address is omitted, it is assumed to
be zero.

Dump command example:

P2
DC

DI30,5A

DI,SA

provides listing of central control
store page 2
provides listing of the I /0 control
store, locations 30 through 5A
list from location zero through 5A

7.3.5 Return to Operating System (R)

This command causes exit from the utility. If running under
MOS or VORTEX, control is returned to the operating

7·2

system. If the utility is running in a standalone
environment, the R directive causes a halt. There are no
parameters, merely the letter R.

The utility will respond with 'MIUTIL EXITED' as its last
output.

7.3.6 Media Set and Reset (M)

This directive allows the selection of an alternate device for
input of utility directives. 'MS' selects the 'PI' unit for
input. 'MR' returns the utility to the Sl unit for input.

Note that receiving an illegal command will cause the media
to be automatically reset to Sl.

The following directives are designed to operate in the
special hardware configuration described in section 7.2.

7.3.7 Enable Control Store (N)

This directive allows the user to enable the specified control
stores. The page number used is the one specified by the
last P command.

The general form of the N directive is:

Nx

Where xis D or I, which specifies the decoder or l/0 control
respectively to be enabled.

For example:

Pl
NO enables decode control store, WCS page 1.

7.3.8 Trace Execution (T)

The purpose of this directive is to provide the user with a
means of following micro execution while it is in progress.
To accomplish this, the address of each microinstruction is
typed before it is executed.

The general form of the T directive is:

Ta

Where a is one of the following: S for setting or enabling
trace mode, or R for resetting or disabling trace mode.

Before the first T directive is given, the trace mode is reset,
i.e., turned off.

7.3.9 Set Micro Execution Address (G)

This directive allows the user to choose a location for
starting microprogram execution.

This routine will do the following:

1. Step the WCS to stop any execution that might be in
progress

2. load the micro address register· with the specified
address

3. step the WCS to load the first micro into the control
buffer.

4. if trace mode, the next control store address to be
executed will be read from the WCS and output to the
user.

This directive does not begin execution. It serves only as
the setup for an X directive.

The format of the G directive is as follows:

Gn

where n is from one to three hex digits specifying a word
number in central control store.

The page is obtained from the last P directive.

7.3.10 Execute Microinstruction (X)

This directive is used after the G directive to begin actual
micro execution. It can be used to specify free-running
execution or execution of a fixed number of micro's
followed by a halt. By requesting execution of a single
micro, followed by a halt, it can be used to stop free·
running execution.

If free-running execution without trace is requested, the
fine clock will simply be enabled to run free. There are
two ways of interrupting this. An X directive specifying
execution of one microinstruction will step the WCS. It can
then be restarted by another X directive. The G directive
will also stop free-running execution. It sets a starting
address, however, and thus it should not be used if the
interrupted execution is to be restarted where it left off.

If free-running execution is requested in trace mode, then
the WCS is simply single stepped an indefinite number of
times. This allows reading of the WCS address before each
single step.

If execution of a fixed number of microinstructions is
requested, the WCS will simply be stepped the appropriate
number of times. If trace mode, then the address will be
accessed from the WCS and returned to the user before
each micro is executed.

The following is the format of the X directive:

Xn

Where n is zero for free-running execution or non-zero to
request execution of n microinstructions.

varian data machines ~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

The default value for n is 1.

For example:

X7

xo

X

execute 7 microinstructions

enable free run execution

execute one microinstruction (note: this
would halt the previous free run)

7.3.11 Initialize WCS (I)

The purpose of this directive is to execute an EXC 07X
command. This will deselect all WCS control stores,
terminate any DMA operations in progress and enable free
run of the fine clock. The result is that control will return
to the ROM with all WCS activity suspended.

This command should only be used when a meaningful
ROM location will receive control. Thus, it should not be
used for such things as halting a free-running
microprogram.

7.3.12 Branch to CCS (B)

This command simply executes an I /0 branch to the
specified address in central control store. Such a branch
causes free run execution to begin at that location. The 8
command thus produces a similar effect to a Gn, XO
command sequence. The 8 command never steps the
WCS, though, and thus cannot respond to the trace flag.

The general form of the 8 directive is:

Bn

Where n is from one to three hex digits specifying a word
number in central control store.

The page number is obtained from the last P directive.

7.3.13 Set Halt Address (H)

This directive may be used with the X directive to single
step microprogram execution to a certain address in WCS.

The format of the H directive is:

Hn

where n is from one to three hexadecimal digits specifying
a word in control store. The page number is specified in
the last P directive.

Single stepping as a result of an X directive will be
terminated when the specified location is the next one to
be executed. A message in the trace format will be output
to signal this.

7-3

~ varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

Trace may be removed by entering HO. Only one halt
address may be set at a time.

7.4 OPERATING INSTRUCTIONS

7.4.1 Program Loading

Under for VORTEX, load VORTEX as described in the
VORTEX Reference Manual, 98 A 9952 lOR. The utility
should be in the foreground library. It can be put there at
system generation time or added later using the load
module generator.

To load the utility and begin execution, an OPCOM
schedule directive is necessary. For example:

;SCHED,MIUTIL,3,FL,F

schedules the utility at priority three.

Under for MOS, load MOS as described in the MOS
Reference Manual, 98 A 9952 09R. Then, the MOS loader
may be used to load the utility program. Execution will
begin on successful completion of the load.

For example:

IJOB,UTIL
/LOAD
Utility program binary object
EOF (2-7-8-9 multi-punch)

In a standalone environment, load the Varian 620 Stand­
alone FORTRAN IV system loader as described in VDM
document number 89 A 0226. Instruct the loader to
change its logical unit numbers by entering appropriate
values. Next, load the utility binary object, followed by the
FORTRAN IV standalone system runtime tape and the I /0
control tape. On completion of load, the machine will go
into step. Press run to start execution.

