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PREFACE

Preface (about the guide itself -- prerequisites, its organiza-
tion and why).

Microprograms are aptly called firmware to place them
between the realms of software and hardware. Where those
two conventional divisions of a computer overlap is an area
which provides many of the best features of both. The use
and benefits of microprogramming depend upon the user
having an understanding of both and their complex
interaction.

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly-language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is also
needed that many more times. Also the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram, the designer
must be aware of the eventual applications. Combining
operators which are often used in the same sequence could
form a single microprogrammed operator with a greater
overlapping of actions.

All components of a computer system seem to be
increasingly complex yet easier and easier to use. Though
microprogramming adds more complexity the result is to
make a system easier to use. One goal of this guide is to
bring microprogramming into the range of a good program-
mer. To that end the guide is written in simple language
(with a minimum of exotic terms and a glossary to look up
any of those) and a gradual progression from the big
picture to the details through numerous examples. The
examples are annotated and explained with the same tools
that will aid in the planning as well as understanding.

This guide is both an introduction and a reference. If
microprogramming is new to you, start at the beginning of
this guide and use it as a tutorial. Later the book can be
used for reference. The charts and examples are built up in
a logical development so that the complete examples will be
a pattern for your programming.
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Varian Data Machines does not assume responsibility for
microprograms written and implemented according to the
recommendations outlined herein.

To improve the usefulness of this guide please return the
reader questionaire in the back after reading and using
this volume.

Related Documentation

The Writable Control Store manual (98 A 9906 08x)
provides information about the installation, theory of
operation, maintenance and test programs for the hard-
ware storage of microprograms.

Information about the Varian 70 series processor is con-
tained in the applicable system handbook and in
more detail in the Processor Manual (98 A 9906 02x). (The
x at the end of each document part number is the revision
number and can be any digit 0 through 9.)

The VORTEX Reference Manual (98 A 9952 10x) describes
the use of the VORTEX operating system. The MOS (Master
Operating System) Reference Manual (98 A 9952 09x)
provides similar information necessary to use micropro-
gramming software with that operating system.

The following Varian manuals provide additional aids to the
understanding of Varian Computer Systems.

Title Document Number
72 System Handbook 98 A 9906 20x
73 System Handbook 98 A 9906 01x
74 System Handbook 98 A 9906 21x
Core Memory Manual 98 A 9906 03x
Semiconductor Memory Manual 98 A 9906 04x
Option Board Manual 98 A 9906 05x

Power Supply Manual 98 A 9906 06x
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SECTION 1
INTRODUCTION

Most of this book discusses how to microprogram. As an
incentive to read further, here are some general reasons
why to microprogram. The advantages of microprogram-
ming are based upon a comparison with a conventional
system either completely without microprogramming or
where it is not accessible (figure 1-1). After a brief summary
of the advantages a comparison with a conventional system
gives more details and a specific picture of a micropro-
grammed operation.

1.1 ADVANTAGES

A basic reason to microprogram is the one stated at first.
The initial idea was proposed for a ''systematic’” approach
to the " usual somewhat ad hoc procedure” used to design
the control system of a machine. The narrow view in the
design of either software or hardware without an

awareness of the other can lead to a less efficent
functioning, like a refrigerator converted into a vacuum
cleaner -- there may be some common useful parts but we
would push around a great deal that did not help the

vacuuming. Good basic operators which match the eventual
application will improve the entire efficiency. ;
The usual random logic can be reduced with a more
structured organization. A conventional computer system
uses a collection of counters, special flip-flops, decoding
networks and other components unique to a particular
purpose for control logic. In contrast a microprogrammed
memory replaces most of this. The microprogram storage
is formed of regular and repetitive units. There are fewer
components thus increasing the reliability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system in ways so basic that they
are not at all feasible in a fixed instruction set. Field
changes can be made by merely changing the controlling
microprograms. Final systems definition can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulation of a number of diverse devices, not only
processors but peripheral controllers for instance, can be
carried out on a single microprogrammed  system.
Simultaneous emulation ot some devices can be made or
the target system can be changed depending upon needs.
This would save some reprogramming and retraining and
yet gain the speed and reliability of a more advanced
system. Also the documentation and minor logistic
problems of a new machine would be avoided.

For more reliability and the continuous performance
necessary in many uses of computers, diagnostics and
servicing aids may be implemented in the control store. To
pinpoint problems the microprocessor can both test and

set states not available to the assembly-language program-
mer on a conventional machine.

4
Standard
Software
Execution Coding
Time
MICRO-
PROGRAMS
Special
Purpose
Hardware
Cost i

Instructions Tailored To Particular Environments

In general, microprogrammed instructions permit more
compact program representation. They use less main
memory than the equivalent would in conventional code.
Consequently, fewer memory fetches for anything other
than data are needed.

As an_example of a possible microprogrammed operator
which reduces memory fetches, consider a common use of
arrays. Higher-level programming languages, such as
FORTRAN, BASIC, COBOL -- in fact, nearly all-- have
facilities for expressing a repetitive linear data structure, a
list or array. Arrays are an integral part of a large class of
techniques for diverse problems. Yet good operators for
arrays as such are not available as simple, single
instructions in a conventional machine.

In usual machine code the function of adding two
numerical arrays of the same size and number of elements
usually requires a series of actions as follows for each pair
of elements:

a. load memory to register

b. add memory to register

c. storeregister resultin memory

d. update indices and close loop

The first two steps would each require a memory fetch and
the last step as many as three memory fetches.

A microprogrammed instruction would provide initializing
data descriptors and repetitively executing micro-operators

1-1
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over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array

b. load the result's starting address, increment and
extent

c. definethe end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing memory retrieval
of instructions occurs in some special cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose  micro-
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored as
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data
transfer and transformations, conditicnal tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to use flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)

Conversion steps and tables
Examples from section 3

1.2

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

- Decoder control store, 170 control and additional topics

(section 8)
Format and use of optional decoder control store
170 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. 1X for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High-
order and leftmost are synonymous to select a particular
bit or group of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a reduired parameter
Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.




For example, the syntax for the MIDAS FORM statement is
as follows

label FORM field(1), field(2),..., field(n)
Where:

label is a symbol as defined in MIDAS
basic elements

each field is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses

Numbers

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand-
ing of microprogramming this section clarifies some terms
we use.

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside in the
system’s control store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is called
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-length word in control
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words

look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to plan a
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good system one needs to be very aware of the actual
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional components of the Varian 70 series
processor (figure 1-2) are central control, data loop, mem-
ory control, I/0 data loop, and I/Q control. The processor
communicates with the computer control pane! via the I/0
bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Control

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and |/0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis-
ters. The memory control might be requested to begin the
fetch of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents for
the control buffer. The control buffer is always loaded from
64-bit central control store. Thus, execution of a micropro-
gram basically consists of the control buffer being
sequentially loaded with the appropriate 64-bit values.
Central control store in a Varian 70 series system is divided
into pages, each consisting of 512 64-bit words. Page zero
of central control store always contains a set of microin-
structions which direct the processor components to
behave like a 620/f. This set of 512 microwords is thus
called the 620/f emulation, and resides in read-only
memory (ROM). Other central control store pages may be
added with the writable control store (WCS) option, thus
allowing the user to specify in detail the actions of the
processor components.

The microprograms for the standard instruction set are
described in the microinstruction flowcharts in the
System Maintenance Manual and in assembly language
in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters (figure 1-3).

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

1-3
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such as addition, subtraction, and the common logical
functions including AND and OR. ALU output can be
directed to a number of places, inciuding registers and
counters in the data loop, registers in the 1/0 data loop,
and to memory control.

Memory Control

The memory control section of the processor performs
tasks initiated by the central control, 1/0 control and
options. These tasks consist of reading a 16-bit word from
memory or writing a word or byte into memory.

Memory control acknowledges receipt of the signal to the
requesting sections and signals when done with the task.
When one request is accepted no others are acknowl-
edged until the current one is completed, but central
control can override its own prior request.

170 Data Loop

The 170 data loop contains a multiplexor, 1/0 data register,
and drivers and receivers. Three sources of data are
applied to the |/0 data loop: data from the 1/0 bus, data
from the arithmetic and logic unit, and data from the
memory 1/0 register (MIOR). The input data is selected by
the 1/0 multiplexor under control of the |/0 control signals
and transferred on to the bidirectional 170 bus.

In addition to being applied to the 1/0 drivers, the output
of the 1/0 data register is applied to the data loop and
memory control sections.

170 Control

The 1/0 control operates under control of an independent
read-only memory (ROM). It performs {/O operations
initiated either by the central control or /0 device activity.
This permits 1/0 operations to proceed with minimal
impact on internal processor functions. The 1/0 performs
programmed /0 initiated by the central control. Both
normal and high-speed direct memory access (DMA) are
handled by the 1/0 control. |/0O interrupts are processed
by 170 control.

1.4.2 Writable Control Store

The Writable Control Store (WCS) extends the processor's
read-only control store to permit addition of new instruc-
tions, development of microprogrammed diagnostics, and
optimal tailoring of the computer system to its applications.

Unlike the read-only control store which contains the

Varian 70 series standard instruction set and cannot be
altered, the WCS can be loaded from the computer’s main

1-6

memory under control of 1/0 instructions. This capability of
altering the contents of the WCS gives the user complete
access to the resources of the computer system.

A test program for the WCS hardware is provided to assist
in maintaining the system. Operating the test program is
described in the maintenance manual for the WCS.

Configurations

The WCS is available in three configurations:

1. One page (512 words) of control store and a subroutine
stack (Model 7X-4001)

2. Half page of control store and a subroutine stack
(Model 7X-4000)

3. One page with a subroutine stack, a writable decoder
control store and a writable 1/0 control store (Model
7X-4002)

Model 7X-4002 is shown in the block diagram of figure 1-4.
The three control stores shown in this diagram are the
writable counterparts for read-only components of the
processor. .

The decoder control store replaces the instruction buffer,
decoder, and decoding logic in the processor to improve
instruction set changes. 1t is formed from two 16-word by
16-bit memory arrays with the logic that decodes main
memory instructions into an address for the central
controi store.

The central control store is a counterpart of the page zero
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store
to specify the actions to occur. A typical microinstruction
may define several operations such as selecting the next
control store microinstruction to be executed, test condi-
tions for branching, initiating memory operations and
selecting ALU functions.

The 1/0 control store contains a 256-word memory array of
16-bit words.

A standard feature with all WCS models is the subroutine
stack that increases storage efficiency by providing a call
and return capability for subroutines of microinstructions.
Up to 16 addresses for branches can be stored in the
stack. Operations are provided for pushing, popping, and
deleting an entry.

Up to three writable control store pages (2048 words
including the page-zero read-only store) can be installed in
a Varian 70 series computer system. Each writable control
store page unit is contained on a printed-circuit board that
plugs into a Varian 70 series mainframe.
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1.4.3 Software Modules

Microprogram preparation uses a sequence of software
provided with the WCS. First the program is written and
assembled with a special assembler called MIDAS. Upon
error-free assembly the code is run in a simulated
environment which is completely independent of a WCS.
The ability to trace and correct the execution is available
with the microsimulator. These first two steps can occur
without a WCS. Then only when the microprograms are
checked completely the code can be loaded in the WCS

with the micro-utility program. In addition to loading the
utility provides some diagnostics. These steps are depicted
in figure 1-5.

All the components of the microprogramming software were
designed to operate both under operating systems, MOS
and VORTEX, and as stand-alone programs on the Varian
70 or 620 series computers. Operating systems require a
minimum configuration (see the manual for the particular

VTI-1799
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operating system). Table 1-1 lists the hardware require-
ments for microprogramming software.

Assembler

An assembler is a computer program which translates
symbolic statements into machine instructions. The sym-
bols are more meaningful than the strings of bit settings
they represent. In addition to simply translating from
symbolic to the executable code, the assembler assigns
storage locations to the assembled instructions and
produces a form of the instructions for loading into the
processor’s control store.

The microprogram data assembler (MIDAS) allows the user
to prepare microprograms for the WCS. Through the use of
operation mnemonics, symbolic addressing, address-field
calculation, macro definitions, error detection and auto-

MIDAS is designed to provide the user with a tool for
microprogram implementation. While relieving the user of
much of the tedious housekeeping associated with
generating microinstructions and their data fields, it also
allows the user to describe the microinstructions at their
most fundamental level.

varian data machines @]—
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Simulator

Verifying that the microprogram does indeed solve the
problem is the next step. A logical step in implementing a
microprogram is to run it with the microsimulator. The
effects of executing a fauity microprogram are iikeiy to be
worse than those caused by poor assembly-language
coding.

The simulator runs the output from the assembler within
main-memory storage. At selected times conditions and the
contents of data locations can be changed and examined.
Projected changes can be simulated to evaluate eventual
changes to the microprograms.

After determining that the code is error-free the WCS can
be loaded with the utility program, which uses a command
set as consistent as possible with the simulator.

Utility

Loading the WCS with the assembled and test microcode is
performed by the microprogram utility, MIUTIL. in addi-
tion, on-line debugging directives are available through the
utility.

Table 1-1. WCS Software Configuration Matrix

Operating Memory (K)
Program System 8 12 16 20 24 32
Micro- VORTEX X R OO
Assembler
MIDAS MOS XR O O O O
SA XR O O OO
Micro- VORTEX X R O
Simulator
MICSIM MOS X R OO
SA X R OO
Micro- VORTEX X 0 0O
Utility
MIUTIL MOS XR O 0 0O
SA XR O O OO
WCS Test XN N N N N
Program

High-

TTY TTY TTY Speed
Keyboard/ PT PT PT
Printer Reader Punch Reader

X N N (0]

X X N 0

X X X 0

X N N X

X X N R

X X N R

X N N X

X X N R

X X N R

R 0] N X

(continued)
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Program
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Table 1-1. WCS Software Configuration Matrix

High-

Speed
Operating PT
System Punch
VORTEX o
MOS 0]
SA o
VORTEX N
MOS N
SA N
VORTEX N
MOS N
SA N

N

minimum configuration

(continued)
Card Card Line
Reader Punch Printer
R (0] R
R R R
R 0 R
R N R
R N R
R N R
R N R
R N R
R N R
N N N

recommended (recommended in place of
its minimum counter part)

optional (can be used but program
will function completely

without it)

not used with
the program

Mag
Tape

0

Rotating
Memory

X

o

WCS
Option




SECTION 2
CAPABILITIES

This section describes micro-operations available with
Varian 70 series systems. The operations are grouped into

the following categories:
a. data transfer and transformation
b. addressing and conditional actions
C. memory access

d. other controls

A basic example follows these sections. Some important
timing considerations are presented at the conclusion of

this section of capabilities.

This section describes only central control
programming.

170 and decoder control stores are treated in section 8.

2.1 GENERAL MICROINSTRUCTIONS

The 64 bits of the microinstruction are grouped into fields
referenced by either an ordinal number or a two-letter
name for the microprogram assembler. The full resources

of the system can be exploited by the user who is

with all the defined microinstruction fields. To start most
common operations, a limited set of fields is involved.

Because some of the bit combinations in the microword
have no function, the user should be cautious and avoid
coding those bit settings not defined. Undefined codes may

be assigned new functions in the future.
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ADDKESSING 10 CONDITIONAL TESTING 10
53 59 54 50 49 4 43 a1 37
5 l AF MS MT FS l i3 ] SF l GF MR f
(. / ]
SEE TABLE | CONTROL STORE ADDRESSING
TF =00 A SF =00
AB =01V 10 | 'O REQUEST TEST CONDITION IN GF xxxI  IBR TO IR
10 REQUEST 00 NO TESTING XXIX  SAMPLE CONDITIONAL TEST
SELECTS 4 BITS FROM IR (MASKED BY MR L" , 01 TEST PASSES IF TRUE XIXX  SELECT DECODER AND
TO REPLACE AA OR 8B 11 TEST PASSES IF FALSE SAMPLE INTERRUPTS
IXXX  SAMPLE OVERFLOW

SELECT DECODER AND ENABLE INTERRUPTS

SET ENABLES

XXXI 1O INTERRUPTS

XXIX 1 O INTERRUPTS IF MP

XIXX MPOR PF R INTERRUPTS (OINT
IXXX  CONCOLE (STEPY INTERRUPT

PAGE JUMP

SELECTS PAGE NUMBER

REQUEST | 'O

BITS 2-5 OF | O ADDRESS

FIELD SELECT (5 BITS FROM IR,
MASKED BY MS) ADDRESS BITS
FSEL

AND GF

SPECIFIED USE OF 1M

8 76J5J4 3'?|0
AF ojof|ejo

TABLE 1. CONTROL-STORE ADDRESSING

inclusive

L] =T

inclusive

ELLLT 71 |

Control Store
Address Field
Selection

TS field is not used in bits 1-4 of oddress formation

when

o. Register field extraction (AB field equals 01 or 10)
b. Interrupts allowed (SF, TF fields both 00, IM field

equals 111X)

c. 1 'O request (SF field equals 00, IM field equals 111X)

d. Page jump (TF field equals 00, SF field equats 10;

GF field equals X1XX)

e. Test addressing is specified (TF field not equal 00)

o+ (FSV is the contents o the field specified by the FSfield .
A
»+ MT is replaced by a zero when an 1 'O request is v
present (SF field equals 00; IM field equals 111X} v

DEFINITION OF SYMBOLS:

TRANSFER TO

AND

INCLUSIVE OR

EXCLUSIVE OR

PLUS

MINUS

INVERSION /ONES COMPLEMENT

_I O REQUEST
1 O ADDRESS BIT &

TF <00 A SF =01 [ ~otortauist )

X00X NO STATUS CHANGE
X0 SET OVERFLOW

CONTROLS AB

TF=00 A SF =10

XXX!  UNUSED
XXIX  SAMPLE CONDITIONAL TESTING
XIXX  PAGE JUMP OPERATION
(TFF D) V (TF=0ASF=3

0000 OVERFLOW

0001 | O SENSE

0010 553

0011 52

0100 551

0101 EMUL 620 F TESTS

0110 AL ALL ONES

0111 ALU SIGN

1000 ALU CARRY

1001 ALU ALL ZEROS

1010 038

1011 MIR SIGN

100 SHIFT COUNTER OVERFLOW

1101 GPRO SIGN

1110 NORMALIZED SHIFT

nn

QUOTIENT SIGN

S3111N18vdvYd
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Y S6Z-61LA

/0 MEMORY 1/O ACTION ALU INPUT REGISTER FUNCTION ALU MODE
3% 34 ) 28 26 23 19
?I AB ™M 1B LA RF FF MF %
s = OA(T7O REQUESH SF=0 ALU INPUT B ((MF=0) A (LB=00VOT) LB=1010V 11
 AA—- AA 0000 NO ACTION 00 GPR V(LB =10V11) A (DMODE )} MF IS PART
A R 0001 WAIT FOR MEMORY ACK. 01 SPECIAL REGISTER OF 16-BIT LITERAL:
IR BITS SELECTERD £ TS 0010 WAIT FOR 1/O ACK. 10 IR A (MASR) °°°? A MODE OF ALU SET BY
TO LOW ORDER 4 BITS 0011 PAGE BRANCH NO MAIN MEM 11 LITERAL (SEE NOTE) coor - A V% BIT 1 OF FF
OF 88 0100 ALU -—IBR AND INPUT REGISTER 00:2 AV
2 BB — 8B 0701 UpuseD g?oo ;\1' AAB
. 10 _
IR BITS SELECTED BY TS 0110 SELECT & RESET INTERRUPT FLAG 0101 (AVB +AAB
0111 SET INTERRUPT FLAG T8-00v 0l
TO LOW ORDER 4 BITS 1000 LOAD 1/0 KEY REGISTER 010 A-B-1
OF AA 011 (AAB)-T
1001 UNUSED SETS ALU MODE
1010 RESET SUPERVISOR KEY ALU INPUT A 1000 A+ AAB
3 AA - AA 1010 SET SUPERVISOR KEY 00 GPR 101 A8
88 - 88 1000 INHIBIT DECODER 01 PROGRAM 1010 (AVB) + (AAB)
1101 WCS FUNCTIONS COUNTER M0 A+A

(MR = 0) A (AB = 0) A [7O REQUEST

CONTROL STORE QUTPUT - AA AND BB

(MR=1) A (AB=0) A | REQUE

AA -AA, 111 - - BITS 1-3 of BB
TWE A BIT 15 OF ALUOUTPUD Vv
(WF A BIT 1 OF OPR) -B LEAST
SIGNIFICANT BIT

1'O REQUEST

BITO IS (/O ADDRESS BIT 1
BIT I 1S NOT USED

1110 REQUEST I/0 & INHIBIT DCS
1111 _REQUEST I/O

10 GPR SHIFTED LEFT
11 GPR SHIFTED RIGHT

(SF=01) V (TF=00) A (SF =10)

A=10 AN

00XX OVERRIDE MEMORY REQUEST
01XX  ALU—MEMORY ADDRESS (MAD)"
10XX  PROGRAM COUNTER —— MAD*

BIT OF GPR — BYTA

1IXX  MIR— MAD-
& START MEMORY

SF #00

XX00 INSTRUCTION FETCH IF

XXO1 OPERAND FETCH OF
XX10 OPERAND STORE [eN)
XX11  BYTE STORE 8S

(TF # 0) A (SF=10)

ACTION {F TEST CONDITION NOT MET
00XX OVERRIDE MEMORY REQUEST
01XX ALU — MAD START MEM-
10XX PROGRAM COUNTER —MAD ' ORY IF TEST
TIXX MIR - MAD NOT MET

SF =11

MBMORY ACTION AS ABOVE,
IF TEST CONDITION IS MET.

