$3.00

Builetin #605

n

DATA 620/1

@varian data machines
a varian subsidiary

1590 Monrovia Ave., Newport Beach, Calif.
(714) 646-9371 TWX (910) 596-1358

o

i.
Printed in U.S.A. Oct.67 h

e v
r

IDPnuDu: Japnduuos swweaisAs 17029 YAYad

|
DATA 620/1
systems
compufer
manuical

@varian data machines

a varian subsidiary

DATA 620/
SYSTEMS COMPUTER

MANUAL

Copyright 1967 by
Varian Data Machines
a Varian Subsidiary

CONTENTS

Page
SYSTEMS COMPUTER
FEATURES OF THE DATA 620/ SERIES COMPUTERS 1
INTRODUCTION L.ttt it et e et et e e e e 2
The DATA 620/i . . oot it e e i 2
The DATA 620/i Interface .. oo oo e i i i iie e o 2
The DATA 620/i User Interface . v\ ve v unev o on.. 3
SYSTEM INTERFACE L. . i it e it i e e et i 4
ORGANIZATION o i e s it e it st e ee e e eennnn 6
Registers . . . oot i e e 7
Micro-EXEC . ..o e 8
WORD FORMATS . . e i i 9
Instruction Word Formato .. . L L., 9
Optional Instructions oo e 13
INSTRUCTION LIST & ottt i i e e e e e e i 14
MEMORY . o it e e e 18
RELIABILITY AND MAINTAINABILITY. e 19
Failure Protection . . . oo it i i e 19
Physical .. .o e 20
Environmental L 20
PROGRAMMED INPUT/QUTPUT ... vt ie e e 21
Direct Memory Access and Interrupt Logic 21
Interrupt System L L 22
Buffer Interlace Controller 22
Real-Time Clock i 23
Sense Line ... i 23
External Control Lines v iinn .. 23
Parallel I/O Channels 23

CONTENTS (continued) CONTENTS (continued)

Page Page
SYSTEMS COMPUTER (continued) SYSTEM REFERENCE (continued)
PERIPHERALEQUIPMENTo e 25 I DATA 620/i SYSTEM DESCRIPTION
DATA 620/i Series Periphera! Equipment 25 2.1 Computer Organization 2-1
2.2 Computer Word Formatso 2-5
SYSTEM SOFTWARE i e 27
1l DATA 620/i CENTRAL PROCESSOR INSTRUCTIONS
Symbolic Assembler 27
FORTRAN . 27 3.1 General . .o e e e 3-1
AID 27 3.2 Single-Word Insfructionso ... 3-1
Diagnostic Program Package 27 3.3 Double-Word Instructions . .. v v vt v i it i e .. 3-30
Subroutine Library L 28
v DATA 620/i INPUT/OUTPUT SYSTEM
USERSERVICES . .. o e 29
4.1 Introduction . v v v o vt i e e e e 4-]
Documentation 29 4.2 Organization A U IS 4-1
Programming Training 29 4.3 Program Control Functions it in ..., 4-6
Maintenance Training o 29 4.4 Automatic Control Functions 4-12
User Organization 29
Application Programming 30 \ CONTROL CONSOLE OPERATION
DATA 620/1 SPECIFICATIONS ..o\ v oo 31 5.1 Controls and Indicators RPN 5-1
5.2 Manual Operations i e 5-4
Fully Compatible System Components 33
Micro~-VersalLOGIC Integrated Circuit Logic Modules ., 34
VersaSTORE Core Memories0 vvovvn e 34 PROGRAMMING REFERENCE
VersaSTORE Mainframe Memorieso oo oo oo, 34
| GENERAL DESCRIPTION
i.1 Introduction e e . 1-1
SYSTEM REFERENCE 1.2 Purpose of the Manual 1-2
1.3 Computer Operafion i ine.. 1-2
| INTRODUCTION
Il DATA 620/i ASSEMBLY SYSTEM
1.1 The DATA 620/i oo, 1-1
1.2 UseoftheManual 1-2 2.1 Introduction L e 2-1
1.3 Specifications L 1~4 2.2 DAS Source Language, 2-1
2.3 DATA 620/i Instructions . v . v v v v i e e ie e e e 2-7

iv
ni

CONTENTS (continued)

Page
PROGRAMMING REFERENCE (continued)
2.4 DAS Pseudo Instructions vv it i, 2-15
2.5 Source Statement Formats o oL, 2-28
2.6 DASOuiputList ..ottt i e e 2-29
2.7 Operating the DAS Assembly System 2-32
2.8 FORTRAN Pseudo Instructions vvu... 2-32
i AID-UTILITY AND DEBUGGING PACKAGE
3.1 Introduction. L e e e 3-1
3.2 Bootstrap Loader . . .o v v i i e 3-1
3.3 Binary Load/Dumpo i et e 3-3
3.4 AID Il Package for the DATA620/i 3-4
v SOURCE TAPE CORRECTION PROGRAM
4.1 Introduction L e 4-1
4.2 Operating Procedures for COR 4-1
FORTRAN REFERENCE
| BASIC FORTRAN CONCEPTS
1.1 Introduction e e e e 1-1
1.2 Character Set . . .o v vt ittt e 1-1
1.3 Line Format oo i i e 1-2
n DATA
2.1 General i e 2-1
2.2 Data TyPes .« v vt it e e 2-1
2.3 Data Names it i .. 2-1
2.4 Varigbleso e 2-2
2.5 Constants . .ottt e 2-2
2.6 AraYs L e e 2-3

CONTENTS (continued)

Page
FORTRAN REFERENCE (continued)
{8 SPECIFICATION STATEMENTS
3.1 General . v v vt e e e e e e e e e e e e 3-1
3.2 DIMENSION Statementt it i neeen.. 3-1
3.3 COMMON Statement i ittt it ie e e ennnn 3-2
3.4 EQUIVALENCE Statement v ii et inennnenn. 3-3
v EXPRESSIONS AND STATEMENTS
4.1 Arithmetic Expressionsot ittt i 4-1
4.2 Arithmetic Assignments and Replacements 4-3
v CONTROL STATEMENTS
5.1 General .o e e e e e e 5-1
5.2 GO TO Statementso vt v e e 5-1
5.3 Arithmetic IF Statement 5-2
5.4 CALLStatement o ittt it ittt e e i e 5-3
5.5 RETURN Statement it ittt o inveen e 5-3
5.6 CONTINUE Statement . . . v v i vt it et it e e e e enen 5-4
5.7 PAUSE Statement . . v v v e vt vttt e see i eenennn 5-4
5.8 STOP Statement v i it i ittt it ee et e e 5-4
5.9 DO Statement . . .o vt i e e e e e 5-5
\] INPUT/OUTPUT STATEMENTS
6.1 General e e e e 6-1
6.2 Input/Output Listsot it i ireinaennn 6-1
6.3 Simple Lists oo vttt i e e e 6~1
6.4 DO -ImpliedListsciiiiiireinennnnnn.. 6-2
6.5 READ Statementst i it ii e st ntennreneennnn 6-2
6.6 WRITE Statementsottt it i it en e e 6-3
6.7 REWIND Statements ittt ittt iinneenennnn 6-4
6.8 BACKSPACE Statementso v vt ve v nvvenanennnn 6-4
6.9 ENDFILE Statementst ve e e e v ininnn e 6-4
6.10 FORMAT Statementst ennnennnnnns 6-4
6.11 Field Specifications 0., 6-5

vi

CONTENTS (continued)

Page
FORTRAN REFERENCE (confinued)
6.12 FConversioncveevntunennnneonenennesnns 6-5
6.13 EConversioncout it e 6-6
6.14 [Conversion c.vitt it 6-7
6.15 HConversioniiiiuiiinineanenannenan 6-8
6.16 XSpecification i i i e e 6-9
6.17 /Specificationttt e 6-10
6.18 REPEAT Specificationo, 6-10
6.19 Format Control and List Interactiono v 6-11
Vil PROGRAMS AND SUBPROGRAMS
7.1 General e 7-1
7.2 Main Programs . . o v v v v vt e e et 7-1
7.3 Subprogramso i i e e e 7-1
7.4 Statempent Functions oL e e 7-2
7.5 Intrinsic Functions . . .o i it i i e 7-2.
7.6~ FunctionSubprograms e 7-4
7.7 Basic External Programs oL 7-5
7.8 Subroutine Subprograms ool o 7-5
7.9 Dummy Arguments . . oo v v vttt it i 7-7
VI{l FORTRAN OPERATING INSTRUCTIONS
8.1 General e e 8-1
8.2 Compiler Operafing Instructions, 8-1
8.3 Preliminary Operationsy 8-1
8.4 Normal Operations nna. 8-1
8.5 Input Records e e e e 8-2
8.6 OutputRecordsciviiiinernensinnnneenn 8-2
8.7 NotificationErrors i i e 8-3
8.8 Terminating Errors . o ..o oL Lo oL, e 8-3
8.9 Optional Listingsttt 8-4
B.10 ProgramMap . .. i ittt i e e 8-4
8.11 FORTRAN loader Operating Instructions 8-4
8.12 Preliminary Operations v 8-4
8.13 Llooding Subprograms e 8-5
8.14 ErrorDiagnostics .. . v v v ittt i i e 8-5
8.15 Execution of FORTRAN Programs 8-6

vii

CONTENTS (continued)

Page
FORTRAN REFERENCE (continued)
8. Programmed Halts v i 8-6
8.17 Error Bit Designatorsot i i e 8-6
8.18 ErrorHalts . . i e e 8-7
8.19 Binary Input/Output oo e 8-7
8.20 BCD Input/OUtput . oottt i e 8-7
1X GLOSSARY
SUBROUTINE DESCRIPTIONS
1 GENERAL DESCRIPTION
1.1 Introduction . .. i 1-1
1.2 Programming Standards o 1-1
1l PROGRAM DESCRIPTION
2.1 Introduction v v v i vt i e e e e 2-1
2.2 Identification it i e e e 2-1
1] PROGRAMMED ARITHMETIC
v ELEMENTARY FUNCTIONS
v UTILITY AND DEBUGGING ROUTINES
Vi EXECUTIVE ROUTINE
INTERFACE REFERENCE
| GENERAL DESCRIPTION
1.1 Introduction L e e -1
1.2 Purposeof the Manual L L, 1-2
1.3 Computer Organization0uiurevuan.. 1-3

CONTENTS (continued)

INTERFACE REFERENCE (continued)

DATA 620/i STANDARD INPUT/OUTPUT SYSTEM

2.1 Organization ittt et e e
2.2 Program Control Functions
2.3 Automatic Controlled Functions
2.4 Miscellaneous Signals i i

APPENDICES

A DATA 620/i NUMBER SYSTEM

B STANDARD DATA 620/i SUBROUTINES

C TABLE OF POWERS OF TWO

D OCTAL-DECIMAL INTEGER CONVERSION TABLE

E OCTAL-DECIMAL FRACTION CONVERSION TABLE

F DATA 620/i INSTRUCTIONS (ALPHABETICAL ORDER)

G DATA 620/i INSTRUCTIONS (BY TYPE)

H DATA 620/i RESERVED INSTRUCTION CODES

| STANDARD CHARACTER CODES

J TELETYPE 1/O INSTRUCTIONS

K FORTRAN STATEMENT TYPES

L FORTRAN 1/O UNIT ASSIGNMENTS

M FORTRAN MEMORY MAPS

FORTRAN OBJECT RECORD FORMAT

Page

SYSTEMS COMPUTER

FEATURES OF THE DATA 620/i SERIES COMPUTERS

Field Proven Software

silicon Monolithic Integrated Circuits (DTL and TTL)
9 Hardware Registers

Over 100 Basic Commands

6 Addressing Modes

Direct Addressing to 2,048 or 32,768 Words

16- or 18-Bit Words

Expansion fo 32,768 Words

Hardware Index Registers

Party Line I/O Facility

Micro-EXEC Option

10-1/2 Inches of Rack Space

Less than 70 Pounds (Mainframe and power supply)
340 Watts

NPN or PNP (Optional) 1/O Levels

Interface Ease

Compatible with DATA 620 Computer

Plug-In Expandable

Low Cost

Systems Computer

INTRODUCTION

DATA 620/ is a system-oriented digital computer, designed as a powerful system
computer fo fill the gap between special purpose digital hardware and general purpose
computers. DATA 620/i meets all the requirements of a true system computer — power~
ful computing ability, easy interfacing, modular design and construction for expand-
ability, integrated circuit reliability, low cost, and compact size.

In addition, DATA 620/i offers a number of features simply not available on other
computers — like party line communication, quick and easy memory expandability from
4,096 to 32,768 words of 16 or 18 bits, and a unique micro-EXEC microstep sequencing
technique. DATA 620/i comes with a complete set of field~proven software, developed
and perfected on the DATA 620.

DATA 620/i has a bigger instruction set, 1/2 the components, and costs less than any’
computer in ifs class. This is why it so efficiently and economically solves system
problems previously considered too difficult or expensive for computer solution.

DATA 620/i offers o wide variety of peripherals and options, allowing the user to
select only those features specifically required for his application, and providing the
optimum amount of computer power per dollar.

THE DATA 620/i

As a physical system component, DATA 620/i processors are compact in size, occupy-
ing only 10.5 inches of rack space. They are accessible from the front like other sys-
tem components, and they are reliable and maintaingble. The contents of five
operational registers can be displayed on the front panel.

Eighty~five percent of the processor operation can be verified from the front panel
without the use of an oscilloscope. As the controlling element in a system, a DATA
620/i has the "raw" data manipulating power of a much more costly computer. The
instruction set includes over 100 basic machine commands. The register change com-
mand is micro-programmable with over 100 useful combinations. The processing
characteristic can be adapted to specific requirements through an optional Micro-
EXEC facility that permits software programs to be hardware implemented.

THE DATA 620/i INTERFACE

The DATA 620/i series was designed to not only provide the complete spectrum of
interface capabilities required in a system computer, but to also allow the user to
tailor the computer for his specific application. To attain this goal, all of the Input/
Output features are offered as options. Among these facilities are: direct memory
access, real~time clock, power failure protect, and the buffer interlace controller.

Systems Computer 2

These features, combined with priority interrupts, external sense lines, external
control lines and the proprietary Micro-EXEC technique give the DATA 620/i family
virtually every 1/O capability available.

THE DATA 620/i USER INTERFACE

As must be the case in any machine that is required to do —and do well — g large
number of data manipulation tasks which are unspecifiable in advance, flexibility was
the motif in designing the DATA 620/ software package. The goal was to achieve
flexibility without creating big problems on the one hand, or falling into the easy
habit of accepting hardware/software tradeoffs on the other hand. In the DATA 620/i,
hardware and software features reinforce each other. For example, there are.five
modes of single-word addressing, one of which permits direct addressing of four times
as many words in store as is normally possible with conventional designs. Multiply/
divide instructions are available as options to meet more demanding computation speed
requirements.

3 Systems Computer

SYSTEM INTERFACE

The ability of the computer to adapt to the system is an excellent criterion for
determining a true systems computer.

The design philosophy behind the 620/i input/output structure is not only to provide
all of the capabilities needed in a system computer, but to allow the user to choose
the particular capability needed for his particular application. The reasoning is: if
the feature is needed, it can be provided as a low cost option; if the need is uncertain,
it can be easily added in the field if and when it is needed.

The DATA 620/i family offers the widest range of interface facilities. These include

party line communication bus, multilevel priority interrupts, external sense lines,
external control lines, direct memory access, and interlace control.

Systems Computer 4

il

1 OPTIONAL |
MEMORY

N

1 OPTIONAL |
MEMORY

P | L__I___: L-I-——'

1 OPTIONAL |
MEMORY
W-BUS

L-8US

r-I“'\ r"—l-'\ r--

| ormionNAL |
MEMORY

L__I__J -t

HIGH SPEED
MULTIPLY-DIVIDE

REAL TIME CLOCK

HARDWIRE
WEXEC

PROGRAM

.MEMORY

INTERRUPT CABLE

HIGH
SPEED
PRINTER

PRIORITY
INTERRUPTS

N

1

SENSEA | o2

N

2
CONTROL
LINES

BUFFERED
INPUT, OUTPUT
CHANNELS

PLOTTER

1/O CABLE

v —
2—>
N—

CENTRAL
PROCESSOR

DATA 620/i Organization

BUFFER
INTERLACE
‘CONTROLLER

DATA SET
INTERFACE,

MASS
STORAGE

A/D
CONVERTER

TAPE
CONTROLLER

Ty

B-CABLE

TRANSPORT
2

TRANSPORT
f

ORGANIZATION

The DATA 620/i is organized with a unique bus structure, selection logic, and nine
registers. The organization provides universal internal information routing, buffered
processing, micro-register.change programming facility, information indexing without
time penalty, ond the optional direct memory access (cycle stealing) facility..

The organization optimizes the DATA 620/i for maximum I/O throughout, minimum
elapsed time between successive input or output transfers, and minimum programming.

This unique organization mokes possible the optional Micro-EXEC facility by which
complex algorithms or additional instructions can be implemented with external hard-
ware. The Micro-EXEC technique produces an increase in processing speed in excess
of 500 percent over conventional! stored program techniques. The bus structure of this
computer family permits the system designer to overcome traditional barriers of pro-
cessing speed, high-rate volume throughput, and fixed mainframe characteristics.
The four available busses are:

L bus provides a 12-bit parallel communications path from the L register to the
address decoders in the memory modules.

W bus provides a pdrallel data communications path (16/18 bit) from the W
register to the memory module(s) (up to 8).

C bus provides the paralle! path and selection logic for routing data between
the arithmetic unit, the 1/O unit, and the operational registers. This bus
permits data to be uniquely or commonly transferred to the operational registers.
It performs the distribution function for micro-programming, and provides a
bi-directional parallel word path to the “party line".

C bus is the central communication avenue and connects with all internal units

of the processor. It is the key facility that permits Micro~EXEC to be
implemented.

S bus provides the parallel path and selection logic for routing data between
the operational registers and the arithmetic unit. [t implements the select,
gather, and route function for micro-programming and Micro~EXEC.

Party fine 1/O bus provides a 16/18-bit parallel bi-directional 1/O communi-
cation path. This bus includes the control lines for transfer ready, sense,
control, interrupt address and acknowledge, and information entry. The
“party line” is packaged as one cable, and each peripheral device has a party
line connector and a party line extender connector. The device and the party

line form @ "daisy chain” whereby additional 1/O controllers can be added on
site and on a plug-in basis.

Systems Computer 6

REGISTERS

Nine registers are provided with a basicf processor . Four of the n.ine regisrerslf[ar:
incorporated fo provide buffering to satisfy re.al—hme system requuremenff. A -t e
arithmetic and control unit registers‘are mulhpurpose and can serve a unique micro-
programming and Micro-EXEC function.

A register is a full-word register and is the high-order half of the. accumulator.
A is a source and destination for programmed input/output and micro~
programming. Micro-EXEC can select, set, shift, and perform arithmetic

and logical operations on A,

B register is a full-word register and is the low-order-half o.f th.e accumulator.
8 is a source and destination for programmed input/output, is micro-
programmable, and can serve as the second hardware index feglsfer. I\{\u:ro—
EXEC can select, set, shift, and perform arithmetic and togical operations

on the A.

X register is a full-word register which permits indexing of memory cdd.ressing
without adding time to accessing an indexed location. The X register is
addressable by the micro-programming instruction set where it serves logical,
storage and counting functions. Micro-EXEC con use the X register for
arithmetic and multiple other functions.

P register is a full-word register and is the program counter. P can serve
multiple purposes under Micro-EXEC.

U register is a full-word buffer which holds the instruction being executed.
The U register buffers the control unit from memory to permit |nterh::ce 1/0
operation to occur on a memory-cycle by memory-cycle-basis. It is also a
multipurpose register available to Micro-EXEC.

S register is a 5-bit register which, in combination with the U register controls
the length of shift instructions. This register also buffers memory from the
control unit. S register is available to Micro-EXEC,

L register is the 12-bit memory location register. Micro-EXEC can select and
set the L register.

W register is the memory word register and is full length (16 or 18 bits). W is
selectable and can be set by Micro-EXEC.

R register is a full~word buffer which holds the multiplicand and divisor, in
arithmetic operations. R register buffers the arithmetic unit from memory to
permit interlace I/O operations to occur on a memory-cycle-steal basis. 1t
is also @ multipurpose register available to Micro-EXEC.

7 Systems Computer

Micro-EXEC

Micro-EXEC (optional) is a technique by which the system designer has the option of
externally combining and sequencing the processor's micro-steps to perform a complex
macro~function. Over 30 micro-step control lines are made available to the system
user. These control functions are the micro-steps normally controlled by machine
instructions.

They control memory, arithmetic unit, control unit, all registers, 1/O and communica~
tion networks. The external control can operate the micro-steps as fast as five every
900 nanoseconds by utilizing the processor clock to synchronize the micro-step opera-
tions. Micro-EXEC can be used to implement many types of algorithms. Typical
functions are: convolutions, coordinate transformations, double precision arithmetic,
table ook ups, square root, limit checking, etc. Micro-control can produce up to
10-to-1 speed advantage over stored programs and does not require core memory for
the program. Opening new dimensions to the data system designer, Micro-EXEC
makes practical an extremely fast processor with small or large memories. It permits
the mode of processing to be controlled externally, and processing to be optimized

for the system.

The processor organization and hardware provides the system engineer with the most
flexibility available in off-the-shelf equipment. The standard options of Micro-EXEC
machine instructions, memory, and /O facilities provide functional adaptability and
system optimization without engineering risk or unpredictable costs.

’

Systems Computer 8

WORD FORMAT

i ies: i ion. Each category
d formats separate into two categories: data and instruction ,
;h: t‘::’ern optimized for the system environment. DATA 620/ processors are c.v0||.0b|e
o 16- or 18-bit word length. The 16-bit is the DATA 620/i; the 18-bit version is the
;;ATA 620/i. The data format is extendable for 18-bit words with the sign bit in the

high-order positions.
DATA WORD FORMAT

1716 15 14 13 12 11 10 98 7 6 543 210

7R

l Sign {negative numbers in 2's complement form).
Logical data is represented in true form.

18-bit word length.
INDIRECT ADDRESS FORMAT

1514 1312 11 10987 65 43210

7

15-Bit Address Field

The higher order bit specifies further indirect addressing.

INSTRUCTION WORD FORMAT

The four instruction word formats — single word, double word, generic and macro-
command — are illustrated in the following paragraphs.

1. Single word. Twelve basic commands and two optional cc.>mmat1ds have
single word memory reference formats. The single word instruction .is di\{lded info
three fields as shown below. There are six addressing modes including direct a'ddr‘ess-
ing to 2,048 words, relative to P with a delta range of 512, index by X or B, indirect
from the contents of the memory location addressed, immediate.

9 Systems Computer

SINGLE WORD INSTRUCTION FORMAT

17 16 15 14 13 12 11 10 98 7 6543210
%

Op. Code Mode Address

OXX; Direct addressing to 2048
100; Relative - add a field to P
101; Index (X) - add a field to X
110; Index (B) - add a field to B
111; Indirect - from Add.,
multi-indirect

-— Not used by the 18-bit instruction word

Single Word Instructions include: LDA LDB LDX INR ADD SUB MUL* STA STB STX
ERA ORA ANA DIV*,

All basic single word instructions are executed in two cycles, including relative and
index addressing modes. One cycle is added for each level of indirect addressing.

The single word instruction format is designed to enable the system user to write his
programs in the minimum number of memory locations and have his program executed
in minimum time. The format is uncomplicated and the fields divide into convenient

octal groupings so that programs can be written and checked rapidly.

2. Generic. Twenty-six instructions are single word generics and divide
into the three fields of class code, operation code and definition.

GENERIC INSTRUCTION FORMAT

151413121 109876543210

C O d

Class Code Op. Code Definition

These instructions perform arithmetic unit, control unit and input/output functions.
The operations are: HLT, NOP, shifts (12), overflow (2), sense, external functions,
input and ouiput, A or B (11).

*Optional instruction

Systems Computer 10

i i i i he sense and external function

+£t instructions can shift up to 32 places. T " .

Thi :::Iﬁo::s can address up to 64 peripheral devices and define up to 8 functions. The
zns‘:t and output commands can select A or B, A and B; clear and input to A or B,
::F::nd B. The input/output instructions can address up to 64 devices. (The in-memory

d out-memory instructions and the interrupt priority control are two word instructions.)
an

The generics are octal grouped for user convenience. They provide flexibility to
optimize ‘input/output processing.

3 Two word. Two classes and six types of instructions are two word
- . . - . .
instructions. The types include: jump, jump and mark, execute, immediate, in/out

memory, sense.

JUMP, JUMP and MARK, EXECUTE

1514131211 109876543210

L C (o] Condition 1st Word

2nd Word

L+ ADDRESS

L Indirect address flag

The first word contains three fields: The C field contains the class code, the O field
contains the operation code, and the condition field specifies any combination of nine
conditions. The nine conditions are: $S1, 852, $83, XO, B O, AO, Aneg.,

A pos., and overflow. The second word contains the jump address, jump mo_rk address,
or the address of the instruction to be executed. Indirect addressing is permlf.te.d. If
the specified conditions are oll met, the instruction is executed. [f the conditions

are not met, the second word is skipped and the P register incremented.

The in/out memory has a similar two word instruction format. The condition field of
the INM/OTM instruction addresses the device selected; the second word contains the
memory address for the data. Indirect addressing is permitted.

Immediate is a special type instruction. The type includes twelve {plus two optional)
two word instructions. The instructions include: LDAI LDBI LDXI ADDI SUBI INRI
MULI* STAI STBI STXI ERAI ORAI AWAI DIVI*.

*Optional

" Systems Computer

IMMEDIATE INSTRUCTION FORMAT

1514131211 109876543210

L 00 6 Op .Code Ist Word
L+1 OPERAND 2nd Word
4. Macro-commands. A number of micro-steps are programmable into

a macro-instruction with the single word "macro-command." This command has over
128 useful combinations including those tisted in the instruction set. The macro~-
command format is:

Bits 3 through 6 define one of the instructions above. The immediate type
instructions provide literal addressing. Literal addressing, being the operand
‘address field, contains the operand. This type automatically increments the
P counter; after the execution, the next instruction is obtained from P + 2.

There are a total of 45 standard instructions and over 16 optional two word instructions.
The efficiency and power of the two werd instructions becomes more and more apparent
with use. They provide direct and random addressing and accessing to 32,768 words,

In most cases, they permit a two memory location sequence of instruction fo replace the
usual three memory location sequence. The amount of memory conserved and time saved
by these instructions depends on the application, and ranges from 5 to 25 percent,

1514 131211 109876543210

00 5 stepl XBA | XBA
1 t
Source

00; Transfer
01; Increment
10; Compiement

11;-Decrement

Destination

0; Execute unconditionally
T 1; Execute if overflow set

The X, B, and A register contents can be logical "ORed, " cleared, transferred, set
to a common value, complemented, "NORed, * incremented, decremented, and, if
desired, conditionally on an overflow. Sequences of micro~commands can be used
to perform additional logical functions customary ina system environment.

Systems Computer 12

OPTIONAL INSTRUCTIONS

The hardware mu|ﬁp|y/divide and extended addressing option provides a'n c.dd'i'rior.-a|
16 instructions fo the basic instruction set. The extended address mode is similar in
format to the immediate address instructions., except that the ?econd word of the
double-word instruction contains the effective address. All single word commands can

use extended addressing.

The instruction set is the most comprehensive availqb.le with “compccf" comeutefs or
processors. The optional instruction sets have specific }/clu.e to cerfuu:\ appllc.ahons
and are available to refine the processors to those‘ appli.co‘tlon‘s. The In?truchot\ seI‘,
variety, simplicity, and power equates to economic optimization. The instruction list
is presented in the following table.

13 Systems Computer

INSTRUCTION LIST

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
Load LDA Load A Register 2
LDB Load B Register 2
LDX Load X Register 2
Store STA Store A Register 2
STB Store B Register 2
STX Store X Register 2
Arithmetic ADD Add to A Register 2
SUB Subtract from A Register 2
INR Increment and Replace 3
MUL* Multiply B Register, Double Length | 10
Div* Divide AB Register, Double Length | 10-14
Logical ERA Exclusive OR to A Register 2
ORA Inclusive OR to A Register 2
ANA And to A Register 2
Jump JMP Jump Unconditionally 2
JOF Jump if Overflow Set 2
JAN Jump if Register Negative 2
JAZ Jump if A Register Zero 2
JAP Jump if Register Positive 2
JSS1 Jump if Sense Switch 1 is Set 2
J5S2 Jump if Sense Switch 2 is Set 2
Jss3 Jump if Sense Switch 3 is Set 2
Xz Jump X Register Zero 2
J8Z Jump B Register Zero 2
Jump and Mark JMPM Jump Unconditionally and Mark 2
JOFM Jump Overflow Set and Mark 2-3
JANM Jump A Register Negative andMark | 2-3
JAZM Jump A Register Zero and Mark 2-3
JAPM Jump A Register Positive and Mark 2-3
JASIM Jump Sense Switch 1 Set and Mark 2-3

Systems Computer

INSTRUCTION LIST (continued)

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
rk JS2M Jump Sense Switch 2 Set and Mark 2-3
f:g::i:::d';m JS3M Jump Sense Switch 3 Set and Mark 2-3
JXZM Jump X Register Zero and Mark 2-3
JBZM Jump B Register Zero and Mark 2-3
XEC Unconditional Execute 2
Execute XOF Execute Overflow Set 2
XAN Execute A Register Negative 2
XAZ Execute A Register Zero 2
XAP Execute A Register Positive 2
Xs1 Execute Sense Switch 1 Set 2
XS2 Execute Sense Switch 2 Set 2
XS3 Execute Sense Switch 3 Set 2
XXZ Execute X Register Zero 2
XBZ Execute B Register Zero 2
Immediate LDALI Load A Register Immediate 2
LDBI Load B Register Immediate 2
LDXI Load X Register Immediate 2
STAI Store A Register Immediate 2
STBI Store B Register Immediate 2
STXI Store X Register Immediate 2
ADDI Add to A Register Immediate 2
SUBI Subtract from A Register Immediate 2
MULI*. Multiply B Register Immediate
Double Length 10
DIVi* Divide AB Register Immediate
Double Length 10-14
INRI Increment and Replace Immediate 3
ERAI Exclusive OR to A Register
Immediate 2
ORAI inclusive OR to A Register
Immediate 2
ANA| And to A Register Immediate 2
Input/Qutput EXC External Control Function 1
CiA Clear and Input to A Register 2

15 Systems Computer

INSTRUCTION LIST (continued)

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
Input/Output CIB Clear and Input to B Register 2
(continued) CIAB Clear and Input to AandB Registers | 2
INA Input to A Register 2
INB Input to B Register 2
INAB Input to A and B Registers 2
IME Input to Memory 3
OAR Output A Register 2
OBR Output B Register 2
OAB Output OR or A and B Registers 2
OME Output from Memory 3
SEN Sense Input/Output Lines 2.25
Register Change 1AR Increment A Register 1
DAR Decrement A Register 1
1BR Increment B Register 1
DBR Decrement B Register i
IXR Increment X Register 1
DXR Decrement X Register 1
CPA Complement A Register i
CPB Complement B Register 1
CPX Complement X Register 1
TAB Transfer AR to B Register 1
TBA Transfer BR fo A Register 1
TAX Transfer AR to X Register 1
T8X Transfer BR to X Register 1
TXA Transfer XR to A Register 1
™>B Transfer XR to B Register 1
TZA Transfer Zero to A Register 1
TZB Transfer Zero to B Register 1
TZX Transfer Zero to X Register 1
AOFA Add OF to A Register 1
AOFB Add OF to B Register 1
AOFX Add OF to X Register 1
SOFA Subtract OF from A Register i
SOFB Subtract OF from B Register }
SOFX Subtract OF from X Register 1
SOF Set Overflow 1
ROF Reset Overflow 1

INSTRUCTION LIST (continued)

TYPE

LogiCGI Shift

Arithmetic Shift

CONTROL

TIME
MNEMONIC DESCRIPTION CYCLES

LSRA Logical Shift Right A k places 1 +0.25k
LRLA Logical Rofate Left A k places 1+0.25k
LSRB Logical Shift Right B k places 1+ 0.25k
LRLB Logical Rotate Left B k places 1+ 0.25k
LLSR Long Logical Shift Right k places

LLRL Long logical Rotate Left k places 1+ 0.25k
ASRA Arithmetic Shift Right A k places 1+ 0.25k
ASRB Arithmetic Shift Right B k places 1+ 0.25k
ASLA Arithmetic Shift Left A k places 1 +0.25k
ASLB Arithmetic Shift Left B k places 1+0.25k
LASR Long Arithmetic Shift Rightk places | 1+ 0.25k
LASL Long Arithmetic Shift Left k places 1 +0.25k
HLT Halt 1

NOP No Operation 1

Systems Computer

*Denotes optional instruction. Times given are for 16-bit computer.
Add 1 cycle for each level of indirect addressing.

17 Systems Computer

MEMORY

The DATA 620/i uses general purpose random access ferrite magnetic core memories.
They contain a proprietary thermal compensation technique which preserves the
operating margins over the temperature range (0° to 45°C) without adjustment.

The memory communicates with the processor through a memory data bus and an
address bus. Additional external (to mainframe) memory modules can be added simply
by adding an optiona! memory adapter to the processor that permits the additional
module to be "plugged in." The external memory module includes an adapter for the
next memory module. The memory can be expanded to 32,768 words by the addition
of 4K memory modules.

Memory cycle time is 1.8 microseconds; access time is 700 nanoseconds.

Systems Computer 18

RELIABILITY AND MAINTAINABILITY

DTL and TTL integrated circuits are used throughout the DATA 620/i. These integrated
circuits are general purpose digifal logic, and are noted for low power consumption,
high packing density, high noise rejection, and reliability throughout the operating
temperature range of 0° to 45°C. The low power equates to low heat generation and
high reliability. .

DATA 620/i computers are produced under a qualify contro! program designed and
procticed fo meet MIL-Q-9858A, ‘and to the intent of NPC 200-3. The mean-time-
between-failures (MTBF) has been calculated for the basic processors to be over 7,500
hours. The mean-time-to-repair is estimated to be a few minutes.

DATA 620/i computers are packaged to simplify maintenance. The integrated circuit
board layout is unique using a "bit slice" alyout. Bit slice isa technique whereby all
register and gating circuits associated with six bits are packaged on one card.

The structure is designed for easy access. All units of the processor are mounted to be
easily removed to make all components and wiring easily accessible. The “big board"
concept is used to permit easy trouble shooting.

FAILURE DETECTION

The source of faults in solid-state electronic equipment with conservative circuit and
timing designs is from external causes. The external causes are power failures, power
frequency failures, excessive heat and the failure of electro-mechanical peripheral
devices. The DATA 620/i has been designed to prevent each of these fault sources
from destroying the integrity of the system computer function.

1. Power failure. An optional power failure protect system monitors
power line voltage. If voltage is outside safe limits, a power fail interrupt is
generated. The interrupt subroutine assures an orderly, safe shutdown. Upon
restoration of power, the computer is automatically restarted at a designated memory
location, and oppropriate software provides an orderly restart.

2. Temperature. A thermal sensor is embedded in the core memory to
continually monitor internal temperature. If the temperature rises above the specified
limit (45°C), the sensor produces a thermal alarm signal that is used to light the con-
sole alarm indicator and/or generate an interrupt line.

3. Operator errors. The control panel is electrically disconnected during
run mode.

19 Systems Computer

4. Memory protect. This option permits a top-priority executive, control,
alarm, processing, or monitor system to remain resident in memory while other pro-
grams are being processed.

These facilities provide the system engineer with the level of assurance needed to
tackle the most demanding process control or real~time application where one failure
can be extremely costly,

PHYSICAL

1. Packaging. The DATA 620/i family is packaged to offer the user
maximum convenience, positioning, flexibility and space-saving economies. The
memory , arithmetic and control unit, and the power supply and control console are
three separate packages that, when connected, produce a compact unit that is
10~1/2 inches high 22 inches deep and 19 inches wide. The compactness and fight
weight of the DATA 620/i series enables it to be used in facilities such as submarines,
aircraft, etc.

2. Control panel. The user-oriented design philosophy of the DATA
620/i console utilizes sound human engineering practices. The console has been
developed fo produce a pleasing image and still be functionally easy to use. Proximity
of related functions, minimum reflectivity, and other more subtle features such as
length and distance of switches were used in the development of the console. The
basic function of the console — to modify and monitor all operational registers — was
achieved without a cluttering of switches that tend to confuse. A simple straight-
forward instrument is the result.

ENVIRONMENTAL

The DATA 620/ connects to standard commercial single-phase 115-vac power. Power
regulation is not required under normal commercial power conditions. Subflooring or
conditioned air are not required. The DATA 620/i is equally at home in the shop,
field, instrumentation room, classroom, and laboratory .

Systems Computer 20

PROGRAMMED INPUT /7 OUTPUT

The basic DATA 620/1 processor is equipped with positive vc.alta?e‘ level party Hm?)
1/O bus. The party line is a bidirectional common commlfnlcoh?n channel containing
the data and control lines required for system communicchfm: Time-shared between
the peripherals, it is designed to prevent conflicts or t.rclfftc jams Lfnder heavy com~
munication loads. Each transmission contains the routing mfotmohon as well as the
data. It is transmitted as an entity which is not separable by |.nferrupf. Thus,
numerous devices can time share the party line. The frcnsmissmr.\ }:K:s two phases:

The first phase is the route set-up, the second is the data transmission.

The party line permits plug-in. expansion of all peripheral devi(ies. The pc‘urty line
contains line drivers and line receivers to service up to ten peripheral dev1ces.' Each
peripheral device contains a data buffer and party line adapter. ThU§, no device can
tie-up the party line, and modifications to the computer are not rc?qmred to add
peripherals. Each device has a party line connector and a party line extender con-
nector. The last device on the party line has a termination shoe on the extender
connector. When another device is added, a party line cable is provided betwe?en
the added and the last device. The termination shoe is moved to the added device.

The party line technique solves the troublesome problems usually encountered in time-
shared operation and on-site system expansion.

The following types of I/O commands can be executed with the basic machine:

Sine Word to/from Memory

Single Word to/from A and B Registers
Test External Sense Line

Generated External Control Line

The following interface features can be added to the basic party line.
DIRECT MEMORY ACCESS AND INTERRUPT LOGIC

This option provides direct memory access (cycle steal capability) from the party line
1/O bus. With this feature, the user can design special system devices that cause the
program fo hesitate for 2.7 microseconds, during which time memory is accessed for
data, or data is stored in memory. This trap operation bypasses the A, B, X and P
registers, thus allowing the program to proceed normally. One interrupt level is
provided with the option.

21 Systems. Computer

INTERRUPT SYSTEM

The DATA 620/i has a multilevel priority. interrupt system with single-instruction
execute, group enable/disable, and selective arm/disarm copability. Each interrupt
line is assigned a unique memory destination address that is the first of a pair of

locations. The system is modular and expandable in groups of eight or sixteen levels
up to 64 levels,

The interrupt system is automatically scanned every 1.8 microseconds and the interrupt
is recognized before the fetch cycle of the next instruction to be executed. If signals
exist on one or more interrupt lines, the highest priority is recognized. An interrupt
functional response to an external device can be accomplished in as little as two
memory cycles.

BUFFER INTERLACE CONTROLLER

Many system devices require computer facilities to transmit /O data at high rates and
volumes and at random periods. Such devices are best serviced with automatic chan-
nels which do not require programming or interfere with the processing. The buffer
interlace controller (BIC) unit option services such requirements.

The BIC contains two 15-bit registers, the party line addressing and control logic,
priority logic, and DATA 620/i contro! logic. The two registers contain the stop
address and the current memory address. These registers are set by the program with
the start address and the stop address. These addresses define the sequential locations
in memory from or to which the data is communicated. Connecting the desired con-
troller to the BIC activates the BIC. The 1/O operation is automatic thereafter until
the stop address has been met. Each dats word transferred requires less than two
memory cycles. Information can be transferred at a rate over 200, 000 words per
second. The BIC automatically synchronizes the data transmission rate to the device
requirement.

The BIC connects to the party line and controls the data transmission of the devices
with BIC adapters when operating in the interlace mode. Interlace 1/0 occurs on

a memory cycle basis and shares priority with the control processor. The BIC will
capture the next-memory cycle and stall the computer for 2.7 microseconds for each
word transmitted. The processing resumes automatically at the completion of the

word transferred. Any device connected fo the BIC can be operated under control of
the BIC or under program control. Up to eight devices can be connected to one buffer
interlace controller unit. The current address can be read under program control .

Each group of eight or sixteen interrupts can be enabled/disabled, and contains a

16-bit mask register that controls the indjvidual interrupt lines. The program can
maintain the hardware order of priority or reorder to meet dynamic queving,

Systems Computer 22

REAL-TIME CLOCK

he DATA 620/i real-time clock is an option that provides a flexible time-orientation
; iem that can be used in a variety of real-time functions, including time-of-day

s . .
Z);cumulaﬁon and.as an interval timer.

The real-time clock consists of two interrupts. The first int.errupf isa fime—bOfe e
ignal that when recognized by the computer, executes an increment memory instruc
S!Q: stored in the interrupt address. The second interrupt occurs when the incremented
:\:mory location reaches a count of 40,001g.

ment of an interrupt by the central processor causes the insfr?cﬁon .
ﬁ;:t:::l:l:i;r; destination uddpressyof the interrupt to be e.xecufed.) Thi |n.struchon:s
can be any of the DATA 620/i instruction set. Th.ls techrjlque permits the mterru'p
to be of the single~execute type, whereby single-instruction responses fo ?xfeu:na

ignals can be serviced in one instruction period. |If the exem..rtefi Enstruchon l? a
9 and mark (JMPM), the interrupt system is automatically inhibited to permit the
:::hm;ilt to be terminated under program conirol. The D/}T.A 620/.i i.nterrupt sysf:em
provides the high speed reaction time, expansion capability, priority and queving
versatility required for real-time control.

SENSE LINE

Discrete sense lines are available as options in sets of eight. Each sense Iin.e hc:us a
unique address. Up to 512 sense lines can b_e addres.sed. The.sense IF}SH’UCdf‘(IiOn ls;
two word conditional jump command. If a signal e?xnsfs on the sense lm? addressed,
the program jumps to the effective address; otherwsfe, the program c.onhEue.s ot .
location P + 2. The sense lines can be configurefi in combl.nahon with the mztgn:up
lines to permit more than one device to share an inferrupt line. All DATA 620/i
peripheral equipment include the sense lines required.

EXTERNAL CONTROL LINES

Discrete control lines are available as options in sets of eight. Each control line lhcs
a unique address. Up to 512 control lines can be addressed. The external coann?.
instruction is a one word instruction that places a pulse on the addressed contro n;e.
These are general purpose control lines that can be used to perform exfern?l contr:
functions throughout a system. The control pulse has a 450—rjanosecond‘ width. The
confrol lines required by DATA 620/i options are provided with the option.

PARALLEL I/O CHANNELS

The usual system application requires special devices to be connected to the comp.uter.
These devices can be interfaced with the computer in many ways. The system designer

23 Systems Computer

can implement the interface with his own electronics, purchase and assemble the
appropriate logic modules (Micro-VersalOGIC), or utilize the Varian Data Machine
interface controllers.

The interface controllers provide the timing, gating and selection logic needed to

communicate with the party line 1/O lines under program control. The four available
controllers are:

Gated inputed channel — provides a level input to the DATA 620/i party line

Gated output channel — provides a pulsed output from the DATA 620/
party line

Buffered input channel — provides an 18-bit register to receive pulsed inputs
for subsequent input to the party line

Buffered output channel — provides 18 stored logic levels (flip-flops) for level
output from the party line.

All four controllers are 18-bit parallel (on the 16-bit computer, 2 bits are not used)
and greatly olleviate the interface problem.

Systems Computer 24

PERIPHERAL EQUIPMENT

A full line of compatible peripheral equipment is available for the DATA 620/i series.
Each device has been selected to meet the functional requirements of a real-time

data system.

Each piece of peripheral equipment is provided with a controller that includes o
party line adapter, buffering and control lines. The line printer, disc storage, and
magnetic tapes include word assembly/disassembly registers. The magnetic tape con-
trol units contain double buffers to permit multiple simultaneous high-performance
magnetic tape operation.

The peripherals will operate with the party line under program control, or auto-
matically with an (optional) buffer interlace controller.

A complete line of analog conversion equipment is offered on a custom basis accord-
ing to the requirement,

" DATA 620/i SERIES PERIPHERAL EQUIPMENT

MAGNETIC TAPE SYSTEMS Tape Controllers - Master controller for up to
four tape transports. Will control 7 or 9 track
transport and includes assembly/disassembly
register.

“Tape Transports - Speeds of 45, 75, and 120
ips Densities of 200, 556, and 800 bpi.
Seven and nine track industry compatible
units.

AUXILIARY STORAGE Fixed head rotating memory systems with
capacities from 34K words to 500K words.
Access times of 8.5 and 17 milliseconds.
Transfer rates from 60 to 120 KC.

READERS AND PUNCHES Card Reader - 1000 cpm
’ Paper Tape Reader - 300 cps
Paper Tape Punch - 60 and 120 cps

DIGITAL INPUT/OUTPUT KEYBOARD
ASR 33 Teletypewriter
ASR 35 Teletypewriter
KSR 35 Teletypewriter

25 Systems Computer

GRAPHIC DEVICES

MODEM INTERFACES

Systems Computer

Oscilloscope Displays
High Speed Printers - 300 and 600 LPM

Electrostatic Plotters
Digital Plotters ~ 300 steps per sec

103, 201, and 301 types

26

SYSTEM SOFTWARE

A comprehensive package of operational programs are available with the DATA 620/i.
These include o symbolic assembler, FORTRAN compiler, library of mathematical sub-
routines, debugging package, and a modular maintenance diagnostic package. The
complete software package operates in the basic 8,192 words of core memory. In
addition, Varian Data Machines has developed many real-time programs for a

specific customer application. The more important portions of the Varian Data
Machine software library are described below.

SYMBOLIC ASSEMBLER

The DATA 620/i assembler system (DAS) is a two-pass assembler that assists in program
preparation by aflowing instructions, addresses, etc., to be specified in a straight-
forward and meaningful manner. DAS recognizes over 20 pseudo-operations that aid
the user in coding and debugging problems. Although DAS operates in a minimum
system consisting of 4,096 words of core memory, paper tape reader, paper tape
punch and typewriter, provisions have been made to utilize additional memory and
peripheral equipment available to the system. Extensive syntax checking is per-
formed during both passes of the assembler.

FORTRAN

DATA 620/i FORTRAN conforms with the proposed American standards for basic
FORTRAN as published by the American Standards Association. The DATA 620/i
FORTRAN, a one-pass complier, can operate iria 8,192 word computer equipped with
only a model ASR-33 teletypewriter. Naturally, if higher performance peripherals
are on the system, DATA 620/i FORTRAN utilizes them to produce faster compilation.

AlD

AID is a collection of useful diagnostic and utility routines for the DATA 620/i
computer.. With this package, the programmer can call upon a wide variety of
functions to aid him in debugging and running his programs. AID includes routines to
correct memory, establish breakpoints, search memory, print memory, etc.

Also included in the AID package is a comprehensive binary paper tape handler that
is particularly useful in preserving programs modified on the computer.. This routine
uses o standard address, data, and checksum format that is used by the DAS assembler.

\DIAGNOSTIC PRO GRAM PACKAGE

The DATA 620/i diagnostic program package is designed to check instructions,
memory, and input/output devices, and fo isolate errors. It can be used in either the

27 Systems Computer

preventative or the corrective mode of operation. In the preventative mode, the
complete system is checked for operational readiness.. If a malfunction exists, in
most cases, the preventative will isolate the error. The corrective mode of operation
is used when a malfunction is known to exist and the preventive mode does not
decisively show the trouble. Proper application of these diagnostic routines can cut
the mean~-time-to-repair to minutes. This modular package can be easily expanded to
‘accommodate any special system hardware tests.

SUBROUTINE' LIBRARY

This comprehensive library includes the most commonly used subroutines needed in o
systems environment. The library includes routines for logarithmic exponential and
trigonometric functions, for fixed and floating-point arithmetic, and for operating
standard peripheral equipment. Conventions and instructions are provided so the user
can add application programs to the library and be called by DAS, FORTRAN and
AID.

Systems Computer 28

USER SERVICES

The purchase of @ DATA 620/i includes support services designed to provide the user
with start-up and sustaining service.

DOCUMENTATION

The documentation is comprehensive and clear, and contains the information required
for the user to fully understand, program, operate and maintain fh‘e system. Inte.rface
and installation manuals are provided to the user prior to ins'rall.ahon. for system inte-
gration prepclrution. The program and service manuals.are prov‘lded |n.advance .of the
user training attendance. The software manuals contain a special section covering
software modularity and expansion techniques.
PROGRAMMING TRAINING*

Programming training courses are provided on a scheduled basis at Varian .Dch“x
Machine facilities. The one week.course covers instruction for programming in
machine language, an introduction to the DATA 620/i software, and machine opera-
tion. The course includes time at the console. Supplies required for the course are
provided at no charge to the attendees. On-site courses are available on a contract

basis.
MAINTENANCE TRAINING*

A two-week at-the-factory maintenance course is provided on a scheduled basis.
The instruction covers machine organization, operation, logic, design, timing, pre-
ventive maintenance, trouble—shooting, and repair. Extended training covering
special systems hardware is available on an individual cusiomer basis. The course is
designed for personnel with existing digital logic design knowledge.

USER ORGANIZATION

Varian Data Machine Customer Services (CS) provide continuing coordination, pro-
gram exchange and library maintenance for DATA 620 and DATA 620/i users. - Users
are notified of new additions to the library, application data, program and hardware
modifications and new equipment. CS maintains up-to-date master prints on each
system controlled. An inventory of programming forms, paper tapes and spare parts is
maintained for expedited or emergency service. Statistical data on field operating
experience based on user-submitted reports is maintained and available to users.

. On=call and on-site maintenance services are available on a contract basis.

*Available at nominal cost.

29 Systems Computer

APPLICATION PROGRAMMING

Varian Data Machines' technical staff includes senior application programming

specialists well-qualified to assist the user in the preparation of application programs

This ;?rofessionol group can assume full responsibility on a contract basis for the pre~
paration of a total solution, including hardware and application programs

Systems Computer - 30

DATA 620/ SPECIFICATIONS

TYPE

MEMORY

ARITHMETIC
WORD LENGTH

SPEED
(fetch and execute)

OPERATION REGISTERS

BUFFER REGISTERS

CONTROL

A system computer, general purpose digital, designed for
on-line data system requirements, magnetic core memory,
binary, parallel, single-address, with bus organization
and micro-control.

Magnetic core, 16 bits (18 bits optional), 1.8 micro-
seconds full cycle, 700-nanoseconds access time, 4096
words minimum expandable to 32,768 words.

Parallel, binary, fixed point, 2's complement.

16 bits standard; 18 bits optional .

Add or Subtract 3.6 microseconds.
Multiply (optional) 18.0 microseconds, 16-bit.
19.8 microseconds, 18-bit.
Divide (optional) 18.0 to 25 microseconds,
16-bit.
19.8 to 28.8 microseconds,
18-bit.
Register change class 1.8 microseconds.
Input/Output - from A or B 3.6 microseconds.
from memory 5.4 microseconds.

A register - accumulator, input/output, 16/18 bits.

B register — double length accumulator, input/output,
index register, 16/18 bits.

X register - index register, 16/18 bits.

P register ~ program counter, 16/18 bits.

R register - operand register, 16/18 bits.

U register - instruction register, 16/18 bits.

S register - shift register, 5 bits, operates with the U
register for executing shift instructions.

L register - memory address register.

W register - memory word register, 16/18 bits.

Addressing modes:
Direct addressing to 2,048 words.
Relative to P register 512 words.
Index with X register, hardware, does not add to
execution time.

31 Sys‘fems Computer

INPUT/OUTPUT

Systems Computer

«

Index with B register, hardware, does not add to
execution time.
Multi-level indirect addressing.
Immediate.
Extended addressing (optional).
Instruction fypes:
Single word.
Double word.
Generic.
Micro-command.
Instructions: QOver 100 standard commands, listed below
plus more than 128 macro~instructions:
3 load.
3 store.
5 arithmetic (2 optional).
3 logical.
10 jump.
10 jump and mark.
10 execute
14 immediate (2 optional).
13 input/output.
26 register change.
6 logical shift.
6 arithmetic shift.
2 control.
14 extended addressing (optional).
Over 128 micro-instructions.
Micro-exec (optional):
Facility and hardware to construct o hardware program
external to the DATA 620/i. Eliminates stored program
memory accessing by use of hardware program.
Console:
Display and data entry switches for all operational
registers, 3 sense switches, instruction repeat, single
step; run; power on/off.

.

Processor input/output options:

Programmed data transfer:
Single word to/from memory .
Single word to/from A and B registers.
External control lines.
External sense lines.

Automatic Data Transfer:
Direct memory access facility transfer with
rates over 200,000 words per second.

32

PHYSICAL

MAINFRAME LOGIC
AND SIGNALS

Priority Interrupts.
Group enable/disable, individually arm/
disarm, single instruction interrupt capability.
Real-time clock:
Adjustable time base: May be programmed as
multiple intemnal timers,
Power failure detect/restart:
Interrupts on power failure and automatically
restarts on power recovery .

Dimensions:
Mainframe - 10~1/2 inches high, 19 inches wide,
15 inches deep

Weight:
Mainframe ~ 35 pounds.

Power: .
3 amps 115vac, 60 Hz (340 watts). 115 £10v, 60 +
2 Hz. Power supplies are regulated. Additional
regulation is not required under normal commercial
power sources.
Conversion for 50 Hz and other voltages available
at added cosf.

Expansion:
Main processor contains provisions and space for all
internal options.

Installation:
Mounts in standard 19-inch cabinet, no air condi=-
tioning, sub-flooring or special wiring and site
preparation required.

Environments: .
0°C to 45°C; 0% to 90% relative humidity.

Integrated circuit, 8.8 MHz clock, logic levels Ov
false, +5v true.

FULLY COMPATIBLE SYSTEM COMPONENTS

To increase your total system capability, Varian Data Machines offers a complete line
of high-performance integrated circuit logic modules, small high-speed core memories
and large mainframe memories for 1/O equipment or additional system requirements.
All have been field-proven with the DATA 620/i system, and are fully compatible
with its power supply, voltage levels and signal requirements.

33 Systems Computer

Micro-VersaLOGIC INTEGRATED CIRCUIT LOGIC MODULES

Micro-VersalOGIC 5 MHz general purpose 1C modules with NAND/NOR logic, and

wired OR capacity at the collector, 5v logic levels, and excellent noise rejection

over lv. Over 25 module types, including universal flip-flops, delay multivibrators,

clock drivers, 2-, 3- and 4-input expandable gates, and PNP to NPN interface

modules. Compatible mounting hardware, including cerd files and card drawers, is SYSTEM
also available.

VersaSTORE CORE MEMORIES

New high-speed core memory systems with integrated circuits and all-silicon
components for highest reliability that operate asynchronously at 1.7 microseconds,
with 750-nanosecond access time. VersaSTORE memories are available in increments
up to 4,096 words of 36 bits, require only 5-1/4 inches of rack space, and can

also be provided as 8k word memories of up to 18 bits.

Options include party line, built-in self-test, and a variety of timing and control
flags.

VersaSTORE MAINFRAME MEMORIES

High-reliability VersaSTORE mainframe memories in sizes up to 65k words in 4k incre-
ments, with word lengths to 36 or 72 bits. Features include PNP to NPN interface,
flexible input levels of 3v to 12v, continuous famp display of address and data

registers, servoed current drive, 2 psec operation, integrated circuit design, and
DATAGUARD protection system.

Systems Computer 34

REFERENCE

SECTION |
INTRODUCTION

- THE DATA 620/i

The DATA 620/i is a high-speed, porallel,. binary computer. lts flexible design and
modular packaging make it ideal for operation both as a general-purpose machine and
for application as an on-line system component .

)ts features include:

- Fast operation: 1.8-microsecond memory cycle.

- Large instruction repertoire: 107 standard,' 18 optional; over 128 additional
instruction configurations which can be micro-coded.

- Expandable word length: 16~ or 18-bit configurations.
- Modular memory: 4096 word minimum, 32 768 maximum.

- Multiple addressing modes: direct, indirect, relative, index, immediate,
and extended (optional).

- Flexible 1/O: up to 64 devices on the |/O system, including optional
interlaced data transmission and direct memory access operations.

- Extensive software: complete package includes an assembler, mathematice
and 1/O library, AID diagnostics, and an ASA FORTRAN subset.

- Modular packaging: mounts in a standard 19-inch cabinet. No special
mechanical or environmental facilities are required.

The advance design techniques used throughout the DATA 620/i system provide
solutions to real-time data acquisition, telemetry processing, process control, and
simulation problems. In addition, the DATA 620/i is equally well suited for
scientific computations. Special attention has been given to the interfacing prob-
lems usually encountered in integrating a digital computer into a system. Asa
result, the DATA 620/i can be joined to a system with unparalleled efficiency.

The unique design of the DATA 620/i makes it easy to program, operate and maintain.
The entire mainframe includes the processor, all processor options, and a 4096-word
core memory in a convenient 10-1/2 inch high rack-mountable package. Only

17 circuit boards, of 11 different types are used in the basic 16-bit configuration.

1-1 System Reference

Power supplies for the processor and up to 8192 words of core memory are a separate
10-1/2 inch high rack-mountable package that mounts behind the mainframe. Thus,
the entire computer requires only 10-1/2 inches of a standard 19-inch rack. Instal-

lation is easy, requiring no special mounting, cabling, or air conditioning provisions.

Maintainability of the DATA 620/i is enhanced by easy front access to all wiring,

making it unnecessary to remove panels on the computer rack, obtain access to the
modules, connectors, and wiring.

A complete set of software provided with the DATA 620/i permits rapid preparation of
application programs. The system software includes:

- FORTRAN - Subset of ASA FORTRAN.

- DATA 620/i ASSEMBLY SYSTEM (DAS) - Two-pass symbolic assembler.
= AlD - On-line debugging and utility package.

= MAINTAIN - Complete set of computer and peripheral diagnostics.

- SUBROUTINE LIBRARY - Complete library of transcendental functions,

single- and double-precision and floating-point arithmetic, format con-
version, and peripheral service routines. i

A wide variety of peripheral equipments are available to provide the DATA 620/i user
with a complete system suited to specific needs.

1.2 USE OF THE MANUAL
This manual provides the basic information required for programming and using the
DATA 620/i, and is intended to be used in conjunction with other publications for

the 620-series computers. These publications are listed in table 1-1.

The interface reference manual provides detailed information for installing the
DATA 620/i, and for integrating the DATA 620/i with special system components.

Information required by the programmer for using the system software packages is
contained in the programming reference, FORTRAN, and subroutine manuals.

The maintenance manuals contain the detailed design theory, logic and timing
diagrams, circuit board data, maintenance procedures, and diagnostic programs.

Detaifed design and maintenance information on peripheral device controllers is
contained in individual reference manuals for these units. Operating and maintenance

System Reference 1-2

Table 1-1
DATA 620/i DOCUMENTS

J—
PUBLICATION
NUMBER

TITLE

S
VDM-3000
VDM-3001
VDM-3002
VDM-3003
VDM-3004
VDM-3005
VDM-3006
VDM-3007
VDM-3008
VDM-3009
VDM-3010
VDM-3011
VDM-3012
VDM-3013
VDM-3014
VDM-3015
VDM-3016
VDM-3017
VDM-3018

VDM-3019

System Reference Manual

Interface Reference Manual

Programming Reference Manual

FORTRAN Manual

Subroutine Manual

Maintenance Manuals

ASR-33 Teletype Controller Reference Manual
Buffer Interlace Controller Reference Manual
Magnetic Tape Controller Reference Manual

600 LPM Line Printer Controller Reference Manual
300 LPM Line Printer Controller Reference Manual
Paper Tape System Controller Reference Manual
100 CPM Card Reader Coniroller Reference Manuadl
Priority Interrupt Reference Manual

A/D Converter Reference Manual

Optical Scanner Controller Manuat

ASR-35 Teletype Controller Reference Manual
Digital Plotter Controller Reference

DDC Disc Coniroller Reference Manual

Console Printer Controller Reference Manual

1-3 System Reference

procedures for optional peripheral devices (tape transports, printers, etc) are
contained in the manufacturers' reference manuals furnished with the equipment.

Section Il of this manual contains an overal! description of the DATA 620/ system,
and describes the word formats used in the computer. Section Il describes the com-
plete instruction set for the central processor. The input/output system, including

all input/output, sense, control, and interrupt instructions is described in section 1V.
Section 5 provides information required for using the control console of the computer.

Standard peripherat devices are described in section VI.
1.3 SPECIFICATIONS
Specifications of the DATA 620/i computer are listed in table 1-2.

Table 1-2
DATA 620/i SPECIFICATIONS

SPECIFICATION CHARACTERISTICS

TYPE General-purpose digital computer for on-line data
system applications. Magnetic core memory:
binary, parallel, single-address, with bus
organization.

MEMORY Magnetic core 16 bits (18 bits optional); 1.8
microseconds full-cycle, 700 nanoseconds access
time, 4096 words minimum, expandable in 4096~
word modules to 32,768 words. Power failure
protection optional, non-volatile. Thermal over-
load protection is standard .

ARITHMETIC

Parallel, binary, fixed point, 2's complement.

WORD LENGTH 16 bits standard; 18 bits optional.

SPEED (fetch and
execute)
Add or Subtract 3.6 microseconds.

16 bits - 18.0 microseconds.
18 bits = 19.8 microseconds.

Muttiply (optional)

System Reference 1-4

Table 1-2 (continued)
DATA 620/i SPECIFICATIONS

SPECIFICATION

CHARACTERISTICS

Divide (optional)

Register Change

Input/Output
OPERATIONAL
REGISTERS

A Register

B Register

X Register

P Register
BUFFER REGISTERS

R Register

U Register

L Register

W Register

S Register
CONTROL

Addressing Modes

16 bits = 18.0 to 25.2 microseconds.
18 bits - 19.8 to 28.8 microseconds.

1.8 microseconds.

From memory

register; 16 or 18 bits.

bits.

Instruction counter; 16 or 18 bits.

Operand register, 16 or 18 bits.
Instruction register, 16 or 18 bits.
Memory location register, 12 bits.
Memory word register, 16 or 18 bits.

Shift register, 5 bits.

Six as follows:

Direct: to 2048 words.

From A or B register - 3.6 microseconds.
- 5.4 microseconds.

Accumulator, input/output; 16 or 18 bits.

Low-order accumulator, input/ou'rput, index

Index register, multi-purpose register, 16 or 18

1-5

System Reference

Table 1-2 (continued) Table 1-2 (continued)

DATA 620/i SPECIFICATIONS DATA 620/ SPECIFICATIONS
SPECIFICATION CHARACTERISTICS SPECIFICATION CHARACTERISTICS
Relative to P register: to 512 words. INPUT/OUTPUT
Index with X register hardware: to 32,768 words Data Transfer Three types as follows:

(does not add to execution time).
Single word to/from memory {(program control).
Index with B register, hardware: to 32,768 words
(does not add to execution time). Single word to/from A and B Registers (program
control).