7 .4.2 Program Execution

After successful loading, the utility program is entered
automatically. The program will first type MICRO
UTILITY to identify itself. Next, the configuration will be
determined by the following request:

DEBUG CONFIG? (Y OR N)

The user should then type 'Y' followed by a carriage return,
if his system is in the special two processor debug
configuration described in section 7.2. Otherwise, if his
system is simply the standard configuration, the user
should type, followed by a carriage return.

7-4

The micro utility will then type

EVEN WCS DEV ADDR

The user should then type either 70, 72, or 74, depending
on the hardware configuration followed by a carriage
return.

The utility will then type:

MU**

To indicate that it is ready to accept a command.
Whenever an illegal command is given, an error message
is typed. Description of the various messages can be found
in section 7.5. Note that a command may be in error either
due to bad syntax or due to context. An example of the
latter case is giving a debug command in a non-debug
configuration.

During execution of the D and X directives, SENSE switch 3
may be set to terminate their execution prematurely.

SENSE switch 1 may be set during tracing to suppress
listing of page zero addresses.

7.5 DEBUGGING CONFIGURATION

The additional debugging directives of the utility cannot
operate on the WCS of the processor on which the utility
itself is running. For this reason, a special hardware
configuration is needed to use these directives.

The special configuration must have two computer systems:
one with a WCS and the other actually operating the
utility. The WCS must have the configuration described for
the stand-alone environment above.

The system which runs the utility program must have the
hardware appropriate for the type of operating system or
for stand-alone operations, but the processor need not
have any writable control store and the processor itself can
be either a 700X, 620/f or 620/L. Operating system
requirements prevail, since VORTEX does not run on a
620/L.

The Writable Control Store Reference Manual (Varian
document number 98 A 9906 08x) describes the physical
properties of this two-processor system for debugging.

7.6 ADDING UTILITY TO VORTEX

The microutility resides on the foreground library under
VORTEX. After system generation, however, the user is
responsible for cataloging it there. The following procedure

may be used to do this. First, position the Bl device to the
microutility object material. Then, issue the following
directives:

/LMGEN
TIDB,MIUTIL,2,0
LD,BI
LIB
END,FL,F

(For detailed descriptions of these directives, refer to the
VORTEX Reference Manual.)

Under VORTEX II, the WCS reload task and WCS image file
must also be created and placed on the appropriate
libraries. To do this, position the Bl device to the object
material for the reload task and then issue the following
directives:

/LMGEN
TIDB,WCSLOD,2,0
LD,BI
LIB
END,FL,F

The WCS image file, WCSIMG, can be created using the
following directives:

/FMAIN
CREATE,OM,P,WCSIMG,120,xx

where xx is 20, 40, or 60 for 1, 2, or 3 WCS pages,
respectively.

(Detailed information on this directive can be found in the
VORTEX Reference Manual.)

varian data machines ~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.7 UTILITY ERROR MESSAGES

Message Reason

General

MUOl Input could not be interpreted as a valid
command.

MU02 A non-hex character was encountered when hex
expected.

MU03 EOF detected on Sl. Return mode to operating
system.

MU04 The selected page number was not valid.

WCS Access

MU05 Unable to access WCS: WCS is busy.

MU06 Unable to access WCS: BIC load in progress.

CS Loading

MU07 Read error on Bl device.

MU08 EOF encountered before load complete.

MU09 EOD/BOD encountered before load complete.

M U 10 Sequence error on B I.

MUll Invalid loader code.

MU12 Checksum error.

7·5

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.8 EXAMPLES

The following is a sample of microutility output:

PAGE 0000 OY/07/73

VARIAN 73 MICRO UTILITY

UESUG CONFIG ? (Y OR N)
N

tVEN wCS OEV ADOR
12
MU**
tC25
ooooooooonoooooo ,
U026
ononoooooooooooo ,
0027
uooonooooooooooo
CSA,
0028
OOOOOOOOODOOOOOO

MU**
UOA8 1 8

~AGE 0001 OQ/07/73

UCS A , PAGE 01

0008 0000 0000 0000 0000
fi1U••
UOB

tiAGE 0002 09101113

UCS B , PAGE 01

0000 0000 0000 0000 0000
0008 0000 0000 onoo 0000
MU••

VORTEX

VORTEX

VO~TEX

0000 0000
0000 0000

UC5,7 Figure 7-1. Utility Output

7-6

MIUTIL

MIUTIL

MIUTIL

0000 onoo
0000 0000

---------------- varian data machines ~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

t-'AGf 0003 og101113 VORTEX MIUTIL

~CS LOC 0005 PAGE 01

TS Af MS MT FS TF SF GF MR A8 lM L.B LA
00 00 00 00 00 00 00 00 00 00 00 00 00

RF FF MF CF WR sc VF WF XF SH 88 AA
00 00 00 00 00 00 00 00 00 00 00 00

CCS LOC 0006 PAGE 01

TS lF HS MT FS TF SF GF MR AB I~ LB I. A
00 00 00 oo 00 00 00 00 00 00 00 00 00

RF FF MF CF WR sc VF WF XF Slot BB Al
00 00 00 on QO 00 00 00 00 00 00 00

L:CS t.lJC 0001 PAGE 01

TS AF MS MT '; s TF SF GF MR AB IM LB L.A
00 00 00 00 00 oo 00 00 00 00 00 00 00

RF. FF MF CF wR sc VF WF XF. SH 88 AA
00 00 00 00 00 00 00 00 00 00 00 00

MU**
L.C
LOAD COMPLETE
MU**
~I
L.OAO COMPLETE
MU**
fr(

7 7

SECTION 8

DECODE CONTROL STORE, 1/0
CONTROL AND ADDITIONAL TOPICS

These topics are not of interest to all microprogrammers.
Both decoder and I /0 control stores are options and also
less trivial to program. Not all applications require an
understanding of the item treated as additional topic
which is multiple environment applications.

8.1 DECODER CONTROL STORE

Preliminary decoding of instructions in the instruction
buffer is performed by the instruction decoder control
store and the instruction decode logic. These elements
translate the 16-bit instruction into a 9-bit control-store
address according to the contents of the instruction
decoder control store.