000 NO ACTION

001 LOAD PROGRAM COUNTER

010 LOAD SHIFT COUNTER

011 LOAD OPR

100 INCREMENT PROGRAM COUNTER
101 COUNT SHIFT COUNTER

110 LOAD PROCESSOR KEY REGISTER
111 LOAD OPERAND REGISTER

AND INCREMENT PROGRAM COUNTER

1101 (AVB) -+ A
Mo (Ave + A
N A=

{({MF=1) A{LB=00V01))V
((LB=10V 11} A DMODE))

0000 X

0001 AV3E
o010 AveB
0011 ZEROS
0100 AAB
ooy ¥

0110 Avy8
011 AAB
1000 AVB
1001 A8
010 B

1011 AAB
1100 ONES
1101 AVE
Mo AVS
nt A

NOTE: When SF=00, TF=00, IM=1001, and
LB=11, the literal is used by the WCS
as a control word (refer to descriptions
of stack operations, 64K memory
addressing, and memory lockout in
section 3 of WCS monual, 98A 9906
082).
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ALU REGISTERS

SHIFT
18 16 15 14 13 12 10 7
'% l CF l WR —[ sc l VF WE l XF l SH [ 88 AA
LB =00 V0l (LB=00VON A (5C=0) (LA =00V A LB =00 V 01) LA # 01
ALU CARRY-IN 0 NO ACTION 000 NO ACTION SPECIFIES GPR AS ALU
00 1 ALUBIT15 - - QUOS X01 0 — ALU INPUT A INPUT A
01 STORED CARRY

10
11

STORED CARRY
1

LB=10V1

CF IS PART OF 16-BIT LITERAL
ALU CARRY-IN =0

—

LB =00V 0l

0
1

NO ACTION
ALU OUTPUT ~GPR

LB =10V 11

PART OF LITERAL

LB =00V Ot

0 NO ACTION
1 SHIFT OPR

|

=10V
PART OF 16-BIT LITERAL

——

LB=00V 0l
0 NOACTION
1 BIT 15 OF GPR - DSB
LB=10V 1
PART OF 16-BIT LITERAL

(LB =

W VO A (GSC=1D

0
1

SHIFT OPR LEFT
SHIFT OPR RIGHT

[(X:]

(MR=1) A (AB=1)

=00V 0l A [O REQUEST A

0  ALUBITIS = BIT 0GRP NO.
1 OPRBIT! - BIT 0 GPR NO.
LB=10V M

PART OF 16- BIT LITERAL

XIX 1 = ALU INPUT A

IXX  SPECIAL ALU FUNCTION

(LA=100A(LB=00VvON

OXX ABIT 14--ALUBIT 15
I1XX ABIT 15
X00 © -~ ALUBITO

ABIT15 -ALUBITO
X10 OFPRBIT 15

X01

~ALU BIT 15

-ALUBITO

(LA =11) A(LB =00 v O1)

000
001
010
on
100

MULTIPLY SIGN — A BIT 15

ABITO -ABITI5

ABIT15 -BIT 1S

OPR BITO —— BIT 15

0-—BIT 15

(LB-00 VOI) A (SC =1) A (WF=0)

1
1

00 OPRBIT 15 SHIFTED TO BIT 0
01 A INPUT BIT 15 SHIFTED TO BIT 0

0 ALU BIT 15 SHIFTED TO OPRBIT O
1 A BITO SHIFTED TO OPRBIT O

(LB=00VON) A(SC=1) A (WF=1)

00
01
10
n

OPR BIT 0 SHIFTED TO BIT 15

A INPUT BIT 0 SHIFTED TO OPR BIT 15
OPR BIT 15 SAME

DSB -~ OPRBIT 15

(LB =00V 01) A(SC = 0)

00
ot
10
1

NO ACTION

RESET PROCESSOR INTERRUPT F/F
ENABLE JUMP SIGNAL

RESET INTERRUPT F/F and

ENABLE JUMP SIGNAL

LB=10vit

PART OF 16-BIT LITERAL

LB =10 Vvl

PART OF 16-BIT LITERAL

1

LB =00

SPECIFIES GPR
AS ALU INPUT B

(LB-00VON) A (WR=1)

SPECIFIES GPR AS ALU
DESTINATION

L8=01

0000
0001
0010
oon
0100
0101
0no
om

SPECIFIES SPECIAL
REGISTER AS ALU INPUT B
OFPR

MIR

IOR

STATUS

OPR RIGHT BYTE SIGN
OPR LEFT BYTE  EXTENDED
OPR RIGHT BYTE ZERO
OFPR RIGHT BYTE FILL
SHIFTED TO LEFT

LB -j0v

PART OF 16-8IT
LITERAL

S31LNIgvdvY)
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2.2 DATA TRANSFER AND
TRANSFORMATION

2.2.1 ALU Input Sources

Input to the arithmetic and logic unit (ALU) is selected by a
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the
same sources are not available for both buses. Some inputs
to the ALU can be sent on either bus and some on both.
The general-purpose registers can be selected as input
upon either bus and a specific register selected for each
bus.

Any of the general-purpose registers can be shifted on its
way on the A bus to the ALU. Shifting can be one bit
position to the left or right.

Input to the ALU can be from one or two of the general-
purpose registers. The use of one of these registers is
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is
specified in AA and/or BB.

For example to use registers R2 and R4 as the input to the
ALU

field LB LA BB AA
value 0 0 2 4
(hex.)

Mnemonic  B$GPR A$GPR R2 R4

LA can also specify that the register indicated by AA is

shifted or rotated. Shift left and shift right are indicated in
the LA field and the shift field, SH.

Special Registers as ALU Input

By setting the LB field to one, SREG for special register the
value in the BB field takes on a different meaning:

OPR Operand register
MIR Memory input register
IOR 170 register

STAT Processor status word
ORSE Operand right byte sign extended
OLSE Operand left byte sign extended
ORZF Operand right byte zero fill
OLZF Operand right byte in the

left byte position zero fiil

NO O, WN R~ O
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Table 2-1. ALU Input A Bus Selections

ALU Input A Bus Source Fields
LA SH LB
Program counter 01 XXX XX
General-purpose 00 Neither oX
register (any one X01 nor
of 16) specified X1X
in AA
General-purpose 00 XXX 1X
register (any one
of 16) specified in
AA
All zeros input 00 X01 oX
All ones input 00 X1X 0X
General register (in 10 See 0X
AA) shifted left below
Bit 15 = register 0XX
bit 14
Bit 15 = register 1XX
bit 15
Bit 00 = zero X00
Bit 00 = register X01
bit 15
Bit 00 = operand X10
register bit 15
General register (in 11 See 0X
AA) shifted right below
Bit 15 = muitiply 000
sign flag
Bit 15 = register 001
bit 00
Bit 15 = register 010
bit 15
Bit 15 = operand 011
register bit 00
Bit 15 = zero 100

X indicates the bit in that position is of no consequence

to this action.
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GPR

16 GENERAL-
PURPOSE
REGISTERS

RO, R1,...,RF

OPR

' > OPERAND
N SHIFT/ROTATE YEGISTER
~> ]\/l J\L

ALU INPUT A

ALU INPUT B

W
W

u
i

VTii-1802

Figure 2-2. General-Purpose Registers, Operand Register and ALU Input
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Table 2-2. ALU Input B Bus Selections

ALU Input B Bus Source Fields
LB BB

General-purpose 00 Specifies

register (any one register

of 16)

Operand register 01 0000

full word

Operand register 01 0100

right byte with
sign extended
Operand register 01 0101
left byte with
sign extended
Operand register 01 0110
right byte with

zeros in left byte
Operand register 01 0111
right byte in left

byte position; zeros

in right

Memory input register 01 0001
(MIR)

170 register (IOR) 01 0010
Processor status word o1 0011
(STAT)

Instruction register 10 Part of
masked by 16-bit mask

literal constant
consisting of fields

MF, CF, WR, SC, VF, WF,
XF, SH and BB. A one
in the mask fields

forces the corre-
sponding ALU input

bit to a zero.

16-bit literal 11 Part of
constant consisting constant
of the ones com-
plement of fields
MF, CF, WR, SC, VF,
WF, XF, SH and BB

NOTE: When the 16-bit literal or mask is used. the ALU
mode is forced to the arithmetic mode if the FF field bit 1
is a zero and to the logical mode if the FF field bit 1 is a
one. A carry of zero is forced. The ALU output may not be
written into any general register in this case. The WR field,
which would specify such an operation is disabled for use
as part of the 16-bit literal or mask.

2:8

Processor Status Word

The processor status word may be applied to the ALU input
B bus when the LB field equals 01 and the BB field equals
0011. Processor status bits are assigned as foliows:

Bit Function Name

00 Not used (logic 1)

01 Supervisor mode flag SUPR
02 ALU zero flag ALUZ
03 Shift counter bit 00
04 Shift counter bit 01
05 Shift counter bit 02
06 Shift counter bit 03

07 Shift counter bit 04

08 Overflow flag OVFL
09 ALU all ones flag ALUO
10 ALU sign flag ALUS
11 ALU carry flag ALUC
12 Processor key register

bit 0
13 Processor key register

bit 1

14 Processor key register
bit 2

15 Processor key register
bit 3

2.2.2 ALU Functions

Two sources for data, an action to be performed by the
arithmetic and logic unit and a destination for the result
are all specified in a single microinstruction

The ALU function is determined by three fields in
microinstruction. These fields, function, mode and carry,
are grouped together to give meaningful names to some
common operations, like ADD for addition. This entire
group of fields can be set to execute combinations which
do not have convenient names in the assembler.

One basic ALU action or an operator is chosen. There are
three categories of operations. Arithmetic ~operations
available at this level include addition, subtraction,
increment etc. Logical operators which have convenient




single-word names are AND, OR, exclusive OR, NOT
implication and equivalence. Also the ALU can perform
more complicated logical functions explained later in this
section.

Table 2-3 lists some of the more common arithmetic and
logical operations and the corresponding fields.

Table 2-3. ALU Operations

Assembler ALU

Mnemonic Action FF MF CF
ZERQ all zeros 0011 1 00
ONES FFFF 1100 1 00
TRNA A 1111 1 00
TRNB B 1010 1 00
INCA A+ 1 0000 0 i
DECA A—1 1111 0 00
ADD A+ B 1001 0 00
suB-~ A—-B 0110 0 11
SHFA A+ A 1100 0 00
AND AANB 1011 1 00
OR A VB 0001 0 00
EOR AV B 0110 1 00
NOTA A 0000 1 00
NOTB: B 0101 1 00

*cannot be used when input B is mask or literal

varian data machines
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ALU Mode

There are two modes available for the ALU, arithmetic and
logical. In the arithmetic mode the user selects a type of
carry input to the ALU to be used with the arithmetic
action. In logical functions the value of the carry field (CF)
is ignored. The mode is directly set as either arithmetic or
logical by the MF field. Indirectly the mode can be set
when the actual mode field is part of a literal or literal
mask. |f the LB field is 10 or 11 in binary, the MF and CF
fields are part of a 16-bit constant. In this case the ALU
mode is taken from the bit 1 setting of the FF field
(consequently this limits the functions available with a
literal or mask).

Carry Flag

The CF field specifies carry input to the ALU as follows:
CF Value of Carry In

00 Zero
01 Stored carry

10 Stored carry complement
11 One

The carry flag ALUC, bit 11 of STAT, is altered only if SF is
set to zero or two, TF to zero and the GF field to XX1X.

Under these conditions carry is set or reset to the carry
produced by the ALU. The only meaningful conditions for
carry are the arithmetic functions such as add, increment,
decrement and subtract. For these conditions the carry
flag is set as follows. MF is zero for all of the following.

29
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Table 2-4. Carry Flag Settings

FF Function IfCarryin =0 If Carry In = 1

0000 A Reset Set if result = 0

0001 AvVB Reset Set if result = 0

0010 AVB Reset Set if result = 0

0011 —1 Reset Set unconditionally

0100 A + (AAB) X X

0101 (AVB) + (AVB) X X

0110 A-B-1 Set if [(A,; = B,,) A (A2 B)]lv Set if [(A;; = Bs) A(A>B)lv
(A = B,)) A (A< O)] [(A; = Bs) A (A< O)]

0111 (A A By —1 Set if result is # —1 Set unconditionally

1000 A+ (AAB) X X

1001 A+B Setif [([A<O) B«<O)]y Setif (A<O) A(B<O)]V
{(A; = B A [(A;=Bi) A (A, = O)A
(A = 0)/ (A2B)V
(Al 2 1B v
[(A; = Bis)A [(Ais = B) A(By; = O)A
B, =0)A (B 2 A)] v [Result = 0]
1Bl 2 1A}

1010 (AVvB)+(AAB) X X

1011 (A AB)—1 Set if result # —1 Set unconditionally

1100 A+ A Setif A,, = 1 ItA, =1

1101 (AVB) +A X X

1110 (AV By +A X X

1111 A—1 Set if result # —1 Set unconditionally

Arithmetic Operations

Arithmetic Functions

The FF field determines an arithmetic operation as
indicated below when the MF field is 0. Carry input is set
independently. When bit 1 of FF is zero the arithmetic
mode is selected when the actual mode field is part of a
mask or literal. The expressions in parentheses are
evaluated first from left to right. Any further evaluation is
performed from left to right.

Logical Operations

When MF is one, the logical operations occur as indicated
below by FF field settings. The carry field is ignored.
Symbol indicates exclusive OR operation.

FF Value

TMOOWPOONDUDHEWN=O

ALU Action

A

AvB

AVB

All ones

A+ (AAB)
(AV B) + (AAB)
A—B —1
AAB—1

A+ (AAB)
A+ B
(AVB)+ (AAB)
(A AB)—1
A+ A
(AVB)+A
(AVB)+A
A—1

SYMBOLS

V Inclusive OR

¥ Exclusive OR

+ Addition

— Subtraction
logical AND

¢ complement
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FF Value

MTMOOWP»OWONDABWN=O

ALU Action
A

AV B
AAB

All zeros

AAB

os]

AX{ B
ANAB
AvB
AN B
B

AAB
All ones
AV B
AV B
A

CAPABILITIES

2.2.3 ALU Output Destinations

The ALU output will be determined by the function
performed. This data can be directed by the microinstruc-
tion to the general-purpose registers, some of the special
registers, counters, and indirectly to memory and |/0.

A multiple destination can be one of the general-purpose
registers and a special register.

The direct assignments of the ALU result is specified by a
combination of fields, WR, LB, AA and RF. The first three
are used to specify any one of the 16 general-purpose
registers while RF selects sending data to the program
counter, operand register, shift counter or key register.

Table 2-5. ALU Output Data Destination

Destination

Control Fields

DIRECT CONTROL

General register (any 1 of
16) (Specified in AA)

Program counter

Operand register

Shift counter

Processor key register
INDIRECT MEMORY CONTROL
NOTE: Transfer occurs only

if cycle is successfully
initiated)

Memory data bus

Memory address register

Memory input register and
instruction buffer

INDIRECT 1/0 CONTROL
170 register

NOTE: Transfer is under
direct controt of 1/0
control. Operation is
specified by TS, AB, MR
fields and contents of
170 control store.

RF

001
011 or
111
010

110

WR | SF M LB
1 0X
Not 00 XX1X
Not 00 01XX
00 0100
00 111X
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2.2.4 Other Registers

Shift Counter

The shift counter is an 8-bit counter which may be
incremented and tested independent of the ALU. It is thus
useful in keeping track of iteration in a microprogram. The
counter may be tested for overflow using test addressing.
The overflow condition occurs when the shift counter is
minus one.

An instruction which both increments and tests the shift
counter will be testing the old vaiue. If the counter is
loaded with negative number and incremented to 0, the
one instruction delay is no problem. This is because
checking the old value for — 1 produces the same result as
checking the new value for zero.

Program Counter

The program counter is a 16-bit register which can be
incremented and/or used as a memory address. indepen-
dent of the AL!J. The following are considerations when
incrementing the program counter:

a. if the same microinstruction uses the P register for a
memory address, the new value of P will be used.

b. if the microinstruction both increments P and uses P as
an ALU input, unpredicatable results are obtained. In
general, using P as an ALU input and incrementing P
should not be done in the same instruction.

Processor Key Register (KEY)

A 4-bit processor key register supplies signals for memory
operations initiated by the processor. These four bits in
conjunction with the high-order bits of the normal memory
address are used by the memory map option determine
physical addresses. It should be noted that this key register
is different from the map register used under VORTEX II.
The latter is loaded over 1/0 and cannot be conveniently
accessed from the micro level.

1/0 Key Register

A similar key register for [/0 is a 4-bit register which
supplies signals to the memory map option during memory
operations initiated by the 1/0 control.

Operand Register

The operand register is a 16-bit register which has special
shifting abilities. As previousiy noted, the ALU input A bus
may have any of the 16 general-purpose applied shifted
left or right one-bit position. In addition, the operand
register may be shifted left or right independently or in
conjunction with shifting of any general register. This can
occur any time the 16-bit literal or mask is not in use.

2-12

When the LB field is equal to 0X (no literal/mask) the SC,
WF and XF fields define operand register shifting.

When the SC field equals 0 no shifting takes place. When
the SC field equals 1, the operand register is shifted left if
the WF field equals 0 and right if the WF field equals 1.

For left shifts the next contents of the operand register bit
00 is specified by the XF field. If XF equals 00 operand
register bit 15 is copied to bit 00 to permit independent
circular shifting. If XF  equals 01 bit 15 of the general
register specified by the AA field is copied to bit 00.

This permits double-length circular shifting. If XF = 10 the
complement of the ALU output bit 15 is copied to bit 00. If
XF = 11 the operand register bit 00 is set to zero.

For right shifts the next contents of the operand register bit
15 is specified by the XF field. If XF equals 00 operand

register bit 00 is copied to bit 15 to permit independent
circular shifting. If XF equals 01 bit 00 of the general

Table 2-6. Operand Register Shift Operations

Control Field

LB SC | WF | XF

No shifting 0
No shifting 1X
Shifting of operand register | Ox 1

Left shifting 0

Bit 00 = operand 00
register bit 15

Bit 00 = general 01
register bit 15
(specified in AA)

Bit 00 = ALU bit 15 10
complement

Bit 00 = zero 11
Right shifting 1
Bit 15 = operand 00

register bit 00

Bit 15 = general 01
register bit 00
(specified in AA)

Bit 15 = operand 10
register bit 15

Bit 15 = SHFT (shift 11
flag)




register specified by the AA field is copied to bit 15 to
permit double-length circular shifting. If XF equals 10 the
operand register bit 15 is maintained at its current state
to permit independent arithmetic shifting. 1f XF equals 11
the shift flag (SHFT) is copied to bit 15.

2.3 ADDRESSING

2.3.1 General

Executing instructions in an order other than strictly
sequential gives programs flexibility and compactness. The
ways in which the order of microinstructions can be varied
are similar to those used in assembly-language programs.
For the microassembler the usual order of execution takes
the next instruction -- the contents of word five after word
four and so on -- unless a jump or branch specifies the
change in order. In reality each and every microinstruction
specifies the next one to be executed, but usually the
assembler constructs sequential-execution addressing
automatically.

A jump in a microprogram can be a conditional action
based on the true or false state of flags or signals in the
system. In microinstructions the jump is not a separate
instruction but the sampling and/or testing and the
branch itself are specified in fields of a microword. In
addition to conditional and unconditional branches, the
branch may be from one page to another. The page jump
is described following a few simpler cases and conditions.

Three basic types of addressing create the address of the
next microinstruction to be executed. Normal addressing is
the simplest case. The next address is specified by the
current microinstruction. Field-selection addressing uses
an instruction register field to specify the address for the
next microinstruction. In decoding addressing (using the
decoder control store) the instruction buffer specifies the
next address (section 8 in this manual describes the use of
this feature).