Multi-level indirect: to 32,768 words.
Optional interlaced data channel (up to 202,000

Immediate: operand immediately follows words/second).
instruction.
External Control Up to 512 external control lines.
Extended: operand address immediately follows (Select)
instruction (optional).
Program Sense Up to 512 status lines may be sensed.
Instruction Types Four, as follows:
) Interrupts Power failure, thermal overload, (expandable in
Single word, addressing. groups of eight) priority on/off, arm, disarm.
Each interrupt line is associated with a unique
Single word, non-addressing. memory .
Double word, addressing. PHYSICAL

CHARACTERISTICS

Double word, non-addressing.

Dimensions 10-1/2 inches high x 13 inches deep.

Instructions 107 standard, over 128 micro-instructions, plus
18 optional . Weight 90 pounds including power supplies.

Micro-Exec (Option) Facility and hardware to construct a hardwired Power- 360 watts, single phase, 115 v +10 v, 47-440
program external to the DATA 620/i. Eliminates Hz. Power supplies are regulated. Additional
stored program memory accessing for hardwired regulation is not required with normal commercial
programs. power sources.

Control Panel Selectable display and data entry switches, three Expansion Mainframe package contains a 4096-word memory,
sense switches, instruction repeat, single step, the processor, and space for processor options.
run, power on/off, system reset. Additional memory requires an additional 10-1/2

and inches of rack space for up to 12,288 words of

System Reference 1-6 1-7 System Reference

Table 1-2 (continued)

DATA 620/i SPECIFICATIONS

SPECIFICATION

CHARACTERISTICS

Installation

Environment

LOGIC AND SIGNALS

SOFTWARE

DAS Assembler

FORTRAN

AID

MAINTAIN

additional storage. Peripheral controllers are
mounted external to the mainframe .

Mainframe and power supply packages mount in
10-1/2 inches of standard 19-inch racks. No air-
conditioning, subflooring, special wiring, or site
preparation is required.

10° C to 45° C, 10%to 90% relative humidity.

The logic of the computer utilizes DTL and TTL
integrated circuits employing 5 v levels. The
logic levels on the transmission busses (1/O bus,
interrupt bus, etc.) are reduced to 3 v to reduce
cross talk and current requirements. Internal
logic conventions are 5 v for logical 1 and O v
for fogical 0. Logic conventions on the busses is
3 v for logical 0, and 0 v for logical 1.

Modular two-pass symbolic assembler which
operates within the basic 4096-word memory. 1t
includes 16 basic pseudo-ops. The 8192-word
memory version includes over 30 pseudo-ops for
programming ease.

Modular one-pass compiler; subset of ASA
FORTRAN for 8192-word memory .

Program analysis package which assists programmers
in operating the machine and debugging other
programs. Includes basic operational executive
subroutines.

Modular, two-mode diagnostic package which
provides fast verification of central processor and

Table 1-2 (continued)

DATA 620/i SPECIFICATIONS

CHARACTERISTICS

SPECIFICATION
|-

Subroutines

peripheral operation; and assistance in isolating
and correcting suspected faults.

Complete library of basic mathematical, fixed-
and floating-point, single~ and double-precision,
number conversion and peripheral communication
subroutines plus provisions for adding application-
oriented routines.

System Reference

1-9 System Reference

SECTION I
DATA 620/i SYSTEM DESCRIPTION

21 COMPUTER ORGANIZATION
The DATA 620/i is organized with a unique bus structure, selection logic, and eight
isters. The organization provides universa! information routing, buffered pro-
regssmg micro-programming capability, indexing without time penalty, and buffered
;::Put/olutput data transfer. A unique optional facility, Micro-EXEC, is also avail-

able which permits complex algorithms to be implemented with external control
hardware. This capability provides increases in processing speed in excess of 400
percenf over normal programmed operations.

The organization of the DATA 620/i is shown in figure 2-1. This diagram shows the
major functional elements of the machine, including the registers and busses provided
for information transfer.

The major functiona! elements of the DATA 620/i, indicated in figure 2-1, are:
memory, control section, arithmetic/logic section, operational registers, internal
busses, and input/output (I/O) bus.

2.1.1 Memory

The internal storage of the computer consists of 4096-word modules connected to the
L and W busses. The mainframe can accommodate one 4096-word module. Addi-
tional modules are added in an additional frame that is attached to the mainframe.
The computer memory can be expanded to a maximum of 32,768 words using
4096-word modules.

Instruction words read from memory are transferred to the control section for execution.
Words may be transferred, under program control, from memory to the arithmetic/
logic section, to the operational registers, or to the I/O bus. Words may be trans-
ferred, under program control, to memory from the operational registers or the 1/0
bus.

When one or more optional buffer interlace controler (BIC) is used, the system is
capable of direct transfer between memory and peripheral devices on the 1/O bus,
concurrent with computations.

2.1.2 Control Section

The control section provides the timing and control signals required to perform all

operations in the computer. The major elements in the section are the U register,
the timing and decoding logic, and the shift control .

2-1 System Reference

The U register (instruction register) is 16 bits long. This register receives each
~z instruction from memory through the W bus and holds the instruction during its execu-
1t - tion. The control fields of the instruction word are routed to the decoding and timing

Ly o logic where the codes determine the required timing and control signals. The address
P %;E > [s% > field from U, used for various addressing operations, is also routed to the arithmetic/
%8 az logic section.
— r-=A The decoding logic decodes the fields of the instruction word held in U to determine
bgz ! r 022:3 w the control signal levels required to perform the operations specified by the instruction.
- é% r—a §§§ fe—» je—>] g% le—s| These levels select the timing signals generated by the timing unit.
52 55 P4
t O | 223 o
L-- £ Timing logic generates the basic 2.2-MHz system clock. From this clock, timing
——n logic derives the timing pulses which control the sequence of all operations in the
HET = & compufer.
e 05 e o T - . . N .
[= g 3 ift control contains the shift counter and logic which control operations per-
1 6% S 8 The s 9 P p
b--- E formed by the shift, multiply, and divide instructions.
Z)
r;:ﬂ| "] = E—— 2.1.3 Arithmetic/Logic Section
1 Z&E 2 N w w3
e 52 W—af 2 e OET e 2 lea &2 ——
“ 1 5% | THE g .‘Eg— > 3 This section consists of two elements; the R register and the arithmetic unit.
2 O s g I
® o 2% R R .
g register receives operands from memory and holds them during instruction exe~
g The g P! 4
r~-n — ion. The operand may be either data or address words. This register permits
[- cut P Y 9 p
1 3% Ea between memory and 1/O bus during the execution of extended-cycle
¥ 59 s 2 | £3 > transferf e Y / 9 Y
T ag o as9 3 = instructions.
162 g5 fe 2| |. £5
b--- T2E| (2g3) |2 e N . I . -
OF 50 e arithmeti i a a i ic, ic, iftin
eEb | |34¢ I Il T Th thmetic unit contains gating required for all arithmetic, logic, and shifting
32 -] ez erations performed by the computer. Indexed and relative address modifications
2 op P Y p
£ g § are performed in this section without increased instruction éxecution time.
e O e z
s &
. _JH & The arithmetic unit also controls the gating of words from the operational registers
g3 and the 1/O bus onto the C bus where they are distributed to the operational registers
&g or to memory registers. This facility is used to implement many of the micro-
instructions of the computer.
Qg 2.1.4 Operational Registers
et g
Z§ The basic DATA 620/i computer contains eight registers.

The operational registers consist of the A, B, X, and P registers. The A, B and X
registers are directly accessible to the programmer. The P register is indirectly
accessible through use of the jump class instructions which modify the program
sequence. The operational registers are described in the following paragraphs.

Figure 2-1. DATA 620/i Functional Organization

System Reference 2-2 2-3 System Reference

A register. This full-length, 16/18-bit register is the upper half of the accumulafof_.

This register accumulates the results of logical and addition/subtraction operations,
the most-significant half of the double-length product in multiplication, and the
remainder in division. It may also be used for input/output transfers under program
control .

B register. This full-length, 16/18-bit register is the lower half of the accumulator.
This register accumulates the least=significant half of the double-length product in
multiplication, and the quotient in division. It may also be used for input/output
transfers under program control and as a second hardware index register.

X register. This full-length 16/18-bit register permits indexing of operand addresses
without adding time to execution of indexed instructions.

P register. This full-length, 16/18-bit register holds the address of the current
instruction and is incremented before each new instruction is fetched. A full com-
plement of instructions is available for conditional and unconditional modification
of this register. ’

S register. This five-bit register controls the length of shift instructions in combing-
tion with the U register. This register also buffers memory from the control unit.

2.1.5 Internal Busses

C bus. This bus provides the paralle! path and selection logic for routing data -
between the arithmetic unit, the I/O bus, the operational registers, and the memory
registers. The console display indicators are also driven from the C bus. Distribution
of data simultaneously to multiple operational registers is facilitated by this bus.

Sbus. This bus provides the parallel path and selection logic for routing data from
the operational registers to the arithmetic unit.

W bus. The memory word (W) register is directly connected to all memory modules
through the W bus. The bus is bidirectional and time-shared among memory modules.

L bus. The memory address (L) register is directly connected to all memory modules
through the L bus. The bus is unidirectional.

2.1.6 Input/Ovutput (1/O) Bus

The bidirectional 1/0O bus provides the parallel path between the computer and all
peripheral devices. This bus contains the data and control lines required for trans-
mitting ready, sense, function, and interrupt signals as well as data words between
the computer and peripheral devices.

System Reference 2-4

7917

Direct Memory Access (DMA)

The DMA option allows data transfer into or out of memory modules without disturbing

contents of the operational registers. Only the L and W registers are altered.
the ess to memory using the DMA facility is on a "cycle-steal" basis and requires
2Ac7cmicroseconds of processor time per transfer.

2.1.8 Micro-EXEC*

The Micro-EXEC is o unique hardware technique for micro-step sequencing of i:he

uter. This option provides hardware logic in which all computer control signals
compade available on a pin board so that special hardware routines can be constructed.
E,r:e':‘nal control and special retum instructions are provided for easy program entry

and exit-

2.2 COMPUTER WORD FORMATS

There are three basic word formats used in the DATA 620/i: data, indirect address,
and instruction. The instruction word format is further divided into four f).'pes:
single-word addressing, single-word non-addressing, double-word addressing, and
double-word non-addressing .

2.2.1 Data Word Format

The data word format is shown in figure 2-2. This word may be either 16 or 18 bits
depending upon the word length configuration of a particular machine.

In the 16-bit format, the data occupies bit positions 0-14, with the sign in position
15. Negative numbers are represented in 2's-complement form. In the 18-bit format,
the data occupies bits 016, with the sign in position 17.

2.2.2 Indirect Address Word Format

The indirect address word format is shown in figure 2-3. This word occupies a loca-
tion in memory which is accessed by an instruction in the indirect address mode .

Bit 15 contains the 1 Bit. If | =0, bits 0-14 contain the location of an operand or
instruction in memory. If | =1, bits 0-14 contain the location of another indirect
address word . Indirect addressing may be extended to any desired level. Each level
of indirect addressing adds one cycle (1.8us) to the basic execution time of an
instruction.

2.2.3 Single-Word Instruction Formats

Single-word instructions may be either addressing or non-addressing, as defined in
poragraphs 2.2.3.1 and 2.2.3.2.

2-5 System Reference

i T
1 s
—_ i

17161514 131211 109876543210

S

‘ l L_ Data (16) |

Data (18) |

{Sign (negative numbers in 2's complement form).
Logical data represented in true form.

Sign (18-bit word length option).

Fig. 2-2 Data Word Format

1716 1514 13 12 11 10 987 6 54321 0

| T
1 |
| N

Address

option

1
4
m—m_l I {l =0, word confains operand location
1=1,

word contains indirect address word location

|

System Reference

Fig. 2-3 Indirect Address Word Format

2.2.3.1 Addressing instructions. The single-word addressing instruction format
is shown in figure 2-4. This type of word contains three fields, as follows:

o - Operation Code
m - Addressing Mode
a - Address Field

All single-word addressing instructions may be executed in any one of five addressing
modes: direct, relative to P, index with X, index with B, and indirect.

Single-word addressing instruction groups are as follows:

LOAD/STORE
ARITHMETIC
LOGICAL

2.2.3.2 Non-addressing instructions. The single-word non-addressing
instruction format is shown in figure 2-5. This instruction contains the following
three fields:

¢ - Class Code
o - Operation Code
d - Definition

The d (definition field) specifies the action to be performed by the computer such as:

Number of shifts

Kind of register change as well as source and destination registers
Inpuf/ou’rput

Halt code

o0 T Q

Single-word non-addressing instruction groups are as follows:
SHIFT
CONTROL
REGISTER CHANGE
INPUT/OUTPUT
2.2.4 Double-Word Instruction Formats

Double-word instructions may be either addressing or non-addressing .

2-7 System Reference

1716 15 14 1312 1110987 6 543210
I

e e] e]
l-iz;l:;-l |—0p o] LAAji:f:s—-l L e

operand in location 0 - 2047 (bits 10 to 0)

m Field: OXX - Direct
100 - Relative add a to P
101 - Index (X) add a to X
110 - Index (B) adda to B

111 - Indirect stored at a.

Fig. 2-4 Single-Word Addressing Instruction Format

17161514 13121110987 6543210
r“‘l’
RN I

Ll
L18-biﬂ Lclqss Code_”.Op CodeJL Definition

option

Fig. 2-5 Single~Word Non-Addressing Instruction Format

System Reference 2-8

2.2.4.1 Addressing instructions. This instruction contains three fields:

c - Class Code
o - Operation Code
d - Definition

The double-word addressing instruction is shown in figure 2-6.
This format is used for the following instruction types:

JUMP

JUMP AND MARK
EXECUTE

EXTENDED ADDRESS

For the jump, jump and mark, and execute groups, the definition field of the first
word defines a set of nine logical states which condition the execution of the instruc-
tion. The second word contains the iump address, jump-and-mark address, or the
location of the instruction to be executed if the condition is met. Indireclf address~-
ing is permitted.

For the extended address group of instructions, the definition field is further divided
into three subfields. The m field contains bits 0-2, the op code contains bits 3-6
with bits 7 and 8 left blank. Extended address instructions are identical in operaf’ion
to the single-word addressing instructions except that they allow direct addressin

to 32,768 words of memory. 9

For the memory input/output group, the definition field of the first word contains
the number of the peripheral device and its mode, and the second word contains the
memory address of the data to be transferred. Indirect addressing is permitted.

.2.2.4,2' No.n-cddressing instructions. The double-word non-addressing
instruction format is shown in figure 2-7. This format js used for the Immediate group
of instructions. There are 12 standard and two optional instructions in this group.

The op ‘code fiel.d contains the operation to be performed (bits 3-6). All single~word
addressing fy!Je instructions may be performed as an immediate type instruction.
The operand is contained in the second word. Indirect addressing is not applicable.

2-9 System Reference

17 16 1514 1312 11 10987 6 543210

r-r 4]
L [l c o
[N Ry
Class Code—l l-Op Code-” Definition |
L+1 l: T 1 Address
a
L18-bit]
option

g

it

0, word contains an address
1, word contains an indirect address

Fig. 2-6 Double-Word Addressing Instruction Format

17 16 1514 13121110987 6543210

L :—_:- 00 [Op Code 000
-1
L-1 !. T Operand
Ll _
[18-bit]
option

Fig. 2-7 Double-Word fnstruction Format Immediate Type Instructions

System Reference 2-10

SECTION i
DATA 620/i CENTRAL PROCESSOR INSTRUCTIONS

3.1 GENERAL

This section describes DATA 620/} instructions which affect operations in the central
processor - |nput/ou|'puf instructions are described in section IV. Information provided
for each instruction is as follows:

- The mnemonic that is recognized by the DATA 620/i assembler (DAS)
- Mnemonic definition

- Instruction timing

- Instruction description

- Registers altered by execution of the instruction

- Addressing modes permitted

- A flow chart, when required for complete understanding.

Instructions are divided into two classes: single~word and double-word. Each class
contains both addressing and non-addressing groups of instructions. Microprogromming
operations which can be implemented for various instruction types are summarized in
appendix G.

3.2 SINGLE-WORD INSTRUCTIONS
L]

Single-word instructions may be either addressing or non-addressing. The addressing
instruction groups are:

LOAD/STORE
ARITHMETIC (multiply/divide optional)
LOGICAL

The non-addressing instruction groups are:
CONTROL

SHIFT
REGISTER CHANGE

3.2.1 Single-Word Addressing Instructions
The format of the single~word addressing class instructions is shown in figure 2-4, The
operation is specified by the o field (bits 12-15). The address field, a (bits 0-8),

contains the base location of an operand in memory. Operand addressing may be in
any one of five modes specified by the m field (bits 9-11).

3-1 System Reference

Table G1(d), appendix G, summarizes the addressing modes, and tables Gl(a), G1(b),
and G1(c) summarize the operation codes for the single-word addressing instructions.
Figure 3-1 shows the general operand addressing flow for this class of instructions.

For direct addressing, bits 0-10 specify the location of an operand within the first
2048 (0-2047) words of memory .

For relative addressing, the address field is added to the P register, mod 29, to form
the effective address. This mode permits addressing an operand up to 511 words in
advance of the current program locatian. :

For index addressing with the X register, the address field is added to the X register,
mod 215, to form the effective address. Indexing does not increase the basic instruc-
tion execution time.

For index addressing with the B register, the address field is added to the B register,
mod 215, to form the effective address. Indexing does not increase the basic instruc-
tion execution time.

For indirect addressing, the address field specifies the location of an indirect address
word within the first 512 (0-511) words of memory. 1If 1 =0 in the address word, the
word contains the location of an operand. 1f 1 =1, the word specifies the location
of another indirect address word. Each leve! of indirect addressing adds one cycle
(1.8 us) to the basic instruction execution time.

3.2.1.1 Load/Store instruction group. The following paragraphs provide the
nmemonic, description, and timing for each instruction in the load/store group.
Figures 3-2 and 3-3 show the general flow for the load/store instruction group.

LDA Load A Register Timing: 2 cycles

17161514 131211 10987 6543210

i"T_i 01 m] a]

Lod oL

I]8-bif’

option

The contents of the addressed memory location are placed in the A register.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A

System Reference 3-2

ADDRESS
INDIRECT
ADDRESS
R=1)

YES

£ gz, g |a2
-1 Q57 Z 4 E25
8% 222z CE
g7
-1 P
= == r—=n
& ! z |
€ x 2 2 ! I8
< B 52> fyt—efel) ek |
<< 55 7 553 tgsz! 1 BE |
855] _} Lf.sz_ll

Fom—————
| BRING
U |

| INSTRUCTION
I W=y

Figure 3-1. Single-Word Address Instruction,
General Flow.

3-3

Operand Addressing,

System Reference

BRING

INSTRUCTION
W—s)
BRING
INSTRUCTION
(W—u)

FORM
EFFECTIVE
ADDRESS
FORM
EFFECTIVE

ADDRESS + |

(Fig. 3-1),
(Fig. 3-1)

BRING
OPERAND
)
SELECT A (B, X)
AND TRANSFER
TO MEMORY TOW
> W
SET
ADDRESS NEXT
INSTRUCTION
Pri—>L &P
ADDRESS NEXT
INSTRUCTION
P+i» L &P
LpA LOAD
Log OPERAND
LDX R—>A (8 or X)
BRING NEXT
INSTRUCTION
W)
BRING NEXT
INSTRUCTION
W—sil)

Figure 3-3. ‘Store-Type Instruction, General Flow.

Figure 3-2. Load-Type Instruction, General Flow.
System Reference 3-4 35 System Reference

LDB Load B Register Timing: 2 cycles
1716 1514 1312 11 10987 6543210
F—T-7
t it e | om | a |
18-bit
option

The contents of the effective memory location are placed in the B register.

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: B

LDX Load Index Register Timing: 2 cycles
17 16 1514 1312 11 10 987 6 5432 1 0

T w]] : i

[A S |

I 18-bit I
option

The contents of the effective memory location are placed in the Index register.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers Altered: X

STA Store A Register
17161514 1312 11 10987 6543210

m l a]

Timing: 2 cycles

—-— I

1V s

| NP A

option

The contents of the A register are placed in the effective memory focation.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers-Altered: Memory

System Reference 3-6

ST8

Store B Register
17 16 15 14 13 12 11

Timing: 2 cycles

1098765432]0

r_———
t

1
| S T T

06

l

m

[

-]

—

l 18-bit ,

option

The contents of the B register are placed in the effective memory location

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: Memory

STX

Store Index Register

Timing: 2 cycles

1716 15 14 13 12 11 100987654329

r—r—

| S T

07

I

m

[

a

—

l 18-bit,

option

The contfents of the b register are placed in the effective memory location

Registers Altered: Memory

3.2.1.2

mnemonic, description,
Figures 3-4 and 3-5 show the general flow fo

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes

Arithmetic instruction

group.

Increment Memory. and Replace

and timing for each i

The following paragraphs provide the
nstruction in the arithmetic group.
r the arithmetic instruction group.

Timing: 3 cycles

1716 15 14 13 12 1 109876543210

[l e
o o R RN o]
18-bit
option
3-7

System Reference

Figure 3-4. Increment Memory and Replace Instruction, General Flow.

System Reference

BRING
OPERAND
w-su)

FORM
EFFECTIVE
ADDRESS

(Fig. 3-1)

BRING
OPERAND
W—R)

INCREMENT
OPERAND AND
TRANSFER

TO MEMORY

R+ 1225

?

NO

YES

ADDRESS
.NEXT
INSTRUCTION
(P- 1-L,P)

BRING NEXT
INSTRUCTION
Wl

3-8

SET
OVERFLOW
(Ov—+1)

BRING
INSTRUCTION
W-y)

FORM
EFFECTIVE
ADDRESS
(Fig. 3-1)

BRING
OPERAND

(W—=R)

ADDRESS NEXT
INSTRUCTION
{P+1—»L,P)

A

ADD OPERAND
TO A

ALR+A

(ny=21%

SUB = A +R-pA

SET

BRING NEXT
INSTRUCTION
(W—eu)

Figure 3-5. Add Instruction, General Flow.

3-9

OVERFLOW
(OF —»1)

System Reference

The contents of the effective memory location are incremented by one, mod 216

(218).
After execution, if (M) = 215 (217), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: Memory, OF

ADD Add Memory to A Timing: 2 cycles

7161514131211 10987 6543210

T 7 m s]

[NS R &

l 18—bit|

option

The contents of the effective memory location are added to the contents of the A regis-
ter and the sum is placed in the A register.

After execution, if (A) 2215 (2]7) or < -2]5 (-217), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A, OF

SUB Subtract Memory from A Timing: 2 cycles
17 16 1514 13 12 11 10987 6 543210

(o alad

P 14 I m] a j

I 18-bit|

option

The contents of the effective memory location are subtracted from the A register and
the difference is placed in the Aregister.

After execution, if (A) 52]5 (2]7) or <—2]5 (-2]7), the overflow indicator (OF) is

sef.
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A, OF

System Reference 3-10

MUL Multiply (optional) Timing: 10 cycles (16 bits)

11 cycles (18 bits)
1716 1514 13 12 1110987 6543210

T T %6 T =] p]

L L

I 18-bit I

option

The contents of the B register are multiplied by the contents of the effective memory
location. The contents of the A register are added to the contents of the B register at
the start of the operation. The product is placed in the A and B registers, with the
most-significant half of the product in the A register and the least-significant half in
the B register. The sign of the product is contained in the sign position of the A
register. The sign position of the B register is set to "0",

The algorithm is in the form A < B(X) + A,
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A, B

DIV Divide (Optional) Timing: 10-14 cycles (16 bits)

11-16 cycles (18 bits)
17 16 1514 13 12 11 10987 6 543210
r—r-
¢ 17 I m l o]

I 18-bit l

option

The contents of the A and B registers are divided by the contents of the effective
memory location. The quotient is placed in the B register with sign, and the remainder
is placed in the A register with the sign of the dividend.

If (A—A’AB—)sl

(divisor 2 dividend, taken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

3-1 - System Reference

3.2.1.3 Logical instruction group. The following paragraphs provide the
mnemonics, description, and timing for each instruction in the logical instruction

group .

DRA Inclusive-OR Memory and A Timing: 2 cycles

17 161514 13121110987 6543210
—r-

{
—_ i

| 18-bit l

option

r=

n m a

An inclusive-OR operation is performed between the effective memory location and
the contents of the A register. The result is placed in the A register. If either the
effective memory location or A contain a "1" in the same bit position, a "1" is
placed in the result. The truth table is shown below:

OPERATION RESULT
Effective
Memory where n =
An Location (n) An bit position
0 0 0
0 1 1
1 0 1
1 1 1

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A
ERA Exclusive-OR Memory and A Timing: 2 cycles

1716 15141312 1110987 6543210

i1 1 13 m a]

[ENPU S |

| 18-bit I

option

An exclusive-OR operation is performed between the effective memory location and
the contents of the A register. The result is placed in the A register. If the same bit
position of the effective memory location and A contain a "0", or if both bit positions

System Reference - 312

ontain a "1", the result is "0". If the same bit position of the effective memory
c n and A are not equal; i.e., one contains a “0" and the other a "1" the result

|°caﬁo
isa"l”. The truth table is shown below:
OPERATION RESULT
Effective
Memory where n =
An Location (n) An bit position
0 0 0
0 1 1
1 0 1
1 1 0
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A
ANA AND Memory and A Timing: 2 cycles

17 16 1514 13 12 11 10987 6 543210

o]

AL m |
L.l

|18-bitl

option
The logical-AND is performed between the contents of the A register and the contents
of the effective memory location. The result is placed in the A register. If the same
bit position of both the effective memory location and A contain a "1, the result is
a "1". The truth table is shown below:

OPERATION RESULT
Effective
Memory where n =
An Location {n) An bit position
0 0 0
0 1 0
1 0 0
1 1 1
Indexing:. Yes
Indirect Addressing: Yes
Registers Altered: P
3-13 System Reference

3.2.2 Single-Word Non-Addressing Instructions
The format of the single word non-addressing instruction class is shown in figure 2-5,

A non-addressing single-word instruction includes the control group, the shift group,
and the register change group. The operation is defined by the m field. The address
field (a), as such, is not used by the control group instructions. For the shift group,
the a field defines the type and number of shifts. For the register change group, the
a field defines the type of transfer and the registers affected.

3.2.2.1 Control instruction group. The following paragraphs provide the
mnemonic, description, and timing for each instruction in the control group .
Table G2, appendix G, summarizes the control instructions.

HLT Halt Timing: 1 cycle
171615141312 1110987 6543210

reT-T
ot o]

0 XXX]

When the computer executes the halt instruction, computation is stopped and the com-
puter is placed in the STEP mode. When the RUN button is pressed, computation
starts with the next instruction in sequence.

Indexing: No
Indirect Addressing: No
Registers Altered: None

N@P No Operation - Timing: 1 cycle
1716 1514 13 12 11 10 987 6 543210
r——-

Pl L 0 5] 000 B

18-bit
option

System Reference 3-14

Execution of the N@P instruction does not affect the A, B, X registers or memory .

Indexing: No
Indirect Addressing: No
Registers Altered: None

Set Overflow Indicator

Timing: 1 cycle

17 16 1514 13 12 11 10 987 6 543210

P11 o | 7] 401

Lk

]

l 18-bit I

option

The overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: OF

Reset Overflow Indicator

Timing: 1 cycle

17 16 1514 13 12 11 10987 6 543210

v T o0 [7 | 400

[SR N |

|

I 18-bit I
option

The overflow indicator (OF) is reset.

Indexing: No
Indirect Addressing: No
Registers Altered: OF

3-15

System Reference

3.2,2.2 Shift instruction group. For shift instructions 0-31, the address field
(a) defines the type of shift (bits 4-8) and the number of bit positions to be shifted
(bits 0-4), The instruction format showing the use of each a-field bit is given in
table G3(a), appendix G. Twelve of the possible sixteen shift operations defined by
bits 4-8 are implemented. These are summarized in table G3(b), Figure 3-6 shows the
general flow for the shift instructions.

LSRA Logical Shift A Right Timing: 1+ 0.25 n cycles

(n = number of shifts)
1716 151413 12 N1 10987 6543210

i 7 1 00 4] 340 + n]

b

|w¢J

option

The contents of the A register are shifted n places to the right (n = 0 to 373). "0's" are
shifted into the high-order positions of the A register. Information shifted out of the
the low-order position of the A register is lost.

Indexing: No
Indirect Addressing: No
Registers Altered: A

LSRB Logical Shift B Right Timing: 1+ 0.25 n cycles

(n = number of shifts)
17 16 151413 12 11 10 987 6 543210

P77 o [4] 140+n |

| S TR S

Imw“

option

The contents of the B register are shifted n places to the right (n = 0 to 37g). Informa-
tion shifted out of the low-order position of the B register is lost. "0's" are shifted into
the high-order position of the B register.

System Reference 3-16

- o
EQ H 9] = l—’i
ZE 2z Z ez, =5
vz 22 | [1\&3'30
— m wn
%9 o< o Y
-
x - —_ z
w%A z w_ € %0
ZOa & = zZz =
5o s E 50< 25
v - —
837 g,-Z CEq 555
e oL [&=
= ol o< ZE |
Qg+ ZZo 00 =9
2;9; —u wa 3 %Zé
o
w
Z =
onZz -
Eo2 -0
[*] 0w &
e -4
5~0 w T
OmdS L xns
ZE‘% O
S£25

Figure 3-6. Single-Register Shift Instruction, General Flow.

3-17

System Reference

indexing: No
Indirect Addressing: No
Registers Altered: B

LRLA Logical Rotate A Left

17 16 1514 13 12 11 10987 6 543210

i1 1 00 4] 240 + n]

| 18-bit I

option

Timing: 1 +0.25n cycles
{n = number of shifts)

The contents of the A register are rotated left n places (n = 0 to 37g). Bit position
A5 (A77) is rotated into bit position Ag.

Indexing: No
Indirect Addressing: No
Registers Altered: A

LRLB Logical Rotate B Left

17 16 15 14 13 12 11 10987 6 543210

(T T o0 4]

L1l 1

l 18-bit |

option

Timing: 1+ 0.25 n cycles
{n = number of shifts)

040 + n |

The contentis of the B register are rotated n positions to the left (n =0 to 37g). Bit
position By 5 (By7) is rotated into bit position By.

Indexing: No

Indirect Addressing: No
Registers Altered: B

System Reference 3-18

LLSR Long Logical Shift Right Timing: 1 +0.50 n cycles
(n = number of ‘shifts)

171615141312 1109876543210
l'—'l--l
t 4 00 T 4] 540+n |

I 18-bit l
option

The contents of the A and B registers are shifted right n positions (n = 0 to 37g). Bits
shifted out of the low-order position of B are lost. "0's" are shifted into the high-
order position of the A register.

Indexing: No)
Indirect Addressing: No
Registers Altered: A, B

LLRL Long Logical Rotate Left Timing: 1 +0.50 n cycles
(n = number of shifts)

171615141312 1110987 6543210

[00

Lml L

I 18-bit I

option

o——— l

4 | 40+n |

The contents of the A and B registers are rotated n postions to the left (n =0 to 37g).
Bit position A; 5 (Aq7) is shifted into bit position Bg-

Indexing: No
Indirect Address: No
Registers Altered: A, B

Arithmetic Shift A Right Timing: 1 +0.25n cycles
(n = number of shifts)

17 16 15 14 13 12 11 109876543210
r———

il 4] 00+n]

I 18-bit I :

option

3-19 System Reference

The contents of the A register are shifted n posiﬁohs to the right (n = 0 to 37g). Bits
shifted out of the low-order position of A are lost. The sign bit of A, A5 (A17)is
extended n places to the right.

Indexing: No
Indirect Addressing: No
Regisfers Altered: A
ASLA Arithmetic Shift A Left Timing: 1 +0.25 n cycles
(n = number of shifts)

17161514 13121110987 6543210
=TT]

Lo 00 4 200 + n
Lod

I 18-bit l

option

The contents of the A register are shifted n places to the left (n =0 to 37g). The sign
bit, A15 (A17), is retained and "0's" are shifted into the low-order positions of A.
Bits shifted out of A14 (Ayg) are lost.

Indexing: No
Indirect Addressing: No
Registers Altered: A

ASRB . Arithmetic Shift B Right Timing: 1 +0.25n cycles
(n = number of shifts)

17 16 1514 13 12 11 10 987 6 543210

IR 00 4 100 + n 1.

Ils-bitl

option

The contents of the B register are shifted n places to the right (n = 0 to 37g). Informa-
tion shifted out of the low-order position of B are lost. The sign bit of B, By5 By7)is
extended n places to the right.

Indexing: No

Indirect Addressing: No
Register Altered: B

System Reference 3-20

Timing: 1+ 0.25 n cycles
(n = number of shifts)

ASL8B Arithmetic Shift B Left

1716 1514 13 12 11 10 987 6 543 210

[)

Ll &

| 18-bit |

option

(1] 1

4 000 + n |

The contents of the B register are shifted n places to the left (n =0 to 37g). The sign
bit of B, By5 (B17), is retained and “0's" are shifted into the low-order positions of B.
Bits shifted out of B14 (B44) are lost.

Indexing: No
Indirect Addressing: No
Registers Altered: B

LASR Long Arithmetic Shift Timing: 1 +0.50 n cycles
Right (n = number of shifts)

171615141312 1110987 6 543210
4| 500 + n l

1t b 00

T I
[S R |

18-bit
option

The contents of the A and B registers are shifted n places to the right (n = 0 to 375).
Bit position Ag is shifted intc bit position By (Byg). The sign of the A register, %«]5
(A17), is extended n places to the right. ‘The sign bit, Bis (By7) of the B register
remains unchanged. Bits shifted out of the low-order position of the B register are
lost.

Indexing: No

Indirect Addressing: No
Registers Altered: A, B

3-21 System Reference

LASL Long Arithmetic Shift Timing: 1 + 0,50 n cycles
Left (n = number of shifts)

1716151413 1211 109876543210

- ——— I

1t 1 00

[PSR §

| 18-bit I
option

4 | 400 + n |

The contents of the A and B registers are shifted n places to the left (n =0 to 37g).
Bit position By4 (Byg) is shifted into bit position Ag, with the sign of B, By5 (B17)
remaining unchanged. The sign of the A register, A15 (A7) is not altered. Informa-
tion shifted out of A4 (Aq4) is lost and "0's" are shifted into the low~order positions
of the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: A, B

3.2.2.3 Register change group. The register change instruction group provides
a macro-operation facility, in that these instructions may combine several register
change operations ina single instruction. The instruction format is shown in figure 3-7,

The address field (a) defines the source and destination of a parallel word transfer within

the operational register set-A, B, and X. Any combination of registers may be selected,

The a field also specifies whether the word transferred will be unchanged, incremented,
decremented, or complemented. The transfer may also be conditional on the overflow
indicator.

Table G4(a), in appendix G, defines the transfer control specified by the a field. If
more than one source register is specified, the result will be the inclusive-OR of the
group. Complementing causes transfer of the complement of the inclusive-OR (NOR)
of a combination of source registers. A total.of 512 different register change opera-
tions are possible. The most useful instructions are contained in the mnemonic
repertoire recognized by the DAS assembler, summarized in table G4(b), appendix G.

-IAR Increment A Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

v b 00 | 5 T 11 |

I 18-bit l

option

System Reference 3-22

15

14

1312 11 10 9 87 65 43 210

L

00

5 | [sep|x B alx 8 4]

Destination Register

Source Register

00 Transfer

01 Increment
10 Complement
11 Decrement

0 Execute Unconditional
1 Execute condition on QOverflow Set

Fig. 3-7 Register Change Instruction

3-23

System Reference

Increment B Register

1716 1514 13 12 11 10987 6 543210

T
P s] 122 |
|18-bit|
option
IXR Increment X Register Timing: 1 cycle

171615141312 11 10987 6543210
[Sl
R 00 5 144 B

| 18-bit I

option

The contents of the A (B, X) register are incremented by one, mod 216 218). I the
sign of the A (B, X) register changes from plus to minus, the overflow indicator (OF)
is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X), OF
DAR Decrement A Register Timing: T cycle

17161514 13121110987 6543210

rTeT
P00 [5 3n
18-bit
option
DBR Decrement B Register Timing: 1 cycle

17 16 1514 13 12 11 10 987 6 543210

[

HE 00 5 | 322

System Reference 3-24

Timing: 1 cycle

Timing: 1 cycle

Decrement X Register

1716 1514 1312 11 10987 6 543210

rr 1 o0 [s 344

Lt _

l 18-bit I

option

The confents of the A (B, X) register are decremented by one, mod 216 (218). If the
sign bit of the A (B, X) register is changed from minus to plus, the overflow indicator

(OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X), OF

Complement A Register

17161514 13 12 11 10987 6543210

Timing: 1 cycle

r———
L1t 0o | s 211 |
|18-bit|
option
CPB Complement B Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

1 00 B 222
L1 .
I lB-bit|
option
CPX Complement X Register Timing: 1 cycle

17161514 13 12 11 10 987 6 543 210

re=T—7y I

I 18-bit l

option

5 244 |

The contents of the A (B, X) register are complemented (1's-complement).

3-25 System Reference

Indexing: No
Indirect Addressing: No
Register Altered: A (B, X)
TAB Transfer A Register to B Register Timing: 1 cycle

17161514 13 12 11 10987 6543210

——
|

T T o0 T 5 7 0z]

l 18-bit l

option

The contents of the A register are placed in the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: B

TAX Transfer A Register to X Register Timing: 1 cycle
1716 1514 1312 11 10987 6 543210

{1 [5] o4 |

I18-bit|

option

The contents of the A register are placed in the X register.

Indexing: No
Indirect Addressing: No
Registers Altered: X
TBA Transfer B Register to A Register Timing: 1 cycle

1716 1514 13 12 11 10987 6543210

———

[7 T 00 5] 021 |

[I TP

| lS-bitl

option

The contents of the B register are placed in the A register.

System Reference 3-26

Indexing: No
Indirect Addressing: No
Registers Altered: A

Transfer B Register to X Register

171615141312 11 10987 6543210
=TT
i T 1 oo [5 024 |

I 18-bit I

option

Timing: 1 cycle

The contents of the B register are placed in the X register

Indexing: No
Indirect Addressing: No
Registers Altered: X

Transfer X Register to A Register

17 16 1514 13 1211 10987 6 543210
T

P11 o0] s] 041 i

Lt _.a

| 18-bit|

option

Timing: 1 cycle

The contents of the X register are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A
TXB Transfer X Register to B Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

IR

re=T-=rT]
Lo}

5 | 042 |

18-bit

option

The contents of the X register are placed in the B register.

3-27 System Reference

Indexing: No
Indirect Addressing: No
Registers Altered: B
TZA Transfer Zero to A Register Timing: 1 cycle

1716151413 12 11 10987 6543210

r=T=rT
Lol 00 5 001
I 18-bir|
option
TZB Transfer Zero to B Register Timing: 1 cycle

17 16 1514 13 12 11 10987 6 543210

t 1 1 o0]
Lol 5 | 002
I 18—bir|
option
TZX Transfer Zero to X Register Timing: 1 cycle

17 16 15 14 13 12 11 10987 6 543210

P T oo 5 1 004]

[N R

| 18-bit |

option

The A (B, X) register is cleared to zero.
Indexing: No

Indirect Addressing: No
Registers Altered: A (B, X)

ADFA Add Overflow to A Register

17 16 1514 13 12 1110987 6 543210

R 5 311]

| 18—bit|

option

Timing: 1 cycle

System Reference 3-28

AQDFB Add Overflow to B Register Timing: 1 cycle
17 16 151413 12 11 10987 6 543210
[afent sl |
L1 00 5 522 B
'ls-birl
option

Timing: 1 cycle

m Add Overflow to X Register
17 16 15 14 13 12 11 10987 6 543210

ST o0 5 544 |

L= 1L

lls-birl

option

The contents of the overflow indicator (OF) are added to the A (B, X) register, mod
216 (2]8). The sum is placed in the A (B, X) register. The overflow flip-flop does

not change .

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X)

SPFA Subtract Overflow from A Register

1716151413 12 11 10987 6543210

A 00 5 711
L—b 1L

| 18-bit I

option

SOFB Subtract Overflow from B Register

17 16 1514 13 12 11 10987 6 543210
T 00 [5] 722]

Timing: 1 cycle

Timing: 1 cycle

3-29 System Reference

Subtract Overflow from X Register Timing: 1 cycle

17 16 15 14 13 12 11 109876543210
——— l

R 5

L1

‘ 18-bit I

option

744]

The contents of the overflow indicator (OF) are subtracted from the A (B, X) register,
mod 216 (2‘8). The overflow flip-flop does not change.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X)

3.3 DOUBLE-WORD INSTRUCTIONS

Double-word instructions may be either addressing or non-addressing. The instructions
of the double-word addressing group are:

JUMP

JUMP-AND-MARK

EXECUTE

EXTENDED ADDRESSING (optional)

The instruction in the double-word non-addressing group is:
IMMEDIATE
3.3.1 Double-Word Addressing Instructions

For double-word addressing instructions, the second word is contained in the memory
location following the instruction word. The second word may contain an operand or
an address. The address may be either indirect or direct. The general flow chart for
double-word instructions is shown in figure 3-8.

Bits O through 8 determine the conditions for execution of the instruction. The condi-
tion is tested if the corresponding bit is equal to "1". For example, if bit 0 equals
"1", the instruction will examine the status of the overflow flip-flop. If overflow is
set, the command will be executed. If overflow is not set, the next instruction in
sequence will be executed.

System Reference 3-30

Figure 3-8.

r ______ 1
NG SINGLE
H INSTRUCTION WORD
! INSTRUCTION
| J
SET
ADDRESSABLE OPERAND
CYCLE
SET BRING
ADDRESS OPERAND
CYCLE W—>R)
BRING
ADDRESS
{(w—*R)
EXECUTE
INSTRUCTION

Double-Word Instruction, General Flow.,

3-3

System Reference

3.3.1.1 Jump instruction group. For the jump instruction group, the address
field (a) contains a set of nine flags which define the logical conditions for execution BRING
of the jump function. The jump address is contained in the second word of the double- WCT'ON
word instruction. Table G-5(a), in appendix G, summarizer the logical condition
associated with each bit in the address field. The jump condition is the logical~AND
of all "1's" in the field. Thus, there are 512 possible combinations, but not all are
useful. The most useful conditional jump instructions are contained in the mnemonic
instruction repertoire recognized by the DAS assembler, summarized in Table G-5(b). ADDRESS
The general flow for jump instruction is shown in figure 3-9. i%MD:Ess
(P+1L&P)
JMP Jump Unconditionally Timing: 2 cycles
17 16 15 14 13 12 11 10 98 7 6 543 210
rT Jomp
n L_i 00 i 000 A(v[‘)B’Rﬁ;S
nti | _Jl__ Jump Address
l__IS—bi'r

option

The next instruction executed is at the jump address. JUme
CONDITION
MET

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

JOF Jump if Overflow Indicator Set Timing: 2 cycles
17 16 15 14 13 12 11 10 98 7 6 543 210
F_T - ADDRESS se ADDRESS
n | 00 1 001 T UCTION u INDIRECT
-4+ P+, P)) e
! Jump Address

option
- i BRING BRING
If the overflow indicator (OF) is set, the next instruction executed is at the jump NEXT NEXT INDIRECT
P INSTRUCTION INSTRUCTION ADDRESS
address. If the overflow indicator is not set, the next instruction in sequence is exe- W—sU) (W—U) (W—>F)

cuted. The overflow indicator is reset upon execution of the J@F instruction.

Indexing: No (*) RESET OF IF OVERFLOW
Indirect Addressing: Yes IS A JUMP CONDITION

Registers Altered: OF (reset), P .
Figure 3-9. Jump Instruction, General Flow.

System Reference 3-32 3-33 System Reference

JAP Jump if A Register Positive Timing: 2 cycles

17 16 15 14 13 1211 10 98 7 6 543210

T
n | | 00 1 002
F—4-
nt1 | —i_ Jump Address
18-bit
option

If the contents of the A register are positive or zero, the next instruction executed is
at the jump address. If the A register is negative, the next instruction in sequence is

executed.
Indexing: No
Indirect Addressing: Yes
Registers Altered: P
JAN Jump if A Register Negative Timing: 2 cycles

1716 15 4 13 12 11 10 987 6543210

[

n 11 00 1 004
b

ntl I JI_ Jump Address
EB—bit
option

If the A register is negative, the next insiruction executed is at the jump address. If
the A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

System Reference 3-34

JAZ Jump if A Register Zero Timing: 2 cycles
1716 15141312 11 10 987 6543210
=T
n | 00 1 : 010
F—-
e I Jump Address

o
18-bit
option

If the A register is zero, the next instruction executed is at the jump address. If the
A register is not zero, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

JBZ Jump if B Register Zero Timing: 2 cycles

171615 14 131211 10987 6543210

P
n 00 1 020
F—+
a1 | _l Jump Address
18-bit
option

If the B register is zero, the next instruction executed is at the jump address. If the B
register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

3-35 System Reference

IXZ Jump if X Register Zero Timing: 2 cycles

17 16 15 14 13121110987 6543210

T

n b 00 1 040
bt

ntl i__J'_ Jump Address

18-bit |
option

If the index register (X) is zero, the next instruction executed is at the jump address.
If the register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

Jss1 Jump if Sense Switch 1 Set

17 16 15 14 131211 10 98 7 6543210

Timing: 2 cycles

n r TI- 00 1 100
b=
n+] o Jump Address
I
18-bit
option

Jss2 Jump if Sense Switch 2 Set

17 16 1514 13121110987 6543210

Timing: 2 cycles

T

n {_ 1 00 1 200
F-d- »

w1 b Jump Address
1.
18-bit
option

System Reference 3-36

JS5S3 Jump if Sense Switch 3 Set Timing: 2 cycles

17 16 1514 13 12 11 10 987 6 543 210
=T

n ! ! 00 1 400
N '

4 1 J Add

n+l 1 ump ress
18-bit
option

If sense switch 1 (2, 3) is set, the next instruction executed.is at the jump address. If
the sense switch being tested is not set, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

3.3.1.2 Jump and mark instruction group. For the jump and mark group of
instructions, the address field a defines the same set of logical conditions specified for
the jump group. These conditions are summarized in table Gé(a) in appendix G. Thus,
there are 512 possible combinations, but not all are useful. The most convenient
instructions are contained in the mnemonic insiruction repertoire recognized by the
DAS assembler. These are summarized in table Gé(b).

JMPM Jump and Mark Unconditionally Timing: 3 cycles
1716 15 14 13 12 11 10 987 65 43 210
e
n 00 2 000
-
w1] _J'_ Jump Address
l-_ls-bir
option

The contents of the instruction counter (P) are stored at the jump address.

The next
instruction executed is at the jump address plus one.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

System Reference

NEXT
INSTRUCTION
(P+1-»L, P}

BRING

NEXT

INSTRUCTION
- (W)

ING
l'hlsﬂUCTlON
)

RETURN
ADDRESS
P +1-»W)

{*} - RESET OF IF OVERFLOW IS A JUMP CONDITION

BRING

MARK + 1
INSTRUCTION
(W—sU)

Figure 3-10. Jump~and~Mark Instruction, General Flow.

System Reference

3-38

IBFM Jump and Mark if Overflow Set Timing: 3 cycles

1716 1514 13 12 11 10987 6543210

T
i 00 2 001
n
ntl :-_-}-
n Jump Address
!__IB-bif
option

If the overflow indicator (OF) is set, the contents of the instruction counter (P) are
stored at the jump address, and the instruction at the fump address plus one is executed.
If the overflow indicator is not set, the next instruction in sequence is executed. The
overflow indicator is reset upon execution of the JBFM instruction.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P, OF (reset)

JANM Jump and Mark if A Register Negative Timing: 3 cycles
17 16 15 14 13 12 1 109876543210
Pl
00 2 004

n g

n+l ! i Jump Address
18-bit
option

If the A register is negative, the contents of the instruction counter (P) are placed at
the jump address, and the instruction at the jump address plus one is executed. If the
A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

3-39 System Reference

JAPM Jump and Mark if A Register Positive Timing: 3 cycles

1716 15 14 13 12 11 1098 7 6 543 21 0

T
! 00 2 002
" k-4-
n+1 ! i Jump Address
Es-bit
option

If the A register is positive or zero, the contents of the instruction counter (P) are

placed at the jump address, and the instruction at the jump address plus one is executed.

If the A register is negative, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

JAZM Jump and Mark if A Register Zero Timing: 3 cycles
17 16 15 14 13 1211 10 98 7 65 43210
=T
n o 00 2 010
F—f-
ntt | _i_ Jump Address
18-bit
option

If the A register is zero, the instruction counter (P) is placed at the jump address and
the instruction at the jump address plus one is executed. If the A register is not Zero,
the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

System Reference 3-40

JBZM Jump and Mark if B Register Zero Timing: 3 cycles

1716 15 14 131211 10987 6543210
e

n 00 2 020
-+

1 I_i Jump Address
ES-bif
option

If the B register is zero, the contents of the instruction counter (P) are placed at the
jump address, and the instruction at the jump address plus one is executed. If the B
register is not zero, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

IXZM Jump and Mark if X Register Zero Timing: 3 cycles
1716 1514 13 1211 10 987 654321 0
T
n | 00 2 040
4
[
+
ntl 1 Jump Address
18-bit
option

If the X register is zero, the contents of the instruction counter (P) are placed at the
jump address and the instruction at the jump address plus one is executed. If the X
register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

3-41 System Reference

JSTM Jump and Mark if Sense Switch 1 Set Timing: 3 cycles

17 16 15 14 13 1211 10 98 7 6 543210

[
n V1 00 2 100
bt
! ! i Jump Address
[
option
JS2M Jump and Mark if Sense Switch 2 Set Timing: 3 cycles
1716 15 14 13 12 11 10 98 7 6 543210
T
n 1o 00 2 200
F-4-
nt1 | i Jump Address
18-bit
option
JS3IM Jump and Mark if Sense Switch 3 Set Timing: 3 cycles
716 15 14 13 12 11 10 987 6543210
~T
n ot 00 2 400
Pt
nt+l '_l_ Jump Address
18-bit
optien

If sense switch 1 (2, 3) is set, the instruction counter (P) is placed at the jump address,
and the instruction at the jump address plus one is executed. If the tested sense switch
is not set, the next instruction in sequence is executed.

Indexing: Neo
Indirect Addressing: Yes
Registers Altered: Jump address, P

3.3.1.3 Execute instruction group. For the execute group of instructions, the
address field a contains a set of nine flags which define the logical conditions for

executing an instruction contained at the effective execution address. The execution
address is contained in the second word of the double-word instruction. Table G7(a),

System Reference - 3-42

appendix G, summarizes the lagical conditions associated with each bit in the address
field. The execute condition is the logical-AND of all "1's" in the a field. The most
useful of the 512 possible execute instructions are contained in the mnemonic instruc—-
tion repertoire recognized by the DAS assembler, summarized in table G7(b).

Figure 3-11 illustrates - the general flow for the execute instructions.

It is important to note that only single-word instructions should be executed. The
single-word instruction groups are:

LOAD/STORE
ARITHMETIC
LOGICAL
CONTROL

SHIFT

REGISTER CHANGE

If the execute is attempted on double-word instructions, erroneous operation will occur.
The double-word instruction groups are:

JUMP .
JUMP AND MARK
EXECUTE

EXTENDED ADDRESSING (optional)
IMMEDIATE

XEC Execute Unconditionally Timing: 2 cycles

17 16 15 14 13 12 11 109876543210
r~T-
[
-+
[

L
I-_18~bif

option

n 00 3 000

n+l Execute Address

The instruction located at the execute address is executed and then the next instruction
in sequence is executed .

Indexing: No

Indirect Addressing: Yes
Registers Altered: None

3-43 System Reference

A

BRING
INSTRUCTION
(W—U)

BRING

EXECUTE

ADDRESS
W—R)

ADDRESS
NEXT
INSTRUCTION
(P+1—sL, P)

ADDRESS
EXECUTE
INSTRUCTION
R—*1)

INDIRECT
ADDRESS
Ris=1)

ADDRESS
INDIRECT
"ADDRESS
R—l)

BRING
NEXT
INSTRUCTION
(W—>U)

Figure 3-11. Execute Instruction, General Flow,

System Reference

BRING
EXECUTE
INSTRUCTION
(W—U)

BRING
INDIRECT
ADDRESS
(W—*R)

{*) RESET OF IF OVERFLOW WAS AN EXECUTE CONDITION

3-44

XOF Execute if Overflow Set Timing: 2 cycles

1716 15 14 13 1211 10987 6 543210

=T

n 1 00 3 001
4

n+l I_i Execute Address
18-bit
option

If the overflow indicator (OF) is set," the instruction at the execute address is executed,
and then the next instruction in sequence is executed.

if the overflow indicator is not set, the next instruction in sequence is executed. Exe-
cution of the X@F instruction resets the overflow indicator.

Indexing: No
Indirect Addressing: Yes
Registers Altered: - OF (reset)
XAP Execute if A Register Positive

Timing: 2 cycles

1716 15 14 13 1211 1098 7 6 543210

T~
n |t 00 3 002
bed-
n+l | j'_ Execute Address
ES-Eit
option

If the A register is positive or zero, the instruction at execut address is executed, and
then the next instruction in sequnece is executed. If the A register is negative, the
next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: None

3-45 System Reference

XAN Execute if A Register Negative Timing: 2 cycles
1716 15 1413 1211 10987 6543210
T
n I 00 3 004
F—4—

1 1 Execute Address

-
18-bit
option

If the A register is negative, the instruction at the execute address is executed, and
then the next instruction in sequence is executed. If the A register is positive, the
next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: None
XAZ Execute if A Register Zero Timing: 2 cycles
1716 15 14 1312 11 10 987 6543210
~T
n 1 00 3 010
F——

n+l lL il Execute Address

I_]B-bit
option

If the A register is zero, the instruction at the execute address is executed, and then
the next instruction in sequence is executed.

If the A register is not zero the next instruction in sequence is executed.
Indexing: No

Indirect Addressing: Yes
Registers Altered: None

System Reference 3-46

XBZ Execute if B Register Zero Timing: 2 cycles

17 16 15 14 13 12 11 10 987 6543210

r-T_ 3 020
n 00

-+

| .IL Execute Address

o0

option

nt+l

If the B register is zero, the instruction at the execute address is executed, and then
the next instruction in sequence is executed.

If the B register is not zero, the next instruction in sequence is executed.
Indexing: No
Indirect Addressing: Yes
Registers Altered: - None
XXZ Execute if X Register Zero

Timing: 2 cycles

1716 1514 13 1211 10 987 65 43 210

T
! 00 3 040
" k-4
nt+l | JI_ | Execute Address
I-_’B'_"L
option

If the index register (x) is zero, the instruction at the execute address is executed, and
then the next instruction in sequence is executed.

If the index register is not zero, the next instruction in sequence is executed.
Indexing: No

Indirect Addressing: Yes
Register Altered: None

3-47 System Reference

XSl Execute if Sense Switch 1 Timing: 2 cycles

1716 1514 131211 109876543210

P
LI 00 3 100
ntl ' _JI__ Execute Address
ES—bit
option
XS2 Execute if Sense Switch 2 Timing: 2 cycles

1716 15 14131211 10 98 76 54321 0

T

n 00 3 200
-

nel | J_ Execute Address
18-bit
option

XS3 Execute if Sense Switch 3 Timing: 2 cycles

17 16 15 14 13 12 11 10 987 6543210
=T

n U1 00 -3 400

F-t-
I

Execute Address

OP CODE ADDRESS MODE

YY equals any single word instruction in the op code.

i X= ADDRESS MODE EFFECTIVE ADDRESS
0-3 Immediate Second word contains operand
4 Relative to P Contents of second word + (P
‘ register + 1)
5 Indexed with X Contents of second word +X
register
6 Indexed with B Contents of second word + B
register
7 Direct or indirect Contents of second word is the

direct address if bit 15 is "0".
Contents of second word is an
indirect address if bit 15 is
l|'||l .

n+l 1
18-bit

option

If sense switch 1, (2, 3) is set, the instruction at the execute address is executed and
then the next instruction in the sequence is executed. If the sense switch tested is not
set, the next instruction is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: None

3.3.1.4 Extended addressing instruction group (optional). The extended address
mode instructions are similar in format to the Immediafe Instructions. However, the
second word of the double-word instruction contains the effective address. The address
can be indirect or direct. It is determined by bit 15 of the second word.

System Reference 3-48

Load A Register Extended {optional) Timing: 3 cycles

1716 15 14 13 12 11 10 987 6 54 3 210

r-T-
no | 4I- 00 6 01 X
'._.
ntl | l Operand Address
18-bit
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the A register.

3-49 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

LDBE Load B Register Extended (optional)

1716 15 14 131211 10987 6543210

Timing: 3 cycles

=T
n 1 | 00 6 02 X
-+
nrl | .'L Operand Address
tlS-bif
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the B register.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: B

LDXE Load X Register Extended (optional)

1716 1514 13 12 11 10987 6 543210

Timing: 3 cycles

r-r-
n b1 00 6 03 X
e
n+l ! L Operand Address
bB—bit
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the X register.

Indexing: Yes

Indirect Addressing: Yes
Register Altered: X

System Reference 3-50

Timing: 3 cycles

Store A Register Extended (optional)

1716 1514 13121110987 6543210
r—T
(- 00) 05 X
-4~
n+l'_l_

18-bit

option

n

Operand Address

The contents of the A register are stored in the memory location as addressed by the
operand address at locationn + 1.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: Memory

STBE Store B Register Extended (optional)

1716 1514131211 109876543210

Timing: 3 cycles

Pl
00 6 06 X
-+
| i I OPERAND ADDRESS
option

The contents of the B register are stored in the memory location as addressed by the
operand address to location n + 1.

Indexing: Yes

Indirect Addressing: Yes
Register Altered: Memory

STXE Store Index Register Extended (optional) Timing: 3 cycles

1716 15 14 13 1211 10987 6543 210

T

P 00 6 07 X
-

L OPERAND ADDRESS

l_lS-bit

option

3-51 System Reference

The contents of the index register are stored in the memory location as addressed by
the operand address at locationn + 1.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: Memory

INRE Increment Memory and Replace Extended {optional) Timing: 4 cycles

17 16 15 14 1312 11 10 987 6 543210

r-r-

[00 6 04 X

.

! l I OPERAND ADDRESS

tp%n

option

The contents of the memory location as addressed by the operand address at location
n + 1 are incremented by one, mod 216 (218).

After execution, if (M) »215 (2]7), the overflow indicator (OF) is set.
Indexing: Yes

Indirect Addressing: Yes
Register Altered: Memory, OF

ADDE Add Memory to A Extended (Optional)

17 16 15 14 13 12711 10 98 7 6 543210

Timing: 3 cycles

rT
1 00 6 12 X
F-4-

| _'L] OPERAND ADDRESS

tp%h

option

The contents of the memory location as addressed by the operand address-at location
n+ 1 are added to the contents of the A register and the sum is placed in the A
register.-

After execution, if (A) 22]5.(2]7) or <215 (—2]7), the overflow indicator (OF) is
set.

System Reference 3-52

. Subtract Memory from A Extended {optional)

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, OF

Timing: 3 cycles

1716 15 14 13 12 1110 987 6543 210

=T
[00 6 14 X
F—-
[| OPERAND ADDRESS
I
18-bit]
option

The contents of the memory location as addressed by the operand address at location
n + 1 are subtracted from the contents of the A register and the difference is placed in

the A register.

15 17

After execution, if (A) 22‘5 (2]7) or <=2 " (-2""), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, OF

MULE Multiply Extended (optional)

1716 1514131211 109876543210

Timing: 11 cycles (16 bits)
12 eycles (18 bits)

r~T-

11 00 6 16 X
-+

1 J'_ i OPERAND ADDRESS

option

The contents of the B register are multiplied by the contents of the memory location as
addressed by the operand address in location.n + 1. The contents of the A register are
added to the contents of the B register at the start of the operation. The product is
placed in the A and B registers with the most-significant half of the product in the

A register and the least-significant half in the B register. The sign of the product is
contained in the sign position of the A register. The sign position of the B register is
set to "0",

The algorithm is in the form A - B(X) + A,

3-53 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, B

DIVE Divide Extended (optional)

1716 15 14 13 12 11 10987 6 54321 0

Timing: 11-15 cycles (16 bits)
12-17 cycles (18 bits)

-T
r | 00 6 17 X
-4

| J'_ | OPERAND ADDRESS
EB-bit

option

The contents of the A and B registers are divided by the contents of the memory loca-
tion as addressed by the operand address at location n + 1. The ‘quotient is placed in
the B register and the remainder is placed in the A register.
(divisor = dividend, taken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, B, OF

DRAE Inclusive-OR Memory and A Extended (optional) Timing: 3 cycles

17161514 131211 10987 6543210

r-r-
P 00 6 n X
e o

! J_ I OPERAND ADDRESS

EB-bit

option

The inclusive-OR operation is performed between the contents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.

System Reference 3-54

The result is placed in the A register. If either the memory location or A contain a 1"
in the same position, a "1" is placed in the result.

The truth table is shown below:

OPERATION RESULT
Effective
Memory]
An Location {n) An Where n = bit
—;J_ 0 0 position
0 1
1 4] 1
1 1 1

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

ERAE Exclusive-OR Memory and A Extended {optional) Timing: 3 cycles

17 16 1514 13 1211 10987 6543210

r -}- 00 6 13 X
F-+-
I { OPERAND ADDRESS

-4

18-bit]

option

An exclusive-OR operation is performed between the contents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.
The result is placed in the A register. If the same bit position of the memory Ioca’r!on
and the A register contain a 0", or if both bit positions contain a "1", the result is
ng" . The turth table is shown below:

OPERATION RESULT

Effective
Memory
Location {n)

An
0 0
1
i
0

Where n = bit
position

—-—-oo|%>

1
0
1

3-55 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

ANAE| AND Memory and A Extended (optional) Timing: 3 cycles

17161514 131211 109876543210
~T

[
bt
[

J T
18-bit

option

00 6 15 X

! OPERAND ADDRESS

The logical-AND operation is performed between the coritents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.
The result is placed in the A register. If the same bit position of both the memory

focation and the A register contain a "1 the result is a "1". The truth table is shown

below:

OPERATION RESULT

Effective
Memory
Location (n)

An An
0 0 0
0 0
1 0
1 1

1
0
1

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

3.3.2 Double-Word Non-Addressing Instructions

The double~word non-addressing instructions consist of the Immedicte instruction group.
The operand for the immediate instruction is contained in the second word of the
double-word instruction. Address modification is not permitted for this group of intruc-

tions. The immediate instruction group codes are summarized in table G10,
appendix G.

System Reference 3-56

Where n = bjt
position

LDA! Load A Register Immediate Timing:

1716 1514131211 10987 6543210
T
n bl 00 3 010
(-
ot 1o OPERAND
1
option

The contents of the operand at location n + 1 are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Alterad: A

LDBI Load B Register Immediate Timing:

1716 15 14 13 12 11 10987 6543210
=T~

n | 00 6 020
-+

n+1 l__]l__ OPERAND
[I_S-bit
option

The contents of the operand at location n + 1 are placed in the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: B

LDXI1 Load X Register Immediate Timing:

17 16 15 14 13 12 11 10987 6543210
T
| 00 6 030

"4
I OPERAND

ni1 1
8-bit
option

2 cycles

2 cycles

2 cycles

3-57 System Reference

The contents of the operand at focation n + 1 are placed in the X register.

Indexing: No
Indirect Addressing: No
Registers Altered: X

STAI Store A Register Immediate Timing: 2 cycles
17 16 15 14 13 1211 10 98 7 65 43 210
e
00 é 050
n b d
TR ! OPERAND
18-bit
option

The contents of the A register are placed in the operand at location n + 1.

