

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor

Cover Design
The DECchip 21064, the fzrst implementation
of Digitalk Alpha AXP computer architecture,
is the world's fastest single-chip micropocessolr
Represented on our couer by the RrlP logo, the
DECchip takes its phce among sywzbols of other
dewices from computing history, including
the vacuum tube, apuncb card, sketches of
Bubbagek Analytical Engine, a wheel from the
~aciculke, and an abacus.

The cover was aksi~ned by Deborah Fulck oJ
Digital's Corporate Human Factors Group ,with
the help of Knzn Design.

Circulat ion
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Product ion
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald 2. Harbert
Richard J. Hollingsworth
Alan G. Nemeth
Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

The Digital TecbnicalJoutnnl is published quarterly by Digital Equipment Corporation,
146 Main Street ML01-3/B68, Maynard, Massachusetts 01754-2571. Subscriptions to the

Journal are $40.00 for four issues and must be prepaid in U.S. funds. University and col-
lege professors and Ph.D. students in the electrical engineering and computer science
fields receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technical./ournal at the published-by address.
lnquirks can also be sent electro~ically to D T J ~ C R L . D E C . C O M . S ~ ~ ~ I ~ copies and back
issues are available for $16.00 each from Digital Press of Digital Equipment Corporation,
1 Burlington Woods Drive. Burlington, ,MA 01830-4597

Digital employeesmay send subscription orders on the ENET to RDVAX:,JOURNAL
or by interoffice mall to mallstop ML01-3/B68. Orders should include badge number,
site location code, and address. All employees must adv~se of changes of address.

Comments on the content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright O 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the Jortrnnl.

Documentation Number EY-J886E-DP

The following are trademarks of Digital Equipment Corporation: ACMS, ALL-IN-1, Alpha
AXE the AXP logo, AXT: DEC, DEC 3000 AXE DEC 4000 AXI: DEC 6000 AXI: DEC 7000 AXp
DEC 10000 AXl? DEC DBMS for OpenVMS, DEC Fortran, DEC OSWl AXE DEC Pascal,
DEC RAL1.Y- DEC Rdb for OpenVMS, DECchip 21064, DECnet, DECnet for OpenVMS &XI:
DECnet for OpenVMSVAX, DECnet/OSI, DECnet-VAX, DECstation, DECstation 5000,
DECwindows, DECWORLD, Digital, the Digital logo, DNA, OpenVMS. OpenVMS AXI:
OpenVMS RMS OpenVMS VAX, PDP-11, Q-bus, Thinwire, TURBOchannel, IJLTRM, VAX,
VAX-11/780, VAX 4000, VAX 6000, VAX 7000, VW 8700, VrLv 8800, VAX 10000, VAX Fortran,
VAX Pascal, VMS, and VMScluster.

CMY-I is a registered trademark of Cray Research, Inc

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines, Inc.

LSI Logic is a trademark of LSI Logic Corporation

Macintosh is a registered trademark of Apple Computer, Inc.

MIPS is a trademark of MIPS Computer Systems, Inc.

Motorola is a registered trademark of Motorola, Inc.

OSWl is a registered trademark of Open Software Foundation, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of the Standard
Performance Evaluation Cooperative.

SPICE is a trademark of the University of California at Berkeley

UNIX is a registered trademark of UNM System Laboratories, Inc.

Windows and Windows NT are trademarks of Microsoft Corporation.

Book production was done by Quantic Communications, Inc

Contents
17 Forauord

Robert M. Supnik

Alpha AXP Architecture and Systems

19 Alpha AXP Architecture
Richartl L. Sites

35 A 200-MHz 64-bit Dual-issue CMOS Microprocessor
Daniel W Dobberpuhl. Richard T. Witek. Randy Allrnon. Robert Anglin,
Davitl Bertilcci. Sharon Britton, Lintla Chao, liobert A. Conrad, Daniel E. [)ever,
Bruce Gieaeke, Soha M.N. H;lssoun, Gregory W. Hoeppnel; KathrynKuchler,
Maureen Ladtl, Burton M. Lear): Liam Madden, EtlwardJ. McLellan, Derrick R. Meyer,
James Montanaro, Donald A. Priore, Vidya Rajagop:~l;~n, Sridhar Sarnucl~~l;~,
and Sribal:~n S;lnrIianam

51 The Alpha Demonstration Unit: A High-performance
Multiprocessor for Sopware and Chip Development
Charles I? Thacker, David G. Conro!: ;lnd Lawrence C. Stewart

66 The Design of the DEC3000 AXP Systems, Two High-performance Workstations
Todd A. I)i~tton, Daniel Eiref, Nlrgh R . K~rrth,JnmesJ. Reisert, ant1 Robin I,. Ste~vart

82 Design and Performance of lhe DEC 4000 AXP Departmental
Server Computing Systems
Barry A. M;~skas, Stephen E Shirron, and Nicholas A Wlrcliol

100 Technical Description of the DEC 7000 and DEC 10000 AXP Family
Brian R. Allison and Catharine van Ingen

1 11 Porting OpenVMS from VAX to Alpha AXP
Nancy P Kronenbrg, Thomas R. Benson, Wayne M. (hrtloza, Ravindran J;~jian~~atlian,
ant1 BenjaminJ. Thomas I l l

12 1 The GEM Optimizing Compiler System
Davitl S. Hlickstein, Peter W Craig, <:aroJine S. Davidson, R. Neil Riman,Jc, Kent D. <;lossop,
Richartl H. Grove, Steven 0. I-lobbs, and William H. Noyce

137 Binary Translation
Richard L. Sites, Anton Chernoff. Mattliew B. Kirk, M;~urice P Marks, and Scott (;. Robinson

153 Porting Digital's Database Management Prodzrcts to the Alpha AXP Platforrn
Jeffrey A. Coffler. Zia Mohatnecl, and I'eter M. Spiro

165 DECnet for OpercVMS AXP: A Case History
James V. (:olombo, Pamela). Rickard, ant1 Paul Benoit

181 Using Simzrlation to Develop and Port SoJfu)are
George A. 1):lrcy 111, llonaltl F, Rrcntlel; SrcphenJ. Morris, ;~ntl ~Michacl V. IIcs

AIpha AXP Program Management

193 Enrollment Management, Managing the Alpha AXP Program
Peter E Conklin

I Editor's Introduction

Jane C. Blake
Editor

'T'his special issue of tlie Digit~ll Teclnrlical Jourf1crl
presents the computer architecture that Digital
believes will become the universal platform for
computing over the next 25 years. A signific;uit
~liilestone in the comp;cny's history the i\lplia A S P

architecture arises out of Digital's extensive etigi-
neering experience antl puts into place a cohesive,
.I'lexible framework for high-perform:~nce 64-bit
IlISC computing. This issue contains papers repre-
sentative of the scope of tlie program across
Digital's Engineering organization, including hartl-
\\?;Ire systems, a n operating system, compilers,
binary tr;~nslators, network ant1 database software,
and simulators.

The results of the engineering efforts cliscusscd
in these papers reflect three primary goals fix
tlie Alpha AXI' architecture: high performance,
longevit!; and e;~sy migration from tlie 32-bit VAX

VMS computer line. Dick Sites, one of the chief
Alpha AXl' architects, 1i;rs written a definitive p;cper
th;lt explains how key architectural decisions were
made relative to the gonls. He reviews the similari-
ties and differences between the U P ;rrcIiitecti~re
and other RIS<: ;crchitectures, ant1 then presents
details of-' the design, including data and instruction
formats. In his conclusion, he projects evolutionary
c1i:lnges in the ;~rchitect~lre antl the resultilig per-
formance increases of a thous;~~idfold over tlie next
25 years.

'The first implementation of the Alpha t1XP arclii-
tecture i.4 tlie I>EC:chip 21064 microprocessor, which
can execute up to 400 million operations per
secontl. I)an L)obberpuIil ancl members of the
Alpha chip team offer an overview of the CMOS pro-
cess tech~~olog)! the chip micro;~rchitect~~re, ant1
the external interface. They tlieti detail the circuit
implementation ancl explain the design choices
directed toward meeting architectural performance

req~~irements :~nd to allow :~pplication flexibility
The result of their design efforts is a microproces-
sor that operates at speeds up to 200 MHz-the
fastest commercially available chip in the industry

Early implementations of this chip became part of
a prototype system, the Alpha Demonstration Unit.
As Chuck Thacker, Dave Conro): and Larry Stewart
explain in their paper, the prototype servecl the
overaII Alpha ,tYl' program by giving software devel-
opers early access (ten months) to AXP-compliant
hardware. Because of tlie architectural emphasis on
multiple processors, prototype designers focused
on delivering a robust multiprocessing system. The
;iuthors tliscuss the significance of tlie choice of a
backplane interconnect for a multiprocessor, corn-
pare different ;ipproaches to cache coherence, ancl
describe the system modules and packaging.

With constraints different from those of the pro-
totype, the li;~rdware procloct projects are repre-
sentetl here b), three different implementations:
desktop, departmental, and data center systems. In
the desktop area, the I>EC 3000 U P family of work-
stations are balanced u~iiprocessor syste~ns. Totlcl
Dutton, Dan Eiref, Hugh Kurth. Jim Reisert, and
Iiobin Stewart review tlie rlecision to replace the
traditional common system bus with a crossbar
system intercontiect constructetl of ASI(:S. This new
interconnect allorved the designers to meet the
goals of Low memory latency, high memory band-
width, ;~nd ~>i i~ i i~nal (:I'll-I/O memory contention in
a cost-competitive manner.

The I>EC 4000 AXI' system is a tlepartmental
server that iniplements the IEEE Futurebus+ stan-
tlard. Barry Maskas, Stephen Shirron, and Nick
Wrcliol present tlie reasoning behind the system
architecture antl technology decisions that resulted
in the ;~chievement of optimized uniprocessor per-
form;ince, tlu;rl-l>rocessor symmetric multiprocess-
ing, and baJ;uiced 1/0 tlirouglipi~t. lletnils of the
subsystems that make up this expanditble modular
system are also provitled.

'The I)EC 7000 ant1 I>E<: 10000 systems are po\ver-
fill niitl-rangc and ~ii;~inframe platforms intended
for large commercial applications ancl clesigned to
utilize multiple hiti~re generations of the DECchip.
Described by Brian Allison ancl (:;~tl~arinc van
Ingen. tlie heart of these systems is a high-perfor-
mancc interconnect that allows communic;~tions
between multiple processors, memory arrays, and
I/O subsystems. The ;~uthors revie131 e;ich of the
modules and the I/() subsystem design, which
includes interfaces for SMI and Futurebus. Notably,
;I 32-bit \'AX <:I '~I ~iiodule has been designetl to tlie

reqi~irements of the higli-performance system
interconnect. Users who wish to migrate from the
VAX system to Alpha U P neetl only swap module
boards.

Migration to Alpha tU(P from other architectures,
in particular from VAX VMS, is one of the major goals
set by the Alpha architects. Existing software-
operating systems, languages, programs-must be
adapted to run effectively on 64-bit RISC systems. A
paper by Nancy Kronenberg, Tom Benson, Wavne
Cardoza, Ravintlran Jagannatlian, ant1 Ben Thomas
addresses the ch;~llenges of porting the OpenVMS
operating system-originally eleveloped specifi-
cally for 32-bit VAX systems-to Alpha A X P systems.
To deal with the huge amount of code, the project
team developecl a compiler that treats VrLY ,assembly
langiiage (VLY MA<:RO-32) as a source language to be
compiled. The authors also cliscuss the major arclii-
tectural differences in the kernel, performance, and
some future directions for tlie system.

The GEM compiler system is the technology
Iligjtal is using to build state-of-the-art compiler
products. <;E>I is describetl here by David
Blickstein, Peter Craig, Caroline Davidson, Neil
Faiman, Kent <;lossop, Rich Grove, Steve Hobbs,
and Bill Noyce. A significant achievement in the
clevelopment of this compiler i s that a single opti-
mizer is used for all languages and platforms.
Developers of compilers will find in-tlepth informa-
tion i n the ;~i~tIiors' disc~~ssions of optin~izatio~i
techniques, code generation, compiler engineer-
ing, and future enhancements.

Binary translation is another rne;ins of moving
cornplex software applications from one architec-
ture and operating system to another architecture
and operating system. Two binary translators are
the subject of a paper by Dick Sites, Anton Chernoff,
M;~ttliew Kirk, Maurice Marks, ~111cl Scott I<oobinson.
The authors discuss the alternatives to translators,
performance issi~es, and tlie development of the
tr:unslators, VEST nntl mx, antl the complementary
run-time environments. VEST tr;inslates OpenVMS
\'hY images to OpenVMS images. and mx trans-
lates ULTRIX/MII'S images to DEC OSWI AXP images.

An easy migration path to Alpha A.XP for two
database rnali;lgement systems usecl in large com-
mercial applications is the subject of a paper by Jeff
Coffler, Zia Moh;~mecl, and Peter Spiro. Tlie authors
define the issues involved in por~ing tlie complex
W DBMS and Rdb/VivlS proclucts to the tutP plat-
form. Adding to the challenge but balanced by its
advantages was the decision to have a common
source, or single code, base. The authors review

this design approach and provicle tletails of tlie
individi~al porting efforts.

The process of porting l)C<:nct-VKX to the
OpenV1\1S operating system is described by Jim
Colombo, Pam Rickard, and Paul Benoit. They dis-
cuss the DECnet features supported in the operat-
ing system, tlie softm~are techniqi~es used, and the
importance of the clecisio~i to build common code
for the VAX and Alpha IU;P sjSsterns. The autliors
share details of the port ancl lessons learned that
can be applied to tiiture porting efforts.

Complementary to the previously mentionecl
prototype hartlware system are h)ur software simu-
lators that enabled engineers to tlevelop softw;ire
for Alpha U P concurrently with harclware develop-
ment. Described by George Darcy Ron Brendel;
Steve Morris, and Mike Iles, the M;ln~iequin si~nu-
lator was i~setl by the OpenvivlS group to boot
the entire operating system and clebug utilities;
the ISP simulator was used by the l)EC oSF/ l group
with similar success. A major section of the paper
focuses on the Alpha User-niotle Debugging Envi-
ronment in which user-mode code being devel-
oped for Alpha . U P platforms c;un be compiled and
executed as N11h;l ILYP code.

