
' •

-I

•

.... ~ _....._ --
~ ~-- ' ~ -

,
f ,.
•

~

•
t • .

'

l\ B-L f.l L =~ ~ ;-~ .. 0
~, - ; s e . :.,.__ .

•

•

c .

'

•

... ,
··---

. . -· - '-""' ... ("~-. ·. .. . :· __ .. , . .
.. • o:-- - .. - '• .,_ . ·~ ~ . ~

• -· .. • , ? -

~~ \ I

. . . .

·-

.
I

.. . .. ,

. '

.....

r - .

•
I

-~

..... I
1 r '

' '

,

:
t , .

.. - , • - -; ~ ._

.. -... ... £----··------- ·- ..

- .

-
•

•

~ ~ ··~· __
. . .

•

r

c -­•

, - I

r
\.. - '

.·

'
r
L

,
•

,
•

•

•
,
I .
•
r
\.. · .. .
r~
•
r-
t I

. . .

-

·-- ·- -· .

CONTENTS

INTRODUCTION SECTION 1•.....•........•....•..•...•...

REAL-TIME EXECUTIVE SERVICES SECTION 2

INPUT /OUTPUT CONTROL SECTION 3

JOB-CONTROL PROCESSOR SECTION 4

LANGUAGE PROCESSORS SECTION 5

LOAD-MODULE GENERATOR SECTION 6 ••.•.•....••...........

DEBUGGING AIDS SECTION 7 .. .

SOURCE EDITOR SECTION 8 .. .

FILE MAINTENANCE SECTION 9

INPUT /OUTPUT UTILITY PROGRAM SECTION 10

SUPPORT LIBRARY SECTION 11

REAL-TIME PROGRAMMING SECTION 12•.....

SYSTEM GENERATION SECTION 13

SYSTEM MAINTENANCE SECTION 14

OPERATOR COMMUNICATION SECTION 15

OPERATION OF VORTEX SYSTEM SECTION 16

VORTEX PROCESS INPUT /OUTPUT SECTION 17

WRITABLE CONTROL STORE SECTION 18

ERROR MESSAGES SECTION 19

2
•

-----~- -. ··-- - ·-.. -· - --·---- _

.

"" •
i
•

·-·-- · 3
• ••••••••

•••••••••••• •••••••••

••••••••••••• • ••••••••••••••••

...........
••••••

•••••••••••
••••••••••• • •••••••

••••••••••••
•••••••••••••••••

................ . ..
••• •••••••••

········­••••••••••• •••••••••

•••••••••• ·······­•••••••••

·············­• •••••••••••••

···········-­•••••••••••••••

·······­...

·········­...

·······­••••••••••••••••••

•••••••••••••••• •• ••••••••

···········­•• •• ••••••••••••

...................
• • • • • •• • • • • • • •

··················p •• •••••••••••

; ...•...•.. ~
•••••••• ••• •••••••••

•••••••••••• • ••• ••• ••• •••••••••••

.

--· 5

5

--· 7

---· 8

-·· 9

__ . . 10

___ 11

___ 12

__ 13

·--13

. .. -14

. - --16

·-·--·--17

.--···-18

_______ 19

. 19

-- 19

. 19

•

SECTION 1

INTRODUCTION

The Varian Omnitask Real-Time EXecutive (VORTEX) is a
modular software operating system for controlling, schedul­
ine. and monitoring tasks in real-time multiprogramming
environment. VORTEX also provides for background opera·
tions such as compilation, assembly, debugging, or
execution of tasks not associated with the real-time
functions of the system. Thus, the basic features of
VORTEX comprise:

• Real·time l / 0 processing

• Provision for directly connected interrupts

• Interrupt processing

• Multiprogramming of real-time and background
tasks

• Priority task scheduling (clock time or .
interrupt)

• load and go (automatic)

• Centralized and device-independent l / 0 system
using logical unit and file names

• Operator communications

• Batch·processing job-control language

• Program overlays

• Background programming aids: FORTRAN and
RPG IV compilers, DAS MR assembler, load-module
generator, library updating, debugging, and
source editor .

• Use of background area when required by
foreground tasks

• Disc/ drum directories and references

• System generator

-,__ __________ _...,... _ ·- ----------- _ . .

SYSTEM REQUIREMENTS

VORTEX requires the following minimum hardware
configuration:

a. Varian 70 series or 620/f-100 computer with 2_.K of
main memory

b. Direct memory access (DMA)

c. 33135 ASR Teletype on a priority interrupt module

d. Real·time clock

e. Memory protection

f. Power failure/ restart

g. Optional instruction set
'

h. Priority Interrupt Module (PIM)

1. Rotating memory device (RMD) on e PIM with either e
buffer interlace controller (BIC) or priority memory
access (PMA)

j. One of the following on a PIM:
(1) Card reader with a BIC
(2) Paper·tape system or a paper·tape reader
(3) Magnetic· tape unit with a BIC

- -~ --- ..

3

.. . .

(

SYSTEM FLOW AND ORGANIZATION

VORTEX executes foreground and background tasks
scheduled by operator requests, interrupts, or other tasks.
All tasks are scheduled, activated, and executed by the
real-time executive component on a priority basis. Thus, in
the VORTEX operating system, each task has a level of
priority that determines what will be executed first when
two or more tasks come up for execution simultaneously.

The job·control processor component of the VORTEX
system manages requests for the scheduling of background
tasks.

Upon completion of a task, control returns to the real·time
executive. In the case of a background task, the real-time
executive schedules the job-control processor to determine
if there are any further background tasks for execution.

USER OPERATOR
NON- COMMUNICA liON
RESIDENT INTERRUPT
TASKS

' ; • . '
. . • USER REAL- TIME

RESIDENT r EXECUTIVE -
TASKS ..

' ' '-<._

' r

SYSTEM 1/ 0
NON- CONTROL
RESIDENT
TASKS

(SECTION 3)

USER
SUPPLIED vo -
DEVICES DRIVERS

p

•

BIBLIOGRAPHY

The following gives the stock numbers of Varian manuals
pertinent to the use of VORTEX and the 73/620 computers:

Title

V73 Handbook
620.100 Computer Handbook
FORTRAN IV Reference
RPG IV Manual
VT AM Reference
Microprogramming Guide

Document Number

98 A 9906 Olx
98 A 9905 OOx
98 A 9902 03x
98 A 9947 03x
98 A 9952 22x
98 A 9906 07x

Where x is a revision level number subject to change.

I

FOREGROUND 1 BACKGROUND
I ~ ·-.
I ~

REAL-TIME I LOAD- FORTRAN
EXECUTIVE I MODULE IV
SERVICES GENERATOR r COMPILER I

(SECTION 2) I (S ECTION 6) <SECTION 5 .3)
I

I
I
I Je.P
I

_,I
I
I JOB-
I CONTROL USER' S
I PROCESSOR TASKS
I .