The instruction decoder control store consists of two 16-
word by 16-bit memory arrays. The prodcessor implements
this with programmable read-only memory (PROMS). An
option of the WCS permits selection of read /write arrays to
permit alternate decoding strategies.

The decoder B control store array uses instruction buffer
bits 12 through 15 as an address. The decoder A control
store array uses instruction bits 08 through 11 as an
address. The formats for these two control store arrays are
in figure 8-1.

The decoders are identified as A and B. Bits within them
numbered right to left starting with zero, so that bit 10 of
decoder B is identifed as 810. A and B designations are
accepted by microprogram simulator and utility programs.

The decoder address is enabled by the TF and SF fields
both equal to 00 and the GF field equal to X1XX. If an
interrupt is present, decoding is inhibited and interrupt
addressing is used.

Decoder addressing will be inhibited if the IM field equals
11XO. If decoder addressing is so inhibited and no
interrupts are present, field select addressing is used.

The possible components of a decoded address are shown
in figure 8-1 and 8-2. The 9 low-order bits obtained from
the decoder B are always used in decoder addressing.

The most significant 5 bits (4-8) in decoder A are included
in the control store address bits 4 through 8 by an

varian data machines ~

inclusive OR, if either of the following bit combinations
exist in the first decoder output:

812 equals zero

or

815 equals zero

The least significant 4 bits of decoder A are included in the
control store address bits 0 through 3 by an inclusive OR if
either of the following bit combinations exist in the first
decoder output.

812 equals zero and 810 equals one

or

815 equals zero and 810 equals one

The contents of instruction buffer bits 04 through 07 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
exist:

814 equals zero

or

815 equals zero and A13 equals one

The contents of instruction buffer bits 00 through 03 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
eXISt:

813 equals zero

or

815 equals zero and A13 equals one

One exception to this is the contribution of instruction
buffer bits 04 through 07. The contribution to control store
address bit 2 will be the contents of Instruction buffer bit
03 instead of bit 06, if the decoder B bit 00 equals one
and the decoder A9 equals one.

Decoder addressing is used to perform a preliminary
instruction decoding function. It permits instruction
classes to be discriminated with the detailed decoding
performed later by field select addressing after the
instruction buffer is transferred to the instruction register.

The meaning of other bits in the two decoder control store
words is shown in figures 8-1 and 8-2. These signals are
available at a processor connector and are used by Varian
73 options to detect certain instruction classes.

8-1

ol I

CXl
N

.,
oti'
c
;;
~
c
~
n
0
Q,

~
(")
0

~
2.
eft

~
~ .,
0

3
!!!.

DECODER
B

DECODER
A

Bl5

-
(S32)

Al5

(NOT
USED)

Bl4 Bl3 Bl2

- - -
(S3l) (S30) (T32)

Al4 Al3 Al2

(S21) (S20) (XX3)

Bll BlO B9

(04) (00) (l 0)

~

All AlO A9

(XXO) (XX2) (XX5)

L

B8- BO

(CIDA3X)

AND A 13

A8- AO

(CIDA2X)

DECODED FROM
INSTRUCTION BUFFER
BITS12-l5

BITS OF DECODER A
ED

IFICANT 9 BITS
TS 00-03 TO
s 0-3
TS 04-07 TO
s 0-3
STORE BITS A 14

DECODED FROM
INSTRUCTION BUFFER
BITS 08-11

OF DECODE ADDRESS
ON

NABLES INSTRUCTION BUFFER
TO ADDRESS BITS 0-3

BY Bl5 FALSE, ENABLES INSTRUCTION BUFFER
BITS 04-07 TO CONTRIBUTE TO ADDRESS BITS 0-3

lri
n < 0 z C»
ooo4

... -· :::u
0

I» ,... :::J
(I) Q.
ooo4
0

I» ...
:::u
~

I»

' 3
0 I»
n ()

0 ::T
z :::J ooo4
:::u CD
0 ,... en
~ z c
~ c c
~
0 z
~ ,...
ooo4
0 .,
n
(I)

varian data machines ~
DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

CONTROL STORE
ADDRESS BIT s I 7 I 6 I 5 I 4 I 3 I 2 I I o

B8-BO

A8-A4

(FROM DECODER A)

B 1 5 -o 0 R B 12 = 0

ENABLED COMPONENTS ARE LOGICALLY OR 'ed.

ALL DECODER COMPONENTS ARE INHIBITED UNLESS
THE SF FIELD EQUALS 00 AND THE GF FIELD EQUALS
X1XX AND NO ENABLED INTERRUPT REQLJESTS ARE
ACTIVE.

(FROM DECODER B)
(DECODED FROM BITS 12-15
OF INSTRUCTION BUFFER)

B13

A3-AO
DECODED FROM BITS 08- I I
OF INSTRUCTION BUFFER

INSTRUCTION BUFFER
BITS 00-03

0 OR (B15 0 AND A I 3-

INSTRUCTION BUFFER
BITS 04-07

1)

IN ADDITION, DECODING MAY BE INHIBITED BY THE
IM FIELD EQUAL TO I IXO. 814

I * 0 OR !Bl5

I
0 A" 1 r"\ A 1 A 1\

Mt'-JU 1-\1"-t 1)

* THIS BIT IS FORGD TO STATE OF INSTRUCTION BUFFER BIT 03
IF DECODE~ 1 BIT 00 I' 0/'J Ai'JD DECODER 2 BIT XX5 IS 01--J.

VT/1-1937

Figure 8-2. Decoder Address Components

8.2 l/0 CONTROL STORE

8.2.1 Microprogram Initiation

The microinstruction can initiate l/0 activity by signalmg
an l/0 request while forming a starting address for the
independent l/0 control store. An l/0 request is made by
setting the SF field equal to 00 and the IM field equal to
lllX. (If the IM field equals 1110, decode addressing 1s
inhibited).

The I /0 control-store starting address is specfied by the
MT, MR and TS fields.