Tlie closing paper is an uni~si~al one for tlie
Jo~lrnnl because it addresses engineering manage-
ment, not strictly technical issues. Peter Conklin
offers insights into the reasons for the success of
one of the largest engineering programs untler-
taken in the intlustry. He defines tlie enrollment
management rnoclel used for tlie Alpha U P pro-
gram and explains key concepts, i~icluding the
program office ;~n(l project "cusps."

The editors are very gratefill for the help of Hob
Supnik, Vice I'resident and (:o~-porate Consultant.
in planning this special issue ;inti for writing its
Foreword.

We are also pleased to note that four papers
in this issue ;ire being copulAislied with tlie
Co1?~1?z~117ications of the ACII, including those o n
the Alpha ASP architecture, the Alpha Demon-
stration Unit, OpenvhrS~XP, ant1 binary translation.
Barbara Watterson from Digital's semiconductor
organization; I>i;rne Crawford, Executive Eclitor of
the CACM; the I>TJ editors; anel the ;ii~tIiors cooper-
ated so that these inforni;~tive papers coultl be
niacle available to ;I broad technical audience.

Biographies

Brian R. Allison Hrian Allison is a senior consultant engineer for Digital's
mid-range VAX/Alpha AXP systems groi~p ant1 is the stem architect responsible
for the coordination of the VAX a~lcl DE<: 7000 ant1 10000 system definition and
design. Prior to this work, he served as system architect for the Vr\X 6000
product. Brian holcls a B.S.E.E. and a B.S.C.S. from Worcester Polj~echnic Institute
(1977).

Randy Allmon After receiving a B.S. tlegrce in electrical engineering from
the University of Cincinnati, Randy Allmon joined Digital in 1981. As a circuit
designer in the Semiconductor Engineering Group, he has contribt~ted to the
development of numerous high-performance <:Mas processors. Currently,
Randy is responsible for the technical tlesign and manilgernent of :I next-genera-
tion processor based on the Alpha AXP architecture. He is the coauthor of four
high-performance processor papers given at ISSC<: and has one patent pentling.

Robert Anglin Robert Anglin received S.B. and S.M. degrees in electrical engi-
neering in 1989 from the M;lssachusetts Institute of Technology. In the same
year, he joined Digital's Semiconductor Engineering Group. where he has
worked on the design of high-perform:~nce microprocessors. Robert is a niem-
ber of Signla Xi. He is currently pursuing an M.B.A. degree at Harvard University.

Paul Benoit Paul Senoit is a]?rincipnl software engineer in the Networks and
Communications Group. He is the project/technical leader for tlie DECnet for
OpenVMS AXP project; the team receivecl an Alpha Achievenient Award for early
completion of project commitments. Previous to this, Paul led the DECnet-VAX
Phase 1V effort. He holds an M.S.S.E. (1991) from Boston University and a H.S.C.S.
(1986) from the llniversity of Lowell. Paul is a member of ACM anti IEEE

Computer Society.

Thomas R. Benson A consulting engineer in the OpenVMS AXI' Group, ?i)m
Benson was the project leader ;lnd princip;~l designer of tlie V4X ;Llr\CRO-32 com-
piler. Prior to his Alpha AXP contributions, he led the VhlS UECwindows Fileview
and Session Manager projects and b ro~~gh t the Xlib graphics library to the V,MS

operating system. E;trljel; lie supported ;in optimizing compiler shell used by
several V!\X compilers. Torn joined Digi1;il's VhX U;~sic project in 1979, after
receiving 13,s. ant1 ,M.S. degrees in computer science from Syracuse li~liversit)~, He
has applied for four patents rel;ited to his Alpha AXP work.

David Bertucci David Bertircci received ;I B.S.E.E. degree in 1982 from Wayne
State University ant1 an M.S.E.E. degree in 1988 from Michigan State University.
He joined Digital's Semiconductor Engineering Group in 1989 and worlzed o n
advanced (:MOS microprocessor design. Currently, he is employed at Sun
Microsystems, Inc.

David S. Blickstein Principal software engineer David Blicksteill has worked
on optimizations for the GEM compiler system since the project began in 1985.
During that time, he designed various optimization techniques, including induc-
tion variables, loop unrolling, code motions, common subexpressions, base
binding, and binary shadowing. Prior to this, David worked o n Digital's PDP-11
and VAX API. implement:~tions and led the VAX-11 PL/I project. He received a B.A.

(1980) in mathematics from Rutgers College, Rutgers University, and holds one
patent on side effects analysis and anotller on incluction v~riable analysis.

Ronald F. Brender Ron Brender is a senior consultant software engineer,
contribilting to the GEM compiler back-end project in the Software
Development Technologies Group. He has worked on con1,pilers and program-
ming langui~ge definition for Alpha U P , VAX, PDP-11, and PIIP-10 systems, inclutl-
ing Acl;~, FOII'TIWN and HI.ISS. A member of various standards committees since
the mid-1970s, Ron is now responsible for Vi\X and Alpha A X P calling standards.
He joined Digital in 1970, after receiving a P1i.D. in computer and communica-
tion sciences at the University of Michigan.

Sharon Britton Sharon Britton received a B.S.E.E. degree from Boston
Ilniversity in 1983 and an M S.E E degree from the Massachusetts Institute o f
Technology in 1990. She joined Digital in 1983 to work on tlie design and clevel-
opment of 80186-based controllers for read-only and write-once optical disk
drives. Sharon's graduate research involved tlie development o f an integrated
content adtlressable memory system with error detection c;~pability Currently a
member of the Semicontluctor Engineering Group, she is involvetl in the design
ant1 implementation of high-performance CMOS microprocessors.

Wayne M. Cardoza Wayne Cardoza is a senior consultant engineer in the
OpenVMS AXP Group. Sincc joining Digital in 1979, he has worlied in various
areas o f the OpenVMs kernel. \Vdyne was also one of tlie architects of PRISM, an
earlier Digital RJSC architecture; lie holcls several patents for this work. More
recently, Wlyne participated in the design of the Alpha AXP architecture and was
a member of the initial design team for the OpenVMS port. Before coming to
Digital, WAyne was employetl by Bell Laboratories. Wayne received a B.S.E.E. from
Southeastern Massachusetts University ancl an M.S.E.E. from MIT.

Linda Chao Lintl;~ Chao received ;I 1% S E E degree from the i\il;tssacht~setts
Institute of Technology in 1987. Since joining Digital in the Semiconductor
Engineering Group/Atlvancecl llevelopment in 1987, Linda has been engaged in
the design of microprocessors basetl on the Vi\X and Alpha AX1' architecti~res.
She is currently pursuing master's degrees in electrical engineering and nianage-
nient through the MIT Leaclers for illanufirct~~ring 1'rogr;rm.

Anton Chernoff A~iton Chernof'f is ;I member of tlie technic:rl st;rffat Digital
E q u i ~ m e n t Corporation. working in the Alpha t\XP Migration Tools Group. He
joinecl Iligital in 1991, but also worked at 1)igital between 1973 ant1 1981 as proj-
ect le;~der ;rnd developer of the In'-11 ant1 IISTS/E oper;rting systems. Anton spent
1982 through 1991 ;rt L.iant Soft\v;lre Corporation as a senior consulting engineer
in compiler ant1 d e b ~ ~ g g e r tlevelolxnent.

Jeffrey A. Coffler A prjncipal software engineer in tlie 1)at;lbase Syst-enis
Engineering Gro~lp . Jeff Cofl'ler led the effort to port I>IIMS to the Alpha AX1' plat-
form. Prior to this, Jeff worked 011 the DBVS and Rdb b;~ckup/restore facility ancl
on new DBMS fe;itures and ni;rintenance. He is currently working on the project
to port Rclb for OpenVMS to operating systems such as Winclo\vs N'f ant1 OSB1.
He has ;~ l so contributed to the RSTS/E operating system, WPS-I'LIJS porting, ;rntl
workflow nianagernent projects. Jeff joined Digital in 1984 ancl holds a R S<: S

(1981) I'roni Californi;~ State Ijniversity ; ~ t Northridge.

James V. Colombo Project/technical leatler James Colonibo is currently
responsil,le for tlie next rele:rse o f DE(:net/OSI for OpenVMS for the Vr\X :~nd
Alpha A X P computing environments. Prior to this, he lecl the port of DECnet-VAS
Phase Iv to the OpenV,\lS AXI' oper;~ting system; the team received an Alpha
Achievement Aw;~rtl for earl! completion of the project. Jim also let1 the DE<:net
for OS/2 V I .O and v;rrious PIITH\VORKS procluct efforts. Before conling to Digital
in 1983, Jirn worked at Prinle <;ornputer, Inc. and Computer Devices, Inc. He
holtls ;I 1% SC S fro111 Host011 I!niversity ant1 is ;I rnember of lEEE.

Peter F. Conklin Peter Conklin is tlirector of Alpha t\XP Systems Develop-
ment. Since joining Digital in 1969, lie h;ls held engineering nian;rgement posi-
tions in large ant1 small systems and terminals groups, direct hardware :rntl
softw:rre engineering, product management, base product m;~rl<eting, quality
man;~gaiient , ant1 ;rclvancetl development. Peter was the first softw;rre engineer
on the v,\lIS project in 1975, r;rn the \ihS architectirre team, and was instrument;~l
in cleveloping the key architectures ancl protlucts for the ViiX V>lS layerecl prod-
uct set . Peter received an A\.[\. in n1athem;rtics from Marvard University in 1963.

Robert A. Conrad Robert Conrad receivecl a H.S. degree in electrical ant1 com-
puter engineering from tlie 111iiversity of Cincinnati in 1984 ancl n n M.S. degree in
electrical and computer engineering from tlie University of ~ M i i ~ ~ a c h u ~ e t t ~ in
1992. In 1981 he joined Digital's Semicontluctor Engineering Groilp, where he
worked ;IS a co-op student in the Architectilrally Focused Logic Group. Since
1984 Rob has been engaged in the research and tlevelop~lient of VLSl micro-
processors, including thc MicroVAX CPU, a 50-MHz RISC CPU, ;lncl most recently
the DECchip 21064 microprocessor.

David G. Conroy Dave Conroy receivetl a 13.A.Sc. degree in electrical engi-
neering from the University of Waterloo, Canada, in 1977 After working briefly
in industrial automation, Dave movetl to tlie United States in 1980. He cofoundecl
the mark Williams Company and built a successh~l copy of the Iliul>; operating
systerr~. In 1983 he joined Digital to work on the DECtalk speech synthesis
system and related products. In 1987 he became a member of Digital's
Semiconductor Engineering Group, where and has been involved with system-
level aspects of RISC microprocessors.

Peter W. Craig Peter Craig is a principal software engineer in tlie Software
Development Technologies Group. He is currently responsible for the design
ant1 implementation of a tlependence analyzer for use in future compiler procl-
ucts. Peter was a project leader for the VAX Code Generator used in the VrLY C and
VAX PIJI compilers, and prior to this. he cleveloped CPlr perform;~nce simulatioli

I software in the VAX Architecture Group. He received a R . S . E . E . (magna cum
I;lucle, 1982) from the University of Con~~ect ic i~ t ;~nd joined Digital in 1983.

George A. Darcy I11 As a senior software engineer in the Alpha Migration
Tools Group, George Darcy has worked on the Mannequin Alph:~)\XI' sin~ulator,
the VEST' binary translator, and the Translateel 11nage Environment ('l'lE) run-time
library. 111 his ten years at Digital, he has also developed a virtual disk driver for
the OpenVMS V5.0 SMP operating system, soltware behavioral models of a high-
end VAX processor, and various simulatio~i and <:AD software tools. George
receivetl a R.S.C.E. (cum laude, 1984) from Boston Universit): where he was an
Engineering Merit Scholar ancl a member of Tau Beta Pi.

Caroline S . Davidson Since joining Digital in 1981, Caroline I);~vidson has
contributed to several software projects, primarily relatetl to code generation.
Currently a principal software engineer, she is working on the (;EM compiler
generator project and is responsible for tlie areas of lifetimes, storage ;II location,
and entry-exit calls. Caroline is also a project leatler for the Intel cocle generation
effort. ller prior miork involved the VAX FOIITRAN for IJL'I'KIX, VAX Code
Generator, ancl FORTRAN 1V software products. Caroline has a H.S.<:.S. from the
State University of New York at Stony Brook.

Daniel E. Dever 1);ln Dever receiveti a I3 S E.E. degree in 1988 from the
University of Cincinn:iti. He joined Digit;il's Semiconductor Engineering Group
in 1988, where he worked on the tlesign ant1 logic verific;~tion of CMOS V!\X

tnicroprocessors. Since 1990 he has been involved in the design of R1S<; arcliitec-
ture microprocessors, including the floating-point unit of the DECchip 21064
~ ~ i i c r o p r o c e o r Ihln is currently involvetl in the design of integer arithmetic
logic for the next-generation processor b:lsetl 011 the Alpli;~ t\Xll architecture.

Daniel W. DobberpuN Dan Dobberpulil received a I3.S.E.E. degree from tlie
[Jniversity of Illinois in 1067 Subsequent to positions with the Department of
Defense and Ge11er;tl Electric Company, he joined Digital's Sernicontluctor
Engineering Group in 1976. Since that time, he has been active in the design o f
four generations of microprocessors, including the first single-chip PDP-11 and
the first single-chip VAX. Most recently, 1)an was the project leader for the first
\rl.SI implementation of IXgital's new 64-bit Alpha tD(P computing architecture.
He is co;~u t hor of the text, The Desi'yz arld ArznI)!sis of VLSJ Cir-ctlits.

Todd A. Dutton A priticipal hartlw;ire engineer, Totld Dutton was responsible
for the overall design integration and timing verification of the DEC 3000 AXl'

Motlel 500. Prior to this, he led a team in developing vector processor hardware
in the Advanced VAS Development Group. Todd joinetl Digital in 1987 Pre-
viously, he was employed at Xumerix Corporation and at Signal Processing
Systems. Inc. Totltl 1i;ls a 1%.S. degree in computer science from the ~Massachusetts
Institute of Technology and was electetl to Tau Beta Pi. He lioltls a patent on vec-
tor processor technology and has published two papers on vector processors.