(SECTION 4)
" I

I

I

I
'' { ~ •·. .. .t • • • I
... I .

DAS MR '¥.::. OPERATOR I
COMMUNI- I 1/0 ASSEMBLER
CATION UTILITY -I (SECTION 5 . I)
PACKAGE I (SECTION 10)
(SECTION 15) I

I _...
I RPG IV
I • COMPILER
I (S ECTION 5 .4)
I
I

VDM I DE-
SUPPLIED I BUGGING ~

LIBRARY

(SECTION 7) - • UP-DATING DEVICES I (SECTIONS
I 7 , 8, & 9)
I
I

"'-' L " f ·.
. /

•

VORTEX Operating System Aow

4

--- -- ---... -......... -.

•

SECTION 2

REAL-TIME EXECUTIVE SERVICES

The VORTEX real-time executive (RTE) component
processes. upon request by a task, operations that the task
itself cannot perform, including those involving linkages
with other tasks. RTE service requests are made by macro
calls to V$EXEC, followed by a parameter list that contains
the information required to process the request.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any RTE macro. After completion of the macro, these
values are returned. The contents of the X register are lost.

There are 32 priority levels in the VORTEX system,
numbered 0 through 31 . levels 0 and 1 are for background
tasks and levels 2 through 31 are for foreground tasks. If a
background task is assigned a foreground priority level, or
vice versa, the task automatically receives the lowest valid
priority level for the correct environment. lower numbers
assign lower priority.

Background and foreground ATE service requests are
similar. However, a level 0 background ATE request causes
a memory-protection interrupt and the request is checked
for validity. If there is an error, the system prints the error
message EX11 with the name of the task and the location
of the violation of memory protection. The background task
is aborted. ATE service request macros are listed in the
table below.

RTE Service Request Macros

Mnemunic Description level 0 FORTRAN

SCHED Schedule a task Yes

SUSPND Suspend a task Yes

RESUME Resume a task No

DELAY Delay a task No

PMSK Store PIM mask register No

TIME Obtain time of day Yes

OVLAY Load and/ or execute an Yes
overlay segment

AlOC Allocate a reentrant stack No

DEAlOC Deallocate the current re- No
entrant stack

EXIT Exit from a task (upon
completion)

ABORT Abort a task

IOUNK link background l/0

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

I (I '

-· /
I

SECTION 3
INPUT /OUTPUT CONTROL

The VORTEX input/output-control component (IOC)
processes all requests for l/0 to - be performed on
peripheral devices. The IOC comprises an I/ O-request
processor, a find -next-request processor. an I/O-error
processor, and l/0 drivers. The IOC thus provides a
common l/0 system for the overall VORTEX operating
system and eliminates the programmer's need to under­
stand the computer hardware.

The contents of the volatile A and B registers and the
setting of the overflow indicator are saved during execution
of any IOC macro. After completion of the macro, these
data are returned. The contents of the X register are lost.

If a physical-device failure occurs, the l/0 drivers perform
error recovery as applicable. Where automatic error
recovery is possible, the recovery operation is attempted
repeatedly until the permissible number of recovery tries
has been reached, at which time the l / 0 driver stores the
error status in the user I/O-request block, and the I / O-error
processor posts the error on the OC logical unit. The user
can then try another physical device or abort the task.

LOGICAL UNITS

A logical unit is an l / 0 device or a partition of a rotating­
memory device (RMO). It is referenced by an assigned
number .or name. The logical unit permits performance of
110 operations that are independent of the physical-device
configuratK>ns by making possible references to the logical-

unit number. The standard interfaces between the program
and the IOC, and between the IOC and the l/0 driver,
peuuit subst~tution of peripheral devices in l / 0 operations
without reassembling the program.

VORTEX permits up to 256 logical units. The numbers
assigned to the units are determined by their
reassignability:

a. Logical-unit numbers 1·100 are used for units that can
be reassigned through the operator communications
component (OPCOM, section 15) or the job-control
processor (JCP, section 4).

b. Logical-unit numbers 101-179 are used for units that
are not reassignable.

c. Logical-unit numbers 180-255 are used for units that
can be reassigned through OPCOM only.

d. Logical-unit number 0 indicates a dummy device. The
IOC immediately returns control from a dummy device
to the user as if a real 110 operation had been
completed.

The following table shows the valid logical-unit assign­
ments.

5

.... ··----- - --- -·--. -· _ - . ,._ •• ~· -- - ·---·- ·... • • • 0 .. •

~ \ .

•

Valid logical-Unit Assignments CL OM

Logical Unit oc Sl so PI LO Bl
Unit No. 1 2 3 4 5 6

Device

Dummy DUM DUM DUM
Card punch CP
Card reader CR CR CR
CRT device CT CT CT CT CT
RMO (disc/ drum) 0 o · 0 0

partition
line printer LP
Magnetic-tape unit MT MT MT MT
Paper-tape reader/ PT PT PT PT

punch
Teletype TY TY TY TY TY
Remote Teletype TC TC TC TC

I/O-CONTROL MACROS

I 10 requests are written in assembly language programs as
I 10 macro calls. The DAS MR assembler provides the
following l/0 macros to perform l / 0 operations, thus
simplifying coding:

•

•

•

•

•

•

•

•

•

•

•

OPEN

CLOSE

READ

WRITE

REW

WEOF

SREC

FUNC

STAT

DCB

FCB

Open file

Close file

Read one record

Write one record

Rewind

Write end of file

Skip one record

Function

Status

Generate data control block

Generate file control block

The IOC performs a validity check on all l / 0 requests. It
then queues (according to the priority of the requesting
task) each valid request to the controller assigned to the
specified logical unit. Finally, the IOC schedules the
appropriate I / 0 driver to service the queued request.

The assembler processes the l/0 macro to yield a macro
expansion comprising data and executable instructions in
the form of assembler language statements.

--\ '

6

103 104
BO ss GO PO Dl DO cu sw BL FL
7 8 9 10 11 12 101 102 105 106

DUM DUM DUM DUM
CP

0

MT
PT

CP
CR

CT CT CT
0 0 0 0 0 0 0

LP LP
MT MT MT

PT

TY TY TY
TC TC

Certain 1/ 0 operations require parameters in addition to
' those in the 110 macro. These parameters are contained

in a table, which, according to the operation requested,
is called either a file control block (FCB) or a data control
block (DCB). Embedded but omitted parameters (e.g .• de­
fault values) must be indicated by the normal number of
commas.

• .

l / 0 Macros: The general form of 110 macros is:

label name cb,lun,wait,mode

If the cb is for an FCB, it is mandatory. If it is for a DCB, it
is optional.

a~ • _.. . _ ---------• ·- - - • • • ,. ' • • • o • .. ·- - "' ---- · ·-· . .. --- - • • .. 0- • • •

I

!

•

! .