Indexing: No
Indirect Addressing: No
Registers Altered: Operand

STBI Store B Register Immediate Timing: 2 cycles
17 16 15 14 13 12 11 10 987 6543210
rT :
! 00 6 060
" ob-4-
w1 b OPERAND
-1_
Foc
option

The contents of the B register are placed in the operand at location n + 1.
Indexing: No

Indirect Addressing: No
Registers Altered: Operand

System Reference 3-58

STX1 Store X Register Immediate Timing: 2 cycles

1716 15 14 13-12 11 10 987 6543210
=T

n b 00 6 070
ot _

w11 OPERAND
18-bit
option

The contents of the Index register are placed in the operand at locationn + 1.
Indexing: No

Indirect Addressing: No
Registers Altered: Operand

ADDI Add immediate

1716 15 14131211 109876543210

Timing: 2 cycles

r~T-

O T 00 6 120
-+

n+l I-i_ OPERAND
r_le-bn
option

The contents of the A register are added to the contents of the operand at location
n+ 1. The sum is placed in the a register. After execution, if (A) =215 (2]7) or
<-215 (-217), the overflow indicator (OF) is set.

Indexing: No

Indirect Addressing: No
Registers Altered: A, OF

SUBI Subtract Immediate

1716 15 14 131211 10987 6543210

Timing: 2 cycles

T
b 00 é 140
Y
| OPERAND
J I
18-bit
option

3-59 System Reference

The contents of the operand at focation n + 1 are subtracted from the contents of the A
re?lster The difference is placed in the A register. After execution, if (A) 2 219
7y or < =215 («217), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, OF

MULL Multiply Immediate (optional) Timing: 10 cycles (]6Bits)
14 cycles (18 Bits)
17 16 15 14 1312 11 10 987 6543 210

r—T
1 00 3 160
-4
I ! OPERAND

N
[ie-in]

option

The contents of the B register are multiplied by the contents of the operand at location
n+ 1. The contents of the A register are added to the contents of the B register at the
start of the operation. The product is placed in the A and B registers, with the most-

significant half of the product in the A register and the least-significant half in the

B register.. The sign of the product is contained in the sign position of the A register,

The sign position of the B register is set to "0",

The algorithm is in the form A - B(X) + A,

Indexing: No
Indirect Addressing: No
Registers Altered: A, B

DIvi Divide Immediate (optional) Timing: 10-14 cycles(16 bits)
11-16 cycles(18 bits)

17 16 15 14 13 1211 10987 6543210

-
Pl 00 6 170
4o
. OPERAND
1
18-bit
option

System Reference 3-60

The contents of the A and B registers are divided by the contents of the operand at
location n+ 1. The quotient is placed in the B register with sign, and the remainder
is placed in the A register with the sign of the dividend.

It @B,
(divisor = dividend, tdken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, B, OF

INRJ Increment and Replace Immediate Timing: 3 cycles
1716 15 14 13 12 11 10987 6543210
T
[00 6) 040
- .
[QPERAND
-1
18-bit
option

The contents of the operand at location n + 1 are incremented by one, mod 216 (218,
After execution, if(n+1)2 » 215 (2]7), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: Operand, OF
ERAI Exclusive-OR Immediate Timing: 2 cycles

1716 1514131211 10987 6543210

[00 6 130

I OPERAND

An exclusive-OR is performed between the contents of the operand at location n + 1
and the contents of the A register, and the result is placed in the A register. If the

3-61 System Reference

same bit position of the operand and the A register contain a "0", or if both bit
positions contain a "1", the result is set to "0". The truth table is shown below:

OPERAND RESULT
An OPERAND(n) An
0 0 0
0 1 1
1 0 1
1 ! 0

Indexing: No
Indirect Addressing: No
Registers Altered: A

Inclusive=OR Immediate

where n =
bit position

Timing: 2 cycles

1716 151413 12 11 10 98 7 6 543 2 1 0
-Tr-
a0 00 6 110
bt
nt I-.|L OPERAND
18-bit
option

An inclusive-OR is performed between the contents of the operand and the contents of
the A register. The result is placed in the A register. If either the operand or the

A register contains a "1" in the same bit position, a "1" is placed in the result in the
A register. The truth table is shown on the following page.

System Reference

3-62

OPERAND RESULT
where n =
An OPERAND(n) An bit position
0 0 0
0 1 1
1 0 1
1 1 1

Indexing: No
Indirect Addressing: No
Registers Altered: A

Timing: 2 cycles

ANAI AND Immediate

1716 15 14 13 12 11 10 98 7 6 54 3 21 0
T~

n |t 00 3 150
-
o OPERAND

ntl L
18-bit
option

A logical-AND is performed between the contents of the operand and the contents of
the A register. The result is placed in the A register. If the same bit position of the
operand and the A register contain a "1", the result is set to "1"; otherwise, the

result is set to "0",

The truth table is shown below:

OPERATION RESULT h _
where n =
An OPERAND(n) An : bit position
0 0 0
0 1 0
1 0 0
1 i 1

Indexing: No
Indirect Addressing: No
Registers Altered: A

3-63

System Reference

SECTION |V
DATA 6207/ INPUT/OUTPUT SYSTEM

4.1 INTRODUCTION

This section describes the operation and instruction set of the computer input/output
system which includes the data transfer, external conirol, program sense, and program
interrupt facilities.

The DATA 620/i input/output system is designed to facilitate integration of the com-
uter into an overall system. Refer fo the interface reference manual for detailgd
information required for special interface designs.

A wide selection of optional peripheral devices is also available.
4.2 ORGANIZATION

As shown in the block diagram, figure 2-1, the 1/O section of the computer communi-
cates with the operational registers and the memory through the internal C bus. Data
and control signals are transmitted to and from external peripheral devices through the

1/O bus.
4.2.1 Overall Operation

The overall organization of the DATA 620/i 1/O system, including a typical set of
eripheral devices, is shown in figure 4-1. Standard or special peripheral devices are
in parallel on the 1/O bus.

fwo types of 1/O operations may be performed: program control and automatic control.
program-controlled information transfers between the central processor and the exter-
nal devices to be executed are:

a. External control. An external control code may be transmitted, under
rogram control, from the central processor to an external device.
prog P

b. Program sense. The central processor can sense the status of a selected
external line under program control .

c. Single word transfer to/from A and B Registers. A single word may be
transferred to or from the A and B registers under program control .

d. Single-word transfer to/from memory. A single word may be transferred
to or from any memory location under program control.

4-1 System Reference

The following types of automatically controlled information transfers between the

—~z central processor and the external devices may be executed independently of the
1 — programs:
=S ENEINE
- g’gg e £t a. Program interrupt. An external device may force the program to execute
“5 a8z an instruction at a specified location in memory.
r-=1 _ b. Buffer interlace controller transfer to/from memory. Blocks of words may
[—L—i :z('% ! [— o€y e be transferred to or from sequential memory locations under control of an optional
- Egg e e 4 buffer interlace controller (BIC). Devices conirolled by the BIC may also be operated
l Si 1 223 5 under program control (single-word transfers).
r——n c. Interlace data transfers. Single words may be transferred to or from
P . g memory by a special interface controller which uses the control signals available on
et g% e B gg s - the /O bus.
)] O & g 5]
b e %3‘ 4.2.2 Input/Output (1/0) Bus Structure
=== — _ . — . R . .
T 3 i . 5 e A typical organization of p.enpheral devices on the I/0O bus is shown.m figure 4-1.
M ,9_% e 3 > ggz e g’ s 22 The complete 1/O b.us consists of two cables, the 1/O cable and the interrupt cable.
] | 5%] “& o “Z e 4 The 1/O cable consists of the E bus, plus a set of control lines. The E bus contains
3 be—a = i BN 16 or 18 pairs of bidirectional lines which transmit control codes, addresses, and data
. g between the central processor and the peripheral devices connected in parallel to this
: §-; 1' EE bus.
¥ 0F N F: s 22 e E (e . . .
HEE 823| |« 3 . £ Information transfers are synchronized by peripheral controllers; these controllers'may,
Lo 3¢ 1 2g3 H in turn, control one or more peripheral devices. The central processor communicates
257 14 o Il il directly with all peripheral controllers under program control. It may determine when
=2 % " a device is ready to send or receive information by sensing associated sense lines, or
b t;: e » z g’ it may be notified by means of a program interrupt. Standard priority interrupt and
g 4 sense line controllers are available, or special controllers may be provided. The
_}‘—* 28 interrupt cable is provin:l(-fd only for devices which use the program interrupt facility
|| gg or the program trap facility.
Where block transfers of data, independent of, and concurrent with, internal opera-
— tions are required (such as from tapes, drums, commutators, etc.) the buffer interlace
§§g controller may be provided. This element contains hardware registers which auto-
|| §§§ : matically generate the proper memory addresses for successive data transfers to or
=9 _J from the central processor memory, directly to or from the device through its
controller.
This type of operation uses the program trap facilities of the computer. The trap
sequence temporarily halts the program, without altering the program sequence,
while the trapped 1/O transfer occurs. Special interface designs may also take
Figure 4-1. DATA 620/ System Organization. advantage of the trap facilities to control /O transfers.

System Reference 4-2 4-3 System Reference

4.2.3 Input/Output Operations

During information transfers over the 1/O bus, the E lines may carry control codes,
addresses or data, depending upon which type of operation is being performed.

Table 4-1 defines the 1/O cable control signals used to synchronize all input/output
operations. Table 4-2 summarizes the signals on the interrupt cable. Table 4-3 sum-
marizes the signals present on the E bus during the program controlled I/O operations.
Note that the 1/O command is not transmitted intact over the E-bus. Bits 11-15 are
decoded internally and only one of these lines will be true for each type of command.
Bits 0-8 of the command are transmitted unchanged on the cable.

Table 4-1

1/O CABLE CONTROL LINE SIGNALS

Table 4-2

INTERRUPT CABLE CONTROL LINE SIGNALS

CONTROL LINE

SIGNAL NAME

FUNCTION

CONTROL LINE

SIGNAL NAME

FUNCTION

Function Ready

Data Ready

Sense Response

Interrupt Acknowledge

System Reset

FRYX-1

DRYX-1

SERX-I

TUAX-1

SYRT-1

Indicates that the E-bus
contains control or
address information.

Indicates that the E-bus
contains data.

Indicates logical state of
line queried by sense line
address on E-bus.

Indicates that extemnal
interrupt demand is being
acknowledged. Address
is placed on E-bus and
removed when [UAX-1
goes false.

Reset line for initializing
peripheral controllers.
Enevgized by console

RESET switch.

System Reference

Interrupt Request

Trap Output Request

Trap In Request

Interrupt Clock

Priority Out

Priority In

Priority 2 and 3

Interrupt Jump

ITURX-1

TPOX-I|

TPiX-1

1UXC-]

PRIX-1

PR4X-1

PR2X-1, PR3X-1

1UJP-i

Indicates a demand from the
Interrupt module to force
program to take one instruc~
tion from location specified
by address on E-bus. This
address will be placed on
£-bus when IUAX-I is true.

indicates that a buffer inter-
lace controller or other trap
device is requesting data
transfer from memory .

Indicates that a buffer inter-

"lace controller or other trap

device is requesting data
transfer to memory .

1.1-MHz clock provided on
cable for interrupt module.
May be used in any inter-
face design.

Priority line used with inter~
rupt dnd buffer interlace
controller modules for
priority determination.

Priority line returned to
computer for permitting
console interrupt.

Intermediate priority lines
that are used to assign
priority positions among
trap-and interrupt devices.

Indicates that instruction at
interrupt location is a jump
(2 word) instruction.

4-5

System Reference

4.2.4 1/O Cable Adapter Card

The 1/O cable adapter is a standard Micro-Versa LOGIC module 10 -701 designed to
facilitate interfacing with the DATA 620/i 1/O bus. Typical examples illustrating its

use are given in the interface reference manual. This card simplifies the use of many .
types of 1/0 interfaces.
4.3 PROGRAM CONTROL FUNCTIONS
Interfacing functions fall into two major categories: programmed operations, and 3 2
automatic operations. The programmed operations are: External control (single~bit W Eaf o 2
out), sense operations (testing a single bit), data transfer in (full-word inputs) and 581; sh . =245
. . =] 6.;.39 _'ZEf
data transfers out (full-word outputs). The following paragraphs describe the pro- 28 2EIE 853
grammed operations and examples of their use. The I/O instruction group is sum- EH2 =
marized in table G-11, appendix G.
4.3.1 External Control
The external control instruction is a single word, non-addressing instruction. It places
a function code, contained in bits 0-8, on the E bus to effect a control operation on an S " 5__
external device. 2 a‘f &23 G_
go8b z92 0, .23
539+ wg- ZERY
EXC External Control Timing: 1 cycle <3< “ gzzZ2
17 16 15 14 13 12 11 10 987 6 543210
r—T-7
1 10 [o] XYY |
18-bit
z Zo
option 9 z o5
o_. It a 03
. 023 o£F g 21
The nine bits represented by XYY are placed on the E bus for transmission to the /0 é%i Z581 83z
controllers. The device address is contained in the YY portion of the data, and the ek <= zee
X portion of the data contains the function to be performed by the selected device.
Indexing: No
Indirect Addressing: No

Registers Altered: None
4.3.2 Program Sense

The sense instruction is a double-word, addressing instruction which senses the logical
state of an external line. Figure 4-2 shows the execution of this instruction.

Figure 4-2. Sense Instruction, General Flow,

System Reference 4-6 4-7 System Reference

4.2.4 I/O Cable Adapter Card

The 1/O cable adapter is a standard Micro-Versa LOGIC module 10-701 designed to
facilitate interfocing with the DATA 620/i 1/O bus. Typical examples illustrating its

use are given in the interface reference manual. This card simplifies the use of many i
types of 1/O interfaces.
4.3 PROGRAM CONTROL FUNCTIONS
Interfacing functions fall info two major categories: programmed operations, and g 2
automatic operations. The programmed operations are: External control (single<bit wo 2% . 8
out), sense operations (testing a single bit), data transfer in (Full-word inputs) and gg} 0=, «Q0s
data transfers out (full-word outputs). The following paragraphs describe the pro~ gg R CFH QEE;
grammed operations and examples of their use. The /O instruction group is sum- - “ 2=
marized in table G-11, appendix G.
4.3.1 External Control
The external control instruction is a single word, non-addressing instruction. [t places
a function code, contained in bits 0-8, on the E bus to effect a control operation on an & w 5
external device. % a7 wZw 5
38, a8 9rE3
+ wgr Zxh
EXC External Control Timing: 1 cycle 23 & 592z
g Y
1716 1514 13 12 11 10987 6 54 3 210
r-T-r1
P10 o] XYY]
18-bit - R .
option ,9_- F g;
083 ofiF Q..éi
The nine bits represented by XYY are placed on the E bus for fransmission to the 1/0 é'i.‘; 53; R
controllers. The device address is contained in the YY portion of the data, and the el = <z=e
X portion of the data contains the function to be performed by the selected device.
Indexing: No
Indirect Addressing: No.
Registers Altered: None
4.3.2 Program Sense
The sense instruction is a double-word, addressing instruction which senses the logical
state of an external line. Figure 4-2 shows the execution of this instruction.
F igure 4-2, Sense Instruction, General Flow.
System Reference 4-6 4-7 System Reference

SEN Program Sense Timing: 2.25 cycles Clear and Input to B Register Timing: 2 cycles

171615 14 13121110987 6543210 17 16 1514 1312 11 10987 6 543 210

- r o0 2 | 622
N .;. 10 1 XYY bt
- | .]
18-bit
i
n+1] 1 | JUMP ADDRESS option
['_w—bﬂ -
I=

The B register is cleared and a data word from the selected device, ZZ, is transferred
to the B register.

0, word contains an address
1, word confains an indirect address

option

Indexing: No
Indirect Addressing: No
Registers Altered: B

The nine bits represented by XYY are placed in the party line /0 bus and represent
the condition to be tested. X defines a specific line within device YY. The associated
peripheral controller replies with either a true or false condition.

If a true condition is received by the DATA 620/i, a jump is made to the jump address, Input fo A Register Timing: 2 cycles
If a false condition is received the next instruction in sequence is executed. 17161514 13 12 1110987 6 543210 .

Indexing: No ,———
1 v 10 2 1ZZ
Indirect Addressing: Yes IR T 1
Registers Altered: P
° 18-bit

4.3.3 Data Transfer In option
Two types of data transfer in instructions are provided: input to operational registers, A data word from the selected device, ZZ, is inclusively-ORed with the contents of the
and input directly to memory. The first type of input instruction is a single-word, A register -
non-addressing class instruction; the second type of input instruction is a double~word, .
addressing class instruction. - Indexing: No

Indirect Addressing: No

CIA Clear and Input to A Register Timing: 2 cycles Registers Altered: A
1716151413 12 11 10987 6543210 Input to B Register Timing: 2 cycles
r=or-r7
L_i_k o | 2 52Z] 1716151413 121110987 6 543210

[et
Ils—bitl prr o | 2 22z]
option N
18-bit

The A register is cleared and a data word from the selected device, ZZ, is transferred option
info the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A

System Reference 4-8 4-9 System Reference

A data word from the selected device, ZZ, is inclusively-ORed with the contents of

the B register.
Indexing: No
Indirect Addressing: No
Registers Altered: B
IME Input to Memory Timing: 3 cycles g
= g
17 16 15 14 13 12 11 10987 6 543210 - n 4
= Yo Eew
-+ Bw o g2 5 a
noo 10 2 0zz 2581, £ae
-+ 802
1 || Data Address 4
-1
18-bit
option
A data word from the selected device, ZZ, is placed in the cleared effective memory P 2
address. Figure 4-3 shows the execution of this instruction. % T o
220l BB &
Indexing: No =SE” P& 0,25
Indirect Addressing: No gg § :_ Q&L é & %é
Registers Altered: Memory = RS
4.3.4 Data Transfer Out
Two types of data transfer out instructions are provided: output from operational
registers, and output from memory. The first type of output instruction is a single-
word, non-addressing class instruction; the second type is a double-word, addressing
class instruction. 5 a g -
= Za BN
194 — %) -
DAR Output from A Register Timing: 2 cycles o023 2 é § N g, 5 I
25! 252z S5
1716 1514 13 12 1110987 6543210 == <Zse
re—r-T
T T 10 Ta] 12z]
I lB-bnl
option
The contents of the A register are transferred to the selected device, ZZ.
Indexing: No
Indirect Addressing: No Figure 4-3. Input to Memory, General Flow.
Registers Altered: None .
4-1 System Reference

System Reference 4-10

@BR Qutput from B Register Timing: 2 cycles

1716 1514 13 12 1110 987 6 543210

BRI 3 277 |

| 18-bit I

option

="

B

The contents of the B register are transferred to the selected device, ZZ.

Indexing: No
Indirect Addressing: No
Registers Altered: None

Output from Memory Timing: 3 cycles
1716 15 14 13 12 11 10 98 7 6 543 21 0
S
10 3 0zzZ
-
ntl b Data Address
i
Ea-bir
option

The contents of the effective memory address are transferred to the selected device,

ZZ. '

Indexing: No
Indirect Addressing: No
Registers-Altered: None

4.4 AUTOMATIC CONTROL FUNCTIONS (optional)

Two ‘fypes of computer timing sequences are provided to automatically transfer control
and information signals between the 1/O and the DATA 620/i:

a. An interrupt timing sequence is initiated when the DATA 620/i recognizes
an external interrupt signal. This sequence forces the computer to execute an instruc-
tion at the memory location specified by interrupt logic through the E bus.

b. A trap timing sequence is initiated when an external device signals that it
wishes to transfer a word to or from memory. The external device must supply the
memory address of the word through the E bus. This sequence delays the internal pro-
gram sequence for the time required to execute the 1/O transfer (2.7 psec).

System Reference 4-12

The devices that demand either of these automatic sequences must first establish a
priority fo resolve two or more simultaneous demands for service. The priorities of
devices demanding service are determined every 1.8 usec, and are clocked by the
interrupt clock (refer to table 4-1).

The basic computer has one built-in priority device, the power failure interrupt. The
power failure interrupt is permanently wired for the highest priority. Unless power
failure (scanned every 1.8 psec) is detected, the computer will service interrupt or
trap requests from the interrupt cable on a priority basis.

Priority assignment for devices on the 1/O cable is optional and is a part of the system
definition. Priorities may be fixed for any given configuration by properly connecting
priority lines in the |/O cable. Priorities can be altered if the definition changes.

4.4.1 Program Interrupt (optional)

The DATA 620/ has a multi-level interrupt system with single~execute, on/off and
selective arm/disarm copability. Each interrupt line is assigned a unique memory
destination address which is the first of a pair of locations. The system is modular and
expandable in sets of eight levels.

Each optional interrupt line has an enable/disable flip-flop which is addressable and
set by interrupt control instructions. If signals exist on one or more interrupt lines,
the highest-priority line is recognized and the corresponding memory destination
address is transmitted to the DATA 620/i cofter the current instruction is executed.

The program can maintain the hardware order of priority levels, or a re-order to meet
dynamic queving. For each group the order is determined by an 8-bit mask word
transferred by the program to the arm/disarm flip—flops in the interrupt system. The
action initiated by the interrupt subroutine causes the interrupting device to remove
its requesting signal .

An acknowledgement of an interrupt causes the instruction located at the destination
address to be executed. The instruction can be any of the DATA 620/i repertoire.
This technique permits the interrupts to be of the "single execute" type, whereby
single-instruction responses to external signals can be serviced in one instruction
period. A real-time clock can be implemented with an interrupt line and an external
pulse generator. An automatic data channel can be implemented with as few as two
inferrupt lines. |f the executed instruction is a jump, the interrupt system is auto~
matically inhibited permitting the inhibit to be terminated under program control.
While in the inhibit mode, the interrupt subroutine may selectively enable and disable
levels, and then enable the system permitting the selected levels to interrupt the level
being processed.

4-13 System Reference

4.4.2 Interlace Data Transfers (optional)

Interlace data transfers may be performed concurrently with internal program operation,
This type of operation uses the computer trap timing sequence to delay the program for
2.7 psec while a word is transferred between memory and a peripheral device. The
transfer is controlled by the external device which must transmit the memory address

of the data word, and must synchronize the operation using the signals transmitted over
the 1/O contro! lines (table 4-1). The maximum interlace transfer rate is 202,000
words per second. '

The general trap sequence flow is shown in figure 4-4. The maximum computer delay
in acknowledging a trap request is 5.4 psec. However, the time delay experienced by
a specific controller in receiving acknowledgement fo a trap request may be extended
by the time required for the central processor to service higher-priority requests.

Special peripheral controllers designed for system applications (such.as A/D and D/A
converters, efc.) may utilize the trap facilities of the computer to implement automatic
1/O operations (refer to the interlace reference manual for detailed design information).
A standard buffer interlace controller is also available for use with all standard DATA
620/i peripheral equipment. Special system devices may also be interfaced for inter~
lace operations under control of this unit.

System Reference 4-14

TRAP REQUEST

ACKNOW-
REQUI

B™
4

INPUT
TRAP
ADDRESS

INPUT/
QUTPUT
DATA

TRAP
COMPLETE

Figure 4-4. Trap Sequence, General Floyv.

4-15

1.8 S MIN
5.4 45 MAX

+
HIGHER PRIORITY
SERVICE DELAY

.
|

2.7p8

System Reference

SECTION V
CONTROL CONSOLE OPERATION

5.1 CONTROLS AND INDICATORS

The DATA 620/ console (figure 5-1) provides controls and displays required for
operator communication with the computer. Console facilities are of two kinds:
register display and control switches. The contents of all operational registers includ~
ing the instruction register, can be displayed in binary-octal form. During normal
operation (run mode) the contents of the computer C-bus are displayed continuously.
Data entry into a selected operational register is accomplished in step mode (computer
halted) by mementary contact lever action switches. During run mode, these switches
are deactivated to prevent accidental alteration of the register contents.

Control switches allow the operator to manually alter normal program operation.

These switches described in table 5-1, provide considerable control flexibility, and
are useful for maintenance, troubleshooting, and program debugging. The sense switch
controls are also useful in normal program operation to allow selection by the operator
of particular program sequences to be executed.

Table 5-1
CONTROLS AND INDICATORS
CONTROL
OR
INDICATOR FUNCTION
Register Display In~line display of 16 (or 18) bits in selected operational
register. Register bits are numbered from right to left
with the sign bit appearing on the far left side of the dis-
play. Lights are grouped in an octal arrangement.
Selection of the register to be displayed is accomplished
by the register select switches.
Register Select Five alternate action switches used to select one of five
Switches registers for display. Only one register may be selected
at a time. Selection of two or more at the same time
disables the selection logic and the display becomes
blank.

5-1 System Reference

!

\

Table 5-1 (continued)
CONTROLS AND INDICATORS

\

—

CONTROL
OR
INDICATOR FUNCTION

Four indicators are provided to indicate the status of the
machine. Overflow status indicator lights when the over-
flow flip-flop is on. STEP indicator lights when the com-
puter is in step mode and uexec facility is not being used.
RUN indicator lights when the computer is in run mode.
ALARM is an indicator used to flag a thermal overload
condition. It also lights when power is applied to the
computer through the system circuit breaker but power
ON/OFF switch on the console is.in the OFF position.

Status Display

== —
~PATA.820,}

RESET Switch The RESET switch causes the selected register to be
cleared. This switch is disabled when the computer is in

the run mode.

STEP Switch The STEP switch is a momentary contact switch that causes
the instruction in the instruction register to be executed
if the computer is in the step mode. If the computer is in
the run mode, pressing the STEP switch causes the com-
puter to halt at the completion of the instruction being
executed.

RUN Switch The RUN switch causes the program to run at the location
specified by the program counter after first executing the

instruction in the instruction register.

Control Console.

SYSTEM RESET The SYSTEM RESET switch is a system clear control that
forces the computer to halt mode, and initializes control
flip-flops in the processor. In addition, all peripheral
devices are initialized by SYSTEM RESET. The control is
normally used as an initialize control, but is useful to
halt 1/O operations.

Figure 5-1,

0
LW
-
5
< |
z
< |
k2
§

System Reference System Reference

T;:ble 5-1 (continued)
CONTROLS AND INDICATORS

CONTROL
OR
INDICATOR FUNCTION

REPEAT . Alternate~action switch that permits manual repeat of an
instruction in instruction register. - Pressing STEP switch
executes instruction and advances program counter; how~
ever, contents of the instruction register are left unchanged.
Switch on the control console is activated only when the
STEP light is on (operation halted).

SENSE Switches Alternate-action switches that permit manual program
1,2,3 control whenever the sense switch jump, or jump-and-
mark, or execute instructions (JSS1, JSS2, JSS3, JSIM,
JS2M, XS1, XS2, XS3) are performed. The indicated
jump and execute operations are performed only if the
corresponding sense switch is ON.

POWER Alternate-action switch/indicator turns power supplies on
ON/OFF and off. - Indicator/switch is illuminated when power on;
indicator is off when power is off.

5.2.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data may be read from

memory and entered into memory, and a pre-stored program may be manually executed.

To load words into memory (either instructions or data), set up the desired word in the
A, B, or X register. Set up the appropriate store-type instruction (STA, STB, STX)
with the desired operand address in the instruction (U} register and press the STEP
switch to execute the store operation.

To display the contents of any memory cell in the A, B, or X register; set up the
appropriate load-type instruction (LDA, LDB, LDX) with the proper memory address
in the instruction register; then press the STEP switch to load the selected word into
the register.

System Reference 5-4

To manually execute a program stored in memory, set up the starting location of the
program in the program counter. ‘When the STEP switch is pressed, the instruction con—
tained in the instruction register is executed, and the instruction of the selected loca-
tion is transferred to the instruction register. Repeated operation of the STEP switch
will then step through the program one instruction at a time. All operations such as
multi-level indirect addressing will be performed for each instruction each time the
STEP switch is operated. Note that 1/O instructions that involve an asynchronous
device which transfers data in a block such as magnetic tape or the teletype generally
cannot be operated in a single~step mode .

5.2.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed
when STEP is pressed. The program counter contains the location of the next instruc—
tion to be transferred to the instruction register after the current instruction is
executed .

In some cases, it is desirable to manually execute an instruction several times. When
the REPEAT switch is on, instruction register loading (when STEP is pressed) is inhibited
even though the instruction coynter is advanced each time. This mode is particularly
useful for loading words into sequential memory locations, or for displaying the con-
tents of sequential memory locations, or for displaying the contents of sequential
memory cells.

To load a group of sequential memory cells, set up the appropriate store-type instruc-
tion (STA, STB, STX) in the instruction register with the relative address mode in

the m field and the base address in the a field. Repeated operation of the STEP switch
will store the contents of A, B, or X into sequential memory locations. The word
loaded on each step may be changed by entering the desired value into the operational
register for each step.

To display the contents of a group of sequential memory cells, set up the appropriate
load-type instruction (LDA, LDB, LDX) in the instruction register, in the relative
address mode, with the base address in the instruction register and the a field = 0.
The contents of the sequential locations will be displayed in the selected operational
register with each operation of the STEP switch.

5.2.4 Sense Switches

The SENSE switches allow the operator to dynamically alter a program sequence in
either the run or step mode. The three SENSE switches provide a logical-AND func-
tion with.bits 6-8 of the instruction word, and consequently can be used for various
logical branches set up on the console.

System:Reference

T;'Jble 5-1 (continued)
CONTROLS AND INDICATORS

CONTROL
OR
INDICATOR FUNCTION
REPEAT . Alternate-action switch that permits manual re‘peaf of an

instruction in instruction register. Pressing STEP switch
executes instruction and advances program counter; how-
ever, contents of the instruction register are left unchanged.
Switch on the control console is activated only when the
STEP light is on (operation halted).

SENSE Switches Alternate-action switches that permit manual program
1,2, 3 control whenever the sense switch jump, or jump-and-
mark, or execute instructions (JSS1, JSS2, JSS3, JSIM,
JS2M, XS1, XS2, XS3) are performed. The indicated
jump and execute operations are performed only if the
corresponding sense switch is ON.

POWER Alternate-action switch/indicator turns power supplies on
ON/OFF and off. - Indicator/switch is illuminated when power on;
indicator is off when power is off.

5.2.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data may be read from
memory and entered into memory, and a pre-stored program may be manually executed.

To load words into memory (either instructions or data), set up the desired word in the
A, B, or X register.” Set up the appropriate store-type instruction (STA, STB, STX)
with the desired operand address in the instruction (U) register and press the STEP
switch to execute the store operation.

To display the contents of any memory cell in the A, B, or X register; set up the
appropriate load-type instruction (LDA, LDB, LDX) with the proper memory address
in the instruction register; then press the STEP switch to load the selected word into
the register.

System Reference 5-4

To manually execute a program stored in memory, set up the starting location of the
program in the program counter. When the STEP switch is pressed, the instruction con-
tained in the instruction register is executed, and the instruction of the selected loca-
tion is transferred to the instruction register. Repeated operation of the STEP switch
will then step through the program one instruction at a time. All operations such as
multi-level indirect addressing will be performed for each instruction each time the
STEP switch is operated. Note that I/O instructions that involve an asynchronous
device which transfers data in a block such as magnetic tape or the teletype generally
cannot be operated in a single-step mode.

5.2.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed
when STEP is pressed. The program counter contains the location of the next instruc—
tion to be transferred to the instruction register after the current instruction is
executed.

In some cases, it is desirable to manually execute an instruction several times. When
the REPEAT switch is on, instruction register loading (when STEP is pressed) is inhibited
even though the instruction counter is advanced each time. This mode is particularly
useful for loading words into sequential memory locations, or for displaying the con-
tents of sequential memory locations, or for displaying the contents of sequential
memory cells.

To load a group of sequential memory cells, set up the appropriate store-type instruc-
tion (STA, STB, STX) in the instruction register with the relative address mode in

the m field and the base address in the a field. Repeated operation of the STEP switch
will store the contents of A, B, or X into sequential memory locations. The word
loaded on each step may be changed by entering the desired value into the operational
register for each step.

To display the contents of a group of sequential memory. cells, set up the appropriate
load-type instruction (LDA, LDB, LDX) in the instruction register, in the relative
address mode, with the base address in the instruction register and the a field = 0.
The contents of the sequential locations will be displayed in the selected operational
register with each operation of the STEP switch.

5.2.4 Sense Switches

The SENSE switches allow the operator to dynamically alter a program sequence in
either the run or step mode. The three SENSE switches provide a logical-AND func-
tion with bits 6-8 of the instruction word, and consequently can be used for various
logical branches set up on the console.

5-5

System-Reference

PROGRAMMING REFERENCE

SECTION |
GENERAL DESCRIPTION

1.1 INTRODUCTION

The DATA 620/i computer is a high-speed, parallel binary computer. Its extensive
instruction repertoire, flexible input/output system, and modular packaging make the
DATA 620/i computer ideally suited for operation as a general-purpose computer or
as a system component. The computer, simple in design, is easy to program, operate,
and maintain. As a system component, the computer is easily integrated with other
equipments through the use of standard or special peripheral interface elements.

Features of the DATA 620/i computer are:
- Fast Operation 1.8-microsecond memory cycle.
- Large Instruction Repertoire 107 standard instructions with over 128

micro-instructions and 18 optional
instructions.

- Expandable Word Length 16 or 18-bit word arithmetic.

- Modular Memory 4096 words minimum, 32768 words
maximum.

- Multiple Addressing Modes Five types: direct, indirect, relative,
index, immediate, and extended
(optional).

- Flexible I/O System 64 device addresses on the standard 1/0

bus; optional, fully-buffered input/output
and direct memory access are available.

- Extensive Software Programming and diagnostic aids such as
assembier and procedure-oriented
programs required for efficient computer
use.

- Modular Packaging Mounts in a standard 19-inch cabinet.

No special mechanical or environmental
facilities are required.

1-1 Programming Reference

1.2 PURPOSE OF THE MANUAL

This manual provides the DATA 620/i computer programmer with the information

necessary to use the DATA 620/i assembly system, the utility and program diagnostic -~ " DIRECT MEMORY ACCESS BUS (OPTIONAL)] [' VOCABLE ar
package (AID), the symbolic correction program (COR), and the symbolic tape Py 3

source correction program (EDITOR). Before this manual can be used effectively, the
programmer should be familiar with the contents of the DATA 620/ system reference

manual, which contains a detailed description of the DATA 620/i computer. [c S8]
Table 1-1 lists all manuals pertaining to the DATA 620/i computer and peripheral
controllers.
1.3 COMPUTER ORGANIZATION

P REGISTER X REGISTER A REGISTER B REGISTER
The DATA 620/i is organized with o unique bus structure, selection logic, and eight

b
registers. The organization provides universal information routing, buffered pro-

cessing, micro-programming capability, indexing without time penalty, and buffered
input/output data transfer. A unique optional facility, Micro-EXEC, is also avail-
able which permits complex algorithms to be implemented with external control f C 8US]
hardware. This capability provides increases in processing speed in excess of 400
percent over normal programmed operations.

The organization of the DATA 620/i is shown in figure 1-1. This diagram shows the

major functional elements of the machine, including the registers and busses provided] - —_—— —_
for information transfer. i 1 ! i
' [I
i | aremenc (! TIMING H
The major functional elements of the DATA 620/i, indicated in figure 1-1, are: ?SMREORY [} LREGISTRR | 1 UnmT i DECODING | 4
memory, control section, arithmetic/logic section, operational registers, internal C H i {
busses, and input/output (I/O) bus. ! T H i !
[i !
1.3.1 Memory ' i | i
| P! i
1
1 I
The internal storage of the computer consists of 4096-word modules connected to the L—p] wrREGISTER : R REGISTER i : é’gﬂmm UREGISTER | |
L and W busses. The mainframe can accommodate one 4096-word module. Addi- H ! :
. . are . . k i P
tional modules are added in an additional frame that is attached to the mainframe. ! A ' CONTROL :
The computer memory can be expanded to a maximum of 32,768 words using | ;O?:SN| 1 SECTION 1
4096-word modules. L g3ECTIONy o _ I |
Instruction words read from memory are transferred to the control section for execu- [M BUS]

tion. Words may be transferred, under program control, from memory to the
arithmetic/logic section, to the operational registers, or to the 1/0 bus. Words
may be transferred, under program control, to memory fiom the operational registers

or the 1/0 bus.

Figure 1-1. DATA 620/i Organization.

Programming Reference 1-2 1-3 Programming Reference

Table 1-1
DATA 620/i DOCUMENTS

PUBLICATION
NUMBER TITLE
VDM 3000 System Reference Manual
VDM 3001 Interface Reference Manual
VDM 3002 Programming Reference Manual
VDM 3003 FORTRAN Manual
VDM 3004 Subroutine Manual
VDM 3005 Maintenance Manuals
VDM 3006 ASR-33 Teletype Controller Reference Manual
VDM 3007 Buffer Interlace Controller Reference Manual
VDM 3008 Magnetic Tape Controller Reference Manual
VDM 3009 600 LPM Line Printer Controller Reference Manual
VDM 3010 300 LPM Line Printer Controller Reference Manual
VDM 3011 Paper Tape System Controller Reference Manual
VDM 3012 100 CPM Card Reader Controller Reference Manual
VDM 3013 Priority Interrupt Reference Manual
VDM 3014 A/D Converter Reference Manual
VDM 3015 Optical Scanner Controller Manual
VDM 3016 ASR-35 Teletype Controller Reference Manual
VDM 3017 Digital Plotter Controller Reference
VDM 3018 DDC Disc Controller Reference Manual
VDM 3019 Console Printer Controller Reference Manual

Programming Reference

When one or more optional buffer interlace controlier (BIC) is used, the system is
capable of direct transfer between memory and peripheral devices on the 1/0O bus,
concurrent with computations.

1.3.2 Control Section

The control section provides the timing and control signals required to perform all
operations in the computer. The major elements in the section are the U register,
the timing and decoding logic, and the shift control.

The U register (instruction register) is 16 bits long. This register receives each
instruction from memory through the W bus and holds the instruction during its execu-
tion. The control fields of the instruction word are routed to the decoding and
timing logic where the codes determine the required timing and control signals. The

‘address field from U, used for various addressing operations, is also routed to the

arithmetic/logic section.

The decoding logic decodes the fields of the instruction word held in U to determine
the control signal levels required fo perform the operations specified by the instruc-
tion. These levels select the timing signals generated by the timing unit.

Timing logic generates the basic 2.2-MHz system clock. From this clock, timing
logic derives the timing pulses which control the sequence of all operations in the
computer.

The shift control contains the shift counter and logic which control operations per-
formed by the shift, multiply, and divide instructions.

1.3.3 Arithmetic/Logic Section
This section consists of two elements; the R register and the arithmetic unit.

The R register receives operands from memory and holds them during instruction
execution. The operand may be either data or address words. This register permits
transfers between memory and 1/O bus during the execution of extended-cycle
instructions.

The arithmetic unit contains gating required for all arithmetic, logic, and shifting
operations performed by the computer. Indexed and relative address modifications
are performed in this section without increased instruction execution time.

The arithmetic unit also controls the gating of words from the operational registers
and the 1/O bus onto the C bus where they are distributed to the operational registers
or to memory registers. This facility is used to implement many of the micro-
instructions of the computer.

1-5 Programming Reference

1.3.4 Operational Registers
The basic DATA 620/i computer contains eight registers.

The operational registers consist of the A, B, X, and P registers. The A, B and X
registers are directly accessible to the programmer. The P register is indirectly
accessible through use of the jump class instructions which modify the program
sequence. The operational registers are described in the following paragraphs.

A register. This full-length, 16/18-bit register is the upper half of the accumulator.
This register accumulates the results of logical and addition/subtraction operations,
the most-significant half of the double-length product in multiplication, and the
remainder in division. It may also be used for input/output transfers under program
control .

B register. This full-length, 16/18-bit register is the lower half of the accumulator.
This register accumulates the least-significant half of the double-length product in
multiplication, ‘and the quotient in division. It may also be used for input/output
transfers under program control and as a second hardware index register.

X register. This full-length 16/18=bit register permits indexing of operand addresses
without adding time to execution of indexed instructions.

P register. This full-length, 16/18-bit register holds the address of the current
instruction and is incremented before each new instruction s fetched. A full com=
plement of instructions is available for conditional and unconditional modification
of this register.

S register. This five-bit register controls the length of shift instructions in
combination with the U register. This register also buffers memory from the control
unit.

1.3.5 Internal Busses

C bus. This bus provides the parallel path and selection logic for routing data between
the arithmetic unit, the I/O bus, the operational registers, and the memory registers.
The console display indicators are also driven from the C bus. Distribution of data

simultaneously to multiple operational registers is facilitated by this bus.

Sbus. This bus provides the parallel path and selection logic for routing data from
the operational registers to the arithmetic unit.

Programming Reference 1-6

W bus. The memory word (W) register is directly connected to all memory modules
through the W bus. The bus is bydirectional and time-shared among memory modules.

L bus. The memory address (L) register is directly connected to all memory modules
through the L bus. The bus is unidirectional .

1.3.6 input/Output (I/O) Bus

The bidirectional 1/O bus provides the parailel path between the computer and all
peripheral devices. This bus contains the data and control lines required for frans-
mitting ready, sense, function, and interrupt signals as well as data words between
the computer and peripheral devices.

1.3.7 Direct Memory Access (DMA)
The DMA option allows data transfer into or out of memory modules without disturbing
the contents of the operational registers. Only the L and W registers are altered.

Access to memory using the DMA facility is on a "cycle-steal" basis and requires
2.7 microseconds of processor time per transfer.

1-7 Programming Reference

SECTION 1l
DATA 620/i ASSEMBLY SYSTEM

2.1 INTRODUCTION

The DATA 620/i assembler (DAS) assists in program preparation by allowing instruc-
tions, addresses, address modifiers, and constants to be specified in a straightforward
and meaningful manner. Instruction mnemonics such as STB (store B register) are used
in place of numeric instruction codes. Various memory locations (addresses) may be
referred to by labels, not absolute locations. Constants may be entered into the
DATA 620/i without converting the numbers into binary or octal form. Useful com-
ments may be added either between symbolic statements or on the symbolic statement
itself, to allow easy program check-out and documentation.

DAS reduces much of the tedious bookkeeping associated with machine language
programming, but does not compromise the programmer's ability to fully utilize the

DATA 620/i.

The basic assembly (DAS 1) operates in a DATA 620/ system, which consists, as a
minimum, of 4096 words of memory and an on-line teletype. The standard assembly
(DAS 1-F) requires 8192 words of memory.

Provisions have been made to utilize additional facilities such as magnetic tape, card
reader, card punch, additiona! memory, and line printer if these components are

available.

DAS is a two- or three-pass assembly system, which means that the source program
must be read two or three times for complete assembly. During the first pass, values
are assigned to all labels appearing in the location field (paragraph 2.2.3) and
placed in the lebel table. During the second pass, the appropriate values for the
instruction field and the variable field (paragraphs 2.2.4 and 2.2.5) are assembled
into the object instruction and, together with the remarks field, are listed on the
printer. During pass three, the object instructions are punched onto paper tape. In
certain peripheral 1/O configurations, passes two and three are combined.

2.2 THE DAS SOURCE LANGUAGE

2.2.1 Introduction

DAS franslates symbolically coded instructions (the source program) into binary
computer instructions (the object program), Except for ceriain pseudo instructions
(paragraph 2.4), each symbglic source statement will generate one computer

instruction,

2-1 Programming Reference

Computer instructions generated by DAS fall into two categories, instructions and
data. The instructions are described in paragraph 2.3 and the data is described in
paragraph 2.,2.8.

A source statement consists of several parts, or fields. Each source statement may
contain a combination of these fields depending on the requirements of the instruc-
tion or pseudo instruction being processed. The fields are: location, instruction,
variable, and remarks fields.

2.2.2 DAS Characters

The following characters are recognized by the DAS assembler:

Alphabetic characters

ABCDEFGHI JKLMNOPQRSTUVWXYZ$
Numeric characters

0123456789

Special characters

+ (plus sign)) (right porenthesis) « (left arrow)*

- (minus sign) b (biank) \(back slash)

* (asterisk) @ (at sign) ! (exclamation point)
/ (slash) 1{left bracket) " {quotes)

. {period) [(right bracket) # {pound sign)

= {equal sign) <(less than sign) % {percent sign)

, (comma) >{greater than sign) & (ampersand)

! (prime) ? {question mark) : {colon)

{ (left parenthesis) t(up arrow)

*replaced by blank on magnetic tape.

Programming Reference

; (semi-colon)

Teletype characters
CR (carriage return)
LF (line feed)

The SYMBOLIC LISTING is formated as an 8-1/2 by 11 page with @ one inch margin
at top and bottom.

The OBJECT PROGRAMS are prepared in standard binary format,

2.,2.3 Location Field

Labels in the location field consist of from one to four alphanumeric. characters, the
first of which is alphabetic. Special characters are not allowed in a label. Addi-
tional alphanumeric characters may be added to the first four characters of the label
to form an extended label for the convenience of the programmer. However, the
assembler recognizes only the first four characters. Labels are usually attached to
only those source statements that are referred to elsewhere in the program, but this
is not a requirement. Values are attached to the labels during the first pass of the
assembler,

2.2.4 Instruction Field

The instruction field contains special operation code mnemonics which describe the

computer instructions. The same mnemonic may be used both in the instruction field
and in the location field without conflict. An asterisk (*) following the instruction
mnemonic indicates indirect addressing.

Operation code mnemonics may be redefined by the pseudo instruction OPSY
(paragraph 2.4.3).

2,2.5 Variable Field
The purpose of the variable field varies with the needs of the individual instruction.
The variable field may consist of a label, a constant, or an expression which consists

of a combination of labels and constants. The expressions that may be used in the
DAS assembly system are simifar to arithmetic expressions, except that no parentheses

2-3 Programming Reference

may be used. The following-arithmetic operovfors are available in the variable field

of DAS:

+ {addition)

- (subtraction)

* (multiplication)

/ (division)

1

All arithmetic operations are performed in the integer mode, i.e., modules 2 .
The expression A+B/C*D is equivalent to the algebraic expression AHB/C)*D. The
operations are performed from left to right with the multiply and divide operations
taking precedence over the add and subtract operations.
Access to the current value of the location counter may be gained by the special
element *, when used as the first character of the variable field. An asterisk
immediately preceding an operator is treated as the location counter rather than an

operator, Thus, the expression *+1 is interpreted as meaning the current value of the
instruction counter plus one.

Constant-generation facilities available in the DAS assembly system are described
_in the following paragraphs.

2.2.5.1 Decimal Integers. A decimal integer is an optionally signed string of

from one to six digits, the first of which is not zero.
Example: 1, 7, -3, +327

2.2,5.2 Ocral Integers. An octal integer is an optionally signed string of
from one to seven octal digifs, the first of which is always zero

Example: 07, -044, +014

2.2.5.3 Floating-Point Numbers,

Floating-point numbers can be assembled by DAS in one of the following forms:
) + integer. fraction E % exponent
) 375.64E+7 =
) 9.E-2, .1EH12
) -4.+20

Programming Reference 2-4

A right parenthesis, digit, and decimal point must be present. All other items are
optional,

Location field: blank

Instruction field: DATA

Variable field: One or more floating-point numbers separated by commas.

The format of the assembled data is shown below.
16-BIT FORMAT

1514131211 109876543210

L S Exponent + 0200 High Mantissa

L+1 X Low Mantissa

18-BIT FORMAT

1716 15141312 1110987 6543210

L - IS Exponent + 0200 High Mantissa

L+1 X Low Mantissa

The sign bit of the second word is always set to zero.
Negative data are in 1's complement form in the first word.

2,2.5.4 - Alpha Constant. An alpha constant is a string of characters
enclosed by primes (*). An alpha constant is represented internally as an 8-Bit
ASCIl Code. When one character is generated, the character is right-justified
with leading zeros. . Each memory location may contain two characters. A blank
in the string .is recognized as a character.

2-5 Programming Reference

Some examples of words generated by character constants are given below:

17 15 87 0
Al Lo o|o 000000 0[1 10000 (ﬁ] One word is generated.
0 A

‘a8 (001 1000001[11000010] One word is generated.
A B

'ABC' [2 OII 100000 l|] 10000]TI Two words are generated. Note
A B that the space .character code
: is used to fill the low-order
[ooi1 000001 1]10100000] eight bits of the second word
if an odd number (except 1)
of characters is specified
within the primes.

C Space

If the DATA 620/i has an 18-bit word length, zeros are generated in bits 16 and 17
of each word.

2.2.5.5 Address Constant. An address constant consists of a label, number or
expression enclosed in parentheses, and generates a 15-bit address with bit position
15 set to a logical 0 to indicate a direct address.

Example: (A+2), (3), (A)

A is an address symbol and its value is obfained from the Label table. If the program
is relocated, the value of the address constant is changed to agree with the location
assigned to the instruction labeled A,

2.2,5.6 Indirect Address Constant. An indirect address constant consists of an
address constant followed by an asterisk (*), and generate a 15-bit address with bit
position 15 set to a logical 1 to'indicate an indirect address.

Example: (A)*, (A+3)*, (3)*

2.2,5.7 Literals. Literals allow the programmer to refer to a constant in the
variable field and have DAS generate the data and assign a focation in memory .
Even though a literal may be used many times, only one location will be generated.

A literal reference is indicated by an equal sign (=) followed by any format of a

one-word constant (paragraph 2.2.6).
Examples: =3 -+3 =-3 =044 (A +2)* ='A' ='GO"'

Programming Reference 2-6

For certain instructions, more than one expression is desired. In these cases the
expressions are separated by commas (,).

Note that the expressions deal with the values assigned to labels, and not the con=
tents of memory locations that may be referenced by the labels,

2.2.6 Remarks Field

The remarks field is separated from the variable field by at least one blank character.
The information in the remarks field is ignored by the DAS assembler and the
programmer may put in any comments that help him in documentation and debugging.
2.3 DATA 620/i INSTRUCTIONS

2.3.1 Introduction

The following paragraphs assume the 16-bit configuration of the DATA 620/i. Each

of the four instruction types is described in the following paragraphs. Optional
Instructions are recognized only when installed in the object computer.

2.3.2 Type-1 Instructions

Type-1 instructions occupy one computer word and are addressable. DAS recognizes
the following forms:

LOCATION INSTRUCTION VARIABLE

FIELD FIELD FIELD COMMENTS

Label Inst. Mnemonic Expression The expression value is the
effective address.

Label Inst. Mnemonic Exp 1, Exp 2 The value (modulo 512) of
expression Exp 1 is added to the
contents of the X register or the
B register to form the effective
address.

(label is The expression Exp 2 must have

optional) a value of 1 or 2 to designate
the X or the B register, respec-
tively,

Label Inst. Mnemonic* Expression The expression value is the
indirect address of the operand.

Label Inst. Mnemonic (Expression)*

2-7 Programming Reference

If the first form of the instruction listed above is used, DAS will choose the address-
ing mode of the generated computer instruction according to the following rules:

a. If the specified address lies within core locations 0-2047 inclusively,
the direct address will be used.

b. If the specified address lies outside core locations 0-2047 but not
more than 512 and not less than one word beyond the current
instruction, the mode of addressing is relative to the location counter.

c. If neither condition a nor condition b is true, a 15-bit address will
be generated in memory area 0-511 (called bank 0), and the bank
0 address will be used in the instruction in the indirect mode.

Type 1 mnemonics recognized are:

LDA
LDB
LDX
STA
STB
STX
ADD
SUB

2.3.3

(load A register)
(load B register)
(load X register)
(store A register)
(store B register)
(store X register)
(add to A register)

(subtract from A register)

Type-2 Instructions

INR (increment memory word)
ERA (exclusive-OR to A register)
DRA (inclusive~OR to A register)
ANA (AND to A register)

MUL (optional multiply)

DIV (optional divide)

Type-2 instructions require two computer words. The second word is the direct or
indirect address if the instruction is a jump, jump-and-mark, or execute. The
second word of an Immediate instruction is the operand. The second word of

the byte or extended address instruction is the operand address. DAS recognizes
the following forms:

Programming Reference

2-8

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst, Mnemonic Expression The expression value is the
effective jump, jump-and-
mark, or execute address,
or it is the operand of an
Immediate instruction,
Label Inst. Mnemonic* Expression The expression value is the
indirect jump, jump-and-
mark, or execute address.
Label Inst. Mnemonic (Expression)*
(label is
optional)

The following type~2 mnemonics are recognized as Immediate instructions:

LDAI STAI ADDI ERAI DiVi (optional)
LDBI STBI SUBI ORAL MULI (optional)
LDXI STXI INR! ANAI

The following type-2 mnemonics are recognized as fump, jump-and-mark, and
execute instructions:

JmP IXZ JANM JS2M XAZ
JOF JSSi JAPM JS3M XBZ
JAN Jss2 JAZM XEC XXZ
JAP JSS3 JBXM X OF XSl

JAZ JMPM IXZM XAN XS2
JBZ JOFM JSIM XAP XS3

The following type~2 mnemonics are recognized as byte instructions:
SLA SSA SLAC SSAC SCAE
2.3.4 Type-3 Instructions
Type-3 instructions are two-word computer instructions with a direct or indirect

address in the second word. They differ from the type-2 instructions in that the
variable field of the symbolic instruction contains two subfields instead of one.

2-9 Programming Reference

DAS recognizes the following forms of type-3 instructions:

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD
Label Inst. Mnemonic Exp 1, Exp 2
Label Inst. Mnemonic* Exp 1, Exp 2
Label Inst. Mnemonic Exp 1, (Exp 2)*

(label is

optional)

DAS recognizes the following type-3 mnemonics:

Dummy conditional jumps:

JIF (jump if...)

JMIF (jump-and-mark if...) or JIFM (jump-and-mark if...)
XIiF (execute if...)

The value of the expression Exp 1 specifies which of the conditions will cause a jump,
jump-and-mark, or execute instruction. The conditions of Exp 1 have the following
values:

if OFLO set: 0001 if B=0: 0020

(8 (8)
ifA<O: 0004) X =0: 00404,
ifAzO: 0002, g ifSS1 set: 0100,
ifA=0: 00104, if S52set: 02004,

Compound conditions may be specified by adding together the values of the desired
conditions,
For example:

INSTRUCTION VARIABLE
FIELD FIELD

JIF [0222, ALFA

Programming Reference 2-10

Where 0220 = 0200 + 020 + 02 means: take the next instruction from address ALFA,
if and only if, all three of the following conditions are true:

The A register contains a positive number: 0002
The B register contains zero: 0020
Sense switch 2 is set 0200

The value of the expression Exp 2 is a direct or indirect jump, jump-and-mark, or
execute address.

The following type-3 mnemonics are recognized as extended address instructions
(optional):

LDAE STAE ADDE ERAE DIVE
LDBE STBE SUBE DRAE MULE
LDXE STXE INRE ANAE

Type-3 instructions also include the following 1/O instructions:

SEN (sense for state of an /O device)
IME (input to memory)
DME (output from memory)

The value of the expression Exp 1 in the variable field of the instruction is the
device subcode.

The value of the expression Exp 2 is a direct or indirect jump or memory address,
2.3.5 Type-4 Instructions

Type-4 instructions are one-word instructions which do not refer to a memory
location. DAS recognizes the following formats:

2-N Programming Reference

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst. Mnemonic Variable field is blank,
Label Inst, Mnemonic Expression The value of the expression
specifies either source/
destination registers and
overflow conditions, a shift
count, an I/O device or
function, or a halt number.
(label is
optional)

DAS recognizes the following type-4 mnemonics:

TZA, TZB, T1ZX (clear register)

IAR, IBR, IXR (increment register)
DAR, DBR, DXR (decrement register)
CPA, CPB, CPX {complement register)
TAB, TBA, TAX, TXA, TBX, TXB (register transfer)
SQF, ROF (overflow)
HLT, N@P (control)

The following instruction mnemonics are functionally the same as the preceding
register change instructions except that these mnemonics allow the user to specify
multiple-source and/or destination registers, or specify whether or not function
execution is dependent on the overflow conditions:

INSTRUCTION
MNEUMONIC INSTRUCTION FUNCTION
MERGE Take the inclusive-OR of the contents
of all specified source registers and
deliver the result to each of the
specified destination registers.
COMPL Like MERGE, except the result is ones-
complemented before delivery,
INCR Like MERGE, except + 1 is added to
result before delivery.
DECR Like MERGE, except + 1 is subtracted
from the result before delivery.
ZERD Zero each of the specified destination
registers.,

Programming Reference 2-12

The value of the expression used in the variable field of the instruction is interpreted
by DAS as having the following meaning:

Ifbit0O=1: A is a destination register

Ifbit1=1: B is a destination register

fbit2=1: X is a destination register

If bit3=1: A is a source register

If bitd=1: B is a source register

Ifbit5=1: X is a source register

Ifbitg=1: The function is to be performed if and only if

the overflow flip-flop is set to 1.

The instruction generated by DAS has the following format. Bits 8, 5, 4, 3, 2, |,
and O are extracted directly from the corresponding bits of the expression value.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rooo o 0
0 0 0 O[1 o0 1|VFFf XBAXGBA

0
I—l 8—bh‘-| Conditional ongTFuncHon Source Destination

Option OQverflow Registers Registers

The shift mnemonics recognized by DAS are listed below. The expression value
represents the number of positions to be shiffed. A value outside the range of 0-31
is reduced modulo 31 and an error code is printed.

LSRA (logical shift right, A)
LRLA (logical rotate left, A)
LSRB (logical shift right, B)
LRLB (logical rotate left, B)
ASRA (arithmetic shift right, A)
ASLA (arithmetic shift left, A)
ASRB (arithmetic shift right, B)
(

ASLB arithmetic shift left, B)

- 2-13 Programming Reference

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst. Mnemonic Variable field is blank ,
Label Inst. Mnemonic Expression The value of the expression
specifies either source/
destination registers and
overflow conditions, a shift
count, an }/O device or
function, or a halt number.
(labet is
optional)

DAS recognizes the following type-4 mnemonics:

TZA, TZB, TZX
IAR, IBR, IXR
DAR, DBR, DXR
CPA, CPB, CPX

SQOF, RQF
HLT, N@P

(clear register)
increment register)
decrement register)
complement register)

overflow)
control)

(
(
(
TAB, TBA, TAX, TXA, TBX, TXB (register transfer)
(
(

The following instruction mnemonics are functionally the same as the preceding
register change instructions except that these mnemonics allow the user to specify
multiple-source and/or destination registers, or specify whether or not function
execution is dependent on the overflow conditions:

INSTRUCTION
MNEUMONIC

INSTRUCTION FUNCTION

MERGE

COMPL

INCR

DECR

ZERD

Programming Reference

Take the inclusive-OR of the contents
of all specified source registers and
deliver the result to each of the
specified destination registers.

Like MERGE, except the result is ones-
complemented before delivery.,

Like MERGE, except + 1 is added to
result before delivery.

Like MERGE, except + 1 is subtracted
from the result before delivery.

Zero each of the specified destination
registers,

The value of the expression used in the variable field of the instruction is interpreted
by DAS as having the following meaning:

Hbit0=1: A is a destination register

Ifbit1=1: B is a destination register

Ifbit2=1: X is a destination register

Ifbit3=1: A is o source register

Ifbitd=1: B is a source register

1fbit5=1: X is a source register

Ifbit8=1: The function is to be performed if and only if

the overflow flip-flop is sef to 1.

The instruction generated by DAS has the following format, Bits 8, 5,' 4,3,2,1,
and O are extracted directly from the corresponding bits of the expression value,

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S 0
1o olo o o0 ol1 o 1|V xsAXGBEA

l.] 8_bit.| Conditional on——TFuncﬁon Source Destination

Option Overflow Registers Registers

The shift mnemonics recognized by DAS are listed below. The expression value
represents the number of positions to be shifted. A value outside the range of 0-31
is reduced modulo 31 and an error code is printed.

LSRA (logical shift right, A)
LRLA (logical rotate left, A)
LSRB (logical shift right, B)
LRLB (logical rotate feft, B)
ASRA (arithmetic shift right, A)
ASLA (arithmetic shift left, A)
ASRB (arithmetic shift right, B)
ASLB (arithmetic shift left, B)

2-13 Programming Reference

LLSR (long logical shift right)

Lk (long logical rofate left) 2.4 DAS PSEUDO INSTRUCTIONS
" SR (long arithmetic shift right)
ASL (long arithmetic shift left) 2.4.% General

The following set of pseudo instructions is provided to allow the DATA 620/i

Th . . _
e following single-word input/output instructions are recognized by DAS. The programmer complete control of the assembly process. The pseudo instructions

expression value specifies the 1/0 function (EXC instruction) and device: are divided into the following groups:
EXC (external control 1/O function and device) - Labe! Definition
- Instruction Definition
INA (input fr.om the selected 1/O device is inclusively- - Location Counter Control
ORed with the contents of A) - Data Definition
INB . - Memory Storage Reservation
(input f!:om the selected I/0O device is inclusively- - Conditional Assembly
ORedwith the contents of B) - Assembler Control
~ Subroutine Control
INAB (input fr.om the selected 1/O device is inclusively- ~ List and Punch Controls
ORed with the contents of A and with the contents
of B) 2.4.2 Label Definition
ClA (A is cleared, then the input data is placed in A) The label table is a list of labels that occur in the source program. To each label,
cIB L there is a corresponding value, usually an address. The programmer may assign
(B is cleared, then the input data is placed in B) arbitrary values to labels by means of the pseudo instructions described in the
following paragraphs.
CIAB gA and B are cleared, then the input data is placed)
in both registers) 2.4.2.1 EQU pseudo insiruction
DAR (output from A) Location Field: a label
o8 Instruction Field: EQU
(output from B) Variable Field: An expression
PAB (the inclusive-OR of the A and B is out The label is placed in the label table and assigned the value of the expression in
put to the P P

the variable field., If the label is already in the label table, an error message
(DD) is printed and the value of the expression replaces the value in the the table.
Any label appearing in the expression must have been defined previously, for correct

selected device)

assembly ,

2.4.2.2 SET pseudo instruction

Location Field: a label
Instruction Field: SET
Variaoble Field: an expression

Programming Reference 2-14
2-15 Programming Reference

If the label in the location field has not yet appeared in the location field in any
instruction, this label is entered into the label table and assigned the value of the
expression in the variable field. If the label is already in the label table the value
of the expression in the variable field replaces the previous value of the label. Any
labels appearing in the variable field must have been defined previously, for correct
assembly,

EQU and SET are essentially the same except that redefinition of a label is permitted
by SET without an error message.

2.4.2.3 MAX pseudo instruction

Location Field: a label
Instruction Field: MAX
Variable Field: two or more expressions separated by commas,

The label in the location field is assigned the greatest of the algebraic values of

the expressions appearing in the variable field. All labels appearing in the variable
field must have been previously defined, for correct assembly, Redefinition of the
label is permitted by the SET pseudo instruction (paragraph 2.4.2.2).

2,4.2.4 MIN pseudo instruction

Location Field: a label
Instruction Field: MIN
Variable Field: two or more expressions separated by commas

The label in the location field is assigned the smallest of the algebriac values of the
expressions appearing in the variable field. All labels appearing in the variable

field must have been previously defined, for correct assembly. Redefinition of the
label is permitted by the SET pseudo instruction (paragraph 2.4.2.2).

2.4.3 Instruction Definition

The DATA 620/i programmer may redefine a standard instruction mnemonic with the
pseudo instruction OPSY.,

2.4.3.1 QPSY pseudo instruction

Location Field: a label
Instruction Field: @PSY
Variable Field: an instruction mnemonic

Programming Reference 2-16

The label in the location field becomes an instruction mnemonic, with the same
definitions as the mnemonic in the variable field. This pseudo instruction is used
to redefine the standard instruction mnemonics.