Daniel Eiref Dan Eiref joined Digital in 1987 after receiving B.S. and M S .
degrees in electric;il engineering from <:olumbia University. At Columbia he was
electetl to Tau Ret;~ Pi ant1 WAS awartled tlie Steven Abbey O~~tstanding Student-
r~thlete i4m~artl. He is currently attentling Harvard Business School. A principal
hardware engineer, Dan was responsil>le for the design of tlie memory and clock
systems of the l>E(: 3000 AXP Model 500. He also designetl the workstation's
SI.I<:E and rU)l)K ASI<:s. Prior to this project, he worketl as an ECL hardware
tlesigner in the Advancerl VAX Development Group.

R. Neil Faiman, Jr. Neil Fai~n;ln is ;I consultant softw:ire engineer in the
Software Development Technologies <;roi~p. He was tlie primary architect of the
(;EM intermediate I;lnguage and a project leader for the <;EM compiler optimizer.
Prior to this work. he led the BLISS conipilrr project. Neil c;lme to Digital in 1983
from MDSI (now SchIu~~~berger/Applicon). He has B.S. (1974) and k1.S. (1975)
tlegrees in computer science, both from ~Micl~igan State Ilniversity Neil is a mem-
ber of Tau Beta I'i and A<:M, and ;In affiliate member of the IEEE Computer
Society.

Bruce Gieseke Bruce Gieseke received a B.S. degree in electrical engineering
from the University of Cincinnati in 1984. and an M.S. degree in electrical e~lgi-
neering from North Carolina State IJniversity in 1985. In 1986 he joined Digital's
Sen~iconcluctor Engineering Group, where he has been e~lgagetl in the imple-
mentation and circuit clesign of RIS<: microprocessors.

Kent D. Glossop Kent Glossop is ;I princip;il engineer in the Softw;ue
Development ?'ethnologies G ~ O L I P . Since 1987 he h ; ~ s worked on the GEM com-
piler sys te~n, focusing o n code gencr;ition and instruction-level tr;insformations.
Prior to this, Kent was the project leader for a release of the VAX PWI. compiler
and contributed to version 1 of the VAX Performance and Coverage Arxalyzer.
Kent joinecl Digital in 1983 after receiving a B.S. in conipilter science from the
University of Michigan. He is a meniber of IEEE.

R i c h a r d B. Grove Senior consultant software engineer Rich Grove joined
Digital in 1971 ant1 is currently in the Software Develol>ment Technologies
Group. He has led the GEM compiler project since the effort bcg;~n in 1985, con-
tributing to the code generation phases. Prior to this work, Rich was the project
leader for the PDP-11 ancl \(AX F O R T R l N compilers, \worked o n VAX Ada V l , and
was a member of the ANSI X3.13 FOK'I'RAN Committee. He is presently a member
of the clesign team for Alpha AXI' c;illing standarcls and architecture. Rich has H.S.

ancl M.S. degrees in mathematics from C~rnegie-Mellon University.

S o h a M.N. H a s s o u n Soha Hassoun received a H.S.E.E. degree from South
Dakota State University in 1986, ancl all S.M.E.E. degree from the Massachusetts
Institute of Technology in 1988. From August 1988 t o August 1991 she was
employecl at Digital as a custom tlesign engineer in the Semiconductor
Engineering Group. She contributetl to the design of tlie flo;tting-point unit of
the I)E<:chip 21064 processor. Soha was the recipient of a Digital Minorit)r ;in(I
Women's Scholarship in I991 and is pursuing a 1'h.l). degree ; ~ t the IJniversity of
\Vashington, Seattle, (:oniputer Systems Engineering Uepartme~?t.

Steven 0. H o b b s A ~ n e m b e r of the Software Development Technoltigies
Group, Stcven Hobbs is working on tlie GEM compiler project. In prior contribu-
tions at Digital, h e was the project leader for \'AX Pascal. the lead designer for the
global optinlizer in VAX FORTIWN, ant1 a member of the Alpha AXP architecture
design team. Steve received his A.R. (1069) in mathematics at Dartmouth College
and while there, helped develop the original BASIC: time-sharing system. He has
an M.A. (1972) in m;ithcmatics from the Univel-sit). of Michigan and has done
additional graduate work in compiiter science at Carnegie-~Mellon University.

Gregory W. Hoeppner Gregory Hoeppner graduatetl with tlistinction from
I'urtlue IJniversity in 1979. His research topic was ion-implanted optical wave-
guicles. In 1980 he worked at C;ener;~l Telephone ant1 Electronics Researc1.r
L;~bor;itor!: \vilere he performecl basic properties rese;lrch on (;ails for fabrica-
tion of submicrometer FETs. From 1981 to 1992 he helcl ;I number of positions at
Digitill Eqi~ipment Corporation's Nuclson, iLL\ site, including co-implementation
1e;lcler of 1)igit;il's DECchip 21061. He is currentl). emplo!recl ;is a senior engineel-
at III.LI, Adv;~nced Workstation Division.

Michael V. Iles Michael Iles is a senior technology consultant at (he UK Alpha
MI' Migration Centre. Since joining Digital in 1975, Mike has worketl in various
fieltl positions, in Advanced \'AX development :IS iI microcotler, and for VMS engi-
neering as a software engineer. He worked on the migration of OpenVMS VAX to
the Alpha AXl) platform. designing and implemcntillg a user-mode simulation
environment that became AuD. Mike has a B . s ~ . in electrical engineering (hon-
ors. 1973) from City University. Lontlon. and holds a patent for tligital speech
synthesis techniques. Hc has several patents pentling for AriI).

Ravindran Jaga~athan Ravintlran Jaga~inathan is :I principal software engi-
neer in the OpenVMS l'erformance Group currently investig;~ting OpcnVMS ASI '

~nultiprocessing performance. Since 1986, he has worked on perforrn;~nce anal-
ysis ; I I I ~ ch;~r;lcteri~;~tio~i, ;~nd ;~lgoritlim design jn the ;ire;is of OpenVMS ser-
vices, S>IP, \ihXcluster sjwems, ;tncl host-b;~setl volume sh;itlowing. Ravindrian
receivecl a H.E. (honors, 1983) from the University of M;ltlras, Incli;~, and M.S.

degrees (1986) in oper;~tions rese:~rch and st;~tislics ant1 in computer ;rncl sys-
tems engineering from Rcnsselaer Polytechnic Institute.

Matthew B. Kirk Matthew Kirk is ;I senior software engineer in the SE(;/I\I>
kYI) ,Migration Tools Group, where he works o n binary tl.;inslator de\~elopnirnr.
testing, ant1 support. He joined Digital in 1986 ;lnd has also tlqsignccl ;ind clevel-
oped automated architectural test software for pipelined VAX harclw:ire and the
(3 computer interconnect. Matthew holds it 13,s. in computer scicnce (1986)
from the University of Massacl~usetts.

Nancy P. Kronenberg Nancy Kro~ienberg joined Digital in 1978 and has
cleveloped VMS support for several vrV(systems. She designetl and wrote the VklS

CI port clriver ;111d part o f the VkIscluster System Communications Services. In
1988, Nancy joined the team th;~t investigated ;~lternatives to the VAX ;irchitec-
ture ant1 drafted the propos;il for the Alpha /\XI1 ;irchitecture and for porting the
(.)pcn\/.LlS operating sjrstem to it. N;lncy is a senior consulting software engineer
;inti technic;~l clirector for the OpenVhIS t\Xl1 <;SOLID. She holcls ;11i !\.1$, degree in
physics froni <':orncll University

I
Kathryn Kuchler Kathryn Kuchler received a R.S. degree in electrical engi-
neering from Cornell University in 1990. Upon graduation, she joined Digital's
Semiconductor Engineering Group, where she worked on tlie first implementa-
tion of a RISC microprocessor basecl on the Alpha AXP architecture.

Hugh R. Kur th Hugh Kurth joined Digital in 1986 after receiving a R.S.
degree in electrical engineering, computer engineering, and mathematics from
Carnegie-Mellon University. At Carnegie-Mellon, he was elected to Eta Kappa Nu
and was awarded the David Tuma Undergraduate Laboratory Project Award.
A senior hardware engineer, Hugh designed the TCDS ASIC and SCSl subsystem
for the DEC 5000 AXP Model 500. Prior to this work, lie designed floating-point
hardware for two projects in the Advanced VAX Development Group.

Maureen Ladd Maureen Ladd received a B.S degree in computer engineering
frorn tlie University of Illinois in 1986. She then joinecl tlie Semiconcliictor
Engineering Group within Digital and worked on a 32-bit RISC microprocessor.
Maureen received an M.S.E. degree in electrical engineering from the University
of Michigan in 1990 through Digital's Graduate Engineering Education Program.
Upon her return to Digital, she worked on the implementation of the first micro-
processor based on tlie Alpha AXP architecture.

Burton M. Leary Mike Leary is currently a consulting engineer in the
Semiconductor Engineering Group/Advanced Developn~ent Memory Groi~p. He
designed the instruction and data caches for the DECchip 21064 CPlJ and is cur-
rently working on the design of advanced memory products. Milze joined Digital
in 1980 after receiving a B.S.E.E. degree from the University of Massachusetts.

C
Liam Madden Liam Nladden joinecl Digital in 1984 and has since designed
both ClSC and RISC microprocessors and contributed in the area of CMOS process
development. He is currently a consultant engineer in Digital's CPU Advancecl
Development Group and his interests include circuit design and CMOS tech-
nology development. Prior to joining Digital, Liam designed industrial micro-
controllers for ~Mahon and McPhillips, Ireland, and worked for Harris
Semicontluctor. He received a B.S, clegree from University College Dublin in 1979
and an M.E. degree from Cornell University in 1990.

Maurice P. Marks Maurice Marks is a senior engineering manager in the
Semiconcluctor Engineering Advanced Development Group. He currently man-
ages the AXP Migration Tools Group and contributed to the design and imple-
mentation of the translators. In Maurice's twenty years with Digital, he has led
compiler, operating system, hardware and software tools, CAD, system, and chip
projects. He holds B.Sc. and B.E. degrees from the University of New South Wales
ant1 l~as publishecl papcrs on transaction processing, software portabilic): and
CAD technology. Maurice is a member of the Australian Computer Society.

Barry A. Maskas Barry Maskas is the project leader responsible for architec-
ture, semiconcluctor technology, and development of the t>EC 4000 AXP system
buses, processors, and memories. He is a consulting engineer with the Entry
Systems Busi~~ess C;roup. In previous work, he was responsible for the architec-
ture and development of custom vLS1 peripheral chips for VAX 4000 and MicroVAX
systems. Prior to that work, be was a codesigner of the MicroVAX 11 CPU and mem-
ory modules. He joined Iligital in 1979, after receiving a R.S.E.E. from Pennsylvania
State University. He holds three patents and has eleven patent applications.

Edward J. McLellan Etl McLellan is a principal engjneer in the Semi-
contluctor Engineering Group. He has co~ltributed to the design of several pro-
cessor chips. Ed joined Digital in 1980 after receiving a B.S. degree in computer
and systems engineering from Rensselaer Polytechnic Institute, where he was
elected to Eta Kappa Nu. He holds three patents in computer design and l~as one
application pentling.

Derrick R. Meyer Dirk Meyer joined Digital's Senliconductor Engineering
Group in 1986. He was initially involvetl in the design of the cache and memory
systems for a chilled CMOS VAX processor. He 11% since been involved in the
development of n~icroprocessors based on the Alpha AXP architecture. Prior to
joining Digital, he was employed at Intel Corporation, where he was involved in
the design of various CMOS microcontrollers, inclucling the 80C51 and 80~196.
Dirk received a R.S. degree in compilter engineering from the University of
Illinois in 1983.

Zia Mohamed Zia Mohamed has been a member of the Database Systems
Group since joining Digital in 1989. He works in the area of query optimization
for the DEC Rdb for OpenVMs products; his contributions involve cost-based
optimization of database queries and algorithms for execution of optimized
cluery plans He has tleveloped clynamic O I ~ optimization techniques, refine~netlt
of cost-model, ant1 algorithms for better access plans for views. Zia holds a B.S.
tlegree in electrical engineering from Bangalore Universit): India, and an M.S

degree in cornpiitcl- science from Texas Tech Universit)!

James Montanaro James Montanaro received B.S.E.E. and M.S.E.E. degrees
from the Massachusetts Institute of Technology in 1980. He joined Digital
Equipment Corporation in 1982. He was a circuit designer on the floating-point
chip for the LSI 11/74 and a MicroVAX peripheral chip. He led the physical imple-
mentation of the uPRrSM CI'IJ, a 70-MHz prototype RlSC CPU completed in 1988.
James also led the pllysical implementation of the first CPU chip based on the
Alpha AXP architecture and then contributed as a circuit designer for the
DECchip 21064 CPU. He is currently with Apple Computer, Inc.

Stephen J. Morris Stephen Morris is a consultant software engineer in the
Semiconductor Engineering Advanced Development Group. In addition to writ-
ing the Alpha ISP simulator, he wrote the OpenVMS antl OSF PALcode for the
Alpha AXP program. In previous work, Stephen designed the control sections of
the instruction prefetch and translation look-aside buffer for an experimental
Digital MS<: chip. He also worked on the MicroVAX chip team, doing console ant1
debug work, and in the RSTS/E operating system group. Stephen joined Digital
after receiving a U i\ in biology from the University of Rochester in 1977.

William B. Noyce Senior consultant software engineer William Noyce is a
member of the Software Development Technologies Group. He has developetl
several GEM comp~ler optimizations, inch~ding those that eliminate branches. In
prior positions at Digital, Bill implementetl support for new disks and proces-
sors on the RSl'S/E project, led the development of VAX DBMS V1 and VAX

RdbNMS V1, and designed and implemented automatic parallel processing for
VAX FORTIIAN/HPO. Bill received a B.A (1976) in mathematics from Dartmouth
College, where he implemented enhancements to the time-sharing system.

Donald A. Priore After receiving an S.M. degree in electrical engineering and
computer science from the Massacli~lsetts Institute of Technology, Donald
Priore joined Digital in 1984. Initially, he worked on device characterization,
yield enhancement, and yield modeling of NMOS and CMOS processes in manu-
facturing. Subsequently, he joined a CMOS design group, working first with
low-temperature CMOS technology and later with conventional CMOS in high-
performance microprocessor design. His interests include signal, clock, and

- power integrity in the on-chip environment.

Vidya Rajagopalan Vidya Rajagopalan received a B.E degree in electronics
engineering from Visvesvaraya Regional College of Engineering, Nagpur, India,
in 1986, and an M.S. degree in electrical engineering from the University of
Maryland in 1989. She was with Norsk Data India Ltd, from 1986 to 1987 as a
systems design engineer. In 1989 she joined Digital's Semiconductor Engineer-
ing Group and was a member of the design team of the DECchip 21064 RISc

microprocessor. Vidya i s currently involvecl in the design of high-performance
microprocessors.