I
7

I :R I
5 4

31
2

I
0

MT TS ABl o;o 0

l/0 request l/0 Control
SF 00 Store Starting
IM = lllX Address

':'ABl is most significant bit of the AB field

The microinstruction can wait for completion of l/0 act1vity
by specifying a wait for l/0 done. This is coded by setting

the SF field equal to 00 and the IM field equal to 0010.
Execution of this and subsequent microinstruction will be
inhibited until the l/0 sequence is completed. If the l/0 is
busy performing a sequence and an I /0 request is issut<:d
execution of the microinstruction specifying new I 10
act1v1ty will be inhibited until the l/0 completes its current
sequence.

Standard l/0 page zero starting addresses for processor­
Initiated l/0 are:

Hexadecimal

Address

04
oc
lC

Action

Sense, EXC or EXCA l/0 sequences
Data Input
Data Output

I /0 operations can be initiated by external events such as
DMA traps. Standard I /0 page zero addresses are:

Hexadecimal

Address

40
50
70
80
DC

Action

DMA trap out
DMA trap in
High-speed DMA trap out
High-speed DMA trap in
Interrupt

8-3

~ varian data machines

DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

8.2.2 l/0 Microprogramming

The l/0 control section performs l/0 sequences initiated
from either the Varian 73 processor microprograms or
external DMA trap requests or interrupts.

I /0 microprogramming must be undertaken only with a full
knowledge of the hardware function of the I /0 control
section. This is described in the maintenance manual
(Varian document number 98 A 9906 080) for the Varian
73 system and in accompanying logic diagrams.

No simulator program exists to aid in debugging 1/0
microprograms.

All special l/0 microprogramming must be considered an
engineering design more than a programming task.

I /0 control performs the following functions in accordance
with the sequence l/0 microinstructions stored in the l/0
control store:

Control the source of data applied to the I /0 register
input bus.

1/0 register input bus.

Control loading on byte shifting of the I /0 register.

IDLE true indicates the l/0 control is not idle and further
requests are to be ignored as long as IDLE is true, the l/0
address counter and I /0 control buffer are enabled.

At each succeeding microinstruction time the address
counter is incremented and the l/0 control buffer is
loaded with the contents of the address designated by the
address counter. The 16 bits of the I /0 control buffer
control all l/0 functions. Their use is described below:

coo
COl

CD
1 0

0 0
0 1

0
1 1

C02
CD3

Control the processor's
l/0 data loop multiplexor (IOMXX +)

l/0 Register Input

ALU
Memory l/0 register
l/0 bus byte swapped
l/0 bus

Control the processor's
l/0 register

Initiate memory cycle requests to the Varian 73 CD
memory control section. 3 2

Initiate I /0 bus control signals.

Wait for completion of external events such as memory
cycles, new processor microprogrammed requests,
external control signals, etc.

Signal completion of l/0 activity to the processor's
central control section.

I /0 control store formats are shown in figure 8-3.

The l/0 address counter is automatically incremented at
completion of each microinstruction unless a "WAIT" or
"IDLE" state is entered. This counter is cleared to zero by
system reset.

I 10 microinstructions are executed from sequential ad­
dresses until the end of the sequence whereupon the l/0
becomes idle and ready to accept new requests.

As the address counter is loaded with its starting address,
the I /0 control buffer is loaded with the contents of I /0
control store location corresponding to the last contents
of the address register. Following a system reset this will be
the contents of I /0 control store address zero. At all other
times it will be the ending address of the previous I /0
sequence. In either case, the standard data will cause bits
I OLE and ON to become true.

8-4

0 0 No action
0 1 Shift right (left byte to right byte)
1 0 Shift left (right byte to left byte)
1 1 Load from ALU

These bits do not directly control the I /0 register. The I /0
register may also be controlled by I OLE (when the I /0 is
idle, the register is continously loaded from the ALU).

CD4

FRY

Spare

DRY

IDLE

Enables the processor's I /0 register onto
the E-bus.

Initiates an l/0 function ready (FRYX-1)
signal. RYX-1 is terminated 247.5 nano­
seconds later by signal lilT-.

Not used.

Initiates an I 10 bus data ready (DRYX-1)
signal. DRYX-1 is terminated 247,5 nano­
seconds later by signal IEDRYN + derived
from lilT-.

Determines idle/busy status of 1/0 control.
While busy the l/0 can accept no new re­
quests.

"TT
riii'
~
C1)

co
~

0
3: c:;·
0
:r
"' ...
1::

!l cs·
:::1

"TT
0

3
2!