I

•

, I

...

..

'

'

' .

...

SECTION 4

JOB-CONTROL PROCESSOR

The job-control processor (JCP) is a background ·task that
permits the schedulinl of VORTEX system or user tasks for
background execution. The JCP also positions devices to
required files, and makes logical-unit and I/O-device

assienments.

ORGANIZATION

The JCP is scheduled for execution whenever an unsoli­
cited operator key-In request to the OC logical unit has
a slash (/) as the first character.

Once initiated, the JCP processes all further JCP directives
from the Sl logical unit.

If the Sl logical unit is a Teletype or a CRT device, the
message JC• • is output to indicate the Sl unit is waiting
for JCP input. The operator is prompted every 15 seconds
(by a bell for the Teletype or tone for the CRT) until an
input is keyed in.

If the Sl logical unit is a rotating-memory-device (RMD)
partition, the job stream is assumed to comprise unblocked
data. In this case, processing the job stream requires an
I ASSIGN directive.

A JCP directive has a maximum of 80 characters,
beginning with a slash. Directives input on the Teletype are
terminated by the carriage return.

JOB-CONTROL PROCESSOR DIRECTIVES

This ,section describes the JCP directives:

a. Job-initiation/termination directives:

/ JOB
/ ENOJOB
/ FIN I
!C
/ MEM

Start new job
Terminate job in progress
Terminate JCP operation
Comment
Allocate extra memory for

background task

b. I / O-device assignment and control directives:

! ASSIGN
/ SFILE
/ SREC

/ WEOF
/ REW

/PFILE
/FORM
/ KPMODE

Make logical-unit assignment(s)
Skip file(s) on magnetic-tape unit
Skip record(s) on magnetic-tape unit or

RMO partition
Write end-of-file mark
Rewind magnelic-tape unit or RMD

partition

Position rotating-memory-unit file
Set line count on LO logical unit
Set keypunch mode

) .
~ c. Language-processor directives:

. .

I DASMR
/FORT

Schedute OAS MR assembler
Schedule FORTRAN compiler

. .. ·~ , ,__, -·-

d. Utility directives:

ICONC
/ SEDIT
/FMAIN
/LMGEN
/IOUTIL
/SMA IN

Schedule system-concordance program
Schedule symbolic source-editor task
Schedule file-maintenance task
Schedule load-module generator
Schedule I/O-utility processor
Schedule system-maintenance task

e. Program-loading directives:

/ EXEC

/ LOAD

/ ALTLIB

/ DUMP

Schedule loading and execution of a
load-module from the SW unit file

Schedule loading and execution of a
user background task

Schedule the next background task from
the specified logical unit rather
than from the background library

Dump background at completion of task
execution

JCP directives begin in column 1 and comprise sequences
of character strings having no embedded blanks. The
character strings are separated by commas (,) or by equal
signs (-). The directives are free-form and blanks are
permitted between the individual character strings of the
directive, i .e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after a period.

Each JCP directive begins with a slash(/).

The genrral fQrm of a job-control statement is

;

I .
I

: •
where

•
' 1name,p(l),p(2), ... ,p(n)
I
r

'
J nam~

• ' I
is one of the directive names given (any
other character string produces an
error)

.
• .

•

•
.
I .
• '' P '-· I !t: , .
l._.,(n) .
I
•

is a parameter required by the JCP or by
the scheduled task and defined below .

I under the descriptions of the individual

\ directives

Example ;.. ~ard Input: Assemble a DAS MR program
(with source listing and load-and-execute) and generate a
concordance listing. The OAS MR program is cataloged on
RMO partition DOOK under file name USERl with protec­
tion key U. Assign the PI logical unit to RMO partition
DOOK, open file name USER 1 for the assembler, assemble
the program, and execute the program with a dump.

/JOB,EXAMPLE2
IASSIGN,PI•DOOK
IPFILE,PI,U,USER1
/DASKR,L
/PFILE,SS,,SS
/CONC
/EXEC,D
IENDJOB

.

7

.. ' • • •• • • ···- • • ' 4 .. ~. · ·~. ... • ' •

•

•

SECTION 5
LANGUAGE PROCESSORS

DAS MR Assembler

DAS MR is a two-pass assembler scheduled by job-control
directive / OASMR. OAS MR uses the secondary storage
device unit for pass 1 output. It reads a source module
from the PI logical unit and outputs it on the PO unit. The
source input for pass 2 Is entered from the SS logical unit

CONCORDANCE PROGRAM

The background concordance program (CONC) provides
an indexed listing of all source statement symbols, giving
the number of the statement associated with each symbol
and the numbers of all statements containing a reference
to the symbol. CONC is scheduled by job-control directive
t CONC. Upon completion of the concordance listing, con­
trol returns to the JCP via EXIT.

Input to CONC is through the SS logical unit. The
concordance is output on the LO unit. CONC uses system
global file control block SSFCB. If the SS logical unit is an
RMO, a /REW or / PFILE directive (section 10) establishes
the FCB before the / CONC directive is input to the JCP.

FORTRAN IV COMPILER

The FORTRAN IV complier is a one-pass compiler sche­
duled by job-control directive /FORT. The compiler inputs
a source module from the PI logical unit and produces an
object module on the BO and/ or GO units and a source
listing on the LO unit No secondary storage is required
for a compilation.

If a fatal error is detected, the compiler automatically
terminates output to the 80 and GO units. LO unit output
continues. The compiler reads from the PI unit until an
END statement is encountered or a control directive is
read. Compilation also terminates on detection of an 110
error or an end-of-device, beginning-of-device, or end-of-f ile
indication from l / 0 control.

The output comprises relocatable object modules under all
circumstances: main programs and subr.outines, func­
tion, and block-data subprograms.

8

FORTRAN IV has conditional compilation facilities imple­
mented by an X in column 1 of a source statement. When
the X appears in the /FORT directive, all source statements
with an X in column 1 are compiled (the X appears on the
LO listing as a blank). When the X is not present. all
conditional statements are ignored by the compiler. X Jines
are assigned listing numbers in either case, but the source
statement is printed only when the X is present

VORTEX RPG IV SYSTEM

The VORTEX RPG IV System is a software package for
general data processing applications. It combines versatile

file and record defining capabilities with powerful process­
ing statements to solve a wide range of applications. It is
particularly effective in the processing data for reports. The
VORTEX RPG IV system consists of the RPG IV compiler
and RPG IV runtime/ loader program.

The VORTEX RPG IV compiler and the runtime/loader
execute as level zero background programs in unprotected
memory. Both the compiler and the runtime/ loader will
operate in 6K of memory with limited work stack space.
The stack space may be expanded and consequently larger
RPG programs compiled and executed by use of the / MEM
directive.