Examples: CLA DPSY LDA
CLA BETA

2.4.4 Location Counter Control
Five pseudo insfructions are provided for controlling the DAS location counters (LC) .
Multiple location counters are provided in the DAS assembler, along with pseudo

instructions to preset or modify the values of an individual location counter.

The following table lists the five LC labels which are standard in the DAS system.
These LC labels need not be created by the DATA 620/ programmer.

1C LABEL INITIAL VALUE INTENDED USE

SYQE 00001

Controls the assignment of locations to any
system parameters desired by the user,

(8)

IAQR 00100

Controls the assignment of locations to

(8) indirect pointers.
LT@R 01000(8) Controls the assignment of locations to literals,
COMM 02000(8) Controls the assignment of locations within an
interface area which is common to two or more
programs.
Blank 04000(8) The blank location counter is used initially by

DAS for assigning locations. This is the counter
normally in use by DAS unless the programming
tells it to do otherwise with USE pseudo
instruction,

In addition, to the five standard location counters, the DAS programmer may create
up to eight of his own location counters. This allows the programmer to creote
complex relocatable and overlay programs within a single assembly .

2-17 Programming Reference

At the beginning of an assembly, there are no created location counters, DAS
uses, at any time, three location counters for location assignment. The IADR and
LT@R location counters are always in use. A third location counter is used to
assign locations to generated instructions and to generated data (except literals and
indirect pointers). The biank location counter is initially used by DAS to control
this function until another LC symbol is so designated by the pseudo instruction
USE (paragraph 2.4.4,3),

For a straightforward program which uses one LC, complete control over the LC is

maintained by pseudo instructions PRG (paragraph 2.4.4.,1) and L@C (paragraph
2.4.4.2),

2.4.41 @RG pseudo instruction

The location counter that is currently in use is set to the value of the expression
in the variable field. If o label appears in the location field, the label is set to
the value in the variable field, If a label appears in the expression, the label
must have been previously defined for correct assembly .,

Location Field: label or blank
Instruction Field: @RG

Variable Field: an expression

2.4.4.2 L@C pseudo instruction

The LPC pseudo instruction causes instructions and/or data following LOC to be
generated as if the PRG pseudo instruction had been used to change the current
LC value. However, the value of the LC is not changed by the LBC pseudo instru-
tion: and the instructions and/or data generated are located in memory at the LC
address,

The LAC pseudo instruction is used if the instructions and data following the LOC
address are to be moved to the LBC address by the object program before execution.
If a label appears in the variable field, the label should have been previously
defined for correct assembly,

The L@C pseudo instruction may not be used with a relocatable program.
Location Field: labe! or blank

Instruction Field: LGC
Variable Field: an expression

Programming Reference 2-18

2.4.4.3 BEGIN pseudo instruction

The BEGIN pseudo instruction allows the DAS programmer to create a new location
counter or to redefine the value of any location counter before using it. The
location counter is given a value equal to the expression in the variable field.
BEGIN does nothave any effect on the location counter currently being used.

Once a location counter has been used by a DAS program for location assignment,
the value of that location counter may not be redefined by the BEGIN pseudo
instruction. If a label appears in the expression in the variable field, the label
must have been previously defined for correct assembly.

2.4.4.4 USE pseudo instruction

The USE pseudo instruction causes DAS touse the location counter designated in the
variable field o assign locations to the instructions and data (except literal and
indirect pointers) following USE.

Location Field: blank
instruction Field: USE
Variable Field: blank, CBMM, SY@R, or a created LC label

If the variable field is the character string PREV, then the LC used previously is
recalled. Only one previous usage is remembered. Thus, the sequence

USE A or USE C

USE B USE A

USE PREV USE B
USE PREV
USE PREV

are both equivalent to USE A,
2.4.5 Data Definition

2.4.5.1 DATA pseudo instruction

A data item may be a direct or indirect address constant (paragraph 2.2.5.4 and
2.2.5.5.) or it may be an expression.

If a label appears in the location field, the labe! is assigned to the memory location
of the first generated word.

2-19 Programming Reference

Location Field: a label or blank
Instruction Field: DATA
Variable Field: one or more data items separated by commas

2.4.5.2 PZE pseudo instruction

The PZE (plus zero) pseudo instruction is essentially the DATA pseudo instruction
except that the sign bit of the data word is always set to zero (plus).

Location Field: a label or blanks
Instruction Field: PZE

Variable Field: one or more data items separated by commas.

2.4.5.3 MZE pseudo instruction

The MZE (minus zero) pseudo instruction is essentially the DATA pseudo instruction
except that the sign bit of the data word is set to one (minus).

Location Field: a label or blanks
Instruction Field: MZE
Variable Field: one or more data items separated by commas

2.4.6 Memory Storage Reservation

2.4.6.1 BSS pseudo instruction

BSS causes the location counter to be increased by the value of the expression in the
variable field. If a label appears in the location field, it will be assigned the value
of the location counter prior to the increase in the location counter. (The location
counter is always set at the address of the next available word.)

Location Field: a label or blanks
Instruction Field: BSS

Variable Field: an expression

2.4.6.2 BES. pseudo instruction

BES causes the location counter to be increased by the value of the expression in the
variable field. [f a label appears in the location field, the label is assigned to the
address value of the incremented location counter minus one.

Programming Reference 2-20

Location Field: alabel or blanks
Instruction Field: BES
Variable Field: an expression

2.4.6.3 DUP pseudo instruction

Location Field: blank
Instruction Field: DUP
Variable Field: one of three forms, as follows:

Form 1: No address fields. The instruction is ignored.

Form 2: One address field. Example: DUP, n (the next source
statement is duplicated n times).

Form 3: Two address fields. Example: DUP, n, m (the next m
source statements are duplicated n times where m=< 3,

n<32,767.) -If either field contains a zero the field
will be treated as though a one were present.

2.4.7 Conditional Assembly

The following five pseudo instructions are provided to conditionally assemble
various portions of a DATA 620/i program,

2.4.7.1 IFT and IFF pseudo instructions

Location Field: blank
Instruction Field: [FT or IFF
Variable Field: one, two, or three expressions separated by commas.

IFF (if false) is the logical complement of the IFT (if true)
instruction

2-21 Programming Reference

The instruction

INSTRUCTION | VARIABLE
FIELD FIELD

IFT | A c

means: include the next line of code if A< B and B=<C. The f
- A/ ’
A #B. The form A is true ifA # 0, otherwise false. erm B means

The following are examples of frequently used forms:

INSTRUCTION VARIABLE
FIELD FIELD COMMENTS
IFF A,, B for A=B
IFT A, B, B for A<B
IFT 0, A, B for A<B and A>0
IFF A for A=0
2.4.7.2 GBTIB pseudo instruction

GCPTD is used to skip more than one instruction. GOTP, which usually follows an
IFT, or IFF pseudo instruction, may not be used to iump to an earlier point in the
program, All instructions following G@T@, up to but not including the first instruc -
tion containing the designated symbol in its location field, are skipped.

The instructions that have been ski i
pped are listed, unless suppressed by a co
following the symbo! in the variable field i) "
, or the SMR i
barogroch 34007, e Y pseudo instruction

Label Field: blank

Instruction Field: G@TE®

Variable Field: one of forms a) symbol
b) symbol,
c) decimal integer
d) decimal integer

2.4.7.3 CBNTand NULL pseudo instructions

The Cg‘bNT (continue) or NULL pseudo instruction provides a target for a previously
appearing GBTA. No object data is generated with the C@ONT or NULL pseudo

Programming Reference 2-22

instructions. The NULL instruction will not be listed if the SMRY pseudo instruc-
tion is in effect.

Location Field: blank
Instruction Field: C@NT or NULL
Variable Field: decimal integer or label

Example: N EQU 16
IFT N-16 N-16=0 (FALSE)
G@Tg YYY G@ INCLUDE C@DING F@R
18 BIT
* (C@DING FOR 16 BIT)
IFF N-16 N-~16=0 (FALSE)
G@TY 777 BY PASS 18 BIT C@DING
*YYY (CPDING FOR 18 BIT)
Yoy4 CONT COMMON C@DING
2.4.8 Assembler Control
2.4.8.1 END pseudo instruction

DAS requires the END pseudo instruction as the last source statement in the program.
The value of the expression in the variable field is used by the loader as the entry
point into the program, after the program has been loaded into the DATA 620/i.

A blank expression field designates location 00000 as the entry point.

Location Field: blank
Instruction Field: END

Variable Field: an expression

2.4.8.2 M@RE pseudo instruction

MQ@RE is used to inform DAS that additional inputs are to be placed in the source
input device. The DAS assembly system executes a halt to allow the additional
source statements o be placed in the input device. Assembly resumes when the
RUN pushbutton on the computer control console is pressed. This pseudo instruction

is never listed.
Location Field: blank

Instruction Field: M@RE
Varioble Field: blank

2-23 Programming Reference

2.4.9 Subroutine Control

The three pseudo instructions provided for the creation and use of closed subroutines
are described in the following paragraphs.

2.4.9.1 ENTR pseudo instruction

ENTR causes DAS to assemble a closed subroutine. The label in the location field
is the name of the subroutine. The ENTR generates the linage word (zero) in the
object subroutine.

Location Field: label
Instruction Field: ENTR
Variable Field: blank

2.4.9.2 RETU pseudo instruction

RETU is used to return from g closed subroutine. An unconditional branch is
generated to the value of the expression in the variable field.

Location Field: label or blank
Instruction Field: RETU

Variable Field: an expression

2.4.9.3 CALL pseudo instruction

If a label appears in the location field, the label is entered into the label table

and assigned the present value of the {current) location counter. The first subfield
must contain a valid label (the name of g subroutine). The list subfields may contain
any valid DATA items (paragraph 2.4.5.1),

Location Field: a label or blank
Instruction Field: CALL
Variable Field: one or more subfields, as follows:

a. symbol (required)
b. parameter list {optional)
c. error return |ist (optional)

Example: » CALL, FUNC, X, Y + 1, (ERR), (GOGF)*

Programming Reference 2-24

This produces a machine code identical to that which would be obtained by:

, JMPM, FUNC
, DATA, X, Y + 1, (ERR), (GO@F)*

2.4.10 List and Punch Controls
The following eight pseudo instructions provide the DATA 62.0/i programmer
complete control over the listing and punching functions during program assembly .

These controls are operative only during the second pass of DAS.

2.4.10.1 LIST pseudo instruction

LIST informs the DAS assembly system that a program listing is to be produced.
DAS is initially in a LIST condition.

Location Field: blank
Instruction Field: LIST
Variable Field: blank

2.4.10.2 NLIS pseudo instruction

NLIS suppresses further listing of the program.
Location Field: blank
Instruction Field: NLIS
Variable Field: blank

2.4.10.3 PUNC pseudo instruction

The PUNC pseudo instruction produces an object paper tape program from the DAS
assembly system. DAS is initially in @ PUNC condition.

Location Field: blank
Instruction Field: PUNC
Variable Field: blank

2-25 Programming Reference

2.4,10.4 NPUN pseudo instruction

NPUN suppresses further object paper tape output from the DAS assembly system.
Location Field: blank
Instruction Field: NPUN
Variable Field: blank

2.4.10.5 SPAC pseudo instruction

The listing device is spaced by the number of lines in the variable field. The SPAC
pseudo instruction itself is not listed,

Location Field: blank
Instruction Field: SPAC

Variable Field: an expression

2.4.10.6 EJEC pseudo instruction

The EJEC pseudo instruction restores the listing device to the top of the form.
EJEC itself does not appear on the listing.

Location Field: blank
Instruction Field: EJEC
Variable Field: blank

2.4.10.7 SMRY pseudo instruction

SMRY suppresses the listing of source statements which have been skipped by the
condition assembly controls (paragraph 2.4.8), and the listing of the symbol table
on pass 1.

Location Field: blank
Instruction Field: SMRY
Variable Field: blank

2.4.10.8 DETL pseudo instruction

DETL removes the effect of the SMRY pseudo instruction {(paragraph 2.4.10.7).
That is, allsource statements are listed. The normal mode of operation of the
DAS system is the DETL mode.

Programming Reference 2-26

Location Field: blank
Instruction Field: DETL
Variable Field: blank

2.4.10.9 READ pseudo instruction

DAS is initially set to process up to 80 characters per line. This instruction will
permit n number of characters from each source line to be processed by the assembler.
If n is less than 20 or greater than 80, the number of characters read will be reset

to 80 and a SZ message will be listed. A SMRY pseudo instruction will suppress

the listing of READ cards during pass 2, unless there is a size error message.

Paper Tape:
Location Field: blank
Instruction Field: READ
Variable Field: n
Cards:

DAS is initialized to 026 keypunch codes

INSTRUCTION VARIABLE
FIELD FIELD ACTION INITIATED

Reads 80 columns of 029 codes,
in all succeeding cards.

READ 80,29

READ 72,26 Reads 72 columns of 026 codes,
in all succeeding cards.

READ 29 Does not change number of
columns read, does change type
of codes.

READ 80 Reads 80 columns, does not

change codes.

If the code type is not 26 or 29 the assembly will stop with A, B, X, and U registers
equal to 26. At this time the card may be corrected and put back in the card
reader. Pressing the RUN button will continue the assembly.

2-27 Programming Reference

2.5 SOURCE STATEMENT FORMATS

2.5.1 Punched Card Format

When input is presented to the DAS System on punched cards, the following format
rules apply. A symbolic card consists of four fields: location field, instruction
field, variable field, and remarks field.

2.5.1.1 Location Field: This field is used to attach a labe! name or o target
number (refer to the GBT@ pseudo instruction, paragraph 2.4.7.2) to a source
statement. Use of the location field is optional, but if used, the label or number
must begin in column 1 and must not extend beyond column 6 of the punched card.

2.5.1.2 Instruction Field. The instruction field, beginning in column 8
holds a mnemonic representing the computer instruction or a DAS pseudo insfruc’fion
This field must not extend beyond column 14. Indirect oddressing is indicated by c1n'
asterisk(*), following the instruction mnemonic.

2.5.1.3 Variable Field. The variable field begins in column 16 and ends
with the first blank which is not contained within a character constant. The contents
of the variable field vary according to the instruction and will normally consist of
one or more subfields, separated by commas. The variable field is not required for
all instructions.

2'.5. i ..4 Remarks Field. The remainder of the card, following the variable
.Flelld, if present, or starting in column 17, may be used for commentary. This field
is ignored by the DAS, but will appear on the listing.

2,5.1.5 Comments statement. An entire source card may be used for
commentary by placing an asterisk as the first non-blank character in the location
field. The contents of the statement will be ignored by DAS, but will appear on the
output listing.

2.5.2 Paper Tape Format
Aln.alfernch've, column~independent, imput form is provided by punched paper tape,
which may be conveniently prepared on the Teletype. The term "code line” will be

used within this section instead of "symbolic card”, to indicate a source statement
on paper tape.

Programming Reference 2-28

2.5.2.1 Paper tape code line. The maximum length of the code line, in the
DAS system, is 80 characters, plug the line feed characters.

Carriage
Location Instruction Variable Remarks Return/
Field Field Field Field Line Feed

The carriage return (CR) character should be used preceding the line feed (LF) charac-
ter for typeout control.

2.5.2.2 Location Field. The location field may contain a label, an extended
symbol, or a target number. The first four non-blank characters are used as the label.
The location field is void if the first non-blank character of the code line is a comma.

2.5.2.3 Instruction Field. The instruction field may contain a mnemonic, or
a mnemonic followed by an asterisk (*) which indicates indirect addressing .

2.5.2.4 Variable Field. The variable field may contain one or more subfields
separated by commas. The variable field is terminated by either a blank (which is not
part of a character constant), a CR or a LF. Each subfield may contain an expression
or a constant of any type, or may be voided by using adjacent commas.

2.5.2.5 Remarks Field. The remarks field consists of any text between the ter-
* minating blank of the variable field and the next CR or LF character and is ignored by

DAS.

2.5.2.6 Comments Line. If the first non-blank character on a code line is an

asterisk (*), the entire line is ignored by the DAS system, but will appear on the output
listing. ’

2.6 DAS OUTPUT LIST

2.6.1 DAS Source Listing

The DAS assembly system allows the programmer to obtain an on-line listing of his pro-
gram, either in parts, or the entire program, as the program is being assembled. The
symbolic (source) program and the object (absolute) program are listed side-by-side on

the listing device (either teletype or printer).

Error analysis is performed during assembly and, as errors are detected, error codes
(paragraph 2.6.2), are printed on the line following the source/object information.

2-29 Programming Reference

The list controls pseudo instructions: LIST, NLIS, SPAC, EJEC, SMRY, and DETL are
described in paragraph 2.4.10 and subparagraphs.

The format of the data on the output listing is:

OBJECT ADDRESS
LOCATION CODE MODE SOURCE STATEMENT COMMENTS
014000 , DRG , 014000
014000 000000 ABS , ENTR ,
014001 001002 , JAP* , ABS
014002 114000 R
014003 005211 , CPA B
014004 001000 , JMP* ABS
014005 114000 R
000000 , END
Address modes include:

C
E
[

R

2.6.2

- FORTRAN common reference.

- externally defined.

- indirect pointer.

- absolute/relative .

DAS Error Messages

The DAS assembly system parforms extensive syntax checking during both passes of the
assembler. During the first pass, detectable errors are listed. When an error is
defected on the second pass of DAS, the following information is listed:

Error code

- Value of location counter

- Object code when Instruction has been assembled unless o NLIS pseudo
instruction (paragraph 2.4.10.2) is in effect or a list suppress comma is
present on a GOTD pseudo instruction (paragraph 2.4.7.2).

Programmi

ng Reference

Up to fou: error messages may occur on a line of output listing. The error message is
preceded by a list of the source statement.

The following error codes are produced by DAS:

CODE

MEANING

*IL

*¢P

*SY

*EX

*Sp
*AD
*FF
*DC
*DD

*VF

*MA
*XR

*NS
*NR

*TF

*SZ

*UD

The first non-blank character on a line is !llegal, line not procassed.

The instruction code is undefined; a two-word gap is left in memory to allow
patching.

Expression contains an undefined label .

Expression contains the illegal appearance of two consecutive arithmetic
operators.

Itlegal use of a special character for operand in address evaluation.
Address expression in error.

Floating-point format error.

A decimal character appears in an octal constant.

Illegal redefinition of a lable or location counter.

Instruction contains variable subfields efther missing or inconsistent with the
computer instruction type.

Inconsistent use of indexing and indirect addressing.
Address out of range for index specification.
Nested DUP statements.

No room left in label table for this label.

Tag error, undefined or illegal index.

Illegal use of literal =.

Expression value too large for size of subfield.

Undefined label in variable field of a USE instruction.

2-31 Programming Reference

CODE MEANING
*CH Illegal character in source line.

*QQ Illegal use of quotation marks.

2.7 OPERATING THE DAS ASSEMBLY SYSTEM

The assembler tape is loaded into memory using the binary load program (see section 1.

After the assembler loading is complete the normal system input, output, and listing
devices are readied, the sense switch(es) are set depending on pass. Sense switch 1

for pass 1 and sense switch 2 and 3 for pass 2. To begin assembly, RUN at location
000001 .

Termination of pass 1 and 2 is initiated whenever an END pseudo-op is detected. END
causes a HALT 0777 to be executed with the A, B and X registers set to -1 (all ones).
To initiate pass 2, reset the /0 devices, set the sense switches, and RUN. Pass 2
may be repeated as often as desired to produce extra copies of the program .

The computer will execute a HALT 0777 when a M@RE pseudo-op is detected, and
display 0170017 (octal) in the A, B and X registers. Prepare the input units and RUN.
Synchronization errors are detected on pass 2 when the address value of a label does
not agree with the value assigned on pass 1. Synchronization errors are due to mis-
reads of the source tape and cause DAS to halt with the A, B, and X registers set to
0777. To continue the assembly process, press RUN. The assembler will reset the
location counter to the value assigned during the Tst pass, print the error message SE,
and continue,

2.8 FORTRAN PSEUDO INSTRUCTIONS

2.8.1 General

The following special op codes are provided for the DATA 620/i programmer in order
to provide assembly output compatible with the FORTRAN loader.

2.8.1.1 FORT op code. This op code must be the first line of code in an assem—
bly, except for comments. Tt indicates that the output must be compatible with the
FORTRAN relocatable loader.

2.8.1.2 NAME op code. This op code must be the second line of code in an
assembly, except for comments. It contains the name of the entry point in the address
field. The label field is left blank. The name indicated is provided to the assembly
program and output for the loader in order to allow linkage to the routine from other
routines. Multiple entry points are allowed.

Programming Reference 2-32

2.8.1.3 CBMN op code. This op code is used to define common areas. The
area name is placed in the label field and the length in the address field. This op

code may be placed anywhere within the program. Only one name is defined for ?cch
use of the op code, and the names and area lengths are cumulative. H. has approxi=
mately the same effect as a series of BSS instructions, except the area is defined to be
in the common pool.

2.8.1.4 EXT op code. This op code is used to indicate that a symbo! is not)
undefined, but resident in another routine. The symbol to be so identified is placed in

the label field. The address field is unused. One such symbol can bfe defined with
each use of this op code. This code may be placed at any point within the program .

2.8.2 Relocation

In order to allow relocation, the system requires that all one word instructions that
address locations in memory use the relative forward method of addressing. All two
word instructions are legal.

2.8.3 Literals
No literals may be used. The use of immediate instructions is recommended.
2.8.4 Restrictions

All expressions containing symbols defined with COMN, or EXT instruction.s must l:.>e
the second word of two word instructions, or part of a DATA, PZE or MZE instruction.

The FORTRAN compiler uses two words for each value retained in core. For fhi_s
reason it is necessary for the assembly language writer to make aliowance for this when

defining COMM@N.

If FORTRAN had the statement: COMM@N A(4), B(3, 4) DAS should have:

A R COMN , 4*2
B R COMN , 3*4*2
2.8.5 Modes

All symbols and expressions are given a mode. This mode is either external, common,
relative, or absolute. The definition of the mode is assigned by the assembler accord-
ing to certain rules. Both symbols and expressions have a n?od'e. The mode.of an
expression is determined by the mode of the symbols used within the expression.

2-33 Programming Reference

The mode of a symbol is defined as follows:
If the symbol is defined with the EXT op code the mode is E.
If the symbol is defined with the COMN op code the mode is C.
If the symbol is a numeric constant the mode is A.
If the symbol is * used as the current location the mode of the * is R.

If the symbol is defined by an EQU, SYN etc. the mode is that of the expres-
sion on the right side of the op code.

If the symbol is a labe! in a program the mode is R.

The mode of an expression is assigned as follows:
If the expression contains any symbol of mode E the expression is mode E.
If the expression contains any symbol of mode C the expression is mode E.
If the expression contains only mode A symbols the expression is mode A.

If the expression contains A and R symbols the mode is R if an odd number
of mode R symbols appear, otherwise the mode is A.

Certain restrictions appear within the DAS assembler when providing FORTRAN com-
patible output. The restrictions on expressions are:

No expression may contain both mode E and C symbols.
Any type E expression must consist only of the type E symbol .

No type E, C or R expression should include the multiplication or division of a
type E or C symbol .

No expression should contain the sum or difference of a mode C symbol and a
mode R symbol, or a mode E symbol and a mode R symbol .

No expression should contain the sum of two mode E, C or R symbols.

A mode A symbol may be added to or subtracted from a mode C or R symbol .

Programming Reference 2-34

Examples:

2.8.6

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000017
000017
000020
000021

EEEE
CCCC
RTN
TBL
ABL
LENG

L N T T T T T T

EXT
COMN
ENTR
BSS
BSS
EQU
CALL
LDA
LDA
LDXI
LDA
DATA
DATA
DATA
DATA

50
|A|+5
*-TBL

44

CCCC+6
CCCC+6

0, 1
EEEE+4

CCCCH

, EEEE, TBL, LENG

CCCCHLENG
, TBL+LENG-5

EEEE defined as type E

CCCC defined as type C

RTN is type R, a label

TBL is type R

ABL is type R

LENG is type A, length of area

Ok, relative forward

Ittegal, one word inst, not R or A
Ok, two word instruction

Get CCCC+6 to A, legal
lllegal, value not zero

Legal

Legal

Legal, mode is R

Example of FORTRAN Compatible Assembly

000000
000017
000000
000000
000000
074025
034021
054025
064025
015000
034020
002000
000000
000026
014016
024016
002000
000000
000026
001000
000000

000000
002000
000000

mmm> X

$SE
$QS
$QE

$PE

L T L T T T

~ N o~ s

FORT
NAME
EXT
EXT
EXT
STX
LDX
STA
ST8
LDA
LDX
JMPM

DATA
LDA
LDB
JMPM

DATA
JMP

ORG
ENTR
CALL

$PE

’

, $PE+7

, SPE+4

, $PE+9

, $PE+10

, 0,1 PAR.|
, $PE+7

, $QS

$PE+7

$PE+9

$PE+10

$QE A**B SUBROUTINE

~ N s

, SPE+7

Programming Reference

000022
000023
000024
000025
000026
000027
000030
000031

Programming Reference

000001
000000
001000
000000
000000
000000
000000
000000
000000

14

’

’

DATA
JMP

DATA

END

, *=20

’

0,0,0,0

SECTION lI

AID-UTILITY AND DEBUGGING PACKAGE

3.1 INTRODUCTION
These programs are a collection of useful diagnostic and utility routines for the DATA
620/i computer. The operator can call upon a wide variety of functions to aid him in
debugging and running his programs. Specifically these programs are:

(1) Bootstrap loader program

(2) Binary load dump

(3) AID
3.2 BOOTSTRAP LOADER

This program is typically used when a "cold start" is required. A cold start usually
occurs when the specific contents of memory is not known to the operator.

The procedure for loading the program is shown below. Use only those procedures
which apply to specific system configuration.

(1a) Turn on paper tape reader.
(1b) Turn on model 33A teletype.

(1¢) Place mode! 33/35B teletype in off-line mode and press control and D,
T, and Q to initialize teletype.

1. Position the tape in the reader with the first binary frame at the read
station.

2. Set the reader control lever in the STOP or LOAD position and set the
teletype on-line. For paper tape reader, no action required.

3. Enter the appropriate bootstrap load routine into memory through the
console. See below.

4. SetA=B=0, IC=X7770, X = X7600, press SYSTEM RESET and RUN.

5. To initiate loading, set the reader control lever in the START or RUN
position.

6. A successful load of the foader and punch program is indicated by a halt
at X7600 with B = 0 and the reader halted.

3-1 Programming Reference

7. Common causes for failure are:

a. The proper bootstrap load routine was not in memory.

b. The bootstrap was not positioned correctly.

c. The registers were not set correctly.

d. The teletype was not 'on-line’.

DATA 620/i BOOTSTRAP LOAD ROUTINES
HIGH SPEED | MODELB |MODEL A
LOCATION READER TELETYPE |TELETYPE SYMBOLIC

X7756 102637 102601 102600 READ, CIB, RDR
X7757 004011* 004011* | 004011+ . ASLB, NBIT-7
X7760 004041 004041 004041 , LRLB, 1
X7761 004446 004446 004446 , LLRL, 6
X7762 001020 001020 001020 ., JBZ, SEL
X7763 0X7772 0X7772 0X7772
X7764 055000 055000 055000 , STA, 0,1
X7765 001010 001010 001010 . JAZ, LHLT+1
X7766 0X7600 0X7600 0X7600
X7767 005144 005144 005144 , IXR,
X7770 005101 005101 005101 ENTR, INCR, 1
X7771 100537 102601 100000 SEL , SEL, RD@N
X7772 101537 101201 101100 . SEN, IBFR, READ
X7773 0X7756 0X7756 0X7756
X7774 001000 001000 001000 , JMP, *-2
X7775 0X7772 0X7772 0X7772

*For 18-bit computers insert 4013.
X =0 for a 4K memory, X =1 for an 8K memory, etc.

Programming Reference 3-2

This example would result in the first element of common being the integer
variable 1; the next five elements of common being the real vector array A;
and the next element in common being the real variable B.

3.4 EQUIVALENCE STATEMENT

Form: EQUIVALENCE (k), (kz), . .., (k.), where each (k) is a list of two or more
non-dummy variables and/or array element Rames, separated by commas. Subscript
expressions of array element names must be non-zero, unsigned integer constants. A
two dimensiona! array may be referred to by using a single subscript, giving the ele-
ment number within the array, if desired.

The effect of the EQUIVALENCE statement is to cause the came area of memory to be
shared by two or more entities. Each element of the Ki list is assigned the same (or a

part of the same) storage area.

More than one EQUIVALENCE statement is permitted in a program, but it may only be
preceded by a SUBROUTINE, FUNCTION, DIMENSION, COMMON or prior

EQUIVALENCE statement.

Example:

DIMENSION A(5), 11 (3,3), BI(3)
COMMON 8, BI, B2
EQUIVALENCE (X,A (2),Y), (B, C2, F5), (11 (5), B2)

The effect of an EQUIVALENCE statement upon common assignments, may be the
lengthening of common. This lengthening is permitted only if it increases common in
the same direction as additional common elements would. Thus, in the example, the
equivalence (B, 11 (5)) would have been invalid. 1t is also invalid to equate two ele-

ments of the same array to each other.

3-3 FORTRAN Reference

3.3.2

3.3.3

3.4

Procedure to Punch Program Tapes

Initialize the paper tape punch and/or set the teletype 'on-line'.

Set the A register to the address of the first word to be punched. Set the
B register to the address of the last word to be punched. Set the X

register to the address of the first instruction to be executed (ot load time).

Set the instruction counter = X7404 press SYSTEM RESET and RUN.

The specified memory locations will be punched and the computer will
halt at X7404 with the original parameters in the registers.

To punch noncontiguous memory areas, set the X register to -1 (177777)
for all but the last area to be punched.

Procedure to Punch the Bootstrap Loader

Initialize the paper tape punch and/or set the teletype 'on-line'.
Set the instruction counter = X7400, press SYSTEM RESET and RUN.
The loader bootstrap will be punched and the computer will halt at X7404.

The binary punch routine is punched following the bootstrap by setting
A = X7400, B = X7600, X = 00000, and press RUN.

AID Il PACKAGE FOR THE DATA 620/

To enter set IC = 0X6000, where X = 0 for 4 K memory, X =1 for 8K
memory, etc., and press RUN.

Three pseudo registers A, B, and X are used. These registers are loaded
by teletype control, or trap return. The corresponding machine registers
are loaded with the pseudo register values before any GBT@ or trap
command is executed.

Commands consist of a command letter {mnemonic) followed by a string of
octal parameters, separated by commas and terminated by a period. In
the description that follows, @ indicates a carriage return/line feed type-
out, upper case letters are command mnemonics (A), lower case letters
are octal parameters (a), letters enclosed in parentheses denote the con-
tents of the designated location. Underlined symbols denote AID H type-
outs, all others are operator entries. A parameter preceded by a minus -
indicates a negative parameter.

Programming Reference 3-4

AID Il Commands:

AWM. 2
B(B). 2
X(X). @
AA)a. @
B@®a.
X(X)a.@
Ga

Ta, . @
a (a) (A) (B) (X) @

la,b,c, .

o |©

Sa,b,c, .
L)@
Sa,b,c,d.

L@

Sa,b,0,0.E

fe

(Display valué of pseudo A.)
(Display value of pseudo B.)
(Display value of pseudo X.)
(Change value of pseudo A to a.)
(Change value of pseudo B to a.)
(Change value of pseudo X to a.)

(Preset A to (A), B to (B), X to (X) and go to
location a.)

(Preset registers and go to location b. If and
when location a is reached, save and type loca-
tion a, the contents of a, and the current values
of the registers. (Trap to a from k.))

(Continue trap from last breakpoint location to
new breakpoint location a. (Present and save
registers as before.))

(Initialize locations a through b (set to c).)

(Search locations a through b for words equal
to c. Type out the location (L) and contents
of each word thus found.)

(Search locations a through b for words equal

to c. Parameter d is used as a mask (comparison
is made only for those bit positions in memory
which have ones in the corresponding bits of

the mask).)
(Print the contents locations of a through b.

(Search a through b for zero with a zero mask,
no bits selected.))

3-5 Programming Reference

ala)@

G+](a+])@
e ———————

a+2{a+2)@

[

.

[]
b-1Thb-1N@
b k)@
Cao.@
afa), @

WARNING

Programming Reference

(Change/display memory from location a.)
(Display next location (a+1).)

(Change a + 1 to value b and display next
location.)

(Quit (return to AID).)

3-6

SECTION |V
SOURCE TAPE CORRECTION PROGRAM

4.1 INTRODUCTION

The DATA 620/i symbolic correction program (COR) provides the DATA 620/i pro-
grammer a convenient method of adding or deleting source statements on symbolic
paper tapes, greatly reducing program preparation time. COR eliminates the task of
either completely repunching or correcting the paper tape off-line.

A statement (source statement) representing a complete line of information necessary to
compile or assemble an instruction is called a "code line". The maximum length of the
code line in the DATA 620/i programming system is 52 characters, plus the line feed
character. The code line, the basic quantity inthe COR system, may contain any
character except the line feed character, and be reproduced, deleted, or replaced.

In addition, a new code line (or lines) may be inserted into the program for complete
up-dating capability.

4.2 OPERATING PROCEDURES FOR COR

4.2.1 Loading the COR Correction System

Loading procedures are the same for all object paper tapes punched in AID format
(three bits per frame). Load the paper tape in accordance with procedures outlined in
paragraph 2.7, section Il of this manual.

4.2.2 Running the COR Correction System

After the COR program has been loaded into the DATA 620/i memory, place the source
paper to be corrected in the ASR-33 or ASR-35 teletype paper-tape reader. Set the
DATA 620/i instruction counter display to the COR symbolic location SENT+1. Before
pressing the RUN pushbutton, set sense switches 1 and 2 to the desired condition.

Sense switch settings have the following meaning:

Sense Switch 1: Off - the next code line read by COR will be reproduced.
On - the next code line (source statement) read by COR
will be deleted and not reproduced on the updated source
tape.

Sense Switch 2: Off - the computer halts between code lines, allowing the

DATA 620/7 programmer to insert new code lines into his
program. After all of the new code lines have been added,

4-1 Programming Reference

the RUN pushbutton on the DATA 620/i is pressed and the
next code line for the paper tape being updated is read
into the computer.

On - the computer does not halt between code lines.

It can be seen that it is possible to delete, insert, and replace code lines by using com-
binations of settings of sense switches 1 and 2. Each statement punched onto the upda
updated paper tape is listed on the teletype, providing the programmer with a listing of
his updated program.

Observe the following rules during operation of the COR system:

- Each code line that is inserted into the updated program should begin with
the carriage return and line feed characters.

- The setting of sense switch 1 should only be changed when the DATA 620/i
is in the halt condition.

- The setting of sense switch 2 may be changed at any time during operation
of the COR system.

- Sense switches 1 and 2 should not both be on at the same time.

A halt will occur at the end of the source paper tape being updated, regardless of the
setting of sense switch 2.

Programming Reference 4-2

FORTRAN REFERENCE

SECTION |
BASIC FORTRAN CONCEPTS

1.1 INTRODUCTION

FORTRAN is « universal, problem oriented programming language designed to simplify
the computer solution of mathematical and engineering problems. The syntactical rules
for the use of the language are rigorous and require the programmer to reduce the solu-
tion characteristics of his problem to a series of precise statements. These statements
are evaluated and interpreted by a system program (called the FORTRAN processor) and
are translated into the execution language of the computer system.

The variations between computer systems is responsible for the development of many
versions of the FORTRAN language. This condition affects the number, form and rela-
tionship of the statements acceptable to a given FORTRAN processor. It is essential,
therefore, that the programmer be familiar with the language specifications for the
system of intended use. DATA 620/} series FORTRAN conforms with the proposed
American standards for basic FORTRAN, as published by the American Standards
Association on 10 March 1965.

This manual is intended for use in DATA 620/i series FORTRAN programming fraining
classes or seminars, and as a reference for experienced programmers using the DATA
620/ series FORTRAN system.

1.2 CHARACTER SET

A FORTRAN program unit is written using the following letters, digits, and special
characters:

Letterss ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digitss 0123456789
Special Characters:

(blank or space)
(equals)

{plus)

(minus)

(asterisk)

(stash)

(left parenthesis)
(right parenthesis)
(comma)

(decimal point)

+ 1

N D

-1 FORTRAN Reference

With the exception of the specific uses indicated in the following sections of this
manual, a blank character has no meaning, and may be used freely by the programmer
to improve the readability of the FORTRAN program .

The following special characters are classified as arithmetic operators and are signifi-
cant in the unambiguous statement of arithmetic expressions:

+ (addition or positive value)

- {subtraction or negative value)
* {multiplication)

/ (division)

** (exponentiation)

The special characters equals (=), open parenthesis ({), closed parenthesis ()), comma
(,) and decimal point (.), have specific application in the syntactical expression of
the FORTRAN statement. The following sections of this manual will qualify their use
in particular statements and expressions.

In addition to the FORTRAN character set, the DATA 620/i series FORTRAN system
will accept the following characters in Hollerith fields:

s, Lo %8,
1.3 LINE FORMAT

A FORTRAN program consists of a series of statements divided into physical sections
called lines, that must be coded to a precise gramatical format. FORTRAN statements
fall into two broad classes, executable and non-executable. Executable statements
specify program action, while non-executable statements describe the use of the pro-
gram, the characteristics of the operands, editing information, statement functions, or
data arrangement. The statements of a FORTRAN source program are normally written
on a standard FORTRAN coding form.

Figure 1-1 is a sample FORTRAN coding form. The coding form includes 80 columns
of information. Columns 73 through 80 are reserved for sequencing information, and
have no effect upon the generated execution program. Columns 1 through 72 contain
line information in the following format:

1.3.1 Initial Line

The first line of each statement is called an initial line. A statement may include an
initial line and continuation lines. Statements may have as many continuation lines
as required subject to the following restrictions: DO statements must be wholly con-
tained on an initial line; and the equals character (=) of a replacement statement must
appear on the initial line. An initial line may contain a statement label in columns 1

FORTRAN Reference 1-2

2 4449 4 4 JE (S U [(D JEN N B R I
s 4 4 4 R
é]]
E]] j i
&8 I e e [T R R e s S s B
c3) 171 1]] }]
Ss]]
é _.:]] Bl
W] T B0 [e et s e e A M e B
z 12 A d]]
u_g" Y))
(s} ~|
g ¥y 1133334233434 4344434
o L ~
e 4 j 1 p I
2|z R 9] ' BERE
g|2 e N] T 189 7]
& }i——ﬂ 4444 443444494
3 7]
N o]] 1111 1 71mw 1] 1 1
TN I N]]
= &« N A] ~]]]]
£4849999444999344444-
z 13 4 4 1] 1 3 1 «@ 1
el M 13 1«
3
< N o] W] % 1]
4 3l o o o] 13 N 3]]
Z SR T A R " e e A e e e e e
< x] 3 ~ 9] 4 3 1 ¥ 1 1]
S £ s] N A W ¥ 4]«] 1
a o] 1% o 4 ¢ o 1]
N i LY I I N BN o [
N] 3AN T 1373353837917
A3 N o] o W =] € « 1 &] 1]
N Y o —~ o 1
8: ¥ ¥ o 4 A X 9 K] 1 1
N R R ———;;'3—%‘--————
[y = 1 T
N n vl 4 d] \,?:"'
N o] 3 A o X M Y]
¥ o q o Jyd1n
h o O N
Y9391 144494944444-
>\< LS RS 1 =] % 1Y 1
4| J E o
N ‘EEE 11843 € 1171711
SIS L I RS I I (N s B I
§ qy ¥ I 3 o 4 N 1 7]
3 ¥ W9 3 o 4 NG
w N o+ ~ wpo~] W] N [\
& ol M I S P B (S S QY
443 4 I < R I B B B]
3 | 4 q B 4 N ¥ Y g T 7 7
g o Y o NN o H 3 o W g
« 2 ¥ oo ¥ 9 W M oW Moo B W NOY
T 3 WY § o o] 4 g W W W
10:
HHEB s
gl |8]8s 11] 1] ¥]]
glolwiolts 1 1m]]
go: 0 4 4 4 4 A 11 11 413 1 1 4 4 4
CLEQ @ gi 1 1 1 T 01 1 1 7 i 7
1-3 FORTRAN Reference

Sample FORTRAN Coding Form.

Figure 1-1.

through 5. In this case, column 6 must contain a zero digit, blank or space charac-
ter; and columns 7 through 72 may contain all or part of a statement with the excep-
tion of the restrictions noted. '

EXAMPLE ;
i 51617 10 15 20 25 30 35
N B GRS T AR T N PR I
1.3.2 Continuation Line

Continuation lines are used when additional lines of coding are required to complete a
statement originating on an initial line. There may be any number of continuation
lines per statement with the exceptions previously noted for initial lines. In a contin-
uation line, columns 1 through 5 are ignored and should, but need not be blank;
column 6 must contain any character other than a zero digit, blank or space character;
and the continued segment of the statement is contained in columns 7 through 72.
Continuation lines may only follow an initial line or another continuation line.

EXAMPLE :

1 58617 10 15 20 25 30 35

s /P NN R S BT BN I

PRI LA LT N SRR IS SPEDE BN I

e e

B L NS B
1.3.3 Comments Line

Any line with the character C in column 1 is identified as a comment line. Comments
may appear anywhere in a program, except immediately before a continuation line.
All comments lines are ignored by a FORTRAN processor, except for display purposes.
Comments may be contained in columns 2 through 72.

EXAMPLE :

! 5fel7 10 15 20 25 30 35

C. THIS, IS, A COMMENTS |LINE |

N

FORTRAN Reference 1-4

1.3.4 End Line

Any line not containing the letter C in column 1 and having only the character string
END in columns 7 through 72 is recognized by the processor as an end line. Each
FORTRAN program requires an end line to inform the -processor that it has reached the
physical end of that program.

EXAMPLE :
¥ 51s8)7 10 15 20 25 30 35
A B L D I D
1.3.5 Statement Label

Lobels permit statements to be referenced by other portions of a program. A statement
label is an integer value in the range 1 to 9999 (leading zeros or blanks are not signifi-
cant for label identification). The initial line of each statement may be given a unique
label in columns 1 through 5. The same label may not be given to more than one state-
ment in a program unit.

EXAMPLE:
W SO A= S*C+D e L
69 | W=-S*C+D v 1L
81 1 A=87C*D o ol

1-5 FORTRAN Reference

SECTION I
DATA

2.1 GENERAL

Numerical quantities, constants and variables are distinguished in FORTRAN as a
means of identifying the nature and characteristics of the numerical values encountered
in program execution. A constant is a quantity whose value is explicitly stated. A
variable is a numerical quantity referenced by name, rather than by its explicit
appearance in a program statement. During the execution of a program, a variable
quantity may assume many different values.

2.2 DATA TYPES

The DATA 620/i series FORTRAN processor recognizes two types of data, integer and
real. integer data are precise representations of integral values within the range
-32767 to +32767 (—2‘§+ 110 215 - 1). Real data are approximations of real numbers
with magnitudes in the range 0.588 x 10738 to 0.588 x 1038 (approximately) 2-127

to 2127 x (1-2-22)). Both integer and real data may assume positive, negative, or
zero values. The value zero is considered neither positive nor negative .

2.3 DATA NAMES

FORTRAN Data {constants, variables, arrays and array elements) are identified by
names.

2.3.1 Symbolic Names
Symbolic names are made up of letter or digit strings consisting of 1 to 5 characters.
The first character of the siring must be a letter. Data identified by symbolic names
are specified as being of type integer or real by the unique classification associated
with the first letter of the character string. Names beginning with the letters |, J,
K, L, M, and N are type integer; and the names beginning with any other letters are
type real.
Examples of type integer symbolic names are:

I 12A MZXF NS5

Examples of type real symbolic names are:

A B2 F5M79 AAA

2-1 FORTRAN Reference

2.4 VARIABLES

Variables are data whose values are derived and defined during program execution,
and are identified by symbolic names of the appropriate type, real or integer.

2.5 CONSTANTS
Constant data are identified explicitly by naming their-actual values. Constants do
not change in value during program execution, and are specified to be of type integer
or real.
2.5.1 Integer Constants
An integer constant is identified by a non-empty string of from 1 to 5 decimal digits
written without a decimal point and optionally preceded by a plus (+) or minus (-)
sign character.
Examples:

=217 ~-32767 +00327 512

2.5.2 Real Constants

A real constant may consist of 1 to 7 significant digits and may be identified in any
one of the following forms:

£i. * . f +j.f
+i.Exe +,fEte +i.fEte +iEte

where i, f and e are each a string of decimal digits representing an integer, fraction
and exponent respectively. The plug (+) and minus (-) sign characters are optional,
and the decimal point (.) and E characters are present in that form. If r represents
any of the forms preceding Ete, i.e., rExe, then the real constant is interpreted as
r*10%e.

Examples:
17. -25.620E-1 0.0 -51E1
+.42 -.479 -479E-3 .35E02

If a real constant is specified with more significant digits than the precision real data
allows, truncation occurs, and only the most significant digits within the range will
be represented.

FORTRAN Reference 2-2

2.6 ARRAYS

An array is an ordered set of data in 1 or 2 dimensions identified by a symbolic name.
An array declarator (see DIMENSION Statement) defines the name and size of the
array . An array name serves to identify all of the elements in the array, including
data type, real or integer. An array name cannot be used without a subscript, except
in Input/Output lists.

2.6.1 Array Element

An array element is one member of an array and is identified by a subscript appended
to the array name.

2.6.2 Subscripts

A subscript follows the array name and contains 1 or 2 subscript expressions enclosed in
parentheses. The number of subscript expressions (except in EQUIVALENCE Statements)
corresponds to the specified dimensionality of the array. Two expressions within th.e
parentheses must be separated by a comma. Subscript expressions are type infeger in
one of the following forms:

c*vak
c*v
vtk
v
k N
where ¢ and k are integer constants and v is an integer variable.
Examples:
X(2*J-3) A, J) B(20) C{L-2)
2.6.3 Dimensionality
Arrays are stored column-wise in ascending memory locations. Therefore, a 2 dimen-

sion array, A, with three rows and three columns would be stored internally in the
computer as follows:

2-3 FORTRAN Reference

Location Element
L+0 & L-1 = AT, 1)
L+2 & L+3 A2, 1)
L+4 & L+5 A@G, 1)
L+6 & L+7 A1, 2)
L+8 & L+9 A@R,2)
L+16 & L+17 A3, 3)

The position of an array element, A, i) is derived from the following formula:

A+ (=T + 1 x (j=1) x 2
where A is the location of the first element in the array; i and | are the specified row
and column subscript expressions; and | is the number of row elements defined in the
array declarator for A. In the example preceding, the position of the A(2,2) element
would be solved in the following form:

L+O+@2-1+3*(2-1))x2 =1L+8

The processor collects all constant terms in subscript expressions into the base address
of the referenced array.

*In DATA 620/i FORTRAN, a storage unit for a real or integer entity is two words in
tength.

FORTRAN Reference 2-4

SECTION i
SPECIFICATIONS AND STATEMENTS
3.1 GENERAL

Specification statements organize and classify data that will be referred to by other
statements in the FORTRAN program. Specification statements include:

DIMENSION: Names and declares the size of an array.
COMMON: Assigns varioble and/or named arrays to common storage
areas.

EQUIVALENCE: Assigns variables and names arrays to shared storage areas.

Specification Statements must appear in the FORTRAN program in the order of:
DIMENSION Statements, COMMON Statements and EQUIVALENCE Statements.

Examples:
Valid Invalid

DIMENSION D(3) COMMON A, 8, C

COMMON A, B8, C, DIMENSION D(3)

EQUIVALENCE (B, D(3)) EQUIVALENCE (8, D(3))
3.2 DIMENSION STATEMENT
Form: DIMENSION vilin), v2(i2), . . ., vqlin), where each v(i), (called an array
declarator), is composed of a declarator name v, (the name of the array), and a
declarator subscript (i). Each (i) is an unsigned integer constant or two unsigned

integer constants separated by a comma. Each constant must have a value greater
than zero and less than the limit of available memory .

A DIMENSION statement specified that the declarator names listed are arrays in the
program unit. The number of dimensions and the maximum size of each dimension is
specified by the declarator subscript associated with each declarator name.

More than one DIMENSION statement may appear in a program, but can only be
preceded by @ FUNCTION, SUBROUTINE, or a previous DIMENSION statement .

An array element is referred to by the array name qualified by a subscript to identify

the desired element. If the value of this subscript is out of the range specified by the
array declarator, the derived computational results will be unpredictable.

3-1 FORTRAN Reference

Array elements are stored column-wise in computer memory from low address storage to
high address storage. Therefore, one dimension arrays are stored sequentially in the
order &1, A2, . . ., A, while two dimension arrays are stored with the first (leftmost)

dimension varying most rapidly, i.e., At AZ']' .y, Am'l’ A],2, A2,2, ey,

A,
m’n

Example:
DIMENSION A(5), 11(3,6), C(5,10)
This specification statement indicates that A is a real vector with 5 elements;
11 is an integer matrix of size 3x6=18 elements; and C is a real matrix of size
5x10-50 elements.

3.3 COMMON STATEMENT

Form: COMMON Ay Gy - - A, where each a is a non-dummy variable or

array name.

A COMMON statement specifies that the variables and/or arrays listed are to be
assigned to storage in the memory region called COMMON. The elements named are
assigned storage relative to the common origin in the order of their appearance in the
COMMON statement of each program unit. By making use of this positional relation-
ship, more than one program unit in an executable program may reference the same
data directly.

Each entity type (real or integer) is assigned two storage locations relative to the
beginning of common, and entities of the same type in corresponding position are the
same quantity. Entities referenced by position are the correct type, if the most
recent value assignment to that position was of the same type.

The size of common in each program unit of an executable program may vary without
disturbing the specified positional relationship. The beginning of common is established
during the loading process with the program unit with the largest common region and
all other program units are adjusted to begin at this location.

A program may have more than one COMMON statement, however, it may be pre-
ceded only by o FUNCTION, SUBROUTINE, DIMENSION or a prior COMMON
statement.

Example:

DIMENSION A(5)
COMMON I, A, B

FORTRAN Reference 3-2

3.3 BINARY LOAD/DUMP

These programs are distributed in object form on a single tape labeled binary load
dump. The binary load program is in a special format called bootstrap format and the
dump program is in standard binary format.

Essentially what happens is as follows:

1. Using bootstrap loader {discussed in previous section) the binary loader is
loaded into memory .

2. Upon completion of the load process, control is transferred to the binary
loaded (recently unloaded) and;

3. It then loads the binary dump program into memory.

3.3.1 Procedure to Load Program Tapes

1. Initialize the paper tape reader and/or set the teletype 'on-line'.

2. Place the program tape in the reader and place the reader control lever
in the RUN position.

3. Set the A register-to the load mode: <0 to verify the program tape

= 0 to load the program tape and
halt

> 0 to load the program tape and
execute the program

4. Set the instruction counter = X7600, press SYSTEM RESET and RUN.,

5. A successful load is indicated by a halt at X7600 with the A register set
to the foad mode, the B register set to 0, and the X register set to the
execution address.

6. A checksum or format error causes a halt at X7600 with the 8 register set
to =1 (177777) and the X register set to the load address of the last record

read.

7. To restart, position the program tape at the previous record mark and
press RUN.

3-3 Programming Reference

SECTION IV
EXPRESSIONS AND ASSIGNMENTS
4.1 ARITHMETIC EXPRESSIONS
An arithmetic expression is formed in FORTRAN syntax by a combination of operations
and elements. The expression and its elements identify the expression to be type

integer or real.

The arithmetic operators are shown in the following table:

OPERATOR FUNCTION

+ Addition

- Subtraction
Multiplication
Division
Exponentiation

The arithmetic elements are described by the following statements:

Primary. An arithmetic expression enclosed in parenthesis, a constant, a
variable reference, an array element reference or function reference.

Factor. A factor is a primary of the forms:
primary ** primary
Term. A term is a factor of one of the forms:
term/factor
or
term*term

Signed Term. A term immediately preceded by a + or - sign.

Simple Expression. A term or two simple arithmetic expressions separated by a
+ or - sign.

Arithmetic Expression. A simple expression or a signed term or either of the
preceding, immediately followed by a + or - sign, immediately followed by a
simple expression.

4-1 FORTRAN Reference

A primary of any type may be exponentiated by an integer primary and the resulting
factor is of the same type as that of the element being exponentiated. A real primary
may be exponentiated by a real primary, and the resulting factor is of type real .
These are the only cases for which use of the exponentiation operator is defined.
Figure 4-1 gives the valid combinations for exponentiation. '

By use of the arithmetic operators other than exponentiation any admissible element
may be combined with another admissible element of the same type.

A part of an expression is evaluated only if it is necessary to establish the value of the
expression. The rules for formation of expressions imply the binding strength of the
operators. The range of the subtraction operator is. the term of the operator that
immediately succeeds it. The evaluation may proceed according to any valid forma-
tion sequence. Use of an array element name requires the evaluation of its subscript.
The type of the expression in which a function reference or subscript appears does not
affect, noris it affected by the evaluation of the actual arguments of subscript. An
element whose value is not mathematical ly defined cannot be evaluated.

The following rules represent the derivation of all permissible expressions:
A variable, constant or function standing alone is an expression.
AQ1) JOBNO 217 17.26 SQRT(A+B)

If £ is an expression whose first character is not an operator, then +E and -E
are expressions.

-A(1) +JOBNO ~217 +17.26 -SQRT(A+B)
If E is an expression then (F) is an expression meaning the quantity E taken as
a unit.

(-A) -(+JOBNO) -(X+Y) (A-SQRT(A+B))

If E is an expression whose first character is not an operator, and F is any
expression, then: F+E, F~E, F*E, F/E and F**E are all expressions.

-(B(l, J)*SQRT(A+B(K, L))) 1.7E-2%*(X+5.0)
-(B (I+e, 3* J+K) +A) ;
il Real Integer
Base Real Valid Valid
Integer Invalid Valid

Figure 4-1. Exponent

FORTRAN Reference 4-2

The mode of an expression may be either integer or real, and is determined by the
modes of its elements, which must be the same with the following exceptions:

A real quantity can appear in an integer expression only as an argument of a
function.

[+LFUNC (B)

An integer quantity can appear in a real expression only as an argument of a
function, as a subscript, or as an exponent.

AFUNC (1+2) A, J+1) B**N

The order of evaluation of expressions is established by the use of parentheses in the
statement. |f parentheses are not indicated, the following conventions of mathematics

apply:

The hierarchy of operations, in order of precedence is: exponentiation,
followed by multiplication and division, followed by addition and subtraction.

Within the same hierarchy of operations, evaluation proceeds from left to

right.

Examples:
X+Y¥*Z is interpreted as X+H(Y*Z)
W*X/Y*Z is interpreted as ((W*X)/Y)»*Z
B**2-4 . *A*C is interpreted as (B**2)~((4.*A(*C))
X-Y-Z is interpreted as (X-Y)-Z
X/Y/Z is interpreted as X/Y)/zZ
-X**3 is interpreted as ~(X**3)

4.2 ARITHMETIC ASSIGNMENTS AND REPLACEMENTS

The assignment statement is used to replace the value of a variable with the results of
the evaluation of an expression.

Form: v =e, where v is any variable or array element name, and e is an arithmetic
expression .

If the mode of the expression is different than the mode of thz variable, the value of

the expression will be converted to cause its mode to be compatible with the mode of
the variable. Figure 4-2 defines the rules for assignment of e to v.

FORTRAN Reference 4-3

v e ASSIGNMENT RULE
Real Real Assign
Real Integer Float and Assign
Integer Integer Assign
Integer Real Fix and Assign

FORTRAN Reference

Figure 4-2

SECTION V

CONTROL STATEMENTS
5.1 GENERAL
Each statement in @ FORTRAN program is executed in the order of its appearance in
the source program, unfess this sequence is interrupted or modified by a control
statement. This section of the manual describes the various conirol statements used
in DATA 620 Series FORTRAN.
5.2 GO TO STATEMENTS
GO TO stotements transfer logical contro! from one section of a program to another.
Basic FORTRAN includes two forms of the GO TO statement; unconditional and
computed.

5.2.1 Unconditional GO TO

An Unconditional GO TO is of the form: GO TO k, where k is a statement labe!
reference.

Execution of this statement causes the statement identified by the label k to be
executed next in sequence.

Example:
GO 10O 72

71 V7 = HQ (5) + Y**L

72V7 = HG (4) + X**}
In this example, execution of the GO TO 72 statement causes statement number 71
and any succeeding statements to be by-passed. Execution is resumed with statement
number 72.
5.2.2 Computed GO TO

The computed GO TO statement is of the form: GO TO ky, ko, ..., ky), i, where

the k's are statement label references, and i is an integer variable reference.

5-1 FORTRAN Reference

Execution of this statement causes the statement identified by the statement labe! k; to
be executed next in sequence where is the value of i at execution time. Valid
execution of this statement is dependent upon the value of the integer variable such
that 1 is less than or equal to j, and | is less than or equal to n.

Example:
GO TO (98,405.3), n

Execution of the statement in the example will cause control to be transferred to the
statement labeled 98,405 or 3 if the value of the variable integernis 1, 2or 3
respectively. If n contains an integer other than 1, 2 or 3, the results of the transfer
cannot be predicted.

5.3 ARITHMETIC IF STATEMENT

It is often necessary to alter the logical flow of a program on the basis of the results
of an arithmetic test. The IF statement is a conditional transfer that will execute this
leve! of control, and is of the form:

IF (e) k k

1 Kor kg
The arithmetic IF is a three-way transfer, Execution of this statement causes the
expression (e) to be evaluated, following which, the statement identified by the
label k1, k2, k3 is executed next in sequence, as the value of (e) is less than zero,
equal to zero, or greater than zero, respectively.

Example:

iIF(1)10, 11,12
10 V7 = HQ {5) + Y**L

GO TO 13
11 V7 = HQ (4) + X**)

GO TO 13
12 V7 = HQ (3) + X**L

13 Next Statement
In this example, execution of the IF (1) 10, 11, 12 statement causes one of the folfow-
ing actions: for a negative value of |, statement number 10 is executed in sequence;

for a zero value of 1, statement number 10 and any succeeding statements are by~
passed and statement number 11 is executed; for a positive, non-zero value of 1,

FORTRAN Reference 5-2

statements 10 through 11 and any statement following statement 11 are by-passed, and
statement number 12 is executed.

5.4 CALL STATEMENT

The CALL statement causes a transfer of execution control to a subroutine type sub-
program, and is of one of the forms: CALLs (o), ag, ..., a,) and CALLs, where s
is the name of a subroutine and the a's are actual arguments that will replace the
dummy arguments in the called subroutine. Arguments may be variable names, array
element names, array names, or any other expression. They must, however, be
indicated in order, number and type with the corresponding dummy arguments of the
subroutine.

Execution of the call statement transfers control to the designated subroutine. The
arguments declared in the statement line are associated with the dummy arguments
that are parameters of the executable statements of the subroutine. Control is then
passed to the first executable statement of the called subroutine. Control will be
returned to the first executable statement following the CALL statement upon execu-
tion of the RETURN statement in the subroutine. Examples of calling sequences to
subroutines are shown below.

CALL TEST (A, 1)
CALL EXIT

The first example will transfer execution control to the subroutine labelled TEST, and
the inclusion of the parameters or arguments A and | in the subroutine. The second
example will cause execution control to be transferred to the subroutine labelled
EXIT. Any arguments required for execution of EXIT are self contained in the logic
of the subroutine.

5.5 RETURN STATEMENT

The execution of a RETURN statement results in the exit from a subprogram, and is
expressed in the form: RETURN.

A RETURN statement defines the logical end of a procedure subprogram, and therefore
may appear only in a subprogram. Execution of the statement returns logical control
to the current calling program unit, Each subprogram must contain at least one
RETURN statement.

In the case of a subroutine subprogram, control is returned to the first statement
immediately following the CALL statement that released control to the subroutine.

In the case of a function subprogram, control is returned (with the value of the func-
tion available), to the statement that called the function subprogram.

5-3 FORTRAN Reference

5.6 CONTINUE STATEMENT
Form: CONTINUE.
The CONTINUE statement results in no action in an execution sequence, and therefore
the statement has no effect upon the program. This statement serves as a program unit
reference point.
Example:

IF (i) 10, 11, 12

10 V7 = HQ (5) + Y**L

GO TO 13
11 V7 = HQ (4) + X¥**)

GO 1O 13

12 V7 = HQ (3) + X**L

13 CONTINUE
5.7 PAUSE STATEMENT
Form: PAUSE n or PAUSE, where n is an octal digit string of length from 1 to 4.
A PAUSE statement causes a femporary cessation of program execution, and displays
PAUSE n (see section 8 — for display format). The statement permits operator inter-
vention for setup or control functions, such as changing data tapes. The computer
executes a Halt instruction delaying further execution until the operator selects the

console Run button. Execution will resume at the first executable statement following
the PAUSE statement.

Example:
PAUSE 01
5.8 STOP STATEMENT
Form: STOP n or STOP, where n is an octal digit string of length from 1 to 4.
A STOP statement causes termination of program execution, and displays STOP n

(see section 8 — for display format). The program then terminates with a Halt
instruction.

FORTRAN Reference 5-4

Example:
STOP 0721
5.9 DO STATEMENT

The DO statament is used to control repetitive execution of a group of statements.
The number of repetitions is dependent upon the value of a contro! variable. The
statement assumes one of the forms: DO n i = my, mp, ms3 and DO ni =m7p, my,
where:

n is the statement label of an executable statement. This statement, called
the terminal statement of the associated DO must physically follow and be in
the same program unit as the DO statement. The terminal statement may not
be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE or another
DO statement.

i is an integer variable name, identified as the control variable.

m1, identified as the initial parameter; my, as the terminal parameter; and
m3, as the incrementation parameter; are each either an integer constant or
integer variable reference. [f the second form of the DO statement is used,
a value of 1 is implied for the incrementation parameter, when the DO siate-
ment is executed, the values of my, mg, and m3 must be greater than zero.

Associated with each DO statement is a range that is defined to be those executable
statements from and including the first executable statement following the DO, to and
including the terminal statement defined by the DO. A special situation occurs when
the range of a DO contains another DO statement. In this case, the range of the con-
tained DO must be a subset of the range of the containing DO.

The control variable is assigned the value represented by the initial parameter. This
value must be less than or equal to the value represented by the terminal parameter.

The range of the DO is executed.

If control reaches the terminal statement, and after execution of the terminal
statement, the control variable of the most recently executed DO statement. associated
with the terminal statement is incremented by the value represented by the associated
incrementation parameter.

If the value of the control variable after incrementation is less than or equal fo the
value represented by the associated terminal parameter, the action is repeated with
the understanding that the range in question is that of the DO, the control variable
of which was most recently executed.

5-5 FORTRAN Reference

If the value of the control variable is greater than the value represented by its
associated termina! parameter, the DO is said to be satisfied, and the control variable
becomes undefined.

If there were one or more other DO statements referring to the terminal statements in
question, the control variable of the next most recently executed DO statement is
incremented by the value represented by the associated incrementation parameter until
all DO statements referring to the particular termination statement are satisfied, at
which time the first executable statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an arith-
metic IF statement, that is other than by satisfying the DO, the control variable of
the DO is defined and is equal to the most recent value attained.

A GO TO statement or an arithmetic IF statement may not cause control fo pass into
the range of a DO from outside its range. When a procedure reference occurs in the
range of a DO, the actions of that procedure are considered to be temporarily within
that range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal parameter and incrementation param-
eters of @ DO may not be redefined during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO statement, the label of
that terminal statement may not be used in any GO TO or arithmetic IF statement that
occurs anywhere but in the range of the most deeply contained DO with that terminal
statement.