James J. Reisert A senior hardware engineer.Jim Reisert designecl the TC ASIC

for tlie DE(: 3000 AX[' Moclel 500. I'rior to this project work, he designed instruc-
tion parsers/decotlers for two \RX imp1ement:itions. Jim holtls a patent for his
tlesign of a method for replaying instructjons after a microtrap. Before joining
I>igital in 1986. he received an S.B. in electrical engineering from tlie Massa-
cliusetts institute of Technolog)! He is currently in charge of timing verific;ition
h)r another AXP workstation.

Pamela J. Rickard Principal software engineer Pan1 Rickard is a member of
the team porting DECnet/OSI for OpenVMS to tlie Alpha AS1' pl;rtform. As the ini-
tial member of the DECnet for OpenVMS AXP porting team, Pam took responsi-
bility for creating an effective team, ported NETDRIVER ant1 other MACRO-32
cocle, atitl debugged major portions of the portecl product. Si~lce joining Digital
in 1978, she has contributed to I.'hTHWORKS for OS/2 ant1 led the console,
microcode, and system test activities of the VAX-11/785 project. Pam receivecl a
H.S. (1970) in mathematics and computer science from the IJniversity o f 1)enver.

Scott G. Robinson Scott Robinson is a software engineering mirnager in the
AXP Migration Tools Group. He contributed to the design ant1 implementation of
the binary translators, particularly the \'AX tratislatecl iniagc environment. Scott
has also developed iniplementations of DE<:net ilntl CAI)/<:ANl systems to design
\%X processors. Prior to joining Digital in 1978, Scott worketl on ;I vi4riety of
Digital hardware ant1 software implementations. He holds a B.S. in electrical engi-
neering from the University of Arizona anel is a member of IEEE.

Sridhar Samudrala Sridliar Sa~~iutlrala is ;I consulting li;rrtl.iv;~re engineer in
the Semicontlirctor Engineering Group, where lie is currently working on a new
(:I'[I chip. He joined Digital in 1977. Since t1i:rt time, lie h;rs \vorketl o n tlie design
and verification of PDPil1/23 chips, VAX 8200 micrococle tlevelopnient, ancl on
the ;rrchitecture ;~ntl design of floating-point chips. He holtls t\vo p:ttcnts :rnd has
three patent app1ic;rtions pending, all on floating-point design. Sritlhar received
;III M.Sc. ('Tech) tlegree from Antlhra Universit); India, and ;III M.S E.E. tlegree fron'l
the llniversity of Wisconsin.

Sribalan Santhanam Sri Santhanam receivccl a n .E . degree in e1ectric;il cngi-
neering from Anna University, Maclr;~s, India, in 1987, anel an M.s.E. dcgrcc in co~il-
lxtter xiecne crntl engineering from the University of Michigan in 1089. I Jpon
gratluation, he joined Digital as a design engineer h)r the Semicontluctor
Engineering Group, responsible for tlie full-custo11-1 tlesign rind clevelopnient of
high-perform;~nce CMOS VLSI processors. Sri worked on the design of the flo;ct-
ing-point unit of the UECchip 21064 CPU. He is currently involveel in the tlesig~l of
another high-performance microprocessor.

Stephen F. Shirron Stephen Shirron is a consulting software engineer in the
Entry Systems Business Group and is responsible for Open\/MS support of new
systems. He contributed to man)' ;lre;is of the I>EC 4000, including PALcode, con-
sole, and OpenVMs support. Stephen joined Digital in 1981 after completing B.S.

ant1 MS. degrees (summa cum lautle) at <>~tholic University In previous work, he
tleveloped an interpreter for VAX/Smalltalk-80 and wrote the firmware for the
ItQDX3 disk controller. Stephen has two patent applications and has written a
chapter in Smc~lltalk-80: Hits of lfistor:~~, Words oJAdi)ice.

Richard L. Sites Dick Sites is a senior consultant engineer in the Semicon-
tluctor Engineering Group. where he is working on binary translators ;~ntl tlie
Npha AXP architecture. He joined Digital in 1980 and I~as contributecl to v;lrious
VAX implementations. Previously, he was employetl by IBhl, Hewlett-Packard,
and Burroughs, and taught at the I.iniversit)' of C;~lifornia. Dick received a 13,s. in
mathematics from MIT and a Ph.1). in computer science from Stanford University
He also studied computer architecture at tlie Ilniversity of North Carolina. He
Iiolds a number of patents on computer hnrclware and software.

Peter M. Spiro Peter Spiro. ;I consulting software engineer, is presently the
technical director for the Rdl:, ant1 IIt3;MS software proclucts. Peter's current focus
is database performance for Alpha AXl' systems and very large database issues.
Peter joined Digital in 1985, after receiving 1M.s. degrees in forest science ant1
computer science from the Ilniversity o f Wisconsin-Madison. He has f o u r
patents related to database journaling and recover): and he has authoretl two
papers for earlier issues of the L)i<yilzil Techi~icalJour~znL,

Lawrence C. Stewart Larry Stewart received an S.U. in electrical engineering
from M1'1 in 1976, followed by M.S. (1977) and P1i.D. (1981) degrees from Stanfortl
IJniversity, both in electrical engineering. His PI1.D. thesis work was on data com-
pression of speech waveforms using trellis cotling. Upon graduation, he joinetl
the Computer Science Lab : ~ t the Scrox Palo Alto Resr:~rch Center. I n 1984 he
joined Digital's Systems Research Center to work on the Firefly multiprocessor
workstation. In 1985) he moved to Digitnl's Gunibridge Research Lab, where he is
currently involved with projects relating to multimetlia ant1 A X P products.

Robin L. Stewart Robin Stewart joined I)igit;~l in 1986 after receiving a 1l.s. in
electrical engineering from tlie University of \/ermont. She is in the process of
obtaining an M.B.A. degree from Boston College. A senior technology (liartlware)
engineer, Robin had responsibility for the integrated circuit teclinolog)~ in the
I>EC 3000 a P Moclel 500 workst:ttion. Prior to this project work, she was a com-
l~onent engineer in Digital's Semiconductor Hi~siness Organization.

Charles P. Thacker Chuck Thacker h;~s been with 1)igital.s Systems Research
Center since 1983. Ikfore joiiiing Digitill, he was a senior rese;trch fellow at the
Xerox I'alo Alto Rcsearch Center. His research interests inclutle computer archi-
tecture, comprlter networking, ;inti computer-;~ided clesign. He holds several
patents in the ;ires of computer organization :u~tl is coinventor of the Ethernet
local network. [t i 1984. Chuck was the recipient (with B. Lampson and R.
T;~ylor) o f the i\(:kl Software System Award. He received :In A.H. degree in physics
from the ljniversity of California in 1967. He is a member ofACM and IEEE.

Benjamin J. Thomas 111 Benjamin Thom;~s joined the OpenVMS AXIJ project
in 1989 ;IS project leader for I/O subsystem design ;mcl porting. In this role, he has
also contributetl to the I/O architecture of current ancl future AXP sgtenls. Ben
joined Digital in 1982 ant1 has worked in the VklS g r o i ~ ~ since 1984. In prior
work, he WAS the director of software engineel-ing ;it ;I microcomputer firm. Ben
is ;I consulting engineer and has a H.S. (197%) in physics from tlie University o f
New Hampshire :ulid an M.S.C.S. (1990) from Worcester Polytechnic Institute.

Catharine van Ingen A consulting softw;lre engineer, <:atliarine van Ingcn
was co-system ;~rchitect for the \'A)(. and [>I':(: 7000 proclucts. is cur-
rentl!, o n Ie;~ve from Digital and is n7orking 011 engineering document manage-
ment in large heterogeneous systems. Hefore joining Digital in 1987. she worked
on d;lta ncquisition systems for two I;irge physics tlctectot.~ :it tlie Ferrni N;ltio~l;iI
Acceler;~tor 1.abor;ttory and Stanfortl Linc;ir Acceler;~tor Center. She holcls serf-
era1 clegrees in civil engineeri~ig, inclutling a 13 s. ;untl ;In k1.S. from the University
of <hlifortlia :uncl a 1'h.D. from the California Institute of Technology.

Nicholas A. Warchol Nick Warchol, a consulting engineer in the Entry
Systems Ii~isiness <;soup, is the project le;itler responsible for I/O architecture
and I / () rnoclule tlevelopment for the DE(: 4000 AXI' systems. In previous work,
he contributeti to he development of VAX 4000 s)rstelils. He was also a tlesigner
of the MicroV,\\S 3300 and 3400 processor moclules and the RQDXJ disk con-
troller. Nick joined 1)igitnl in 1977 ;lfter receiving a I3.S.E.E. (cum 1;rude) from the
New Jersey Institute of Technology. In 1984 he received an k1.S.E.E. from
Worcester Polylechnic Institute. He h;~s hmr patent :ipplications.

Richard T. Witek Rich Witek joined l>igit;~l in 1977 to work on DE(:net
network nrchitecture during Phase 11. In 1982 lhe joined lligital's Semiconductor
Engineering < ; S O L I ~ ~ where he worked o n <:,\I> rlevclopment, MicroVAX VLSr

chil>s, ant1 ;I variety of internal MS<: projects. Rich \v;~s ;I coclesigner of the ALpha 1 'w!. 1 -

.\XI' ;uchitectilre :rntl the principal micso;~rchitect of the DECchip 21064 CP11
chip. He recei\rctl a 13.,1. degree in computer sciencc from 11uror;a College. Rich is
currently employed by Apple Computer. Inc.

I Foreword

Robert M. Supnik
Corporate Consultant,
Vice Preside~zt
Tkch~icnl Llirectol;
Engineering

I t all started with eight people in a conference
room.':'

The time was the summer of 1988. Digital
Equipment Corporation had just closed the best
fiscal year in its history, with record revenues ancl
profits. Digital's vA>; systems were the most widely
i~secl timesharing systems in the intlustry and were
the "blue-ribbon standard" for mid-range comput-
ing. Digital was tlie second-largest workstation ven-
dor. The company hat1 just introducetl the VA>(6000
system, its first exlxmdable multiprocessor, was
deveJ.oping a true VAX mainframe, ancl had decided
on a rapid thrust into lilSC workstations to capital-
ize on that growing market. What could possibly go
wrong?

Nonetheless, senior managers and engineers saw
trouble ahead. Workstations hat1 displaced VAX W S

from its original technical market. Networks of per-
sonal computers were replacing timesharing.
Application investment was moving to standarcl,
high-volume computers. Microprocessors had sur-
passed the performance of traditional mid-range
computers ant1 were closing in on mainframes. And
aclvances in RISC technology threatened to aggra-
vate all of these trends. Accordingl): the Executive
Committee asketl Engineering to develop ;I long-
term strategy for keeping Digital's systems cornpet-
itive. Engineering convened a task force to study
the problem.

l'he task force looked at a wide range ofpotential
solutions, from the application of atlvancetl pipe-
lining techniques in Vtm systems to the tleployment
of a new architecture. A basic constraint was that

the proposed solution l~acl to provide strong conl-
patibility with current products. After several
months of study, tlie team concluded that only a
new RISC architecture could meet the stated objec-
tive of long-term competitiveness, and that only the
existing VMS and UNlX environments coulcl meet
the stated constraint of strong compatibility. Thus,
the challenge posed by the task force was to design
the most competitive MS<; systems that would run
the current software environments.

Key groups in Engineering responded to this
challenge. A cross-functional team from hardware
and software defined the basic architecture.
Advanced development teams began work on the
knotty eiigineering problems: it1 the serniconduc-
tor group, the specification ant1 design of a fast
microprocessor, and the automatic translation of
executable binary images; in the operating systems
groups, on the porting of ULTRlX and of VMS (which
was not portable!); and in the compiler group, on
superscalar code generation. In the fall of 1989,
Alpha became an officially sanctioned advanced
development p r ~ g r a m . ~ In the summer o f 1990, it
transitioned to product development.

From the original core in semiconductors, oper-
ating systems, and compilers, work expantlecl
throughout Engineering. The server and work-
station hardware groups specified and started
designing a family of systems, from desktop to clata
center. The networks group began porting DE<:net,
TCP/IP, X.25, LAT, ant1 the many other network-
ing products. 'l'he layeretl software group inve~l-
toried the existing portfolio of products and
prioritized the ortier and i~nportance of clelivei-J:
The research group pitched in by designing an
experimental multiprocessor as a software devel-
opment testbed.

In parallel with the engineering work, market-
ing, sales, and service teams worked closely with
business partners and customers to shape tlie tleliv-
erables and messages to meet external require-
ments. These teams briefed key customers ancl
partners early in the development process ant1

The Corona Borealis conferencr room in the LTNI f:~ciljry in
Littletoi~. Mass. !,I4N1 was clloscn bec:~ilsc ~t nins thc geogr;~phic
epicenter of the arc o f Digital engineering k~cilities on ,\lassa-
chusetts Koc~te 495, the Corona Borealis bec:~use it was the
only conference room mith ~.c'iotlo.ivs.

+ M e r going through Illore than one nanlc change. Thc original
study team was c;~lletl the 'RIS(:y \'AX Tksk Forcc:"The
;~tlvanced tlcvclopment nlorli W;IS labeled "EVhX:' W l ~ e ~ i rhc
program w;kh al,provetl, the Executive Committee den~;~ntletl ;I

n r ~ ~ t r a l code tl;lrne, hence "Alph;~."

incorporated their aclvice into the develol~ment
prog~-:lm. Ongoing partner ant1 customer aclvisory
bo;~rtls provitlecl 1-egr1l;ir !kc.tlb;~ck on all aspects
of the 1xogr;Im ;uicl helped shape two critic;il
extensions of the original concept: the open licens-
ing of Alpha technology. and the porting of
Wi ndo\vs N1'.

Taken together. the scope of the Engineering
effort, the ~ieetl for il1:lrketing. Field, and Service
involvement, ant1 the liigli degree of customer antl
bilsiness partner p;~rticipation, posed irniclue man-
agement challenges. Rather than organize a large-
scale hierarchical project, the company chose to
manage Alpha as a clistributed program. A small
progr;lni te;m irsed enrollment m;~nagernent prac-
tices ancl strict operation;~l discipline to coortlillate
and inspect activities ;Icross the cornp;lny. This net-
worked appro;~ch to n1;ln;lgernent g;ivc the program
both flexibility ant1 resiliency in the face of rapitlly
changing business and organizational conditions.