. - -- --··-· ·----·· - ·

'

SECTION 6

LOAD-MODULE GENERATOR

The load-module generator (LMGEN) is a background task
that generates background and foreground tasks from
relocatable object modules. The tasks can be generated
with or without overlays, and are in a form called load
modules.

To be scheduled for execution within the VORTEX operating
system, all tasks must be generated as load modules.

ORGANIZATION

LMGEN is scheduled for execution by inputting the job­
control processor (JCP) directive /LMGEN.

INPUTS to the LMGEN comprise:

• Load-module generator directive input through the
Sl logical unit.

• Relocatable object modules from which the load module
is generated.

• Error-recovery inpots entered via the SO logical unit.

OUTPUTS from the LMGEN comprise:

• Load modules generated by the LMGEN

• Error messages

• Load-module maps output upon completion of a load·
module generation

Load modules are LMGEN-generated absolute or relocat·
able tasks with or without overlays. They contain all
information required for execution under the VORTEX
operating system. During their generation. lMGEN uses the
SW logical unit as a work unit. Upon completion of the
load-module generation, the module is thus resident on the
SW unit. LMGEN can then specify that the module be
cataloged on another unit, if required, and output the load
module to that unit.

Overlays

Load modules can be generated with or without overlays.
Load modules with overlays are generated when task re­
quirements exceed core allocation. In this case, the task
is divided into overlay segments that can be called as
required. Load modules with overlays are generated by use
of the OV directive and comprise a root segment and two
or more overlay segments, but only the root segment and
one overlay segment can be in memory at any given time.
Overlays can contain executable codes, data, or both.

When a toad module with overlays is loaded, control
transfers to the root segment. which is in main memory.
The root segment can then call overlay segments as
required.

Called overlay segments may or may not be executed,
depending on the nature of the segment. It can be an
executable routine, or it can be a table called for searching
or manipulation, for example. Whether or not the segment
consists of executable data, it must have an entry point.

The generation of the load module begins with the root
segment. but overlay segments can be generated in any
order.

The root segment can reference only addresses contained
within itself. An overlay segment can reference addresses
contained within itself or within the root segment. Thus, all
entry points referenced within the root segment or an
overlay segment are defined for that segment and
segments subordinate to it. if any.

Common

Common is the area of memory used by linked programs
for data storage. i.e .• an area common to more than one
program. There are two types of common: named common
and blank common.

Named common is contained within a task and is used for
communication among the subprograms within that task.

Blank common can be used like named common or for
communication among foreground tasks.

The extent of blank common for foreground tasks is
determined at system generation time. The size of the
foreground blank common can vary within each task
without disturbing the positional relationship of entries but
cannot exceed the limits set at system generation time.

The extent of blank common for background tasks is
allocated within the load module. The size of the back·
ground blank common can vary within each task, but the
combined area of the load module and common cannot
exceed available memory.

Each blank common is accessible only by the correspond·
ing tasks. i .e .• foreground tasks use only foreground blank
common. and background tasks use only background
blank common.

All definitions of named and blank common areas for a
given load module must be in the first object module
loaded to generate that load module.

9

. " . ' . --
0 •• . - , ,_ ..• ··-·-· ·~· .. '' ,,., - . . " ··- .

I
I

' I
!
0

t
•
i
I
'

•

. . .

SECTION 7
DEBUGGING AIDS

The VORTEX system contains two debugging aids: the
debugging program (DEBUG) and the snapshot dump
program (SNAP).

DEBUGGING PROGRAM

The 816-word VORTEX debugging program (DEBUG) Is
added to a task load module whenever the DEBUG option
is specified by a load-module generator TIDB directive. The
DEBUG object module is the last object module loaded
if the root segment of the task is an overlay load module.
The load-module generator sets the load-module execution

' address equal to that of DEBUG.

If the load module has been cataloged, DEBUG executes
wtlen the module is scheduled. Otherwise, JCP directive
/eXEC is used to schedule the module and DEBUG.

During the execution of DEBUG, the A, B, and X pseudore­
gisters save the contents of the real A. B. and X registers.
and restore the contents of these registers before terminat­
ing DEBUG.

When debugging is complete, the input of any job-control
directive returns control to the VORTEX system.

INPUTS to DEBUG comprise the directives summarized In
the table below. When DEBUG Is first entered, It outputs
on the Teletype or CRT device the message DG .. followed
by the TIDB task name and the address of the first allocata­
ble memory cell. This message indicates that the system
is ready to accept DEBUG directives on the Dl logical unll

Each DEBUG directive has from 0 to 72 characters and is
terminated by a carriage return. Directive parameters are
separated by commas, but DEBUG treats commas, periods,
and equal signs as delimiters.

SNAPSHOT DUMP PROGRAM

The 294-word snapshot dump program (SNAP) provides on
the DO logical unit both register displays and the contents
of specified areas of memory. It is added to a task load
module if the task contains a SNAP request and calls the
SNAP external routine. SNAP is entered directly upon
execution of the SNAP display request CALL SNAP. The

'SNAP display request is an integral part of the task and is
assembled with the task directives. Thus, no external
intervention is required to output a SNAP display.

DEBUG Directives

Directive Description

A Display and change the contents of the A pseudoregister

Ax Change, but do not display, the contents of the A pseudoregister

8 Display and change the contents of the B pseudoregister

Bx Change, but do not display, the contents of the B pseudoregister

Cx Display and change the contents of memory address x

Gx load the contents of the pseudoregisters into the respec-
tive A, B. and X registers. and transfer to memory address x

lx,y,z Initialize memory addresses x through y with the value of z

0 Display and change the overflow indicator

Sx,y,z,m Search memory addresses x through y for the z value, using mask m

Ty,x Place a trap at memory address y, starting execution at address x

Ty Place a trap at memory address y, starting execution at
the last trap location ·

X Display and change the contents of the X pseudoregister

Xy Change, but do not display, the contents of the X pseudoregister

xxxxxx Display the contents of memory address xxxxxx

xxnxx,yyyyyy Display the contents of memory addresses xxxxxx through yyyyyy

10

• • • - · · - - - u - · - --· .. ·-~~·· . .• •• • - · ·- _.. • -· -·-4---.. 0 ,._ . . - ~-
- , o - - •·-- ... , , •: • ·- ~ •--·-----· · -• I i ,., _ ,_, __ io

SECTION 8

SOURCE EDITOR

The VORTEX operating system source editor (SEDIT) is a
backeround task that constructs sequenced or listed output
files by selectively copying sequences of records from one or
more input files. SEDIT operates on the principle of

·forward-merging of subfiles and has file-positioning capa­
bility. The output file can be sequenced and/or listed.

ORGANIZATION

SEOIT is scheduled by the job-control processor (JCP) upon
input of the JCP directive /5EDIT. Once activated, 5EDIT
inputs and executes directives from the 51 logical unit until
another JCP directive (first character - /)is input, at which
time SEDIT terminates and the JCP is again scheduled.