15 1 14 1 131 12 11 10 09 08 07

CDX FRY SPARE DRY IDLE

0 I 1 _f 2 3 4

'--- ~~

i

I 0 REGISTER INPUT

0 0 ALU OUTPUT
1 0 MEMORY I 0 REGISTER
0 1 I· 0 BUS BYTE S'.'.'A PPED
1 1 I 0 BUS

I
I 0 REGISTER 0 PERA Tl 0 N

0 0 NO ACTION
1 0 LEFT BYTE TO RIGHT BYTE
0 1 RIGHT BYTE TO LEFT BYTE
1 1 LOAD FROM SELECTED SOURCE

l
I ENABLES I 0 REGISTER TO I 0 BUS

I
IF HIGH SPEED DMA INITIATE I 0 CONTROL SIGNAL
FRYF-1

06 05 04 03 02 1 o 1 1 oo

WAIT ROM CRY DN EFY

y 0 1 2

I. .)

i
L...--- IF 0 SIGNALS I 0 COMPLETION TO

CENTRAL CONTROL

RESERVED FOR FUTURE OPTION

REQUEST MEMORY CYCLE

PUT I 0 I N "':/A I T " S T A TE

SET I 0 BUSY

I
INITIATE l/0 CONTROL SIGNAL DRYX-1 IF NO HIGH SPEED
DMA AND INTERRUPT S EOUENCE FLIP-FLOP NOT SET r II NTFl

INITIATE I 0 CONTROL SIGNAL DRYF-1 IF HIGH SPEED DMA

INITIATE I 0 CONTROL SIGNAL IUJX-1 IF NO HIGH SPEED
i

DMA AND INTERRUPT SEQUENCE FLIP-FLOP SET IIINTFr

I
0 1 2 FUNCTION

0 0 0 SELECT WAIT ON EXTERNAL
1 0 0 LOAD NEW SEOLE NCE ADDRESS 1//H EN N E !/

PROCESSOR RESULT RECEIVED
0 1 0 ADVANCE CLOCK COUNTERS RESET INTERRUPl

ACKNOWLEDGE
1 1 0 '.VAIT FOR MEMORY CYCLE ACKNO':/LEDGE
0 0 1 'NAIT FOR PROCESSOR REQUEST
1 0 1 STEER DRY TO I 0 BUS

c
"" (")
0 c
"" (")
0 z
-t
::a
0 r-
CI)
-t
0
::a
-"" -0
(")
0 z
-t
::a
0 r-,..
z c ,..
c c
=i
0 z ,..
r-
-t
0 -a n
Cl)

<
C» ... a;·
::::s
Q.
C» -C»

3
C»
(')
::r
::::s
CD en

NOT HIGH SPEED DMA INITIATE I 0 CONTROL
0 1 I ACKNOWLEDGE PROCESSOR Rt:OUEST V/HEN

SIGNAL FRYX-1
MEMORY ACKNO\VLEDGE RECEIVED

1 1 I C:PA PI= ~ _J ' ' JO ~"" ~

TRAP AND
INTERRUPT
REQUESTS

r

DECODE CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

,,
ADDRESS
GENERATOR

v

ADDRESS FROM CONTROL
MICROINSTRUCTION

v
I/O ADDRESS COUNTER

v
I/O CONTROL STORE

v
I/O CONTROL BUFFER

I L--------4!'~ MEMORY REQUESTS

L--------~~• CONTROL SIGNALS TO
I/O REGISTER
1/0 BUS DRIVERS
I/O REGISTER INPUT BUS L-----------•.. I! 0 DONE

L------------'"""'i~~ I/ 0 IDLE ,,
1;0 BUS CONTROL INTERFACE

I 0 BUS CONTROL SIGNALS

VTII-19J4

figure 8-4. J/0 Control Simplified Block Diagram

8-6

varian data machines ~
DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

WAIT Places the l/0 control in a "wait"
state by inhibiting address counter and
ROM buffer clocks until receipt of a
designated signal. The l/0 may wait for
any of the following:

new processor request

processor interrupt flag reset

data memory cycle complete

external wait signal

Selection of the specific condition is
determined by the function bits EF2,
EFl and EFO of the I 10 control buffer.

RQM Requests a DMA memory cycle from the
processor's memory control.

CRY Channel request. Reserved for
future option.

ON

F2

EF
2 0

0 0 0
0 0 1

0 0
0 1
1 0 0

0
0

Results in an 110 done signal (IDNC­
Iow) to signal the processor of completion
of the I 10 sequence.

Function bits which control:

selection of "wait" condition

advance of interrupt clock counters

steering of DRY

acknowledge interrupt requests

loading of new sequence addresses

Select wait on external signal IEXW +
Load new sequence address from CPU if
CRQIO +
Advance IUCX and IUCF clock counters
Select wait for memory cycle complete
Select wait on CPU request
Steer DRY to DRYX-1
Acknowledge interrupt sequence request

from CPU
Not used

Any I /0 sequence continues through successive ROM
addresses until address counter and ROM buffer clocks
are inhibited by either of two conditions:

I OLE becomes false signifying end of sequence or
WAIT becomes true signaling that the current sequence
must stop to wait for some external event such as:

memory cycle

new processor request

new processor request

interrupt flag set

external wait line active

For programmed I 10 sequences signal DN will become
active and at the next microinstruction time I OLE will
become active also. IDLE causes l/0 sequencing to stop.

The I /0 sequence is thus completed leaving the address
counter loaded with an address whose contents I OLE and
ON. This will be the first data loaded into the ROM buffer
when clocks are reenabled.

8.2.3 Example of 1/0 Microprogram:
Clear and Input to A

The flowchart and code sheet following describe the
standard programmed I /0 sequence for V73 input data
transfers. The corresponding flowchart for the processor
microprogram to initiate the l/0 transfer may be found in
the second volume of the V73 Maintenance Manual.

Referring to the processor microprogram flowchart for the
sequence required to start the I /0 operation, the first
central control address is lAO. This was obtained with
decode addressing. The entire sequence will now be
traced.

IABMl (lAO)

This microinstruction causes the operand register to be
loaded with a mask word containing only bit 13 true.
Normal addressing specifies the next address.

IABM2 (1C3)

This microinstruction specifies an l/0 request with an l/0
starting address of OC. If the I 10 was idle (the I 10 control
store buffer IDLE bit was a zero) the l/0 control accepts
the starting address and simultaneously loads its control
buffer with a standard code of 0088. This places the I 10 in
its "busy" state and signals the processor that the I /0
operation was accepted.

8·7

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~~~
DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

During this microinstruction the processor transfers the
operand register to register E (this register has been
designated S1).

IABM3 (1F3)

This microinstruction logically OR's the contents of register
E with the masked (bits 0-8) contents of the instruction
register. This places the device address, function code and
bit 13 (specifying an input transfer) at the ALU output.

In the 1/0 control the l/0 microprogram is executing the
microinstruction at location OC which loads the I /0
register with ALU output data.

The processor microprogram specifies a "Wait for l/0
Done" which causes further processor operations to be
suspended until the l/0 control signals completion. The
remainder of the l/0 sequence will now be traced.
Addresses are sequential.

l/0 address OC is "NOP". It performs no function.

Table 8-1. 1/0 Microprogram Example Code

I /0 address of continues to enable the I /0 register to the
I /0 bus and generates the I FRYX-1 control signal to signal
l/0 devices that a new address and function code may be
sampled.

I /0 address 10 performs the same function as OF. This
allows for I /0 bus settling time.

I /0 address 11 selects the I /0 bus as an input to the I /0
register. The selected l/0 device may place its data on the
l/0 bus.