The work of Engineering, M;~n~~hcturing. M;II--
keting, Sales, and Service c;rme together in Noveni-
ber 1992 with the annoilncement of the Alpli;~ &XI'
systems family: seven s),stenls, three operating sys-
tems, six languages, multiple networks, migration
tools, open licensing of technology, hartlwilre ancl
software partnersl>ips, and more than 2000 com-
mitted applic;~tions. Totl;~; A l p h : ~ ASI' e~iibodies 21

fi~ndamental repositioning of 1)igit:il Equipment
Corporation to be the technology alitl solutions
leader in twentjyfirst centrlry conipi~ting: ;I com-
pan). dedicated to meeting customers' neetls n~ith
the best computing, business, ancl service technol-
ogy available. The tlelivery o f Alpl~a AXI' recluired
the largest engineering progr;lm in 1)igit;il's histor):
spanning lllore tli;tn twenly Engineering groups
worldwide. This issue o f tlie lli~qit~il Exlnt?icnl
Jozrrr?al documents just ;I few of tlie lli~ntlreds of
projects involved in bringing Alph:c to fruition;
filture issues will continue the story.

Richard L. Sites I

Alpha AXP Architecture

The Alpha A X P 64-bit conzptiter. arcl~itect~ire is designed for. high pefonizance G I H ~

l o r~~ev i t l ! Bewi~ise oftlnefoc~is or1 i ~ ~ ~ ~ l t i p l ~ i l i s t r ~ ~ d i o r ~ iss~/e, the ar-chitectui~ does
not contain jhcilities s~ich cis brc~~zch ~ l e l c ~ ~ slots, lyte zur3ites, arzclprecise arithnzetic
e,vceptions. Brccluse of the focus 012 multiple processors, the architecture does con-
tail? a careful shared-memory rrzodel, atomic-tipdate pri~nitire i~zstluctio~zs, atzd
r.elcixed read/ii~rite orcleri~zg. T l ~ e first itrzplenzentation ofthe Alpha A X P arclgitec-
ture is the zi~orld'sfastest sirzgle-chill ~~zicr~oprocessor The DECtbip 21064 r.utzs 11zulti-
ple operwti~~g sjsterns and r ~ i ~ z s nati~le-conzpiled progra~rzs that were tra~ulated
fro111 the 1!4X arzd 11.flPS architect~ires.

Thus in all these cases the Romans did what all
wise princes ought to [lo; namely, not only to look
to all present troilbles. I,ut ;~lso to those in tlie
fut~lre, ;lgailist which they provided with the
Lltniost prudence.

-Niccolo Machial-i-lli. The Y~Yrrce

Historical Context
The Alpha I U P architecture grew out of a srn;~ll task
force chartered in 1988 to explore ways to preserve
the VAX VMS custon~er base through the 1990s. This
group eventually came to the conclusion that ;I new
retlucecl instruction set computer (RISC) architec-
ture would be neecled before the turn of the cen-
tury, primarily because 32-bit architectures will run
out of address bits. Once we 11i;ltle the decision to
pursue a new architecture, we shaped it to do
much more than just preserve the VL I 15 .' customer
base.

This paper cliscusses the architecture from a
number of points of view. It begins by making the
distinction between ;lrcIiitecture and implementa-
tion. The paper then states the overriding arclii-
tectural goals and cliscusses a number of key
arcli i tect~~ral decisions that were derived directly
from these goals. The key clecisions distinguish the
Alpha A X P architecture from other architectures.
The remaining sections of the paper discuss the
;irchitecture in more (letail, From data and instruc-
tion formats through the detailed instruction set.
The paper conclirtles with a discussion o f the
designed-in fu t i~ re growth of the architecture. An
Appenclis explains some o f the key technical terms
l~secl in this paper. These terms are highlightecl
with ;In asterisk in tlie text.

Architecture Distinct
from Implementations
From tlie beginning of the Alpha AX[' design, w e
distinguished the architecture from tlie implemen-
tations, following the distinction made by the IL\M
System/360 architects:

Computer ;~rcliitecture is tlefinetl as cl~c ;~tt[.ibutes
ant1 behaviol. o f ;I computer as seen by :I mz~chine-
language I,rogr:unmer. This definition includes the
instruction set, instruction formats. oper:~tion
codes, addressing motles, and all registers ;~ntl
memory loc:rtions th;~t may be tlirec[ly m;~nipu-
laced by a machine-1:lnguage progr;lninier.
1mplement:itioll is tlefinccl as the actu:~l h;trdw;~re
structure, logic design. and data-path org;~nization
of a particular embotliment oF the architecture.'

Thus, the architecture is a d o c ~ ~ m e n t that
describes the behavior of all possible irnplementa-
tions; an implementation is typically a single com-
puter c h i p 2 The architecture and software written
to the architecture are intended to last several
decades, while indivitlual implementations will
have much shorter lifetimes. The architecture must
therefore carefi~lly describe the behnvior that a
machine-langu:lgr programmer sees, but must not
describe tlie nie;lns by which a p;lrticul;~r imple-
mentation achieves that behavior.

A similar appro;~ch has been used with much
success in specifying the PDP-11 ant! VtlX klmilies of
computers. An alternate approach is to design and
build a fast RISC chip, then wait to sce if it is suc-
cessful in the marketplace. If so, successive imple-
mentations are often forced to reproduce accidents
of the initial design, or to introduce slight software
incompatibilities. This approach works, but with
varying success.

Alpha A X P Architecture and Systems

Architectural Goals
When we st;irted the tletailetl clesign of the Alpha
AXP architecture, we had ;I short list of goals:

1 . High perfi)rrnance

3. Capability to run both Vh1S ;lnd IJNIX oper;iting
s!stems

4 Easy migr;ition from Vr\X ancl MIPS architectures

Tliese goals directly influencecl our key decisions
in clesigning tlie architecture.

In consiclering performance atlcl longevity, we
set a 15- to 25-year design horizon and tried to avoitl
any clesign elements that we thought could hrco~iie
limitations during this ti~iie. In current arcliitec-
tures, ;I primary limitation is the 32-bit memory
address. Thus we adopted a fill1 64-bit architecture,
with :I mjnimal number of 52-bit operations for
backw:irtl compatibility.

W'e also cotlsidered how implenietitation perfor-
mance shoi~ld scale over 25 years. During the p;ist
25 ye:irs, computers have become about 1,000
times faster. Therefore we focusetl our design deci-
sions on :~llowing Alpli;~ ASP system imple~nentn-
tions to become 1,000 times kister over tlie coming
25 years. 111 011s projections of future perforni;ince,
we re;lsoned that raw clock rates woulcl improve by
a factor of 10 over that time, ant1 that other tlesign
dimensions would have to provide two niore kic-
tors of 10.

If the clock cannot be made fastel; then more
work milst be done per clock tick. We therefore
designed the Alpha AXP architectirre to encourage
~nultiple instruction issue" implementations that
will eventi~;illy sust:iin ;~l)oi~t ten new instructions
starting every clock cycle. This aggressive tech-
nique of starting multiple instructions distin-
guishes tlie Alpha AXI' architecture froni many
other I<ls(: ;irchitectirres.

The remaining factor of 10 will come from m~ilti-
ple processors. A single s).stem will cont;~in per-
11;ips tell processors ant1 s1i;ire memory. We
therefore designed a niultiprocessor memory
model :incl matching instructions from the begin-
ning. 'This early accommotl;ition for multiple pro-
cessors also distingi~ishes the Alpha AXI'

architecture from many other RlSC architect~rres,
which try to atltl the proper primitives later.

To run the OpenVMS AM-' and the DE<: OSF/l
AXP-;inel now the Microsoft Wjntlows N'Y-operat-
ing systcms, we adopted ;111 itlea from :I previous

Digital RIS(: clesign cnlletl I ' R I S M . ~ We p1:icetl the
underpinnings for interrupt tlelivery ;uid ret i~m,
exceptions. context switchitig, memory manage-
ment, ant1 error hantlling in a set of privileged
sol'twarc subroutines c:~lled I'r\Lcotle. These sub-
routines have control let1 entry points, run with
interrupts ti~rned off, ;~nd 11;lve access to real hard-
ware (implementation) registers. By inclueling tlif-
ferent sets of PA1.code h)r different operating
systems, neither the harclware nor the operating
system is burclened wit11 ;I b;itl interface m;~tch, anti
the arcl~itecture itself is not bi:isetl tow;ircl a partic-
ular compi~ting style.

To r u ~ i existing V A ~ and MIPS binary images, we
atloptetl the idea of bin;rry tr;msl~~tion,':' as tlescribed
in n cornpanion paper.^.^.'^ The co~iil,in:ttion of
Pr\I.cocle anel binary transl;ition gave us tlie luxury
of designing ;I new architecture. Other tli;ln the h ~ n -
clamental integer and floating-point tlata types.
there ;Ire no specific VAX or M ~ P S features carried
directly into tlie Alpha i\>;ll instruction-set architec-
tilre for compatibility re;isons.

Key Design Decisions
This section presents the design tlecisions that clis-
tinguisli the Alp1-1;~ AXI' arcl~itccture from others.

Tlie Alpha AXP architecture is ;I tradition;il HIS<:

loacl/store ;irchitecture, All ti;it;i is J I I ~ V ~ ~ between
registers ;inti Iiletnory without cornpiitalion, ;lnd ;il l

'ISteI-S. computation is done bctwcen values it1 re&'
Little-entlian byte adtlressing ;lnd both VAX and IEEE
floating-point operations':' arc carried over from the
\biS ;ind %]IPS ;~rchitecturcs.- We assumed th;it most
irnpleoicntations woultl pipeline instrilctions, i . ~ . ,

they woulcl start execution o f a second, thircl, etc.
instruction before the execution of ;I first instruc-
tion con~pletes. We ;~ssunirtl that the implementa-
tjon Iiitency of ni;lny oper;itions would be
import;int. L;itency is the number of cycles ;I pro-
gr:111i I ~ ? L I S ~ wait to i~ sc tlie result of a preceding
instruction. We assumetl that the vast majority of
memory operands woultl be aligned. An ;iligned
operand of size 2**N bytes" has an adclress with N
low-orcler zeros. Other memory oj>erantls ;ire
tenlied u11:iligned.

Fz~ll64-bit Design
Tlie Alphii hXl' architecture uses a linear::' &-bit vir-
tual ;~ddress space. Registers, acldresses, integers,
f1o:iting-[?oilit numbers, :inti character strings are

;ill operated on ;IS full &-bit qi~antities. There ;Ire
no segmented atldresses."

Register File
In choosing the register file design, we consideretl
both a single combined I-egister file ant1 split integer
and floating-point register files. We chose a split
register file to support aggressive multiple issue. A
combined file is somewhat more flexible, espe-
cially for programs that are heavily skewed toward
integer-only or floating-point-only computation. A
combined file also makes it easier to pass a misture
of integer and floating-point subroutine parameters
in registers. However, split files ;illow graceh~l two-
chip implementations ant1 smaller integer-only
implementations. They also need fewer read/write
ports per file to sustain a given amount of mi~ltiple
instruction issue.

We ;ilso considered whether e;icli file s h o ~ ~ l d con-
t;iin 32 or 64 registers. We chose 32, largely hecause

1. Thirty-two registers in each file are enough to
support at least eight-way multiple issue.

2. Two valuable instruction bits are better i~sed to
make a 16-bit tlisp1:icenient fjelcl in memory-
h)rmat instructions.

More registers might seem better, but excess reg-
isters consume chip area and access time,
save/restore speetl across subroutines and context
switches, and instruction bits that might be put to
better use. Compilers can deliver substantial per-
h)rm;~nce gains when given 32 registers instead of
16, but there is no clear evidence of similar gains
with 64 registers. Deniantl for registers is likely to
increase slowly in the future, but a number of
implementatio~l techniques, such as short latency
pipelines ant1 register renxrning, shoultl satisfy this
demand.

Mtiltiple I~zsl'ructio~z Issue
Our design sought to eliminate any mechanism that
would hinder aggressive multiple instruction issue
implementations. Therefore we tried to ;ivoitl ;II . I
special or Iiidclen processor r e sou rces .~hus , the
Alpha AXP ;lrchitecture 1i;is no condition codes, no
glolx~l exception enables. no multiplier-quotient or
string registers, no bsanch delay slots, no sup-
pressed instructions or skips, no precise arithmetic
exceptions, and no single-byte writes to memory.
All of these features, found in some 1US(: :~rchitec-
tures, have the effect of hintlering multiple instruc-
tion issue, or hinclering pipelining of multiple

instances of the same instruction. For example, a
dedicated string wgister makes it hard to 11;lve three
unrelated string operations in the pipeline at once.

To illustrate the performance loss associated
witli special or liitltlen processor resources, con-
sider a dual-issuc implementation witli ;I four-cycle-
deep pipeline. At the beginning of each cycle. up to
six prior instructions are partially executed and
two more are about to be issuetl. Six prior instruc-
tions can have six pending writes to result regis-
ters, plus six sets of side effects on special or
hidclen processor resources. The next two instruc-
tions can specify ;I total of four operand registers,
two more result registers, ant1 two more sets o f sitle
effects on special or hidtlen resources. The decision
to issue 0, 1, or 2 of the next instructions involves
36 simple comparisons of pairs of register numbers
and 12 complex coniparisons of sets ofsitle effects.
The number of sucll comparisons incre;ises as a
function of the issue width, the pipeline tlepth, and
the number of special or hicltlen processor

' I lsons resources. The complexity of these comp-I -'
can limit the clock rate. The register-number con]-
pr isons are unavoicl;tble, therefore we triecl to
lj~nit special or Ilidtlen processor resources.

Bmrzcb Delay Slots The Alpha AX]' ;irchitecture
has no brancl-1 delay slots. The branch tlelay slots
found in some KISC architectures require exactly
one following instruction to be executetl after a
conditional br;incIi. In 1988 this was, perIi;ips, a
goocl itlea for overlapping branch Intenclr jn a sin-
gle-issue chip with a one-cycle instruction cache. In
1995, however, it will not scale well to a h)ur-w~y
issue chip with a two-cycle instruction cache.
Illstead of one instruction, up to eight instructions
would be needed in tlie delay slot. Br;uncli del;~y
slots also introtluce ;I restart problem jf the instruc-
tion in the tlela)~ slot fiiults: one restart pr.ogr;rm
counter is needed for the delay slot and ;inother one
for the actual br;inch target.