Three other types of addressing are similar to the basic
types.  Conditional addressing uses testing of various
conditions to choose one of two addresses. The page jump
can specify both the page and word number within the
page for the next microinstruction. Interrupt addressing
uses both the microinstruction and the system's interrupt
logic to determine the next microinstruction.

2.3.2 Normal Addressing

Normal addressing is used to arbitrarily specify the next
microinstruction  address. No conditional testing is
involved, no interrupts are active or they are disabled and
decoder addressing is not specified. The FS and TS fields
are set equal to 0000 and the MT field equals 0 so the low
order address contribution (bits 0-3) is governed entirely
by the MS field. The high order bits (4-8) are supplied by
the AF field.

CAPABILITIES

8[7]6'5‘4 3'2[1]0

AF MS

Control Store Address --
Normal Addressing

No reset

No interrupts
No decoding
FS = 0000
MT = 0

TS = 0000 or
TF =0

Normal Addressing with TS Field

The TS field may be used to form bits 1 through 4 of the
control store  address when none of the following
conditions is true:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF and TF field both 00; GF field
equals X1XX)

c. 1/0request (SF field equals 00; {M field equals 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

The address is formed by the inclusive OR of the TS field
into bits 1 through 4 of the address obtained with normal
addressing (FS field equals to 0000; no decoding; no
interrupts, MT field equals 0).

8[7l6|5|4 3|2|1|o

AF MS —I

inclusive or

—

010 (0 |0 TS 0

Control Store Address
Normal Addressing with
TS Field

2.3.3 Field Selection Addressing

The contents of the instruction register and a number of
processor flags may be used to form a control store
address. Any 1- to 5-bit contiguous field from the
instruction register may also be used in forming the low-
order five bits of control store address. Thus, up to a 32-
way branch may be performed based on instruction
register contents. This permits detailed instruction decod-

213
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ing. In addition, the interrupt flag, byte address flag, shift
flag and console step mode may be selected to alter the 8 I 7 |6 I5 |4 3121110
control store address.

AF

ojojojo -
Field selection addressing is used any time the FS field is _—l
not equal to 0000. The field selection address contribution
for all values of the FS field is shown in the tables below.
Any bit of the field selection contribution may be forced to
a zero by use of the MS and MT fields. The field masks bits olo I 0 Io TS* 0 |
0-3 of the field select contribution. The MT field masks bit
4. A zero in any bit of the MS and MT fields forces the
contribution of the corresponding field selection bit to zero.
When an 1/0 request is issued (SF field equal to 00 and IM
field equal to 111X) the MT field is used as part of the 170 olojolo (FS)**
operation specification. In this case, the MT field is ignored _‘
and bit 4 of the field selection address contribution is and

masked to zero. I
0}J010 10 [MT MS |
The field selection address contribution is shown below for

all values of the FS field.

inclusive
or

inclusive
or

Control Store

High-order address bits 4 through 8 are provided by the AF Address Field
field. Selection

The TS field is logically ORed into the control store address ) ) .
bits 1 through 4 under the same conditions as normal * TS field is not used in bits 1-4 of address formation
addressing into TS field. Thus, the composite field selection when:
address is formed as follows: . ) .
a. Register field extraction (AB field equals 01 or 10)

Control Store Address Bit . )
b. Interrupts allowed (SF, TF fields both 00, IM field

4 3 2 1 0 FS Field equals 111X)
One One One One One 0
One One One One INT 1 ¢. 1/0request (SF field equals 00; IM field equals 111X)
One 01 One SHFT | BYTA | 2
One One One One STEP | 3 d. Page jump (TF field equals 00; SF field equals 10; GF
| field equals X1XX)
04 03 02 01 00 ! 4
05 04 03 02 I 01 : 5 e. Testaddressing is specified (TF field not equal 00)
06 05 04 03 | 02 6 _
07 06 05 04 03 7 “* (FS) is the contents of the field specified by the FS field
08 07 06 05 04 s | = * MT is replaced by a zero when an 1/0 request is
09 08 07 06 05 9 present (SF field equals 00; IM field equals 111X)
10 09 08 07 06 A
11 10 09 08 07 B Normal addressing and normal addressing with TS field
are a subset of the field selection addressing set, i.e., the
12 11 10 09 08 C FS field equals 0000 and the MT field equals 0.
13 12 11 10 09 D
14 13 12 11 10 E _
15 14 13 12 11 F 2.3.4 Test Addressing
Numbers 00 through 15 refer to instruction register bits Two addresses must be specified when test operations are
performed -- one for use if the test passes and one for use
INT is the interrupt flag (complement) if it fails. Testing is specified whenever the TF field is not
: equal to 00. If the test is to pass when the condition tested
BYTA is the byte address flag is true, the TF field must be equal to 10. If the test is to
pass when the condition tested is false, the TF field must
SHFT is the shift flag be equal to 11. The condition to be tested is specified by
the GF field.

STEP is true when the console is in the STEP mode
) The address used if the test passes is identical to that
Figure 2-3. Field Selection Address Contribution formed by field selection addressing. The address used if
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test fails is made up of the AF and TS fields as shown
below.

8 |7 I6 |5 |4 32 1o
AF

0J0]0]0 |

inclusive
or

00010 TS 0

Control Store Address --
Test Fails

2.3.4.1 Conditions

Whether or not a test is to be done and the way the test
passes are indicated in the test field (TF). Testing 1s
specified whenever the TF is not zero. If the test is to pass
when the condition is true, the TF is equal to 10. If the test
Is to pass when the condition is false, the value of the TF
should be 11.

The condition to be tested is specified in the GF field.

Summary of Conditions Mnemonics

Value of Mnemonic
GF for Assembler

OVFL
IOSR

SSW3

SSW2

SSW1

TFIR

ALUO

ALUS

ALUC

ALUZ

SHFT

MIRS

SFTC

GPRS :
NORM

QuUOS

TMOODMPOONOTADWN —O

Meanings and Use of Conditions

OVFL  Overflow may be set and reset unconditionally. It
may sample data-loop conditions. Automatically reset
by system reset or microinstruction in which the GF
value is TFIR and the instruction register bit O is set
and the test met.

CAPABILITIES

IOSR  1/0 Sense Response (discussed in |/0 section)

SSW3, Sense switches are set and reset
SSW2 only by manual manipulation on the
and control panel.

SSW1

TFIR  Test from instruction register which determines a
set of conditions tested simultaneously. Nine bits of
the instruction register cause the following tests:

0 Overflow

Positive/NOT bit

Negative/NOT bit

RO of General-purpose registers

R1 of General-purpose registers

R2 of General-purpose registers

Sense switch 1

Sense switch 2

Sense switch 3

O NS WN —

ALUO ALU allones

ALUS  ALU sign flag
ALUC  ALU carry flag
ALUZ  ALU all zeroes

SHFT  Shift flag copies bit 15 of the general register
specified in the AA field whenever the literal or mask is
not being used and the VF value is 1. This flag may
be shifted into the operand register bit 15. It may be
tested by a microinstruction to cause a branch to
either of two microinstructions.

MIRS  Memory input register sign
SFTC  Overflow of the shift counter
GPRS  General-purpose register 0 bit 15 (sign)

NORM Normalize flag is set after any microinstruction
which the ALU output bus bit 15 is not equal to bit 14. It
will be reset after any microinstruction during which
the ALU output bus bits 14 and 15 are the same.

QUOS Quotient flag copies bit 15 of the ALU output after
a microinstruction in which the literal or mask is not
being used and the WF value is right or 1 and SC
field is zero.

MULS Multiply sign sets any microinstruction during
which any of the following three conditions existed:
1. ALU output bit 15 and ALU input A bit 15 were
both equal to 1
2. ALU output bit 15 and ALU input B bit 15 were
both equal to 1
3 ALU input A bit 15 and input B bit 15 were both

equaltol.
This flag may be applied to the ALU input A bus during
right shift operations

2-15
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BYTA Byte address flag copies bit 00 of the general unless the ALU is all zeros and sampling is requested.

register specified by the AA field whenever a general-
purpose register is specified as shifted input to the The following table lists some of the major flags. ALUZ,
ALU input A bus. This flag may be used to determine ALUC, ALUS, and ALUO are sampled together by any
the address of the next microinstruction and for microinstruction in which SF equals X0, TF equals zero.
memory byte store operations (SF not equal to zero and GF equals XX1X.
and IM field equal XX11) determines which byte of
the addressed memory location is to be altered. If Summary of flags requiring sampling for microprogrammed
BYTA equals zero, the left byte is selected. BYTA conditions.

equal to one selects the right byte. BYTA is set or
reset during the microinstruction rather than at the

end. Flag Sampling

A wide variety of flags are available for use in micropro- NORM no
gramming. In general, they may be tested no sooner than MULS no
the microinstruction after which they were set. In other SHFT yes
words, a microinstruction which both changes a flag and QUOS yes
tests will be testing the old value of the flag. BYTA no

OVFL yes
The conditions that cause a flag to be set depend on the ALUZ yes
particular flag. In addition some flags require that the ALUC yes
micreinstruction specify sampling before they will be set. ALUO yes
For example, the ALU all zeros (ALUZ) flag will not be set ALUS yes

Table 2-7. Overflow Flag Control
OVERFLOW FLAG CONTROL

Conditions
Operations Fields Bit 15
ALU Input | ALU Output
TF SF GF FF AA BB
Set overflow 00 01 X01X
Reset overflow 00 01 X10X
Sample overflow 00 01 X11X
(ADD) 1XXX
SET 0 0 1
1 1 0
DON'T SET* 1 0 X
0 1 X
(SUBTRACT) OXXX
SET 1 0 0
0 1 1
DON'T SET* 0 0 X
1 1 X

Also, reset by system reset or a microinstruction specifying
test of the 620/f test condition with the instruction
register bit 00 on in which the test passes.

Overflow may be sampled to be set if SF = 00 and GF =
IXXX. It will not be reset even if no overflow exists

* If set previously, overflow will remain set regardless of
sampling conditions.
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2.3.4.2 Addresses in Branches

The destination address when the test fails must be an
even word address. The destination addresses of both the
pass and fail conditions must be within 32 words of each
other.

Procedure for Address Assignment

Following completion of a flowchart assignment of control
store, address assignment may be performed. A useful
procedure is:

1. Assign the microprogram entry addresses consistent
with the desired format of the BCS instructions.

2. Assign addresses to microinstructions to be executed
upon receipt of an interrupt. These addresses must be
X XXXX 0111.

3. Assign addresses to all microinstructions to be
executed following those using TEST ADDRESSING
where the "'test fails’’ condition prevails.

4. Assign addresses to all microinstructions to be
executed by field selection addressing. If field selection
specifies test of the interrupt, byte address, shift, or
console step flags assign addresses to the microin-
structions to be executed in accordance with the
following restrictions:

Flag On Flag Off
Interrupt X XXXXXXXX0 XXXXXXXX1
Byte Address X XXXXXXXX1 XXXXXXXXO0
Shift X XXXXXXX1X XXXXXXX0X

Console Step X XXXXXXXX1 XXXXXXXXO0

5. Recheck all field select and test addressing
microinstructions for addressing consistency. Prepare
a list of assigned addresses and corresponding
microinstruction numbers labels (keyed to the flow-
chart) to avoid duplicate assignments.

6. Other microinstructions may have their addresses
arbitrarily assigned by the programmer or the
assembiler.

CAPABILITIES

2.3.5 Page Jump Addressing

The microinstruction specifies a branch to a location in
another 512-word page by executing a page jump. In this
case, a 13-bit address is generated which sets a new active
page number and specifies an address within that page.
The page number is specified by the TS field. The word
address is specified by field select addressing.

2

12|11l10|9 8|7|6 1'0

5|4|3

TS Address modified field
select addressing

Control store address
page jump

A Page Jump with memory is specified by the TF field equal
to 00; the SF field equal to 10; and the GF field equal to
X1XX.

A page jump without initiating a memory cycle is specified
by setting the TF and SF fields to zero, and the IM field =
0011.

2.3.6 Interrupt Addressing

When interrupts are allowed and an interrupt is active in a
class which is enabled by the TS field, the low-order four
bits of the control store address are supplied by the
interrupt logic and the high order bits from the AF field.

8|7l6|5]4 312 llO

AF A

I1A is supplied by interrupt logic.

HA is 7 for 1/0 interrupts and 1 for second tests of 1/0
interrupts after initiation of the 170 interrupt sequence.

The TS field enables interrupts whenever bits are set as
follows:

Bit Set Enables

0 1/0 interrupts

1 170 interrupts only if memory
protection is installed

2 Memory protection interrupt

3 STEP, console step mode interrupt

2.4 MAIN MEMORY CONTROL

Memory access may be initiated in a microinstruction
which indicates the type of operation and the address

2-17
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CAPABILITIES

source. Main memory access includes the fetching and
storing of data to and from the memory through the
memory buses. Memory can either be the core or
semiconductor variety (as distinct from the disc or drum
storage often called rotating memory. which is accessed as
a peripheral device through 1/0 facilities).

When a microinstruction initiates an access, the memory
control section handles the complete operation. This
permits the microprogram to initiate access to/from
memory and perform other functions (ALU etc.) while the
access actually occurs the microprogram can detect the
completion of the memory access by specifying a wait for
memory done.

Two different types of fetches can be requested. The
instruction fetch (IF) moves the contents of a 16-bit word
tfrom main memory to the memory input register (MIR)
and the instruction buffer (IBR). The operand fetch (OF)
moves a 16-bit word to the memory input register and does
not change the instruction buffer. Instruction fetches are
usually used for fetching 16-bit macroinstructions for
decoding from the IBR. The operand fetch is used for
general data and address fetches. The microword which
requests a fetch provides the address in main memory.
After the request is made it is handled completely by
memory control and requires no further actions in the
following microinstructions.

Example of fetch sequence

n n+1 n+2
request wait for (data is
instruction memory ready for
fetch done use in MIR)

Memory requests to store data are of two types. The first is
the operand store (0S), which stores a 16-bit word in main
memory. The second is the byte store (BS), which stores
only an 8-bit byte. As with the fetch operations, the
microinstruction which requests the store must furnish the
main-memory address for the operation. Microinstructions
following the request for a store must provide the data to
be stored on the ALU until the memory operation is
complete.

Example of store sequence

n n+1 n+2

request store RO — ALU| (operation

using P as wait for complete)
address memory
done

During operand stores, the memory data are derived from
the ALU output. If the ALU input is from any of the 16
general-purpose registers and an arithmetic operation is

specified for the ALU, incorrect parity data may be stored
in memory. This situation can be avoided by using only
logical ALU functions during operand stores; or by
addressing the general-purpose register to the proper ALU
input during the microinstruction that initiates the memory
store cycle. Figure 2-4 is a coding example of an operand-
store sequence using an arithmetic operation with a
general-purpose register as the data source.

Completion of a memory operation is detected either with
the wait-for-memory-done function or by requesting another
memory operation. Wait-for-memory-done suspends mi-
croinstruction execution until the memory operation is
complete. Requesting another memory operation has the
same effect because microword cannot complete until its
memory request is acknowledged by memory control and
requests are not acknowledged until any previous request
is complete.

Override

An active memory access may have the type of operation
changed by the next microinstruction. By making an
immediate change the immediately prior action is overrid-
den. This can be conditional upon the result of the same
test available for addressing (GF field).

Example:

Microinstruction Microinstruction Microinstruction

Cycle n Cycle n+1 Cycle n+2
Initiate memory memory
memory store store
store starts continues
override too late
possible to override

Memory cycles may be initiated by microinstructions either
unconditionally or depending on the results of a test.

2.4.1 Unconditional Cycle Initiation

A memory cycle is unconditionally initiated or overridden
when the SF field equals O1 or if the SF field equals 10 and
the TF field equals 00.

The IM field specifies the type of operation and the address
source. Permitted operations are:

IM Value Action

XX00 Read data from memory into the instruction
bufter and memory input register (instruction fetch).

XX01 Read data from memory into the memory input
register (operand or address fetch).
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IM Value Action

XX10  Write the full word output of the ALU into memory.

XX11  Write the byte from the ALU specified by the byte
address flag (BYTA) into the corresponding memory
byte. The other memory byte at the designated word
address is unaffected. If BYTA is false, the left byte is
written. If BYTA is true, the right byte is written.

BYTA, the byte address flag, copies bit O of the general
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the
ALU input A bus.

The operation may be changed by the following microin-
struction by specifying the new operation with the IM field
equal to 00XX. This permits, for example, conversion of a
store cycle into a fetch or an instruction fetch into an
operand fetch.

The data to be written to memory must be maintained at
the ALU output by the microinstruction(s) following
initiation until the cycle is complete.

The source to be used for loading the memory address
register is specified as follows:

IM = 01XX ALU output
IM = 10XX Program counter
IM = 11XX Memory input register

2.4.2 Conditional Cycle Initiation

A memory cycle may be initiated (or overridden) or not
depending on the results of a test specified by the GF field.
Conditions tested were described previously in the section
of test addressing.

If the TF field is not equal to 00 and the SF field equals 10,
the cycle will be initiated (or overridden) if the tested
condition is false.

If the SF field is equal to 11, the cycle will be initiated (or
overridden) if the tested condition is true.

In either case, the IM field specifies the operation to be
performed and the address source to be used as described
in the previous section.

2.4.3 Special Transfer

ALU output data may be transferred to the instruction
buffer and memory input register by using the memory
data bus. This does not involve activation of any memory
module. To initiate this transfer the SF field must be equal
to 00 and the IM field equal to 0100. The ALU output data
must be set up by the initiating microinstruction and
maintained for one more microinstruction.

2-20

2.4.4 Wait for Memory Done

The wait-for-memory-done function suspends microinstruc-
tion execution until memory control signals completion of
central control’s prior request. This function is SF = 0 and
IM = 0001. If no central control has no prior request
active, the wait-for-memory-done has no effect.

Table 2-8. Memory Operations

Control Field
Function SF TF M

UNCONDITIONAL INITIATION — 01
or

L1000

CONDITIONAL INITIATION
Condition True 11

Condition False 10 [Not 00
(Condition Specified in GF)

EITHER

Operation XX00
Read memory data into
instruction buffer and
memory input register

Read memory data into XX01
memory input register

Write ALU word output XX10
Write ALU byte output XX11

Address Source or Override

Override operation 00XX
ALU output 01XX
Program counter 10XX
Memory input register 11XX

SPECIAL TRANSFER
(ALU output to instruction 00 0100
buffer and memory input
register)

2.5 MICROPROGRAMMING EXAMPLE

General

As an example of instruction implementation using Varian
microprogramming, the steps of a single-word addressing
load accumulator LDA in the direct address mode will be
traced.

SS1M

Initially the instruction pipeline is assumed to be empty so
a new instruction must be fetched from main memory. The
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first microinstruction studied will be that obtained from
control store location 13E (all addresses are given in
hexadecimal). This location has the label SS1M, which is
one of the microprogram’s standard states.

The microinstruction fields at 13E are:

TS AF MsS MT FS TF SF GF
0000 01001 0010 0O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 000 0000 0O

CF WR SC VF WF XF SH BB AA
0O 0O 0O O 0 00 000 0000 0OOOC

The function of this microinstruction is to initiate an
instruction fetch from the memory address specified by
the program counter. Note that the SF field equal to 01
specifies unconditional initiation of the memory cycle. The
IM field specifies use of the program counter for an
address source and the instruction buffer and memory
input register as destinations for data received from
memory. The FS, MT, TS and TF fields contain all zeros so
normal mode addressing is specified. The next control store
address will be 092. No other fields of the microinstruction
are pertinent.

SS2Mm

Location 092 is another microprogram standard state
labeled SS2M. It continues the process of filling the
pipeline by initiating another instruction fetch using the
incremented contents of the program counter.

The microinstruction fields at 092 are:

TS AF MSs MT FS TF SF GF
0000 00010 1101 O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
000 0 O O 00 000 0000 0000

Again the SF field is equal to 01 and the IM field is equal to
1000 specifying another instruction fetch using the
program counter. In this case. nowever, the RF field equals
100 specifying that the program counter will be incre-
mented before it is used an address. This microinstruction
will not be immediately executed as the previous microin-
struction initiated memory activity and the memory

interface will remain busy until the first instruction from
memory is loaded into the instruction buffer and the
memory input register. At the time, the current microin-
struction completes and the next microinstruction from

location 02D becomes active. Normal addressing occurs
again due to FS, TS, MT and TF fields being zero. No other
fields of the microinstruction are pertinent.