SEDIT has a buffer area for 100 source records in MOVE
operations. To increase this, input a /MEM directive, imme­
diately preceding the /SEDIT directive, where each 512-
word block will increase the capacity of the buffer area
by 12 source records.

INPUTS to SEOIT comprise:

a. Source editor d irectives input through the 51 logical
unit.

b. Old source records input through the IN logical unit.

c. New or replacement source records input through the
Al T logical unit.

d. Error-recovery inputs entered via the SO logical unit.

Source-editor directives specify both the changes to be
made in the source records, and the logical units to be
used in making these changes. The directives are input
through the Sl logical unit and listed as read on the LO
logical unit, with the VORTEX standard heading at the top
of each page. If the Sl logical unit is a Teletype or a CRT
device, the message SE • • is output to it before directive
input to indicate that the Sl unit is waiting for SEDIT input.

There are two groups of source editor directives: the copy­
ing group and the auxiliary group. The copying group
directives copy or delete source records input on the IN
logical unit. merge them with new or replacement source
records input on the Al T unit. and output the results on
the OUT unit. Copying-group directives must appear in
sequence according to their positioning-record number
since there is no reverse positioning. If the remainder of
the source records on the IN unit are to be copied after
all editing is completed, this must be explicitly stated by
an FC directive. Ends of file are output only when specified
by FC or WE directives. The processing of string-editing
directives is different from that of record-editing directives.
A string-editing directive affects a specified record, where
source records on the IN unit are copied onto the OUT
unit until1he specified record is found and read into memory
from the IN unit. After editing, this record remains in memory
and is not yet copied onto the OUT unit. This makes possible

multiple field-editing operations on a single source record.
The auxlllai'J group dJrecUvea are those used for special
l/0 or control functions.

OUTPUTS from the SEDIT comprise:

a. Edited source-record sequences output on the OUT
logical unit.

I

b. Error messages.

c. The listing ot the SEDIT directives on the lo logical unit.

d Comparison outputs (compare-inputs directive).

e. Usting of source records on the LO logical unit when
specified by the LIST directive.

SOURCE-EDITOR DIRECTIVES

This section describes the SEDIT directives:

a. Copying group:
• AS Assign logical units
• AD Add record(s)
• SA Add string
• REPL Replace record(s)
• SR Replace string
• DE Delete record(s)
• so Delete string
• MO Move record(s)

b. Auxiliary group:
• FC Copy file

- SE Sequence records
• Ll list records
• GA Gang-load all records
• WE Write end-of-file
• REWI Rewind
• co Compare records

SEDIT directives begin in column 1 and comprise se­
quences of character strings having no embedded blanks.
The character strings are separated by commas (,) or by
equal signs (-). The directives are free-form and blanks
are permitted between individual character strings of the
directive, i.e., before or after commas (or equal signs).
Although not required, a period (.) is a line terminator.
Comments can be inserted after the period.

The general form of an SEDIT directive is

name,p(l),p(2), ... ,p(n)
where

name

eachp(n)

is one of the directive names given above
or a longer string beginning with one of
the directives names (e.g., AS or
ASSIGN)

is a parameter defined below under the
descriptions of the individual directives

11

0 0 o OO--o,...._W __ ___ _ _ ,. __ , __ - • • ~ .. 0 o 0 0 0 . · ·- ·~ 0. , , .. O· O • oo --- '"~·- - ~------.. - • • - ... · · - · ·" 0 '" 4 ' 0 0 o 0,o ' . . ~ · -·· ··-··'"' . ~··· . . ' · ·~

SECTION 9
FILE MAINTENANCE

The VORTEX file-maintenance component (FMAIN) is a
· background task that manages file-name directories and
the space allocations of the files. It is scheduled by the job­
control processor (JCP) upon input of the JCP directive
/FMAIN.

Only files assigned to rotating-memory devices (disc or
drum) can be referenced by name.

File space is allocated within a partition forward in
contiguous sectors of the same cylinder, skipping bad
tracks. The only exception to this continuity is the file-name
directory itself, which is a sequence of linked sectors that
may or may not be contiguous.

ORGANIZATION

FMAIN inputs file-maintenance d irectives received on the
Sl logical unit and outputs them on the LO logical unit and
on the SO logical unit if It is a different physical device
from the LO unit. Each directive is completely processed
before the next is input to the JCP buffer.

If the Sl logical unit is a Teletype or a CRT device. the
message FM• • is output on it before input to indicate that
the Sf unit is waiting for FMAIN input.

If there is an error. one of the error . messages is output
on the SO logical unit. and a record is input from the SO
unit to the JCP buffer. If the first character of this record
is 1, FMAIN exits via the EXIT macro. If the first character
is C, FMAIN continues. If the first character Is neither I

nor C, the record is processed as a normal FMAIN directive.
FMAIN continues to input and process records until one
whose first character is 1 is detected, when FMAIN exits
via exit (An entry beginning with a carriage return is an
exception to this, being processed as an FMAIN directive).

FMAIN outputs four types of listing to the LO logical unit:

• Directive listing lists, without modification. all FMAIN
directives entered from the Sllogical unit.

•

• Directory listing lists file names from a logical unit file·
name directory in response to the FMAIN directive LIST.

• Deletion listing lists file names deleted from a logical
unit file-name directory in response to the FMAIN
directive DELETft

• Object-module llstinc lists the object-module input in
response to the FMAIN directive ADD.

12

-· ···· .. · --··--·-""···-·----- -- ·~- -·. - ··--· -- ·- .. . ~- ·-· ·- · ... - .. '

Relocatable Object Modules

Outputs from both the DAS MR assembler and the FOR­
TRAN compiler are in the form of relocatable object mo­
dules. Relocatable object modules can reside on any VOR­
TEX-system logical unit Before object modules can be read
from a unit by the FMAIN INPUT and ADD directives, an
l / 0 OPEN with rewinding is performed ol'l the logical unit.
i.e., the unit (except paper-tape or card readers) Is first
positioned to the beginning of device or load point for that
unit. Object modules can then be loaded until an end-of-file
mark is found.

The system generator (section 13) does not build any
object-module library. FMAIN is the only VORTEX compo­
nent used for constructing user object-module libraries.

A VORTEX physical record on an RMD is 120 words. Object­
module records are blocked two 60-word records per
VORTEX physical record. However. in the case of an RMD
assigned as the Sl logical unit, object modules are not
blocked but assumed to be one object-module record per
physical record.

FILE-MAINTENANCE DIRECTIVES

This section describes the file-maintenance directives:

• CREATE file • DELETE file

• RENAME file • ENTER new file name

• LIST file names • I NIT {initialize) directory

• INPUT logical unit for object module

• ADD object module

The general form of a file-maintenance directive is

directive,lun,p(J),p(2), ... ,p(n)

where

directive

lun

each p(n)

4 • ... • ..

is one of the directives listed above in
capital letters

is the number or name of the affected
logical unit

is a parameter defined under the
descriptions of the individual directives

.. ~

!
' ;

'
!
I
•
I
'

•

' •
' •

•
I
!