Slippressed Iizstructioizs The Alpha A X P archi tec-
ture has no suppressecl instructions, wllerehy tlie
execution of one instruction conclition;llly sup-
presses a 1-01 Lowing one. Suppressetl (or skipped)
instructions are fountl in other RISC architectures.
The suppression bit(s) represent nonreplicated
hidden state, so multiple instruction issue is diffi-
cult for more than one potential suppressor. If an
interrupt is taken between a suppressor ;uncl sup-
pressee, or i f the silppressee takes a rest;~rtable
exception (e.g., page fault), tlie correct version of

Digital lkcbnical Journal Vo1.4 llkr 4 Special Issue 1392 2 1

Alpha AXP Architecture and Systems

tlie suppression state 111irst be swed ant1 restored.
There are ;~lso clefinitiotlal problems with this
;ipproach: Are exceptions ever reported for sup-
pressed instructions? What happens if the sup-
pressed instruction suppresses a third instruction?

Byte Loud or Store Iristt-uctions The Alpha AXl'

architectlrre has no byte load or store instructions
anel no iniplicit irnalignetl accesses. There also are
no partial-register writes. The byte load/store
instructiolis and unaligned accesses found in some
RIS<: architectures can be a perforniance bottle-
neck. They require an extra byte sl~ifter in tlie
speetl-critical loatl and store paths, ant1 they force a
hard choice in fast cache tlesign. The partial-regis-
ter writes found in other RlSC architectures can also
be a performance bottleneck because they require
masking ancl shifting in the filndamental operation
of accessing a register.

On a previous project involving a MII'S implen~en-
t;~tion, we found the shifter for the loatl-left/lo;rd-
right instri~ctions to he a direct cycle-time
bottleneck. Also, the VAX 8700 i~~iplementation~tio~~
(circa 1986) removed the byte shifter in the
lo;~cl/store hardware in favor of a faster microcycle,
with 2 cycles for ;I byte 1o;rcl and 6 c!.cles for :III
~ln;rlignetl 32-bit access. This decision irchieved ;I

net performance gain. Our experience encour;~getl
11s to avoid byte load/store.

A n addition;il problem with byte stores is that an
iliiple~ilenter niay easily choose only two of the
three design features: fast write-back cache, single-
bit error correction code (E<:<:), or byte stores.

Byte stores are straightforward in simple byte-
parity write-through cache implementations.
Except for tlie expensive design of four or five E<:<:
bits for every eight bits of clata, a byte store to ;I fast
E<:<; write-back cache ilivolves

1. Reading a11 entire caclic word::'

2. Checking tlie ECC bits and correcting any single-
bit error

3. Moclifiing the byte

4. Calculating the new E<:<: bits

5. Writing the entire cachc word

This reatl-rnotlifi-write sequence requires l~iclclen
seqire~icer li;~rtlware and hidden state to hold the
c:rche word temporarily. The secluelicer tencls to
slow clown ortlinary full-cirche-wortl stores. The
neetl for byte stores tends to ripple tl~roughout
the memory subsystem tlesign, m;rking each piece

;I little more complicatetl anel a little slower. With
nonreplicated hitlden state, it is difficult t o issue
another byte store until the first one finishes.
Fin;~lly, the existence of a byte store instruction has
led to programs and library routines for other NSC

implementations with single-byte move ancl com-
pare loops. String manipillatioa on Alpha AXP
implementations is up to eight times faster by pro-
cessing eight bytes ;it a time."

Insteacl of inclueling byte loacl/store, we followed
tlie RISC philosophy of exposing hidden computa-
tion as a sequence of many simple, fast instructions.
In the Alpha U P architecture, a byte load is clone as
an explicit load/shift sequence; a byte store as an
explicit load/modify/store sequence. We tuned the
instruction set to keep these sequences short. The
instructions in tliese sequences can be intermixed,
scheduled, and issued as multiples with other com-
putation, as can tlie rest of the instructions jn the
architecture. Table I gives :I sunlmary of the Alpha
f i t ' instruction set.

A~'il%?/rietic E.vceplio7l.s The Alpha IU(P architec-
ture has no precise arithmetic exceptions.
Reporting an arithmetic exception (e.g,, overflow,
unclerflow) precisely means that instri~ctions
subsecluent to tlie one c;rusing the exception
must not be executetl. This is straightforwarcl
in 21 slow implementation that runs a single instruc-
tion to completion before starting the next one,
but becomes substantially more difficult to do
qi~ickly in a pipelined four-way issue implemen-
tation. There are standard techniques available
for clelivering precise exceptions while run-
ning quickly (checking exponents, supl~ressing
register writes, exception silos and backout), but
thesc techniqiles consume substantial design
time and can cost some performance. They appear
not to scale well with wider multiple issue or
faster clocks.

Exceptional cases are just that-exceptional, or
mre, events. Based p;~rtly on customer requests, we
cleciclecl to eliipliasize the performance of normal
operations at the expense of exceptional cases.
Rather than an implicit exception ortlering
between every pair of instructions, we atlopted the
Cr;iy-1 model of :~rithmetic exceptions-in which
exceptions are reported eventirally-plus an
explicit trap barrier (T1WR) instruction that c;111 be
used to make exception reporting as precise as
desired.lo We also tlocumented ;I code-generation
clesign that needs one trap b;rrrier per branch (at
most) to give precise reporting. Using TRAPB

Alpha AXP At.c./7itectrrt.e

Table 1 Alpha AXP Architecture Instruction Set Summary
I

Load/Store, Byte Manipulation

LDA
LDAH
LDL
LDQ
LDQ-U
LDL-L

LDQ-L
STL-C
STQ-C
STL
STQ
STQ-U
EXTBL
EXTWL
EXTLL
EXTQL
EXTWH
EXTLH
EXTQH
INSBL
INSWL
INSLL
INSQL
INSWH
INSLH
INSQH
MSKBL
MSKWL
MSKLL
MSKQL
MSKWH
MSKLH
MSKQH

Load address
Load address high
Load sign-extended longword
Load quadword
Load unaligned quadword
Load sign-extended

longword, locked
Load quadword locked
Store longword, conditional
Store quadword, conditional
Store longword
Store quadword
Store unaligned quadword
Extract byte low
Extract word low
Extract longword low
Extract quadword low
Extract word high
Extract longword high
Extract quadword high
lnsert byte low
lnsert word low
lnsert longword low
lnsert quadword low
lnsert word high
lnsert longword high
lnsert quadword high
Mask byte low
Mask word low
Mask longword low
Mask quadword low
Mask word high
Mask longword high
Mask quadword high

Floating Point Load/Store

LDF
LDG
LDS
LDT
STF
STG
STS
STT

Load F format (VAX single)
Load G format (VAX double)
Load S format (IEEE single)
Load T format (IEEE double)
Store F format (VAX single)
Store G format (VAX double)
Store S format (IEEE single)
Store T format (IEEE double)

CMPLT
CMPLE
CMPULT
CMPULE
MULL
MULQ
UMULH
SUBL
S4SUBL
S8SUBL
SUBQ
S4SUBQ
S8SUBQ
AND
BIS
XOR
BIC
ORNOT
EQV
SLL
SRL
SRA
CMOVEQ
CMOVNE
CMOVLT
CMOVLE
CMOVGT
CMOVGE
CMOVLBC

CMOVLBS

CMPBGE
ZAP
ZAPNOT

lnteger Branch

BEQ
BNE
BLT
BLE
BGT
BGE
BLBC
BLBS
BR

Compare signed quadword <
Compare signed quadword 5
Compare unsigned quadword <
Compare unsigned quadword 5
Multiply longword
Multiply quadword
Multiply quadword high, unsigned
Subtract longword
Subtract longword, scale by 4
Subtract longword, scale by 8
Subtract quadword
Subtract quadword, scale by 4
Subtract quadword, scale by 8
AND logical
OR logical
XOR logical
AND-NOT logical
OR-NOT logical
XOR-NOT logical
Shift left, logical
Shift right, logical
Shift right, arithmetic
Conditional move if reg = 0
Conditional move if reg # 0
Conditional move if reg < 0
Conditional move if reg 5 0
Conditional move if reg > 0
Conditional move if reg 2 0
Conditional move if reg low

bit clear
Conditional move if reg low

bit set
Compare bytes, unsigned
Clear selected bytes
Clear unselected bytes

AddressIConstant

Branch if reg = 0
Branch if reg # 0
Branch if reg < 0
Branch if reg I 0
Branch if reg > 0
Branch if reg t 0
Branch if low bit clear
Branch if low bit set
Branch

BSR
JMP

Branch to subroutine
J U ~ D

S4ADDL Add longword, scale by 4
SBADDL Add longword, scale by 8
ADDQ Add quadword
S4ADDQ Add quadword, scale by 4
S8ADDQ Add quadword, scale by 8
CMPEQ Compare signed quadword =

LDA Load address
LDAH Load address high -
lnteger Computation and Conditional Move

ADDL Add longword
FBEQ FP branch if = 0
FBNE FP branch if # 0
FBLT FP branch if < 0
FBLE FP branch if I 0
FBGT FP branch if > 0
FBGE FP branch if 2 0

JSR ~ u m p to subroutine
R ET Return from subroutine
JSR-COROUTINE Jump to subroutine, return

Floating Point Branch

I I I

conrinucd on n c x ~ page

Alpha AXP Architecture and Systems

Table 1 Alpha AXP Architecture Instruction Set Summary (continued)

instructions in the first Alpli;~ AXP imp1emenl';ttion
lowers ~,erformance 3 percent to 25 percent in real
floating-point progralms ;~iir l less than 1 percent ill
integer progr;irns, but improves cycle time :lpprosi-
mately 10 percent.

I n co11tr;tst to a r i t l l ~ l~e t i c exceptions, nlemor).
nlanagenicnt exceptions, such :IS page faults. ;Ire
reportetl precisel!: This is not ;IS much o f ;I I,urtlen
on implemcnters as precise arithtnetic mceprions
a ~ o ~ ~ l t l be. ;tntl I;lck of precise nlenior!r manapmcl1t
faults would be a severe burden on softw:tre
writers.

Floating Point Computation
and Conditional Move

CPYS Copy sign
CPYSN Copy sign, negate
CPYSE Copy sign and exponent
CVTQL Convert quadword to longword
CVTLQ Convert longword to quadword
FCMOVEQ FP conditional move if reg = 0
FCMOVNE FP conditional move if reg ;t 0
FCMOVLT FP conditional move if reg < 0
FCMOVLE FP conditional move if reg 5 0
FCMOVGT FP conditional move if reg > 0
FCMOVGE FP conditional move if reg 2 0
MF-FPCR Move from FP control register
MT-FPCR Move to FP control register
ADDF Add F format (VAX single)
ADDG Add G format (VAX double)
ADDS Add S format (IEEE single)
ADDT Add T format (IEEE double)
CMPGEQ Compare G format =

(VAX double)
CMPGLT Compare G format <

(VAX double)
CMPGLE Compare G format 5

(VAX double)
Compare T format = CMPTEQ

(IEEE double)
CMPTLT Compare T format <

(IEEE double)
CMPTLE Compare T format I

(IEEE double)
CMPTUN Compare T format

unordered (IEEE double)
CVTGQ Convert G format to quadword

(VAX double)
CVTQF Convert quadword to F format

(VAX single)
CVTQG Convert quadword to G format

(VAX double)
CVTDG Convert D to G format

(VAX double/double)
CVTGD Convert G to D format

(VAX double/double)

The Alpha ASP architecturc's sl~arecl-nlcmory
~ ~ l u l t i p l - o c ~ ~ s i ~ ~ g modcl is ;In integral p;irr of the
clesign. I t is 1101 the ;~tlt l-on founcl i n other RlSc:

CVTGF Convert G to F format
(VAX double/single)

C W Q Convert T format to quadword
(IEEE double)

CVTQS Convert quadword to S format
(IEEE single)

CWQT Convert quadword to T format
(IEEE double)

C ~ S Convert T to S format
(IEEE doublelsingle)

CVTST Convert S to T format
(IEEE singleldouble)

Dlw Divide F format (VAX single)
DNG Divide G format (VAX double)
D~VS D~vide S format (IEEE single)
DlVT Divide T format (IEEE double)
MULF Multiply F format (VAX single)
MULG Multiply G format WAX double)
MULS Multiply S format (IEEE single)
MULT Multiply T format (IEEE double)
SUBF Subtract F format (VAX single)
SUBG Subtract G format (VAX double)
SUBS Subtract S format (IEEE single)
SUBT Subtract T format (IEEE double)

Srstem
CALCPAL Call privileged architecture

library
TRAP8 Trap barrier (precise exception)
FETCH Prefetch (cache) date hint
FFICH-M Prefetch (cache) data,

modify hint
ME Memory barrier (serialize)
WMB Memory barrier (serialize) write
RPCC Read process cycle counter
RC Read and clear
RS Read and set
PALRESO PALcode reserved opcode 0
PALRES1 PALcode reserved opcode 1
PALRES2 PALcode reserved opcode 2
PALRES3 PALcode reserved opcode 3
PALRESQ PALcode reserved opcode 4

arcl~itcctures.
'I'hc untlerl!ing pr i~ i i i t ivc for safe updating o f

a mi~ltilxocesor-s11:trctl memory location is a
sequcncc o f RI:.r' instructions: loacl-locked. in-regis-
ter modify, store-conditional. test. I f this seqilence
completes w i th no i t~terrupts, no exceptions, ;~ i i t l
no interfering write from anothc-r processor, then
the store-conditional stores the motlified result.

Al)lna A X P A ~.clnitecl.~~i 1.c~

ant1 the test indic;~tes success: an atomic update
was in fact performed.

If anything goes wrong, the store-conditional
does not store a result, and the test i~iclicates fail-
ure. The program must then retry the sequence
until it succeetls. We chose this primitive sequence
(quite similar t o tlie MIPS R4000 chip designs)
because it can be implemented in a way that scales
up with processor performance. 111 the xbsence of
an interfering write, the entire secluence can be
tlone in an on-chip write-back cache, ant1 hi~ndreds
of chips can tlo noninterfering sequences simulta-
neously. The sequence can also be ilsetl to achieve
byte granularity" of writes in sharecl memory.('

Tlie Alpha AX[' arcliitecture has no strict multi-
processor reatl/write ordering, whereby the
sequence of re;icls ant1 writes issuetl 1,y one proces-
sor in a mi~ltiprocessor configuration is tlelivered
to :ill other processors in exactly tlie order issued.
Strict order is simple, but has a problem similar to
that of byte stores. An implenienter may easily
choose only two of the three tlesign llentures:
pipelined writes. bus retry, or strict reacl/write
ordering.