Example:
DO 607 K1 = 2, 1D, 3

The foregoing statement would cause K1, the control variable, to be set to the value
of the initial parameter, 2. Execution would proceed at the statement immediately
following, down to and including the statement identified by the label 607, After
each execution of the loop, K1 is incremented by the incrementation parameter, 3,
and evaluated in relation to the current value of the terminal parameter, 1.D. If the
current value of ID is greater than K1, execution control is transferred to the state-
ment following that identified by the label 607, otherwise the DO cycle is repeated.

FORTRAN Reference 5-6

SECTION Vi
INPUT 7/ OUTPUT STATEMENTS

6.1 GENERAL

Input statements provide a program with the means of receiving information from
external sources. Qutput statements allow the transmission of program daota to extend
sources. These external sources may be devices such as magnetic tape and paper tape
handlers, typewriters, and punch card processors.

There are two types of input-output statements.

(1) READ and WRITE statements
(2) Auxiliary statements

The first type cause the transfer of records of sequential files to and from the program.
This data may be formatted information consisting of strings of characters, or unfor~
matted information consisting of binary word values in the form in which they nor-
mally appear in storage. The second statement type consists of the BACKSPACE and
REWIND statements which provide for positioning of magnetic tapes, and the ENDFILE
statement which provides for closing of a file.

Input-Output statements reference input-output units and, formatted information,
format specifications. An input-output unit is identified by o logical unit number, u,
which may be either an infeger constant or a variable name that references an integer
constant. Logical unit number assignments for the DATA 620/i FORTRAN may be
found in appendix L. The format specification is defined by a FORMAT statement
having the statement label f. This statement must appear in the same program as the
input~output statement.

6.2 INPUT-OUTPUT LISTS

The input list specifies the names of variables and array elements to which input values
are assigned. The output list specifies the names of variables and array elements
whose values are transmitted. Input and output lists are of the same form.

6.3 SIMPLE LISTS
Simple lists have the form: mj, mp, m3 ..., m, where the m; are the names of real
or integer variables or array elements. The comma characters separate each individual

name in the list. The period characters signify possible additional list items. List
elements may be enclosed in parentheses.

6-1 FORTRAN Reference

Example:

INPUT LISTS OUTPUT LISTS

A B
C (26, L 1 (10, 10)
R, K, D, (1, J) S, R, K), F (1, 25)

An array variable which is not subscripted in a list is considered equivalent to the
listing of each successive element of the array. If B is an array, the list B is equiva-
lentto B (1, 1), B(2,1), B3, 1), ..., B (1, 2), B(2,2), ..., B(j, k) where j and
k are the subscript limits of B,

6.4 DO-IMPLIED LISTS

A DO-implied list is a simple list followed by a comma character and an expression of
the form: i = my, mp, mzori=my, my.,

The elements i, my, mg, and m3 have the same meaning as defined for the DO state-
ment. The DO implication applies to all simple list items enclosed in parentheses
with the implication. For input lists, i, my, mg, and m3 may appear within this
range only as subscripts.

Examples:
Xm, 1=1, 4 X (1), X (2), X (3), X (4)
@), RQ), I=1, 2 QM), R(1), Q(2), R(2)
(GK), K=1,7,3) G(1), G4, G@
(A, 9,1=3,5),1=1,2 AGB,1,A@E),AB, D,
A@G,2),AH4,2),A(5,2
XK, K=1,2,1, R{J), J=3,5) X (1), X (2), 1, R (3), R(4), R(5)

6.5 READ STATEMENTS

These statements are used to obtain data values from an external source. The data
values are input in either formatted or unformatted mode. The form of a formatted
READ statement is: READ (u, f) k.

The verb READ and the parentheses must appear in this form.

Execution of this statement causes information fo be transmitted from the external
source whose logical unit number is defined by u. This data is scanned and converted
as specified by the format specification, f, and the resulting values are assigned to
the variable names defined in the list, k.

The form of an unformatted READ statement is: READ (u) k.

FORTRAN Reference 6-2

The verb READ and the parentheses must appear in this form. This statement causes
data to be input in binary form from the unit defined by u. The values are assigned
to the variable names defined in the list, k.

Examples:
READ (1, 44) A, B, C
READ (2)R, S
READ N, 12)A, R(I), 1=1, 10)
READ s, aTyd), =1, N)

All information appearing on external sources is divided into records. Each time a
READ statement is executed a new record is processed. The number of records input
by a single READ statement is determined by the list and format specification. If only
part of a record is input the remainder of the record is lost as the next READ processes
the next record. Records are read sequentially until the list is exhausted. Only
enough values are read to fill the list.

The list, k, in an unformatted read statement may be left blank to skip a record.

The record size for formatted data is 80 characters except when the device is the
Teletype keyboard or paper tape in which case the record size is variable with a
maximum of 80 characters processed per record. Unformatted records are 64 binary
words in length.

6.6 WRITE STATEMENTS

WRITE statements are used for the purpose of transferring program data to external
devices. This data may be formatted or unformatted. The form of a formatted WRITE
statement is: WRITE (u, f) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes records to be written on the device referenced by u.
The contents of the records are the values taken sequentially from the list k converted
according fo the format specification f.

The form of an unformatted WRITE statement is: WRITE (u) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes binary information from the list k to be written in
records on the unit defined by u.

6-3 FORTRAN Reference

Example:
WRITE (1, 5)A, B, C
WRITE 7R, 5, T
WRITE K, 12X, (Y, =1, M), |
WRITE NYW, Z, F(K), K=1, 5)

Several record may be written with a single WRITE statement. The number of records
is determined by the list and the format specifications. Successive records are written
until the data is exhausted. If the data does not fill a record, the record is filled
with blanks.

6.7 REWIND STATEMENT
This statement is of the form: REWIND u.

Execution of this statement cause the magnetic tape unit defined by u to be rewound.
If u is not a magnetic tape, no action is taken.

6.8 BACKSPACE STATEMENT
This statement has the form: BACKSPACE u.

The BACKSPACE statement causes the magnetic tape unit defined by u to be back-
spaced one record. If u is not a magnetic tape, no action is taken.

6.9 ENDFILE STATEMENT
This statement has the form: ENDFILE u.

When this statement is executed, a file mark is written on the magnetic tape defined
by u. No action is taken if u is not a magnetic tape.

6.10 FORMAT STATEMENTS

FORMAT statements are used with input~output operations to specify conversion and
editing of information between program storage and external representation. FORMAT
statements are non-executable and must have a statement label fo be referenced by
input-output statements. Conversion performed according to a FORMAT statement

during output is in general the reverse of conversion performed during an input
operation,

A FORMAT Statement is expressed as: n FORMAT (f], f%q, f3, ..., f), where n is

the statement labe! and the f; are field specifications. The noun FORMAT and the
parentheses must appear in this form. The comma characters are required only when

FORTRAN Reference 6-4

ambiguities would arise from not separating field specifications. The period
characters signify possible additional field specifications and would not actually be
present.

6.11 FIELD SPECIFICATIONS

Field specifications describe the type of conversion and editing to be performed on
each variable appearing in the input-output list. Field specifications may be any of
the following forms:

rFw.d

rEw.d

rlw

nHs

nX

where:

1. The characters F, E, and | indicate the manner of conversion for
variables in the list.

2. The characters H and X represent character data to be input-output
directly from the format.

3. The character / represents the end of a record.

4. w and u are non-zero integer constants defining the width of the field
(including digits, decimal points, algebraic signs) in the external
character string.

5. d is an integer specifying the number of fractional digits dppearing in
the external string.

6. r is an optional, non-zero integer indicating that the specification is
to be repeated r times.

7. s is a string of acceptable FORTRAN characters.

6.12 F CONVERSION

Form: rFw.d

Only real data may be processed by this form of conversion,

6-5 FORTRAN Reference

Output. The field is right justified with as many leading blanks as necessary to fill w.

Negative values are preceded by a minus sign. Internal values are converted to fixed
point decimal numbers and rounded to d decimal places.

For a field specification of F10.4:

368.4 is converted to 368.4000
12.0 is converted to 12,0000
-17.90767 is converted to ~17.9077
37.5E-2 is converted to 0.3750

If a value requires more positions than allowed by w the most significant digits,
including sign if negative, are output. The error indication is designated by an
asterisk in the least significant character position.

For a field specification of F6.4:

4739.76 is converted to 4740.0%
-12.463 is converted to ~12.5%

Input. . Input strings are decimal numbers of length w with d characters in the frac-
tional portion. Blanks are treated as zeros. If a decimal point is present in a value
the fractional portion of the value is explicitly defined by that decimal point charac-
ter. A comma (,) terminator may be used to override the w specification. Terminated
fields are treated as normal fields with leading zeros. A comma alone defines a zero
value for the field.

For a field specification F8.3:

35 is converted to 0.035
964372 is converted to 964.372
0.53821 is converted to 0.53821
-16.402 is converted to -16.402
-12 is converted to ~0.012
47 .E-4 is converted to 0.0047
36, is converted to 0.036
-0.75, is converted to -0.75
, is converted to 0.0
6.13 E CONVERSION

Form: rEw.d.

Only real dato may be processed by this form of conversion.

FORTRAN Reference 6-6

Ovutput. Internal values are converted to decimal values of the forms: .ddd...dE ee
and .ddd...dE-ee, where ddd...d represent d digits, while ee is a decimal exponent.
The leading decimal point and E characters are present exactly as shown. Internal
values are rounded to d digits and negative values are preceded by a minus sign. The
external field is right justified and preceded by blanks to fill the width, w. This field
width includes the exponent digits, the sign of the exponent (minus or space), the
letter E, the magnitude digits, the decimal point, and the sign of the value (minus or
space). This means that the field width should correspond to the relation: w 2d + 6.

If w is less than (d + 6) the format is in error.

For the field specification E12.5:

76.573 is converted to 0.76573E 02
58796.341 is converted to 0.58795E 05
=-369.7583 is converted to -0.36976E 03
0.006873 is converted to 0.68730E-02

0.2 is converted to 0.20000E 00

~0.0000054 is converted to -0.54000E-05

Each external value is of field width w with d characters in the fractional part of

the value. The value is right justified with all blanks counting as zeros. A minus
sign may be placed preceding the value of the exponent. A decimal poirt placed in
the fractional part takes precedence over the d specification. The character E should
be present to separate the value and the exponent. If not, the exponent is taken as
the two least significant digits. A comma (m) terminator may be used to override the
w specification. Terminated fields are treated as normal fields with leading zeros.

A comma alone defines a zero value for the field.

For a field specification £10.3:

123E3, is converted to 123.0
12874E2 is converted to 1287.4
-563E-02 is converted to -0.00563
-6.7563E05 is converted to -675630.0
398E00 is converted to 0.398
5387601 is converted to 538.76
5455-01 is converted to 0.5455
6.14 | CONVERSION
Form: riw

Only integer data may be processed by this form of conversion.

6-7 FORTRAN Reference

Output. Internal values are converted fo integer constants. Negative values are
preceded by a minus sign. Each field is right justified and filled with leading blanks.

For the field specification 16:

281 is converted to 281
-43567 is converted to ~43567

If the data requires more character positions than allowed by the width w, only the
least significant w positions are output.

For the field specification 12:

281 is converted to 81
-6374 is converted to 74

Input. External input values are right justified with the width w. Blanks are counted
as zeros. Input values must be integer values. A preceding minus sign may be placed
ona value. A comma (,) terminator may be used to override the 10 specification.
Terminated fields are treated as normal fields with leading zeros. A comma alone
defines a zero value for the field.

For the field specification 14:

120 is converted to 120
-144 is converted to -144
12 is converted to 1020
-3, is converted to -3

6.15 H CONVERSION

In DATA 620/i FORTRAN, Hollerith information consists of the legal FORTRAN
character set plus the additional characters §, !, *, # %, &, ', 1, ;. Information
input from the typewriter or paper tape is converted to an internal code used by
FORTRAN. When this information is output the internal codes are converted fo the
appropriate typewriter or paper tape codes.

Form: wHs.
Output. The number of characters, w, in the string, s, should contain exactly the
number of characters specified so that characters from other fields are not taken as

part of the string.

Blanks are counted as characters in the string.

FORTRAN Reference 6-8

Examples:
SPECIFICATION l EXTERNAL OUTPUT
THR R
8H STRING STRING
12HX (1, 3) = 12.0 X (1, 3)=12.0

Input. The w characters in the string s are replaced by the next w characters from
the input record. The resultant is a new string in the field specification.

For Example:

INPUT RESULTANT
SPECIFICATION STRING SPECIFICATION
5H12345 ABCDE 5HABCDE
7H TRUE FALSE 7HFALSE
8H MATRIX 8HMATRIX

This feature can be used to change titles, dates, headings, etc., which are output
with the program data.

6.16 X SPECIFICATION
Form: wX.

This specification causes no conversion to occur. On output, w blanks are inserted in
the external record. On input, w spaces are skipped from the input record.

Example of output:

SPECIFICATION QUTPUT
THA, 4X, 2HBC A BC
4X, 3HABC ABC
1X, 3HABC, 3X ABC

Example of input:

INPUT RESULTANT
SPECIFICATION STRING INPUT
F4.1, 3X, F3.0 , 12.5RRR120 12.5, 120.

The RRR characters are ignored by the 3X specification.

6-9 FORTRAN Reference

6.17 / SPECIFICATION

Form: /.

Each slash (/) specified in the format causes the termination of a record and processing
of the next record. Successive slashes (///...//) cause successive records to be
ignored on input, and successive blank records to be written on output. A slash
separating two field specifications removes the need for a comma separator.

For example:

F5.4,/4F10.3 is equivalent to F5.4/4F10.3

Output Example:

For a specification (1HA/THB/THC/THD) the resultant output records are:

A

B
C
D

Input Example:

Using the four records output from the previous example, an input specification

(1H1/1H2//TH3) produces the resultant specification (1HA/1HB//1HD).

6.18 REPEAT SPECIFICATIONS

The F, E, and | field specifications may be repeated by using the repeat count r in the
forms rFw.d, rEw.d, and riw.

Examples:

4F10.5,F3.6 is equivalent to F10.5,F10.5,F10.5,F10.5,F3.6
2F4.1,2E7.1 is equivalent to F4.1,F4.1,E7.1,E7.1
2F5.2,316,2E8.2 is equivalent to F5.2,F5.2, 16,16,16,E8.2,E8.2

Repetition of a group of field specifications is accomplished by enclosing the group in

parentheses preceded by an integer repeat count. If no repeat count is specified the
count is taken as one.

FORTRAN Reference 6-10

Examples:

2(F10.5, 16) is equivalent to F10.5,16,F10.5,16
2(€9.3,F7.1/14) is equivalent to E9.3,F7.1/14,E9.3,F7.1/14
3(4F5.0,2E8.2) is equivalent to 4F5.0,2E8.2,4F5.0,2E8.2,4F5.0,2E8.2

Example:
50 FORMAT (4X,2(15,6F8.2)/3(E12.7,F6.4),214)
6.19 FORMAT CONTROL AND LIST INTERACTION

Execution of a formatted READ or WRITE statement initiates format control. The
conversion performed on data depends on information jointly provided by the next
element of the input-output list and the next field specification of the FORMAT
statement. If there is a list, at least one field specification of type E, F, or | should
be present in the FORMAT statement.

Execution of a formatted READ statement causes one record to be input. To each E, F,
or | specification there corresponds one element in the list. To each H or X specifica~
tion there is no corresponding element in the list and the format control communicates
information directly with the record. Whenever a slash is encountered, or the entire
input record is processed, the record is terminated. If more input is necessary the
next record is input. Any unprocessed characters of a record are skipped when a

sfash is encountered.

A READ statement is terminated upon expiration of the list if: 1. the next specifica~
tion isan E, F, or |; 2. the format control hos reached the last outer right paren~
thesis of the FORMAT statement. If the list expires and the next specification is an
Hor X, data is processed (with the possibility of additional records being input) until
one of the obove two conditions is met.

If the format control reaches the rightmost parenthesis of the FORMAT statement and
more list remains to be processed the following steps are token: 1. a new record is
input and any remaining data in the previous record is ignored; 2. format controf
reverts to the point immediately following the last left parenthesis encountered. If
group repeat specifications exist in the format, this point is at the rightmoct group
of the format. The repeat count is not taken into consideration. If no groups are
present, the format is started from the beginning.

When a formatted WRITE statement is executed, records are written each time

120 characters or (72 characters in the case of teletype pegboard records) have been
processed, a slash is encountered, or the format control terminates. The format con-
trol terminates by one of the two methods described for READ termination. Incomplete
records are filled with blanks to maintain standard record lengths.

6-11 FORTRAN Reference

SECTION VI
PROGRAMS AND SUBPROGRAMS

7.1 GENERAL

An executable FORTRAN program consists of a main program and any required
subprograms. Subprograms may be defined by the progrommer or may be contained in
the system library, Each program or subprogram must contain at least one executable
statement,

7.2 MAIN PROGRAMS

A main program is a program unit consisting of a set of FORTRAN statements, comment
lines, and an END line. The program may be preceded by specification statements.

If so, these statements must be in the following order: DIMENSION, COMMON,
and EQUIVALENCE.

A main program cannot contain a subprogram definition statement, namely:

a FUNCTION statement
a SUBROUTINE statement

A main program may contain calls to other subprograms or may contain statement
function subprobrams,

7.3 SUBPROGRAMS

Subprograms are program units which may be called by other programs or subprograms.
Subprograms are categorized as one of the following:

Statement functions
Intrinsic functions
FUNCTION subprograms
SUBROUTINE subprograms

The first three are categorized as functions and the last as subroutines.

Functions are programmed procedures which are often used to provide solutions to
mathematical functions, Function references may be used in the same manner as
references to variables in an expression. For example: X = AB*SIN (Y) - C*COS
(Y*Z), where SIN is the name of the sine function, COS is the name of the cosine
function, and (Y) and (Y*Z) are their respective argument lists. The value returned
for a function reference is of the same mode as the function name, corresponding to
the rules for real and integer symbolic names.

7-1 FORTRAN Reference

7.4 STATEMENT FUNCTIONS

A statement function is defined internally to the program unit in which it is referenced,
All statement functions must precede the first executable statement and must follow any
specification statements of the program unit.

A statement function is defined in a single expression of the form: fay,a9,a3,...a,) =
e, where f is the functionname, the a; are the arguments, and e is an expression. The
resultant value of the function is either a real or integer value corresponding to the
function name. The a; are distinct variable names and are called dummy arguments.
These serve to indicate the type, number, and order of the function arguments. The
expression e is an arithmetic expression and may contain references to previously
defined statement functions,

A statement function is referenced by a function call, fa7,a5,a3,...,a,), appearing
in an arithmetic expression. A statement function may only be referenced within the
program unit in which it is defined. The arguments used in the reference must agree
in type, number, and order with the corresponding dummy arguments,

Example:
The statement function:
SF (X) = ARX**2+B*X+C
may be referenced in the program by:
W =5SF (Y)
7.5 INTRINSIC FUNCTIONS

Intrinsic functions are commonly used subprograms and are contained in the FORTRAN
library, The symbolic names and meanings of the intrinsic functions are shown in
figure 7-1,

An intrinsic function is referenced by a function call in an arithmetic expression. The
arguments in the argument {ist must agree in type, number, and order with those shown
in figure 7-1,

Example:

IF (SIGN(W, X)) 1,2,2
1 W=ABS (X) - ABS (Y)
2 S=W*FLOAT (I*J)

K=1FIX (X)+d

!

FORTRAN Reference 7-2

Table of Basis Intrinsic Functions

Figure 7-1.

z
O) 5 [
[< & < g < 8
[*] L
S &k 2 = S=
-
.
o
O
w
a
>—
—
—_
Z = = .
o o] @
w _ o — — O
5| 3% ¢ 3 2
< j= j=
o = —_— oL o —
Y
<€
2 =
) Z
< Z
23 Q8 o] x 09
EZ << fr - 2
vy
(%]
=z
B, w
EOE —_ —_— p— o~
=) o
z O
[=%4
<
7 5
O S o 5 - o=
j w2 ‘s o o o
= ¢} 2T _ 209 PSR,
z 0 .-Z g o < ¥ [e]
= > @ > c b
™ c g 2 c E .= =R}
wi o0 o 0 6 4 o E
a [JRt=g= O £ =,
uZ
O 2 5 o
<51 83 3 2
gY 35 8 X 5
Z S << > w - ()
~—
7-3 FORTRAN Reference

7.6 FUNCTION SUBPROGRAMS

A function subprogram is defined externally to the program unit by which it is
referenced. A function subprogram is defined by having as its first statement, other
than comment lines, a statement of the form:

FUNCTION f(u] 190,85, 0ee, on)

where f is the symbolic name of the function and the a; are dummy arguments. Each
aj is either a variable name or an array name. The q; defme the type, number, and

order of the FUNCTION arguments,

A function subprogram is executed at the first executable statement following the
FUNCTION statement. Specification statements (DIMENSION, COMMON, and
EQUIVALENCE) may immediately follow the FUNCTION statement, If present, these
must precede any other statement, excluding comments, The symbolic names of the
dummy arguments, a,, may not appear in an EQUIVALENCE or COMMON statement.

A function subprogram must contain at least one RETURN statement and the last state—
ment executed in a FUNCTION must be a RETURN statement. The function subpro-
gram is ended by an END line.

The symbolic name, f, of the FUNCTION must appear as a variable name within the
subprogram. The value returned for a FUNCTION is the last value assigned fo this
name prior to execution of a RETURN statement. The mode of the FUNCTION value,
either integer or real, is determined from the function name.

The symbolic name of the function must not appear in any nonexecutable statement
within the subprogrcm. A subprogram may not define or redefine any of its arguments
nor any variable in COMMON,

Example FUNCTION:

FUNCTION XP(A,B,1)
DIMENSION B(10)
XP=0,
DO 1 J=1,10

1 XP=(A*B(J))**14XP
RETURN
END

A FUNCTION is executed with a function reference by a main program or another
subprogram. The actual arguments in the call must correspond in type, number, and

FORTRAN Reference 7-4

order with the FUNCTION dummy arguments. |f a dummy argument of a FUNCTION

is an array name the corresponding actual argument must be an array name,
Example:

A call for the example FUNCTION shown above would be: W+XP(R,S,K)

where S is an array.
7.7 BASIC EXTERNAL FUNCTIONS

Basic external FUNCTIONS are standard subprograms contained in the FORTRAN
library. These are referenced in the same manner as normal FUNCTIONS. The sym-
bolic names and meanings of the basic external FUNCTIONS are shown in figure 7-2,

7.8 SUBROUTINE SUBPROGRAMS

A subroutine subprogram is defined externally to the program unit that references it.
Subroutines, unlike functions, do not have values associated with them and cannot be
referenced in an expression. Subroutines are accessed by CALL statements,

A subroutine subprogram is defined by having as its first statement, other than comment
lines, a statement of the form: SUBROUTINE S(ay,ap,a3...,a,) or SUBROUTINE S,
where S is the symbolic name of the subroutine and the a; are the dummy arguments of
the subroutine. Each a; is either a variable name or an array name. If no arguments
are passed to the subroutine the second form above is used,

The symbolic name of the subroutine must not appear in any statement in the subpro-
gram. The symbolic names of the dummy arguments may not appear in COMMON or
EQUIVALENCE statements,

A subroutine is executed at the first executable statement. Specification statements
may be contained immediately following the SUBROUTINE statement and preceding

any executable statement, A subroutine must have at least one RETURN statement.

The last statement executed by a subroutine must be a RETURN statement,

DATA 620/i series FORTRAN includes a subroutine nomed 'EXIT', When this sub-
routine is referenced by a CALL statement of the form:

CALL EXIT

the statement END OF JOB will be displayed (see section 8 -~ for display format),
and the program terminates with a Halt instruction.

7-5 FORTRAN Reference

Example SUBROUTINE:
2 SUBROUTINE R(A, I,Z)
= T T 3] E T 3 DIMENSION A (10)
O o o v v o’ o o Z=0
5 DO 1 J=1, 10
L 1 Z=Z+A(J)**1
o) RETURN
& END
b
E A subroutine is referenced with @ CALL statement, The argument list in the reference
ig must agree in type, number, and order with the dummy arguments of the subroutine.
g T T T T s T E If a dummy argument is an array name, the corresponding actual argument must be an
o os oL -4 - o oc [-*3 » array name.
o <
<]
5 Example:
5
i; A call for the example SUBROUTINE above would be: CALL R (T,K, D) where
O I3 T is an array,
- w (O} T — z 2
% s (=298 z 8 %2 g < o 7.9 DUMMY ARGUMENTS
N 4 o < o o = A < g
e & Dummy arguments provide a means of passing information between a subprogram and
K the program or subprogram which called it. Both function and subroutine subprograms
A L may have dummy arguments. A subroutine need not have any, while a function must
= Z fq have at least one. Dummies provide definitions of the data type, number, and
g w g _ . sequence of subprogram parameters.
303 - T T s §
z Q '; A dummy may be classified within a subprogram as a variable or an array. The actual
< 5 arguments defined by a calling program or subprogram to which a dummy may corres-
L?_’ pond are: variables, array elements, arrays, expressions.
Z . Within a subprogram a dummy may be used in much the same way as any other variable
g = = N = N L or array. A dummy man not appear in a COMMON or EQUIVALENCE statement,
z < ~ z = < 5
% o, 8‘1’) 2 8 _§ % 13 The actual arguments used in a calling statement must agree in data type with the
=) - “ © = ~ ° corresponding dummy arguments, that is - reals to reals, intergers fo integers, and
arrays to arrays, If an actual argument is an expression, the result of the expression
should correspond in data type to the dummy,
(%2
) %l % ',E £ é E 2 § ;E) A dummy array is defined to be an argument which appears in DIMENSION statement
e — g T©E ¢ .?_:) g o _§ b °) in the subprogram. A dummy array does not occupy any storage but tells the subpro-
L= % g 2 é, S o S .£ 25] kel gram that the argument supplied in the calling statement defines the first element of
& 2 X ZD S Ex = § f;_ :lg' <(S an actual array. The calling argument need not have the same dimensions as the

FORTRAN Reference 7-6 7-7 FORTRAN Reference

dummy array. Useful operations can sometimes be performed by defining different
dimensions for the dummy and calling arguments.,

Example:

DIMSION A(10,10) SUBROUTINE FM(B)
CALL FM(A(6,1)) DIMENSION B(50)

For this case the 1 - dimensional dummy array B corresponds to the last half of the 2 -
dimensional array A, [f the calling statement were: CALL FM(A),

The dummy array B would correspond to the first half of the array A,

FORTRAN Reference 7-8

SECTION VIII
FORTRAN OPERATING INSTRUCTIONS

8.1 GENERAL

The DATA 620/i basis FORTRAN system operates in a minimum configuration of 8192
words of memory and an ASR-33/35 teletype. FORTRAN programs and subprograms

are compiled by the basic FORTRAN compiler. FORTRAN compatible machine lan-
guage subprograms are assembled by the DAS assembler version I, mod F, The
FORTRAN loader loads main programs and all required subprograms into memory for
execution, The FORTRAN run-time library provides input/output, conirol, and mathe-
matical functions required at execution time.

8.2 COMPILER OPERATING INSTRUCTIONS

The DATA 620/i basic FORTRAN compiler translates FORTRAN source programs to
relocatable machine language programs in a single pass. FORTRAN statements may
be input from the teletype keyboard or paper tape reader, the card reader, the high
speed paper tape reader or magnetic tape. Object code is output via the teletype or
high speed paper tape punch or magnetic tape. Error diagnostics, source listings and
object listings are provided on the teletype or line printer. [nput/output and listing
options are selected at the teletype keyboard for each program to be compiled.

8.3 PRELIMINARY OPERATIONS

The DATA 620/i basic FORTRAN compiler is supplied as an absolute binary object
tape. The compiler is loaded into memory by the standard binary loader and occupies
the first 13500 (8) words of memory. (See programming reference manual for pro-
cedure to load absolute object programs.) Entry to the compiler is at location 0. Upon
entry, the compiler will execute a HALT 0777 with the A register set to the upper
limit of compiler used memory (15777 stundard). This limit may be modified by
resetting the A register. (See appendix M for compile time memory map.) To compile
programs press RUN,

8.4 NORMAL OPERATIONS

For each program to be compiled a ?= will be typed on the teletype printer requesting
input/output selection. The operator should respond by typing one of the following
characters to indicate the input device: C (card reader), K (teletype keyboard), P
(paper tape), O through 3 (magnetic tape, units O through 3); followed by one of the
following characters to indicate the output device: C (card punch), P (paper tape),

0 through 3 (magnetic tape, units O through 3); followed by an (optional) listing
selection character: S (source listing), @ (object listing), B (both source and object

8-1 FORTRAN Reference

listings); followed by the character >, followed by the (optional) 1 to 6 character
program name, followed by @ for a carriage return and line feed.

Example:
? =CPS > MATRIX @

C for input cards, P for output paper tape, S for list source with program
name MATRIX, Following input/output selection, source statements are
read and object records are output through the selected devices. Error
diagnostics and selected list options are printed on the teletype or line
printer (if available). Upon detecting and END statement (followed by a
non-bland statement), the compiler will produce a program map listing
all variables, constants (in octal), and required subprograms. Having
listed the program map the compiler will type a ? = to permit compiling
another program.

8.5 INPUT RECORDS

Input to the compiler is a series of FORTRAN statements each of which appear in one
or more input records. Records may be fixed or variable in length depending on the
device, however, only the first 72 characters of each record are used by the compiler.
Any illegal characters are treated as blanks. Blank records are ignored. END state-
ments must be followed by at least one non-blank record (another END statement is
suggested).

Keyboard and paper tape records are variable length and are terminated by a carriage
return and line feed in that order. The character > may be used to TAB to column 7,
and the character «— may be used to clear the input buffer and reset to column 1.

For keyboard input the teletype bell is rung to notify the operator that source input is
required.

Card records are a fixed length of 80 characters. The special characters > and «—
are treated as blanks,

Magnetic tape records are a fixed length of 84 characters, and should be card or paper
tape images with blank padding characters. The special characters > and «— are
permitted as defined for paper tape. Carriage return and line feed characters are
permitted but ignored,

8.6 OUTPUT RECORDS

Object records are a fixed length of 64 words and are output from time to time as they
are created. Paper tape object programs are punched with leader and trailer records.

FORTRAN Reference 8-2

Magnetic tape object programs are terminated by an end of file, All main programs
are terminated by an end-of-tape record, Refer to appendix N for object record
format.

All error diagnostics are of the form: ERR xx @ . . . a, where xx is a number from 1
to 15 (notification error) or T followed by a number from 1 to 9 (terminating error),
anda . . . arepresents the last (up to 16) characters encountered in the statement
being processed. The right most character indicates the point where the error was
discovered (the character @ indicates end of statement), If a terminating error is dis—
covered object output is terminated, but source code is continued to detect any further
errors,

8.7 NOTIFICATION ERRORS

1. Construction

2., Usage

3. Mode

4. |Hegal DO Termination

5. Improper Statement Number

6. Common Base Lowered

7. Ilegal Equivalence Group

8. Reference to Non-Executable Statement
9. No Path to this Statement
10, Multiply Defined Statement Number
11. Invalid Format Construction
12, Spelling Error
13, Format with No Statement Number
14, Function Not Used as Variable
15. Truncated Value

8.8 TERMINATING ERRORS

T1. Construction

T2. Usage

T3. Data Pool Full

T4. Itlegal Statement

T5. Improper Use of Name

Té. Improper Statement Number

17. Mode

T8. Constant Too Large
T9. Improper DO Nesting

8~3 FORTRAN Reference

8.9 OPTIONAL LISTINGS

Source and object records may be listed if desired. Source records are listed as they
are input, Object records are listed from time to time as they are created. Each
object record consists of a varying number of 2 and 4 word data/instruction entries,
The object record listing consists of one line for each eniry. Two word entries are of
the form abbc vvvvvv, and four word entries are of the from abbc nnnnnn vvvvvy,
where a is the control code, bb is the sub code, c is the pointer number, nnnnnn is a
1 to 6 letter subprogram name and vvvvvy is a 6 digit octal value or instruction. See
appendix N for object record format and codes.

8.10 PROGRAM MAP

Upon processing the END statement the compiler will list the program map. The first
three lines of the map define the size of the program, data and common areas and are
of the form a, *SIZE mmmmmm, where a is the area (0 = program, 1 = data, 2 =
common), and mmmmmm is the octal size., For programs with no terminating errors the
following information is also listed,

a) a, 1M1 nnnan Variable

b) a, 11111 ccccec ceccce Constant

c) S, 11111 nnnnn External Subprogram

d) # TIT11 ssss Statement Number

e) X, 11111 ssss Undefined Statement Number

Where a is the area, 11111 is the relative location of the item or the last reference to
the subprogram or statement number, ccceee cecece is a two word octal constant, and
ssss is a statement number,

8.1 FORTRAN LOADER OPERATING INSTRUCTIONS

The FORTRAN loader is designed to operate in a DATA/i 620 computer with at least
8192 words of memory. Its function is to load relocatable object programs produced
by the DATA 620/i FORTRAN compiler and FORTRAN compatible subprograms pro-
duced by the DATA 620/i assembler. Object program input is from either paper or
magnetic tape and is selected from the teletype keyboard, Load maps and error diag-
nostics appear on the teletype printer. See appendix M for load time memory map,

8.12 PRELIMINARY OPERATIONS

The FORTRAN loader is supplied as an absolute binary object tape and is loaded into
memory by the binary loader (see programming reference manual, for loading pro-
cedure). The FORTRAN loader occupies locations 000 through 077 and 014000 through
015740,

FORTRAN Reference 8-4

(Locations 0100 through 0277 are reserved for loader generated pointers.) The fi.rsf
program to be loaded must be a FORTRAN compiled main program. Prepare the input
unit, clear the registers and RUN at location STRT (014140), The message IN will
appear on the teletype, requesting input selection. To select paper tape input type .P.
To select magnetic tape, type the unit number (0, 1, 2, or 3), If rhe selected unit is
attached and ready the loader will foad the main program (a.t locano‘n 0300). The
teletype will then type RQ followed by a list of the subroutines required, followed by
another input selection request.

8.13 LOADING SUBPROGRAMS

To effect the most efficient use of the loader, it is recommended that subprograms be
loaded in the following order:

a. Customer produced subprograms.

b. FORTRAN input/output subprograms.,
c, FORTRAN math subprograms.

d. FORTRAN utility subprograms.

Prepare and select the input unit as formain programs, The loader YviH !ood all "
required subprograms until an end of tape record is de-tecfed, u't which time the (l)sf '
of required subprograms is generated and input selection is again requestec.l. (N :E.
The end of tape record is not produced for subprograms by either the compiler or t ed
assembler, but is supplied as a separate tope labeled FORTRAN END-OF-TAPE, crr\{AN
should be spliced on the end of the users subprogram library tapes. Standard FORT
library tapes are delivered with end-of-tape records.)

i h subprogram input
If two or more subprograms have the same name, only the first suc
will be foaded. When all required subprograms have been loaded, the message G¢
will be typed followed by the load map, which lists each subprogram loaded and its
entry point. To execute the loaded program press RUN. The load map may be forced
by running at location RUN (015025). Execution of the main program may be forced
by running at location 0300.

8.14 ERROR DIAGNOSTICS

An error in the loading process will cause type out of an error message and the tt’ood
map. A minus sign will precede the address of each subpl:ogrum ijnch has nEf een
loaded, in this case, the address represents the last location at which the subprogram
is requested. All errors except checksum errors are non-recoverable. The error must
be corrected and the loading process re-initialized,

CK Checksum error. Backspace the input tape one record and press RUN
for another attempt.

8-5 FORTRAN Reference

AR Area reference. An attempt has been made to load a value to an area
not yet defined.

CE Compiler error. A terminating error occurred at compile time.

cs Common size. A secondary use of blank common has occurred that is
larger than the initially defined area.

SZ Program size. The program being loaded is too large for the memory
available.
8.15 EXECUTION OF FORTRAN PROGRAMS

All FORTRAN main programs are loaded and entered at location 300(8). Required sub-
programs are loaded as they are input in successive blocks of memory. Common stor-
age normally overlays the FORTRAN loader, which leaves the AID Il routines and
absolute binary loader in memory at their standard locations. Locations O through
77(8) are unused and focations 100(8) through 277(8) contain program and data pointers
used by the program and subprograms to be executed.

To execute a FORTRAN program initialize the input/output devices selected, clear the
console registers, set the program counter to 300(8), press SYSTEM RESET and RUN.,

8.16 PROGRAMMED HALTS

DATA 620/i FORTRAN provides fo 3 types of programmed halts: STOP, PAUSE, and
EXIT. STOP causes the program to execute a HALT 0777 with the stop number dis-
played in 4 bit BCD in the A register and the B register set to -1, A STOP implies
end of job, PAUSE causes the program to execute a HALT 0000 with the pause number
displayed in 4-bit bed in the A register and the B register set to 0. The program may
be continued by pressing SYSTEM RESET and RUN., EXIT couses the program to exe-
cute a HALT 0777 with the A and B registers set fo -1 and signifies end of job. All
programmed halts display error bits in the X register,

8-17 ERROR BIT DESIGNATIONS

Bit 0 indicates floating point overflow,
Bit 1 indicates divide check.

Bit 2 indicates fixed point overflow,
Bit 3 indicates indeterminate function,
Bit 4 indicates a log error.

Bit 5 indicates square root error,

Bit 6 indicates GO TO error.

FORTRAN Reference 8-6

8-18. ERROR HALTS

The following error halts are generated by the run time input/output package. These
errors cause a 4 character message to be typed on the teletype printer followed by a
call to EXIT.

FRMT: Format error.
MODE: Data mode error (floating point vs. integer).
DATA: Input data field error.
UNIT: Unit not attached or not available,
TAPE:- Checksum or tape parity error.
8.19 BINARY INPUT/QUTPUT

All binory input/output records are a fixed length of 64 words., Paper tape records
are punched with a record mark and checksum (see appendix N -- for a detailed
format). Checksum errors encountered on input will cause a TAPE error.

8.20 BCD INPUT/QUTPUT

Bed records may be fixed or variable in length depending on the device, however,
only the first 80 characters are processed.

Keyboard and paper tape records are variable length and are terminated by a carriage
return and line feed in that order. The character «— may be used to clear the input
buffer and reset to column 1., Illegal characters are ignored. For keyboard input the
teletype bell is rung to notify the operator that bed input is required,

Card records are o fixed length of 80 characters. Illegal characters are treated as
question marks and cause @ DATA error unless contained within a Hollerith field.

Magnetic tape records are o fixed length of 84 characters, and should be card or
paper tape images with blank padding characters, The special character «— is

permitted as defined for paper tape. lilegal characters are treated as blanks.

It should be noted that the model-~33 teletype paper tape punch must be turned on and
off by the operator.

8-7 FORTRAN Reference

actual argument -

alphanumeric character -

argument -

arithmetic expression -

arithmetic operator -

array -

array element -
array name -
column -
comment line -

continuation line -

constant -~

data type -

SECTION iIX
GLOSSARY

an argument contained in a function reference or
CALL statement

an alphabetic or numeric character

a parameter used to pass data between programs and
procedures

a sequence of constant, variable, or function
references connected by arithmetic operators

one of the following characters with its associated
connotation:

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
** (exponentiation)
an ordered set of data of one or two dimensions
one of the members of the set of data of an array
a name that is defined in a DIMENSION statement
a character position in a line
a line with the character C in column 1
a line that contains any character other than the
digit zero or the character blank in column é and
that contains blank characters in columns 1 through
5. A continuation line may only follow an initial

line or another continuation line.

a name that references a value. A constant may
not be redefined

the type of data, either integer or real

9-1 FORTRAN Reference

dummy -

dummy argument -

end line ~

executable program -

executable statement -

expression -

external procedure ~

FORTRAN character set -

function -

function reference -

function subprogram -

initial line -

integer -

integer constant -

integer variable -

line -

FORTRAN Reference

a dummy argument

an argument used to indicate data type, number,
and order of procedure arguments.

a program unit terminator

a main program with possible one or more
subprograms

a statement that specifies an action of the program.
An arithmetic assignment statement, control state-
ment, or input-output statement

an arithmetic expression

a subprogram external to a program unit

all alphanumeric and special characters listed on
pages 1-1 and 1-2

a function subprogram, intrinsic function, or state-
ment function

a function name followed by an actual argument
list contained in parentheses

- @ FUNCTION statement followed by program body

a line that is neither a comment line nor an end line
and that contains the digit zero or the character
blank in column 6

a datum which assumes only integral values. 1t may
assume positive, negative, and zero values.

a constant that references an integer value

an integer datum that is identified by a symbolic
name beginning with any one of the characters

1,1,K,L,M, or N

a string of 72 characters each of which is a valid
FORTRAN character. The character positions in a
line are ‘called columns and are consecutively
numbered from left fo right beginning with column 1.

9-2

list -

main program -

name -

non-executable statement -

operator -

procedure -

processor -

program -

program body -

program unit -

program part -

real -

real constant ~

real variable -

reference -

a set of identifiable elements, each of which is
separated from its successor by a comma

a program body

an element of a statement which is used fo reference
objects such as data or procedures

a statement that describes the characteristic and
arrangement of data, editing information, statement
functions, and classification of program units

an element of a statement which specifies an action
upon named objects

a function or subroutine
the program which processes FORTRAN programs

a collection of statements, comment lines, and end
lines

a collection of optional specification statements
optionally followed by statement function definition,
followed. by a program part, followed by an end line

a main program or subprogram

at least one executable statement. A program part
may but need not contain FORMAT statements

a datum which is a processor approximation to the
value of a real number. A rea! datum assumes both
integral and fractional values and may assume
positive, negative, and zero values

a constant that references a real value

a datum that is identified by a symbolic name
beginning with .any character other than |, J,K, L,
M, or N

a verb indicating an identification of a datum and

implying that the current value of the datum will be
made available

9-3 FORTRAN Reference

signed constant -

special character -

specification statement -

statement -

statement label -
string -
subprogram ~
subroutine -

subroutine subprogram -

subscript -

subscript expressions -

symbalic name -

variable -

FORTRAN Reference

a constant preceded by a plus or minus sign

one of the ten characters:. blank, equals, plus,
minus, asterisk, slash, left parenthesis, right
parenthesis, comma, and decimal point,

a COMMON, DIMENSION, or EQUIVALENCE

statement
an initial line optionally followed by up to five
ordered continuation lines, The statement is con-

tained in columns 7 through 72 of the lines

one to four digits, the value of which must be
greater than zero. Leading zeros are not significant

a series of data

a SUBROUTINE or FUNCTION statement followed
by a program body containing at least one RETURN
statement

a subroutine subprogram

a SUBROUTINE statement followed by a program
body

a parenthesized list of subscript expressions

any one of the following expressions: C*V+K,
C*V-K, C*V, V4K, V-K, V, K, where C and K are
integer constants and V is.an integer variable

reference

one to five alphanumeric characters, the first of
which must be alphabetic

a datum that is identified by a symbolic name

9-4

SUBROUTINE DESCRIPTIONS

SECTION |
GENERAL DESCRIPTION

1.1 INTRODUCTION

This manual is one in the series of functional publications for the DATA 620/}
computers. |t is intended to acquaint the programmer with the standard subroutine
library and how it is used. The manual is divided into the following four areas:

Programmed Arithmetic
Elementary Functions

Utility and Debugging Routines
Executive Routines

Each routine is documented in accordance with the programming standards as set forth
in the following pages. These standards show the various categories and how they are
documented.

It will be most helpful for each programmer to read over the standards before using any
of the standards library; in addition, it will be helpful if the standards are followed
when writing programs and submitting programs to the users group.

1.2 PROGRAMMING STANDARDS
1.2.1 Memory Allocations

Computer locations X7756 through X7777 octal will be used for various bootstraps,
e.g., short programs for loading in the first record of a service library or service
library loader from paper tapes or discs, where x = O for 4096 words and x = 1 for
8192 words. Routines will be distributed in relocatable binary or symbolic assembly
language.

1.2.2 Subroutine Entry and Exit

If a subroutine requires only one parameter or argument, programmed entry will be
made by first loading the desired parameter into the A register and then executing a
return-jump to the subroutine,

Where more than two input parameters are required, the parameter will be entered
into the program following the return-jump to the subroutine. The following sequence
of instructions will be used:

LOCATION INSTRUCTION REMARKS
P Return jump Return jump to subroutine
P+2 Parameter Parameters or parameter

locations for subroutine

1-1 Subroutine Description

LOCATION INSTRUCTION REMARKS

P+3 Parameter Parameters or parameter
locations for subroutine

P+4 Parameter Parameters or parameter
locations for subroutine

P+n Parameter Parameters or parameter
locations for subroutine

P+n+l Jump to error To execute error action

P+n+2 Norma! return Continuation of program.

Subroutine Descriptions

SECTION |I
PROGRAM DESCRIPTION

2. INTRODUCTION

The published material for each routine will constitute a distinct package, separated
materially from all other routines, (This is done to facilitate revisions and
re-publication of the material for one routine without the necessir{ of re~publishing
all others,) The published material for each routine will be as follows:

a. ldentification

Title
Identification
Category
Programmer
Date

b. Purpose
c, Use

Calling sequence or operational procedure
Arguments or parameters

Space required (decimal)

Temporary storage requirements (decimal)
Alarms or printouts

Error refurns or error codes

Error stops

Input and output devices

Input and output formats

Sense switch settings

Timing

Accuracy

Cautions to users

Equipment configuration

References

d. Method of Algorithm
e. Flow Charts

If any of the previous items are not applicable in the routine, the words "not
applicable” will be inserted.

2.2 IDENTIFICATION

Each program will be identified by a category designator consisting of the following
parts: classification code, program identification, and title.

2-1 Subroutine Descriptions

The classification code will consist of a letter, indicating the primary class, followed
by a digit indicating the subclass, chosen from the following expandable list:

a. Programmed arithmetic, Real {fixed point, double precision).
b. Elementary functions,
Trigonometric
Exponential and logarithmic
Hyperbolic
Roots and powers
c. Input
Binary
Octal
Alphanumeric
d, Output
Binary
Octal
Alphanumeric

e, Executive Routines,

Assembly
Compiling

f. Debugging Routines.
Tracing
Dump
Search
Breakpoint
g. Diagnostic programs.
h. Service programs.
Clear
Check sum programs

Restore, rewind, bootstrap programs

i. All others.

Subroutine Description 2-2

SECTION i
PROGRAMMED ARITHMETIC

This section contains programmed routines separated into distinct packages. Each
routine will follow the format described in section I, program description. As new
routines are developed, they can easily be inserted into the proper section.

3-1 Subroutine Descriptions

IDENTIFICATION
Title: Fixed single-precision integer binary-to-decimal conversion

Identification: XBTD

Category: Al
Programmer: J.H. Hathwell
Date: October, 1965
PURPOSE

XBTD converts the absolute value of the integer in the A register, modulo 10,000, to
a four digit decimal coded integer in the B register. The input is retained in the A
register and the X register is unchanged. The output range is 0 through 9999 inclusive

USE
1. Calling Sequence
Call XBTD
2. Arguments or Parameters
The binary argument is in the A register before and after execution.
3. Space Required
Twenty-seven words.
4. Temporary Storage Requirements
Four words.
5. Alamms or Printouts
None.
6. Error Returns or Error Codes
None.
Subroutine Description 3-2

10.

(R

15.

Error Stops

None .

Input and Output Devices

Not applicable.

Input and Output Formats

Not applicable.

Sense Switch Settings

Not applicable .
Timing
Maximum: 138 cycles.

Average: 137 cycles.
Minimum: 136 cycles.

Accuracy

Exact.

Cautions to User

15 .
-2~ causes overflow and a meaningless result.

Equipment Configuration

Not applicable.

References

Not applicable.

METHOD

Successive division of binary integer by 10]0 with concatenation or remainders.

3-3

Subroutine Description

IDENTIFICATION

Title: Fixed single-precision integer decimal-to-binary conversion

FLOW CHART Identification: XDT8

‘ XBTD > Category: Al

Programmer: J. H. Hathwel!
Date: October, 1965
SAVE
AR & XR
PURPOSE
XDTB converts the four-digit decimal-coded integer in the A register to a binary
integer in the B register. The input is retained in the A register with the X register
BIN = ~? YES 1BIN|—>BIN unchanged. The output range is +0 through +9999 inclusive.
NO
USE
1. Calling Sequence
BIN—BR ——
XR=3
AR =0 Call XDTB
2. Arguments or Parameters
IN/10—BIN
EAVE BIN The decimal argument is in the A register before and after execution.
BCD—»8R
ATTACH BCD DIGHT]
IN AR TO BCD 3. Space Required
Twenty~four words.
O R-Txh 4. Temporary Storage Requirements
SAVE BCD
BNTeBR Four words.
YES
5. Alarms or Printouts

RESTORE None.
AR & XR RETURN
6.

Error Returns or Error Codes

None.

Subroutine Description 3-4 3-5 Subroutine Description

METHOD

7. Error Stops
Successive multiplication of digits by powers of 10 with accumulation.
None.
8. Input and Output Devices B = ((IOD3 + D2) 10 + D]) 10 + D0

Not applicable.

9. Input and Output Format

Not applicable.
10. Sense Switch Settings
Not applicable.
1. Timing
113 cycles.
12, Accuracz
Exact.
13, Cautions to Users
Input is not checked for legal bed codes, but is evaluated as:

3 2 1 0
D3u 107+ D, 10° + D, 10 + Dy, 10

where D is a four-bit binary number.

14, Equipment Configuration

Minimum configuration.
15, References

Not applicable.

3-7 Subroutine Descriptions
Subroutine Description 3-6

FLOW CHART
‘ XDT8 ’

SAVE AR & XR
DEC BR
XR=3

SHIFT NI DIGIT
INTO AR,

SAVE BCD
BIN —=~BR

10+ BIN + AR
—=BR

No

YES

RESTORE
AR & XR

RETURN ’

Subroutine Description 3-8

XR-1—=XR
SAVE BIN.
BCD—=BR

IDENTIFICATION

Title:

Fixed-point single~precision multiply

Identification: XMUL

Category: Al
Programmer: J. H. Hathwell
Date: October, 1965

PURPOSE

XMUL provides the software version of the (optional) hardware multiply instruction.

USAGE

i,

Calling Sequence

LDB Multiplier

LDA Constant

CALL XMUL

PZE Address of multiplicand
Normal return.

Arguments or Parameters

30

On entry: A = constant to be added to product at 27,

8 = multiplier.
On exit: A, B = double-precision product,

X is unchanged.
Space Required
38 words (0468).
Temporary Storage Required
2 words.

3-9 Subroutine Descriptions

5. Alarms or Printouts METHOD
None. Recursive addition of multiplicand with shifting.

6. Error Returns or Codes

DV is set (1) if the product is greater than 2**(NBiT-1)-1.
7. Error Stops
None.

8. Input and Output Devices

None .

9. Input and Output Formats or Tables

None.
10. Sense Switch Settings
None.
11. Timing
Maximum: (B = 1) 436.75 cycles
Average: 404.75 cycles
Minimum: 372.75 cycles
12, Accuracy
Exact.
13. Cautions to User

None.

14. Equipment Configuration

Minimum.
15. References

DATA 620/i system reference manual (MUL) .

Subroutine Descriptions 3-10 3-11 Subroutine Descriptions

IDENTIFICATION 5. Alarms or Printouts

Title: Fixed-point single-precision divide None.
Identification: XDIV 6. Error Returns or Codes
Category: Al @V is set (1) if the dividend is not less than the divisor.
Programmer: J. H. Hathwell 7. Error Stops
Date: October, 1965 None.
8. Input and Output Devices
PURPOS
LREOSE Nore.
XDIV provides the software version of one (optional) hardware divide instruction.
The true remainder and quotient are delivered to the A register and B register, 9 Input and Output Formats or Tables
tively.

respectively None.
USE 10. Sense Switch Settings
1. Calling Sequence None..

LDA (high dividend) M. Timing

LDB (low dividend)

Call XDIV Average: 200 cycles

PZE (address of divisor) 12 Accuracy

Normal return. —_—
2. Arguments or Parameters Exact.

13. Cautions to User

On eniry: A, B = double precision dividend.

This routine produces the true quotient and remainder, i.e., -2/1 =

it A= i = i i .
On exi remainder, B = quotient, X is unchanged quotient of -2 and remainder of zero.

3. M 14, Equipment Configuration

70 words (01068).

Minimum.
4, Temporary Storage Required 15. References
5 words. DATA 620/i system reference manual (DIV).

Subroutine Descriptions 3-12 3-13 Subroutine Descriptions

METHOD

Unsigned, non-restoring divide algorithm.

Subroutine Descriptions

3-14

IDENTIFICATION

Title:

Fixed-point double-precision 2's complement

Identification: XbCO

- Category: Al
Programmer: J. H. Hathwell
Date: October, 1965

PURPOSE

XDCO takes the 2's complement of the double-precision number in the A register and
B register. The X register is unchanged.

use

1.

Calling Sequence
Call XDCO

Arguments or Parameters

The A register and the B register contain the double-precision argument

before and the 2's complement after execution.

Space Required
Thirteen words.

Temporary Storage Requirements

None .

Alarms or Printouts

None.

Error Returns or Error Codes

None .

3-15

Subroutine Descriptions

7. Error Stops

None.
8. Input and Output Devices
Not applicable. FLOW ChART
9. Input and Output Formats
Double-precision numbers are stored as two successive data words. The first (xoco)
contains the sign and high-order 15 bits; the second contains the low=-order
15 bits and is always unsigned.
10. Sense Switch Settings
AR—+AR
Not applicable.
11. Timing
9.5 cycles. 07 YES AR+ 1 eAR
12. Accuracy
NO
Exact.
A
13. Cautions to Users i RETURN
BR SIGN = 0

XDCO may set the overflow register.

14. Equipment Configuration

Not applicable.
15. References

Not applicable.

METHOD

The argument is complemented and the low-order bits are tested for a carry condition.

Subroutine Descriptions 3-16 3-17 Subroutine Description

IDENTIFICATION

Title: Fixed-point single-precision add
Identification: XDAD

Category: Al

Programmer: J. H. Hathwell

Date: October, 1965

PURPOSE

XDAD adds a double-precision number whose high-order address is in the calling
sequence to the double-precision numbers in the A register and B register. The X

register is unchanged.

usE

1.

Calling Sequence
Call XDAD
PZE is the address of high-order bits of the double-precision augend.

Normal return.

Arguments or Parameters

The A register and the B register contain the double-precision addend
before, and the double-precision sum after execution.

Space Required
Twenty-one words.

Temporary Storage Requirements

Two words.

Alams or Printouts

None.

Subroutine Descriptions 3-18

Error Returns or Error Codes

The overflow is set if a double-precision overflow occurs.
Error Stops
None .

Input and Output Devices

Not applicable.

Input and Output Formats

Double~precision numbers are stored as two successive data words. The first
contains the sign and high-order 15 bits; the second contains the low-order
15 bits and is always unsigned.

Sense Switch Settings

Not applicable.
Timing

30 cycles.

Accuracy

Exact.
Cautions to Users

The sign of the low-order words of each double precision argument must be
zero to generate the proper carry. Overflow flip-flop is set on an overflow.

Equipment Configuration

Minimum configuration.
References

Not applicable.

3-19 Subroutine Descriptions

METHOD

Low~

order words are added first and any carry generated is added to the high-order
sum.,

HIGH ORDER ADDEND
LOW ORDER ADDEND

o >
[T}

HIGH ORDER AUGEND
LOW ORDER AUGEND

FLOW CHART

0o

o @

XDAD

SAVE XR
OF =0
SAVE A

o +b—»AR
SETSIGN =0
AR—BR

0—AR
AR + @F —»AR
@F =0

A+B+AR
—»AR
RESTORE XR

RETURN

Subroutine Descriptions 3-20 3-21 Subroutine Description

IDENTIFICATION

Title: Fixed-point double~precision subtract
Identification: XDSU
Category: Al

Programmer:

Date:

J. H. Hathwell

October, 1965

PURPOSE

XDSU subtracts a double-precision number whose high-order address is in the calling
sequence from the double~precision number in the A register and the B register. The
X register is unchanged.

ust

1.

Calling Sequence

Call XDSU
PZE is the address of high-order bits of the double-precision minuend.
Normal return.

Arguments or Parameters

The A register and the B register contain the double-precision subtrahend
before and the double-precision difference after execution.

Space Required

Twenty~three words.

Temporary Storage Requirements

Two words.

Alarms or Printouts

None.

Subroutine Descriptions 3-22

Error Returns or Error Codes

The overflow is set if a double-precision overflow occurs.
Error Stops
None .

Input and Output Devices

Not applicable.

Input and Output Formats

Double-precision numbers are stored as two successive data words. The first
contains the sign and high-order 15 bits; the second contains the |ow-order
15 bits and is always unsigned.

Sense Switch Settings

Not applicable.

Timing

32 cycles.

Accuracy

Exact.
Cautions o Users

The sign of the low-order words of each double-precision argument must be
zero to generate the proper carry. Overflow flip~flop is set on an overtiow.

Equipment Configuration

Minimum configuration.
References

Not applicable.

3-23 Subroutine Descriptions

FLOW CHART

1 XDsU ’

o »

SAVE XR
@F=0
SAVE A

a—»AR
SETSIGN =0
o =~ b—»AR

SET SIGN =0
AR—*BR
0—*AR

AR = BF—»AR
@F =0

AR + A - B—»AR
RESTORE XR

Subroutine Description

RETURN

3-24

= HIGH ORDER SUBTRAHEND
= LOW ORDER SUBTRAHEND

= HIGH ORDER MINUEND
= LOW ORDER MINUEND

Title:

IDENTIFICATION

Fixed-point double-precision multiply

Identification: XDMU

Category: Al
Programmer: J. H. Hathwell
Date: October, 1965

PURPOSE

XDMU multiplies the double-precision number whose high-order address is in the
calling sequence times the double-precision number in the A register and the B
register. The X register is unchanged.

Use

1.

Calling Sequence

Call XDMU

PZE is the address of the high-order bits of the multiplier.

Normal return.

Arguments or Parameters

The A register and the B register contain the double-precision multiplicand
before and the double~precision product after execution.

Space Required
Thirty-five words.

Temporary Storage Requirements

Three words.
Alarms or Printouts

None .

3-25

Subroutine Descriptions

METHOD
6. Error Returns or Error Codes -

Double-precision addition of partial products.
None. . N N

(A +a) B+b) AB#2~ + Ab*2 + aBx2 .
7. Error Stops

None.

8. Input and Output Devices

Not applicable.

9. Input and Output Formats

Double-precision numbers are stored as two successive data words. The first
contains the sign and high-order 15 bits; the second contains the low-order
15 bits and is always unsigned.

10. Sense Switch Settings

None.
11. M
71 cycles.
12, Accuracy
277" taken as a fraction.

13. Cautions to Users

Operands should be normalized to retain precision. Overflow is reset by

XDMU.

14, Equipment Configuration

Uses hardware multiply.
15. References

Not applicable.

3-27 Subroutine Descriptions
Subroutine Descriptions 3-26

Subroutine Description

FLOW CHART

XDMU

SAVE AR & XR
A SIGN—+a SIGN
aB—+AR

AR SIGN =0

B SIGN -—-AR

Ab—»AR
AB + Ab—»
AR, BR
PF =0

AR—»BR

ARSIGN =0
oB + AR—»AR
AR SIGN =0

AR—»BR
@F + AR—»AR
RESTORE XR

y

RETURN

3-28

a >

now

HIGH ORDER MULTIPLICAND
LOW ORDER MULTIPLICAND

HIGH ORDER MULTIPLER
LOW ORDER MULTIPLIER

IDENTIFICATION

Title: Fixed-point double-precision divide
Identification: XDDI

Category: Al

Programmer: J. H. Hathwell

Date: October, 1965

PURPOSE

XDD1 divides the double-precision number in the A register and B register by the
double-precision number whose high-order address is in the calling sequence. The
X register is unchanged.

usE

Calling Sequence

Call XDDI
PZE is the address of high-order bits of division.
Normal return.

2. Arguments or Parameters

The A register and B register contain the double-precision dividend before
and the double-precision quotient after execution.

3. Space Required

Fifty words.

4. Temporary Storage Requirements
Five words.

5. Alarms or Printouts
None .

3-29 Subroutine Descriptions

Error Returns or Error Codes

Overflow = 1.if a divide fault occurs.
Error Stops
None.

Input and Output Devices

Not applicable.

Input and Output Formats

Double-precision numbers are stored as two successive data words. The first
contains the sign and high-order 15 bits; the second contains the low-

15 bits and is always unsigned.
Sense Switch Settings
Not applicable.

Both areas positive: 143 cycles.
Any areas negative: 172 cycles.

Accuracy
=

-29 .
Accuracy is %2 taken as a fraction.

Cautions to User

Overflow is reset by XDDI. The dividend must be less than the divisor.

Equipment Configuration

Hardware divide and multiply is used.

References

XDDI uses XDSU and XDCO.

Subroutine Descriptions 3-30

METHOD

A+9
B +b

3-31

Subroutine Descriptions

IDENTIFICATION

XDDI Title: Absolute value, floating point (type real)
A= HLGH ORDER DIVIDEND
@ = LOW ORDER DIVIDEND Identification: ABS
8= HIGH ORDER DIVISOR
= ORDER DIVISOR
Control Number: A56.00-1B.08.620
SAVE XR
RESET OF .
SAVE A, a Programmer: M. McMillan
Date: November 4, 1965
B—AR
b—»BR
LA PURPOSE
This routine takes the absolute value of the floating-point (real) quantity in the A, B
registers, returning the result to the A, B registers. The absolute value of a is
defined as -a if a was negative, as a if a was not negative.
YES IND 41
—IND
o USAGE
1. Calling Sequence
FOGHa xocg RESTORE
a-*BR Bb—»s,b XR Call ABS.
2. Arguments or Parameters
Argument is in the A, B registers.
YES IND +1 RETURN
—IND
3. Space Required
NO
i 6 words.
SAVE A/B
SAVE a XDCP .
«A{g{;,,b)/,“ —— ene 4 Temporary Storage Required
— + ’
Not applicable.
5. Alams or Printouts
a/B—BR
0—>TEMP
A/B—AR Not applicable.

6. Error Returns or Codes

Not applicable.

Subroutine Description 3-32 3-33 Subroutine Descriptions

1.

13.

15.

Error Stops
Not applicable.

Input and Output Devices

Not applicable.

~ Input and Output Formats or Tables

Not applicable.
Sense Switch Settings
Not applicable.

Minimum: 6 cycles.
Maximum: 9 cycles.

Accuracy

No loss of information.
Cautions to User

Not applicable.

Equipment Configuration

Not applicable.
References

Not applicable.

Subroutine Descriptions 3-34

METHOD

The method is explained by the coding itself:

LABEL | OPCODE VARIABLE COMMENTS
ABS ENTRY
JAP* ABS Return immediately if not negative.
CPA One's complement high order word
‘ JMP* ABS if negative and return.
3-35 Subroutine Descriptions

IDENTIFICATION 6. Error Returns or Codes

Title: Absolute value, fixed point (type integer) Not applicable.

Identification: IABS 7. Error Stops

Control Number: ~ A58.00-1B.08.620 Not applicable.

Programmer: M. McMillan 8. Input and output Devices
Date: November 4, 1965 Not applicable.

9. Input and Output Formats or Tables
PURPOSE

Not applicable.
This routine takes the absolute value of the 16-bit signed integer in the A register

and returns the result to the A register . The absolute value of a is defined as - 10. Sense Switch Settings
if the a was negative and a if a was hon-negative.

Not applicable.