CAPABILITIES

SS3M

Location 02D is another microprogram standard state
labeled "SS3M". It causes decoding of the instruction
fetched from memory while checking for interrupts. It also
copies the instruction buffer into the instruction register to
make room for the next instruction from memory.

The microinstruction fields at 02D are:

TS AF MS MT FS TF SF GF
1110 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 00 00 000 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0 O O 00 000 0000 0000

This microinstruction manipulates no data paths nor does
it initiate any memory cycles. Its sole purpose is to check
for interrupts and, if there are none, cause a branch to the
required microsequence. The TF and SF fields are both
equal to 00 and the GF field bit O is a one causing transfer
of the instruction buffer to the instruction register. The GF
field bit 2 is a one, thus enabling interrupts and decoder
addressing. The TS field defines the interrupts which are
enabled - all except 170 interrupts unless the memory
protect option is installed. The IM field specifies selection
of the interrupt flag. If this flag were set, interrupts would
be suppressed. The fiag is reset by this microinstruction. If
an interrupt were active and the interrupt flag had not
been set, the next control store address would be 0DX
where X designates the four bits supplied by the interrupt
logic. This would produce a branch to the interrupt
microprogram sequence.

Assuming no interrupts are present, the new control store
address will be determined by the decoder logic. The
instruction fetched from memory is assumed to be 10F9
(hexadecimal) or 010371 (octal). This is a V73 "LDA”
instruction with direct addressing of location OOF9 (hex-
adecimal). The most significant four bits of the instruction
buffer address the first decoder control store at location
one. The next four bits address the second decoder control
store at location 00. The decoder control store contents
are:

1st decoder

Control store Bl2 =1
location 1 B8-BO = 110000010

2nd decoder

Control store A8-A0 = 010000000
location O

Since B12 equals 1, the B8-BO and A8-A0 address

components are logically ORed to produce an address of
182.
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SWA10

Location 182 contains the first microinstruction of the
single word addressing sequence (SWA10) for the
instruction fetched from memory. It forms the effective
address by masking bits 00 through 10 from the
instruction register. It also initiates the operand fetch.

The microinstruction fields at 182 are:

TS AF MS MT FS TF SF GF
0000 10010 1111 0 0000 00 01 0000

MR AB IM LB LA RF FF
0 00 0101 10 00 011 1010

MF CF WR SC VF WF XF SH BB AA
1 11 1 1 0 O 00 000 0000 0OOO
1 H

- ===~~~ -- 16-bit mask literal-~~------ <

The LB field equals 10 so the ALU B input bus will have the
contents of the instruction register masked by the 16 bits
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a
zero in the mask enables the corresponding instruction
register bit). The mask equals F800 so the low order 11 bits
of the instruction are used.

The ALU mode is determined by the FF field (1010) in
conjunction with the LB field (forces logical mode)
resulting in an ALU function of the ALU = B.

The RF field equals 011 so the ALU output is copied into
the operand register.

The SF field equals 01 so unconditional memory control is
specified by the IM field (0101) to be fetch an operand
into the memory input register using the ALU output for
an address source. This microinstruction will complete
when the memory cycle initiated by the microinstruction at
092 completes.

The FS, TS, TF and MT fields all contain zeros so normal
addressing is used and the AF and MS fields specify the
next control store address of 12F.

SWA20

Location 12F contains the second microinstruction of the
single word addressing sequence (SWA20). It decodes bits
13-15 of the instruction register contents to determine the
class of the single word addressing instruction.

The microinstruction fields at 12F are:

TS AF Ms MT Fs TF SF GF
0000 11110 1100 1 1111 00 00 0000

MR AB IM LB LA RF FF MF
0 00 0000 00 OO0 000 0000 O
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CT WR SC VF WF XF SH BB AA
00 0 0 0O O 00 000 0000 O00OOO

No data manipulation or memory control operations are
performed by this microinstruction. It serves only to
branch to the specific microsequence for the class of
single-word addressing instruction contained in the

“instruction register. Field select addressing is used to

perform this decoding (FS field is not equal to 0000). The
FS field is equal to 1111 so the selected field is bits 11
through 15 of the instruction register. The composite
address formation is illustrated:

876543210
AF field contribution: 111100000
or=111100000

TS field contribution: 000000000
Field selected from
instruction register:
(I = 10F9)

000000010
and = 000000000

Mask consisting of MT 000011100

and MS fields

Final effective address
produced by inclusive or

111100000

The address of the next microinstruction is then 1EQ.

LDA1

Location 1EO is the first microinstruction specific to the
LDA instruction (LDAL).

This microinstruction increments the program counter and
initiates another instruction fetch from main memory.

TS AF MS MT FS TF SF GF
0000 01011 0101 0O 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0O O O 00 000 0000 0000

The RF field equals 100 specifying that the program
counter will be incremented during this microinstruction.

The SF field equals 01 so unconditional memory control is
specified by the IM field (1000) to fetch an instruction into
the instruction buffer and memory input register using the
program counter for an address source. (Note that the




program counter is incremented during the microinstruc-
tion so the new value will be used for the memory cycle).

Normal addressing is used to specify the next microinstruc-
tion address (TF, TS, FS, MT fields are all zero). The AF
and MS fields define the address to be 0B5.

LDA2

Location 0B5 is the second microinstruction specific to the
LDA instruction (LDAZ2). This microinstruction transfers
the contents of the memory input register to the
accumulator, RO; transfers the instruction buffer contain-
ing the next instruction to the instruction register to make
room for the instruction whose fetch was initiated by the
microinstruction 1EOQ; decodes the instruction buffer to
determine the starting address of the next microsequence
and checks for interrupts.

The microinstruction fields at OB5 are:

TS AF MS MT FS TF SF GF
1111 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 01 00 000 1010 1

CF WR SC VF WF XF SH BB AA
00 1 0 O 0 00 000 0001 0000

The ALU B input is specified by the LB field (equal to O1) to
be one of the special registers. The BB field (equal to
0001) defines the memory input register as the source.

The ALU operation is specified to be in the logical mode
(MF = 1) with the ALU output equal to the ALU B input
(FF = 1010).

The WR bit equals a one so the ALU output data will be
written into the register specified by the AA field (AA =
0000) which is the accumulator (A register). This is the
execution phase of the LDA instruction.

The SF and TF fields are both equal to 00 and the GF field
bit O is a one so the instruction buffer contents are copied
into the instruction register. The GF field bit 2 is a one so
the instruction decoder is enabled and interrupts are
checked.

The IM field equal to 0110 with the SF field equal to 00
selects and resets the interrupt flag. If the flag is set, the
decoded address and interrupts are suppressed and the
next microinstruction is fetched from location 0DO. All
interrupt classes are enabled as the TS field contains all
ones. If an interrupt is active and the interrupt flag is off,
only the decoded address is suppressed and the next
microinstruction is fetched from the address specified by
the AF field and the interrupt logic. This address is 0DX
where X is the address supplied by the interrupt logic
(X#0).

If no active enabled interrupts exist, the next microinstruc-
tion will be fetched from the address specified by the
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SSTM (13E)

INITIATE INSTRUCTION
FETCH USING P

SS2M y (092)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

SS3M v (02D)

DECODE INSTRUCTION
BUFFER

TRANSFER BUFFER TO
INSTRUCTION REGISTER

ENABLE INTERRUPTS

SELECT AND RESET
INTERRUPT FLAG

SWAI0 v (182)
INSTRUCTION REGISTER
BITS 00 THRU 10 ALU
LOAD OPERAND REGISTER

START MEMORY OPERAND
FETCH USING ALU

SWA20 v (12F)

FIELD SELECT INSTRUCTION
REGISTER BITS 13 - 15

I =000
13-15

LDAI v (1E0)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

LDA2 v (0B3)

COPY MEMORY INPUT
REGISTER INTO RO

TRANSFER BUFFER TO
INSTRUCTION REGISTER

DECODE INSTRUCTION
BUFFER

SELECT RESET INTERRUPT
FLAG

DECODED SINGLE WORD
ADDRESSING INSTRUCTION
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Figure 2-5. Flowchart for LDA Instruction
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1DENT SSIM SS2M SS3M SWAI0 SWA20 LDAI LDA2
(HEX. ADDR.) (136 (92) (20) (182) (12F) (1€0) (0B5)
FUNCTION FETCH FETCH FETCH FETCH FETCH FETCH
LDA NEXT INST. NEXT INST. OPERAND OPERAND THIRD INST.
>
%
2 | reEQUEST IF IF OF .
b3
ADDRESS P 4 ALU 4
INPUT A
INPUT B I A O7FF MIR
=t
<
OUTPUT TRNB TRNB
DESTINATION R0
2 | SAMPLE
2
<
A
2 HTEST
FIELD
MODE DECODE SELECTION DECODE
] n3-ns
4
%
a
E LDA1
Al+X
o FROM _ FROM
< | ADDRESS SS2M SS3IM DECODER SWA20 ;V:ESE X e LDA2 DECODER
o« ENABLE 1BR— |
@ | SPECIAL INCP INTERRUPTS INCP ENABLE
5 [ACTIONS IBR— 1 INTERRUPTS

Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond

memory cycle time is assumed).
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decoder control store logic. If the instruction buffer
contains another single-word addressing instruction, the
next address will be 182 (SWA10) and the sequence will be
repeated.

Figures 2-5 and 2-6 show a flowchart and flow diagram of
the microinstruction sequence described. Note that the
pipeline effect of buffering instructions permits efficient use
of the memory. (A 330-nanosecond semiconductor memory
was assumed).

2.6 TIMING CONSIDERATIONS

Most microinstruction operations take place at the conclu-
sion of the cycle. Certain exceptions do exist. ALU inputs
are sampled at the midpoint in time of the cycle. Control-
store address information, memory addresses, and most
register and flag changes occur at the end of the
microinstruction  execution. The areas below should be
considered while planning microprograms.

Program counter incrementation (RF = 100 or 111)
Incrementation takes place at the midpoint of the
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Figure 2-6. Flow Diagram of LDA Instruction

microinstruction. Thus the program counter value
applied to the ALU input will not be the incremented
value. The new value will be used as a memory
address, if the program counter is specified as an
address source.

Byte address flag
The byte address flag is set or reset at the temporal
midpoint of the microinstruction. Thus its new value
may be used to determine which byte of the memory
location is to be altered.

Memory write operations

ALU inputs, function, mode and carry must be
maintained constant throughout any memory write
cycle. This is accomplished by specifying another
memory cycle immediately following the current cycle
thus interlocking execution of the next microinstruc-
tion with completion of the memory cycle in progress
or by using the wait for memory done function (SF =
00, IM = 0001).

Special transfers
The transfer of ALU data to the instruction buffer and




memory input register requires ALU data to be
maintained for two microinstructions.

170 operations
If the /0 section is not idle when a new |/0 operation is
specified, microinstruction execution will not occur
until the |/0 becomes idle. A wait for 1/0 done
function (SF = 00, and IM = 0010) will cause a
similar wait condition until the 170 DN bit becomes
true.

Use of the I/0 register
If direct memory access or similar |/0 operations are
possible the [/0 register may be altered. Care in use of
this register is indicated. Control of the 1/0 register is
described in the /0 section of this guide.

2.7 ADDITIONAL CAPABILITIES

2.7.1 Register Field Control

Many types of instruction words contain fields which
specify registers which contain operand data. If all
combinations of operations on all possible registers had to
be specified by individual microinstructions, the control
store size would be quite large.

A Varian 70 series system permits three- or four-bit fields
to be selected from the instruction register and stored and
maintained in the control-buffer-register specification
fields. This permits a single microinstruction to handle all
combinations of registers for any operation.

This register field extraction is performed independently of
the field select addressing function and both may be used
simultaneously.

The AA and BB fields of the microinstruction contained in
control store are copied into their corresponding positions
in the control buffer any time the AB field equals 00 and
the MR field equals 0. This is the normal mode of
operation.

CAPABILITIES

When the SF field equals 00 and no |/0 request is active,
the AB field equals 01 or 10; the TS field specifies a four
bit field of the instruction register to be loaded into the
control buffer’s AA or BB field. The field not being loaded
will be loaded into the control buffer's AA or BB field. The
field not being loaded will be maintained at its last value.
A code of AB equals 01 and loads the field selected into
the BB field. A code of AB equals 10 and loads the field
selected into the AA field.

The MR bit is used to mask the most significant bit of the
selected field. If MR equals zero, the most significant bit of
the selected field will be treated as a zero. |f MR equals
one, the most significant bit of the selected field will be
loaded into the designated field.

The AA and BB fields can be maintained in their current
state by specifying and AB field equal to 11 while the SF
field equals 00 and no 1/0 request is present.

If no 170 request is present, the AB field equals 00 and the
MR field equals 1, the control buffer AA field will be
maintained at its current value and the BB field will be
forced to either of two addresses depending on data loop
conditions and the WF field.

WF field equal to 1

1
=
o 0]
@
I

Operand register bit 01 1111

]

Operand register bit 01 = 0; BB 1110
WEF field equal to O

1111

]

ALU bit 156 = 1, BB

ALU bit 15 = 0; BB = 1110

This function is used by the Varian 73 standard instruc-
tions microprograms for multiply and divide.

Register field control operations are summarized in the
tables following.
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Table 2-9. Register Field Control
Control Fields
Function SF AB MR TS WF
Load A and B fields from 00 00 0
control store
Inhibit loading of A field 00 01 Mask most Selects
and place selected 4 bit significant field
field (masked) from in- bit of BB field
struction register into
B field
Inhibit loading of B field 00 10 Mask most Selects
and place selected 4 bit significant field
field (masked) from in- bit of AA field
struction register into
A field
Inhibit loading of A and 00 11
B fieids
Inhibit toading of A field 00 1 0
and force B field to 1110
1t ALU output bit 15 = 0 or
to 1111 if ALU bit 15 = 1
Inhibit loading of A field 00 1
and force B field to 1110
if operand register bit
01 = 0 or to 1111 if operand
register bit 01 = 1
All functions are inhibited
if an 1/0 request is issued.
Table 2-10. Register Field Selection Enable Jump Signal
Bits Selected From )
Instruction Register A s:gngl is s_ent to the memory-protection option desig.natv
TS Field for register file Ing a jump instruction by setting the LB high-order bit to
zero and the SC field to zero and the XF field equal to 11 or
000 03 02 01 00 10. if the XF field equals 11, the interrupt flag will be reset.
001 04 03 02 01
010 05 04 03 02
011 06 05 04 03 Reset Interrupt Flag
100 07 06 05 04 .
101 08 07 06 05 The interrupt flag will be reset if the LB field equals 00 or
110 09 08 07 06 01 and the XF field equals 11 or O1.
111 10 09 08 07

Enable Special ALU Mode
Other Controls

(This feature is useful for the standard instruction set, but

Transfer instruction buffer to instruction register not generally suggested)

The contents of the instruction buffer will be transferred to The ALU mode, carry input and overflow sampling may be
the instruction register when TF and SF both equal zero, forced according to the contents of the instruction register
and GF has a low-order bit set to 1. by setting the LA and LB fields equals to either 00 or 01
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(high-order bit equals zero) and the SH high-order bit
equal to 1. In this case, the ALU function will be as follows:

Bit

3 As specified by FF field

2 most significant 2 bits
1 Instruction register bit 7
0 Instruction register bit 7

complemented

2.7.2 Memory Addressing to 64K

The standard instruction set has addressing capability to
32K words with 15-bit addresses. The use of bit 15 to
select indirect addressing mode removes it from use as an
address bit. The memory modules can recognize a 16-bit
address which increases the range of addresses to 64K
words.

The most significant bit of the memory address bus is
normally grounded to prevent any address generated by
the standard instruction set from attempting to access
above 32K words. This is necessary since the high-order bit
can be set by indirect memory reference in the host
instruction set.

The WCS permits use of the full 16-bit addressing
capabilities of a Varian 70 series system. This enabling is
automatically inhibited while executing from page zero so
standard 620 problems will execute correctly in the lower
32K words of memory.

User-written microprograms in the WCS can generate 16-
bit addresses to cause access to the full 64K words. This
mode is enabled or disabled with a group of control fields
in the microinstruction. Once enabled this mode s
retained until explicitly disabled as described below or a
system reset occurs. The enabled mode is not effective
when page zero is active.

64K Mode of Memory Addressing

Enable Disable
SF=0 SF=0

TF=0 TF=0
IM=1101 IM=1101
LB=11 LB=11

MF =1 CF=11 or 10

Changing the memory mode requires all the
conditions set as indicated.  Figure 2-7 illus-
trates memory bus control.

2.7.3 Memory Bus Lockout Status

Systems in which multiple processors share the use of
common memory modules often require the capability of

CAPABILITIES

‘ SYSTEM RESET ’

<
-«

64K

ADDRESSING
DISABLED

MICROPROG
ENABLE

64K
ENABLED
IF PAGE 0O

MICROPROG
DISABLE

@

() ENABLE=IM=1101A (T = 0) A
(S=0)A(LB=T1) A(MF = 1)

@ DISABLE = (IM = 1101)A (T = 0) A
(S=0)A(LB=11)A(C= 10VII)

VTII-1806
Figure 2-7. Flowchart of Memory Address Control

testing the contents of some memory locations and
modifying those contents (if the results of the test indicate)
without the possibility of another processor gaining access
to that location between the test and the change.

WCS Implementation

The WCS permits use of a function allowing the processor it
controls to temporarily lockout all memory modules
connected to its memory bus. While the memory system is

2-27
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locked out on one port, no accesses are permitted on the
other port. To prevent simultaneous lockout from both
processors the lockout mode for any memory bus only
becomes enabled when the requesting bus actually gains
access to the memory (so the other bus cannot establish
the lockout mode). The memory lockout mode is set or
reset with the following microinstruction fields:

Set Reset
Field LOCKOUT LOCKOUT
SF 0 0
TF 0 0
M 1101 1101
LB 11 11
CF X1 X0
AA XXX0 XXX1

X indicates a bit position not involved in this operation.

If priority memory access (PMA) is present in the system,
caution must be exercised to prevent the PMA from
establishing its own lockout mode while either processor is
in lockout mode. Simultaneous lockout would prevent all
further accesses to memory and "lock-up” the system.
Figure 2-8 illustrates memory bus lockout.

Lockout is removed by system reset.

2.7.4 Stack Use

Three stack operations, branch/push, branch/pop and
branch/delete are used on the microprogram-return stack.
All are global and effect a page selection. On the branch/
push and branch/delete, the TS field gives the new page
number. On the branch/pop, the word at the top of the
stack gives the new page number. The return address
which is pushed is an independent 13-bit specification

PROCESSOR

A MEMORY

PROCESSOR
B

t $

t $

PORT A

PORT B

MEMORY BUS LOCKOUT STATUS

MEMORY CYCLES
PERMITTED

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES

VI11-1808

MEMORY CYCLES
FORBIDDEN

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR B
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES

Figure 2-8. Memory Bus Lockout
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provided by mask field of microinstruction from the
destination of the branch. The 13-bit specification is made
up from the following fields of the microinstruction:

PAGE Word

12111110} S 8 7 654 3210

WR| SC | VF | WF XX SH BB

All stack operations have a value of zero for the SF and TF
fields, IM set to 1110 and LB set to 3. Push requires bit 1
of the AA field set to 1. Pop is designated by bit 2 of the AA
field set to 1 and bit 0 of the BB field set to 0. Branch/
delete is the same as branch/pop except bit 0 of the BB
field is set to 1.

TF SF IM LB AA BB

Branch/push 0 0 D 3 bit1l
=1
Branch/pop 0 0 D 3 bit2 bito
=1 =0
Branch/delete 0 0 D 3 bit2 bito
=1 =1

In initializing the stack an error branch can be pushed into
the first location. If a microinstruction tries to "’pop” this
return, an underflow condition will occur and the error
branch will be taken. An attempt to "'push” one more level
than the sixteen allowed causes a branch to the address at
stack location zero.

In addition to pop and push operations on the stack, a
stack entry delete operation is provided. This causes a
page branch to the address specified by the processor and
deletes one entry from the top of the stack.

All stack return addresses including the error return are

restricted to the WCS. This avoids conflicts with processor-
generated addresses during the pop operation.

Questions and Answers About Microprogramming Stack

Q: The WCS stack push and pop operations do not appear
to be mutually exclusive. {f both are specified, would the
stack first pop the new address then push the return
address?

A: Such an operation is undefined and should be avoided.
Q: Do micro stack operations proceed at full speed?

A: The stack operates at the same speed as other writable
control store operations -- 190 nanoseconds.

2.7.5 Memory Addressing Using the
Optional Memory Map

The memory-map key register (used by VORTEX Il) cannot
be easily modified from the WCS. As an option, the memory

varian data machines @——
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map can be wired to operate with the processor key
register. This mode is not supported by standard Varian
software. The following paragraphs describe this special
mode of operations.