If one processor starts ;i write to location A and a
write to location 13, then tliscovers t l i ;~ t the write to
i\ 11;ls hiled (bus parity error. etc.) :11itl retries it suc-
cessfully, then a second processor will observe the
writes out of order: H, then A.

Before Alpha AXI' implementations, many VAX
implementations ;ivoicletl pipelinetl wrilcs to main
memory, multibank c;~ches, write-buffer bypassing,
routing networks, crossbar memory interconnect,
etc.. to preserve strict reatl/write ordering. Tlie
Alpha AXl' architecture's shared-n~emory 111otlel
instead specifies 110 implicit orclering between tlie
reads and writes issuecl on one processor, ;IS viewed
by a different processor. This programming model
is an enabling technology for a wide variety of high-
perfor~iiance i~iil)lement;~tion techniq~~es. Strict
orclering can be hpecificd when neecletl by insertion
of explicit memory barrier (Me) instructions, quite
similar to the lB*l System/370 serinlizatio~i tlesign.11

Data Representation
and Processor St-ate
This section tlescribes the fundamental Alpha AXP
tlata types ant1 their representation in memory and
I-egisters. It also tlescribes the con~plete Il;~rdware
register state for e;ich processor ant1 outlitles
the adtlitio~ial state maintained by operating-
system-specific 1'AI.cotle routines. The Alpha AXP

arcliitecture differs from other Rlsc architectures
by careli~lly specifying a canonical form for 32-bit
tlat;~ in 64-bit registers. A c;inonical form is ;I stan-
cl;lrclizetl choice of clata representation for retlun-
d;~ntly encoded values. Since 32-bit operations
assume canonical operands and give canonical
results, very few explicit conversions between 32-
;incl64-bit representations are needed.

The fi~ndamental unit of data in the Al~lpli;~ AXl'

architecture is a 64-bit quadword." As shown in
Figure I, quadwortls may reside in memory or regis-
ters. For backwartls compatibility, 32-bit long-
wortls:' may also be stored in memory.

There are three fi~ntlamental clata types: integer,
IEEE floating point, and VAX floating point; each
is available in 32-bit and 64-bit f o r m ~ . ~ - I ~ VAX floating-
point values in memory have 16-bit words swapped,
for compatibility with VAS (and PDP-11) formats.
The VAX floating-point load and store instructions
tlo word swapping" to give a common register
order. The 9-b i t loat1 instructions expand vali~es to
64-hit canonical form, anti tlie 32-bit store instruc-
tions contract 64-bit values back to 32."AII register
to-register operations are thus done on fill 1 64-bit
values in a common integer or floating-point for-
111at. N o partial-register I.~:ICIS or writes ;ire tlone.

The cano~lical form of ;I 32-bit value in ;I 64-bit
integer register has the most significant 33 bits all
equal to bit<31>. In essence, bit<31> is kept ;IS ;I

"fat bit." This allows signet1 integer values to be
used directly in 64-bit ;~ritIimetic and branches.
This canonical for111 is maintained as ;I closed
system (even for 32-bit data considered to be
"i~nsigned") by using a combination of 64-bit oper-
ates, 32-bit add/subtract/rnulti~>ly, and two-instruc-
tion sequences for shifts.

'T'he canonical form of a 32-bit value in a
64-bit floating-point register has the %bit exponent
field expanded to 11 bits ant1 the 23-bit mantissa
field expanded to 52 bits. Except for IEEE tlenor-
mals.':' this allows single-precision floating-point
values to be used directly in double-precision arith-
metic and branches. This canonical form is main-
tained as a closecl slatem by using single-precision
instructions.

Bytes nntl words (16-bit quantities) are not fund;^-

mental data types. Tl~e!. may be transferred
between memory ant1 registers with short
sequences of jnstructioiis ;~ncl manipulatetl jn regis-
ters using normal arithmetic ;incl the byte-m;inipil-
lation instructions described in the Operate
Instructions section.

DigiLnl TecbaiUrtJoumd Vd. 4 hb, 4 Specic~l /.s.srrc 1992 2 5

Alpha AXP Architecture and Systems

QUAbH6RD lNfffiER (MEMORY) QUADWORD INTEGER (REGISTER)

f iR
TEE€ T#.mlWG POINT (MEMORY) IEEE T-FLOATING POlNT (REGISTER)

VAX G-FLOATING POlNT (MEMORY) ,-. mn VAX G-FLOATING POINT (REGISTER) -

LONGWORD INTEGER (MEMORY) LONGWORD INTEGER (REGISTER)
0

- .
SSSSSSSsssSsSSSSsSs ... S - - RX

1 3 1 32 1 31

U OJ L

Im war. r '.=. ' I ..
W 1 M2 EXP M I M2 ~3

I I I M4 FX

16 16 16 1 11 4 52

IEEE S-FLOATING POlNT (MEMORY)
31

IEEE S-FLOATING POlNT (REGISTER)
0 63 0

'rlie liartlware processor state, shown in Fig~rre 2,
includes 9 integer registers RO..K?I of 64 bits each;
R31 is alw;~!ls zero. There are ;ilso 32 floating-point
registers FO..P31 of 64 bits cacli; FS1 is alw:ys zero.
Writes to R31 ;rnd F31 ;Ire ignorecl.

A 64-bit program counter (IIC) contains a long-
word-aligned virtual byte atldress (i.e., tlie low 2
bits of the I>(: ;Ire ;~lways zero). The VAX arcliitectr~rr
keeps tlie I><: in general I-egister 15, wlicre it is
directly used for PC-rel;~ti\:e memory ;iddressing. In
the Pclgh;~ AX]' architecti~rc, lio\vever, code ;rntl tl:~t;~
pages are usirally separated by 64 kilobytes (K11) or
more to allow separate memory protection, but tlie
16-bit displ;lcement in lo;~d/store instructions c:ln-
not span more than 64~11.

The hardware processor state includcs ;I lock flag
ant1 ;I locked physic;il atltlress for the lo:rtl-
locketl/storc-condiriornrl sccjirence. It also h;ts ;I

floating-point control register containing the IEEE
dynamic rountling motle."'

VAX F-FLOATING POlNT (MEMORY)
31

VAX F-FLOATING POlNT (REGISTER)
0 63 0

Hardware implementations may optionally
inclutle ;I pair of state registers for menlory
prefetching (FETCN/FFI'(:I-I-hl instructions), ;inti an
optional interrupt flag for use only by tr;rnslatetl
VAX OlxnVMS ASP progr;lms th;rt reprotluce com-
plex instruction set computer (C1SC8) instruction
atomicity using a sequence of RISC instructions.(>

In acltli tion to the above hartlw;rre state, the privi-
legctl :ircIiitecture library routines for the \;;irio~rs
operatitlg systems implement ;itltlitional st;rte. This
state m;iy be m:~intained by h;rrtlware or (I'AI.code)
softw;ire, ;it the option of the implementer, and it

varies from one operating system to anotlier.

EXP

Typical I'i.\l.cotle state includes a processor st:ltrrs
(13s) worcl, kernel and user stack pointers, ;l process
control block base for context switching, a process-
unique v;tlire for thre;ids. ;rntl ;I processor number
for mi11 tipl-ocessor disp;itchil~g. Atldition;il I'til.code
state may include a floating-point enable bit, inter-
rupt jxiority level, ant1 translation loolc-aside

1 8 23 1' 11 ' 52

MANTISSA

M2

FX SXX

16 1 8 7 1' 11 ' 52

FX S SXX

EXP

EXP

MANTISSA

WI EXP

00000000000000000 ... 0

M1 M2 00000000000000000 ... 0

Alphci AXP Architecture

HARDWARE STATE

I LOCKED PHYSICAL ADDRESS I

a IEEE FLOATING-POINT DYNAMIC ROUNDING MODE

/ / 4 d

0 LOCK-FLAG

R30 (STACK POINTER)
R31 (ALWAYS ZERO)

F30
F31 (ALWAYS ZERO)

TYPICAL PALCODE STATE

OPTIONAL HARDWARE STATE

I PS I
I KERNEL STACK POINTER I

I PREFETCH STATE A I

I PROCESS CONTROL BLOCK BASE I

PREFETCH STATE B I

I WHO AM I (PROCESSOR NUMBER) I

0 INTR-FLAG

I] FLOATING-POINT ENABLE (FEN)

1 INTERRUPT PRIORITY LEVEL

-

I-STREAM TRANSLATION BUFFER 1

USER STACK POINTER

PROCESS-UNIQUE VALUE

1 D-STREAM TRANSLATION BUFFER T

buffers for mapping instruction-stream nnd clata-
stream virtual adclresses. All of this state is soft in
the sense t1i:lt it is defined only in relationship to
the I'ALcotle routines for a specific operating
systeni. In ;I tni~ltiprocessor implementation, all of
the above state is replicated for each processor.

Mernory Access
Alpha AX11 memory is byte atltlressetl, using the low-
est-numbered byte of a datum. Only aligned long-
wortls or clu:cclwords may be accessetl: an :~ligned
longworcl is a fonr-byte clati~m whose atltlress is a
niultiple of four; an aligned quadwortl is an eight-
byte datum m~liose address is ;I multij,le of eight.
Normal loatl or store instructions that specify an
unaligned :~cltlress take a precise data alignment
trap to I?4Lcocle (which may clo the access irsing

two aligned accesses or report a fat;~l error, depentl-
ing on the operating system design).

illpha I\XP implementations allow clata to be
accessed using either a little-e11di:tn"' view (byte 0 is
tlie low byte of an integer), or ;I big-entlian'. view
(byte 0 is the high byte o f an integer). As tlescribetl
in the Load/Store Instructions section, there is a
one-instruction bhs in tlie secluenceb for little- ant1
big-endian byte manipi~lation.

Virtual addresses are a full 64 bits; implenienta-
tions may restrict ;~tlclresses to have some number
of identical high-ostler bits, but must always distin-
guish at Least 43 bits. Virtual ;~ddresses ;Ire nx~pped
in an operating-specific way to plij~sical ;~dtlresses,
using fixed-size pages. Memory protection is clone
on a per-page basis. Atldrcss mapping errors (e.g..
protection, page faults) take precise traps to

Digilnl Tecbnicnl Jortrnnl Vo1. 4 !\'a 4 Speci~~l Issue 1392 27

Alpl~a AXP Architecture and Systems

I'i\l.code. Each page ma!. :~lso be m;irkccl to provicle
a fault 011 each read, write, or instruction-fetch.

Virt11;il ;~ddresses may be further qu;~lifietl bj-
atltlress space numbers (ASAS). to allo\v multiple
disjoint addresses spaces. l 'hc choice ofclisjoint or
common mapping across all processes is clone on a
per-page basis.

'The virtual- to physical-atltlrt.ss mapping is tlonc
011 :I per-page basis. Each i~iiplc~~ient;irio~i m;iy 1i;ive
;I p;tge size of 8m, I ~ K H , -32Kll. or 64Kl1. ?'he 0 i h ; ~
up1?er bound allows a linker to ;~lloc;ite blocks of
memory with cliffering protection o r , \ h \ proper-
ties htr enough apart to work on all implementa-
tions. The virtual- to p.hysic;~l-;ttltlrcsh mapping can
be m;in) to one, i.e.. sgnon!.ms :~rc ;~llo\i~ecl. In ;I

multiprocessor implement;ition, sIi;~recl main rnern-
ory 1oc;ltions haw tlie same pl1ysic;ll ;~tltlrc.ss on all
processors. Per-processor i~~i.sI~:irccl 1oc;ttions ;ire
also ;~llowetl.

Memory has longworcl gl-;~ni~l:irity: two proces-
sors III;IJ' si1ni1Itaneo~is1y ~CCC.SS ;tclj:tccnL longwortls
without rnut~~al interScrcnce. T1ie loatl-locketl/
store-co~~tlitiollal sequence d isc i~sx~l ~>re\,io~~sl!. c;in
be i~sed to achieve rnultiproccs~or bj,te granul;lrit!:

Inpi~t /oi~tpi~t is memory m:~ppeti: some phys-
ical memory adclresses may refer to I / () device
registers whose access trigpcrs sirlc cl'l'ccts (such
as tlie transfer of d;~t;l). Sicle effects on re;~cls are
cliscour;tgecl.

Irtstraiction F o r m a t s
Four funclamental instruction format>-operate,
menlor!;, branch, and <:h1.IL124L-are shown in
Figi~re 3. All instructions :Ire 32 bits witlc ant1 reside
ill memory at aligned longwortl ;icltlresses. E;tch
i~~struction contains :1 &bit opcocle fieltl :mtl zero
to three ?-bit register-number t'ieltls. Kh, Rl) . ;tntl RC:.

The rem;~ining bits cont;~i~i filtlction (opcode
extension). literal, or dispI;~cetnent fields. To mini-
mize register file ports in fast implementations, R13
is never written, ;~ncl R(: is never rcatl.

All the operate instructions are three-operand
register-to-register, c:llcul;rting RC = RA oper~lte RR.

In integer operzttes, tlic opcode and a 7-bit firnction
field specify tlic exact operation. Integer operates
may Iinve ;In 8-bit zero-extentlecl literal instead of
RH. In floating-point operates, the opcode and ;in
11-bit function fieltl specify the exact operation.
Tliere :ire n o flo;iting-point literals.

Memory format instructions are used for lo;tds.
stores, ;und a few miscellaneous operations. Loads
ant1 stores ;ire two-opcrancl instructions, specifying
a register KA ;uid a base-disp1;lcernent virtual byte
adtlress. l'hc effective atltlress calculation sign
extertcls the 16-bit clispl;~cement to 64 bits ancl :iclcls
the 64-bit RI$ b;ac rcgister (ignoring overflow). The
resulting virtu:~l byte ntldress is mappecl to a pliysi-
cal adclrrss. The ~nisceIl;~aeous instructions makc
other uses of the 11A, RH. ;ulcl displacement fields.