USAGE . Timing
1. Calling Sequence Maximum: 10 cycles.
Minimum: 7 cycles.
Call 1ABS.
12, Accuracy
2. Arguments or Parameters -

No loss of information.
The quantity in the A register is the argument. There are no other

parameters. 13. Cautions to Users
3. Space Required Not applicable.

7 words. 14. Equipment Configuration
4. Temporary Storage Required Not applicable.

Not applicable. 15. References
5. Alarms or Printouts Not applicable.

Not applicable .

Subroutine Descriptions 3-36 3-37 Subroutine Descriptions

METHOD

The method is explained by the subroutine code itself:

LABEL OPCODE VARIABLE

COMMENTS

1ABS ENTRY
JAP* 1ABS
CPA
IAR
JMP* 1ABS

Subroutine Descriptions

3-38

Return if argument positive or zero.

If argument negative, one's complement
and correct to two's complement.
Return.”

IDENTIFICATION
Title: Transfer of sign, fixed point (type integer)
Identification: ISIGN

Control Number: A59.00-1B.08.620

Programmer: M. McMillan
Date: November 4, 1965.
PURPOSE

This routine applies the sign of the called (second) parameter to the quantity in the
accumulator (first parameter). The parameters and result are fixed point quantities.

USAGE

i Calling Sequence
Call ISIGN, REF.

2. Arguments or Parameters

The first parameter is located in the A register. The second parameter is
located in core, whose address is in REF.

3. Space Required
27 words, including two local working cells.

4, Temporary Storage Required

Not applicable.
5. Alarms or Printouts
Not applicable.

6. Error Returns or Codes

Not applicable.

3-39 : Subroutine Descriptions

. RT
7 Error Stops METHOD FLOW CHA

Not applicable. .
8. Input and Output Devices

Not applicable.

9. Input and Output Formats or Tables Save (XR)

Not applicable.

10. Sense Switch Settings

A

Not licable. Use XR to fetch
Spplicable A, the second
d,
. Timing operan:

Maximum: 39.75 cycles.
Minimum: 29,75 cycles.

12. Accurccx

No loss of information.

13. Cautions to User
=2U7ons fo User

Not applicable.

14, Equipment Configuration
AL = A
Not applicable.
h
15, References
Restore XR
Not applicablie.
METHOD \
The method is illustrated by the flowchart. Uses $SE. RETURN
3-41 Subroutine Description

Subroutine Descriptions 3-40

IDENTIFICATION 7. Error Stops

Title: Copy sign Not applicable.

ldentification: SIGN 8. Input and Output Devices

Control Number: A57.00-1B.08.620 Not applicable.

Programmer: M. C. Advani

9. Input and Output Formats or Tables
Date: August 31, 1966 Floating point format.

10. Sense Switch Settings
PURPOSE

Not applicable.
To set sign of floating point number equal to that of argument .

1. Timing
M Average: 67.5 cycles.
1. Calling Sequence 12. Accuracy
Call SIGN, REF Exact.
2. Arguments or Parameters 13.

Cautions to User

Floating point number in A, B registers. REF - address of argument, Not applicable.

3. Space Required 14, Equipment Configuration
17 words. Not applicable.
4. Temporary Storage Required 15. References
2 words. Not applicable.
5. Alarms or Printouts
METHOD
Not applicable.

Sets sign equal to that of argument. Output in A, B registers. Uses $SE.
6. Error Returns or Codes

Not applicable.

Subroutine Descriptions 3-42 3-43 Subroutine Descriptions

IDENTIFICATION

Title: Separate mantissa
Identification: $FMS, SFSM
FLOW CHART
Control Number: 102.00-1B.08.620
N NEGATIVE Programmer: M. C. Advani
Date: August 31, 1966
COMPLEMENT PURPOSE
To separate a positive floating point number into characteristic and mantissa.
USAGE
1. Calling Sequence
Call $FMS or SFSM.
2. Arguments or Parameters
A and B registers contain floating point number.
3. Space Required
9 words.
4. Temporary Storage Required
1 word.
5. Alarms or Printouts
Not applicable.
6. Error Returns or Codes
Not applicable.
Subroutine Description 3-44 3-45 Subroutine Descriptions

Error Stops

Not applicable.

tnput and Output Devices

Not applicable.

Input and Output Formats or Tables

Floating point - input

A, B contain fixed point mantissa.
X contains characteristic at B8 on exit.

Sense Switch Settings
Not applicable.
Timing

Average: 13 cycles .

Accuracy
)

Exact.
Cautions to User
Not applicable.

Equipment Configuration

Not applicable.

References

Not applicable.

METHOD

See listing.

Output in A, B (mantissa) and X (characteristic) registers.

Subroutine Descriptions

IDENTIFICATION
Title: Floating point number to integer
Identification: $HS

Control Number: 103.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To convert a floating point number to an integer.

USAGE
1. Calling Sequence
Call $HS, STORE.

2. Arguments or Parameters

Number in A, B registers. STORE - address of memory where the result is
to be saved.

3. Space Required
55 words.

4. Temporary Storage Required

1 word.
5. Alams or Printouts
Not applicable.

6. Error Returns or Codes

If number greater than 2 * * 15 or less than 1, it exits with A, B registers
set to zero.

3-47 Subroutine Descriptions

Error Stops
Not applicable.

Input and Output Devices

Not applicable.

Input and Output Formats or Tables

Floating point input. Fixed point integer output.

Sense Switch Settings
Not applicable.
Timing

Average: 89.5 cycles.

Accuracy

15 bits.
Cautions to User
Not applicable.

Equipment Configuration

Not applicable.

References

FORTRAN reference manual .

METHOD

Uses $SE. See listing.

Subroutine Descriptions

3-48

IDENTIFICATION
Title: Normalize
Identification: $NML

Control Number: A54.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To normalize a double precision number.

USAGE

1. Calling Sequence
Call SNML.

2. Arguments or Parameters

Number in A, B registers.
3. Space Required
39 words.

4. Temporary Storage Required

2 words.
5. Alams or Printouts
Not applicable.

6. Error Returns or Codes

Not applicable.

3-49

Subroutine Descriptions

7. Error Stops
Not applicable.

8. Input and Output Devices

i W CHART
Not applicable. FLO

RESET FLAG
9. Input and Output Formats or Tables

SET FLAG
Fixed point format.

10. Sense Switch Settings NEGATE
2EMSE Jwrich Jeirings

Not applicable. €

11, Timing

SHIFT LEFT 1
Average: 101 cycles.

12. Accuracy

22 bits. (NORMALIZED)

13. Cautions to User

Not applicable. FORMAT FOR FLOATING

POINT - NUMBER

14. Equipment Configuration

Not applicable.
EXIT
15. References

FORTRAN reference manual.
METHOD

Shifts to sign and tests for sign set. Uses XDCO. Output in A, B registers. Flag
for sign in X register.

Subroutine Descriptions 3-50 3-51 Subroutine Description

IDENTIFICATION 7. Error Stops

Title: Floating add Not applicable.

Identification: $QK 8. Input and Output Devices

Control Number: A51.00-1B.08.620 Not applicable.

Programmer: M. C. Advani 9. Input and Output Formats or Tables
Date: August 31, 1966 See floating point format.
PURPOSE

Not applicable.
To add 2 floating point numbers.

11, M
USAGE Average: 224 cycles.
1. Calling Sequence 12, Accuracy
Call $QK, REF. 22 bits.
2. Arguments or Parameters 13. Cautions to User
A, B registers contain first argumeni. Ref - gddress of second argument. Not applicable.

Result in A, B registers.
14, Equipment Configuration

3. Space Required
Not applicable.
140 words.
15. References
4. Temporary Storage Required
FORTRAN reference manual .
9 words.
5. Alarms or Printouts METHOD

Not applicable. Algebraically adds two numbers.

6. Error Returns or Codes $QK and $QL use common logic $FAS. $FAS determines if it is a or.ifhmeﬁc cdfﬁﬁon
or subfraction and proceeds accordingly. $FAS has a special entry linkage and is
Not applicable. used solely by $QK and $QL.
Subroutine Descriptions 3-52 3-53 Subroutine Descriptions

FLOW CHART

Subroutine Description

|

RESET FLAG
(ADDITION)

< $FAS >

3-54

IDENTIFICATION

Title:

Floating subtract

Identification: $QL

Control Number: A52.00-1B.08.620
Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To compute difference of two floating point numbers.

USAGE

1.

Calling Sequence
Call $QL, REF.

Arguments or Parameters

Minuend in A, B registers. REF - address of first word of subtrahend.

Space Required
4 words.

Temporary Storage Required

Not applicable.
Alarms or Printouts
Not applicable.

Error Returns or Codes

Not applicable.

3-55

Subroutine Descriptions

Error Stops

Not applicable.

8. Input and Output Devices
Not applicable.
9. Input and Output Formats or Tables
See floating point format.
10. Sense Switch Settings
Not applicable.
11. Iﬂgiﬂg
Average: 223 cycles .
12, Accuracy
22 bits.
13. Cautions to User
Not applicable.
14, Equipment Cenfiguration
Not applicable.
15. References
FORTRAN reference manual.
METHOD
Uses $QK.

Subroutine Descriptions 3-56

FLOW CHART

!

SET FLAG
SUBTRACTION

< $FAS >

3-57

Subroutine Description

IDENTIFICATION
Title: Floating add or subtract
Identification: $FAS

Control Number: A53.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To provide common logic for $QK, $QL. It has a special linkage for use by $QK or
$QL.
USAGE
1. Calling Sequence
Not for general use.

2. Arguments or Parameters

Not applicable.
3. Space Required
Included in $QK.

4. Temporary Storage Required

Not applicable.
5. Alarms or Printouts
Not applicable.

6. Error Returns or Codes

Not applicable.

Subroutine Descriptions 3-58

Error Stops
Not applicable.

Input and Qutput Devices

Not applicable.

Input and Output Formats or Tables

Not applicable.
Sense Switch Seftings
Not applicable.

Timing

Average: included with $QK and $QL.

Accuracy

Exact.
Cautions to User
Not for general use.

Equipment Configuration

Not applicable.
References

$QK, $QL

METHOD

See listing.

3-59

Subroutine Descriptions

IDENTIFICATION
Title: Floating-point multiply or divide
ldentification: $QM, $QN

Control Number: A55.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To multiply 2 floating point numbers. To divide one number by another.

USAGE
1. Calling Sequence

Call $QM, REF for multiply.
Call $QN, REF for divide.

2. Arguments or Parameters

REF - address of multiplier or divisor.
3. Space Required
126 words.

4. Temporary Storage Required

7 words.
5. Alams or Printouts

Not applicable.

Subroutine Descriptions 3-60

Error Returns or Codes

If divisor = 0, A, B registers set to zero and overflow on.

If result is less than 2 * * (-200,,) or greater than 2 * * (+1778), it returns

with 0 in A, B registers and overflow on.
Error Stops
Not applicable.

Input and Output Devices

Not applicable.

Input and Output Formats or Tables

Floating point format. Output in A, B registers.

Sense Switch Settings

Not applicable.
Timing

Average: 237, multiply.
334, divide.

Accuracy

22 bits multiply.
21 bits divide.

Cautions to User
Not applicable.

Equipment Configuration

Not applicable.
References

FORTRAN reference manual.

3-61

Subroutine Descriptions

METHOD

Separate the mantissa and use XDMU for multiply or XDDI for divide. Uses

$FMS, $SE.
FLOW CHART
SEPARATE EXP. MANTISSA
A
MULTIPLY DIVIDE
FLOAT
(EXIT)
Subroutine Descriptions 3-62

3-63 Subroutine Description

IDENTIFICATION 7. Error Stops

Title: Integer number to floating=point number Not applicable.

Identification: $QS 8. Input and Qutput Devices

Control Number: 101.00~1B.08.620 Not applicable.

Programmer: M. C. Advani 9. Input and Output Formats or Tables

Date: August 31, 1966 Floating-point format output. Fixed-point integer input.
10, Sense Switch Settings

PURPOSE

Not applicable.
To float an integer.

1. Timing
USAGE Average: 138 cycles
1. Calling Sequence 12. Accuracy
Call $QS, STORE. Exact.
2. Arguments or Parameters 3. Cautions to User
Argument in A register. STORE - address of memory where result is to be Not applicable.
saved.
i4, Equipment Configuration
3. Space Required
Not applicable.
36 words .
15. References
4. Temporary Storage Required
FORTRAN reference manual
3 words.
5. Alarms or Printouts METHOD
Not applicable. Formats the absolute number to floating point and adjusts sign according to input.
Uses $SE.
6. Error Returns or Codes

Not applicable.

Subroutine Descriptions 3-64 3-65 Subroutine Descriptions

SECTION |V
ELEMENTARY FUNCTIONS

This section contains programmed routines separated into distinct packages. Each
routine will follow the format described in section If, program description. As new
routines are developed, they can be easily inserted into the proper section.

4-1 Subroutine Descriptions

IDENTIFICATION

Titles

Fixed single-precision logarithm

ldentification: XLOG

Category: B2

Programmer: M.C. McMillan

Date:

June, 1965

PURPOSE

XLOG computes the natural logarithm of 1 + x, where the single~precision quantity
x is in the A register, If

0<X<1,

the result is returned to the A register, otherwise an error exit is taken without further
action, Input and output are scaled by 20,

use
1.

Calling Sequence

JMPM XLOG
JMP (error procedure)
Normal return,

Arguments or Parameters

The argument x is placed in A before calling XLOG,
Space Required
Eighteen words.

Temporary Storage Requirements

None
Alarms or Printouts
None.

Error Returns or Error Codes

Error return if x is negative.

Subroutine Descriptions 4-2

7. Error Stops
None.
8. Input and Output Devices

Not applicable.

9. Input and Qutput Formats

Not applicable.

10, Sense Switch Settings

Not applicable.

1. Timing
Maximum: 203 eycles
Average: 203 cycles
Minimum: 9 cycles

12, Accuracy

Error is less than 2714 machine scale.
13. Cautions to Users

Routine XLOG calls subroutine POLY,

14, Equipment Configuration

Not applicable,
15, References

Not applicable.

METHOD

XLOG uses a Chebychev polynomial of the fifth degree.,

Subroutine Descriptions

IDENTIFICATION
Title: Fixed single exponential, positive argument

ldentification: XEXP

Category: B2
Programmer: M.C. McMillan
[xwooc)
Date: June, 1965
PURPOSE:
X : <0 ERROR RETURN XEXP computes the exponential of X, located in the A register:
ex, Ex< 1
20
¢ is scaled 2_2. The result is placed in the A register. (Also see PURPOSE in sub-

routine XEXN.)
COMPUTE NORMAL RETURN
PR T E—

USE
1, Calling Sequence
JMPM XEXP
JMP (error return)
Normal return.
2. Arguments or Parameters
The argument X is located in the A register prior to the call.
3. Space Required
Seventeen words,
4. Temporary Storage Requirements
None.
5, Alarms or Printouts
None.
6. Error Returns or Error Codes
An error return is taken without the other action if the argument is negative,
4-4 4-5 Subroutine Descriptions

Subroutine Description

7. Error Stops
None,

8. fnput and Output Devices

Not applicable.

9. Input and Output Formats

Not applicable,

10. Sense Switch Settings

Not applicable, ERROR

. RETURN
1. Timing

Normal: 187 cycles
Error return: 8 cycles USE "XEXN"
12. Accuracy COMPUTE
Error is less than 27 of machine scale. :
13. Cautions to Users ,
ol e sl b o ot o o o e o R
XEXP,
14, Equipment Configuration
Not applicable.
15, Reference
Not applicable.
METHOD
The exponential is performed by means of a Chebychev polynomial of the fifth degree.
4-7 Subroutine Description

Subroutine Descriptions 4-6

IDENTIFICATION 5. Alarms or Printouts
Title: Fixed single exponential, negative argument None.,
Identification: XEXN 6. Error Returns or Error Codes
Category: B2 An error return is token without other action if the argument is negative.
Programmer: M.C. McMillan 7. Error Stops
Date: June, 1965 None.
8. Input and Output Devices
PURPOSE

Not applicable.
XEXN computes the exponential of x, located in the A register:

9. Input and Qutput Formats

X
e, -T<x=50 Not applicable.
x . 0
e isscaled x 2Y, The result is placed in the A register. (Also see purpose in sub- . .
routine XEXP.) The exponential was split into two subroutines, XEXP and XEXN, to 10. Sense Switch Seftings
increase scaling flexibility ,

Not applicable,

USE 11, Timing
Lalli Normal (maximum): 159 cycles
. |
1 Calling Sequence plormal fme: 8 rles
JMPM XEXN 1 A
JMP (error procedure) . ccuracy
Normal return, 1

-14 .
Error is less than 2 of machine scale.

2, Arguments or Parameters

13. Cautions to Users

The argument x is focated in the A register prior fothe call, Note that scaling conventions differ between subroutines XEXN and XEXP.

3. i i
Space Required 14, Equipment Configuration

Eighteen words., Not applicable.

4. Tempo Stol Requi t
emp. rer rage equirements]5 References
None,
one Not applicable,
Subroutine Descriptions 4-8

4-9 Subroutine Descriptions

METHOD

The exponential is performed by means of @ Chebychey polynomial of the fifth degree, €.

XEXN

NO ERROR
RETURN
YES
COMPUTE NORMAL
& P RerURN
Subroutine Descriptions 4-10 4-1 Subroutine Description

IDENTIFICATION

Title: Fixed single~precision square root (short)
Identification: XSQT

Category: B4

Programmer: M.C. McMillan

Date: October, 1965

PURP OSE

XSQT takes the unrounded square root of the quantity in the A register if it is non-
negative. The result is returned to the A register. The A register is unchanged if

the input is negative. XSQN is recommended instead unless there is a hardware
divide option,

USE

1. Calling Sequence
JMPM XSQT
JMP (error procedure)

Normal return.,

2, Arguments or Parameters

The argument is located in the A register before execution.
3. Space Required
Forty-three words (forty-four if no automatic divide),

4. Temporary Storage Requirements

Five words,
5. Alarms or Printouts
TS OF Frinfours

None,

Subroutine Descriptions 4-12

Error Returns or Error Codes

Error return if argument is negative.

Error Stops

None.

Input and Output Devices

Not applicable.

Input and Output Formats

Not applicable,

Sense Switch Settings

Not applicable.

Timing

276 cycles (hardwire divide; otherwise add 15 times the software divide time

for maximum cycle time).

Accuracy

Error is less than 1,5 x 2-]5 machine scale,
Cautions to Users
None.

Equipment Configuration

Not applicable.
References

Not applicable,

Subroutine Descriptions

METHOD
Uses Newton-Ralphson formula:

- A - VA
Xi+] =]/2)(;*“2—)(;, I.mXi = VA

in the form

X;Jr] = X;JrAXi

where

AX; = 1/2 <7A = Xi>

IF Xg=1- 2713 (the maximum positive numeric value of a number in a 16-bit
binary representation) then AX; =0 for all steps,

iF | AX;l < 277 o715 at a given step, there is no need to take another step, as
would be required if testing differences of syccessive x-estimates, A maximum of four
divide operations makes XSQT less attrative than XSQN (only one divide and one
short-word multiply) unless automatic divide-hardware is present.

Subroutine Descriptions 4-14

ERROR RETURN

NORMAL RETURN

NO

NORMALIZE: FIND
INTEGER N > 0 SUCH
THAT 1/4 <A - 22N

<1 a=a.22N
x=1-2713

y= r/z(é - L

x =x+ AX

ANS=y -2 N |——— 9 NORMAL RETURN

4-15 Subroutine Description

IDENTIFICATION 7. Error Stops

Title: Fixed single-precision sine None.,

Identification: XSIN 8. Input and Output Devices
Category: Bl Not applicable,
Programmer: M.C. McMillan 9. Input and Output Formats
Date: August, 1965 Not applicable.

10, Sense Switch Settings

PURPOSE
Not applicable.
XSIN takes the sine of the quantity X in the A register for range -7 < x = 7. The

input is scaled by 2-2, The output is returned to the A register. i1, Timing
Maximum is typical: 175 cycles.
USE
* 12, Accuracy
1. Calling Sequence -
Error is less than 2714 machine scale,
Call XSIN
13. Cautions to Users
2, Arguments or Parameters -
XSIN requires subroutine POLY. No test is made for 7 [x| 4,
The argument X is in the A register,
14, Equipment Configuration
3. Space Required
Not applicable.
Thirty-one words,
15, References
4. Temporary Storage Requirements
Not applicable,
None,
5. Alarms or Printouts
None,
6. Error Returns or Error Codes
None,

-17 Subroutine Descriptions
Subroutine Descriptions 4-16 4 ubroutine Description

METHOD

Uses a change of variable to y to reduce range from (-w,) to (-1/2, ©/2), The
change of variable is sinx = siny.

kig -T
y = Ix-=1 "2 ifxzo0

i
y = Ix-31 7% ifx<o

The Taylor sine series, truncated to five items, is used for sin Y.

Zlx -0+ T _m.m
y=lx -3+ 3 y=lx -II-1
L T J
Sinx=f
RETURN
4-19 Subroutine Description

Subroutine Descriptions 4-18

IDENTIFICATION

Title: Fixed single-precision cosine
ldentification: XCOS

Category: B1

Programmer: M.C. McMillan

Date: August, 1965

PURP OSE

XCOS takes the cosine of the quantity X in the A register from range -m = X < =,
The input is scaled by 274 and the output is scaled by 271, The output is returned fo

the A register,

USE
1. Calling Sequence
Call XCOS
2, Arguments or Parameters
The argument X is in the A register,
3. Space Required
Twenty words,
4, Temporary Storage Requirements
None.
5. Alarms or Printouts
None.
6, Error Returns or Error Codes
None,

Subroutine Descriptions 4-20

Error Stops

Ix|

None.
8. Input and Output Devices
Not applicable.
9. Input and Output Formats
Not applicable.
10, Sense Switch Settings
Not applicable,
1. Timing
Maximum is typical: 172 cycles.
12. Accuracy
Error is less than 2_]4 machine scale,
13. Cautions to Users
XCOS requires subroutine POLY, no test is made for 'XI 4,
14, Equipment Configuration
Not applicable,
5. References
Not applicable,
METHOD
Uses a change of variable toy in order to reduce the range of the variable from
(=7, +7) to _%, +—;~ . Themcos x = siny, Wherey = % -

The Taylor sine series, truncated to five terms is used for sin y.

4-21

Subroutine Descriptions

Subroutine Description

XC@s ’

- Ix

[

COSX = f{y)

!

RETURN

4-22

IDENTIFICATION

Title:

Fixed single-precision arctangent

Identification: XATN

Category: B1

Programmer: M.C. McMillan

Date:

June, 1965

PURPOSE

XATN takes the arctangent of the quantity X in the A register, where -1< X <1,

The input is scaled times 20and the output is scaled times 20,

USE

1.

Calling Sequence
JMPM, XATN

Arguments or Parameters

The argument X is in the A register,

Space Required

Fifteen words.

Temporary Storage Requirements

None.

Alarms or Printouts

None.

Error Returns or Error Codes

None.

4-23

Subroutine Descriptions

7. Error Stops
None.

8. Input and Output Devices

Not applicable,

9. Input and Output Formats { XATN)

Not applicable.

10, Sense Switch Settings

COMPUTE
Not applicable. ARCTAN (X)
1. Timing
RETURN

Fixed: 211 eycles,
12, Accuracy
. -14 .
Error is less than 2 machine scale,
13. Cautions to Users
XATN requires system subroutine POLY,

14. Equipment Configuration

Not applicable,
15. References

Not applicable,
METHOD

XATN uses a Chebychev polynomial of seven terms. This polynomial is adequate for
an 18-bit configuration.

Subroutine Descriptions 4-24 4-25 Subroutine Description

IDENTIFICATION 4, Temporary Storage Requirements

Title: Single-precision polynomial Three words.

Identification: POLY

5. Alarms or Prinfouts
Category: B None
Programmer: M.C. McMillan 6. Error Returns or Error Codes
Date: June, 1965 None.
7. Error Stops

PURPOSE

. X None.
POLY is a resident utility routine intended primarily to support the fixed-point single=~
precision mathematical subroutines requiring the evaluation of a polynomial in one 8, Input and Output Devices
variable of any finite degree.

Not applicable.

= 9. Input and Output Formats

1. Calling Sequence Not applicable.

Call POLY (list of coefficients, format as below): 10 Sense Switch Settings

a. Type code

b, List of non-zero coefficients of degree greater than 1
c. Zero

d, Coefficient of degree 1

e, Coefficient of degree 0

f. Normal return

Not applicable,
11, Timing

40 memory cycles.
+16 memory cycles if code = 1.)
+11 memory cycles if coefficient of degree 1 is not 0.

2. Arguments or Parameters +23 memory cycles per term of degree greater than 1.

The type code is either 0 or 1, Zero denotes a polynomial in all powers; one

L. 12, Accuracy
denotes a polynomial in either odd or even powers. I

The accuracy attainable is close to unrounded full single-word preciston.
However, accuracy obtained depends upon correct techniques of fcahng and
may depend on mathematical characteristics of the polynomial being evaluated.

The list of coefficients of degree greater than one is written highest power
first, and may be of any number. d) and e)coefficients must be present, Use
zero fo represent an absent term,

3. Space Required

Forty=-six words.

Subroutine Descriptions 4-26 4-27 Subroutine Descriptions

13. Cautions to Users
— T D Usen

No action is taken if an additive overflow occurs during computation of the
polynomial. Certain arbitrary combinations of coefficients may sharply
reduce the accuracy attained, Missing interior coefficients of degrees
higher than 1 must be approximated by small non-zero numbers, unless
their absence is implied by type code = 1,

14, Equipment Configuration

Not applicable,
15. References

Not applicable,

METHOD

The polynomial is evaluated in Horner form. For example:

4 3 2
C4x +C3x +C2x +C1x+C0

is evaluated as:

(((C4X+C3)X+C2)x+C])x+CO
The parameter list taking the forms 0, C4, Cg, Ca, 0, €, Cy. The polynomial

7 5 3
C7x +C5x +C3x +C7x

is evaluated as:
2 2 2
(((C7X +C5)x +C3)x +C])x+0

0,¢C,, 0.

the parameter list taking the form: 1, C7, C5, C 1

37

Subroutine Descriptions 4-28

IDENTIFICATION

Title: Natural log of floating-point number
Identification: ALOG

Control Number: B24.00-18.08.620

Programmer: M. C. Advani

Date: August 31, 1966

PURPOSE

To compuete natural log of a floating-point number.

USAGE

1.

Calling Sequence

Call ALOG, REF

Arguments or Parameters

REF - Address of argument.

Space Required

125 words.

Temporary Storage Required

8 words.

Alams or Printouts

Not applicable.

Error Returns or Codes

Exits to $ER if argument = 0

Subroutine Descriptions

11.

15.

Error Stops
Not Applicable.

Input and Output Devices

Not applicable.

Input and Output Formats or Tables

Floating-point format. Output in A, B registers.

Sense Switch Settings

Not applicable.

Timing

Average: 907.5 cycles.

Accuracy

21 bits.

Cautions to User

Not applicable.

Equipment Configuration

Not applicable.

References
Jererences

FORTRAN reference manual.

Subroutine Descriptions 4-30

METHOD

log A= Iong*log 2

o

s 2i+1
log JA = =1/2 + ‘ZO Cpipy Z
=
Fr-
V72
Z= F,+—
vZ
A=F *wahere I1=F'<2
C2. } are coefficients of series expansion. Uses $ER, $QS, $QK, $QM, XDMU,
P -

XDAD, $FMS, $NML, XDDI, XDSU, $SE routines.

4-31

Subroutine Descriptions

FLOW CHART

SPLIT

FORTRAN BASIC EXTERNAL

FUNCTION

Assume Answer
=-127 . log, e

o C2ie

2i+1

LOG (A,0) = (log, 2) - (F)

NORMAL
EXIT

Subroutine Description

4-32

NORMAL
EXIT

IDENTIFICATION
Title: Arctangent of a floating-point number
Identification: ATAN

Control Number: B13.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

Computes arctangent of radians in floating point.

USAGE

1. Calling Sequence
Call ATAN, REF.

2. Arguments or Parameters

REF - address of the floating-point argument.

3. Space Required
184 words.

4. Temporary Storage Required
5 words.

5. Alarms or Printouts

Not applicable.

6. Error Returns or Codes

Not applicable.

Subroutine Descriptions

-5 .
7. Error Stops The polynomial approximation in the interval (10 7, tan w/24) is:

Not applicable. TAN—] N&=C N’*Cz N3 + C3 N5
1
8. Input and Output Devices

Continued fraction approximations are used in the remaining intervals.
Not applicable.

Uses $QM, $QL, $QN, $QK, $SE routines.

9. Input and Output Formats A
2
Floating-point format. A
Tan™ N&N. AL+ (N7 +B)) - —5—— i (fon 7/24,1)
10. Sense Switch Settings (N" + B3)
Not applicable. and
1. Timing
= D2
Average: 2888 cycles. _ D3 8
Tan ™' N /2N D - (NP4 Ey) - — in (1,10°)
12. Accuracy (N + E3)
21 bits.
e where
13. Cautions to User C] =0 . 99999 99207
Not applicable. Cy =0 . 33329 66338
C3 =0 19574 08066
4. Equipment Configuration A] -0 . 23882 29612
Not applicable. A2 =2 . 4452 05396
15. References A3 =1 . 8247 47223
B2 =3 . 9435 29798
FORTRAN reference manual. B3 =1 . 7982 49626
D] =0 . 99999 92083
METHOD D, =0 . 33328 70775
Let N = lXI or N = 'X/YI - The arctangent of N is evaluated by dividing the D3 =0 . 06355 00089
total range 0< N<1075 into three intervals; (10_5, tan m/24), (tan w/24,1), EZ =0 . 59859 98078
(1, 10%). 1FN<1075, arctan N = N. If N >108, arctan N = = /2. E; =0 . 39535 44718

Subroutine Descriptions 4-34 4-35 Subroutine Descriptions

IDENTIFICATION 7. Error Stops

Title: Cosine Not applicable.
Identification: COs 8. Input and Output Devices
Control Number: B12.00-1B.08.620 Not applicable.
Programmer: M. C. Advani 9. Input and Output Formats or Tables
Date: August 31, 1966 Not applicable.
10. Sense Switch Settings
PURPOSE

Not applicable.
Compute cosine of angle in floating-point radians.

1. Timing
USAGE \ ' Average: 1600 cycles.
1. Calling Sequence 12, Accuracy
Call COS, REF. 21 bits.
2. Arguments or Parameters 13. Cautions to User
REF - Address of first word of floating point number. Not applicable.
3. Space Required 14. Equipment Configuration
24 words. Not applicable.
4, Temporary Storage Required 15. References
2 words. FORTRAN reference manual.
5. Alams or Printouts
METHOD

Not applicable.

Computes sine of (7/2-A). Uses SIN, $QL, $SE. Output in A, B registers.
6. Error Returns or Codes

Not applicable.

Subroutine Descriptions 4-36 4-37 Subroutine Descriptions

IDENTIFICATION
Title: Exponential
FLOW CHART Identification: EXP

Control Number: B25.00-18.08.620

Programmer: M. C. Advani
l Date: August 31, 1966
COMPUTE
T/2 - A
PURPOSE
SN > To compute e**A. A - floating=point number.
! USAGE
BT 1. Calling Sequence
Call EXP, REF
2. Arguments or Parameters

REF - address of argument A.

3. Space Required
230 words.

4. Temporary Storage Required
2 words.

5. Alarms or Printouts

Not applicable.

6. Error Refurns or Codes

Not applicable.

Subroutine Description 4-38 4-39 Subroutine Descriptions

7. Error Stops

Not applicable.

FLOW CHART
8. Input and Output Devices o
Not applicable. , e
<@g NPUT > 87.74 Maximom
Answer =0 % Floatog
9. Input and Output Formats or Tables

See floating~point format.

EXIT

10. Sense Switch Settings
Not applicable. seur
11. Timing

Average: 2750 cycles.

12. Accuracy
21 bits.
13. Cautions to User

Not applicable.

4. Equipment Configuration

Y4

a2/t F= 2
= F /4 Fp=F-1/4
Not applicable. < s \——_ﬁ‘__J
15. References) G2
Fp=F43/4 Fp=F /4
FORTRAN reference manual . J
”
o
METHOD
Chebychev approximation uses XDMU, $QK, $QL, SQM, SQN, SSE.
Subroutine Description
Subroutine Descriptions 4-40 4-41

FLOW CHART

Subroutine Description

D

f=F2 . log, 2

2
(F+11.999 99490) + &F

(7 + 11,999 99450) -

6f

FLOAT e

Add 1 to Exponent

RETURN

4-42

IDENTIFICATION

Title: Sine

Identification SIN

Control Number: ~ B11.00-18.08.620
Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

Compute sine of radians in floating point.

USAGE

1.

Calling Sequence
Call SIN, REF

Arguments or Parameters

REF - address {(direct or indirect) of first word of a floating-point number.

Space Required
151 words.

Temporary Storage Required

6 words.

Alarmms or Printouts

Not applicable.

Error Returns or Codes

Not applicable.

Subroutine Descriptions

7. Error Stops
Not applicable.

8. Input and Output Devices

Not applicable.

9. Input and Output Formats or Tables

See floating-point format.
10. Sense Switch Settings
" Not applicable.
1. Timing

Average: 1305 cycles.

12, Accuracy
21 bits.
13. Cautions to User

Not applicable.

14, Equipment Configuration

Not applicable.
5. References

FORTRAN reference manual .,
METHOD

First 5 terms of Taylor series expansion output in A, B registers. Uses $NML, $QM,
XDMU, XDAD, $SE, $FMS.

Subroutine Descriptions 4-44

FLOW CHART

DETERMINE
QUADRANT

2,4 QUADRANTS
COMPUTE SIN
/2 - A)

1,3 QUADRANTS
COMPUTE SIN A

I

ADJUST SIGN

A
‘ EXIT ’

4-45

Subroutine Description

IDENTIFICATION
Title: Square root
Identification: SQRT

Control Number: B41.00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

Computer square root of a floating point number.

USAGE
1. Calling Sequence
Call SQRT, REF.

2, Arguments or Parameters

REF - address of the argument.
3. Space Required
83 words.

4. Temporary Storage Required

6 words,
5. Alarms or Printouts
Not applicable.

6. Error Returns or Codes

Exits with zero in A, B of argument negative and sets overflow flip flop.

Subroutine Descriptions 4-46

Error Stops
Not applicable.

Input and Qutput Devices

Not applicable.

Input and Output Formats or Tables

Floating~point format.

Sense Switch Settings

Not applicable.
Average: 333 cycles.
Accuracy

21 bits.

Cautions to User

Not applicable.

Equipment Configuratfion

Not applicable.
References

FORTRAN reference manual.

METHOD

Newton iteration three times. Uses $SE, XDDI, $FMS.

4-47

Subroutine Descriptions

IDENTIFICATION

Title:

Exponentiation of two integers

ldentification: $HE

Control Number: B22.00-18.08.620

Programmer: M. C. Advani

Date:

August 31, 1966

PURPOSE

To compute %%

USAGE

I.

Calling Sequence
Call $HE, REF.

Arguments or Parameters

lin A register. REF - address of J.
Space Required
20 words.

Temporary Storage Required

2 words.

Alarms or Printouts

Not applicable.

Error Returns or Codes

Not applicable.

Subroutine Descriptions 4-48

14,

Error Stops

Not applicable.

Input and Output Devices

Not applicable.

Input and Output Formats or Tables

Fixed-point integers.
Sense Switch Settings
Not applicable.
Average: 4500 cycles.
Accuracy

15 bits.

Cautions to User

Not applicable.

Equipment Configuration

Not applicable.
References

FORTRAN reference manual.

METHOD

Floats 1 and uses $PE‘,~ Uses $SE, $QS, $HS, $PE.

4-49

Subroutine Descriptions

IDENTIFICATION
Title: Exponentiation
Identification: $PE

Control Number: B21,00-1B.08.620

Programmer: M. C. Advani
Date: August 31, 1966
PURPOSE

To compute A**| |

USAGE
1. Calling Sequence
Call $PE, REF.
2. Arguments or Parameters

Argument in A, B registers.
REF - address of index I.

3. Space Required
21 words.

4. Temporary Storage Required
4 words.

5. Alarms or Printouts

Not applicable.

6. Error Returns or Codes

Not applicable.

Subroutine Descriptions 4-50

7. Error Stops
Not applicable.
8. Input and Output Devices
Not applicable.
9. tnput and Output Formats or Tables
See Floating Point.
10. Sense Switch Settings
Not applicable.
1. Timing
Average: 4200 cycles.
12, Accuracy
20 bits.
13. Cautions to User
Not applicable.
14, Equipment Configuration
Not applicable.
15. References
FORTRAN reference manual.
METHOD

Uses $QS, $QE, and $SE. Floats | and goes to A**B ($QE).

4-51

Subroutine Descriptions

IDENTIFICATION

Title:

Exponentiation

ldentification: $QE

Control Number: B23.00-1B.08.620

Programmer: M. C. Advani

Date:

August 31, 1966

PURPOSE

To computer A**B,

USAGE

1.

Call $QE, REF.
2. Arguments or Parameters
Argument A in A, Bregisters. REF - address of argument B,
3. Space Required
34 words.
4. Temporary Storage Required
3 words.
5. Alarms or Printouts
Not applicable.
6. Error Returns or Codes
Not applicable.
Subroutine Descriptions 4-52

Calling Sequence

7. Error Stops
Not applicable.
8. Input and Output Devices
Not applicable.
9. Input and Output Formats or Tables
Floating-point format.
10. Sense Switch Settings
Not applicable.
. Timing
Average: 4000 cycles.
12, Accuracy
20 bits.
13. Cautions to User
Not applicable.
14, Equipment Configuration
Not applicable.
15. References
FORTRAN reference manual,
METHOD

A**B - antilog of B log A

- e**(B log A)

Uses ALOG, EXP, $SE.

4-53

Subroutine Descriptions

SECTION V
UTILITY AND DEBUGGING ROUTINES

This section contains programmed routines separated into distinct packages. Each
routine will follow the format described in section 11, program description. As new
routines are developed, they can be easily inserted into the proper section.

5-1 Subroutine Descriptions

IDENTIFICATION

Title: AID Il program
Identification: AID 1i

Category: E41.00 - 1B04.620
Programmer: John H. Hathwell
Date: August 30, 1966
PURPOSE

To provide on-line program debugging.

UsE

1.

Calling Sequence
Run at X6000.
Where X = 0 for 4K, X =1 for 8K, etc.

Arguments or Parameters

None.
Space Required
637 octal.

Temporary Storage Required

None
Alarms or Printouts
Insert I.

Error Returns or Codes

None

Subrautine Descriptions 5-2

7. Error Stops
None.
8. Input and Output Devices

Model 33/35 A or B teletypes.

9. Input and Output Formats or Tables

None.
9.A Subroutines Required

Self contained program.

10. Sense Switch Settings
None.
1. Timing

Maximum: Not applicable.
Average: Not applicable.
Minimum: Not applicable.
12. Accuracy
Not applicable.
13. Cautions to User

See programming reference manual.

4. Equipment Configuration

Model 33/35 A or B teletypes and 4096 words of memory .
15. References

See programming reference manual.

METHOD

See program maintenance documents.

5-3 Subroutine Descriptions

IDENTIFICATION

Title: Binary load dump program
Identification: BLD

Category: H10.00 - 1B04.620
Programmer: John H. Hathwell

Date: August 30, 1960
PURPOSE

To load and dump programs in standard binary format.

Ust

1.

Calling Sequence
Call dump (X7434) with A = Ist address, B = last address and X = execution
address (if X < O, then no execution address). Call load (X7630) with A< O

to verify tape, A = O to load and return, A > O to load and execute.

Arguments or Parameters

Subroutine entries shown above. Manual entry set A, B, and X and run at

X7400 to punch bootstrap, X7404 to punch programs, X7600 to load programs.

Space Required
377 octal .

Temporary Storage Required

None.
Alarms or Printouts

None.

Subroutine Descriptions 5-4

Error Returns or Codes

Punch: None.

Load: A = load mode, B = 0 if good load or B = -1 if check sum error,
X = last block address if check sum error or execution address if good load.

Error Stops
Check sum error: IC = X7600, B = -1.

Input and Output Devices

All standard peripheral devices.

Input and Qutput Formats or Tables

Each word is punched three frames per word, six bits per frame, high order
first. Channel 8 is not punched between visual aids. Channel 7 is the logical
complement of channel 6. The checksum word is the exclusive OR of afl
preceding data words.

TAPE FORMAT

CHANNEL h Visual Aids ﬁ

1 000 000
2 000 000
3000 ______ _____ - .000____
4 000 000

Next
2 Leader 888 Record 880 Record
7 000 000
8100000000 000

Record Mcrk———T

(blank) ‘ [Checksum
Size of Record Data Words

(0< ng62)
Origin Address

A record size of zero signals the end of a tape.

5-5 Subroutine Descriptions

10. Sense Swi‘rch Settings

None.
11. Timing

Function of peripheral devices.
12. Accuracy

Not applicable.

13. Cautions to User
None.
4. Equipment Configuration

Minimum configuration of 4096 words and teletype.

15. References

See programming reference manual.

METHOD

Not applicable.

Subroutine Descriptions

5-6

IDENTIFICATION
Title: Source tape correction program

Identification: COR

Category: C3, D3, H5

Programmer: J. L. Atwood
Date: August, 1965
PURPOSE

This program provides an easy means by which source program statements can be added
to or deleted from a paper tape, and by which superfluous non=typing characters can
be eradicated,

UsE

1. Operational Procedures

a. Insert the source paper tape in the model 33 teletype reader and prepare
the reader and punch.

b. RUN with the instruction counter set to symbolic location SENT + 1,
c. When a halt occurs, proceed as follows:

Type a new statement from the keyboard if a statement is to be added.
Begin the statement with carriage return and line feed characters.

Select sense switch 1 if the current input statement is to be deleted
(i.e., read but not punched).

Select sense switch 2 if the halt at the start of the next statement is
to be by-passed.

RUN

d. Continue with step ¢ until all source statements have been processed.
Sense switch 2 may be changed at any time during the processing of a
statement. A halt will occur at the end of the input tape regardless of
sense swifch 2 selection.

5-7 Subroutine Descriptions

2. Arguments or Parameters 12. Accuracx
Not applicable. Not applicable.
3. Space Required 13. Cautions to Users
Approximately 110 words. Each statement inserted should start with the carriage return and line feed
characters.
4. Temporary Storage Requirements

Sense switch 1 should be changed only when the machine is halted.
Not applicable.

14, Equipment Configuration

5. Alarms or Printouts

Minimum configuration with mode! 33 teletype.
A listing of the output paper tape is printed on the page printer,

15. References
6. Error Returns or Error Codes

Noft applicable.
Not applicable.

7. Error Stops METHOD
Not applicable. The carriage return and line feed characters are not duplicated, but are inserted by

this program at the beginning of each statement duplicated.
8. Input and Output Devices

Al other non-typing characters are ignored when read.
The model 33/35 teletype is used for both input and output. Ye

9. Input and Output - Formats

Each input statement is assumed to start with the carriage return or line feed
character.

10. Sense Switch Settings
2ENse Swiich Jettings
Sense switch 1, if selected, causes the current statement fo be deleted.

Sense switch 2, if selected, causes the halt at the beginning of the next
statement to be by-passed.

11. Timing

Not applicable.

Subroutine Descriptions 5-8 5-9 Subroutine Descriptions

SECTION VI
EXECUTIVE ROUTINE
This section contains programmed routines separated into distinct packages. Each

routine will follow the format described in section Il, program description. As new
routines are developed, they can be easily inserted into the proper section.

ENTRY
(AUTO LOAD) YES
(DELETE)
SENT
HALT PUNCH THE PUNCH THE
CR AND LF CHARACTER
CHARACTERS JUST READ
v <
|
N
PUNCH A
LEADER ON READ ONE | END 16 iongie T
OUTPUT TAPE
CHARACTER | CR, LF CHARS
TAPE
READ TO
1ST CARRIAGE
RETURN PRINTING
CHARACTER
y
SET INDICATOR
TO IGNORE
CR, LF CHARS,

YES
HALT
CARRIAGE
RETURN °
SET INDIC,
TO IGNORE

CR, LF CHARS,

SNDK =0 IGNORE
#0 DON't IGNORE

6-1 Subroutine Descriptions

Subroutine Description 5-10

IDENTIFICATION

Title: DATA 620/i assembler, mod. 1-F
Identification: DAS 1-F

Category: E10.00

Programmer: John H. Hathwell

Date: Septempber 1, 1966

PURPOSE

DAS 1-F provides translation from a mnemonic instruction language to DATA 620/i
machine language. Input is source language instruction, consisting of mnemonic,
symbolic instructions of two types: (1) symbolic machine instructions representing
actual machine instructions, and (2) assembler instructions which control the location
counters, define storage symbols, provide subroutine linkages, etc. Output is an
octal machine language listing and/or object program (machine language) in absolute
or relocatable.

DAS 1-F is a two-pass assembler. In the first pass, all location symbols are recognized
and assigned locations. The second pass generates the listing and object oufputs. The
same source fape is used for both passes.

USE

I. Operating Procedures
DAS 1-F is stored on paper tape in binary load format, three frames per word.
After loading, the source is mounted. Pass A must be processed first if the
source program contains any address symbols.
Pass A: object output off, SS1 on, SS2 off, $S3 off, (IC) =0, (IR) =0, RUN.
Pass B: SS1 off, to list 52 on, for object $53 on.
Run from system halt, registers will be correctly set.

Subroutine Descriptions 6-2

Arguments or Parameters

None .
Space Required

6500 (8) words
11400 (8) words

4K memory:
8K memory:

Temporary Storage Requirements

Literals 4K 100 (8) words

8K 400 (8) words

Pointers 4K 100 (8) words

) 8K 400 (8) words
Symbo! table

(dictionary)
Alarms or Printouts
Not applicable.

Error Returns or Error Codes

4 words per symbol defined

As depicted in ref. (1). Approximately 25 distinct diagnostic codes are

printed.

Error Stops

Synchronization error: HALT 0777, AR = BR = XR = 0777 (8). Press RUN to

continue assembly.

Input and Output Devices

All standard input/output devices.

Input and Qutput Formats

Binary load/dump format.

Sense Switch Settings

See operational procedures.

Subroutine Descriptions

1. Timing
Input/output limited.
12, Accuracy
Not applicable.
3. Cautions to Users
Do not attempt to restart assembly beyond the beginning of source tape.

14. Equipment Configuration

Minimum: DATA 620/i with 4096 words of memory and ASR-33 teletype.
Standard: DATA 620/i with 8192 words of memory and ASR-33 teletype.

15. References

(1) DATA 620/i programming reference manual
(2) Subroutine manual.

METHOD

The DAS 1-F assembler is a conventional two-pass assembler furnished with an exten-
sive complement of assembly instructions as listed below.

Instructions for controlling multiple location counters:
BEGI{n), USE

Instructions controlling the current location counter:
ORG, LOC, BSS, BES

Instructions for generating data:
DATA, PZE, MZE

Instructions for calling and defining closed subroutines:

CALL, ENTRY, RETURN)

Subroutine Descriptions 6-4

Conditional assembly instructions:
IFT, IFF, GOTO
Flag control instructions:
LIST, NLIST, PUNC, NPUN, SMRY, DETL, CONT,
NULL, SPAC, EJEC, MORE, END
Special controls:
DUP, READ
Instruction definition:
OPsY
Symbols defining controls:
EQU, SET, MIN, MAX
FORTRAN instructions:

FORT, NAME, COMM, EXT

The 4K instruction set is a subset of the 8K instruction set listed above and includes
the following:

1. ORG 5, BES 9. CALL 13. EQU
2. LOC 6. NULL 10. RETURN) 14. MZE
3. MORE 7. END 11. OPSY 15. . PZE
4. BSS 8. DATA 12, SET 16. CONT

An overall review of DAS 1-F is furnished by the following flowchart.

6-5 Subroutine Descriptions

DASI-F - FLOW CHART

NO

“MORE"

PASS A PASS B

INITIAUZING
COMPUTATIONS

READ
SOURCE
LINE

IDENTIFY
OP CODE

ON OFF
ENABLE DISABLE
LISTING LISTING
ON OFF
ENABLE DISABLE
PUNCHING PUNCHING

DEFINE LABLE
{IF ANY) AND
FILE IN

DICTIONARY

y

‘If OP CODE
REQUIRES,
EVALUATE
VARIABLE FIELD

Subroutine Description

INCREMENT CURRENT
LOCATION COUNTER
PER VARIABLE FIELD
OR INSTRUCTION
SIZE AS REQUIRED BY
OP CODE

6-6

_v_l

{IGNORE
LABEL)

y

IDENTIFY
Of CODE

EVALUATE
VARIABLE
FIELD

MODIFY LOCATION

COUNTER OR GENERATE
QOCTAL MACHINE WORD
OR-WORDS PER OP CODE

HALT

OUTPUT:
A) LITERALS
B) GENERATED IN
- DIRECT POINTERS
C) EXECUTION

INTERFACE REFERENCE

1.1 INTRODUCTION

SECTION |
GENERAL DESCRIPTION

The DATA 620/i computer is a high-speed, paraltel binary computer. lts extensive
instruction repertoire, flexible input/output, and modular packaging make it ideally
suited for application as a general-purpose machine or as an on-line system component.

Its features include:

~ Fast operation

Large instruction
repertoire

Expandable word
length

Modular memory

Muitiple addressing

Flexible 1/O

Extensive software

- Modular packaging

1.8 microsecond memory cycle

107 standard, with over 128 micro-
instructions, plus 18 optional

16~ or 18-bit configurations

4096 words standard,
32,768 maximum

Six, including direct, indirect, relative,
index, immediate, and extended (optional)

64 device addresses on standard /O bus;
optional interlaced input/output

All programming and diagnostic aids
required for efficient system use

Processor and 4K memory module occupy
only 10-1/2 inches of rack space; addi-
tional memory module requires only
10-1/2 inches additional

The DATA 620/ is simple in design and is easy to program, operate, and maintain. As
a system component, it is easily integrated with other equipment through the use of

standard or special peripheral interface elements. The central processor and its asso~
Ciated power supplies and peripheral controllers all mount in standard 19-inch equip-
ment cabinets and require no special cabling or air conditioning facilities.

1-1 Interface Reference

1.2 PURPOSE OF THE MANUAL

This manual provides basic circuits and logic design, and timing information on the
standard and optional input/output facilities of the DATA 620/i computer, plus design
examples for seveal /O functions. Using the information, the system designer may
integrate the computer with special interfaces tailored to specific system requirement.

This manual also contains information on cabling, grounding, and installation proce~
dures and thus serves as a basic document for system planning purposes.

While a detailed knowledge of the internal computer is not essential for successful
interface design, it is recommended that the system designer have a general familiarity
with the computer organization and operation. The available documents for the DATA
620/ are summarized in table 1-1. The reference manuals for the standard peripheral
controllers will be particularly useful for design examples.

Table 1-1
DATA 620/i DOCUMENTS
VARIAN DATA MACHINES

PUBLICATION NUMBER TITLE
VDM-~3000 System Reference Manual
VDM-3001 Interface Reference Manual
VDM-3002 Programming Reference Manual
VDM-3003 FORTRAN Manual
VDM-3004 Subroutine Manual
VDM-3005 Maintenance Manuals)
VDM-3006 ASR-33 Teletype Controller Reference Manual
VDM-3007 Buffer Interlace Controller Reference Manual
VDM-3008 Magnetic Tape Controller Reference Manual
VDM-3009 600 LPM Line Printer Reference Manual
VDM-3010 300 LPM Line Printer Reference Manual
VDM-3011 Paper Tape System Controller Reference Manual
VDM-3013 Priority Interrupt Reference Manual

Interface Reference 1-2

1.3 COMPUTER ORGANIZATION

The overall organization and basic information paths of the DATA 620/i computer are
shown in figure 1-1. The basic system is composed of the following funch'oncl ele-.
ments: memory section, control section, arithmetic/logic section, oper?honal register
section, and input/output section. An optional input/output facility, direct memory
access is also available.

1.3.1 Memory Section

Memory modules are slaved to the central processor, which contains the address and
data registers for all modules. Minimum memory size is 4096 words. The memory may
be field expanded by the addition of pre-wired memory modules. Inferc.onnec'hng
wiring is accomplished by the installation of tagged wires, terminated with slip-on
terminals.

1.3.2 Control Section

The control section decodes the program instructions into timing and control fig.gncls
for the entire machines. There are 107 standard instructions decode.d; an a.ddmoncl
18 instructions may be supplied as options. Over 128 microcoded instructions may be
derived from the standard instruction set.

1.3.3 Arithmetic/Logic Section

This section contains the gating elements required to perform all progrommec% arlfhm'ehc
and logic operations. |t is also used for internal control operations such as instruction
and operand address modification.

1.3.4 Operational Register Section

Operational registers include the A, B, X, and 'P registers. A z?nd B form a dc;)uble-d
length register for arithmetic and logical operuhons.. The B regls_ter may c'lso e use
for indexed addressing. The X register is a full 16-bit hardware mdex. register.
Indexed addressing using B or X requires no additional fime. for execution of the
instruction. Registers A and B may also be used for direct mput/outf)ut frc.msfers.)
The instruction counter, P, holds the memory address of the instruchon being efxecuh.e
by the control sections. The S bus provides routing of these registers to the arithmetic
unitf.

1-3 Interface Reference

1.3.5 Input/Output Section

This section provides transmission of control and data signals to and from peripheral
devices attached to the I/O cable. A total of 64 peripheral device addresses are
available. External program sense and interrupt functions are also transferred to and
from the control section through the /O section. Data transfers may be single-word
(program controlled) or block (using the optional buffer interlace controller).

Interface Reference 1-4

o
o=
=3
1]
¢
‘ K———— 82 g
a _ z
El g
le o 3
2.3 5 e 8
s (B2 g7 H
g1d s
g 12 w e z
g b4 o8 = %
Z 9 K 22 bk g
& 8 g
2
g l = H
g
_ l — %2 ><::> 2
[bkt Aottt il g |4 =}
t ‘I‘ 1 ol
LA B N S <
5
P &
R4
l kKee———= 2 K—> ., - o
vz 3 i
£ L .
v =2 =2
2|3
"
vl =3
= 3 £2
-1 @ <:2§¥<::
g E] ™ $5
E1- EX A N
s} 5 > £
oo |Er2odErE & 2 A
25082 w3 nememeranh (S Bl 2 9
B o, ! t 1t e = I
= UJ L & a >
-2 x
e Q g
] E . g
8 <
E 3 :
B a o
=
2
[l —
| -5 [3 1 3 g 5
SRR E] 3 /X > =3 4
g < g
g —»
5o = x
2 & ;gézﬁt‘
S £
= =
o =
3 oo 9
L> g M g 2
«2 E20 —> “2 F—
2 ZEQ 9
£ ——————]
- [»j{ o« -
il) —
5 &
[itk A
1 1
1 o 1
> 1
— 25
<3 g’:
[} a3 z]
1 1
1 1
4
Figure 1-1. DATA 620/i Organization.
1-5 Interface Reference

SECTION I
DATA 620/i STANDARD INPUT/ OUTPUT SYSTEM

2.1 ORGANIZATION

As shown in figure 1-1, the 1/O section of the computer communicates with the
operational registers and the memory through the C bus. Data and control signals are
transmitted to and from external peripheral devices through the 1/O cable.

2.1.1 Overall Operation

The overall organization of the DATA 620/i 1/O system, including a typical set of
peripheral devices is shown in figure 2-~1. Standard or special peripheral devices are
in paralle! on the 1/O bus. Any number of logical devices, up to a total of 64, may be
added. The following types of .information transfers between the central processor and
the external devices through the 1/O bus may be executed:

External control. An external control code is transmitted under program con-
trol from the central processor to a device.

Program sense. The central processor can sense the status of a selected
external line under program control.

Single word transfer to/from the A and B registers. A single word may be
transferred to or from the A and B registers under program control.

Single word transfer to/from memory. A single word may be transferred to or
from any memory location under program control.

Program interrupt. An extemal device may force the central processor to
execute an instruction in a specified location in the memory.

Buffer interlace controller (BIC) transfer to/from memory. Blocks of words

may be transferred to or from sequential memory locations under control of

an optional buffer interlace controller. Devices controlled by the BIC may
also be operated under program control (single word transfers).

Interlace data transfers. Single words may be fransferred to/from memory by
the control signals available on the 1/O cable. Buffer interface controllers
use the lines for performing interlaced data transfers.

2-1 Interface Reference

MEMORY DATA (W) BUS
’
;
- _
- -
MEMORY | | oprioNaL | TorTiona |
1| | MEMORY 5} UMEMORY BJ'
—F— —5—
l v v
’ ADDRESS (L) BUS]
[F——==== 1
| HIGHspEED |
--- NUL/DIV/ EA
LREAL TIME CLOCK
CENTRAL bt - BUFFER INTERLACE CONTROL CABLE
———— LT YT
PROCESSOR MICRO| HARDWIRE | _i_ B o 1
[205 SUBROUTINE ‘
BUS Pl -r_ -1 -t—
' Ploee | ®aufrerip 1 il won 1 * -
— — — — - L INTERFACE | | DISC | | speep | L A0
'“’{TI ;cong:zco)usm | MEMORY | | 2 FER | [CONVERTER|
t L__f__' L__f—_, I__-f__] L_}_—J
PARTY LINE 1/O BUS
I H : ' : —
0
* CiUfRn 1 T T T e -*- Simon
ADDITIONAL| | NpyT O | | TAPE SENSE AND r 1 I'_COMMON_I
™ | OuTPUT EONTROLLER' ! L:\‘NTI';SOL PrOTIR | AR
—— — L INE INTERFACE
LCHANNELS | 7 a7 b LR
I Pl vy
! 12N 12N
If— _______ :_ — = —‘— _—T T e = = = i)
1 1
. —x_ x *
- - —Y_ Y PHYSICALLY MOUNTED
ITRAN#S]PORT i ,TRANSPORT_} FRAN#SPORT_: I'_I'RANSPORT—: IN MAINFRAME
L2 L_2_ 8 T4

Figure 2-1. DATA 620/7 1/ System Organization.

Interface Reference 2-2

2.1.2 1/O Cable

A typical functional organization of peripheral devices on the |/O cable is shown in
figure 2-2. The [/O cable consists of the E bus plus a set of control lines. The E bus
contains 16 (or 18) pairs of bi-directional lines which transmit control codes, addresses,
and data between the central processor and the peripheral devices connected in paraliel
to the cable. The 5 |/O control lines transmit timing signals to and from the central
processor to synchronize the information transfers over the E bus.

Information transfers with the DATA 620/i are synchronized by peripheral controllers;
these controllers may, in turn control one or more peripheral devices. The central
processor can communicate directly with all peripheral controllers under program
control. It may determine when a device is ready to send or receive information by
sensing associated sense lines, or it may be notified by means of a program interrupt.
All standard peripheral controllers contain the necessary sense and exteral control
functions for proper operation.

Priority interrupt and sense line modules are available for use for special system inter-
facing.

When block transfers of data independent of program control are required (such as from
tapes, drums, commutators etc.), the buffer interlace controller may be provided. This
element contains hardware registers which automatically generate the proper memory
addresses for successive data transfers with the DATA 620/i memory and a device
through its controller.

2.1.3 Input/Output Operations

All 1/O operations are either one or two phase; sense and external control are single-
phase while data transfers are two-phase. Each phase is terminated with a control
pulse. During information transfers over the 1/O bus, the E lines may carry control
codes, addresses, or data, depending on which type of operation is being performed.
The control signals defining the type of operation are listed in table 2-1. Table 2-2
shows optional interrupt control signal information. Tables 2-3 and 2-4 summarize the
information carried on the E bus for the specified operations. The timing signals pre-
sent on the /O contro! lines during each operation are also indicated.

When a control is on the E bus (first phase), lines EB11-EB15 carry a control signal
which defines the operation. The control codes transmitted over E bus, are summarized
in table 2-5. The function ready (FRYX-I) pulse is generated to indicate that a control
code is on the E bus.

2-3 Interface Reference

¥} Table 2-1
EN /O CONTROL LINE SIGNALS
™ CONTROL LINE SYMBOL FUNCTION
24 —
g0
- g‘;% Function Ready FRYX-I Indicates that the E bus contains
FF T 29 address information. The type of
w - address depends upon the state of
= g_—l IUAX-I.
o
o § E —_ Data Ready DRYX-I Indicates that the E bus contains
e &‘g data.
2EZ
Z0 a
Y z Sense Response SERX-I Indicates logical state of line
- = designated by sense line address
Z — T on E bus.
S 25 . -
hd o =) —
- 22 S Interrupt Acknowledge IUWAX-I Indicates that external interrupt
27 demand is being acknowledged.

- |3 co Address is placed on E bus and

3 |2 removed at FRYX-I.

- z

S 19n, 3 . .

!é e] System Reset SYRT-I Line which becomes true when
-z B° g the SYSTEM RESET button on the
20 & i control console is pressed. Used
Sy £ o) to initialize each controller con-
4 N . "

7 £535 I nected to the 1/O cable.
20 %A =Z X
zo =20 2 5 g2
o3 £z% z =z EE ‘
=2 - g2 2E0x2%¥52 2.1.4 Input/Output Section Logic and Connector
&Y o} £7 DSFEp¥E3Z
z © The logical organization of the DATA 620/i 1/O section and layout of the standard
S S g I/O connector are illusirated in figure 2-3 and detailed in table 2-6. E bus outputs
o
- % M 2 z from the computer are transmitted by a set of line driver circuits; these signals are
s 4 Z 23 22§§§ gated through drivers by the internally generated E bus drive signal (EBDX+). E bus
£zy ol Bl womD 2 inputs to the computer are gated through the E bus receivers by the internally gener-
svg Q 9 ated E bus receive signal (EBRX+).

The computer I/O connector has a fermination "shoe” inserted. This "shoe" contains
terminating resistors to +3 volts. When adding an additional device to the system, the
termination "shoe" is removed and installed on the second connector of the added
device, with the interconnecting cable in its place.

Figure 2-2. DATA 620/i I/O System, Functional Diagram.

Interface Reference 2-4 2-5 Interface Reference

Table 2-2
INTERRUPT CONTROL LINE SIGNALS

CONTROL LINE

SYMBOL

FUNCTION

Interrupt Request

Interrupt Acknowledge

Trap Output

Trap Input

Interrupt Clock

Priority Out

Priority In

Priority 2 and 3

Interrupt Jump

Increment and
Replace Interrupt

IURX

IUAX

TP@X

TPIX

IUCX

PRIX

PR4X

PR(N)X

UJpP

INRU

Indicates a demand for the interrupt
module to force program to execute
one instruction at the location
specified by address on E bus. This
address will be placed on the E bus
when IUAX becomes true.

Indicates that external inferrupt
demand s being acknowledged.
Address is placed on E bus and
removed at FRYX.

Inidcates that a buffer interlace
controller (or equivalent) is request-
ing a data transfer from memory.

Indicates that a buffer interlace
controller (or equivalent) isrequest-
ing a data transfer to memory.

A 1.1 MHz clock. Clock is off
when IUAX is true.

Priority line used with interrupt and
buffer interlace controller modules
for priority determination.

Priority line returned to computer
to permit console interrupt.

Intermediate priority lines that are
used on the /O bus allowing
flexible priority assignments.

Indicates that a jump-and-mark
intruction is being executed:for an
interrupt request.

Echo pulse generated by the proces-
sor when the instruction "increment
memory and replace" is executed
under inferrupt control and fit 14 of
the memory word being.