I /0 address 12 continues to select the I /0 bus as an input
to the l/0 register and generates control signal IDRYX-1.

I /0 address 13 continues to select the I /0 bus as an input
to the l/0 register, continues to generate IDRYX-1 and
causes the l/0 register to be loaded with the data placed
on the l/0 bus. l/0 control buffer bit "ON" becomes false
permitting microinstruction execution to proceed.

l/0 address 14 returns the l/0 control to an idle condition.
Simultaneously the next central control microinstruction is
executed.

CIA (090)

This microinstruction transfers the I /0 register contents to
register 0 (the A register). The program counter is
incremented and a new instruction fetch is initiated. The
microprogram branches to SS3M (020) where the instruc­
tion buffer is decoded to branch to the start of the next
instruction.

8-8

Note that l/0 address 15 will be executed when the next
I /0 operation is started. This microinstruction contains
the standard code of 0088 which will place the l/0 in its
"busy" state. ·

8.3 MULTIPLE ENVIRONMENT APPLICATIONS

This section describes using the Varian 73 WCS for
extended instruction execution and dual/multi environ­
ment applications.

This section discusses the application of WCS to extend the
standard V73 emulation of a Varian 620/f to perform
additional instructions and functions. It also discussed a
dual environment implementation, which can be extended
to multi-environment machine.

Application of the WCS to Extend V73 Execution

Capabilities

Using the V73 macro BCS, it is possible to define entry
points in extended micro store for a large number of
special functions. These extended functions can be
defined to use V73 hardware not explicit in the 620/f
emulation such as 16 general purpose accumulator
registers and more explicit status testing. Examples of
application of this capability would be implementation of
floating point arithmetic, stack organizations and so on.
Characteristic of extended operations is that no primary
decodes would occur during the operation (exceptions are
possible of course). It is possible to enable interrupts while
disabling primary decode so it would be possible to allow
interrupts during very long microsequences. However, the
point of interruptability and its ramifications would have
to be carefully considered.

Application of the WCS to Dual/Multi

Environment Operation of the V73

Emulation of instruction architectures other than that of
the host machine is achieved by performing primary
control store address decoding in the WCS extended
control store. It is possible to have unique architecture in
each 512 word block of control store. Some possible
examples of this would be:

1. Hardware emulation of a VXX machine under control of
WCS in the V73.

2. Implementation of a higher level language processor
operating under control in the V73.

3. ETC.

VT/l-1811

varian data machines ~

DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

MM
T R TS AB

CRQIOA
0 0 0011 00

-
- PROGRAM ENTER
- HALT LOOP ENTER

DALxx -IORxx

OD

NOP

IORxx - EBxx

OF

IFRY
IORxx -EBxx

0 0

7

0011 10

0

~ 10

IFRY
IORxx -- EBxx

11

EBxx - IORxx

12

!DRY
EBxx- IORxx

13

!DRY
CL K !OR

EBxx -IORxx

Figure 8-5. Flowchart of l/0 Microprogramming Example

8-9

~varian data machines~~~~~~~~~~~~~~~~~~~~~~~~
DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

IABMl

IABM2

IABM3

FROM
PREVIOUS

INSTRUCTION

t
MASK -DOR

t
1/0 START
DOR-Sl

t
FIELD SELECT 6-8
WAIT FOR IDN

51 OR MASK I-lOR

VTJ/-1815

lAO

103

IF3

!MEl
Is 16 17

~

INA

~

INB

~

INABl

011

CIA

~

CIB

~

CIAB

~

098

MEM START
lOR -DOR

RESET CINTF

099

MEM START
!NCR p ~

A OR lOR-A

09A

MEM START
INCR P

B OR lOR -B

B OR lOR -DOR

MEM START
!NCR P
lOR-A

MEM START
!NCR P
IOR-B

MEM START
!NCR P

lOR-A, DOR

~

.. ... (SS3M)

098

r--~

090

~

09E

r--.

09F

IME2 lr 09C

MEM START
!NCR P ~ (SS2M)

DOR -lv'IEM

INAB2 082

MEM START
!NCR P

A OR DOR-A, DOR

__...

lAB ----. 083

ENABLE D-ROM & INTRPT;
~

NEXT
INSTRUCTION Mli-C21; DOR--B;

TEST & RESET CINTF

Figure 8-5. Flowchart of l/0 Microprogramming Example (continued)

8-10

varian data machines ~
DECODE CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

An Example of a Second Environment

Architecture and V73 Call Sequence

For our example, we will define a second environment E2
(as distinguished from the V73 environment E1) which can
use general registers of the V73 as stack pointers, general
purpose accumlators and so forth. The question arises as
to interruptability of this second environment and what
registers are available to E2.

A macro sequence to call E2 from the V73 could be:

p BCS (105000) page jump to E2 entrance
micro

(P) + 1 xxxxx LOC of first instruction of E2 in

main memory

(P) + 2 BCS (105001) page jump to E2 interrupt

return entrance

E2 Entrance and Interrupt Micro Code

The normal entrance micro code saves (P) + 2 at register
E for reference in case of an interrupt. Also, it can be used
to return jump to the next V73 instruction when
environment 2 is completed.

Upon receiving an E1 interrupt while in E2, the microse·
quence (simplified) is as follows:

2 SAVE REG.

3 3 TO A

4 4 TO B
5 TO C

RESTORE
5 REG. 3,5
6 1 's to 5

O's to 3

STORE

RETURN

PAT D

PAGE JMP

7

8

to V73 interrupt m1cro
processor

in V73,620/f environment

register 5 is all ones
and register 3 is all
zeros. Registers 4, E
and F are temporary
storage.

(continued)

The content of E is the return instruction location as
required by control word 001. Only registers 3,4,5, E and F
may be subsequently modified by 620 code and it is only
necessary to save 3,4,5 as the return path will supply
restoration of E.