The processor key register is four bits which may be applied
to the ALU input bus B as part of the status word. It is
loaded from ALU output bus bits 12-15 and applied to the
memory address bus as a four-bit extension to the 15-bit
memory address register. The key register provides bits 15-
18.

18 17 16 15] 14 0

key register Memory Address Register
memory map input
19 bits

when 64K mode is enabled, bit 15 of the memory address
register is also ORed into the effective map input bit 15.

During memory cycles initiated by 1/0 (DMA), the |/0 key
register is applied instead.

Care must be taken in using the processor key register as
an input to the ALU input bus B. No /0 initiated memory
bus activity must take place during application of the
status word or the value of the I/0 key register may be
used instead of the processor key register.

2.7.6 Memory Protection

If the memory protection is enabled, write operations are
automatically  inhibited. A memory-protection internal
interrupt is generated as well as an 1/0 interrupt request.
The memory-protection option may be disabled only by
appropriate |/0 instructions, not by microinstructions. Care
must be taken in using the memory protection if more
than 32K words of memory are to be addressed (bit 15 of
memory address is enabled). Such use is very specialized
and should only be undertaken after consultation with
Varian Data Machines.

2.7.7 Address Comparator Logic

Address comparator logic is provided in Varian 70 series
processor to prevent erroneous operation in the event a
store instruction stores data into the next memory location
in the program (macro). Erroneous operation would occur
because the processor fetches the contents of the next
memory location (n + 1) before the execution of the current
instruction (at location n) is completed. The comparator
logic compares the address from the program counter with
the address from the memory address lines. If the addresses
are equal, the comparator logic generates an equal-address
flag (MPLE) which enables the memory contents already
fetched into the processor’s instruction buffer to be updated
to the new contents stored by the store instruction.
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A store instruction can thus cause a dynamic alteration
to the original program flow. An example where this dynamic
alteration would be useful is in forming a BCS macroin-
struction in which the address is located in the A register
and the operation code is located in a memory location.
The A register is combined with the memory location to
produce the BCS macroinstruction. By using the STA in-
struction with direct addressing into location n+1, the
A-register contents are stored in location n+1 and are
processed as the next instruction in the program.

The following items should be considered when micropro-
grams involving a store instruction are written:

a. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and a non-memory accessing microin-
struction is executed during the store operation (no
back-to-back memory operations).

b. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and either a memory accessing microin-
struction or a wait-for-memory done condition follows
the store operation (back-to-back memory operations).
This type of operation is shown in the diagram below:

Microinstruction
being executed

Previous micro- | Start memory | Memory-accessing
instruction for store microinstruction
operation

) g

Memory operation
being performed

—_——— —

Unknown Store operation

A I
I I

' 1

Program counter is equal to memory
address here |

) 1

! '

MPLE flag is generated due to equal
addresses :

|

Program counter may no
longer equal the memory
address, but MPLE flag is
still active and the in-
struction butfer is modi-
fied anyway

c. If microprograms are written for a user-defined mac-
roinstruction set and dynamic program alteration
occurs, all store operations shouid be followed by a
non-memory accessing microinstruction so that the
MPLE flag can test for equal addresses. Any modifi-
cation to the program counter during execution of the

Microinstruction
being executed

store operation should be avoided. This type of opera-
tion is shown in the diagram below:

Start memory
for store op-
eration

Non-memory
accessing
micro-
instruction

Next
microinstruction

Memory operation
being performed

Unknown Store operation

MPLE flag tests for equal
addresses.

2.8 QUESTIONS ABOUT
MICROPROGRAMMING CAPABILITIES

Q: If a current memory cycle is to alter the memory input
register, and the memory input register is specified as
the memory address source by the current microin
struction (awaiting memory cycle completion), are the
old or new contents of the memory input register
used for the next cycle’'s address? Does the
situation change if the memory input register 1s an
ALU input and the ALU is selected as an address
source? Does the WCS clock rate affect this?

A: The new value of the memory input register is used
when the memory input register is used as an address
source. The memory input register should not be used
through the ALU to determine the address of the next
memory cycle when it can be altered by the current
memory cycle. The WCS clock rate does not affect
this.

Q: What is the standard entry point to branch to when an
interrupt is detected ?

A: Interrupts, when enabled, cause a branch to the
address specified by the AF field and interrupt address
supplied by the 170 control. Standard /0 interrupts
supply an address component of 0111 to the least
significant four bits. The most significant five bits are
specified by the user (AF field) and may be anywhere
in the currently active control store page. At that
address, the microprogram should perform the func-
tions of the V73 IWAIT microinstruction (location OD7
on page zero) and then branch to INT1 (OD1 page
zero) or perform in the current page the functions of
INT1, INT2, INT3 and INT4.
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Q: Is data in the memory input register protected against

DMA and PMA operations ?

: Yes, DMA and PMA operations do not alter the memory
input register.

- When reading data from memory is the data available
in the memory input register at a fixed number of
microinstructions following memory initiation, or
must a wait for memory done be placed before using
the data or starting another memory cycle ?

CAPABILITIES

A: Data arrives in the memory input register no sooner

than the second microinstruction after its initiation. It
may arrive after that. The access time depends upon
DMA or PMA or other memory bus cycles, semicon-
ductor memory refresh cycles or core memory rewrite
cycles in progress at the time. If a new memory cycle
is to be initiated immediately following completion of
the current cycle, interlocking is automatic as the
execution of microinstructions will cease until the new
cycle initiation is accepted by memory control.
Otherwise a wait-for-memory-done function must be
specified.
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SECTION 3
TECHNIQUES

This section describes the use of flow diagrams in writing
user microprograms and the interface with the 620
emulation microprogram. Several detailed examples of flow
diagrams for sample microprograms are included here.
These examples will be continued in later sections, where
the flow diagrams will be translated into assembly
language.

3.1 INTERFACE WITH 620 EMULATION

3.1.1 Execution of User Microprograms

Branch to Control Store Implementation

The BCS instruction causes a branch to the WCS and
always goes to page 1. The control store word in page 1 is
specified in bits O - 4, allowing a branch to one of the first
32 words, which contain vectors to microprogrammed
routines. The BCS instruction is a special coding of an 1/0
instruction and, as such, is not a generic mnemonic within
the DAS assembler language. This instruction for use in
symbolic DAS coding must be defined by the user.

The BCS macro is decoded directly on the WCS page during
primary decoding time as defined by the processor logic. A
BCS is performed only if decoder control store page O is
currently selected. Any other control store selected causes
the macro to be taken as part of a different instruction set.
The BCS page branch does not change the decoder control
store selection. A local page-branch micro-operation can
change the selection of a decoder control store to page 1.

3.1.2 Steps in Instruction Execution

The following are the general ctages in the execution of a
16-bit macro instruction:

1. A microinstruction initiates an instruction fetch.

2. The instruction is transferred from memory to the
instruction buffer.

3. The instruction is copied into the instruction register
and a request is made for a decoding of the instruction
buffer contents. This decoding simply identifies the
instruction to be a member of a certain class of

instructions and effectively causes a branch to a
microroutine which does any work common to that
class; for example, single-word memory-addressing
instructions may use the same microroutine for
computing the effective memory address.

4. Secondary decoding of the instruction determines its
exact identity. This is done by such features as field-
selection addressing, which allows using bits from the
instruction register to determine a microprogram
branch address. Using such methods, the microin-
structions which complete the actual execution of the
instruction are reached.

5. Microinstructions which form the instruction are
executed.

3.1.3 Instruction Pipeline

In our system, the term instruction pipelining refers to the
technique of fetching the next instruction from memory
before the current one has finished executing. This is
possible due to the availablility of two 16-bit registers for
holding instructions. The first is the instruction buffer
(IBR), which receives the instruction being fetched from
memory. In IBR the next instruction is held while the
current instruction being executed is in the instruction
register (). When ready, the instruction buffer is transfer-
red to the instruction register and the next instruction may
be fetched from memory.

The chief advantage of this method lies in the fact that the
microinstructions are much faster than the fetches from
memory.

Thus, without the pipeline, a one or two microinstruction
defay would be added to the execution of each instruction
while the processor waited for the instruction from memory.

Interfacing with the Pipeline

The instruction pipeline is crucial to the execution of the
standard instruction set. Thus, any new instructions being
added through microprogramming must consider and be
cautious of the effects and requirements of the pipeline.
Because of the pipeline, user’s microroutines in WCS can
rely on certain things being true when they receive control
from page zero. Likewise they must make sure certain
techniques are used when they exit to read-only memory.

varian data machines @ -
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Upon entry to WCS by a BCS instruction, the following
conditions exists:

a. The program counter (P) is pointing to the word
following the BCS.

b. The BCS command will be in the instruction register.

c. The word following the BCS will be on its way from
memory to the instruction buffer and memory input
buffer.

On exit from WCS the microprogram must set conditions
for the next command, and maintain the pipeline. In
particular the following are required:

a. The next instruction to be executed is in the instruction
buffer. This will often be the word after the BCS. which
was already on its way there on entry. If the BCS has
a parameter, or if the instruction buffer was
modified, then the instruction may have to be
fetched.

b. The program counter should be incremented to one
beyond the location of the next instruction and an
instruction fetch initiated. This will not only preserve
the pipeline but will also make sure any memory
activity  necessary to complete setup of condition
(a),

c. The instruction buffer should be copied into the
instruction register in preparation for its execution.

d. A request for decoding of the instruction buffer
contents should be made along with a page branch
back to page zero, i.e., ROM. The decoding results in
the correct microroutine getting contro! for execution
of the next instruction.

In most cases, the preceding steps can be summarized by
the rule:

The second to last microinstruction should
increment P and do an instruction fetch.

The last microinstruction should transfer IBR to
I and request decoding addressing.

3.1.4 ROM Standard States

Much of the interfacing with the pipeline can be done by
using standard  microinstructions (standard states) in
page zero. These were developed exphicitiy for this purpose
for use by the 620/f emulation. The most common ones
make up the three microword sequence listed below. They
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may be used simply by doing a page jump directly to
whichever microword is appropriate.

Address Label Function

13E SS1M Restarts the pipeline at P with
an instruction fetch by P. It
then branches to SS2M.

92 SS2M Maintains the pipeline by incre
menting P and requesting an
instruction fetch. It branches
to SS3M.

2D SS3M This instruction decodes the

IBR contents to determine the
next microinstruction to execute.
It also copies the IBR into |.

3.1.5 Summary of Branches Between WCS and
ROM Control Store

From ROM to WCS

BCS Macro (from Decoder Page Zero Only)

This macro ensures the start of a processor fetch during
the primary decode of the BCS according to the V73
pipeline rule. The clock change and page selection occur
during the primary decoding of the microinstruction.

170 Branch

Control is transferred to the selected page of ceniral
control store during the data phase of the 170 command.
170 branch can go to any central control store page and
does not select a decoder.

This mechanism assures that no DMA 1. 0O memory
transfers and no processor memory transfers are in
process during the clock change.

From WCS to ROM

The 1/0 branch is not a viable mechanism from WCS to
ROM.

A micro level page branch is the standard method for going
from WCS to ROM. This operation is the converse of the
BCS disscussed above.

Standard state sequences in the ROM provide pipeline
start up and various other housekeeping functions for the
standard instruction set. These may be of interest for
particular microprogramming entrances.
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3.1.6 Varian 73 Register Usage

The 620 emulation on Varian 70 series systems uses some
general-purpose registers. Using the standard instructions
with his own microprograms a user is responsible for
preserving the settings and restoring those necessary to
their original conditions. The use and requirements for
particular registers are described below. All others are only
used by user's microprograms.

Registers 0, 1, and 2 are used for the emulation of the A, B,
and X registers respectively. These need not be restored
by user’'s microprograms.

Register 3 is forced to all zeros by the halt microprogram
and used as a source of zeros by the standard instruction
set. Its restoration is required.

Register 4 is also used by the halt program and saves the
contents of the instruction register. While the standard
microprograms are running it is not used and therefore
does not require resetting.

Register 5 is a source of ones for the standard micropro-
grams and must be reestablished as such by a user's
microprogram.

Registers E and F (15 and 16) are used as temporary
storage for some standard instructions yet their use does
not extend beyond the particular single instruction so
these two do not need to return to a set value.

Register Usage

Number Standard Use Restore
0 A register no
1 B register no
2 X register no
3 All zeros yes
4 Saves | no
5 All ones yes
6-D None no
E Temporary no
F Temporary no

3.2 FLOW DIAGRAM

3.2.1 Rationale

As the reader should now be aware, the 64-bit microword is
both extremely powerful and extremely complex. This may
result in several problems. A beginning microprogrammer
can be completely baffled how to start. Intermediate
microprogrammers tend to be confused about how much
or how little can be done in single microinstruction.

The microprogram flow diagram is designed to minimize
these problems. Making a flow diagram for a micropro-
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gram is roughly comparable to the low-level flowcharting
of an assembly language program. The flow diagram,
however, is designed to provide special assistance to the
microprogrammer. It gives the basic capabilities of the
standard microword, thus providing reminders of both
what can be done and what should be done in each
microword.

3.2.2 Format

A sample blank microprogram flow diagram form can be
seen in figure 3-1. The vertical columns each represent a
single microinstruction.

The horizontal rows are divided into the type of operations
that can be performed. A microinstruction is created by
going down a column and filling in the appropriate boxes
with the specific operations desired in each general
category. Many of these operations can be specified using
the mnemonics introduced in the previous section. Table
3-1 provides an ordered list of mnemonics.

Specifically, the first row of the flow diagram is used for
identifying the particular microword. Labeled IDENT, this
row is usually left blank unless the microword is
referenced elsewhere in the microprogram. Such reference
occurs most often when the microword is the target of a
jump from another microword. When not empty the box
usually contains the label which will be carried through to
the actual assembly language version. Depending upon the
programmers preference absolute or relative addresses
could also be assigned here.

The group of three rows under MEMORY specifies both the
current state of memory and the requests for memory
operations being made in the current microword. The
FUNCTION row specifies the former. It is useful for
charting out memory activity and optimizing the memory
usage. In  microprograms where memory activity is not
critical, this row could be left blank.

The REQUEST row indicates the type of memory request
being made in the microword. The ADDRESS row specifies
the source of the memory address for the requested
operation. If no request is made, then both these rows can
be blank.

The ALU section of the flow diagram consists of four rows.
These rows specify the two inputs for the ALU, the
operation to be performed on them, and the destination of
the result.

Two rows are included in the STATUS section. The first,
SAMPLE, specifies which flags and status bits are to be
sampled during that microinstruction. Sampling is usually
necessary before the flag or status indicators can be

tested. The TEST row specifies which flag or status bit, if
any, is being tested in the current microword. This testing
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Figure 3-1. Sample Flow Diagram Form
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may be used both for conditional memory requests and
conditional addressing.

The two rows of the ADDRESSING section specify the
addressing method or mode being used and the resulting
effective address or addresses. These boxes are often left
blank to signify normal addressing with the next column
on the right to be executed next. The label contained in the
IDENT row can also be used here.

The SPECIAL ACTIONS section is provided for the micro-
operations which do not fit conveniently into the other
sections. Most common among these are the operations on
the special registers and counters. These include the

TECHNIQUES

operand register, program counter, and shift counter. Such
things as register field control or even general comments

could also be included here.

3.3 FLOW DIAGRAM MNEMONICS

The following table 3-1 lists the sections of the flow
diagram and some applicable: mnemonics. These
mnemonics represent the most common values and should
be sufficient for many microprograms. Other functions
without mnemonics can be described in whatever way the
user finds clearest. The ways could range from actually
writing the field values to putting in verbal commentary.

Table 3-1. Mnemonics for Microprogramming Flow

Diagrams

Row Mnemonic
IDENT None
MEMORY None
FUNCTION
MEMORY IF
REQUEST OF
0s
BS
TESTF -
TESTT -
WAIT, MEMDN
MEMORY ALU
ADDRESS P
MIR
OVR
ALU Rn (n = 0,1,2...F)
INPUT A Rn, SL
Rn, SR
P
ZERO
ONES
ALU Rn (n = 0,1,2,....F)
INPUT B MIR

Comments
User-supplied labels and addresses

User-supplied commentary on memory
operations

Instruction fetch

Operand fetch

Operand store

Byte store

Conditional request (on test condition
false)

Conditional request (on test condition
true)

Wait for memory done (before going
to next microword)

ALU output

Program counter

Memory input register

Override memory operation of the previous
microword using its memory address

General register 'n’

General register 'n' shifted left on
bit position.

General register 'n" shifted right on
bit position

Program counter

All zeros (0)

All ones (FFFF)

NOTE: When using a shifted generai
register, user must specify
condition of high and low bits.

General register 'n’

Memory input register
(continued)
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Table 3-1. Mnemonics for Microprogramming Flow

Row Mnemonic

IOR
STAT
LIT
MSK
OPR
ORSE

OLSE
ORZF

OLZF

ALU
OUTPUT

ZERO
ONES
TRNA
TRNB
INCA
INCB*
DECA
DECB

ADD
suB*
SHFA
AND

EOR
NOTA
NOTB*
TCB*

*cannot be

ALU
DESTINATION

Rn (n 0
Special regi

STATUS,
SAMPLE

SHFT
OVFL
ALU

STATUS,
TEST

OVFL
I0SR

3-6

Diagrams (continued)
Comments

170 register

Status word

The 16-bit value from 0 to FFFF
Instruction register masked by ’'xxxx
Operand register

Operand register right byte, sign
extended

Operand register left byte, sign extended
Operand register right byte, zeros in
left byte.

Operand register right byte in left
byte position, zeros in right byte

NOTE: When using MSK or LIT, caution
should be used to avoid field con-
flicts with other mnemonics.

All zeros (0)
All ones (FFFF)

A (transfer input A)

B (transfer input B)

A+ 1

AVB + 1 (B + 1 when A
A-1

A + B (B -

0)

1 when A FFFF)
A+ B

A-B

A + A (shift A left one)

AAB

AvB

A~B (exclusive OR)

A

B

AVB + 1 (two's complement B
when A 0)

used when input B is MSK or LIT.

,1,2,....F)
sters

General register 'n’
Refer to special actions row

NOTES:

1) general register cannot be used
here f input B was LIT or MSK.

2) general registers used for both
input A and destination must be the
same general register.

Set shift flag

Set overflow flag
Set ALU related flags (i.e., ALUO,
ALUS, ALUC. and ALUZ)

Overflow flag

/0 sense response .
(continued)
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Row

ADDRESSING,
MODE

ADDRESSING,
ADDRESS

SPECIAL
ACTIONS

Mnemonic

SSwW3
SSwW2
SSW1
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC

GPRS
NORM
QuUOS

PJMP to n
FSEL

INT
DECODE
TESTT
TESTF

POPJMP

p-
F -

POUT

SCOUT
OPROUT

INCP

INCSC

INCP, OPROUT
SHFTOP, LFT

SHFTOP, RGHT

IBR to |
PUSH, X

POPDEL

TECHNIQUES

Table 3-1. Mnemonics for Microprogramming Flow
Diagrams (continued)

Comments

Sense switch three

Sense switch two

Sense switch one

Test from instruction register
ALU ones flag

ALU sign flag

ALU carry flag

ALU zeros flag

Shift flag

Memory input register sign
Shift counter all ones flag (i.e.,
overflow)

General register 0 sign
Normalize flag

Quotient flag

Page jump to page 'n’
Field select addressing

Interrupt addressing
Addressing by decoder control store
test addressing; pass if test con-

dition true

Test addressing: pass if condition
false

Branch/pop to an address specified
by stack

NOTE: these are only a basic set of
abbreviations, to be used alone or

in combination.

Test pass address
Test fail address

Load program counter with ALU output
Load shift counter with ALU output
Load operand register with ALU output
Increment the program counter
Increment the shift counter

Does both.

Shift operand register left one bit
position

Shift operand register right one
bit position

NOTE: high/low bits must also be
specified by user on these two
operations

Transfer instruction buffer to
instruction register.

Push value x on the stack (requires
PJMP addressing mode)

Delete entry at top of stack
(requires PJMP addressing mode)
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3.4 FLOW DIAGRAM EXAMPLES

The following examples are included:
1. BCS Entry Point Initialization
2. Memory-to-Memory Block Move
3. Reentrant Subroutine Call

4. Fixed-point ADD to any of 16 general registers with
direct addressing to 64K.

5. Cyclic Redundancy Check (CRC) Generation.

Each of the examples includes a description of the problem,
a description of how it was handled, and a flow diagram.
Later in this manual, the examples will be continued in the
form of assembler listings of the code produced from each
of the flow diagrams in section 5.