Table 2-3

INTERRUPT CABLE SIGNAL MATRIX

Interface Reference

2-6

OPERATION
TRAP SEQUENCE INTERRUPT
(BUFFER INTERLACE CONTROL) SEQUENCE
TPOX-1 or TPIX-I
_________ - TURX -}
CONTROL lUAX -1, FRYX-I | TUAX-I, DRYX-I IUAX -1
LINES (PHASE 1) | (PHASE 2) {PHASE 1)
- |
' E800-I : Use lines
[to 00-15 for
! EBOS I interrupt
! I Location
! | by pairs
| EBOG-I | s patrs
: to |
| EBOS-I |
[
£ |
§ EBO9-! Memory | Data
=| EBIO-{ Address | In
g In I or
o
wl EB1I-l I Out
| |
L EBI2-1 '
|
| |
! I
: EBI3-1 |
! |
1l EBI4-| I
! |
!
' EBIS-I !
] |
2-7 Interface Reference

Table 2-4
/O CABLE SIGNAL MATRIX

Table 2-5
SUMMARY E BUS SIGNALS

“spupwwod yndino Jo ynduy Butinp “1sjjosuod O/| Aq paioubl Aj|o1ausB -g0g3 o4 -9043 sH4
*paipa|d jou si tayndwos uy 1eysiBal payoa|es ‘as|py S| [-80€3 4l
-paloa|o st Jajndwos ul JoysiBau payoaes ‘aniy st |-g0g I B4ON

251A8([PUsBIXg
(®leg-00) o4 apod
ssa4ppy 99148 apoD) uoi4ouny pasnun 1 0 0 0 uotjoun} puag
ol
(" £9-00) 301A3(] [PUIRIX]
ssaUppy 991A8Q apon) uolyoung pesnun 0 0 0 J0 93pIg B5UBG
1215169y
1|1 =4oN g o induj
Ao_mcuoov PETHYEN]
$s24ppYy 921A2(0 1 N pesnun 0 0 [0 v o4 4ndy
Asowsp
0 0 o} indu|
FEIYIEN]
| |pesnun g woly 4ndinQ
(®teo-00) [®oN 1345163y
ssalppy 321A3(] 0 |pesnun pasnun 0 0 0 1 v woly ndinQo
Ksowsyy
0 0 wouy ynding
1-0043 o+ 1-6093] 1-9043|1-£093|1-8083]1-4093°1-0183 (1~ 1183 |1-Z 183 _|m_mu¥_|3mm 1-61931 NOILVY¥3dO
— T ~
w
= |2 s 223 =
w = F 5 2 8 = 2
m a 0o Ao+ LE50 N
O ||||||]
g3 - 7 B T
= =
201 50| o3 k 3
SZ | X2 | <5 .3 -3 L 2Es
22 &~ T v o o2 o 2 o 9 o P2
Z w Q. 0o <€ Z> zZ> Q= = [ay'=NO]
&
= .
Z _ o g
B Wl Th | ez 8 5 s
O Z x 2 B 5o 9
G BT | 33 £3 53 55 =
e | o< L O zZo » O]
R
== [- m
* — p—
ANn m T w o 8 m g% 5 3
o b X2 o8 T o - £ = € °
mZ 23| 33 £ 3 5% | £55 2
<0 ol o< Lo z3 | Soou =
w U ~ <
e
Qo
— 5
2g z o lz.3lZ |z &2 |2 |3 |3:
= o o0 0 - = —
ZzZ | 828 1828 | 22 | = = Z = = |3
(@] w [T} w 1w w o [TH} o] w [re} w =
V] L
£
||||||||||||||||||||| BUIUDB §NQ Fr-—— —— = — == — = — m == M
2
*

2-8

Interface Reference

Interface Reference

2-9

75 PIN CONNECTOR - CONNECTOR PIN ASSIGNMENTS

Pin Function To Pin | Function To Pin Function To
! Eesco-i |12 | jos| [3®] & 14les | [“P] wex-l

21 & 95| 12*] Epis1 72| %] g

3 | _EBoi-l 02| [*2] & 44 ©3 | ugx-l

il o3| [2°| Epie-i a ol

S | EBo2-l 76| 1371 &) ©7 | -l

71 r 86| |>®| epizi 7Ol

2 | Enoa-l] B} R 141 8 7' iger-1

) ®r 44 [*°] mryx-I 19 105 T2lR

"' | EBg9-L s (*'] R 0l 73

2| g 2| %2 prRYX-I u T4

'3 | EBs-t 26| (21 R 19 |01 s

4R 12 | o8| |44 sErx-i 6o | | 7@

'S | Esos-t {13 | o8| [*®] R 16 jjz2 77

e | & oa| [*°| 1Pl e

7 | Epozet 102} [*7] & 74

18| & 93] |48} TP@X-I 80| 43vDC X16-0+9
201 Epog-| 76| 1% & 22| onp X16-
2w 72| 15°] PRix-l NOTES.

22| Epoo-1 2] 18] &

il B aa) |52] PRox-| TWISTED PAIR
24| Eslo-l 0] [53] r

25| R 42| [3*] prax-|

201 eR-J 2] |55 R

TR 13 | o8] [®®] pRax-I

28] w2 |14 jr0s] [37] &

24! 95| [28] Svri-t 24 06

122 EBi3-1 2] [3%] r 244 01

3V & 93] |%°] uAX-l

22| epia 4l el [“2[&
Interface Reference 2-10

FROM
COMPUTER
BUS (CB)

TO
COMPUTER
BUS

TO/FROM
CONTROL
SECTION

<

JEBUS e

% \ajr--{c

J—
\- EBDX+
(=
2

RECEIVERS| |

R
EBRX +

.
e D e e e

\SERX LR o]

TO CONTROLLER

EBOO-1
EBO1-1¢ E BUS (EB)
EB15-1

~
SYRT-1

FRY X-1
/0

* CONTROL
DRYX-I[[RiEs

HUAX-1

SERX-J

Figure 2-3. DATA 620/i I/O Section and Standard Connections.

2-11

Interface Reference

2.1.5 Logic Levels

Logic levels for Micro-VersaLOGIC circuits are nominally O volt for a logic "0" and
+5 volts for logic "1". Over the |/O cable, however, the sense of the logic signals is
inverted and the voltage is changed. That is, binary "1's" are transmitted over the

E bus at the O-volt leve! and binary "0's" are transmitted at the +3-volt level Control
lines rest at the +3-volt level; a control pulse is defined by the signal level dropping
to O volt for the prescribed time interval, and then returning to the +3-volt level. The
standard line receivers convert the |/O cable signals to 0 and +5 volts while the line
drivers convert the 0- and +5-volt signals to the I/O cable signals. One line of the
twisted pair is terminated at each end of 180 ohms to +3 volts, with the line grounded.
The line driver acts as a switch across the pair to bring the potential difference between
the lines to zero {indicating a logic "1"). When the driver is turned off, the voltage
returns to +3 volts, (indicating a logic "0"). The drivers are capable of supplying

60 ma of current. The receiver input impedance is approximately 3.7K ohms. Up to
10 receivers may be added to any twisted pair, and up fo 20 drivers may drive any
twisted pair. Figure 2-4 shows one signal.

2.2 PROGRAM CONTROL FUNCTIONS

Interfacing functions fall into two major categories: programmed operations, and auto-
matic operations. The programmed operations are: external control (single bit out),
sense operations (testing a single bit), data transfer in (full word inputs), and data
transfer out (full word outputs). The following paragraphs describe the programmed
operations and examples of their use. The party line adapter is a special card for use
in interfacing the programmed operations.

2.2.1 1/O Cable Adapter Card

The 1/O cable adapter card is a standard Micro-Versak OGIC module (I/0O-701)
designed to facilitate interfacing with the DATA 620/i I/O cable (see figure 2-5).
Subsequent paragraphs show typical examples illustrating the use of the [/O adapter.
The organization of this card is such that many types of /O interfaces may be simpli-
fied by its use. The address detection gates are used for forming the address; this also

incorporates the IUAX-I signal for address lock~out during trap and interrupt sequences.

The two flip~flops are used to implement the two-phase technique for I/O transfers
(i.e., remember whether data is being transferred in or out). In some cases, one of
the two flip-flops is used to implement a buffer ready function. The sense response
driver (connected directly to the SERX-| line) has o logic inverter to allow direct
ORing of many sense functions. The power driver is multipurpose.

The various uses of the /O cable adapter card are shown in paragraphs 2.2.2 through
2.2.5. ’

Interface Reference 2-12

F———-

Y : VA
]
| 120: TWISTED} 180:
| ol PAR | a
t q 5— '
| . l |
I
1 | |
| i ['
e SR
1 t !
i NN
1 | I
: ‘__,? I | —TI: |
| =
Lo L]
IN CENTRAL LOCATED ON
PROCESSOR TERMINATION SHOE
Fr===——r—-——=4 r=f———+4——- i
i ! !
I ! I
I | | |
!)| |
| [|
i ;| I
] |
| i
| L (! t
i B ! - 1
{ ! 1
[, b _ J
LINE RECEIVER IN LINE DRIVER (SWITCH)
DEVICE OR COMPUTER IN DEVICE OR
COMPUTER

Figure 2-4. Typical Line Location on I/O BRus.

2-13

Interface Reference

o
) X © X o
E> O Ef oO.F
293 a7% BIT >
< ha ! [N
- z
o—
Lv\/v\»>
2
2
o o
& &
£
¢ X ox
2z = =
b a a
k=3
E
= E—
2 .
5 - M
i :
o
X2
~
Z%:
= g - i
& <
by —~
5
e o,
=0 H
ags
R8¢
o
L
o
~
S e
Elw Oww X h
B8 ¥og 2 2 X X
zoﬁ Zom =2 © S0
wo ZzZ=a 5 ¥
Z24 (o= e
or-g 0O0Y< e
O-° (o}

Figure 2-5. 1/C Cable Adapter Card 10-701, Functional Organization.

Interface Reference

2-14

2.2.2 External Control Operation

External control operations are single-phose operations. The external control instruc-
tions (EXC XYY, where YY contains the device address and X contains the function
code) transmits a function code and a device address on the E bus for 200 nanoseconds
(figure 2-6). Functions EBOO through EBO5 contain a device address, and bits EB06-08
indicate the particular function code for that device. EBI11 is true indicating that an
external control function is being performed (see table 2-3). The pulse FRYX+ is used
with the address to form a 450-nsec pulse for setting and resetting flip~flops. The
address overlaps FRYX+ by 100 nsec to allow for logic delays in forming the pulse sig-
nal in the power drivers.

An example of implementing eight external control lines is shown in figure 2-7. This
example requires four Micro-VersaLOGIC cards. As shown in figure 2-7, only the
meaningful 1/O signals need to used to form the external control function. The output
of the select gate (EB06-08 describes one of eight) is a 450-nanosecond pulse (GND
true).

2.2.3 Program Sense Function

Program sense functions are single-phase operations. The sense instruction is a two-
word instruction. The first word in the sense instruction contains the function code and
device address which addresses a particular external sense function. The second word
is the conditional jump address. The sense instruction transmits the function code of
the E bus for 1350 nanoseconds (see figure 2-8). Lines EBOO-EBO5 contain the device
address, lines EBOS-EBO8 dictate the particular function to be sensed, and EB12 istrue
indicating a sense command. The EB12 lines need not be used in forming a sense
response command because the computer will not respond to the SERX-I line unless a
sense command is being executed, The function (address IUAX-1) can be directly used
to enable a sense line driver. The user has the option of using the EB12 line for any
case where he must know if a function is being sensed. The FRYX-I signal is normally
not used for a sense response command, but is furnihsed for the user that desires a
clocking pulse while performing a sense function. The SERX-I line is the return line to
the computer with all sense line drivers connected to this line. The SERX-I line must
be driven within 600 nanoseconds after time Tq (see figure 2-8), if the computer is to
recognize a "sense condition met".

An example of sense function decoding is shown in figure 2-9. This example illustrates
the logic required to implement either sense functions. The line receivers interface
with the 1/O cable signals shown. Lines EBOO-EBOS plus the signal 1UAX+ are used at
the address detection gate to form the enable for all sense lines. Lines EBO6-EBO8 are
decoded info the six combinations shown, with the final decoding provided on the
eight NAND gates with the corresponding sense lines. The AND/OR function is
formed by attaching the NAND outputs and inverting. This function enables the line
driver circuit (the inverter and line driver are located on the adapter card).

2-15 Interface Reference

l FUNCTION CODE & DEVICE ADDR

EB(N)-1 ——t n
to 900
FRYX-I —l-—___r
| f350 1800

EBH—I——‘ I

i NOTE SIGNAL INVERSION ON 1/O LINES
tg AT I/O CONNECTOR
by =tg X IN NANOSECONDS

Figure 2-6., External Control Timing.

Interface Reference

2-16

EB(00-05)-1

oAxl
ES 8)-
5(06-08)-1
EB1I-1

FRYX-|

LINE
RECEIVER
CARD
12/CARD

EB(00-05)+

IUAX+
ADDRESS
CETECTION
GATES
*)
.

{ADDRESS){IUAX~)

A,8,C

£B11+= EXTERNAL CONTROL ® POWER DRIVER
FRYX+ 450 NS
AB [}
. c
$—b EBOG+, EBO7+, EBOB+= C,B,A
450NS 4
AB
C
AB J
AB
- AB
8 1)
DECODE [
GATES »
L € o A8
C 9 4
IMPLEMENTED

WITH A GATE CARD

() = 1/O CABLE ADAPTER CARD

Figure 2-7. Example of External Control of Eight EXC Lines.

2-17 Interface Reference

I
|
EB(N)-1 | FUNCTION CODE & DEVICE ADDR
'oll— Jt1350
!
FRYX-I
I tgo0L——T11250
SERX-I —l——l*—,
I t600 11350
EBIZ-I‘ﬁ' [

tx = to+X IN NANOSECONDS

SERX-MUST BE ON (IF RESPONSE IS TRUE)te0q,
NORMALLY OFF t1350, MUST BE OFF 050

NOTE SIGNAL INVERSION ON |/O LINES

Figure 2-8. Sense Response Timing.

Interface Reference 2-18

EB(00-05)+

Emow,
ADDRESS ADDRESS) 1UAX-
IUAX-T LINE UAX+ o] DETECTION ¢ |
— P Recuivers GATES
@]
EB(Oé—OS)—I.

EBOG+, EBO7+, EBOS+=C, B, A

DECODE
GATES

W

GATE CARD

(*) =1/O CABLE ADAPTER CARD

SERX-1

LINE DRIVER
INVERTER -

p-3
&=

O

SENSE 7>——

o F

SENSE 6 p——

ol

SENSE 5 >——
AB
c

SENSE 4 >——
A
C

SENSE 3)>——
A
[

SENSE 2 >——
AB
C

SENSE 1>———
AB

C

SENSE 0 >———1

TTTTTTTY

g

Figure 2-9, Example of Sensing Eight Sense Lines.

2-19

Interface Reference

2.2.4 Data Transfer In Operation

Data transfer is in a two-phase 1/O operation (both phases are completed during one
instruction). The device address is transmitted during the first phase. During the
second phase, data is placed on the E bus by the addressed 1/O device. Data is trans-
ferred into the computer by one of the data input instructions, either to one of the com-
puter registers or directly into the memory. The first-phase timing is similar to the first
phase of other I/O functions. EB13 is true to indicate a data transfer in function (lines
EBOO-EBO5 contain the device address).

Since the E bus is time-shared, a flip-flop (in the selected device) is used to remember
that the addressed device is to place data on the bus during the second phase. This
flip-flop, data transfer in (DTIX+), is set at the trailing edge of FRYX+ (with the
proper enabling conditions), reset with the trailing edge of DRYX+, thus enabling data
onto the E bus. The timing of the data transfer in operation is shown in figure 2-10.
As indicated, the selected data must be enabled onto the E bus no later than 700 nano-
seconds after the trailing edge of the pulse FRYX+.

An example of the data transfer in operation, shown in figure 2-11 illustrates the
standard gated input channel.

When data is present on the 18 customer-driven data lines, the customer causes the data
present line to go to a +5 V. When the computer addresses a sense command to the
device, the power driver causes the sense response (SERX-I) line to be grounded, indi-
cating a favorable response.

The computer then addresses a data fransfer in command fo the device. The DTIX flip-
flop is set by function ready (FRYX+) during the first phase of the input command.

DTIX gates the customers' data onto the E bus during the second phase of the input
command.

The trailing edge of the 450-nanosecond Data ready (DRYX+) pulse resets DTIX,
removing the data from the bus. The term DTIX+ o DRYX+ is supplied to the customer
as a data accepted pulse, after which the customer may remove data from the lines.

2.2.5 Data Transfer Out Operation

Data is transferred from the computer to an external device by one of the data output
instructions. Data from the computer can originate from one of the computer registers
or directly from the memory. The data transfer out is a two-phase operation where the
first phase outputs the function code (EBOO-EBO5 = address and EB14 = data output).
This phase is terminated and the selected device strobes this information with the pulse
DRYX+. As shown in figure 2-12, the computer removes the data 100 nanoseconds
after the DRYX+ pulse. The overlap of 100 nanoseconds allows the user to form a

Interface Reference 2-20

|
|
i
EB(N)-I | DEVICE ADDRESS
‘o t900
FRY X ——1 = 450N~
L) t800
t
ep(ny)-1 | RATATO cowumi ; 1500)
! 900 Fr2700
DRYX- : =450NS |
| 2150 '2600
|

EBI3~1 —-—‘ [
X =10 X IN NANOSECONDS

EB(N)4 - DATA - NORMALLY ON 900, MUST BE ON 11500
NORMALLY OFF 2700, MUST BE OFF 3300

NOTE SIGNAL INVERSION ON '1/O LINES

Figure 2-10. Timing of Data Transfer In.

2-21 Interface Reference

o
o
~ o
o~ o
hat el
N
+
9 Z
o =}
& I £
a RE z
< 8 i
S 5 0
2 . z
a8 g 5
= z
o}
5 2
z s
8 9 £
-
O~ vy
= 18 0 b
w
2%
I o z
) o
2
f3 il
x
R e e _
T % : @
Z £ £ £ =@
2 i] a w
X +XAdd
351Nd G31dIDDV viva xiLa

mem O/i oL

L1 e VIV)——
L 11g vlvd nh_w N “
(¥IWOLSND ut..;
WOud)
0119 vivd Yu Nm
SEIAIYA INIT
AG+
*
A
r *
+XI1d

T

(¥3@0D23a ssIvaay

WOUH) XVNI -$5330AV 3D1A3]

E I

SNt

N R (4IWOLSND WOYA LNdNI) LNISIUd viva

+ XAdd

—s

-XILa
+XA4d

+£183

XYNI - SS3¥AQAY IDHA3A

43002030
$Saav

D> 9/

I-xw3s Ol

+XvNi

+6083 % 0083

SYIAIFOIY
INn

e—1-XVAI
[~ |- XA4Q
[1-XAdd

~—|-£183
N¥HL 1-0083

Example of Gated Data Transfer In.

Figure 2-11.

Figure 2~12, Timing of Data Transfer Out.

2-22

Interface Reference

Interface Reference

2-23

register-set pulse with a power driver and strobe EBOO - EB(N) information into an
external flip-flop register. Since the address code is not on the E bus during the sec-
ond phase, a flip-flop is used to store the device selection. This flip-flop is called
DT@X+ {data transfer out) and is used to enable the DRYX+ pulse to strobe the E bus
data info the register. The DT@ flip-flop is set during the first phase of the 1/O
instructions with FRYX+, and is reset during the second phase with DRYX+.

Figure 2-13 shows an example of a data transfer out operation with a standard gated
output channel. The external device must request data with a request level (output
ready). This signal is connected to the sense return line and may be sensed by the
computer at any time.

2.3 AUTOMATIC CONTROLLED FUNCTIONS (optional)

Automatic controlled functions, especially interrupts and traps, can demand the com-
puter system to perform a function that is independent of a particular instruction being
executed. The program-controlled functions of paragraph 2.2 are all executed under
control of DATA 620/i instructions.

2.3.1 Priority Lines and Interrupt Clock

The devices that connect to the 1/O and interrupt cable and perform demand-type
functions must first establish a priority to resolve two or more simultaneous demands fo
the computer. The priorities of the devices are determined every 1.8 microseconds and
are clocked with the ‘interrupt clock IUCX-1 (a 1.1-MHz signal). The computer sends
a priority out signal (PR1X-1, see table 2-2) when a device may have priority, and

receives a priority in signal (PR4X-1) when no device is demanding computer
intervention.

The intermediate priority lines (PR2X-1, PR3X-1, and PR4X, see table 2~2) are used to
allow the designer to assign priorities to units not physically adjacent. The only
requirements in priority logic are that the chain not be broken unless the demand
device wants to interrupt or trap the computer.

If the PRTX~1 signal is true, requests will be accepted from a device. This signal is
false only when a power failure has been detected and the power fail interrupt is in

process; during that time, all trap requests from the devices on the interrupt bus are
ignored by the DATA 620/i.

The priority assignment among multiple devices on the priority bus is made by inhibiting
a trap request from one unit when a request from a higher-priority unit is on. Thus,
each device has priority logic which receives a priority input which, when true, indi-
cates that it may generate a request. The output of this priority logic is set false when

the device is generating a request, indicating that no unit of lower priority may gener-
ate a trap or interrupt request.

Interface Reference 2-24

EBOO +

EBO1 +

EB17 +

o
A
)

DATA PRESENT TO CUSTOMER

]
<
3 & '
=
2)
& 5
] o= o
2 [
w z <
3, g <
P 3
a 0
z
g g
& & &
Do - |x
o =1 O
a9 4 lgu
<A = . O
u’l/l
5 24
< &z
2 98
5 E =g
3 2 Uz
i 2 9
+ — >O
2| x S m
+ g o ot
o] =
: {
2
&
i I
@)
3
£5
S
8 +1
=4 '
| <
2
2l 111 z
TIIiE
3 x
dm = = = 00g
o &8 2 =<2
2
&
Figure 2-13. Example of Gated Data Transfer Out.

2-25

CUSTOMER'S DEVICE

LINE DRIVERS
ﬂj@ﬁ

L
—

DTOX +
DRYX +

Interface Reference

The simplest assignment of priorities is to let the physical position on the interrupt
cable determine the priority. This is illustrated in figure 2-14. The priority output
(PRIX-1) from the central processor serves as the input to the highest-priority logic,

its output is the input to the second, and so on. When the highest-priority unit gener-
ates a trap request, all lower priority units are inhibited from generating a trap or
interrupt request.

PRIORITY PRIORITY PRIORITY

Where physical location on the interrupt cable does not correspond to the priority ,';?GIC ;;LZOGK ,I;'noolc
assignment, an arrangement such as illustrated in figure 2-15 is used. The priority
of each device may be set up as desired and the priorities may be reassigned at any
time by a simple change of jumpers. tﬂ

PRIX N
:I'he interrupt clock (IUCX-1) line is used by all devices that will request either an . Vo CasLe PR2X-I - o0
interrupt or a trap from the computer. All requests should be turned on at the IUC time FROM PRIX -]
so that multiple requests have time to settle the priority chain, and lower-priority DATA 620 o—0C -
requests may remove their signals before the interrupt acknowledge signal (IUAX-I). RE1_ o6 o oO—O0————

2.3.2 Computer Interrupts NOTE: PR2ZX-i AND PR3X-| ARE NOT NEEDED.
The following paragraphs describe the pholosphy for requesting and acknowledging

interrupts. The interrupt module, model 620/i-27, is implemented using these control

lines.*

As shown in figure 2-16, the signals used are interrupt request (IURX-1), interrupt
acknowledge (IAX-1), and the E bus for sending the interrupt address to the computer.
When an interrupt device wants to execute an interrupt, the device places an inter-
rupt request signal on the interrupt cable, if the priority line coming into the device is
true. The device must also set false the priority signal for all downstream requesting
devices. After the completion of the instruction being executed, the computer will
respond with an interrupt acknowledge (IUAX-1).

As shown in figure 2-16, the IURX-I signal will be true for a variable period of time
until the IUAX-! signal. This time will vary depending on the instruction being exe-
cuted. The device must have the interrupt address on the E bus 600 nanoseconds after
IUAX~[becomes true, and must remove the address and IURX-I signals within 150 nano-
seconds after [UAX-1 goes false .

2.3.3 Interlaced Data Transfers

The following paragraphs describe the pholosophy for performing data (full word) trans-
fers directly to and from the memory connected with the computer. The buffer interlace

*The reader should consult the interrupt module manual for a detailed description of . .
the operation and interface of the interrupt module. Figure 2-14, Priority Assignment by Physical Order on the /O Bus.

Interface Reference 2-26 2-27 Interface Reference

PRIORITY PRIORITY PRIORITY PRIORITY
LOGIC LOGIC LOGIC LOGIC
#3 42 #4 #]
PRIX-I
—0—0—
PR2X-I
/O CABLE %——CL
FROM PRIX -1
DATA 620 ———————0—=0
PRAX -

Figure 2-15, Priority Assignment by Jumpers.

Interface Reference

2-28

fSTART 10
i

: [—=—900NS
1JCX-I | 'L
IURX-I ISTART
R | —
i i
| |
UAX| ————— m
! to} 3150
I
- | ol Ji3150
!
! i
1UJP-i
P t2700L—Jr3150

r~—= VARIABLE
tx=tg X IN NANOSECONDS

IUCX-1 - REMOVED AT to, RETURNS t3150

IURX-1 - NORMALLY REMOVED AT 13150 MUST BE t3300
IUAX=1 - NORMALLY REMOVED AT t3150, MUST BE t3300
EB(N)-1 - ADDRESS NORMALLY ON t5, MUST BE ON 1600
1JUP-I - PRESENT IF JUMP-AND-MARK INSTRUCTION

NOTE SIGNAL INVERSION ON 1/O LINES

Figure 2-16. Timing of Inferrupt Sequence.

2-29 Interface Reference

control (BIC, model 620/i-15) is implemented using the following technique. (The
interested user should consult the BIC manual for its use and interfacing requirements).

Basically, the trap (inferlace) sequence is a three-phase operation: request, address,
and data. First, the device requests a trap into or out of memory {with a TPIX-1 or
TP@X-1). Second, the computer acknowledges with an IUAX-I and the device places
the address of the desired memory location on the E bus, and third, after the computer
responds with a FRYX-I, the data is placed on the E bus (either from the device or
from the computer). The sequence ends with a DRYX~I pulse that strobes the data into
or out of the computer and all signals are removed from the bus (see figure 2-17).

2.4 MISCELLANEOUS SIGNALS
2.4.1 System Reset (SYRT-1)

The SYRT-I signal is provided for initializing /O controllers when the "system reset"
switch is pressed on the computer console. The SYRT-1 signal drops to ground when
pressed, and returns fo +3 volts when released. This signal is connected to a line
receiver to convert to standard Micro-VersaLOGIC voltages for use in the 1/O devices.

2.4.2 Interrupt Jump (IUJP-1)

The interrupt jump signal (IUJP-1) indicates that the instruction being executed due to
an interrupt request (IURX~1) is a jump-and-mark instruction. The interrupt module
uses this signal to inhibit further requests. The module may then be enabled under
program control .

2.4.3 Interrupt Lines (1U0O-1 through [U15-1)
The interrupt lines in the interrupt cable are used for communication between the 1/O

devices and a priority interrupt module. In the absence of-any interrupts, these lines
may be used for user communications.

Interface Reference 2-30

1
CX-I L_rﬂ'u—lo
| 12700
TR —
T 12700
= VARIABLE
uAx- =y VAR —
{ MEMORY ADDRESS 20
EBN)-———]
: 1350
FRYX-I ,
: 1250
EB(N)-I T DATA ON E 8US (IN/OUT) | |
| 1350 2700
DRYX-! :
| =ty X IN NANOSECONDS t130 2600

1UCX-1 - REMOVED AT tq RETURNS AT ty700
TPIX-1/TPOX-1 - NORMALLY REMOVED AT 15700, MUST BE REMOVED BY ty000
EB(N)-1 DATA (IN) - NORMALLY ON 350, MUST BE ON t]900
NORMALLY OFF 12600, MUST BE OFF t2900
EB(N)-1 ADDRESS - NORMALLY ON 10, MUST BE ON 1600
NORMALLY OFF 1350, MUST BE OFF 1950
EB(N)-I DATA (OUT) - WILL BE ON t1500, WILL BE REMOVED 12700

NOTE SIGNAL INVERSION ON 1/0O LINES

Figure 2-17. Timing Sequence of Trap Input/Output.

2-31 Interface Reference

APPENDICES

APPENDIX A
DATA 620/i NUMBER SYSTEM

DATA 620/i NUMBER SYSTEM

Binary numbers in the DATA 620/i are represented in 2's-complement form. Single-
precision numbers are 15 bits plus sign (16-bit configuration) or 17 bits plus sign (18-bit
configuration). The sign bit occupies the most-significant bit position (15 or 17).

A "0" in the sign position denotes a positive number; a "1" in the sign position denotes

? negative number. The negative of a positive number is represented in 2's-complement
orm.

The 2's-complement of a number may be found in either of two ways:

oo Take the 1's-complement of the number (i.e., complement each bit); add
"1" in the feast-significant bit position. Example:

+9 0000000000001001
I's-complement 1111811111110110

..
2's-complement T 11110111
(-9)

b. For an n-bit number (including sign) subtract it from 2n+l . Example:

n+]

2 10000000000000000

-(+9) -0000000000001001
-9 1111111110111

It is generally convenient to express binary numbers by their octal equivalent. This
conversion is easily performed by grouping the binary bits by threes, starting with the
least-significant bit. Thus, in the 18~bit configuration, numbers may be expressed
by six full octal digits (000000-777777g).
In the 16-bit configuration, the range of octal numbers is less than six full digits
(000000—1777778). The octal equivalents for the above examples are:

DECIMAL OCTAL
+9
00001]8
-9
]777678

The range of numbers in the DATA 620/i is from =215 10 215 -1 for the 16-bit
configuration and -217 to +217 21 for the 18-bit configuration. The zero minus 1 and
plus/minus full-scale numbers for the 16-bit configuration are:

BINARY OCTAL DECIMAL
[URRRRRRRRRARRRD] 0777778 +32,767 +Full Scale
0000000G00000000 000000 0 0
IRRRARRRRRRRRRA]]]777778 -1 -1
1000000000000000 1000008 -32,768 -Full Scale

The negative of the octa!l equivalent number is found by subtracting the number from
177777g and adding 1 in the least-significant digit (subtract from 777777g for the
18-bit configuration). Example:

1777778

~-(9) -00001]8
+1

-9 1777678

In performing addition or subtraction, it is possible for the results to exceed the + full
scale range of the machine. For example:

DECIMAL OCTAL
+21,980 0527348
+11,843 +0271038
33,823 1020378 -31,713
A-2

The negative result is in error. The same type of error occurs if the sum of the two

negative numbers exceeds the minus full-scale range:

DECIMAL OCTAL
-21,980]250448
(+)-11,843 1506758
-33,823 (1)0757418 31,803

Note that the carry out of the most-significant octal digit position is generally lost.
However, to inform the programmer that the true result of an addition/subtraction falls
outside the range of the machine, an overflow indicator is provided. The overflow
indicator is set if the sign bit changes when two numbers of the same sign are added
together (where the sign of the subtrahend is changed in subtraction)

In multiplication, o double-length product is formed in the arithmetic registers (A or
B). Since the product cannot exceed 32-bits (36-bits in the 18-bit configuration)
overflow will never occur as the result of a multiply . The sign of the product is auto-

matically determined.

Example:
DECIMAL OCTAL
21,980 052734
X 11,843 027103
65,940 200624
87,920 52734
175,840 454404
21,980 125670
21,980
260, 299, 140 001741000224
A B

The double-length result is accumulated in the A and B registers.

In division, an overflow (underflow) can occur if the divisor is less than or equal to

the dividend.

APPENDIX B
STANDARD DATA 620/i SUBROUTINES

APPENDIX B

STANDARD DATA 620/i SUBROUTINES

SUBROUTINES LOCATIONS TIME
Elementary Functions*
Log® (1 +X), 0= X <1) 19 365 usec
Exponential () (0 =X < 1) 17 283 usec
Exponential (e er) (0=X<1) 17 333 usec
Square Root (0 = X < 1) 58 493 usec
Sine X (-m<X<7) 31 315 usec
Cosine X (-7 < X<w) 20 310 usec
Arctan (-1 to 1) 15 380 usec
Single Precision (fixed point)
Multiply (optional) hardware 18 usec
Divide (optional) hardware 27 usec
Divide (programmed) 27 300 usec
Double Precision (fixed point)
Open
Addition 7 20 usec
Subtraction 7 20 usec
Multiplication 16 97.2 usec
Divide 28 1036 usec
Closed
Addition 23 54.0 usec
Subtraction 25 57.6 usec
Muliiply 36 127.8 usec
Divide 35 1050 usec

SUBROUTINES LOCATIONS TIME
Conversion
Binary-to-BCD (4 characters) 32 249 usec
28 205 usec

BCD-to-Binary

]

*All elementary functions exept square root require a subroutine called POLY, which

takes 42 locations.

B-1

B-2

APPENDIX C
TABLE OF POWERS OF TWO

Table of Powers of Two

2 n] 27"
1 0110
2 105
4 2]0.25
8 3]0.125
16 4 10,0625
32 5] 0.03125
64 6 | 0.015 625
128 7 | 0.0078125
256 8 | 0.003 906 25
512 9 | 0.001 953 125
1024 |10 | 0.000 976 562 5
2048 |11 | 0.000488 281 25
4 096 |12 | 0.000 244 140 625
8192 |13 | 0.000 122 070 312 5
16 384 [14 [0.000 061 035 156 25
32768 |15 | 0,000 030 517 578 125
65536 |16 | 0,000 015 258 789 062 5
131 072 |17 | 0.000 007 629 394 531 25
262 144 118 | 0,000 003 814 697 265 625
524 288 (19 | 0,000 001 907 348 632 812 5
1048576 |20 [0.000 000 953 674 316 406 25
2097 152 |21 | 0.000 00G 476 837 158 203 125
4194 304 {22 | 0,000 000 238 418 579 101 562 5
8388608 |23 [0.000 000 119 209 289 550 781 25
16 777 216 | 24 | 0.000 000 059 604 644 775 390 625
33 554 432 |25 | 0.000 000 029 802 322 387 695 312 5
67 108 864 |26 | 0.000 000 014 901 161 193 847 656 25
134 217 728 |27 | 0.000 000 007 450 580 596 923 828 125
268 435 456 | 28 | 0.000 000 003 725 290 298 461 914 062 5
536 870 912 |29 | 0.000 000 001 862 645 149 230 957 031 25
1073 741 824 | 30 | 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 | 31 | 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 | 32 [0,000 000 000 232 830 643 653 869 628 906 25
8589 934 592 | 33 | 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 | 34 | 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 | 35 | 0.000 000 6GG 029 103 830 456 733 703 613 281 25
68 719 476 736 [36 | 0,000 000 000 014 551 915 228 366 851 806 640 625
137 438.953 472 | 37 | 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 | 38 | 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 | 39 | 0.000 000 000 001 818 989 403 545 858 475 830 078 125

C-1

APPENDIX D
OCTAL-DECIMAL INTEGER CONVERSION TABLE

0000 0000
10 to
0777 0511
(Octal) { (Decimol

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000 0512
to o

777 1023

(Octal) | (Decimal)

OCTAL-DECIMAL

INTEGER CONVERSION TABLE

OCTAL-DECIMAL INTEGER CONVERSION TABLE

o 1 2 3 4 5 & 7 Lo 1 2 3 4+ 5 8 71
0000 |0000 0001 0002 0003 0004 0005 0006 0007 0400|0256 0257 0258 0250 0260 0261 0262 0263
0010 {0008 0009 0010 0011 0012 0013 0014 0015 04100264 0265 0266 0267 0258 0269 0270 0271
0020 (0016 0017 0018 001 0020 0021 0022 0023 04200272 0273 0274 0275 0276 0277 0278 0279
0030 [0024 0025 0026 0027 0028 0029 0030 0031 0430 (0280 0281 0282 0283 0284 0285 0286 0287
0040|0032 6033 0034 0035 0036 0037 0038 0039 0440 (0288 0289 0200 0291 0292 0293 0294 0295
0050 [0040 0041 0042 0043 0044 0045 0046 0047 045010296 0207 0298 0239 0300 0301 0302 0303
0060 |0048 0049 0050 005! 0052 0053 0054 0055 04600304 0305 0306 0307 0308 0309 0310 0311
0070|0056 0057 0058 0059 0060 0061 0062 0063 0470[0312 0313 0314 0315 0316 0317 0318 0319
0100|0064 0065 0066 0067 0068 0069 00TO 0071 0500 (0320 0321 06322 0323 0324 0325 0326 0327
01100072 0073 0074 0075 0076 G077 0078 0079 05100328 0329 0330 0331 0332 0333 03331 0335
012010080 0081 0082 0083 0084 0085 0086 0087 0520|0336 0337 0338 0339 03{0 0341 0332 0343
0130 [0088 0089 0090 00S1 0092 0093 0094 0095 0530|0344 0345 0346 0347 0348 0349 0350 0351
0140|0096 0097 0038 0099 0100 0101 0102 0103 054010352 0353 0354 0355 0356 0357 0338 0359
015010104 0105 0106 0107 0108 0109 0110 0111 055010360 0361 0362 0363 0364 0365 0366 0I6T
01600112 0113 0114 0115 011§ 0117 0118 0119 0560 | 0368 0369 0370 0371 0372 0373 0374 0375
01700120 0121 0122 0123 0124 0125 U126 0127 0570|0376 0377 0378 0379 0380 0381 0382 0383
02000128 0129 0130 0131 0132 0133 0134 0135 060010384 0385 0386 0337 0388 0389 0390 0391
02100136 0137 0138 0139 0140 0141 0142 0143 06100392 0393 0394 0395 0396 0397 -0398 0399
02200144 0145 0146 0147 0148 0149 0150 0151 06200400 0401 0402 0403 0404 0405 0406 0407
023010152 0153 0154 0155 0156 0157 0158 0159 0630 {0408 0409 0410 0411 0412 0413 0414 0415
024010160 0161 0162 0163 0164 0165 0166 0167 0640{0416 0417 0418 0419 0420 0421 0422 0423
02500168 0169 0170 0171 0172 0173 0174 0175 0650 (0424 0425 0426 0427 0428 0429 0430 0431
026010176 0177 0178 0179 0180 0181 0182 0183 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270 {0184 0185 0186 0187 0188 0189 0190 0191 067010440 0441 0442 0443 0444 0445 0446 0447
030010192 0193 0194 0195 0136 0197 0198 0199 07000448 0449 0450 0451 0452 0453 0454 0455
031010200 0201 0202 0203 0204 0205 0206 0207 071010456 0457 0458 0459 0460 0461 0462 0463
03200208 0209 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467 0468 0469 0470 D471
0330 (0216 0217 0218 0219 0220 0221 0222 0223 0730[0472 0473 0474 0475 0476 0477 0478 0479
0340|0224 0225 0226 0227 0228 0229 0230 0231 074010480 0481 0482 0483 0484 0485 0486 0487
035010232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491 0492 0493 0494 0495
03600240 0241 0242 0243 0244 0245 0246 0247 076010496 0497 0498 0499 0500 0501 0502 0503
0370[0248 0248 0250 0251 0252 0253 0254 0255 0770/ 0504 0505 0506 0507 0508 0509 0510 0511

o 1 2 3 4 5 & 7 0 12 3 4 5 & 7
100010512 0513 0514 0515 0516 0517 0518 0519 1400|0768 0769 0770 0771 0772 0773 0774 0775
101070520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779 0780 0781 0782 0783
102010528 €529 0530 0531 0532 0533 0534 0535 142010784 0785 0786 0787 0788 0789 0790 0791
1030[0536 0537 0538 0539 0540 0541 0542 0543 1430 (0792 0793 0794 0795 0796 0797 0798 0799
1040(0544 0545 0546 0547 0548 0546 0550 0551 1449|0800 0801 0802 0803 0804 0805 080§ 0807
1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 {0808 0B0O9 0810 0811 0812 0813 0814 0815
10601 0560 0561 0562 0563 0564 0565 0566 0567 1460 (0816 Q817 0818 0813 0826 0821 0822 0823
1070(0568 0569 0570 0571 0572 0573 0574 0575 1470 (0824 0825 0826 0827 0828 0829 0830 0831
1100|0576 0577 0578 0579 0580 0581 0582 0583 15000832 0833 0834 0835 0836 0837 0838 0839
111010584 0585 0586 0587 0588 0580 0530 0591 151010840 0841 0842 0843 0844 0845 0846 0847
112010592 0593 0594 0595 0596 0597 0598 0599 1520{0848 0849 0850 0851 0852 0853 0854 0855
1130{ 0600 0601 0602 0603 0604 0605 0606 0607 153010856 0857 0858 0859 0860 0861 0862 0863
114010608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
11500616 0617 0618 0619 0620 0621 0622 0623 1550|0872 0873 0874 0875 0876 0877 0878 0879
1160|0624 0625 0626 0627 0628 0628 0630 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170|0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 |0896 0897 0898 0899 0900 0901 0902 0903
12100648 0649 0650 0651 0652 0653 0654 0655 1610 {0904 0905 0906 0907 0$08 0909 0910 0911
1220|0656 0657 0658 0659 0660 0661 0662 0663 1620|0212 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 (0920 0921 0922 0923 0924 0925 0926 0927
1240[0672 0673 0674 0675 0676 0677 0678 0679 1640 |0928 0929 0930 0931 0932 0933 0934 0935
125010680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695 1660 {0944 0945 0946 0947 0948 0949 0950 0951
127010696 0697 0698 0698 0700 0701 0702 0703 1670 (0952 0953 0954 0955 0956 0957 0958 0959
13000704 0705 0706 ©707 0708 0709 0710 071t 1700 {0960 0961 0962 0963 0964 0965 0966 0967
1310(0712 0713 0714 0715 0716 0717 0718 0719 1710|0968 0969 0970 087t 0972 0973 0974 0975
13200720 0721 0722 0723 0724 0725 0726 0727 1720|0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730|0984 0985 0986 0987 0988 0989 0590 0991
13400736 0737 0738 0739 0740 0741 0742 0743 174010992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750 {1000 1001 1002 1003 1004 1005. 1006 1007
1360(0752 0753 0754 0755 0756 0757 0758 0759 176011008 1009 1010 1011 1012 1013 1014 1015
1370 0760 0761 0762 0763 0764 0765 0766 0767 1770|1016 1017 1018 1019 1020 1021 1022 1023

D-1

0 1 2 3 4 5 [7] t 2 3 4 5 6 1
2000|1024 1025 1026 1027 1028 1029 1030 1031 2400{ 1280 1281 1282 1283 1284 1285 1286 1287
2010(1032 1033 1034 1035 1036 1037 1038 1039 241011288 1289 1290 1291 1292 1293 1294 1295
202C (1040 1041 1042 1043 1044 1045 1046 1047 2420[1296 1297 1298 1299 1300 1301 1302 1303
2030 (1048 1049 1050 1051 1052 1053 1054 1055 2430} 1304 1305 1306 1307 1308 1309 1310 1311
2040|1056 1057 1058 1059 1060 1061 1062 1063 24401312 1313 1314 1315 1316 1317 1318 1319
2050 (1064 1065 1066 1067 1068 1069 1070 1071 24501320 1321 1322 1323 1324 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079 24607 1328 1329 1330 1331 1332 1333 1334 1335
2070|1080 1081 1082 1083 1084 1085 1088 1087 247011336 1337 1338 1333 1340 1341 1342 1343
2100|1088 1083 1090 1081 1092 1093 1094 1095 250011344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 2510{1352 1353 1354 1355 1356 1357 1358 1359
2120|1104 1105 1106 1107 1108 1109 1110 1111 252011360 1361 1362 1363 1364 1365 1366 1367
213011112 1113 1114 1115 1116 117 1118 1119 253011368 1369 1370 1371 1372 1373 1374 1375
214011320 1121 1122 1123 1124 1125 1126 1127 254011376 1377 1378 1379 1380 1381 1382 1383
2150|1128 1129 1130 1131 1132 1133 1134 1135 255011384 1385 1386 1387 1388 1389 1390 1391
2160|1136 1137 1138 1139 1140 1141 1142 1143 256011392 1393 1394 1395 1396 1397 1398 1399
2170 (1144 1145 1146 1147 1148 1149 1150 1151 2570{1400 1401 1402 1403 1404 1405 1406 1407
2200{1152 1153 1154 1155 1156 1157 1158 1159 260071408 1409 1410 1411 1412 1413 1414 1415
221011160 1161 1162 1163 1164 1165 1166 1167 261011416 1417 1418 1419 1420 1421 1422 1423
2220§1168 1169 1170 1171 1172 1173 1174 1175 262011424 1425 1426 1427 1428 1429 1430 1431
2230§1176 1177 1178 1179 1180 1181 1182 1183 2630] 1432 1433 1434 1435 1436 1437 1438 1439
224011184 1185 1186 1187 1188 1189 1190 1191 2640|1440 1441 1442 1443 1444 1445 1446 1447
225011192 1193 1194 1195 1196 11397 1198 1199 2650 1448 1443 1450 1451 1452 1453 1454 1455
226011200 1201 1202 1203 1204 1205 1206 1207 26601456 1457 1458 1459 1460 1461 1462 1463
2270{1208 1209 1210 1211 1212 1213 1214 1215 2670{1464 1465 1466 1467 1468 1463 1470 1471
230011216 1217 1218 1219 1220 1221 1222 1223 27001472 1473 1474 1475 1476 1477 1478 1479
231011224 1225 1226 1227 1228 1229 1230 1231 2710] 1480 1481 1482 1483 1484 1485 1486 1487
23201232 1233 1234 1235 1236 1237 1238 1239 2720]1488 1489 1450 1491 1492 1493 1494 1495
23301240 1241 1242 1243 1244 1245 1246 1247 2730(1496 1497 1498 1499 1500 150t 1502 1503
2340|1248 1249 1250 1251 1252 1253 1254 1255 2740(1504 1505 1506 1507 1508 1509 1510 1511
2350(1256 1257 1258 1259 1260 1261 1262 1263 2750(1512 1513 1514 1515 1516 1517 1518 1519
2360|1264 1265 1266 1267 1268 1269 1270 1271 2760(1520 1521 1522 1523 1524 1525 1526 1527
23701272 1273 1274 1275 1276 1277 1278 1279 2770[1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 3 ki [1 2 3 4 5 6 T
3000{1536 1537 1538 1539 1540 1541 1542 1543 340071792 1793 1794 1795 1796 1797 1798 1799
3010}1544 1545 1546 1547 1548 1549 1550 1551 341011800 1801 1802 1803 1804 1805 1806 1807
3020 (1552 1553 1554 1555 1556 1557 1558 1559 342011808 1809 1810 ‘1811 1812 1813 1814 1815
30301560 1561 1562 1563 1564 1565 1566 1567 343011816 1817 1818 1819 1820 1821 1822 1823
30401568 1569 1570 1571 1572 1573 1574 1575 344011824 1825 1826 1827 1828 1829 1830 1831
3050 (1576 1577 1578 1579 1580 1581 1582 1583 345011832 1833 1834 1835 1836 1837 1838 1839
3060|1584 1585 1586 1587 1588 1589 1590 1591 34601840 1841 1842 1843 1844 1845 1846 1847
3070(1592 1593 1594 1595 1596 1597 1598 1599 3470(1848 1849 1850 1851 1852 1853 1854 1855
3100 (1600 1601 1602 1603 1604 1605 1606 1607 3500|1856 1857 1858 1B59 1860 1861 1862 1883
3110|1608 1609 1610 1611 1612 1613 1614 1615 3510(1864 1865 1866 1867 1868 1869 1870 (871
3120(1616 1617 1618 1€19 1620 1621 1622 1623 3520|1872 1873 1874 1875 1B76 1877 1878 1879
3130|1624 1625 1626 1627 1628 1629 1630 1631 3530|1880 1881 1882 1883 1884 1885 1886 1887
3140|1632 1633 1634 1635 1636 1637 1638 1639 3540(1888 1889 1890 1891 1892 1893 1894 1895
31501640 1641 1642 1643 1644 1645 1646 1647 3550(1896 1897 1898 1899 1900 1901 1302 1903
3160[1648 1649 1650 1651 1652 1853 1654 1655 3560|1904 1905 1906 1907 1908 1909 1910 1911
3170|1656 1657 1658 1659 1660 1661 1662 1663 3570|1912 1913 1914 1915 1916 1917 1918 1919
3200 |1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 1825 1926 1827
32101672 1673 1674 1675 1676 1677 1678 1679 361071928 1929 1930 1931 1932 1933 1934 1935
322011680 1681 1682 1683 1684 1685 1686 1687 362011936 1937 1938 1939 1940 1941 1942 1943
323011688 1689 1690 1691 1692 1693 1694 1695 363011944 1945 1946 1947 1948 1949 1950 1951
32401696 1697 1698 1699 1700 1701 1702 1703 364011952 1953 1954 1955 1956 1957 1958 1959
3250 (1704 1705 1706 1707 1708 1709 1710 1711 365011960 1961 1962 1963 1964 1965 1966 1967
3260|1712 1713 1714 1715 1716 1717 1718 1719 366011968 1969 18970 1971 1972 1973 1974 1975
3270|1720 1721 1722 1723 1724 1725 1726 1727 367011976 1977 1978 1979 1980 1981 1982 1983
3300|1728 1729 1730 1731 1732 1733 1734 1735 370011984 1985 1986 1987 1988 1989 1990 1991
3310(1736 1737 1738 1739 1740 1741 1742 1743 371011992 1993 1994 1995 1996 1997 1998 1999
33201744 1745 1746 1747 1748 1749 1750 1751 372012000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 373012008 2009 2010 2011 2012 2013 2014 2015
3340)1760 176F 1762 1763 1764 1765 1766 1767 3740{ 2016 2017 2018 2019 2020 2021 2022 2023
3350}1768 1768 1770 1771 1772 1773 1774 1775 875012024 2025 2026 2027 2028 2029 2030 203t
336041776 1777 1778 1779 1780 1781 1782 1783 376012032 2033 2034 2035 2036 2037 2038 2039
337011784 1785 1786 1787 1788 1789 1790 1791 37702040 2041 2042 2043 2044 2045 2046 2047

2000
to
2777
(Octal)

1024

o
1538
(Decimal)

Octal Decimal

3000
to
77
(Oxtat)

1538

to
2047
(Decimal}

4000
to
4777
{Octal)

50000 -
60000 -
70000 -

5000
to

5777

Octal}

2048

to
2559
{Decimal)

20480
24576
28672

2560
to
3071
{Decimol)

OCTAL-DECIMAL INTEGER CONVERSION TABLE

o b3 2 3 4 5 6 7 o 1 2 3 4 S 6 T
4000| 2048 2049 2050 2051 2052 2053 2054 2055 4400(2304 2305 2306 2307 2308 2309 2310 2311
4010| 2056 2057 2058 2059 2060 2061 2062 2063 441012312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 2069 2070 2071 442012320 2321 2322 2323 2324 2325 2326 2327
40301 2072 2073 2074 2075 2076 2077 2078 2079 4430|2328 2329 2330 233t 2332 2333 2334 2335
4040] 2080 2081 2082 2083 2084 2085 2086 2087 4440| 2336 2337 2338 2339 2340 2341 2342 2343
4050| 2088 2089 2050 2091 2092 2093 2094 2095 4450|2344 2345 2346 2347 2348 2349 2350 2351
4060 2096 2097 2098 2099 2100 2101 2102 2103 4460] 2352 2353 2354 2355 2356 2357 2358 2359
4070} 2104 2105 2106 2107 2108 2109 2110 2111 4470|2360 2361 2362 2363 2364 2365 2366 2367
4100(2112 2113 2114 2115 2116 2117 2118 2118 4500/2368 2369 2370 2371 2372 2373 2374 2375
4110) 2120 212F 2122 2123 2124 2125 2126 2127 4510(2376 2377 2378 2379 2380 2381 2382 2383
4120 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
41301 2136 2137 2138 2139 2140 2141 2142 2143 453012392 2393 2394 2395 2396 2397 2398 2399
4140 2144 2145 2146 2147 2148 2149 2150 2151 454012400 2401 2402 2403 2404 2405 2406 2407
4150 2152 2153 2154 2155 2156 2157 2158 2159 4550(2408 2409 2410 2411 2412 2413 2414 2415
4160 2160 2161 2162 2163 2164 2165 2166 2167 45602416 2417 2418 2419 2420 2421 2422 2423
4170; 2168 2169 2170 2171 2172 2173 2174 2175 457012424 2425 2426 2427 2428 2429 2430 2431
4200 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210| 2184 2185 2186 2187 2188 2189 2190 2191 4610 [2440 2441 2442 2443 2444 2445 2446 2447
4220} 2192 2193 2194 2195 2196 2197 2198 2199 4620 12448 2449 2450 2451 2452 2453 2454 2455
4230(2200 2201 2202 2203 2204 2205 2206 2207 46302456 2457 2458 2459 2460 2461 2462 2463
4240(2208 2209 2210 2211 2212 2213 2214 2215 4640|2464 2465 2466 2467 2468 2469 2470 2471
4250] 2216 2217 2218 2219 2220 2221 2222 2223 465012472 2473 2474 2475 2476 2477 2478 2479
4260 2224 2225 2226 2227 2228 2229 2230 2231 4660|2480 2481 2482 2483 2484 2485 2486 2487
4970] 2232 2233 2234 2235 2236 2237 2238 2239 4670|2488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 470012496 2497 2498 2499 2500 2501 2502 2503
4310|2248 2249 2250 2251 2252 2253 2254 2255 471012504 2505 2506 2507 2508 2509 2510 2511
432012256 2257 2258 2259 2260 2261 2262 2263 4720|2512 2513 2514 2515 2516 2517 2518 2519
4330 2264 2265 2266 2267 2268 2269 2270 2271 473012520 2521 2522 2523 2524 2525 2526 2527
4340|2272 2273 2274 2275 2276 2277 2278 2279 474012528 2529 2530 2531 2532 2533 2534 2535
4350) 2280 2281 2282 2283 2284 2285 2286 2287 475012536 2537 2538 2539 9540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2294 2295 4760|2544 2545 2546 2547 2548 2549 2550 2551
4370[2296 2297 2298 2299 2300 2301 2302 2303 4770[2552 2553 2554 2555 9556 2557 2558 2559

¢ 1 2 3 4 S 6 7 o 1 2 3 4 5 6 7
5000|2560 2561 2562 2563 2564 2565 2566 2567 5400|2816 2817 2818 2819 2820 2821 2822 2823
5010|2568 2569 2570 2571 2572 2573 2574 2575 5410|2824 2825 2826 2827 2828 2829 2830 2831
502012576 2577 2578 2579 2580 2581 2582 2583 5420 (2832 2833 2834 2835 2836 2837 2838 2839
5030{2584 2585 2586 2587 2588 2584 2590 2591 543012840 2841 2842 2843 2844 2845 2846 2847
5040(2592 2593 2594 2595 2596 2597 2598 2599 5440|2848 2849 2850 2851 2852 2853 2854 2855
50502600 2601 2602 2603 2604 2605 2606 2607, 5450(2856 2857 2858 2859 2860 2861 2862 2863
506012608 2609 2610 261t 2612 2613 2614 2615 5460|2864 2865 2866 2867 2868 2869 2870 2871
5070(2616 2617 2618 2619 2620 2621 2622 2623 547012872 2873 2874 2875 2876 2877 2878 2879
510012624 2625 2626 2627 2628 2629 2630 2631 5500|2880 2881 2882 2883 2884 2885 2866 2887
5110(2632 2633 2634 2635 2636 2637 2638 2639 551012888 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 55202896 2897 2898 2899 2900 2901 2902 2903
513012648 2649 2650 2651 2652 2653 2654 2655 55302904 2905 2906 2907 2908 2909 2910 2911
51402656 2657 2658 2659 2660 2661 2662 2663 §5402912 2913 2914 2915 2916 2917 2918 2919
5150|2664 2665 2666 2667 2668 2669 2670 2671 555012920 2921 2922 2923 2924 2925 2926 2927
5160|2672 2673 2674 2675 2676 2677 2678 2679 556012928 2929 2930 2931 2932 2933 2934 2935
51702680 2681 2682 2683 2684 2685 2686 2687 55702936 2937 2938 2939 2940 2041 2942 2943
5200 |2688 2689 2690 2691 2692 2693 2694 2695 5600 |2944 2945 2946 2947 2948 2949 2950 2951
521012696 2697 2698 2699 2700 2701 2702 2703 5610 (2952 2953 2954 2955 2956 2957 2958 2959
5220|2704 2705 2706 2707 2708 2709 2710 2711 5620|2860 2961 2962 2963 2964 2965 2966 2967
5230|2712 2713 2714 2715 2716 27I7 2718 2719 5630|2868 2969 2970 2971 2972 2973 2974 2975
524012720 2721 2722 2723 2724 2725 2726 2727 564012976 2977 2978 2979 2980 2981 2982 2983
52502728 2729 2730 2731 2732 2733 2734 2735 $65012984 2985 2986 2987 2988 2089 2990 2991
5260|2736 2737 2738 2739 2740 2741 2742 2743 56602992 2993 2994 2995 2996 2997 2998 2999
52702744 2745 2746 2747 2748 2749 2750 2751 5670|3000 3001 3002 3003 3004 3005 3006 3007
5300|2752 2753 2754 2755 2756 2757 2758 2759 370013008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710(3016 3017 3018 3019 3020 3021 3022 3023
53202768 2769 2770 2771 2772 2773 2774 2115 5720(3024 3025 3026 3027 3028 3029 3030 3031
5330(2776 2777 2778 2779 2780 2781 2782 2783 5730 /3032 3033 3034 3035 3036 3037 3038 3039
5340|2784 2785 2786 2787 2788 2789 2790 279t 5740[3040 3041 3042 3043 3044 3045 3046 3047
535012792 2793 2794 2795 2796 2797 2798 2799 3756 (3048 3049 3050 3051 3052 3053 3054 3055
53602800 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3053 3059 3060 3061 3062 3063
5370|2808 2803 2810 2811 2812 2813 2814 2815 577013064 3065 3066 3067 3068 3069 3070 3071

D-3

OCTAL-DECIMAL INTEGER CONVERSION TABLE
o 1 2 3 4 5 &5 7 ¢ t 2 3 a4 5 6 7
—
3074 3075 3076 3077 3678 3078 6400|3328 3329 3330 3331 3332 3333 3334 3335
gg?g 3333 gg;f ;gé; égeg 3884 3085 3086 3tis7 6410|3326 3337 3338 3339 3340 3341 3342 3343
5020|3088 3089 3090 3091 3052 3093 3094 3095 6420{ 3344 3345 3346 3347 3348 3349 3350 3351
60303096 3097 3096 3099 3100 3101 3102 3.03 6430|3352 3353 3354 3355 3356 3357 3358 3359
604013104 3105 3106 3107 3108 3109 3110 3111 6440| 3360 3361 3362 3363 3364 3365 3366 3367
6050|3112 3113 3114 3115 3116 3117 7118 3118 6450 3365 3369 3370 3371 3372 3373 3374 3375
506013120 3121 3122 3123 3124 3125 3126 3127 6460| 3376 3377 3378 3379 3380 3381 3382 3383
6070|3128 3129 3130 3131 2132 3133 3134 3135 6470| 3384 3385 3386 3387 3388 3389 3390 3391
3139 3140 3141 3142 3143 6500| 3392 3393 3394 3395 3396 3397 3398 3399
g;?g 3133 giig giig 3147 3148 3149 3150 3151 6510 3800 3401 3402 3403 3404 3405 3406 3407
6120|3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415
6130|3160 3161 3162 3163 3164 3165 3166 3167 6530|3416 3417 3418 3419 3420 3421 3422 3423
614013168 3169 3170 3171 3172 3173 3174 175 6540 3424 3425 3426 3427 3428 3429 3430 3431
6150|3176 3177 3178 3179 3180 3181 3182 3183 §550{ 3432 3433 3434 3435 3436 3437 3438 3439
6160 (3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
6170|3192 3193 3194 3195 3196 3197 3198 3199 6570| 3448 3449 3450 3451 3452 3453 3454 3455
6200 [3200 3201 3202 3203 3204 3205 3206 3207 6600| 3456 3457 3458 3459 3460 346! 3462 3463
6210 (3208 3209 3210 3211 3212 3213 3214 3215 6610[3964 3465 3466 3467 3468 3469 3470 3471
6220 13216 3217 3218 3219 3220 3221 3222 3223 6620{ 3472 3473 3474 3475 3476 3477 3478 3479
6230|3224 3225 3226 3227 3228 3229 3230 3231 6630{ 3480 7481 3482 3483 3484 3485 3486 3487
6240|3232 3233 3234 3235 3236 3237 3238 3239 6640| 3488 3489 3490 3491 3492 3493 3494 3495
6250|3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
6260 (3248 3249 3250 3251 3252 3253 3254 3255 6660| 3504 3505 3506 3507 3508 3509 3510 3511
6270|3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519
3267 3268 3260 3270 3271 6700(3520 3521 3522 3523 3524 3525 3526 3527
23?3 g;sg 3233 §§3§ 3275 3276 3277 3278 3279 6710] 3528 3529 3530 3531 3532 3533 3534 3535
6320 {3280 3281 3282 3283 3284 3285 3286 3287 6720} 3536 3537 3538 3539 3540 3541 3542 3543
6330|3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
6340|3206 32907 3298 3299 3300 3301 3302 3303 6740|3552 3553 3554 3555 3556 3557 3558 3559
635013304 3305 3306 3307 3308 3309 3310 331t 6750 3560 3561 3562 3563 3564 3565 3566 3567
6350 (3312 3313 3314 3315 3316 3317 3318 3319 6760| 3568 3569 3570 3571 3572 3573 3574 3575
6370|3320 3321 3322 3323 3324 3325 3326 3327, |6770[3576 3577 3578 3579 3580 3581 3582 3583
¢ 1 2 3 4 5 & 7T o 1 2 3 4 5 & 7
3847
587 3588 3589 3590 3501 7400|3840 3841 3842 3843 3844 3845 3846
;g?g :gg; g;gg 32’35 gags 3596 3597 3598 3599 7410(3848 3849 3850 3851 3852 ngg ggz; g:zg
7020{ 3600 3601 3602 3603 3604 3605 3606 3607 7420|3856 3857 3858 3859 3860 3869 seo 3a63
rodolssan 3605 3010 3611 S92 T610 3035 Saas| | raso|oera sov3 3una dons aae 3er7 JoTe San
8 3619 3620 3621
;g;g gg;ﬁ gg;; ggés 3627 3628 3629 3630 3531 Z.ﬁég gggg ggg; g:gg gggix gg:; gggg gggg gg:;
636 3637 3638 3639 4
;g_slg gg% g:i? ggi; ggig gsu 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903
3652 3653 3654 3655 7500 (3904 3905 3906 3907 3908 3909 3910 3911
;:?g gg;g 32’;3 gggg g::; 3660 3661 3662 3663 7510|3912 3913 3914 3915 3916 :;312; ;3;2 gg;g
T120{ 3664 3665 3666 3667 3668 3669 3670 3671 7520{3920 3921 3922 3923 3924 3sze 3921
7139|3672 3673 3674 3675 3676 3677 3678 3679 7530]3928 3929 3930 3931 3932 3933 3031 393
7140| 3660 3681 3682 3683 3684 3685 3686 3687 7540|3936 3937 3938 3933 3940 394; 3942 2943
7150| 3688 3689 3690 3691 3692 3693 3694. 3695 7550/ 3944 3945 3946 3047 3948 39;1'7 3950 3951
1160| 3696 3697 3698 3699 3700 3701 3702 3703 7560 (3952 3953 3954 3955 3956 39 3908 3959
T170] 3704 3705 3706 3707 3708 3709 3710 3711 7570|3960 3961 3962 3963 3964 3965
3714 3715 3716 3717 3718 3719 7600 [3968 3969 3970 3971 3972 3973 3974 3975
;i?g §Z§§ g;;? 3722 3723 3724 3725 3726 3727 7610{3976 3977 3978 3978 3952 ggg; iggﬁ ggg'f
7220|3728 3729 3730 3731 3732 3733 3734 3735 7620|3984 3985 3986 3987 3986 3985 3090 3991
7230|3736 3737 3738 3739 3740 3741 3742 3743 763013992 3993 3994 3995 399 3097 3398 3399
7240|3744 3745 3746 3747 3748 3749 3750 3751 764014000 4001 4002 4003 4004 do0s d00e 4007
7250|3752 3753 3754 3755 3756 3757 3753 3759 7650|4008 4009 4010 4011 4012 4013 s014 4oty
7260|3760 3761 3762 3763 3764 3765 3766 3767 7660|4016 4017 4018 4019 4020 4025 402z does
7270|3768 3769 3770 377r 3772 3773 3774 3775 7670|4024 4025 4026 4027 4028
3762 3783 7700 (4032 4033 4034 4035 4036 4037 4038 4039
;:3“1]3 g;;f g;gg 3332 3133 33,55 il‘;; 3790 3791 77104040 4041 4042 4043 4044 4045 4046 4047
7320{3792 3793 3794 3795 3796 3797 3798 3799 7204048 4049 4050 4051 4052 4053 4054 40;5;
7330|2800 3801 3802 3803 3804 3805 3806 3807 773014096 4057 4058 4059 4060 4061 4062 40
7340} 3808 3809 3810 3811 3812 3813 3814 3815 7740|4064 4065 4066 4067 4068 4069 407¢ 4071
73533816 3817 3818 3819 3420 3s21 3822 3823 7750|4072 4073 4074 4075 4076 4071 4078 4079
7360|3824 3825 3826 3827 3828 329 3830 383t 77604080 4081 4082 4083 4084 4085 4086 4067
@70 3832 3833 3834 3835 3836 3837 3838 3839 7770|4088 4089 4090 4091 4092 4093 4094 4095