I
•
' I .
I
.
!
•
•
I

SECTION 10
INPUT /OUTPUT UTILITY PROGRAM

The 110 utility program (IOUTIL) is a background task for
copY'ng records and files from one device onto another,
chanaing the size and mode of records, manipulating files
and records, and formatting the records for printing or
display.

ORGANIZATION

IOUTIL is scheduled tor execution by inputting JCP directive
/ IOUTIL on the Sl logical .unit. If the Sl logical unit is a
Teletype or a CRT device, the message IU .. is output to
indicate that the Sl unit is waiting for IOUTIL Input. Once
activated, IOUTIL inputs and executes directives from the
Sl unit until another JCP directive (first character is a slash)
is input, at which time IOUTIL terminates and the JCP is
again scheduled.

l/0 UTILITY DIRECTIVES

This section describes the IOUTIL directives:

• COPYF Copy file
• COPYR Copy record
• SFILE Skip file
• SREC Skip record
• DUMP Format and dump
• WEOF Write end of file
• . REW Rewind
• PFILE Position file
• CFILE Close file

IOUTIL directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas {,)
or by equal signs {-). The directives are free-form and
blanks are permitted between individual character strings
of the directive, i.e., before or after commas (or equal
signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an IOUTIL directive is

where

name,p(l),p(2), ... ,p(n)

name is one of the directive names given above

each p(n) is a parameter defined below under the
descriptions of the individual directives

.. ··---------.... ··- -·. ·• . ·- ·- ... ·-· - _.... --- -

SECTION 11

SUPPORT LIBRARY

The VORTEX system has .a comprehensive subroutine
library directly available to the user. The library contains
mathematical subroutines to support the execution of a
program, plus many commonly used utility subroutines. To
use the library, merely code the proper call in the program,
or, for the standard FORTRAN IV functions, implicitly
reference the subroutine (e.g., A - SQRT(B) generates a
CALL SQRT(B)). All calls generate a reference to the
required routine, and the load-module generator brings the
subroutine into memory and links it to the calling program.

The performance of several routines in the support library
is improved through the use of the V73 Floating Point
Firmware on V73 systems having Writable Control Store
(WCS). The necessary firmware and library routines which
call the firmware are added to the Object Module library
{OM) by executing the supplemental WCS job stream
supplied with the System Generation library.·

13

--·.

..

SECTION 12
REAL-TIME PROGRAMMING

VORTEX real-time applications allow the user to interlace
directly with special devices, develop software that is
inte• rupt-driven, and utilize reentrant subroutines. Four
areas are covered in this section:

• lnte• rupts

• Task-scheduling

• Coding reentrant subroutines

• Coding l/0 drivers

INTERRUPTS

External Interrupts

Priority interrupt module (PIM) hardware: A PIM com­
prises a group of eight interrupt lines and an eight-bit
register. The register holds a mask where each set bit
disarms a line. VORTEX allows up to eight PIMs for a
maximum of 64 lines. The system of PIMs and lines is
called the external interrupt system.

VORTEX interrupt line handlers: At system-generation
time, a user specifies all interrupt-driver tasks. These
include those that allow VORTEX to service the interrupt, as
well as those that are directly connected and service the
interrupt themselves. Then, VORTEX constructs a line·
handler for each interrupt in the system .

Directly connected routines preempt VORTEX and are thus
used only when response time demands it. The rules for the
use of directly connected routines are:

a. All volatile registers used by the routine are restored
before returning to the interrupted task.

b. Interrupts remain disabled during processing.

c. IOC and RTE calls are not allowed.

d. Execution time is minimal.

e. PIM interrupts are enabled before returning to the
interrupted task through word 0 of the line handler. The
real time clock (RT clock) is enabled only if the task is
not the VORTEX RT clock processor (location 0300,
V$CTL, contains 037 if the VORTEX RT clock proces·
sor is interrupted).

Internal Interrupts

VORTEX recogn izes and services internal interrupts related
to various hardware components. The processing routines
are all directly connected and are the highest-priority tasks
in the system.

14

. ., -··---------- -·-· -· -~ - -·- -· ·----- - . --· . ..

Memory protection interrup~ When the background area
is active, it is run as an unprotected area of memory with
the rest of the system protected. In such a situation,
memory protection inlet rupts are generated when the
background task attempts to execute a • privileeed"
instruction such as exte• nal control or halt. or attempts to
jump into, write into, or perform 110 on protected memory.
The memory protection routine processes all protection
violation interrupts and is the highest-priority interrUpt in
the system.

Real-time clock interrupt: The real-time clock intet rupt
provides the basis for timekeeping in VORTEX. It can be set
to a minimum resolution of 5 milliseconds. However, one
greater than 5 milliseconds (i.e., 10.20 milliseconds)
reduces overhead when the system does not have hi&h·
resolution timekeeping requirements. Upon receipt of an
interrupt, the time-of-day is updated and the TIDBs are
scanned for any time-driven task requiring activation. PIMs
are disabled for approximately 18 cycles during real-time
clock interrupt-processing. The clock routine is the third·
highest priority inte1 rupt in VORTEX.

Pawer failure/restart lnteurupt An interrupt occurs when
the system detects a power failure. The VORTEX power­
failure processor saves the contents of volatile registers
and the status of the overflow indicator, sets a power-failure
flag, and halts with the I register set to 0123. Following
the power-up sequence, the PF/R hardware generates an
interrupt. Upon entry to the VORTEX power-up processor,
the power-failure ·flag is checked.

SCHEDULING ..
. ,.

System Aow (

VORTEX is designed around the TIDB. This block contains
all of the information about a task during its execution.
The setting and clearing of status bits in the TIDB causes
a task to flow through the system. Two register stacks are
saved within the TIDB: a reentrant (suspend register) stack,
and an interrupt stack.

The dispatcher is the prime mover of tasks through the
system. When any function has reached a termination point
or has to wait for an 1/0 operation, the task gives control
to the dispatcher, which then finds another task to execute.
A task maintains control until it gives control to the dis­
patcher, or to the interrupt task if the interrupt-processing
task has a higher priority. The contents of the interrupted
task's volatile registers are saved in its TIDB interrupt stack
and control goes to the dispatcher, which searches for the
highest-priority active task for execution.

Each Tl DB is placed in sequence by priority level and
threaded. Two stacks are maintained in the system: a
busy stack and an unused stack. When a task is scheduled
for execution, a TIDB is allocated from the unused stack
and threaded onto the busy stack according to priority
level.

. . . ·-- .. - ~~.. ·- . ·- . ··-

'

REENTRANT SUBROUTINES
The user c:an write a reentrant subroutine and add it to the
VORTEX nucleus. RTE service requests ALOC and DEALOC
interface between a task and a reentrant subroutine.