The interrupt return is implemented via the BCS at the V73
interrupt return reference. The interrupt return entry code
restores registers 3,4,5 from A, B and C respectively and
stores the location of the interrupt return BCS in E. The
code then restarts the instruction pipeline at the reference
stored in D. Note that the V73 interrupt routine is
responsible for maintaining A, 8 and X registers (0, 1 ,2).

E2 Register File Usage

We can now see that the second environment has 10
registers (0·9) available for general purpose use, while E is
allocated for the interrupt return page jump instruction
address. Registers A, 8, C, D and F are also available for
intermediate usage between interruptable states.

Considerations of Saving and Storing Status

The above example does not define how status is to be
saved and restored. This should be considered when
defining the interruptability of the second environment. In
any event, register and overflow status will be maintained
by the V73 environment interrupt routines but the equal,
less than and greater than status is more difficult. This
may involve saving the status in the interrupt return micro
code.

Further Discussion of Multi-Environment Systems

The above example of interrupt handling in multi-environ­
ment machine is presented as an exploration of a
mechanism which solves the problem given a particular set
of system restraints (interrupt service routines are in the
host 73 environment and do not use other than normal
620/f instructions, i.e., instructions only use registers 0, 1,
2, 3, 4, 5, E, F).

Each different set of environments may require different
mechanisms of interrupt handling. Some will require
saving registers in main memory, possibly at locations
relative to the location of the interrupt return page jump.
An alternate environment might utilize its own l/0 drivers,

8-11

~ varian data machines

DECODE CONTROL STORE, l/0 CONTROL AND ADDITIONAL TOPICS

which would involve locking out interrupts and swapping
out interrupt entrance code and possibly also the interrupt
processing routines. In this situation the second environ·
ment might offer system executive control as well as its
optimized functions. When environment, register save/
restore will probably have to be comprehensive and in main
memory.

Other Multi-Environment Considerations for

the V73 System Reset

The system reset function will normally be wired to return
control to the host module (normally zero).

Power Fail/Restart

The system executive is expected to contain the necessary
job restart information in case of a power fail. Therefore,
the host environment is not required to save facilities of an
alternate environment (some of which are unknown to the
host machine). The E2 environment could be saved if
desired by using a special instruction such as a 620/f
extension macro which saves and restores the file.

8·12

Step Mode

If it is desirable to single step computer operation in
alternate environments, it is necessary to micro code a
halt loop in that environment. The alternate environment
has the option of enabling or disabling the step function in
its micro code.

Conclusion

These are two basic applications for the Varian 73
computers extendable WCS. Its use for extending the
instruction set of the standard 620 emulator is quite
straight forward. Its application to produce a dual or multi
environment machine was also seen to be practical and
feasible with the system problem of interrupt handling
examined in some detail. In fact, a second environment
which offered 10 general purpose registers and 5 scratch
registers for implementing stack/queue pointers, floating
point registers or whatever, was demonstrated.

Because of the ability to add new instructions to the 620
emulation in the V73 and the flexibility of micro coding,
the example is really only one of many possibilities. The
mechanism generally will be designed to meet require·
ments of the system definition.

. I

SECTION 9

GLOSSARY OF MICROPROGRAMMING

MICROPROGRAMMING GUIDE

GLOSSARY !INDEX

Entries are a brief definition followed by the page number
or numbers in this test where additional discussion can be
found. These definitions reflect the usage preferred for
consistency and a minimum of terms. Whenever two words
have been used previously for the same item a choice was
made in favor of the most meaningful and unambiguous.

AA

A8

addressing

AF

ALU

ALUC

ALUO

ALUS

ALUZ

application
software

ASCII

assembler

88

microinstruction field of bits 0 · 3
to select an ALU source on bus A
and/or destination

microinstruction bit 35, which is
used in field-select addressing and
I /0 requests

determination of next instruction
to be executed

microinstruction field which contri·
butes to address generation

Arithmetic and logical Unit, the
logical and storage providing data
transfer and basic arithmetic and
logical operations in the processor

flag for ALU carry, bit 11 of proc·
essor status word

flag for ALU output all ones, bit 9
of processor status word

flag for ALU sign, bit 10 of proc·
essor status word

flag for ALU output all zeros, bit
2 of processor status word

program oriented to solving problems
rather than managing systems
resources

American Standard Code for Infor­
mation Interchange codes for char·
acter representation

computer program which translates
symbolic statements into machine
executable mstructions, see MIDAS

microinstruction field of bits 4
through 7, which specify the ALU

(continued)

8CS

81C

binary

8YTA

byte

central
processor

CF

control
buffer

control
store

cycle

cycle,
memory

cyclic
redundancy
check

data path

DCS

varian data machines ~

source on the 8 bus or a part of
mask literal

mnemonic for Branch to Control
Store, a 16-bit MACRO
instruction which initiates
execution of microprograms
in WCS

Buffer Interlace Controller

numbering system in which only two
states are represented, one and zero

flag which indicates left or right
byte of word

8-bit unit

unit which performs and controls
execution of instructions

microinstruction field which vanes
the type of carry action on ALU
actions

contains current microinstruction
being executed; separate for
central control logic (64 bits)
and I /0 control logic (16-bits)

memory in which microinstructions
are stored

time required to execute one micro­
instruction

time required to access and restore
storage in main memory

technique for validating storage or
transmission reliability

transfer media for data within CPU

Decode Control Store, optional
programmable control store for
instruction decoding

Y-1

~varian data ~achines ~~~~~~~~~~~~~~~~~~~~~~
GLOSSARY OF MICROPROGRAMMING

DMA

direct
addressing

emulation,
620

FF

field select

GF

GPR

GPRS

hexadecimal
or hex

IF

I lA

IM

instruction
buffer

instruction
register

IOCS

lOR

key register

9-2

Direct Memory Access

instructions contain actual effective
memory address to be used, in con­
trast with relative or indirect ad­
dressing

standard microprogram which
resides in control store page
zero, ROM; directs execution
of Varian 620 instructions

microinstruction field which specifies
ALU action

technique of addressing which uses
the bits of the instruction re-
gister to determine a microprogram
branch address

microinstruction field, which specifies
condition to be tested

general-purpose register, one of 16
16-bit registers

general-purpose register 0
bit 15 (sign)

numbering system using base 16, re­
presenting numbers with digits and
letters A through F