D-4

000 | 3072
i
6777 3583
(Octal) | (Decimal}
Octal Decimal
10000 - 4096
20000 - 8192
30000- 12288
40000 - 16384

50000 - 20480
60000 - 24576
70000 - 28672

7000 3584
o [

7777 4095

(Octal) | (Decimal)

APPENDIX E
OCTAL-DECIMAL FRACTION CONVERSION TABLE

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC, OCTAL DEC,

. 000000 . 0600000 .000100 . 000244 .000200 .000488 000300 . 000732
. 000001 . 000003 .000101 . 000247 .000201 . 000492 . 000301 . 000736
000002 . 000007 . 000102 .000251 . 000202 . 000495 . 000302 . 000740
. 000003 . 000011 .000103 . 000255 . 000203 . 000499 . 000203 . 000743
. 000004 . 000015 .000104 000253 . 000204 . 000503 . 000304 .000747
. 000005 , 000019 . 000105 .000263 . 000205 . 000507 . 000305 . 000751
. 000006 . 000022 .000106 . 000267 . 000206 .000511 . 000306 000755
. 000007 . 000026 +000107 . 000270 . 000207 .000514 . 000307 . 000759
. 000010 . 000030 .000110 . 000274 . 000210 . 000518 .000310 . 000762
. 000011 . 000034 ,000111 .000278 .000211 . 000522 . 000311 . 000766
. 000012 .000038 +000112 . 000282 .000212 . 000526 .000312 .000770
.000013 . 000041 .000113 000286 .000213 . 000530 .000313 000774
.000014 . 000045 .000114 . 000289 . 000214 . 000534 . 000314 . 000778
. 000015 . 000049 . 000115 . 000293 . 000215 . 000537 .000315 . 000782
.000016 . 000053 . 000116 . 000297 . 000216 . 000541 .000316 . 000785
. 000017 000057 .000117 000301 .000217 . 000545 .000317 000789
. 000020 . 000061 ,000120 . 000305 . 000220 . 000549 . 000320 , 000783
. 000021 . 000064 .000121 .000308 . 000221 . 000553 . 000321 . 000797
.000022 . 000068 .000122 000312 . 000222 . 000556 .000322 000801
000023 . 000072 .000123 000316 . 000223 . 000560 .000323 000805
. 000024 . 000076 . 000124 . 000320 . 000224 . 000564 . 000324 .000808
. 000025 . 000080 . 000125 .000324 . 000225 . 000568 . 000325 .000812
. 000026 . 000083 .000126 . 000328 . 000226 000572 . 000326 . 000816
. 000027 . 000087 .000127 ,000331 . 000227 . 000576 .000327 000820
. 000030 . 000091 .000130 . 000335 . 000230 . 000579 . 000330 .000823
. 000031 . 000095 .000121 . 000339 . 000231 . 000583 . 000331 .000827
. 000032 . 000099 . 000132 .000343 . 000232 . 000587 . 000332 . 000831
. 000033 . 000102 .000133 . 000347 . 000233 . 000591 .000333 . 000835
. 000034 . 000106 . 000134 . 000350 . 000234 . 000595 . 000334 . 000839
. 000035 .000110 .000135 .000354 000235 . 000598 . 000335 .000843
. 000036 .000114 . 000136 .000358 . 000236 . 000602 . 000336 . 000846
. 000037 .000118 .000137 . 000362 . 000237 . 000606 . 000337 . 000850
. 000040 . 000122 .000140 . 000366 . 000240 . 000610 . 000340 . 000854
. 000041 .000125 .000141 . 000370 . 000241 .000614 . 000341 . 000858
000042 . 000129 .000142 , 000373 . 000242 . 000617 . 000342 , 000862
. 000043 . 000133 .000143 000377 . 000243 . 000621 . 000343 . 000865
. 000044 . 000137 .000144 .000381 . 000244 . 000625 . 000344 .000869
000045 .000141 . 000145 . 000385 . 000245 .000629 . 000345 . 000873
. 000046 .000144 .000146 . 000389 . 000246 . 000633 . 000346 . 000877
. 000047 . 000148 . 000147 . 000392 . 000247 . 000637 . 000347 .000881
. 000050 . 000152 . 000150 . 000336 . 000250 . 000640 . 000350 .000885
. 000051 . 000156 . 000151 . 000400 . 000251 . 000644 . 000351 .000888
. 000052 . 000160 . 000152 . 000404 . 000252 . 000648 . 000352 . 000892
. 000053 . 000164 . 000153 . 000408 . 000253 . 000652 .000353 000896
. 000054 . 000167 . 000154 . 000411 . 000254 . 000656 . 000354 . 000900
. 000055 . 000171 . 000155 . 000415 . 000255 .000659 . 000355 . 000904
. 000056 . 000175 .000156 . 000419 . 000256 . 000663 . 000356 . 000907
, 000057 . 000179 . 000157 . 000423 . 000257 . 000867 . 000357 . 000911
. 000060 . 000183 . 000160 .000427 . 000260 . 000671 . 000360 . 000915
. 000061 .000186 . 000161 . 000431 . 000261 . 000675 . 000361 . 000919
. 000062 .000190 .000162 000434 . 000262 . 000679 .000362 . 000923
. 000063 .000194 .000163 . 000438 . 000263 . 000682 . 000363 .000926
. 000064 . 000198 . 000164 . 000442 . 000264 . 000686 . 000364 . 000830
. 000065 . 000202 . 000165 . 000446 . 000265 . 000630 . 000365 . 000934
. 000066 , 000205 . 000166 . 000450 . 000266 . 000634 . 000366 .000338
. 000067 . 000209 .000167 . 000453 . 000267 , 000698 . 000367 . 000942
. 000070 . 000213 . 000170 . 000457 . 000270 .000701 . 000370 . 000946
.000071 . 000217 .000171 000461 .000271 . 000705 .000371 000949
. 000072 . 000221 .000172 . 000465 . 000272 . 000709 .000372 000953
. 000073 . 000225 .000173 . 000469 .000273 . 000713 .000373 . 000957
. 000074 . 000228 .000174 ., 000473 . 000274 . 000717 .000374 000961
. 000075 . 000232 000175 000476 . 000275 . 000720 . 000375 . 000965
. 000076 . 000236 .000178 000480 . 000276 . 000724 .000376 ,000968
.000077 .000240 000177 . 000484 . 000277 . 000728 .000377 . 000972

.
Octal-Decimal Fraction Conversion Table
OCTAL DEC. OCTAL DEC, OCTAL DEC, OCTAL DEC,
. 000 . 000000 . 100 . 125000 . 200 . 250000 L300 , 375000
.001 . 001953 L101 . 126953 .201 .251953 301 . 376953
LNn2 . 003906 L 102 . 128906 .202 . 2539086 . 302 . 378906
.003 . 005859 . 103 . 130859 .203 . 255859 .303 .380859
.004 . 007812 . 104 . 132812 .204 .257812 .304 .382812
.005 . 009765 . 105 . 134765 .205 . 259765 . 305 . 384765
.006 L, 011718 . 106 . 136718 . 206 L261718 .306 . 386718
007 L013671 . 107 . 138671 . 207 + 263671 .307 , 388671
L010 . 015625 . 110 . 140625 .210 .265625 .310 . 390625
L.011 .017578 L1 . 142578 .211 .267578 .31 . 392578
.012 .019531 112 . 144531 .212 . 269531 L3312 . 394531
.013 .021484 L 113 . 146484 .213 .271484 .313 . 396484
.014 . 023437 114 . 148437 214 .273437 .314 . 398437
.015 . 025380 115 . 150390 .215 .275390 315 .400390
.016 . 027343 116 . 152343 .216 L 277343 .316 . 402343
. 017 . 029296 L1317 . 154296 .217 . 279296 .317 . 404296
. 020 .031250 120 . 156250 .220 . 281250 .320 . 406250
.021 .033203 L121 . 158203 .221 . 283203 .321 .408203
.022 . 035156 .122 . 160156 .222 + 285156 L322 .410156
.023 . 037109 123 . 162109 .223 . 287109 .323 . 412109
.024 . 039082 .124 . 164062 224 . 283062 .324 . 414062
,025 L 041015 .125 . 166015 .225 . 291015 .325 . 416015
026 .042968 . 126 . 167968 226 . 292968 .326 .417968
. 027 . 044921 .27 . 169921 .227 . 294921 327 .419921
. 030 . 046875 .130 L 171875 .230 . 296875 . 330 .421875
L 031 . 048828 L 131 .173828 .231 .298828 .331 . 423828
.032 . 050781 . 132 175781 .232 .300781 .332 . 425781
.033 . 052734 . 133 177734 .233 . 302734 .333 .427734
. 034 . 054687 134 . 179687 .234 . 304687 L334 .429687
035 . 056640 . 135 . 181640 . 235 . 306640 335 .431640
036 . 058593 . 136 . 183593 .236 .308593 . 336 . 433593
.037 . 060546 . 137 . 185546 .237 . 310546 .337 . 435546
. 040 . 062500 . 140 . 187500 . 240 . 312500 . 340 .437500
041 . 064453 L 141 . 189453 .241 . 314453 . 341 . 439453
. 042 . 066406 . 142 . 191406 242 . 316406 . 342 .441406
. 043 . 068359 . 143 . 193359 .243 .318359 L343 .443359
. 044 . 070312 . 144 .195312 . 244 ,320312 .344 .445312
. 045 072265 . 145 . 197265 .245 .322265 .345 . 447265
.046 . 074218 . 146 .199218 . 246 .324218 . 346 . 449218
. 047 L076171 . 147 L201171 . 247 .326171 . 347 .451171
. 050 . 078125 .150 . 203125 . 250 . 328125 L350 . 453125
.051 . 080078 . 151 ., 205078 . 251 . 330078 .351 . 455078
052 , 082031 . 152 .207031 .252 . 332031 . 352 . 457031
.053 . 083984 . 153 .208984 .253 . 333984 .353 . 458984
. 054 . 085937 154 . 210937 .254 L 335937 .354 . 460937
. 055 . 087890 . 155 .212890 .255 . 337890 .355 . 462890
. 056 . 089843 . 156 .214843 .256 . 339843 .356 .464843
. 057 .091796 157 . 216796 257 . 341796 . 357 . 466796
L 060 . 093750 . 160 . 218750 . 260 . 343750 .360 . 468750
. 061 . 095703 . 161 . 220703 .261 . 345703 L 361 L470703
062 . 097656 162 . 222656 .262 . 347656 .362 .472656
. 063 . 099609 . 163 . 224609 .263 . 349609 .363 . 474609
. 064 . 101562 . 164 .226562 . 264 . 351562 . 364 L 476562
. 065 . 103515 . 165 .228515 .265 .353515 . 385 .478515
. 066 . 105468 . 1866 .230468 . 266 . 355468 . 366 . 480468
L 067 . 107421 . 167 L 232421 . 267 .357421 .367 .482421
.070 . 109375 170 .234375 . 270 . 359375 .370 . 484375
L0071 . 111328 .17 ,236328 L271 .361328 .31 . 486328
072 . 113281 L1172 . 238281 .272 . 363281 372 .488281
.073 . 115234 L1713 .240234 .273 . 365234 L3713 . 490234
.074 . 117187 174 .242187 . 274 . 387187 .374 . 492187
.075 . 119140 175 . 244140 .275 .369140 .375 . 494140
. 076 . 121093 . 176 .246093 .276 . 371093 .376 . 496093
077 . 123046 177 . 248046 .21 . 373046 .377 498046
E-1

E-2

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

. 000400 . 000976 . 000500 . 001220 . 000600 . 001464 . 000700 .001708
. 000401 . 000980 . 000501 . 001224 . 000601 , 001468 . 000701 .001712
. 000402 . 000984 . 000502 001228 . 000602 . 001472 . 000702 .001716
. 000403 . 000388 . 000503 .001232 . 000603 . 001476 . 000703 . 001720
. 000404 . 000991 . 000504 001235 . 000604 . 001480 .000704 .001724
. 000405 .000995 . 000505 .001239 . 000605 .001483 . 000705 .001728
. 000406 . 000999 . 000506 .001243 . 000606 . 001487 . 000706 . 001731
. 000407 .001003 . 000507 . 001247 . 000607 . 001491 . 000707 . 001735
. 000410 . 001007 . 000510 .001251 . 000610 , 001495 . 000710 . 001739
.000411 .001010 .000511 .001255 . 000611 . 001489 . 000711 . 001743
. 000412 .001014 . 000512 .001258 4000612 .001502 .000712 001747
. 000413 . 001018 . 000513 . 001262 . 000613 . 001506 . 000713 . 001750
. 000414 . 001022 . 000514 . 001266 . 000614 . 001510 .000714 ,001754
.000415 . 001026 . 000515 .001270 . 000815 . 001514 . 000715 .001758
. 000416 . 001029 . 000516 .001274 000616 , 001518 . 000716 . 001762
.000417 .001033 .000517 , 001277 . 000617 . 001522 .000717 .001766
+ 000420 . 001037 . 000520 .001281 . 000620 . 001525 .000720 .001770
. 000421 . 001041 .000521 .001285 . 000621 . 001529 . 000721 . 001773
. 000422 . 001045 .000522 . 001289 . 000622 ,001533 . 000722 2001777
. 000423 . 001049 . 000523 .001293 . 000623 . 001537 . 000723 , 001781
. 000424 . 001052 . 000524 .001296 . 000624 . 001541 .000724 .001785
. 000425 . 001056 . 000525 . 001300 . 000625 . 001544 . 000725 .001789
. 000426 . 001060 .000526 .001304 . 000626 . 001548 .000726 .001792
. 000427 . 001064 . 000527 . 001308 . 000627 . 001552 . 000727 . 001796
. 000430 .001068 . 000530 .001312 . 000630 . 001556 . 000730 .001800
. 000431 . 001071 .000531 . 001316 . 000631 . 001560 .000731 .001804
. 000432 . 001075 .000532 . 001319 . 000632 . 001564 . 000732 . 001808
. 000433 .001079 . 000533 .001323 . 000633 . 001567 . 000733 .001811
.000434 . 001083 . 000534 . 001327 . 000634 .001571 . 000734 .001815
. 000435 . 001087 . 000535 . 001331 . 000635 . 001575 . 000735 .00181%
. 000436 . 0010691 . 000536 . 001335 . 000636 . 001579 . 000736 . 001823
. 000437 . 001094 . 000537 . 001338 . 000637 . 001583 . 000737 . 001827
. 000440 , 001038 . 000540 . 001342 . 000640 . 001586 , 000740 .001831
. 000441 . 001102 . 000541 . 001346 . 000641 . 001530 . 000741 .001834
. 000442 . 001106 . 000542 . 001350 . 000642 . 001594 .000742 .001838
. 000443 .001110 . 000543 . 001354 . 000643 .001598 ,000743 . 001842
. 000444 . 001113 . 000544 . 001358 . 000644 .001602 L000744 . 001846
. 000445 .001117 . 000545 .001361 . 000645 . 0016065 . 000745 . 001850
. 000446 L001121 . 000546 , 001365 . 000646 , 001609 . 000746 .001853
. 000447 .001125 . 000547 . 001369 . 000647 , 001613 . 000747 . 001857
.000450 .001129 . 000550 . 001373 . 000650 . 001617 . 000750 . 001861
.000451 .001132 . 000551 . 001377 .B00651 .001621 L000751 . 001865
. 000452 . 001136 .000552 .001380 . 000652 . 001625 .000752 . 001869
. 000453 . 001140 . 000553 .001384 . 000653 . 001628 . 000753 .001873
. 000454 . 001144 . 000554 .001388 . 000654 .001632 . 000754 . 001876
. 000455 .001148 . 000555 . 001392 . 000655 , 001638 . 000755 .001880
. 000456 . 001152 . 000556 .001396 . 000656 . 001640 .000756 .001884
. 000457 001155 . 000557 .001399 . 000657 .001644 .000757 .001888
. 000460 001159 . 000560 . 001403 . 000660 ,001647 . 000760 .001892
. 000461 .001163 . 000561 . 001407 .N00661 . 001651 .000761 . 001895
.000462 » 001167 , 000562 .001411 000662 , 001655 . 000762 . 001899
. 000463 L 001171 . 000563 . 001415 . 000663 . 001659 . 000763 .001903
. 000464 .001174 . 000564 .001419 . 000664 . 001663 . 000764 .001907
. 000465 . 001178 . 000565 .001422 . 000665 . 001667 .000785 .001911
. 000466 . 001182 . 000566 . 001426 . 000666 . 001670 . 000766 .001814
. 000467 . 001186 . 000567 001430 . 000667 .001674 . 000767 .001918
. 000470 . 001190 . 000570 .001434 . 000670 . 001678 .000770 .001922
. 000471 ,001194 ,000571 .001438 . 000671 . 001682 . 000771 . 001926
. 000472 . 001197 . 000572 . 001441 . 000672 . 001686 .000772 . 001930
. 000473 .001201 . 000573 . 001445 . 000673 . 001689 . 000773 1001934
. 000474 001205 . 000574 . 001449 . 000674 . 001593 . 000774 .001937
. 000475 . 001209 . 000575 .001453 . 000675 . 001697 .000775 . 001941
. 000476 . 001213 . 000576 . 001457 . 000676 . 001701 . 000776 . 001945
.000477 . 001218 000577 . 001461 . 000677 . 001705 L000777 L 001949

E-3

APPENDIX F
DATA 260/i INSTRUCTIONS (ALPHABETICAL ORDER)

APPENDIX F

DATA 620/i INSTRUCTIONS (ALPHABETICAL ORDER)

wDs/| TIME INDIRECT
MNEMONIC | OCTAL DESCRIPTION INST | CYCLES | ADDRESS
ADD 120000 | Add to A Register 1 2 Yes
ADDE* |006120 | Add to A Register Exfended 2 3 Yes
ADDI 006120 | Add to A Register Immediate 2 2 No
ANA 150000 | AND to A Register 1 2 Yes
ANAE* | 006150 | AND to A Register Extended 2 3 Yes
ANAI 006150 | AND to A Register Immediate 2 2 No
AGFA 005511 Add OF to A Register 1 1 No
AQFB 005522 | Add OF to B Register 1 1 No
ABFX 005544 | Add OF to X Register 1 i No
ASLA 004200+n| Arithmetic Shift Left A n 1 140.25n No
Places
ASLB 004000+n | Arithmetic Shift Left B n 1 140.25n No
Places
ASRA 004300+n| Arithmetic Shift Right A 1 1+0.25n No
n Places
ASRB 004100+n| Arithmetic Shift Right B 1 1+0.25n No
n Places
CIA 102500 | Clear and Input to A Register 1 2 No
CiB 102600 | Clear and Input to B Register 1 2 No
CPA 005211 | Complement A Register 1 1 No
6:) 005222 | Complement B Register 1 1 No
CPX 005244 | Complement X Register 1 1 No
DAR 005311 Decrement A Register 1 1 No
DBR 005322 | Decrement B Register 1 1 No

*Optional Instructions

F-1

WwDS/ | TIME |INDIRECT
MNEMONIC| OCTAL DESCRIPTION INST | CYCLES | ADDRESS
DIv#* 170000 | Divide AB Register 16-Bit 1 10-14 Yes
18-Bit 1 |11-16

DIV* 006170 | Divide AB Register 16-Bit 2 |11-15 Yes
Extended 18-Bit 12-17

DIVI* 006170 | Divide AB Register 16-Bit 2 |10-14 No
Immediate 18-Bit 11-16

DXR 005344 | Decrement X Register 7 1 No

ERA 130000 | Exclusive OR to A Register i 2 Yes

ERAE* 006130 | Exclusive OR to A Register 2 3 Yes
Extended

ERAI 006130 | Exclusive OR to A Register 2 2 No
Immediate

EXC 100000 | External Control Function i 1 No

HLT 000000 | Halt 1 1 No

JAR 005111 Increment A Register 1 1 No

IBR 005122 Increment B Register 1 1 No

IME 102000 | Input to Memory 2 3 No

INA 102100 | Input to A Register 1 2 No

INB 102200 | Input to B Register 1 2 No

INR 040000 | Increment and Replace 1 3 Yes

INRE* 006040 | Increment and Replace 2 4 Yes
Extended

INRI 006040 | Increment and Replace 2 3 No
Immediate

IXR 005144 Increment X Register 1 1 No

JAN 001004 | Jump if A Register Negative 2 2 Yes

JANM 002004 | Jumpand Mark if A Register 2 2-3 Yes

Negative

*Optional Instructions

F-2

WDS/ | TIME INDIRE
MNEMONIC| OCTAL DESCRIPTION INST | CYCLES ADDRE?ST
JAP 001002 | Jump if A Register Positive 2 2 Yes
JAPM 002002 | Jump and Mark if A Register 2 2-3 Yes
Positive
JAZ 001010 | Jump if A Register Zero 2 2 Yes
JAZM 002010 | Jump and Mark if A Register 2 2-3 Yes
JBZ 001020 | Jump if B Register Zero 2 2 Yes
JBZM 002020 | Jump and Mark if B Register 2 2-3 Yes
Zero
-JMP 001000 | Jump Unconditionally 2 2 Yes
JMPM 002000 | Jump and Mark if 3 Yes
Unconditionally
JOBF 001001 | Jump if Overflow On 2 Yes
JOFM 002001 | Jump and Mark if Overflow 2 2-3 Yes
On
JSIM 002100 | Jump and Mark if Sense
2 2-3
Switch 1 On v
JS2M 002200 | Jump and Mark if Sense 2 2-3 Yes
Switch 2 On
JS3M 002400 | Jump and Mark if Sense
2 2-
Switch 3 On ? ves
Jssi 001100 [Jump if Sense Switch 1 On 2 2 Yes
Jss2 001200 | Jump if Sense Switch 2 On 2 2 Yes
Jss3 001400 | Jump if Sense Switch 3 On 2 2 Yes
Xz 001040 | Jump X Register Zero 2 2 Yes
JXZM 002040 | Jump and Mark X Register 2 203 Yes
Zero
LASL 004400+n| Long Arithmetic Shift Left 1 1+0.50n No
n Places '
LASR 004500+ Long Arithmetic Shift Right 1 1+0.50n No
n Places

F-3

wDS/ | TIME | INDIRECT
MNEMONIC| OCTAL DESCRIPTION INST | CYCLES | ADDRESS
LDA 010000 Load A Register i 2 Yes
LDAE* 006010 Load A Register Extended 2 3 Yes
LDAI 006010 Load A Register Immediate 2 2 No
LDB 020000 Load B Register 1 2 Yes
LDBE* 006020 Load B Register Extended 2 3 Yes
LDBI 006020 | Load B Register Immediate, 2 2 No
LDX 030000 Load X Register 1 2 Yes
LDXE* 006030 Load X Register Extended 2 3 Yes
LDXI 006030 Load X Register Immediate 2 2 No
LLRL 004440+n| Long Logical Rotate Left 1 140.50n No
n Places
LLSR 004540+n| Long Logical Shift Right 1 1+0.50n No
n Places
LRLA 004240+n| Logical Rotate Left A nPlaces 1 1+0.25n No
LRLB 004040+n| Logical Rotate Left B n Places 1 1+0.25n No
LSRA 004340+n| Logical Shift Right A n Places 1 1+0.25n No
LSRB 004140+n| Logical Shift Right B n Places 1 1+0.25n No
MUL* 160000 | Multiply B Register 16-Bit 1 |10 Yes
18-Bit
MULE* | 006160 | Multiply B Register 16-Bit 2 |11 Yes
Extended 18-Biy 15
MULI* 006160 | Multiply B Register 16-Bit 2 |10 No
Immediate 18-Bit 14
N@P 00500 No Operation 1 1 No
DAR 103100 | Output from A Register 1 2 No
@BR 103200 | Qutput from B Register 1 2 No

*Optional Instructions

Extended

WDS/ | TIME | INDIRECT
MNEMONIC| OCTAL DESCRIPTION INST [CYCLES | ADDRESS
BME 103000 | Qutput from Memory 2 No
ORA 110000 | Inclusive OR to A Register 1 Yes
@RAE* | 006110 | Inclusive OR to A Register 2 3 Yes
Extended
- ORAI 006110 | Inclusive OR to A Register 2 2 No
Immediate
ROF 007400 | Reset Overflow 1 1 No
SEN 101000 | Sense Input/Output Lines 2 2,25 No
SQF 007401 Set Overflow 1 1 No
SOFA 005711 Subtract OFLO from A 1 1 No
Register
SOFB 005722 | Subtract OFLO from B 1 1 No
Register
S@FX 005744 | Subtract OFLO from X 1 1 No
Register
STA 050000 | Store A Register 1 2 Yes
STAE* | 006050 Store A Register Extended 2 3 Yes
STAI 006050 | Store A Register Immediate 2 2 No
STB 060000 | Store B Register 1 2 Yes
STBE* 006060 | Store B Register Extended 2 3 Yes
STBI 006060 | Store B Register Immediate 2 2 No
STX 070000 | Store X Register 1 2 Yes
STXE* 006070 | Store X Register Extended 2 3 Yes
STXI 006070 | Store X Register Immediate 2 2 No
SUB 140000 | Subtract from A Register i 2 Yes
SUBE* 006140 | Subtract from A Register 2 3 Yes

WDS/| TIME | INDIRECT
MNEMONIC | OCTAL DESCRIPTION INST | CYCLES | ADDRESS
SuBI 006140 | Subtract from A Register 2 2 No
Immediate
TAB 005012 | Transfer A to B Register 1 1 No
TAX 005014 | Transfer A to X Register 1 1 No
TBA 005021 Transfer B to A Register 1 1 No
18X 005024 | Transfer B to X Register 1 1 No
TXA 005041 Transfer X to A Register 1 1 No
TXB 005042 | Transfer X to B Register i 1 No
TZA 005001 Transfer Zero to A Register 1 1 No
TZ8B 005002 | Transfer Zero to B Register 1 1 No
TZX 005004 | Transfer Zero to X Register 1 1 No
XAN 003004 | Execute A Register Negative 2 2 Yes
XAP 003002 | Execute A Register Positive 2 2 Yes
XAZ 003010 Execute A Register Zero 2 2 Yes
XBZ 003020 | Execute B Register Zero 2 2 Yes
XEC 003000 | Execute Unconditionally 2 2 Yes
X@F 003001 Execute Overflow Set 2 2 Yes
XS1 003100 | Execute Sense Switch 1 Set 2 2 Yes
XS2 003200 | Execute Sense Switch 2 Set 2 2 Yes
XS3 003400 | Execute Sense Switch 3 Set 2 2 Yes
XXZ 003040 Execute X Register Zero 2 2 Yes

*Optional Instructions

*Optional Instructions

APPENDIX G
DATA 620/i INSTRUCTIONS (BY TYPE)

SINGLE-WORD ADDRESSED INSTRUCTIONS

Table G-I

Table G-1(c)

LOAD/STORE INSTRUCTION GROUP

Table G-1(c)
LOGICAL INSTRUCTION GROUP

OP CODE
TIMING
OCTAL MNEMONIC INSTRUCTION (CYCLES)
01 LDA Load A Register 2
02 LDB Load B Register 2
03 LDX Load X Register 2
05 STA Store A Register 2
06 STB Store B Register 2
07 STX Store X Register 2
Table G-1(b)
ARITHMETIC INSTRUCTION GROUP
OP CODE
TIMING
OCTAL MNEMONIC INSTRUCTION (CYCLES)
04 INR Increment and Replace 3
12 ADD Add Memory to A 2
14 SUB Subtract Memory from A 2
16 MUL(*) Multiply 16-bit 10
18-bit 11
17 DIV(*) Divide 16-bit 10-14
18-bit 11-15

*Optional Instructions

OpP CODE
TIMING
OCTAL MNEMONIC INSTRUCTION (CYCLES)
11 BRA Inclusive OR, Memory and A 2
13 ERA Exclusive OR, Memory and A 2
15 ANA AND Memory and A 2
Table G-1(d)
ADDRESSING MODES FOR SINGLE WORD ADDRESSED INSTRUCTIONS
m FIELD
ADDRESSING
H 10 9 MODE OPERATION
0 X X Direct Combine bits 9, 10 with a field
(0-8) to form effective address
(0000 - 2047).
1 0 0 Relative Add a field (bits 0-8) to contents
of P to form effective address
(Mod 217).
1 0 1 Index Add a field (bits 0-8) to contents
(X Register) of X to form effective address
(Mod 21%).
1 1 0 Index Add a field (bits 0-8) to contents
(B Register) of B to form effective address
(Mod 219).
1 1 1 Indirect a field (bits 0-8) specifies loca~
tion of an address word.

Table G-2
CONTROL INSTRUCTION GROUP CODES
(SINGLE-WORD, NON-ADDRESSABLE)

Table G-3(b)
INSTRUCTION FORMAT

TIMING
OP CODE U8 U7 U6 U5 MNEMONIC SHIFT INSTRUCTION (CYCLES)
m a TIMING 0101]0 |0 ASLB Arithmetic Shift B Left 1+0.25n
OCTAL | MNEMONIC | FIELD | FIELD | INSTRUCTION | (CYCLES) 010710 11 LRLB Logical Rotate B Left 1+0.25n
0] 0|1 0 ASRB Arithmetic Shift B Right 1+0.25n
010 |1 |1 LSRB Logical Shift B Right 1+0.25n
00 HLT 0 XXX Halt 1 ofj14{0 }|O ASLA Arithmetic Shift A Left 1+0.25n
00 NGP i o1 (0 |1 LRLA Logical Rotate A Left 1+ 0.25n
5 000 No Operation 1 ol 1]1 |o ASRA | Arithmetic Shift A Right 1+0.25n
00 ROF 7 400 Reset Overflow 1 o 1 |1 1 LSRA Logical Shift A Right 1+0.25n
00 SOF 7 i 040 |0 LASL Long Arithmetic Shift A, B Left 1+ 0.50n
401 Set Overflow 1 1100 |1 LLRL Long Logical Rotate A, B Registers Left| 1+ 0.50n
1ot o LASR | Long Arithmetic Shift A, B Right 1+0.50n
1101 | LLSR Long Logical Shift, A, B Registers 1+ 0.50n
1 110 |0 Invalid
1 110 |1 invalid
Table G-3 11 o Invalid
SHIFT INSTRUCTION GROUP el invalid
Table G-3(a)
INSTRUCTION FORMAT Table G-4
REGISTER CHANGE INSTRUCTION GROUP
OCTAL | OCTAL a FIELD
Table G-4{a)
INSTRUCTION FORMAT
OP CODE FIELD] U U
" 8 7 6 Us | Ya|Ys|Y2| Y| Y%
a FIELD
= lo-=8|o=Left |0= OCTAL SOURCE DEST.
AorB Arith, .
. Shift Count CLASS CODE m FIELD U8 U7 U6 U5 U4 U3 U2 U] U0 TYPE OF TRANSFER
1= |1=A|1=Right|1= © - 30)
&8 Logical 0 0 Transfer Unchanged
rotate 0 1 Transfer Incremented
00 5 T 0fX B A|X B A |Transfer Complemented
o1 Transfer Decremented
Note: Multiple source transfer results in inclusive-OR; multiple source
complemented results in complement inclusive-OR.
G-3

G-4

Table G-4(b}

REGISTER CHANGE INSTRUCTION CODES

CLASS CODE REGISTER CHANGE
FIELD OCTAL | MNEMONIC INSTRUCTION TIMING
001 TZA Transfer Zero to A Register 1
002 TZB Transfer Zero to B Register 1
004 TZX Transfer Zero to X Register 1
012 TAB Transfer A Register to B Register 1
014 TAX Transfer A Register to X Register 1
021 TBA Transfer B Register to A Register 1
024 TBX Transfer B Register to X Register 1
041 TXA Transfer X Register to A Register i
042 TXB Transfer X Register to B Register 1
111 1AR Increment A Register i
122 IBR Increment B Register 1
144 IXR Increment X Register [
311 DAR Decrement A Register 1
322 DBR Decrement B Register 1
344 DXR Decrement X Register 1
511 AQGFA Add Overflow to A Register 1
522 AQFB Add Overflow to B Register 1
544 AGFX Add Overflow to X Register 1
711 SOFA Subtract Overflow from A Register 1
722 SOFB Subtract Overflow from B Register 1
744 S@PFX Subtract Overflow from X Register 1

Table G-5

JUMP INSTRUCTION GROUP

Table G-5(a)
INSTRUCTION FORMAT
OCTAL a FIELD
OP CODE | m FIELD U8 U7 Ué U5 U4 U3 U2 U] UO
00 I $S3 |552 [SS1 | X=0|B=0|A=0|A<0|A=z0|OF=
ON |ON [ON
Note: Jump condition is logical AND of all a field bits.
Table G-5(b)
JUMP INSTRUCTION CODES
a FIELD JUMP TIMING
OCTAL MNEMONIC INSTRUCTION (CYCLES)
000 JMP Jump Unconditionally 2
001 JOF Jump If Overflow Set 2
002 JAP Jump If A Register Positive 2
004 JAN Jump If A Register Negative 2
010 JAZ Jump If A Register Zero 2
020 JBZ Jump If B Register Zero 2
040 JXZ Jump If X Register Zero 2
100 Jssl Jump If Sense Switch 1 Set 2
200 Jss2 Jump If Sense Switch 2 Set 2
400 JSS3 Jump If Sense Switch 3 Set 2

Table G-6 Table G-7

JUMP AND MARK INSTRUCTION GROUP EXECUTE INSTRUCTION GROUP
Table G-6(a)
INSTRUCTION FORMAT Table G-7(a)
INSTRUCTION FORMAT
OCTAL a FIELD
OCTAL a FIELD
OP CODE | m FIELD U8 U7 Ué U5 U4 U3 U2 U] UO
OP CO

00 2 SS3 1SS2|SS1{ X=0|B=0|A=0] A<0 [A=20 |OF=1 DE | m FIELD US U7 Ué U5 U4 U3 U2 U] U0

Note: Jump and Mark condition is logical~AND of all a field bits. 00 3 ss3 |ss2|ss1x-0l=0la=0la ola o loF-
ON {ON| ON

Note: Execute condition is logical -AND of all a field bits. Executed instruction
Table G-6(b) must be single word.
JUMP AND MARK INSTRUCTION CODES

a FIELD JUMP AND MARK TIMING Table G-7(a)
OCTAL | MNEMONIC INSTRUCTIONS (CYCLES) INSTRUCTION FORMAT
000 JMPM Jump and Mark Unconditionally 2 a FIELD TIMING
OCTAL MNEMONIC EXECUTE INSTRUCTION (CYCLES)

001 JOEM Jump and Mark if Overflow Set 2 (3 if Jump)
002 JANM Jump and Mark if A Register Negative 2 (3 if Jump)

000 XEC Execute Unconditionally 2
003 JAPM Jump and Mark if A Register Positive 2 (3 if Jump)

001 X@F Execute if Overflow Set 2
010 JAZM Jump and Mark if A Register Zero 2 (3 if Jump)

002 XAP Execute if A Register Positive 2
020 JBZM Jump and Mark if B Register Zero 2 (3 if Jump) .

004 XAN Execute if A Register Negative 2
040 JXZM Jump and Mark if X Register Zero 2 (3 if Jump)

010 XAZ Execute if A Register Zero 2
100 JSIM Jump and Mark if Sense Switch 1 On 2 (3 if Jump)

020 XBZ Execute if B Register Zero 2
200 JS2M Jump and Mark if Sense Switch 2 On 2 (3 if Jump))

040 XXZ Execute if X Register Zero 2
400 JS3M Jump and Mark if Sense Switch 3 On 2 (3 if Jump)

100 XS1 Execute if Sense Switch 1 2

200 XS2 Execute if Sense Switch 2 2

400 XS3 Execute if Sense Switch 3 2

Table G-10
IMMEDIATE INSTRUCTION GROUP

Table G~11

INPUT/OUTPUT INSTRUCTION GROUP

OP CODE OCTAL
TIMING
OCTAL|MNEMONIC |m FIELD{a FIELD INSTRUCTION (CYCLES)
00 LDAI 6 010 |Load A Immediate 2
00 LDBI 6 020 |Load B Immediate 2
00 LDX1 6 030 |Load X Immediate 2
00 INR] 6 040 | Increment and Replace Immediate 2
00 STAI' 6 050 |[Store A Immediate 2
00 STBI 6 060 |Store B Immediate 2
00 STXI 6 070 |Store X Immediate 2
00 ORAI 6 110 |Inclusive OR Immediate 2
00 ADDI 6 120 | Add Immediate 2
00 ERAI 6 130 |Exclusive OR Immediate 2
00 SUBI 6 140 | Subfract Immediate 2
00 MULI* 6 160 | Multiply Immediate 10
00 DIVI* 6 170 |Divide immediate 10-14
00 ANAI 6 150 {AND Immediate 2

OP CODE OCTAL

TIMING

OCTAL | MNEMONIC. | m FIELD | o FIELD INSTRUCTION (CYCLES)
10 EXC 0 XZZ External Control 1
10 SEN 1 XZZ Program Sense 2
10 IME 2 0zz Input to Memory 3
10 INA 2 127 Input to A 2
10 INB 2 227 Input to B 2
10 CIA 2 527 Clear and Input to A 2
10 CiB 2 6Z7Z Clear and Input to B 2
10 OME 3 02z Output from Memory 2
10 DAR 3 122 Output from A 2
10 @BR 3 277 Qutput from B 2

*Optional Instructions

X - Mode or logical unit number

Z - Device number

EXTENDED ADDRESS INSTRUCTION GROUP (Optional)

Table G~12

OP CODE OCTAL
TIMING
OCTAL| MNEMONIC | m FIELD | o FIELD INSTRUCTION (CYCLES)
00 LDAE 6 01X Load A Register Extended 3
00 LDBE 6 02X Load B Register Extended 3
00 LDXE 6 03X Load X Register Extended 3
00 STAE 6 05X Store A Register Extended 3
00 STBE [06X Store B Register Extended 3
00 STXE 6 07X Store X Register Extended 3
00 INRE 6 04X Increment and Replace 4
Extended
00 ADDE 6 12X Add Memory to A Register 3
Extended
00 SUBE 6 14X Subtract Memory from 3
A Register Extended
00 MULE 6 16X Multiply 16-Bit Extended 10
Multiply 18-Bit Extended 11
00 DIVE 6 17X Divide 16-Bit Extended 11 -15
Divide 18-Bit Extended 12-16
00 BRAE é 11X Inclusive OR Extended 3
00 ERAE 6 13X Exclusive OR Extended 3
00 ANAE 6 15X AND Extended 3

APPENDIX H
DATA 620/i RESERVED INSTRUCTION CODES

Table H-1
INTERRUPT MODULE RESERVED INSTRUCTION CODES

The following instruction codes are for use with the first interrupt module.

Device
addresses 408 through 478 are reserved for interrupt modules.

Table H-2
BIC RESERVED INSTRUCTION CODES

The following instruction codes are for use with the first buffer interlace controller.
Device addresses 208 through 278 are reserved for BIC's.

MNEMONIC

OCTAL

—

FUNCTION

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
EXC 140% 100140 Clear AC Register
EXC 240 100240 Enable Interrupt Module
EXC 440 100440 Inhibit Interrupt Module
EXC 540 100540 Initialize Interrupt Module
B. TRANSFER
OME 40 103040 Load Mask from Memory
OAR 40 103140 Load Mask from A Register
OBR 40 103240 Load Mask from B Register
C. SENSE
None
*AC option only
H-1

A. EXTERNAL CONTROL

EXC 020
EXC 021

B. TRANSFER

DAR 20
@BR 20
@ME 20
@AR 21
@BR 21
BME 21
INA 20
INB 20
IME 20
CIA 20
CIB 20

C. SENSE

SEN 20
SEN 21

100020
100021

103120
103220
103020
103121

103221

103021

102120
102220
102020
102520
102620

101020
101021

Activate Enable

Initialize

Load Initial Register from A

Load Initial Register from B

Load [nitial Register from Memory
Load Final Register from A

Load Final Register from B

Load Final Register from Memory
Read Initial Register into A

Read Initial Register into B

Read Initial Register into Memory
Read Initial Register into Cleared A

Read Initial Register into Cleared B

Sense BIC Not Busy

Sense Abnormal Device Stop

The following instruction codes are for use with the first teletype used in a DATA 620/

Table H-3

TELETYPE RESERVE INSTRUCTION CODES

system. Device addresses 01, through 07_ are reserved for teletype controllers.
Y 8 g yP

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
EXC 101 100101 | Connect Write Register to BIC
EXC 201 100201 | Connect Read Register to BIC
EXC 401 100401 | Initialize
B. TRANSFER
IAR 101 102101 | Transfer Read Register to A Register
CIA 501 102501 | Transfer Read Register to Cleared A Register
IBR 201 102201 | Transfer Read Register to B Register
CiB 601 102601 | Transfer Read Register to Cleared B Register
IME 001 102001 | Transfer Read Register to Memory
OAR 101 103101 | Read Write Register from A Register
OBR 201 103201 | Load Write Register from B Register
OME 001 103001 | Load Write Register from Memory
C. SENSE
SEN 101 101101 | Sense Write Register Ready
SEN 201 101201 | Sense Read Register Ready

H-3

Table H-4
CARD READER RESERVED INSTRUCTION CODES

The following instruction codes are for use with the 90 CPM or 1100 CPM card reader.
For additional card readers, device addresses will be assigned at the time of system
defintion.

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
EXC 230 100230 Read One Card
*EXC 630 100630 Step Read One Character
B. TRANSFER
INA 30 102130 Transfer to A Register
INB 30 102230 Transfer to B Register
IME 30 102030 Transfer to Memory
CIA 30 102530 Transfer to A Register Cleared
Cig 30 102630 Transfer to B Register Cleared
C. SENSE
SEN 130 101130 Sense Character Ready
SEN 230 101230 Sense Reader Not Busy
SEN 630 101630 Sense Reader Ready

*Delete for 1100 CPM reader.

H-4

Table H-5

GATED INPUT CHANNEL RESERVED INSTRUCTION CODES

The following instruction codes are for use with the gated input channel. Device

addresses for additional input channels will be assigned at the time of system definition.

MNEMONIC OCTAL FUNCTION

A. EXTERNAL CONTROL

None
B. TRANSFER

INA 60 102160 | Input from Channel to A Register

INB 60 102260 | Input from Channel to B Register

IME 60 102060 | Input from Channel to Memory

CIA 60 102560 | Input from Channel to Cleared A Register

CiB 60 102660 | Input from Channel to Cleared B Register
C. SENSE

SEN 460 101460 | Sense Transfer in Request

H-5

Table H-6
BUFFER INPUT CHANNEL RESERVED INSTRUCTION CODES

The following instruction codes are for use with the buffer input channel. Device
addresses for additional input channels will be assigned at the time of system definition.

MNEMONIC OCTAL FUNCTION

A. EXTERNAL CONTROL

None
B. TRANSFER

INA 62 102162 |Input from Channel to A Register

INB 62 102262 |Input from Channel to B Register

IME 62 102062 |lnput from Channel to Memory

CIA 62 102562 |Input from Channel to Cleared A Register

CIB 62 102662 {Input from Channe!l to Cleared B Register
C. SENSE

SEN 462 101462 {Sense Transfer in Request

Table H~7
GATED OUTPUT CHANNEL RESERVED INSTRUCTION CODES

The following instruction codes are for use with the gated output channel. Device

addresses for additional output channels will be assigned ot the time of system definition.

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
None
B. TRANSFER
DAR 60 103160 | Output from A Register through Channel
@DBR 60 103260 Output from B Register through Channe!
OME 60 103060 | Output from Memory through Channel
C. SENSE
SEN 260 101260 Sense Data Request

Table H-8
BUFFER OUTPUT CHANNEL RESERVED INSTRUCTION CODE

The following codes are for use with the buffer output channel. Device addresses for
additional output channels will be assigned at the time of system definition.

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
None
B. TRANSFER
DAR 62 103162 Output from ARegister through Channel
@BR 62 103262 Qutput from B Register through Channe!
OME 62 103062 | Output from Memory through Channel
C. SENSE
SEN 262 101262 Sense Data Request

Table H-9
HIGH SPEED PAPER TAPE |/O RESERVED INSTRUCTION CODES

The following instruction codes are for use with the paper tape 1/O unit. For
additional units, device addresses will be assigned at the time of system definition.
If only a reader or a punch is attached, use only those codes which apply.

MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
EXC 037 100037 Connect Punch to BIC
EXC 437 100437 Stop Reader
EXC 537 100537 Start Reader
EXC 637 100637 Punch Buffer
EXC 737 100737 Read One Character
B. TRANSFER
OAR 37 103137 Load Buffer from A Register
OBR 37 103237 Load Buffer from B Register
OME 37 103037 Load Buffer from Memory
INA 37 102137 Read Buffer into A Register
INB 37 102237 Read Buffer into B Register
IME 37 102037 Read Buffer into Memory
ClA 37 102537 Read Buffer into Cleared A Register
CIB 37 102637 Read Buffer into Cleared B Register
C. SENSE
SEN 537 101537 Sense Buffer Ready

The following instruction codes are for use with the first magnetic tape unif.

addresses 10, through 13 are reserved for other magnetic tape.

Table H-10
MAGNETIC TAPE UNIT RESERVED INSTRUCTION CODES

Device

8 8
MNEMONIC OCTAL FUNCTION
A. EXTERNAL CONTROL
EXC 010 100010 Read One Record Binary
EXC 110 100110 Read One Record BCD
EXC 210 100210 Write One Record Binary
EXC 310 100310 Write One Record BCD
EXC 410 100410 Write File Mark
EXC 510 100510 Forward One Record
EXC 610 100610 Backspace One Record
EXC 710 100710 Rewind
B. TRANSFER
DAR 103110 Load Buffer from A Register
@BR 103210 Load Buffer from B Register
DME 103010 Load Buffer from Memory
INA 102110 Read Buffer into A Register
INB 102210 Read Buffer into B Register
IME 102010 Read Buffer into Memory
ClAa 102510 Read Buffer into Cleared A Register
CIB 102610 Read Buffer into Cleared B Register
C. SENSE
SEN 010 101010 Sense Parity Error
SEN 110 101110 Sense Buffer Ready
SEN 210 101210 Sense MTU Ready
SEN 310 101310 Sense File Mark
SEN 410 101410 Sense High Density
SEN 510 101510 Sense End of Tape
SEN 610 101610 Sense Beginning of Tape
SEN 710 101710 Sense Rewinding

APPENDIX 1
STANDARD CHARACTER CODES

APPENDIX |

DATA 620/i STANDARD BCD CODES

DATA 620/i STANDARD BCD CODES (continued)

SYMBOL ASCIt PRINTER MAG TAPE HOLLERITH FORTRAN
@ 300 00 32 0-2-8 76*
A 301 01 61 12-1 13
B 302 02 62 12-2 14
C 303 03 63 12-3 15
D 304 04 64 12-4 16
E 305 05 65 12-5 17
F 306 06 66 12-6 20
G 307 07 67 12-7 21
H 310 10 70 12-8 22
| 311 11 71 12-9 23
J 312 12 41 11-1 24
K 313 13 42 11-2 25
L 314 14 43 11-3 26
M 315 15 44 11-4 27
N 316 16 45 11-5 30
O 317 17 46 11-6 31
P 320 20 47 11-7 32
Q 321 21 50 11-8 33
R 322 22 51 11-9 34
S 323 23 22 0-2 35
T 324 24 23 0-3 36
U 325 25 24 0-4 37
A 326 26 25 0-5 40
W 327 27 26 0-6 41

SYMBOL | ASCI | PRINTER | MAG TAPE | HOLLERITH | FORTRAN
X 330 30 27 0-7 42
Y 331 31 30 0-8 43
z 332 32 31 0-9 44
[333 33 75 12-5-8 76*
\ 334 34 36 0-6-8 76%

1 335 35 55 11-5-8 76%

t 336 36 17 7-8 76*

(Note)

-— 337 37 20 2-8 76!
blank 240 40 20 No Punch 00
! 241 4 52 11-2-8 51
" 242 42 35 0-5-8 62
243 43 37 0-7-8 63
$ 244 44 53 11-3-8 60
% 245 45 57 11-7-8 64
& 246 46 77 12-7-8 65
' 247 47 14 4-8 66
(250 50 34 0-4-8 52
) 251 51 74 12-4-8 53
* 252 52 54 11-4-8 47
+ 253 53 60 12 45
, 254 54 33 0-3-8 54
- 255 55 40 1 46

256 56 73 12-3-8 51
/ 257 57 21 0-1 50

DATA 620/i STANDARD BCD CODES (continued) TELETYPE CHARACTER CODES

SYMBOL ASCHI PRINTER MAG TAPE HOLLERITH FORTRAN TELETYPE DATA 620/i TELETYPE DATA 620/i
CHARACTER INTERNAL CODE CHARACTER INTERNAL CODE
0 260 60 12 0 01
0 260 Y 331
1 261 61 01 | 02 1 21 7 332
2 262 62 02 2 03 2 262 blank 240
3 263 ! 241
3 263 63 03 3 04 4 264) 242
4 264 64 04 4 05 5 265 # 243
6 266 $ 244
5 265 65 05 5 06 pe 267 % 245
6 266 66 06 6 07 8 270 & 246
9 271 ! 247
7 267 67 07 7 10 A 301 (250
8 270 70 10 8 11 B 302) 251
. C 303 * 252
9 271 71 11 9 12 D 304 N 753
272 72 15 5-8 67 E 305 , 254
F 306 255
; 273 73 56 11-6-8 70 G 207 - 256
< 274 74 76 12-6-8 76% H 310 / 257
_ . ! 311 : 272
= 275 75 13 3-8 552 J 312 ; 273
> 276 76 16 6-8 76 K 313 274
L 314 = 275
» 2
? 277 77 72 12-2-8 76 M 315 276
N 316 ? 277
Note: End of File for Mag Tape o 317 @ 300
;) p 320 333
Undefined Character
Q 321 334
1 Form Control: Return fo Col. 1
2 Tab Control: Skip to Col. 7 R 322 335
POXIP : S 323 336
T 324 337
U 325 Rub Out 377
\Y 326 NUL 200
% 327 SOM 201
X 330 EQA 202

TELETYPE CHARACTER CODES (continued)

TELETYPE DATA 620/i TELETYPE DATA 620/i
CHARACTER INTERNAL CODE CHARACTER INTERNAL CODE
EOM 203 X-OFF 223
EOT 204 TAPE OFF
WRU 205 AUX 224
RU 206 ERROR 225
BEL 207 SYNC 226
FE 210 LEM 227
H TAB 21 SO 230
LINE FEED 212 Si 231
V TAB 213 S2 232
FORM 214 S3 233
RETURN 215 S4 234
SO 216 S5 235
Sl 217 56 236
DCO 220 S7 237
X-ON 221
TAPE AUX
ON 222

APPENDIX J
TELETYPE 1/O INSTRUCTIONS

I. MODEL A TELETYPE INSTRUCTIONS

APPENDIX J 1.

TELETYPE 1/O INSTRUCTIONS

A. External Control

EXC 000
EXC 100
EXC 200
EXC 300
EXC 400

B. Transfer

OAR 00
OBR 00
OME 00
INA 00
INB 00
IME 00
CIA 00
C1B 00

C. Sense

SEN 000
SEN 100
SEN 300

100000
100100
100200
100300
100400

103100
103200
103000
102100
102200
102000
102500
102600

101000
101100
101300

Select High Speed Input

Select Paper Tape Input

Select Keyboard Input

Select Page and/or Paper Tape Out
Select Off

Transfer A Register to TTY Buffer
Transfer B Register to TTY Buffer
Transfer Memory to TTY Buffér

Transfer TTY Buffer to A Register
Transfer TTY Buffer to B Register
Transfer TTY Buffer to Memory

Transfer TTY Buffer to A Register cleared
Transfer TTY Buffer to B Register cleared

Sense TTY Not Busy
Sense TTY Buffer Ready
Sense TTY Reader Ready

MODEL B* TELETYPE INSTRUCTIONS

A. External Control

EXC 101 100101
EXC 201 100201
EXC 401 100401
B. Transfer
OAR 101 103101
OBR 201 103201
OME 001 103001
IAR 101 102101
IBR 201 102201
IME 001 102001
CIA 501 102501
CIB 601 102601
C. Sense
SEN 101 101101
SEN 201 101201

D. Teletype Command Codes

Connect Write Register to BIC
Connect Read Register to BIC
Initialize

Transfer A Register to Write Register
Transfer B Register to Write Register
Transfer Memory Register to Write Register
Transfer Read Register to A Register
Transfer Read Register to B Register

Transfer Read Register to Memory Register
Transfer Read Register to Cleared A Register
Transfer Read Register to Cleared B Register

Write Register Ready
Read Register Ready

FUNCTION SYMBOL CODE TYPED AS

Print Enable SOM 201 Control and A
Print Suppress EOT 204 Control and D
Reader On XON 221 Control and Q
Punch On TAPE 222 Control and R
Reader Off XOFF 223 Control and S
Punch Off TAPE OFF 224 Control and T

*The following models are B-type teletypes:

J-1

620-60B (ASR-33 TM)
620-618 (ASR-35 TM)
620-628 (ASR-35 TM)

J-2

TELETYPE CONTROL AND TRANSMISSION CODES

FUNCTION CONTROL CODE
NUL (bcd) 200
S@OM (print on) 201
EQA 202
EOM 203
EOT (print off) 204
WRU 205
RU 206
BEL 207
FE 210
HTAB 211
LINE FEED 212
V TAB 213
FORM 214
CARRIAGE RETURN 215
SO 216
Sl 217
DCO 220
X-ON (reader on) 221
TAPE (punch on) 222
X-OFF (reader off) 223
TAPE OFF (punch off) 224
ERROR 225
SYNC 226
LEM 227
SO 230
S 231
S2 232
S3 233
S 4 234
S5 235
Sé 236
S7 237

-3

APPENDIX K
FORTRAN STATEMENT TYPES

APPENDIX K

FORTRAN STATEMENT TYPES

STATEMENT EXECUTABLE NON-EXECUTABLE
ARITHMETIC

ASSIGNMENT X
BACKSPACE X
CALL X
COMMON X
CONTINUE X
DIMENSION X
DO X
END X
ENDFILE X
EQUIVALENCE X
FORMAT X
FUNCTION X
GO 10 X
IF X
PAUSE X
READ X
RETURN X
STOP X
SUBROUTINE X
WRITE X

APPENDIX L

FORTRAN 1/0 UNIT ASSIGNMENTS

APPENDIX L
FORTRAN 1/0 UNIT ASSIGNMENTS

The following logical unit numbers are associated with the indicated devices at
execution time.

Logical Unit 0: Teletype keyboard and printer

Logical Unit 1: Teletype paper tape reader and punch

Logical Unit 2: High speed paper tape reader/punch

Logical Unit 3: Card reader/punch

Logical Unit 4: Line printer

Logical Unit 8: Magnetic tape unit 0

Logical Unit 9: Magnetic tape unit 1

Logical Unit 10: Magnetic tape unit 2 FORTR::]P;E\/\I:,I\D,\I())(Rx MAPS
Logical Unit 11: Magnetic tape unit 3

L-1

APPENDIX M
FORTRAN MEMORY MAPS

M.1 COMPILE MEMORY MAP

20

BINARY LOAD/DUMP

UNUSED

AID NI

COMPILER
DATA POOL

COMPILER
PROCESSORS

COMPILER
INPUT/QUTPUT

COMPILER
DATA AREA

UNUSED

ENTRY AND INTERRUPT ROUTINES

M.2 LOAD TIME MEMORY MAP

20

0.2

0.1
0.0

BINARY LOAD/DUMP

UNUSED

AID 1l

FORTRAN
LOADER

SUB~PROGRAM REFERENCE TABLE
SUB-PROGRAMS

RUN TIME
MATH
(2400 octal)

«_ RUN TIME
UTILITY
(200 octal)

RUN TIME
INPUT/OUTPUT
(5400 octal)

MAIN PROGRAM

FORTRAN LOADER GENERATED
PROGRAM AND DATA PRINTERS

FORTRAN LOADER ITEMS AND
CONSTANTS

M.3 EXECUTION TIME MEMORY MAP

20

BINARY LOAD/DUMP

UNUSED

AID 1l

COMMON
AREA
SUB-PROG RAMS

RUN TIME
MATH
(2400 octal)

< RUN TIME
UTILITY
(200 octal)

RUN TIME
INPUT/OUTPUT
(5400 octal)

MAIN PROGRAM

PROGRAM AND DATA POINTERS

UNUSED

APPENDIX N
FORTRAN OBJECT RECORD FORMAT

APPENDIX N
FORTRAN OBJECT RECORD FORMAT

General

Each FORTRAN generated program will consist of a series of records, the first of which
is marked as the first record of the program. All programs are terminated by an end of
program word, and for main programs, an end of tape record. If a program is a func-
tion or a subroutine, the first data field of the first record will contain the subprogram
name and entry address.

Record Structure

FORTRAN object records are a fixed length of 64 words. Word 1 is unused. Word 2
is the record control word. Words 3 through 5 contain the program name. Words 6
through 63 contain data fields. Word 64 contains the checksum, which is the exclu-
sive OR of words | through 63.

Record Control Word Format

BIT 0: Checksum is present

BIT 1: End of tape

BIT 2: End of program

BIT 3: Start of program

BIT 4: FORTRAN main program

BIT 5: FORTRAN subprogram

BIT 6: Machine language subprogram.

Program Name Format

Six 6-bit characters in packed FORTRAN format. High order starting at bit 3 of word
3, low order ending at bit 0 of word 5. (Bits 16 and 17 unused.)

Data Field Format
Data fields are either two or four word entries. Two word entries consist of a control
word and a data word. Four word entries consist of a control word, two name words
and a data word,

Control Word Format

SUBCODE

CODE l]POINTERI NAME

15 141311211 1098|7654'3210

N-1

Code Values

()
m

2

()

Subcode Values

©)

(12)

Pointer Values

Refer to subcode for specific action.
Add the location of the selected pointer to the data word (2) before
loading it, unless pointer 1 is specified, in which case lower the

location by bits O through 8 of the data word.

Add the value of the selected pointer to the data word (2) before
loading it.

Load the data word (2) absolute.

Ignore this entry (1 word only).

Set the loading location counter to the value of the selected pointer
plus the data word (2).

Chain the current loading location counter value to the chain whose
last location is indicated by the selected pointer and the data word (2).
Stop chaining when an absolute zero address is encountered.

Terminated error at compile time. Discontinue loading.
Program generated successfully .

Define subprogram with name and entry point given in the data
word (4).

Define a region for the pointer indicated whose size is given in the
data word (4). Name is given for labeled common regions.

Call an external subroutine with the name given. The chain address
is given by the selected pointer and the data word (4).

Program and embedded data region.

Non~common, non-embedded data region.

Blank common region.

Labeled common region (not currently implemented).

Name
The first four bits of the first character of a five-character name. -
Name Format

Names are five six-bit characters starting in bit 3 of the control word and ending with
bit 0 of the second name word.

Data Words

Data words contain instructions, constants, chain oddresses; entry addresses, and
address offset values.

Paper Tape Format

Paper tape object programs are preceded and followed by 6.4 inches of channel 8
leader. Paper tape records are preceded by a visual record mark (3 frames of rubouts,
377 octal) and a binary record mark (1 zero frame). Each word of the record is punched
in three frames of paper tape, 6 bits per frame, high order first. For each frame chan~
nel 8 is not punched, channel 7 is the logical compliment of channel 6, and bits 6
through 1 are two octal digits of the word.

CHANNEL 8 7 6 5 4 3 2 1

3 FRAMES
(1 word)

*Blank channel
**Complement of channel 6

NOTES

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	0a
	0b
	0c
	0d
	0e
	0f
	0g
	0h
	0i
	0j
	0k
	0l
	0m
	0n
	0o
	0p
	0q
	0r
	0s
	0t
	0u
	0v
	0w
	0x
	0y
	0z
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	1a
	1b
	1c
	1d
	1e
	1f
	1g
	1h
	1i
	1j
	1k
	1l
	1m
	1n
	1o
	1p
	1q
	1r
	1s
	1t
	1u
	1v
	1w
	1x
	1y
	1z
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	2a
	2b
	2c
	2d
	2e
	2f
	2g
	2h
	2i
	2j
	2k
	2l
	2m
	2n
	2o
	2p
	2q
	2r
	2s
	2t
	2u
	2v
	2w
	2x
	2y
	2z
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	3a
	3b
	3c
	3d
	3e
	3f
	3g
	3h
	3i
	3j
	3k
	3l
	3m
	3n
	3o
	3p
	3q
	3r
	3s
	3t
	3u
	3v
	3w
	3x
	3y
	3z
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	4a
	4b
	4c
	4d
	4e
	4f
	4g
	4h
	4i
	4j
	4k
	4l
	4m
	4n
	4o
	4p
	4q
	4r
	4s
	4t
	4u
	4v
	4w
	4x
	4y
	4z
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	5a
	5b
	5c
	5d
	5e
	5f
	5g
	5h
	5i
	5j
	5k
	5l
	5m
	5n
	5o
	5p
	5q
	5r
	5s
	5t
	5u
	5v
	5w
	5x
	5y
	5z
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	6a
	6b
	6c
	6d
	6e
	6f
	6g
	6h
	6i
	6j
	6k
	6l
	6m
	6n
	6o
	6p
	6q
	6r
	6s
	6t
	6u
	6v
	6w
	6x
	6y
	6z
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	7a
	7b
	7c
	7d