A task calls a reentrant subroutine via an ALOC request
that allocates a variable-length push-down reentrant stack
with the external name VSCRS. The reentrant subroutine
address is specified in the ALOC calling sequence. The first
word of the reentrant subroutine contains the number of
words to be allocated.

A reentrant stack generated by the ALOC request has the
format :

--o A Reerst•

l 8 R11rst•

2 X R .. ister

3 Of P Rec•s••

Pomter to PrWtOYS R~tr.nt Sladl

Avaolable tot R~tr•nt Subrout,_

• •

• •

• •

n •

CODING AN 1/0 DRIVER

The IOC (section 3) activates l / 0 drivers. When a user task
makes an l / 0 request, it executes a JSR VSIOC,X
instruction with VSIOC containing the IOC entry address.
IOC then makes validity checks on the parameters
specified in the request block (RQBLK) that immediately
follows the JSR instruction. IOC queues RQBLK to the l / 0
driver controller table (CTBL). and activates the corre·
sponding controller-table TIDB. The TIOB contains the
entry address for the l / 0 driver. To determine the proper
CTBL and corresponding TIDB, IOC obtains the logical-unit
number from RQBLK. By referring to the logical-unit table
(lUT), IOC then finds the device assigned to that logical
unit. Each device has a device specification table (DST)
associated with it, and each DST has a corresponding
controller table.

l/0 Driver System Functions

Each 110 driver under IOC performs certain system pre­
and post-processing functions.

Pre-interrupt proeessinr. If the l/0 driver uses a BIC, the
driver calls VSBIC with the X and A registers set to the
initial and final buffer addresses respectively to build and
execute the initial BIC transfer instruction. If the BIC is
shared, the interrupt line handler is modified to the proper
interrupt event word setting (TBEVNT) and TIDB address.
V$BIC performs this modification if the word immediately
following the call (JSR V$BIC,B) is nonzero, since this is
assumed to be the interrupt event word setting. If ,tt is zero,
no line handler modification is performed. The l/0 driver
clears the interrupt event word (TBEVNT) in the controller
TIDB immediately preceding a DELAY (type 2) call. To wait
for an interrupt, the l/0 driver executes a DELAY (type 2)
call with a time-out. The return to the driver, either from a
time-out or interrupt is to the address immediately
following the call. The contents of the X register is not
restored followirlg a DELAY call but the A and 8 registers
are. Executing a TXA immediately preceding and a TAX
following the OELA Y call X restores the value in the X
register .

Interrupt processing: The driver clears the time-delay flag
(TBST bit 6) set by the OELA Y call, and checks TBEVNT to
determine if an interrupt occurred (TBEVNT • 0 indicates
a time-out). Following the interrupt processing, the driver
clears TBEVNT and calls OELA Y (type 2) for the next
instruction.

15

. . . -- ·- --.----------· ·- -· .. -· -·~ - '.-- · ' ·---· _.. . .. "'

'
I

'

' I . I

I
•

•
I

;
!

I
I
I
•

..

•

SECTION 13
SYSTEM GENERATION

The VORTEX system-generation component (SGEN) tailors
the VORTEX operating system to specific user require­
ments. SGEN is a collection of programs on magnetic tape.
punched cards. or disc pack. It Includes all programs (ex­
cept the key-in loader) tor generating an operating VORTEX
system on an RMD.

The block diagram below shows the data flow through
SGEN.

ORGANIZATION

SGEN is a four·phase component comprising:

• l/0 interrogation

• SGEN directive processing

• Building the VORTEX nucleus

• Building the library and the resident-task configuration

l/0 interrogation specifies the peripherals to:

a. Input VORTEX system routines (LIB unit)

b. Input user routines (Al T unit)

c. Input SGEN directives (DIR unit)

d. Output the VORTEX system generation (SYS unit)

e. list special information and input user messages (LIS
unit)

DIR INPUT UNIT LIB INPUT UNIT AL T INPUT UNIT

•

System Generation Library User Routines
SGEN DIRECTIVES

(Object modules and con- (ObJect modules and
trol records) control records)

.

\I

~ SGEN ROUTINES . ~
.

/7
.._

\]
-

~ \)
. .

VORTEX . .. '

FOREGROUND BACKGROUND
) . ' {

USER : ~. . . . ~ :
NUCLEUS

.. · r·; v · -cY' .. ' . .. "-~ - • • I '

LIBRARY LIBRARY LIBRARIES
(And system
initializer)

SYS OUTPUT UNITS

SGEN Data Flow

16

• •• 4 __ --·---.... ·-·· · ~ .. ~ ·--.. ... ~· · - - • • -~ .. ~-··-,--. · ~· • • • • • . . · · ~·•.... ·--- . .. ·-·· - ·

. .

SECTION 14
SYSTEM MAINTENANCE

The VORTEX ayatem-malntenance component (SMAIN) is
a background task that maintains the ayatem-generaUon
library (SGL). The SGL comprises all object modules and
their related control records required to generate a gener­
alized VORTEX operating system (see block diagram
below).

SYSTEM-MAINTENANCE DIRECTIVES

This section describes the SMAIN directives:

•
•
•

•
•
•
•
•

IN
OUT
All

ADD
REP
DEL
LIST
END

LOGICAL UNIT
SPECIFIED BY

Specify input logical unit
Specify output logical unit
Specify output logical
unit for new SGL items
Add items to the SGL
Replace SGL items
Delete items from the SGL
List the old SGL
End input of SMAIN directives

SYSTEM INPUT
(SI)

LOGICAl UNIT

SMAI N DJREC·
liVE INPUT

SMAIN DIRECTIVE IN

I
OLD SYSTEM
GENERATION
LIBRARY (SGL)

I

\ 1.

LOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE AL T

I NEW OBJECT
MODULES AND t-----~
CONTROL

\RECORDS
\

SMAIN

SMAIN - directives begin in column 1 and comprise
sequences of character strings having no embedded
blanks. The character strings are separated by commas (,)
or by equal signs (-). The directives are free·form and
blanks are permitted between the individual character
strings of the directive, i.e., before or after commas (or
equal signs). Although not required, a period (.) is a line
terminator. Comments can be inserted after the period.

The general form of an SMAIN directive is

name,p(l),p(2), ... ,p(n)

where
name

each p(n)

SYSTEM O UTPUT
(SO)

LOGICAL UNIT

ERRO R MESSAG ES
AND RECOVERY

is one of the directive names given
above (any other. character string
produces an error)

is a parameter defined below under
the descriptions of the individual
directives

lOGICAL UNIT
SPECIFIED BY
SMAIN DIRECTIVE OUT

NEW SYSTEM
GENERATION
LIBRARY (SGL)

SGL AND SMAIN
DIRECTIVE
LISTINGS

. . .. ·--·----- .. - _. ,. _

LIST OUTPUT
(LO)

LO GICAl UNIT

SMAIN Block Diagram

. -.