Instruction Fetch

interrupt address supplied by option
board to indicate type of interrupt

microinstruction field designating
type of memory control

storage for instruction immediately
after fetched from memory

storage for instruction for an
instruction to be executed

for l/0 Control Store, optional
unit of programmable store for varying
l/0 rates and disciplines

l/0 Register

four-bit register which supplies
signals for memory operations used
by memory-map option

LA

LB

MAD

mask

map, memory

m icroinstruc­
tion

microprogram

MIR

MIRS

MK

MR

MS

MT

MULS

NORM

OF

OP

OPR

overflow

p

page

microinstruction field which in
conjunction with AA specifies the
ALU input on bus A

microinstruction field which in
conjunction with BB specifies the
ALU input on bus B

Memory Address Register

literal constant ANDed with instruc­
tion register

hardware option to allow addressing
memory to 256K

64-bit word from WCS specifying the
actions to occur during one cycle

vehicle for implementing control
function of a computer

Memory Input Register

flag for memory input register sign

16-bit mask field (assembler
mnemonic)

microinstruction bit 37 used to
specify I /0 address bit 6 or to
control AB field use

microinstruction addressing field

bit 50 of microinstruction which
specifies bit 7 of an I /0 address

Multiply Sign flag

Normalize flag

Operand fetch

microinstruction fields combined to
specify ALU action (bits 23 - 17)

operand register

ALU action indicated by OVFL flag;
condition caused by attempt to
push too many addresses into micro­
program stack

program counter

unit of writable control store of
512 words, 64 bits each

page jump

pop

program
counter

push

pipellning

QUOS

RF

ROM

sc

SF

SH

SHFT

SHTC

a branch with a microprogram beyond
the extent of the page currently being
executed

to remove an address from top
of microprogram stack

register for memory address;
usually used for keeping track
of MACRO level execution

to add an address to top
of stack

technique which allows next instruc­
tion to be fetched during an other­
wise unused memory cycle

flag for quotient

microinstruction field of bits 24
through 26 used to specify transfer
and increment of some special
registers

Read Only Memory; page zero of V73

system control stores; contains
the microinstructions to emulate
Varian 620 system

bit 15 of microinstruction; specifies
shift of operand register or is part
of mask literal

bits 42 and 43 of microinstruction;
specify interpretation of the I M
field

m1croinstruct1on f1eld which
specifies some special ALU
actions or sh1ft operations

flag for shift

flag for overflow of the sh1ft
counter

stack,
microprogram

STAT

STEP

ssw

SUPR

TF

TS

underflow

VF

wcs

WR

\NF

varian data machines ~
GLOSSARY OF MICROPROGRAMMING

linked storage locations (16) used
in microprogram subroutine call and
return

processor status word

mode of computer execution one
instruction at a time

SENSE switch 1 3 on control panel

supervisor mode flag, bit 1 of
processor status word

microinstruction field of bits 45
and 46 which specify whether
testing occurs and whether it is
for true or false condition

microinstruction field of bits 60
through 63, which selects a field
from the instruction register,
specify a page number for a page
jump, or contribute a portion
of an I 10 address or enable selected
mterrupts

condition upon attempting to remove
or pop more addresses than are in
a microprogram stack

microinstruction bit 14, which
specifies moving bit 15 of RO to
divide-sign bit (DSB), or a part
of mask

Wntable Control Store; which is read
and written over the l/0 bus

microinstruction field bit 16
specifies whether or not there IS a
write into the general-purpose
reg1sters

smgle bit (13) m microinstruction
to designate transfer of the ALU

9-3
-- ----------------------

EVALUATION QUESTIONNAIRE

TITLE ____________ _
MANUAL NUMBER

The purpose of this questionnaire is to provide suggestions about how the manual can be improved when it is revised.
It is the goal of the Technical Publications Department to make each manual as useful as possible and at the same
time eliminate material that is of no practical value to the user or Customer Service Representative in acquiring
initial knowledge of, and in maintaining, the equipment in the field. You, as the person working most closely with
the manual and the equipment, can best provide the input needed by the writer to make the best possible manual for
your use.

l. Please complete the following chart.

CHAPTER/SECTIONS I MOST USEFUL I NEEDS MORE I NEEDS LESS I
f:'· 1; /1/ .//;, D~ D /~lei ""o· 9 ~· vsfr. fo/;. <?fo·

R~;; /'l/'J9 Cfv Of/ ~cf /j~ct
~r~ ~"<:> o'J D~ D

'lc~ D~ scr· ~sc
scr· /,Of· r/~

/,Of. /0 f/o'J
/o'J 'J

2. Please list any errors, omissions, or difficult areas noticed in the manual.---------------

3. Please list any improvements you recommend for this manual.---------------------

4. In an overall evaluation of this manual, how do you rate it i~ the following?

0 Above Average D Average

5. Personal Information

96A0424-000A

b. Years with Varian ---------

c. ED P experience (years)
Years college
Years technical training ------·

d. NAME

D Below Average

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

varian data machines Ia varian subsidiary
2722 michelson drive I irvine I california I 92664

ATTN: TECHNICAL PUBLICATIONS

Staple

Fold

F lAST CLASS

PERMIT NO. 323
NEWPORT BEACH,

CALIFORNIA

[:I : . : ::::::: : :. ::::::: :: :::::::::::::: I':'J

[t:::::::·:::II:I

l::t, · :· ,, .:: :::: :::: :· r ':::::::::::::::::::::::r:]

III::::::::::::::::::::::::::tt:::rr:::::tt::t::tt:l

lrr,: :,_-_:.;:_,.: ·::::.:,:,::::::,::::,:: ::',,,:,::·::::.::·::1

I::::::::::::::::::::::::::::I::I:::I

~:::·:::··:o:::--: : .:::·:·.·,··· .. _:::::':":j'',jj'::l

Fold