3.4.1 BCS Entry Point Initialization

This is essentially an example of making a micro subrou-
tine which is simply a NOP. From the standpoint of being
an example, it details how to reach WCS and then return
to the macro level. From a functional standard point, it
provides meaningful initialization for the 20 (hex) BCS
entry points in WCS. By loading this program before all
others, any unused BCS entry points will have meaningful
contents (as opposed to possibly fatal random contents).

Referring to the flow diagram, (figure 3-2) the thirty-two
entry points are all initialized to the same microinstruc-
tion. It is simply a page branch to a standard microword,
SS2M, on page zero. This will result in a return to the
macro level by maintaining the pipeline and returning
control to the ROM central control store.

3.4.2 Memory-to-Memory Block Move

This microprogram is designed to move a block of n words
from one area in memory to another.

For purposes of this example, the microprogram is called by
executing a BCS to word zero of WCS page one. It takes its
arguments in the following format:

A register (RO): to address
B register (R1): from address
X register (R2): block length

When called, words are sequentially copied from their old
location (from address) to their new position (to address).
The number of words moved is equal to the block length.

The following commentary describes how the microprogram
operates. Refer to the flow diagram figure 3-3.

3-8

Word zero in page one is the entry point for the BCS
instruction. It contains a branch to a microword labeled
MBM, which may be on any WCS page. This is the actual
beginning of block move and no further decoding of the
BCS is done.

The microprogram starts by setting up its parameters. The
current program counter value is saved in R7. Next, the
from address minus one is put in its place. Having it in the
program counter will allow easier use of it as an address
source for memory requests. The to address is also
decremented. These addresses are decremented because
they are incremented in the instructions which request
the memory operations.

After this initialization, a three microinstruction loop is
entered which does the actual block move. The first
microword, (MBMA), increments the from address in the
program counter. It then requests that the word at that
address be fetched from memory. It also puts the memory
input register (MIR) onto the ALU output. Once the looping
is begun, the MIR will contain the word just fetched from
memory. Placing it on the ALU will cause it to be stored at
the to address, since the previous micro in the loop
requested a write of ALU output into memory.

The second mircoword in the loop decrements the block
length in R2. The ALU output (i.e., the new value) is
sampled for testing in the next microword.

The next microword, the third and last in the loop.
increments the to address in RO and tests the ALU sign
flag. If it is off, then the block iength has not yet become
negative and the necessary number of words has not yet
been moved. In this case, an operand store is requested
using the to address as the destination. The next
microword will have to specify the the vaiue to be stored,
so a loop is made back to MBMA which will do this. This
loop also causes the next word to be fetched and the
process continues until the block length goes negative. In
that case the loop is exited and the extra memory fetch
requested is simply forgotten.

Microword MBMB restores the program counter to the
address in R7 and starts a memory cycle to restore the
pipeline. A branch is executed to standard state SS2M
which increments the program counter and starts a second
memory fetch to fill the instruction pipeline. Upon entering
standard state SS3M, the macroinstruction is decoded and
control is returned to the processor’s central control store.

3.4.3 Reentrant Subroutine Call and Return

This example provides call and return microprograms for
reentrant subroutines. The subroutine call stores its return
address in the X register (R2) and saves the original
contents of X on a stack pointed to by the B register (R1).

The subroutine return simply pops the stack back into the
X register and branches back to the return address.
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For purposes of this example, the subroutine call is
executed by doing a BCS to word 1 of WCS page 1. The
word following the BCS is taken as the effective address of
the subroutine being called. The subroutine return is
made by executing a BCS to word 2 of WCS page 1.

The stack operations are pertormed in the following way. A
push causes the B register to be decremented and the X
register stored at the resulting address. A pop causes the
X register to be loaded from the memory location pointed
to by the B register followed by the B register being
incremented.

The following is a detailed description of the subroutine
call. Refer to the flow diagram in figure 3-4.

The first microinstruction of the routine is at the BCS entry
point. On the memory-to-memory block move, this first
microword of the program did nothing but branch to the
actual microroutine. The only reason for not combining it
with the next microinstruction was to clarify the relation-
ship of the entry point and the rest of the program. In an
actual application where execution time is critical, the
microwords would have been combined. This is done on
the subroutine call example. The first microword decre-
ments the stack pointer (R1) and begins saving the
contents of R2 at the resulting address. It then does a
page branch to the rest of the microroutine which could be
on any WCS page.

The second microword places R2 on the ALU so that it will
be stored by the memory request in the first microword.
R2 must be on the ALU for the entire duration of the write
into memory. Since this could take a variable amount of
time, (depending on the type of memory in the system), a
request is made to wait for the memory-done signal. This
means the next microword will not be executed until the
write operation is complete and thus, R2 will stay on the
ALU for the necessary time.

The third microword saves the return address in R2. The
program counter is currently pointing to the word after th
BCS instruction. That word contains the effective address
of the subroutine to be called. Thus, the return address is
obtained simply by incrementing the program counter and
then storing it in  R2. This microword also begins the
actual transfer to the subroutine to be called. This is done
by restarting the pipeline at the address of the subroutine.
That address is already in the MIR due to the fact it was
the word after the BCS.

The fourth microword sets the program counter to the
second word in the subroutine call and requests it be
fetched. This completes the restarting of the instruction
pipeline and a return can be made to ROM control. This is
done with a page jump to SS3M on page 0. Note that the
tourth microword has performed all the functions of SS2M.

The following is a detailed description of the subroutine
return. Refer to the flow diagram in figure 3-5.

TECHNIQUES

The first microword begins restarting the instruction
pipeline at the return address. Also, the program counter is
restored.

The second microinstruction begins the fetch of the original
contents of R2 off the stack.

The third microword increments the stack pointer to finish
the pop of the stack. It also finishes the restart of the
instruction pipeline by requesting another instruction
fetch by the incremented program counter.

The last microword restores the old contents of R2, which
by now have been transferred from memory to the memory
input register (MIR). Since the pipeline has now been
restored, the microword can return to ROM using a page
jump and with request for decoding addressing. The
decode will generate the next address in page zero based
on the next 'macro’ instruction to be executed.

Note that the second to last microword performs the
functions of SS2M and the last microword performs the
functions of SS3M.

3.4.4 64K-Memory ADD to any of the
General-Purpose Registers

This example adds the contents of any location in 64K
words of memory to the contents of any of the 16 general-
purpose registers, RO, R1,..RF. The sum replaces the
previous contents of the specified register. f overflow

occurs, the overflow status bit will be set. The addressing
mode for this example will be indexing by general register
R1.

In execution the contents of LOC bit 8 - 15 specify a branch
to control store (BCS) instruction. Bits 0 - 3 define the
operation to the performed and the addressing mode to be
used. Bits 4 - 7 specify the general register affected.

With indexing the contents of all LOC + 1 are added to the
contents of the register (R1), and the 16-bit sum is used
as the effective address of the operand. The operand is
fetched from memory and is added to the contents of the
register specified by the LOC 4 - 7.

A flow diagram follows as figure 3-6.

The strategy used for the operation described above has
the following steps:

1. (AD1 or AD1A) enter from decoding of BCS in page
zero. Address fetch cycle has been initiated. Initiate
next instruction fetch and increment P.

2. Transfer contents of MIR (address value) to OPR to
preserve against alteration by previously initiated
instruction fetch.

3. Perform indexing by adding contents of R1 to contents
of OPR. Initiate operand fetch using ALU output as

effective address. (continued)
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4. Wait for completion of operand fetch by specifying next
instruction fetch with incremented program counter
and field select register specifications from instruc-
tion bits 4 - 7 into AA field. Set BB field to select MIR.

5. Add contents of MIR to contents of previously selected
register and store sum in selected register. Sample
overflow condition. Page jump to V73 page zero with
decoding of instruction fetched by step 1.

Execution Time Estimate

Execution time depends upon the memory speed involved.
With 330 nanoseconds semiconductor memory the pipeline
is kept full. The number of microinstruction times from
decoding to decoding is six. All of these are from writable
control store. The execution time is therefore six times 190
or 1140 nanoseconds. Since three memory cycles are
involved, the effective three cycle time is 1140 divided by 3,
or 380 nanoseconds.

3.4.5 Cyclic Redundancy Check (CRC) Generation

INSTRUCTION FORMAT

15 987 43 0

1 0 5 CRC Vector LoC

Data Array Word Address . LOC + 1
: Byte Count | LOC + 2

DATA FORMAT: Packed 2 bytes in each word as follows:

Byte 1 Byte 2
Byte 3 Byte 4 J
Byte N-1 Byte N
may be last

byte

The packed byte array at the specified address is scanned
and the 16-bit cyclic redundancy check is performed. The
16-bit CRC is left in the accumulator (A register or RO). If
the accumulator is not cleared before entry, the accumula-
tor’s contents will be include:. in the CRC.

The CRC polynomial word is X +x +x 4+ 1,
which is commonly used In binary synchronous
communication.

Since array size can be quite large, the instruction can be
interrupted  after service of every two bytes. When
interrupt service is completed, the process of CRC
generation is resumed and runs to completion (except as
interrupted). The overflow flag is used to signal an
interrupted instruction. If it is set, contents of the B and X

TECHNIQUES

registers are taken as data address and byte count
respectively.

RO, R1 and R2 (A, B and X) registers are used by this
instruction. RO is the current CRC value. R1 is the current
data array address. R2 is the current byte count value. RF
contains the CRC polynomial (octal 100005). The overflow
flag is used to designate an incomplete instruction.

The calling sequence normally used would be:

TZA (clear accumulator)

ROF (reset overflow flag)

BCS CRC

Address (data array address)

Byte count (number of bytes in array)

Detailed Description of Procedure

1. Enter from decoding of BCS in page 1. Address fetch
cycle has been initiated. The overflow flag is used to
designate an incomplete instruction, i.e., one which
was interrupted before the entire byte array was
scanned for CRC generation. If such an interrupt had
occurred the current data array address and byte
count in registers Rl and R2 should be used rather
than the corresponding values used when the instruc-
tion was initiated. A memory cycle to fetch the byte
count is initiated conditionally. The overflow flag is
tested for an ’'off’ condition. The 16-bit word
representing the CRC polynomial is placed in OPR. if
the overflow flag is off, the next step is step 2. If it is
on, step 1A is executed.

2. The data array address is copied from MIR into R1.

3. The contents of R1 is used as an address (through the
ALU) and the first pair of bytes is fetched. The overflow
flag is set to indicate that the instruction is
incomplete.

4. The byte count is copied from MIR into R2. ALU status
is sampled so that the byte count can be tested for zero
in step 5.

5. The shift counter is loaded with — 8 (the number of bits
per data byte). The ALU zero status flag is tested to see
if the byte count was zero. Execution is suspended
(by a “wait for memory done’) unti' the two data
bytes are fetched. If the ALU zero flag is off, the next
step is 5A; otherwise, step 18 is next.

5A. The CRC polynomial placed in OPR in step 1 is now
placed in RF.

6. The data bytes in MIR are copied into OPR.
(continued)
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10.

10A.

11.

12.

13.

14.

15.

15A.

15B.

16.

Steps 7, 8, 9, 10, 10A, and 11 constitute the iterative
loop which accumulates the CRC for the left data byte.
In step 7, RO (the CRC) is shifted one bit left and
applied to the ALU input A while the shift counter is
incremented. Bit 15 of RO is copied into the shift flag
(DSB). Bit 15 of OPR is applied to ALU input A bit
00. OPR is also shifted one bit left. The CRC
polynomial in RF is applied to ALU input B. The
exclusive OR is performed by the ALU and the result
is placed into RO. The shift counter is tested to see if
the eighth bit of the left byte has been processed. I it
has, step 10 is executed next; if not, step 8 is next.

The DSB flag is tested to see if a correction cycle is
needed. (If bit 15 of the old CRC was a zero, the
exclusive OR operation of step 7 must be cancelled.)
If a correction cycle is necessary, step 9 is executed
next; otherwise, the next bit of the data byte is
processed by returning to step 7.

This correction cycle exclusively ORs the CRC in RO with
the polynomial in RF. The result is placed in RO. When
this is done the resulting CRC is that which would
have been obtained if step 7 had not performed an
exclusive OR. The next bit of the data byte is next
processed by returning to step 7.

This step is entered from step 7 after the last bit of the
left data byte is processed. The DSB flag is tested to
determine the need for a correction cycle. The byte
count in R2 is decremented. The ALU status is
sampled so that it can be tested for zero in step 11. If
a correction cycle is necessary, step 10A is executed:
otherwise, step 11 is next.

This is a correction cycle identical to step 9.

The shift counter is reinitialized to - 8 for processing
theright data byte. The ALU zero status flag is tested to
determine if the right byte should be processed. If
ALUZ is not equal to one, the next step is 12; if ALUZ
equals one, the next step is 18.

This step is identical to step 7. The right data byte
which has been shifted left in OPR is now processed.

This step is identical to step 8.

This step is identical to step 9.

The operations of step 10 are performed. The DSB flag
is tested as in step 10. If it is set, step 158 is next:
otherwise, the correction cycle of step 15A is next.

This step is identical to step 10A.

This step tests for interrupts. If an interrupt is
present, step 20 is next; otherwise, step 16.

The data array address pointer in R1 is incremented
and used as an address for a fetch of the next operand
byte pair, if the ALU zero flag is off (indicating the
decremented byte count at step 25 was not zero). |f

17.

1A.

18.

19.

20.

the byte count was not zero, step 17 is next;
otherwise, step 18 is executed.

The shift counter is initialized to - 8 and execution is
suspended until the next pair of data bytes is fetched
from memory. Step 6 is next.

If step 1 determines the overflow flag to be set
indicating an incomplete instruction, step 1A initiates
the fetch of a data word from memory using the
contents of R1 as an address. Step 17 is executed
next.

If step 16, 11, or 5 determines the byte count to be
zero, step 18 resets the overflow flag to indicate
completion of the instruction. The program counter is
incremented and the net instruction fetch is
initiated.

A page jump to ROM (page zero) V73 standard state
/SS2M, is executed. /SS2M will initiate another
instruction fetch to fill the pipeline.

Itan interrupt was detected at step 15B, the interrupt
status must again be tested by step 20. This is because
interrupts can be overriden by DMA traps and must
be checked twice to ensure that a trap has not
occurred which would abort the interrupt. The 1/0
control is requested to perform an 1/0 interrupt
sequence. Decoding is inhibited since only the
interrupt status is to be tested. If an interrupt is
found, step 21 is next; otherwise, step 16 is next.

20B. The cycle is performed as in step 10A.

21.

22.

23.

24.

If an interrupt was found at step 20, the data array
address in R1 is incremented and the ALU zero fiag is
tested to determine if the byte count at step 15 was
zero. If it was not zero, step 22 is next; otherwise,
step 24 is executed.

The program counter is reduced by 3 to point to the
BCS instruction. After completion of the interrupt
routine this instruction will be refetched and the
overflow flag will be tested in step 1 to determine the
need to initialize R1 and R2 from the instruction
second and third words.

Execution is suspended until the I/0 control signals
completion of the interrupt sequence, then a page jump
to ROM standard interrupt state/INT2 is performed.

It the byte count was zero, the overflow flag is reset
and an instruction fetch is initiated with the
incremented program counter value.




CRC Generation Timing

Execution time depends on memory speed and data array
size. If no interrupts occur the timing consists of (a)
initialization -- fetch of BCS, address and byte count and
first byte pair. This involves one ROM decode cycle and
WCS microinstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at
190 nanoseconds (assuming a 330 nanoseconds main
memory cycle). Initialization thus amounts to 1520

varian data machines
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nanoseconds. (b) CRC processing -- each byte takes 16 to
24 steps with the average 20 plus steps 10, 11, 15, 158
and 16 all at 190 nanoseconds. Processing takes an
average of 8550 nanoseconds for each byte pair. (c)
cleanup involves steps 18 and 19 from WCS at 190
nanoseconds, and the memory cycle of SS2M at 330
nanoseconds. Clean up takes a maximum of 710 nanonec-
onds. Altogether the timing for an array of N bytes
averages (2230 + 1/2(N~ 2)) times 8550 nanoseconds.
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ENTER
“ g{,:OBNC\EECODE TZA (OPTIONAL - SEE TEXT)
(ADDRESS FETCH IS UNDERW/AY) CALLING ROF (OPTIONAL- SEE TEXT)
SEQUENCE !
BCS | CRC
000 [ 1] DATA ARRAY ADDRESS
START BYTE COUNT FETCH IF INCOMP BYTE COUNT
FLAG IS OFF (OVERFLOW)
INCREMENT P INITIAL SETUP
POLYNOMIAL TO OPR
TEST INCOMPLETE FLAG (OVERFLOW) DATA ARL%?Y BYTE | BYTE 2
FORM BYTE 3 BYTE 4
021 | 2 , : :
BYTE N-1
orie el BYTE N
SAVE ADDRESS IN RI (iAY BE LAST BYTE)

DURING EXECUTION

RO (A REGISTER CONTAINS CRC

R1 (B REGISTER) CONTAINS THE CURRENT
OZOE 033] 3 ADDRESS OF DATA

R2 (X REGISTER) CONTAINS THE CURRENT
FETCH DATA FETCH DATA WORD BYTE COUNT
WORD SET INCOMPLETE FLAG (OVERFLOW)

023[ 4]

SAVE BYTE COUNT IN R2
SAMPLE ALU STATUS

024' 5 02217
INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR ZERO BYTE CT wITIALIZE SHIFT COUNTER
WAIT MEMORY DONE AIT MEMORY DONE

026 ‘;;

TRANSFER OPR
TO RF

v

ADDRESS STEP #

\ r‘ 027 [ 6 |
Q TRANSFER DATA TO OPR

VTI2-402 .
Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 of 4)




024 [7]

SHIFT RO LEFT TO ALU A INPUT
SHIFT OPR LEFT

RO(15) =—DSB

OPR (15) —ALU INPUT A BIT 00
POLYNOMIAL (RFY TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS

LOAD RO

INCREMENT SHIFT COUNTER

TEST SHIFT COUNT OVERFLOW

SC
OVERFLOW

PROCESS FIRST
BYTE
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029 [10]

02E | 8

TEST DSB FLAG

VT12-400

DECREMENT BYTE COUNT (R2)
SAMPLE ALU STATUS
TEST DSB FLAG

1 032 [11]

INITIALIZE SHIFT COUNTER
TEST ALU - O FLAG FOR
ZERO BYTE COUNT

028 |9

RO TO ALU A INPUT

RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO

(CORRECTION CYCLE)

OSOW
RO TO ALU A INPUT
RF TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS
LOAD RO
(CORRECTION CYCLE)

ALU - 0

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (2 of 4)
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03A |12

PROCESS

SECOND
SAME AS BYTE

03s[15
- DECREMENT BYTE COUNT
SAMPLE ALU STATUS
SERos DSB FLAG TEST

ENABLE INTERRUPTS

034[13]
SAME AS bsg 1

038114
[ osc [
e xs [7] o

]

5

INCREMENT ADDRESS (R1)
FETCH DATA WORD IF ALU =0
FLAG IS OFF
TEST ALU = 0 FLAG (BYTE COUNT - 0)

TEST INTERRUPTS

oo

ALU=-0 e
: : 025]18

RESET OVERFLOW
INCREMENT P
FETCH NEXT INSTRUCTION

{

028 F
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VTI2-401
Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (3 of 4)
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WAIT FOR I/O DONE
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(OFF)

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (4 of 4)
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SECTION 4

MICROPROGRAM DATA ASSEMBLER,
MIDAS

For execution the microprograms must be expressed in the
internal machine language, yet during their development it
is advantageous to express the program in a symbolic
language which has more meaning to the person writing
the program. This symbolic language is then transiated into
the executable machine language by the assembler.
In addition MIDAS assembler provides

« symbolic addressing

= macro-definition capability

+ user-defined microword formats

« user-defined opcodes

* address field calculations

» error detection

+ concordance listing with MOS or VORTEX using the
concordance program CONC

4.1 BASIC ELEMENTS

The source language input to the assembier consists of a
sequence of records. Each record contains 80 character
positions. These characters are represented internally in
standard 8-bit ASCIl codes. The following paragraphs
describe the content and format of the input to MIDAS.

Characters

The characters forming the symbolic source statements are
described below. Characters not in this set can appear
only in the comment field.

Alphabetic: A through Z
Numeric: 0 through 9
Special / slash
Characters: * asterisk

+ plus sign

- minus sign

space (blank)
' apostrophe

( left parenthesis
) right parenthesis

MIDAS statements are formed from the character set
above. The comment field can contain valid 70/620 ASCII
characters in addition to any from the MIDAS character
set. Literals may be formed from any ASCII characters.

