
VENIX Kernel Response Time

Technical Memorandum
VenturCom, Inc.

June 1984

Kernel Performance Measurements
We have run several tests which we use to estimate several critical kernel performance
parameters. The results are present below.

The tests were small 'C' language programs which exercised certain sequences of sys­
tem calls. The source listings for the tests are included as an appendix to this
memorandum.

System Call Overhead
The first test ("simsyscall") determines the intrinsic overhead in executing a system
call, by measuring the rate at which a user process can enter and leave the kernel. It
is essentially the same as the test run by David Fiedler (in the UNIX newsletter
Unique) which is presented in the last page of the VenturCom document "A Series of
Benchmark Tests".
The results we obtained for the "simsyscall" test are:

Processor

80186 (8 MHz)
8088 (4. 77 MHz)
LSI 11/23

Average Interrupt Latency

System Call Overhead

0.36 ms
0.82 ms
1.10 ms

The system call overhead shown above is useful in calculating an average interrupt
latency. We estimate that one half of the system call overhead on the 8088 and 80186
is the time taken inside the kernel to set up and dispatch the system call, while the
other half is the time taken on the two stack switches and register save/restore
sequences per call. The average interrupt latency is the time taken to switch from
user mode to a kernel inteiTupt routine. Since this involves only a single stack switch
and register save/restore sequence, it should represent approximately one fourth the
total system call overhead for these two processors. This leads to:

Proces:;or

80186 (8 MHz)
8088 (4. 77 MHz)

Average Interrupt Latency

0.1 m;
0.2 m;

On the 11/23, the system call overhead must be interpreted somewhat differently, so
the calculation to produce interrupt latency is not so straightforward. We estimate
about 0.1 ms average interrupt latency for that processor.

- 1 -

Kernel Response Time

Latency may be worse for interrupts which occur while the processor is executing cer­
tain critical code regions in the kernel where interrupts are locked out.

Signalling Time
The next test ("simsig") uses a program which sends a signal to itself, catches the sig­
nal, resets the signal catch mechanism, and returns. For each loop, two explicit system
calls (kill() and signal()) and one effective call (the signal catch) take place. The times
per loop of this test are:

Proces&>r

80186 (8 MHz)
8088 (4. 77 MHz)
LSI 11/23

Signal Time

1.2 ms
3.1 ms
4.6 ms

Kernel Processing

.2 rns

.6 ms

.7 ms

The "kernel processing" column indicates the time per loop actually spent by the kernel
processing the system call. It is calculated by taking the "signal time" and deducting
the system call overhead (as calculated above) for the three system calls per loop.

Context Switching Time
The last test measures the same sequence as the previous test, but the signal is sent
between two processes. This forces context switching. The results of this test are:

Processor

80186 (8 MHz)
8088 (4. 77 MHz)
LSI 11/23

Loop Speed

5.4 ms
16.4 ms
13.5 ms

Context Switch

1.5 ms
5.1 ms
2.2 ms

On every loop, each process runs once and signals the other: there are two signals, and
two context switches. Thus the overhead of the two context switches may be
estimated by taking the "loop speed" and deducting twice the previously calculated
"signalling time". This number is divided by two to determine the time of a single con­
text switch, which is shown in the table above.

These results can be used to estimate the interval between the end of the interrupt and
the beginning of a new process. For example, on the 8 MHz 80186, the following
values would be added:

.1 ms
??

1.5 ms
.1 ms
??

(interrupt latency)
(device-dependent interrupt handler)
(context switch time)
(return to new process)
(effects of 8087 floating point coprocessor)

Note: the 8 088 and 80186 context switch times were measured on units without the
floating point coprocessor, and so do not reflect the time needed to save/restore that
chip's registers or the latency waiting for it to complete an operation. The presence of
an 8087 produces a measurable but not major change in the times. The 11/2 3 bench­
marks do include floating point coprocessor times.

- 2 -

I*

Kernel Response Time
Appendix - C Test Routines

* simsyscall

*
-Calculate the time to do a ''getuid'' system call.

*
*
*
*
*I

This calculates the time to do a simple system call without
any arguments and without any kernel processing. It reflects
the intrinsic overhead to do a system call; time to switch from
'user' to 'kernel' context and dispatch the call.

/Ide fine NLOOP 10000L I* no. of iterations for good statistics *I

main(){

I*

register unsigned int i = NLOOP;

while(i--)
getuid();

display("'getuid' system call",NLOOP);

* simsig - Send and catch a signal to oneself.

*
* *I

fldefine NLOOP 10000L

long loop = NLOOP;

func(){

}

main(){

signal (1, func);

register int pid;

pid = getpid();
signal(1,func);
while(loop--)

kill(pid,1);

I* no. of iterations for good statistics *I

display("simple kill-catch-signal",NLOOP);
}

Kernel Response Time

I*
* twosig - Send and catch a signal between two processes •
•
*
*I

fide fine NLOOP 2000L

int pid;
int loop = NLOOP;

func(){

}

main() {

signal(1,func);
if(loop--)

kill(pid,1);

register int i;

pid = getpid();
signal(1,func);
if((i = fork()) == 0){

while(loop)
pause ();

exit(0);

pid = i;
kill(pid,1);
while(loop)

pause();
wait(O);

I* no. of iterations for good statistics *I

display("two process catch-signal-kill loop",NLOOP);
}

Kernel Response Time

I*
* display - printf the average time to do a 'loop'.
*I

//define HZ 60L

struct tbuffer {
long p_u_time;
long p_s_time;
long c_u_time;
long c_s_time;

} buf;

display(msg,loop)
char *msg;
long loop;
{

long total, 1;

times(&buf);
total = buf.p u time + buf.p s time + buf.c u time + buf.c s time;
1 = (total*100000L)IloopiHZ;
printf("%s : %D.%02D ms per loop.\n", msg, 11100, 1%100);
printf(" System %D%%, user %D%%, child sys %D%%, child user %D%%\n",

buf.p s time*100Litotal, buf.p u time*100L/total,
buf.c=s=time*100Litotal, buf.c=u=time*100L/total);