17

·-

'
1 . .

SECTION 15
OPERATOR COMMUNICATION

The operator · communicates with the VORTEX system
through the operator communication component by means
of operator l<ey·in requests input through the operator
communication (OC) logical unit.

DEFINITIONS

An operator key-In request is a string of up to 80
characters beginning with a semicolon. The request is
initiated by the operator and is input through the OC unit.
An operator key-in request is independent of l/0 requests
via the IOC (section 3) and, hence, is known as an
unsolicited request.

The operator communication (OC) logical unit is the logical
unit through which the operator inputs key-in requests.
There is only one OC unit in the VORTEX system . . Initially,
the OC unit is the first Teletype, but this assignment can
be changed by use of the ;ASSIGN key-in request.

.
OPERATOR KEY-IN REQUESTS

This section describes the operator key-in requests:

•
•
•
•
•
•
•
•
•
•
•
•

;SCHED
;TSCHED
;ATTACH
;RESUME
;TIME
;DATE
;ABORT
;TSTAT
;ASSIGN
;DEVON
;DEVUP
;JOUST

Schedule foreground task
Time-schedule foreground task
AHach foreground task to PIM line
Resume task
Enter or display time-of-day
Enter date
Abort task
Test task status
Assign logical unit(s)
Device . down
Device up
list logical-unit assignments

'

The general form of an operator key-in request is

where

•

;request,p(l),p(2), •... ,p(n)cr -
request

eachp(n)

cr

is one of the key-in requests listed above
in capitalleHers

is a parameter defined under the
descriptions of the individual key-in
requests below

is the carriage return, which terminates
all operator key-in requests

Each operator key-in request begins with a-semicolon (;)
and ends with a carriage return. Parameters are separated
by commas. A backarrow (-) deletes the preceding
character. A backslash (\)deletes the entire present key-in
request.

18

.... - ---- - - --- · - ··- ·- _ · ~ - _.._._._ ·-

The table below shows the system names of physical l/0

devices as used in operator key.-in requests.

Physical l/0 Devices

System Name Physical Device

Dummy

'

DUM

CPcu

CRcu

CTcu

Dcup

LPcu

MTcu

PTcu

TYcu

Clma, COma

-.

Card punch

Card reader

Cathode ray tube (CRT) device

Rotating-memory device (RMD)
(disc/ drum)

line printer or Statos-31

Magnetic tape unit

High-speed paper tape reader I

-
Teletype printer I keyboard

Process l / 0

NOTES

c - Controller number. For each type of device,
controllers are numbered from 0 as required. -
u - Unit number. For each controller, units are
numbered from 0 as required (within the
capacity of the controller).

•

cu can be omiHed to specify unit 0 controller 0,
e.g., CROO or CR.

p - Partition letter. R~D partitions are lettered
from A to T as required to refer to a partition on
the specified device, e.g., DOOA.

~ ·-- ·-- . '

'

. -

SECTION 16

OPERATION OF THE VORTEX SYSTEM

This section explains the operation of devices in the
VORTEX system, the loading of the system bootstrap and
procedures for changing and initializing the disc pack
during VORTEX operation.

SECTION 17
VORTEX PROCESS INPUT /OUTPUT

INTRODUCTION

VORTEX supports a number of VDM devices which are used
in industrial applications for a wide range of monitor and
control purposes. These devices are called 'Process Input/
Output• devices and are listed below:

VDM Model Description

70-8310 and -8311 Digital Output Module

70-841 0 and -8411 Digital Input Module

70-800x and -801 x Analog to Digital

70-8020 and -8021 Converter / Multiplexor
70-802.2 and -8023

70h821x, -8220, and Digital to Analog Module
-8221

The VORTEX Support Library includes a number of subrou­
tines with FORTRAN calling sequences defined by the
Instrument Society of America (ISA), which are useful for
input, output, and manipulation of process data.

SECTION 18
WRITABLE CONTROL STORE

The Writable Control Store (WCS) option extends the
Varian 73 processor's read·only control store to permit the
addition of naw instructions, development of microdiagnos·
tics and optimal tailoring of the computer system to its
appl ication. Unlike the read·only control store, which
contains the Varian 73 standard instruction set and cannot
be altered, the WCS can be loaded from main memory
under control of certain 1/ 0 instructions. The capabilities
of WCS give the user more complete access to the resources
of the Varian 73 computer system.

Supporting software for the WCS includes the following:

• Microprogram assembler MIDAS

• Microprogram simulator MICSiM

• Microprogram utility loader and diagnor .
..11c MIUT ll

All software for microprogram developmr
VORTEX. tnt operates under

~ . . -

SECTION 19

ERROR MESSAGES

This section comprises a directory of VORTEX operating
system erior messaaes. arranaed by VORTEX component.

ERROR MESSAGE INDEX

Except for the lanauaae processors (section 5), VORTEX
error messaaes each begin with two letters that indicate
the correspondine component:

Messaaes
bee inning Are from
with: component:

CM Concordance program
DG Debugging program
EX Real-time executive
FM File maintenance
10 l/0 control
IU l/0 utility
JC Job-control processor
LG load·module generator
MS Microprogram simulator
MU Microprogram utility
NC VT AM Network control
oc Operator communication
RP RPG IV Compiler
RT RPG IV Runtime/loader
SE Source editor
SG System generator
SM System maintenance
• DAS MR assembler

The entire VORTEX system provides many services of
which only some are initiated by specific requests from
the user. Other services are automatic without the user's
Intervention. Automatically, VORTEX gives efficient man­
agement of memory, handling of errors such as power
failure, and scheduling the use of the processor. To a user.
such as a programmer writing In FORTRAN, these activities
are transparent. Applications written in higher level lan­
guages have their storage assigned by VORTEX, so actual
physical addresses are not the programmer's concern. For
the user of VORTEX, this means simplified programming
and operating of the system. Tho complexity of VORTEX
underlies !!'.e smooth operation of many concurrent tasks
B_!'.j efficient use of the system's resources.

Additional information about using VORTEX for your com­
puter applications can be obtained from sales offices of
Va!"=,an Data Machines.

19

--··-----·---·-- - · --··- . --· ·-- -- ~-~ _. ... _ --- - . . . - .
... - ·- ·-·-- ---·· __ , .. ___ _.. _... --- .. ·- ... - . . ·-· . - . -· . .

• .
•
I .
I

I

•

I
'
I
• •

• •
' I
'

	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0001
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0002
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0003
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0004
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0005
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0006
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0007
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0008
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0009
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0010
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0011
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0012
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0013
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0014
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0015
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0016
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0017
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0018
	XXXXXXX-Varian-A_Guide_To_Vortex_Operating_System-UNDATED-page0019