Symbols

The programmer may create symbols to be used for
statement labels or to define numeric values. A symbol
may contain one to six characters from the alphabetic or
numeric subset. The first character of a symbol must be
alphabetic.

Examples of correctly formed symbols
ABCY INPUT1 SAVEUX P23456

Symbols may also use the pound sign (7 ) or dollar sign ($)
character in any character position.

Example

A$B#C1 $RUN AS$TOP #FIVE
Constants

A constant is a self-defining term. Four types of constants
are available: decimal integer, hexadecimal, octal and
binary.

A decimal constant is an unsigned sequence of decimal
digits. The value of a decimal constant may not exceed
32767.

A hexadecimal constant is an unsigned sequence of
hexadecimal digits, base 16, preceded by the letter X and
an apostrophe. The maximum hexadecimal number
processed by the assembler is X'7FFF.

An octal constant is an unsigned sequence of octal digits, 0
through 7, preceded by the letter O and an apostrophe. An
octal constant can not exceed 0'77777.

A binary constant is an unsigned sequence of ones and
zeros preceded by the letter B and an apostrophe. Binary
constants may be as large as 16 bits.

Expressions

An expression is a single term or a series of terms
connected by the following operators. All are integer
operators.

+ Addition

- Subtraction

* Multiplication

/ Division
A term is a symbol, constant, or a special symbol, *, which
denotes the program location counter. A term is associ-
ated with a value inherent to the term in the case of a
constant, or assigned by the assembler.
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Multi-term expressions are evaluated from left to right. No
parentheses are allowed. Expressions are reduced to a
single value by the procedure below.

1. Eachtermisgiven avalue

2. Multiplication and division are performed from left to
right

3. Addition and subtraction are performed left to right

4. If an expression has a leading minus sign, the value is
computed as though a zero term preceded the minus
sign. A leading plus sign is ignored.

5. The value resulting is right-justified in its generated
resultant  field. Unspecified leading bit positions
contain zeros.

Program Location Counter

The assembler maintains a program location counter which
is automatically initialized to zero at the start of each
assembly. As program statements are processed the
assembler assigns consecutive memory (WCS) addresses to

the microinstructions generated, unless the program
location counter is explicitly modified. The counter may be
modified by the ORG and ALOC directives. The asterisk (*)
character as a label denotes the current value of the
program location counter.

4.2 GENERAL FORM OF STATEMENTS

Input to the assembler is in the form of statements in
punched-card images. The statement is contained in a
fixed format in character positions 1 through 72. 73
through 80 are reserved for sequencing information and
have no effect on the generated microprogram.

A statement is divided into a label, operation, continuation,
operand, and comment field. These are discussed in order
below.

Label

A source statement can be associated with a symbolic
label, which allows the statement to be referenced from
other statements in the program. The label, if present,
must begin in character position 1 and is terminated by a
space. A label may be a one to six character symbol.

Operation

The operation field may consist of the format-defining
operator FORM, the label of a predefined or user-defined
format statement, a macro name or an assembler

directive. The operation field begins in position 8 and is
terminated by a space.

Continuation

Continuation lines may be used when additional lines of
coding are required to complete a statement originating on
one line. There can be up to three continuations per
statement. This is designated by the character C in
position 15. The actual statement continues in positions 16
through 72. Continuation lines are only valid for the
format and program statements.

Operand

The operand field begins in position 16 and is terminated
by a space. The operand field may contain subfields
separated by commas.

Comment

The comment field is optional for documenting programs.
The content of this field is output on the assembly listings
but in no way has an effect upon the assembly process.
The comment field begins with the first non-blank
character following the operand field.

4.3 STATEMENT DEFINITIONS

MIDAS processes four types of statements: format, pro-
gram, assembler-directive and comment.

4.3.1 Format Statement

The format statement labels and describes a structure for
the microinstruction generated by the program statement.
Each program statement specifies a format in which the
user has grouped and broken up fields within the
microword to set values. Two predefined formats are GEN
and GMSK, ’'standard” formats shown in figure 4-1. The
user may define additional formats through the use of the
format statement.

The general form of the format statement begins with a
required label followed by the word FORM followed by the
field identifiers separated by commas. A field identifier
consists of a field length in decimal, which may be followed
by a hexadecimal constant enclosed in parentheses.

label FORM field(1) , field(2), . . .. field(n)
Where:
label is a symbol formed according to
the basic elements
each field is a field identifier which is the

field length in decimal, followed

by an optional hexadecimal constant

enclosed in parentheses
length(constant)
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ordinal field
field size
number name in bits
1 TS 4 ]
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1
9 AB 2
10 M 4
11 LB 2 GEN
12 LA 2
13 RF 3
14 FF 4
15 MF 1
16 CF 2
17 WR 1
18 SC 1
19 VF 1
20 WF 1
21 XF 2
22 SH 3
23 BB 4
24 AA 4 ]
ordinal field
field size
number name in bits
1 TS 4
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1 GMSK
9 AB 2
10 IM 4
11 LB 2
12 LA 2
13 RF 3
14 FF 4
15 MK 16
16 AK 4
—

Figure 4-1. Predefined Formats Recognized by MIDAS

Field length can not exceed 16 bits. Fields are specified
from left to right. Each field identifier has an implicit
ordinal field number associated with it for reference. All
64 bits of the microinstruction word must be allocated.
Fields to which constant values have not been assigned are
initialized to zero.

Possible errors in the format statement include allocating
more than or less than 64 bits and using a constant value

MICROPROGRAM DATA ASSEMBLER, MIDAS

exceeding the size of the field. {f an attempt is made to
redefine a format, an error is indicated and the format is
ignored.

Continuation lines can be used on the format statement
but a field identifier may not be carried across lines. A
comma must complete the field identifier before continuing
the statement on the next line. If the last non-blank
character of the operation field is a comma, it implies the
next record will be a continuation.

Example:
LIST FORM

14,4,2(X'3),2,4,1,2,
C4,2,2,7,16(X"' 1FFF), 4

4.3.2 Program Statement

The program statement represents the encoding of the
microinstructions in  symbolic notation. Each program
statement references a format statement to be used in
building the microinstruction. The format of the program
statement is an optional label followed by a format label
followed by a program field.

label format program-field
Where:

the program-field consists of one or more of the following
separated by commas.

One address expression
Predefined opcode
User-defined opcode
Field constant

The single address expression specifies the mode of
addressing to be used in fetching the next microsinstruc-
tion. The address expression, if present, must be the first
item in the program field. The format of an address
expression is:

/mode (expression, fail address)

Where mode is a key denoting the following possible
address modes:

Normal addressing
Test

Field Select

Test and field select
Page jump

Implicit

= VWMo Z

The value of the first expression in parentheses is the an
address of the next instruction under non-test conditions,
or if the test passes. The value of the second expression is
the address of the next instruction if the test fails.

4.3
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Modes N, F and P require only the first expression. T and S
must use both expressions. None is given for the implicit
mode.

Address evaluation is performed with the following
considerations:

When the address mode uses field selection (modes F and
S). the value of the expression must refer to the
lower address selected in that field. This address
must be an even numbered address.

The contents of the mask field (MS) and the mask exten-
sion field (MT), which provide the mask for the
field address, must be defined by the user.

In the test or the test and-field-select modes of addressing,
the fail address must be an even numbered word and
must be greater than pass address taken modulo 16.

For example, if the pass address is X'16, the range of the fail
address must be from X'10 to X'1E and an even word.
It the pass address is X'26, the fail address may
range (on even words only) from X'20 to X'3E.

The value is 13 bits with the high-order four bits specifing
a page number and the low-order 9 a word within
the page.

The implicit mode generates normal addressing to the
program location counter plus one.

In a page jump the expression specified must produce a
value which contains both the page and word
addressing information. This destination can be
defined through use of the EQU directive.

If the test field (TS) is being used to select interrupts or
to specify AA or BB field definition, its value must be
defined by the user.

Predefined Opcodes

When a predefined opcode is used in the program field, it
specifies that a particular value be placed in a field of the
microinstruction as defined by the format statement.

Predefined opcodes are symbols consisting of three to six
characters. The first two characters identity a field of the
defined formats and the following characters specify the
value in hexadecimal notation to be placed in the field.
These field names must not be used as labels in user-
defined opcodes. The two-character names for fields and
the permissible range for each is given below.

Predefined opcodes may be used with user-defined formats
since each of these opcodes has an ordinal field number
associated with it. There is no predefined opcode for the
combined address field AF/MS.

4-4

Fields of the Microinstruction

Ordinal
Name Number Range
TS 1 0-F
MT 3 0-1
_FS 4 0-F
TF 5 0-3
SF 6 0-3
GF 7 0-F
MR 8 0-1
AB 9 0-3
IM 10 0-F
LB 11 0-3
LA 12 0-3
RF 13 0-7
FF 14 0-F
MF 15 0-1
MK 15 O - FFFF
CF 16 0-3
AK 16 0-F
WR ) 17 0-1
SC 18 0-1
VF 19 0-1
WF 20 0-1
XF 21 0-3
SH 22 0-7
BB 23 0-F
AA 24 0-F

User-Defined Opcodes

Users can assign values to symbols through the EQU
directive. The opcode is placed in parentheses and
preceded by the decimal ordinal field number designating
the format field for the value.

Statement labels and user-defined opcodes must avoid
naming conflicts.

Field Constant

A field constant denotes a value to be placed in a
microinstruction field. Either decimal, hexadecimal, octal
or binary constant is placed in parentheses and preceded
by a decimal ordinal field number.

Error Conditions

The effect of error conditions upon the continuing assembly
depends upon the type of error. The errors listed below are
indicated on the listing. The action shown in parentheses
is taken in the program statement.

a. Reference to a non-existent format (program statement
is ignored)

b. Value exceeds the size of field (value truncated)
(continued)
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c. Both operand in the program field and a format
constant are specified for the same field (inclusive OR
of the values inserted)

d. Multiple values generated for a field (first used)

e. Inconsistency between the address mode specified and
the values of the address control fields e.g., normal
addressing and test field (TF) non-zero. (Mode is
used to generate address)

Additional Considerations

The assembler evaluates each operand in the program
field, and then uses the format indicated to form a
microinstruction. Operand values and format field
constants are placed in the appropriate fields.

Values computed for a field are inserted in the field right-
justified. Fields whose values are not explicitly defined in
either the format or program statement are set to zero.

A program statement may have continuation lines, but an
operand may not be carried across lines. A comma must
complete the operand before continuing the statement on
the next line. If the last non-blank character of the
operation field is a comma, it implies the next record will
be a continuation line.

Example:
EXC1 GMSK

/N(EXC2),LB3,RF3,FFA,
CMKF7FF

4.3.3 Assembler Directives

Instructions to the assembler are known as directives.
These statements have label, operation, operand and
comment fields. The operation field contains the name of
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MAC
and EMAC.

The directives for macro definition MAC and EMAC are
described in a later section. Other assembler directives are
discussed in order below.

EQU -- Equate

The EQU directive is used to assign symbols to a given
value or the value of another symbol. The symbol in the
label field is required in this directive. It i1s defined to have
the value of the expression in the operand field.

The format of the EQU directive requires both a symbol in
the label field and expression in the operand field. If the
expression in the operand field contains a symbol, it must
have been previously defined.

MICROPROGRAM DATA ASSEMBLER, MIDAS

If the symbol in the label field has been previously defined
or if there is no label, an error is indicated and the
statement is ignored.

Examples:

THREE EQU 3

SCZ EQU X'FE

v EQU THREE+2
ORG -- Origin

The ORG directive sets the program location counter to the
value of the expression in the operand field.

A symbol in the label field is optional in the ORG directive.
The expression to which the program location counter is
set must be in the operand field.

If an expression in the operand field contains a symbol, it
must have been previously defined. A value of zero or a
negative value in the operand field causes an error to be
indicated and the statement is ignored. If the expression
exceeds the page size, it is an error and causes the
assembly to be terminated.

At the beginning of each assembly pass the assembler
initializes the program location counter to zero

Examples:
ORG X'1EO
ORG BEGIN

ALOC -- Allocate

The ALOC directive informs the assembler that it is to skip
over previously allocated locations as it is assigning
sequential addresses to the generated microinstructions.

From the beginning of an assembly pass until the
occurrence of the ALOC directive the assembler will keep a
list of all assigned locations. After the ALOC directive is
processed the assembler will test each new program

location counter setting against the list of allocated
locations. If a new value is in allocated space, the
assembler will increment the counter and again make the
test. The sequence will continue until unallocated space is
found.

The format of the ALOC directive requires an expression in
the operand field, but the symbol in the label field is
optional.

An error is indicated and the statement ignored, if the
operand field contains a negative value, zero or exceeds
the page size.

45
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In the implicit addressing mode the address of the next
instruction is the next allocatable location.

Examples:
ALOC FIELD*4
ALOC ZERO'20
SPAC -- Space

The SPAC directive provides a blank line on an assembly
listing to improve readability.

Both the label and operand fields of the SPAC directive are
ignored. A symbolic source listing shows a blank line in
place of SPAC directives.

Examples:

SPAC

SPAC ADD HERE LATER
EJEC -- Eject

The EJEC directive causes the assembly listing device to
advance to the first print location of the next output page.

Both the label and operand fields are ignored. EJEC is
listed.

END -- End

The END directive causes an assembly to be terminated.
An END directive is required as the terminal source
statement for each assembly.

A symbol in the label field is optional and assigned the
value of the program location counter. The operand field
is ignored.

4.3.4 Comment

A statement with an asterisk in the first character position
is entirely commentary. Its contents have no effect upon
the assembly process, however the statement is output to
the listing.

4.4 ASSEMBLY-LANGUAGE EXAMPLES

These examples of microinstruction implementation use
MIDAS. The following examples show how representative
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microinstructions in the WCS could be coded as source
statements for MIDAS.

Example 1:

EXC1 GMSK /N(EXC2),LB3,RF3,FFA ,MKF7FF

This example uses the normal mode of addressing.
Example 2:

LASL1 GEN /T(LASL2,LASL1),TF2,GFC,LA2,

CRFS5,WR1,SC1,XF3, SH6

This example shows the use of the test mode of addressing,
and the use of a cntinuation record.

Example 3:

BT10 GEN /F(BT20),2(X'F),FS4,RF4,XF1

This example shows the use of the field select mode of
addressing. The field address mask is provided by the
hexadecimal field constant.

Example 4:

SWA22 GEN /S(LDA2,SWA26),2(X'C),MT1,FSF,

CTF3,GFB,LB1,RF3,FFA,MF1,BB1

This example shows the use of the test and field select
mode of addressing. The field address mask is provided by
the hexadecimal field constant and the predefined opcode
MT.

Example 5:

SEN2 GEN /*,1(B'1),IMF,LB1,FFA ,MF1,WR1,

CXF1,AAE

This example shows the use of the implicit mode of
addressing. The instruction initiates 170 activity and the
binary field constant provides part of the 170 control store
starting address.

Example 6:

P EQU X'200 PAGE ADDRESS (PAGE 1)

GMSK /P(DIV+P),IMD,LB3,
C15(*+1+P),AK2

This example shows the use of the branch/push operation.
The operation effects a page selection and the destination
and return addresses are global. The destination address
is generated by the address expression. Note the page
address contribution of P. The expression for field 15
generates the global address which is pushed on the
microprogram return stack. P contributes to this again.
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Control returns to the instruction immediately following
the branch/push instruction in this example.

Example 7:

GEN IMD,LB3, AAY4

This example shows the use of the branch/pop operation.
The global return address used is the last item pushed on
the stack.

Example 8:

SS1M EQU X'13E

GEN p(SS1M),SF2,GF

This example shows the use of the page jump mode of
addressing. In page selection the value in the address
expression must contain both the page and word
contribution to the global address. In this example the page
jump is to a standard state in the central control store
(page 0) from some other page.

Example 9:

SS3M GMSK /N(SS2MI), 1(X'E),GF5, IM6

This example uses the normal mode of addressing but
selects the decode-ROM and samples interrupts (GF field

bit 2 is true). The hexadecimal constant defines the
interrupts which are enabled.

The following examples show the use of page branch,
branch/push, and branch/pop operations.

Example 10:
SS2M EQU X'092
MW 1 GEN /P(SS2M),IM3,SF0,TFO

This example of a microword, labeled MW1, does a page
jump to one of the standard states in read-only memory.

Example 11:
PAGE EQU X'200 PAGE ONE SPECIFICATION
MW2 Gl;SK /P{SUBR+PAGE),TFO0,SFO,
CIMD,LB3,AK2, 15 (MW2+ 1+PAGE)
SUBR GEN
EXIT Gl.ZN TFO,SFO,IMD,LB3,AA4,BBO
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This example calls a micro subroutine and uses the stack
to save the return address. The subroutine call is labeled
MW?2. It forms the return address by adding the word and
page numbers, and then pushes the address on the stack.
Likewise, the address of the subroutine is formed by adding
page and word numbers. The subroutine returns by a
microinstruction labeled EXIT which does a pop jump.

4.5 MACRO CAPABILITY

A macro provides a convenient way to generate a sequence
of assembler source statements many times in one or more
programs. The macro definition is written only once, and a
single statement, the macro reference, is written each time
the user wishes to generate the desired sequence of
statements. These statements are then processed like any
other assembler statements. Macro definition uses the
MAC and EMAC directives.

MAC -- Macro

The MACRO directive introduces a macro definition. This
definition is terminated by the EMAC DIRECTIVE. The
name of the macro is the symbol which appears in the
label field of the MAC directive. Operand field parameters
may be passed from the macro-reference source statement
to the macro through use of the special parameter symbols
P(1) through P(n).

A macro is invoked by the appearance of the macro name
in the operation field of a statement.

The label field must contain a symbol.

In the macro-reference statement the operand field may
contain a list of parameters. At the time the macro-
reference is encountered, each parameter is evaluated and
stored into a table within the assembler. The parameters
may be labels, constants, or user-defined opcodes. Prede
fined opcodes are not permitted. The macro definition is
then processed with the values in the table being
substituted for the special symbols P(1) through P(n). For
example, if the operand field of a macro-reference state-
ment appears as:

2,ABC,X'EO

then within the generated macro the value of P(1) is 2, P(2)
is the value of the symbol ABC, and the value P(3) is 224.

All arguments in the macro-reference parameter list are
evaluated prior to invoking the macro.

An error is indicated and the MAC direction ignored, if the
label field does not contain a symbol. Also an error is
indicated and the reference is ignored if the macro has not
been defined prior to its being referenced.

If a symbol is present in the label field of a macro-reference

statement, it is assigned the value of the program location
counter at the time the macro is invoked.

4.7
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A macro definition may contain a reference to another
macro definition, nesting definitions. However, a macro
may not be called recursively.

EMAC -- End Macro

The EMAC directive terminates a macro definition. The
contents of both the label and operand fields are ignored.

Example:

The following example shows the use of macro definition
and reference.

ONE EQU 1
TWO EQU 2
THREE  EQU 3
FOUR EQU 4

SHFT MAC
GEN /T(*,SS3M1),TF3,SF3,
CGFC,IM8,12(P(1)),RFS,
CWR1,22(P(2)),AA1

ASLB SHFT TWO, FOUR
LRLB SHFT TWO, ONE
ASRB SHFT THREE, TWO

4.6 OPERATING INSTRUCTIONS

This section describes the operating procedure for MIDAS
in each of its three environments: VORTEX, MOS and as a
standalone program.

MIDAS runs under VORTEX as a level O background task
and may be cataloged into the background library using
the procedures described in the VORTEX  Reference
Manual (Varian document 98 A 9952 10x).

MIDAS under MOS must be added to the system file using
the system preparation Program as described in the
Varian Master Operating System Reference Manual
(Varian document 98 A 9952 09x).

MIDAS in the standalone environment makes use of the
Standalone FORTRAN IV loader, runtime I/0 and runtime
utility. Use of the components are describe in the Varian
620 FORTRAN IV Reference Manual (Varian document 98
A 9902 03x).

4-8

4.6.1 VORTEX Environment

MIDAS is scheduled from the background library at level 0
by the /LOAD,MIDAS directive. MIDAS terminates when
the END statement is encountered, and exits to the
executive. Only one source program can be assembled for
each load of MIDAS.

MIDAS inputs symbolic source statements from the
processor Input device (Pl) and outputs these statements
on the processor output device (PO). When the END
statement is encountered, MIDAS rewinds the PO file and
commences pass two. During pass two, it inputs source
statements from the system scratch device (SS) and
produces an assembly listing on the list output device
(LO), and object records on the Binary Output device (BO).

PO and SS devices not only must be the same physical
device, but the same magnetic tape, drum or disc unit. If
Pl is assigned to a Rotating Memory Device (RMD)
partition, MIDAS assumes the source records are blocked
three 40-word records per RMD 120-word physical record.
However, if Pl is the same logical unit as the System Input
Device (Sl), and it is assigned to a RMD partition, MIDAS
assumes the source records are not blocked but consist of
one source record per RMD 120-word physical record. {f BO
is assigned to a RMD partition, the output is blocked two
60-word object records per RMD 120-word physical reocrd.
The assembler’s table space may be expanded and
consequently larger source programs assembled by use of
the VORTEX /MEM directive.

4.6.2 MOS Environment

MIDAS is loaded from the system file by the system loader
by means of the /ULOAD,MIDAS directive.

It reads the source records from Pl and outputs them to
PO. Pass two source input is from SS. When the END
statement is encountered on pass one, the SS file is
repositioned and reread. During pass two, the output can
be directed to BO for the object module and to LO for the
assembly listing. When an END statement is encountered
on pass two, control is returned to MOS. Therefore, it is
necessary to reload MIDAS with another /ULOAD directive
if multiple assemblies are desired.

4.6.3 Stand-Alone Environment

MIDAS is loaded by the 620 stand-alone FORTRAN |V
loader, along with the runtime 170 and runtime utility. The
description of this loading procedure and subsequent
execution is described in the Varian 620 FORTRAN |V
Reference Manual, where MIDAS is substituted for the DAS
MR Assembler. Upon execution, MIDAS will input source
records from logical unit 3 (Pl), output source records for
pass two to logical unit 9 (PO), input pass two source
records from logical unit 8 (SS), output binary object
records to logical unit 2 (BO), and output assembly listing
to logical unit 4 (LO). When the first assembly is




completed, subsequent assemblies may be performed by
restarting MIDAS at location 0541.

4.7 ASSEMBLER INPUT AND OUTPUT

The following section contains a description of the source
records required for assembler input and the object
records and listing produced by the assembler.

Source Records

The assembler input consists of a sequence of logical
records containing 80 character positions. If a logical
record contains more than 80 positions, only the first 80
are input and the remainder are ignored. If a record
contains less than 80 positions, blank characters are
supplied by the assembiler to fill 80 character positions.

Only the first 72 are considered in the assembly process.
Character positions 73 through 80 may be used as
desired.

Listing Format

An assembly-listing page consists of 44 lines per page with
each line containing no more than 120 characters. The
lines per page count may be changed when running under
an operating system. Each page contains the following:

Page number and title line followed by a blank line
Program listing containing two less than the current
lines/page count

At the end of an assembiy a symbol table will be printed
followed by a line containing the message "mmmm
ERRORS ASSEMBLY COMPLETE" where mmmm is the
accumulated error count expressed as a decimal number.

The line format for the title line is a function of the
environment in  which MIDAS runs. The following descrip-
tion pertains to the standalone and MOS versions, with the
comments in parentheses referring to VORTEX. Beginning
with the first character position the format is illustrated
below.

Object Code Records

MIDAS produces object code which is input for the
microsimulator and the microutility programs. Logical
records of the object code are a fixed length of 60 words.
Word 1 is the record control word. Word 2 contains an
exclusive OR checksum of word 1 and the remaining words
of the record. Word 3 through 11 optionally contain a
program identification block. Words 12 through the end of
the record (or 3 through end of record if there is no
program identification block) contain data fields.

MICROPROGRAM DATA ASSEMBLER, MIDAS

Record Control Word Format

The format of the record control word is as follows:

1514131211109876543210
a 1 1 b ¢c 100dddddddd

where a is 1 if the checksum is suppressed, b is 1 if not
starting record, ¢ is 1 when it is not the last record, and d
is binary record number modulo 256.

Program Identification Block

This block appears in words 3 through 11 of the starting
record of each program. Word 3 contains the highest value
of the program counter during the assembly, words 4
through 7 contain an eight-character ASCIl program
identification, and words 8 through 11 contain an eight-
character ASCIl program creation date.

Data Field Format

Data fields contain either one- or four-word entries. One-
word entries are loader control words, and four-word
entries consist of data words.

The format of the loader control word is code in bits 13-15
and an address/count in the low-order 13 bits. A code of
zero instructs the loader to ignore this entry. One is the
code for setting the loading location counter to the value
contained in bits O through 12. A value of two indicates
the following microinstructions should be loaded. The
number of microinstructions minus one is specified in bits
1 through 12.

Data Words

Data words contain microinstructions. Each microinstruc-
tion is comprised of four 16-bit words. Word 1 contains bits
63 through 48 of the microinstruction while word 4
contains bits 15 through 0 of the microinstruction. A

microinstruction will not be carried across a logical record
boundary. If insufficient space remains on a logical record
for the four-word microinstruction, the remaining space
will be ignored and the microinstruction started on the
next logical record.

4.8 ADDING MIDAS TO VORTEX

The micro assembler resides on the background library
under VORTEX. After system generation, the user must

varian data machines —
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catalog it in the background library. The following
procedure is used to do this.

1. Position the Bl device to the microassembler object
material.

2. Issue the following directives:
/LMGEN
TIDB,MIDAS,ONE, ZERO
LD,BI

LIB
END,BL ,E

Detailed descriptions of these directives are in the VORTEX
Reference Manual.

4.9 ASSEMBLY ERROR MESSAGES

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and 10 errors terminate the assembly.

Each error code with the exception of 10 is followed by a
space and two decimal digits indicating the character
position the assembler was scanning when the error was
detected.

The error codes and their meanings are listed below.

Error
Code Meaning

AD Address expression or associated fields in error
(see below)

CcC Continuation not expected
CE Numeric conversion error
DD lllegal redefinition of a symbol

ER Syntax error

410

EX An expression contained an illegal construction
FN Field number inconsistent with format
10 170 error

LC Program location counter setting exceeds the
maximum WCS page size (512 words)

MF Duplicate field reference

NR No memory available for addition of an entry to
assembler’s tables

NS Nosymbol in the label field where required
OP  Operation field undefined

SE Symbol in label field has a value during pass 2 that
is different from the value determined in pass 1

SY Undefined symbol. A value of zero is assumed

SZ A value too large for the size of a field, or the fields
defined in a format statement do not equal 64 bits

The AD error may occur under these circumstances:

a. With the character pointer in, or at the end of, an
address expression:

1. A test fail address is not on an even num-
bered word.

2. A field select origin address is not on an
even boundary.

3. The displacement between the test pass and
the test fail addresses is too great.

b. With the character pointer at the end of the
operand field:

1. Normal addressing mode and the FS or MT
or TF field is not equal to zero.

2. Test addressing mode is used and the TF
field is equal to zero.

3. Field selection addressing is the mode and
the FS field is equal to zero.

4. Test and field selection addressing mode
and either the FS or TF field equals to zero.

5. Page-jump addressing mode and either the
FS or TF field is not equal to zero.




SECTION 5
CODING FROM FLOW DIAGRAMS

5.1 GENERAL

This section details the conversion of flow diagrams, (as
developed in section 3), into code which MIDAS accepts.
As examples actual assembler listings of the sample
microprograms discussed in section 3 are included.

Flow diagram conversion is basically a matter of table-
lookup. Tables are included in this section which list the
standard mnemonics and the corresponding assembler
code.

Assembler code produced is given in two different formats.
The first format produces code using only the predefined
assembler opcodes for the GEN or GMSK statements. The
second format is based around user-defined opcodes

which follow the mnemonics developed thus far as closely
as possible. As these are not predefined, some burden is
placed on the user to include the necessary EQU directives
(these EQUs are available from Varian as a software part).

However, the resuiting code is considerably more readable
than that produced in the first format.

varian data machines

Each column in the flow diagram will produce a single
assembler program statement. This transformation can
be performed as follows:

1. Fill in the label field if necessary, this will often be from
the IDENT section.

2. Choose either GEN or GMSK as format label. The latter,
GMSK, is used only when the 16-bit literal/mask is
needed.

3. Derive the appropriate address expression

4. For each of the standard mnemonics in the column,
add the statements shown in the conversion tables.

5. Replace any nonstandard mnemonics with appropriate
field value assignments.

In addition to this translation, other assembler directives
must be included to set the location of the program in
WCS. In doing this, addressing considerations must be
taken into account. For example, in test addressing the
failure branch must always be to an even location.

The following table (5-1) lists the standard mnemonics and
the assembler code they produce. Following the table, the
EQU statements which define the format Il opcodes are
listed in table 5-2.

Table 5-1. Conversion Table

Row Mnemonic
IDENT None

MEMORY None
FUNCTION

MEMORY: IF,OVR

REQUEST, IF.ALU

ADDRESS IF,P
IF,MIR
OF,OVR
OF ALU
OF,P
OF MIR
OS,0VR
OS,ALU
OoSs.P
OS,MIR
BS,OVR
BS,ALU
BS,P
BS,MIR

Unconditional

Format | Format 1|

MO 10(1F$OVR)
iM4 10(IF$ALU)
M8 10(IF$P)

IMC 10(1FSMIR)
IM1 10(OF$0OVR)
IM5 10(OF$ALU)
M9 10(OF$P)

IMD 10(OF$MIR)
iM2 10(0S$0OVR)
M6 10(0S$ALU)
IMA 10(0S$P)

IME 10(OS$MIR)
IM3 10(BS$OVR)
M7 10(BS$ALU)
IMB 10(BS$P)

IMF 10(BS$MIR)
SF1 (or SF2,TFO) 6(MEMC)[or

6(MEMC$),5(0)]
(continued)
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Table 5-1. Conversion Table (continued)

Row Mnemonic Format | Format Il
TESTT SF3 6(TESTT)
TESTF SF2 (and not TFO) 6(TESTF)
WAIT,MEMDN SFO,IM1 6(SPEC),10(WAITMD)
ALU Rn LAO,AAN 12(A$GPR),24(Rn)
INPUT A Rn,SL LA2,AAn 12(A$GPRL),24(Rn)
Rn,SR LA3,AAn 12(A$GPRR),24(Rn)
P LAl 12(A$P)
ZERO LAO,SH1 12(A$SPEC),22(AZERO)
ONES LAO,SH2 12(A$SPEC),22(AONES)

Note: 1) when using
shifted general register
user must specify high-
low bits through SH field.

2) when using the GMSK
format, use 16(Rn) in-
stead of 24(Rn) and
AKn instead of AAn.

ALU Rn LB0,8Bn 11(B$GPR),23(Rn)
INPUT B MIR LB1,BBI 11(B$SPEC),23(MIR)
IOR LB1,BB2 11(B$SPEC),23(IOR)
STAT LB1,BB3 11(B$SPEC),23(STAT)
LITx LB3,MKy 11(LIT), 15(y)
MSK,x LB2,MKy 11(MSK), 15(y)

Note: y is the one's
complement of x

OPR LB1,BBO 11(B$SPEC),23(OPR)

ORSE LB1,BB4 11(B$SPEC),23(ORSE)

OLSE LB1,BB5 11(B$SPEC),23(OLSE)

ORZF LB1,BB6 11(B$SPEC),23(ORZF)

OLZF LB1,BB7 11(B$SPEC),23(0LZF)
ALU ZERO FF3,MF1 14(ZERO),15(LOG)
OUTPUT ONES FF3 14(ONES)

TRNA FFF,MF1 14(TRNA), 15(LOG)

TRNB FFA,MF1 14(TRNB),15(LOG)

INCA CF3 14(INCA),16(CRY1)

INCB FF1,CF3 14(INCB),16(CRY1)

DECA FFF 14(DECA)

DECB FF9 14(DECB)

ADD FF9 14(ADD)

SUB FF6,CF3 14(SUB),16(CRY1)

SHFA FFC 14(SHFA)

AND FFB,MF1 14(AND),15(LOG)

OR FF1 14(OR)

EOR FF6,MF1 14(EOR),15(LOG)

NOTA FFO,MF1 14(NOTA),15(LOG)

NOTB FF5,MF1 14(NOTB),15(LOG)

TCB FF2,CF3 14(TCB),16(CRY1)

Note: The mnemonics
INCB and TCB require
input A to be ZERO.

Mnemonic DECB require
input A to be ONES.
(continued)
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Row

ALU
DESTINATION

STATUS
SAMPLE

STATUS
TEST

ADDRESSING:
MODE,
ADDRESS

SPECIAL
ACTIONS

Table 5-1. Conversion Table (continued)

Mnemonic

Rn

SHFT
OVFL
ALU

OVFL
IOSR
SSW3
SSW2
SSW1
TFIR
ALUO
ALU5
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QuUOS

blank
FSEL
INT

PJMP to n:

1) using stack
2) without memory

3) with memory

POPJMP

DECODE
1) with IBR to |
2) without IBR to |

TESTT

TESTF

POUT

SCouT
OPROUT

INCP

INCSC
INCP,OPROUT

Format |

WR1,AAN

VF1
Refer to Table 2-7
TFO,SFO,GF2

GFO
GF1

GF2

GF3
GF4
GF5
GF6
GF7

GF8
GF9
GFA
GFB
GFC
GFD
GFE
GFF

/F(base),FSx

user supplied

/N(word), TSn
/N(word), TSn,
SFO,TFO,IM3
/N(word),GF4,
SF2,TFO

TFO,SFO,IMD,
LB3,AA4,BBO

TFO,SFO,GF5
TFO,SFO.GF4

/T(pass.fail),
TF2

/T(pass,fail),
TF3
RF1
RF2
RF3
RF4
RF5
RF7

varian data machines @—
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Format |l

17(GPROUT),24(Rn)

19(S$SHFT)
TFO,SF0,7(S$ALU)

7(OVFL)
7(I0SR)
7(SSW3)
7(SSW2)
7(SSW1)
7(TFIR)
7(ALUO)
7(ALUS)
7(ALUC)
7(ALUZ)
7(SHFT)
7(MIRS)
7(SFTC)
7(GPRS)
7(NORM)
7(QUOS)

Note: TF field must
also be set in test
addressing.

)
/F(base),FSx

user supplied

/P(word + page)

/P(word + page),
10(PJMP),SFO,TFO
/P(word + page),
7(PJMP$),6(MEMC$),TFO

10(STACK),24(POPJMP),
LB3,TF0,SF0.BBO

5(0),6(0),7(DECOD$)
5(0),6(0),7(DECODE)

/T(pass,fail),5(TT)

/T(pass.fail),5(FT)

13(POUT)
13(SCOUT)
13(OPROUT)
13(INCP)
13(INCSC)

RF
/ (continued)
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Row

ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONES
AZERO
A$GPR
A$GPRL
A$GPRR
A$P
A$SPEC

BS$ALU
BS$MIR
BS$OVR
BS$pP
B$GPR
B$SPEC

CRY1
DECA
DECB
DECODE
DECODS$
EOR

FT

—-@ varian data machines
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EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

Table 5-1. Conversion Table (continued)

Mnemonic Format | Format ||
SHFTOP,LFT SC1,WFO0 18(SHFTOP),20(LFT)
SHFTOP,RGHT SC1,WF1 18(SHFTOP),21(RGHT)

Note: on shifting OPR
XF and AA fields used
to determine high/low

bits.
IBR to |
with decode TFO,SFO,GF5 TFO,SF0,7(DECODS$)
without decode TFO,SFO,GF1 TFO,SFO,7(IBR$I)
PUSH,x TFO,SFO,IMD, 10(STACK),16(PUSH),
LB3,AK2,MKx 15(x),L.B3,TFO,SFO
POPDEL TFO,SFO,IMD, 10(STACK),23(POPDEL),
BB1,AA4,LB3 LB3,TFO,SF0,AA4
Table 5-2 is the assembler directives needed for the user

defined

opcodes of format Il. These are available on

request as released software parts.

O = WNOaMMXWNOo W
=]

|

- O XWX
w

Table 5-2. User-Defined Opcodes

-

GPROUT EQU

GPRS EQU X'D
IBRS$I EQU 1
IF$ALU EQU 4
IF$MIR EQU X'c
IF$OVR EQU 0
IF$P EQU 8
INCA EQU 0
INCB EQU 1
INCP EQU 4
INCSC EQU 5
IOR EQU 2
IOSR EQU 1
LFT EQU 0
LIT EQU 3
LOG EQU 1
MEMC$ EQU 2
MEMC EQU 1
MIR EQU 1
MIRS EQU X'B
MSK EQU 2
NORM EQU X'E
NOTA EQU 0
NOTB EQU 5
OF$ALU EQU 5
OF$MIR EQU X'D

(continued)




Table 5-2. User-Defined Opcodes (continued)

OF $§0VR
OF$P
OLZF
OLSE
ONES
OPR
OPROUT
OR
ORSE
ORZF
OS$ALU
OS$MIR
OS$0OVR
[oF:% 3
OVFL

PJIMPS
PJIMP
POPDEL
POPJMP
POUT
PUSH

Quos

RO
R1
R2
R3
RY
R5
R6
R7
R8
R9
RA
RB
RC
RD
RE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

O NMX OO £ a2 WO WU NW-a

N = 5w

k]

HKX XXX OONOTW &EWN 2O

(continued)
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RF
RGHT

sCouT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STACK
STAT
SUB
S$ALU
S$SHFT

TCB
TESTT
TESTF
TFIR
TRNA
TRNB
TT

WAITMD

ZERO

5.2 EXAMPLES OF MICROPROGRAMS IN
ASSEMBLY LANGUAGE

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

=
o]

» a0

AN A WX NWEO XX XN
|w]

N M X N wN
> m

The five exampies of section 3 were coded using the

techniques outlined in

The first three examples use the equates in table 5-2.

this section. Comments on the
encoding and actual assembler listings follow.

55
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5.2.1 BCS Entry Point Initialization

Since physical addresses were assigned at the flow diagram
level, the transformation was quite straightforward. Note
that a standard deck of all the EQU statements was used
though not all were needed.

THIS IS INITIALIZATION FOR BCS ENTRY POINTS

N EWN =
LR R I 2

7 %
8 x THE FOLLOWING ARE SUPPLEMENTAL OPCODES
9 * FOR USE WITH THE MICRO ASSEMBLER
10 =
L
0009 12 ADD EQU

0008 13 ALUC EQU
0006 14 ALUO EQU
0007 15 ALUS EQU
0009 16 ALUZ EQU
000B 17 AND EQU
0002 18 AONE EQU
0001 19 AZERO EQU
0000 20 A$GPR EQU
0002 21 ASGPRL EQU
0003 22 A$GPRR EQU
0001 23 ASP EQU
0000 24 ASSPEC EQU
0007 25 BS$ALU EQU
000F 26 BS$MIR EQU
0003 27 BS$OVR EQU
000B 28 BS$P  EQU
0000 29 B$GPR EQU
0001 30 B$SPEC EQU
0003 31 CRY1 EQU

o

o]

EoOOOXFEFaX o WOAUNEOXWOXWXNOaWNO XL No®O
w

000F 32 DECA EQU 'F
0009 33 DECB EQU

0004 34 DECODE EQU

0005 35 DECOD$ EQU

0006 36 EOR EQU

0003 37 FT EQU

0001 38 GPROUT EQU

000D 39 GPRS EQU 'D
0001 40 IBR$I EQU

o004 41 IF$ALU EQU

000C 42 IF$MIR EQU 'c
0000 43 IF$OVR EQU

0008 44 IFSP EQU

0000 45 INCA EQU

0001 46 INCB EQU

0004 47 INCP EQU

0005 48 INCSC EQU 5
0002 49 1IOR EQU 2
0001 S0 IOSR EQU 1
0006 51 KOUT EQU 6
0000 52 LFT EQU 0
0003 53 LIT EQU 3
0001 54 LOG EQU 1
0001 55 MEMC EQU 1
0002 56 MEMC$ EQU 2
0001 57 MIR EQU 1
000B 58 MIRS EQU X'B
0002 59 MSK EQU 2
000E 60 NORM EQU X'E
0000 61 NOTA EQU 0
0005 62 NOTB EQU 5
0005 63 OF$ALU EQU 5
000D 64 OF$MIR EQU X'D
0001 65 OF$0VR EQU 1
0009 66 OFS$P EQU 9
0007 67 OLZF EQU 7
0005 68 OLSE EQU 5
0003 69 ONES EQU 3
0000 70 OPR EQU 0
0003 71 OPROUT EQU 3
0001 72 OR EQU 1
0004 73 ORSE EQU 4
0006 74 ORZF EQU 6
0006 75 O0OS$ALU EQU 6
000E 76 OS$MIR EQU X'E
0002 77 OS$OVR EQU 2

(continued)
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0000

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
oo0ocC
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D

000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
0008
0009
000A
000B
oooc
000D
000E
000F
0001
0002
ogocC
oo00C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>