Branch h)rm;lt instructions spec@ a single regis-
ter It1 ant1 ;I signet1 PC:-relative lotigword displ:ice-
rnent, The br;uicIi target c;tlculation shifts tlie 21-bit
tlisplacemcnt left b)~ 2 bits to make it a longwortl
(not byte) tlisplacemetit. then sign extc~lds it anel
atltls it to tlie uptlatecl I>(:. Conditional br;inch
instructions test register hi, ;ind unconclitional
branches write tlie uptl;~ted PC to FU for subroutine
linkage. The 1:lrge longwortl displacement allows a
range of+4Rill3, subst;~ntially reducing the need h)r
branches arountl or to other branches.

The (:~r.I.-l%l. instruction has only a 6-bit opcotle
;ind :I 26-bit function fielcl. The hnction fieltl is ;I

small integer specifying one of a few dozen privi-
Iegecl ;ircl-litecture Iil)r;~rj~s~~broutines.

OPERATE FORMAT
31

LITERAL 1 FUNC. INTEGER. LITERAL

INTEGER. REGISTER

RB FUNC. FLOATING POINT

6 5 5 11 5

BRANCH FORMAT

MEMORY FORMAT
31 26 21 16 0

OP

CALL-PAL FORMAT
31 26 0
I I 1

31 26 21 0

1 Op 1 FUNCTION I

OP

6 5 5 16

RA

28 I hl. .# .Vo. - I .T/~c,c,ir/l /s.s/tc~ 1992 Digitnl Tec/~niral Jour~rnl

6 5 21

RA

RB

DISPLACEMENT

DISPLACEMENT

Alpha AXP Arclnitect~lr.c

OJemte Instructions
'I'here arc five g r o ~ ~ p s of register-to-register operate
instructions: integer arithmetic, logical, byte-
manipulation, floating-point, and misce l l ;~neo~~s .
All instructions operate on 64-bit qu;~dworcls
unless otherwise specified.

Integer Arithinetic I~~structiorzs The integer arith-
metic instructions are add, subtract, multiply, and
compare. Acld. subtract, and multiply have variants
t11;lt enable ;~rithmetic overflou~ tr ;~ps. ?'liejr ; ~ l s o
11;lve longword variants that check h)r 32-bit over-
flow (instc:id of 64) ancl force the high 33 bits of the
result to all equal bit<31>. Add ancl subtract also
Ihave sc;~lecl v;lri;rnts that shift the first operanel left
by 2 o r 3 bits (with no overflow cl~ecl~ing) t o speed
1113 simple subscripted address arithmetic. The
IIMII1.H instruction (from I'RISM) gives the higll 64
bits of an unsigned 128-bit product and may be
used for dividing by a constant. rl'lie~.e is n o integer
clividc instruction; a software subroutine is usecl to
tlivicle by a nonconstant. The compare instructions
are signed o r i~nsigned ancl write a Hoole;~n result (0
or I) to the target register.

Logiccrl Itistr~lctiorls The logical instructions :Ire
AND, OR, and XOR, with the secontl opcs;lnd
optionally complemented (ANDNOT, O R N O T ,

SOIINOT). The sliifts are shift left logic;il, shift right
logical, ;lncl shift right arithmetic. The (,-bit shift
count is given by RB o r a literal. The conclition;~l
move instructions test RA (same tests as the branch-
ing instructions) and conditionally move RIi to It(:.
These can be llsetl t o eliminate branches in short
sequences such as &llN(a,b).

Bj)te-~i~unip~~btioncton It~structiorts The byte-manip-
i11;ition instructions are usetl with the lo;~tl :~ncl
store i~naligned instructions to manip11l;lte short
un;~ligned strings of bytes. Long strings shoultl be
manipulated in groups of eight (aligned quad-
worcls) whe~iever possible. The b\~e-m;u~iipi~l:ltion
instructions :Ire fi~nclamentally maskecl shifts. They
differ born normal shifts by h;~ving a byte count
(0..7) instead o f ;i bit count (0..63), ;lncl by zcroing
some bytes of the result, based on tlic cl ;~t;~ size
given in the function field.

The extract (ESTxx) instructions extract part
of a I - , 2-, 4-, or 8-byte field from ;I qu;iclworcl
anel place the resulting bytes in a fielcl of zeros. A
single ES'l'xL instruction can perform b!.te or worrl
loads, p ~ ~ l l i n g the datum out of a qi~aclwortl ;11ic1

placing it in the low end of a register with h i g h
order zeros. A pair ol E>(Txl./EXt'xFI instructions can
perform unalignecl loacls, pulling the two parts of
an unalignecl cl:~tum out of two qlladwords anel
placing the parts in result registers. A s i~nple O R

operation can then co~nb ine the two parts into the
full tlatum.

The insert (INSxx) ;ind mask (MSKxx) instruc-
tions position new t1:1r;1 :incl zero o ~ ~ t oIt1 data in reg-
isters for storing bytes. words, and i~naligtled data.
I f the Alpha AXI1 ;ircliitecture were a four-operantl
one, inserting and masking coulcl have been com-
bined into ;I single instruction.

The compare-byte instruction ;~llows character-
string search and conipnre to be done eight bytes at
a time. The ZAP instructions ;~ l low zeroing of arbi-
trary patterns of bytes in a register. These instruc-
tions allow very fast iml>leme~lt;~tions of the C
language string routines, among other uses.

Floatingpoilzt AritI~~~zeIic Ii~struc'tior?~ Tlie float-
ing-point arithmetic instructions :ire aclcl, subtract,
multiply, clivide. conipare, ;inti convert. The first
four have v;iriants for IEEE ; ~ n d \b\X floating-point,
a ~ i d single- and double-precisio~i clat;~ t!.pes. ?'hey
~ l s o have variants that en;ible combin;ttions of arith-
metic t ra l~sancl t1i;lt spcc ih the roi~ncling mode.
Tlie single-precision instructions write canonical
64-bit results, but clo exponent checking and
rouncling to single-precision ranges. The compare
instructions write ;I Boolean result (0 or nonzero)
to the target register. Tlie convert instr11ctio1.1~
transfer between single nncl clouble, floating-point
and integer, ancl two forms of Vt\X double (D-float
;Inel G - b a t) . A conlbination o f liarelware and soft-
ware provides full IEi(li ;~ri thmetic. Operations on
\%S reserved operancls;' clirty zeros,'.' IEEE denor-
mals, infinities, and not-;1-1ii1rnht.rs are done in
softnlare.

There are also :I fc\v f1o:lting-point i n s t r ~ ~ c t i o ~ i s
tlxit move tlata wi thoi~t ;~pl,lying any interpretation
to it. These include a complete set of conditional
move instructions similar to the integer conditional
moves.

h4iscellar~eon.s I~zslruclio~zs The miscellaneous
instructions i n c l ~ ~ d e : Inernory prefetching instruc-
tions to help decre:~se memory latency a re:ld cycle
counter instruction for perh)rrn;111ce measurement,
;I trap barrier instruction for forcing precise arith-
metic traps, ancl nlernor!. barrier instructions for
forcing multiprocessor rc:lcl/write ordering.

Dig ~ I ~ I I T ~ C I J ~ I ~ C L ~ I JOU ~ I L L C I 14~1. 4 !YO. 4 .S/)L,CIO/ /.C.SIIO 1092 29

Alpha AXP Architecture a ~ l d Systems

The load ant1 store instructions only move data.
They never apply an interpretation to tlie data and
therefore never take any data-tlepentlent traps. This
design allows moving completely z~rbitrary bit pat-
tcl-ns in and out of registers ant1 ;illows con~pletely
tr;insl'arent saving/restoring of registers.

'l'lie integer load and store quadword unaligned
(I.l)Q-lJ, STQ-U) instructions ignore the Ion7 three
bits of the byte address antl ;~lw:lys transfer an
;~ligned quadword. These instructions are ~isetl
with the in-register byte manipiilation instructions
to operate on byte, word. and itn;tiigned tlat;~ by
short sequences of RISC ilistructions.

Ex;unple 1 in Figure 4 shows :I two-instruction
seclilence for loacli~ig ;I byte into the low entl of a
register. using little-entlian byte numbering.
Example 2 shows a similar secluence for loatling a
byte into the high end of ;I register, using big-entlian
byte nunlbering. Example 3 shows a sequence for
storing ;I byte (the first two and last two instruc-
tions might issue sin~ultiineously o n the first Alpha
AXP implementation). Example 4 shows a sequence
for ;In explicit unalig~ietl Ioatl quatlwortl (no data
;il ignment trap).

'l'lie integer load-lockecl ;lnd store-conditional
(1,I)Q-I., LDL-L, ST(>-C, STL-<:) instri~ctions are
inclutled in the architecture to facilitate atomic
i11~tl;ites of multiprocessor-sh;~red t i As
tlescribed above, they can be i~sed in short
sequences of RISC instructions to do atomic read-
modify-writes, Example 5 shows ;I sequence for
doing a multiprocessor test-;inti-set. Note that
ch;lnging the r.DQ-~J/Sl'Q-tl in Exr~niple 5 to
ANI)/~.I>Q-L/ST(~-C/BEQ gives a byte-store sequence
chat is s;ll'c to use with n~~~Itiproccssor-~l~:~recl data.

There :ire two related loxl :~dtlrcss instructions.
1 . 1) ~ calculates the effective atltlress and writes
it into R(;. LDAH first shifts the tlisp1;lcernent
left 16 bits, then calculates the effective aclclress
;inti writes i t into RC. LDAM is inclilcletl to give a sirn-
pie way of creating most $2-bit constants jn a
pair of instructions. (Because I.I>A sign-extends
the tlisplacement, some v;ilucs in the range
0 0 0 0 0 0 0 0 7 F F F 8 0 0 O .. 0 0 0 0 0 0 0 0 7 F F F F I : F F require
three instructions.) Constants o f 64 [?its :ire loadetl
with I,DQ instructions.

Blwrzclning Instructions
'The br;incli instructions include conditional
branches, unco~ld i t io~l ;~~ br;lnches, and c;llculated
jumps. In ;~cltlition to the previously described

conditional moves, the ;irchitecture contains hints
to improve branching performance.

The integer contlitional branches test register RA
for an opcotle-specified condition (>O >=O =O !=O
<=O <O even odd) and either branch to the target
adclress or fall through to the updated PC adtlress.
The floating-point contlitio~~al branches are the
same, except they d o not include even/odtl tests.
Arbitrary testing (and faulting on VAX or IEEE nonfi-
liite values) can be done by sequences of con1p;u.e
instructions and branch instructions. Logical or
arithmetic instructions can combine compare
results without using br;~nches.

LJnconditional b ~ m c h e s write tlie updatetl PC to
Rt\ for subroutine linkage ant1 branch to the target
atlclress. R i i = R31 may be i~secl if no linkage is
needed.

Calcu1:ltetl jumps write the updatccl PC: to hi ;lnd
jump to the target ;~tltlress in M. Calculated junlps
are used for suk>routine call, return, CASE (or
SWIT(:H) statements, and coroutine linkage.

The architecture specifies three kinds of brancli-
ing hints in instructions. The hints need not be
correct, but to tlie extent that they are, implementa-
tions may perform bster.

The first for111 of llint is an architectetl static
branch precliction rule: forward conditional
branches :ire predicted not-taken, and backw;~rcl
ones taken. To the extent that compilers and hard-
ware implenlenters follow this rule, programs c ;~n
run more quicldy with little hardware cost. This
hint does not eliminate the use of dynamic br:unch
prediction in ;in implementation, but it may recluce
tlie need to use it.

The secontl for111 describes co~npi~ted jump tar-
gets. Unusetl instruction hits are defined to give the
low bits of the most likely target, using the same tar-
get calcul;~tion as unco~iditional branches. Tlie 14
bits providetl are enough to specifi the instruction
offset within ;I page, which is often enough to start
a fastest-level instruction-cache read many cycles
before the :~ctual target value is known.

Tlie third for111 tlescrjbes sr~broutine ;lot1 corou-
tine returns. By marking each branch and jump as
c:ill, return, or neither, the architecture provides
enough information to maintain a small stack o f
likely subroutine retilrn atldresses within an iniple-
mentation. This implement;~tion stack can be usecl
to prefetch subroi~tine returns quickly.

The conditional move instructions (discussed
previously in the L.ogic:~l Instructions section and
the Floating-point Arithmetic Instructions section)

Alpha AXP Architecture

EXAMPLE 1: LOAD BYTE (UNSIGNED. LITTLE-ENDIAN)

7 6 0 4 3 2 1 0
LDQ-U R2,O(R1) 1 (BYTE 1 R2

7 6 5 4 3 2 1 0

EXTBL R2,Rl ,R2 r 0 IBYTE R2

EXAMPLE 2: LOAD BYTE (SIGNED. BIG-ENDIAN)

0 1 0 3 4 5 6 7
LDQ-U R2,O(R1) I (BYTE (R2

SUBQ R31 ,R1 ,R3 I -2 R3

EXAMPLE 3: STORE BYTE (LITTLE-ENDIAN)

0 1 2 3 4 5 6 7

7 6 0 4 3 2 1 0
LDQ-U R2,O(Rl) I I OLD I R2

EXTQH R2,R3,R2 BYTE 1 R2

OR R2,R3,R2 I (NEW (R2

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
STQ-U R2,O(R1) I NEW I (o (~ 1)

INSBL RO,Rl,R3

EXAMPLE 4: EXPLICIT LOAD QUADWORD (UNALIGNED, LITTLE-ENDIAN)

7 6 0 4 3 2 1 0
LDQ-U R2,O(RI) LOW PART I R2

1 NEW 1 R3

15 14 13 @ 11 10 9 8

EXAMPLE 5: MULTIPROCESSOR TEST-AND-SET

LDQ-U R3,7(R1)

7 6 5 4 3 2 1 0

HIGH PART R3

EXTQL R2,Rl ,R2

BNE R2,FLAG-SET FLAG R2

I LOW PART R2

LDQ-L R2,O(R1) I FLAG

BEQ R2,CONTENTION I STORED? I R2

Figure 4 Load/Store Instrzlctio17s

R2

Digital Tech~cical Jo~i~-lrnl Vol 4 iVo 4 J / I ~ L L C I / I.FSLIL' 1992 3 1

7 6 5 4 3 2 1 0
EXTQH R3,Rl ,R3 I HIGH PART R3

7 6 5 4 3 2 1 0

OR R2,R3.R2 I HIGH PART (LOW PART R2

Alpha AXP Architecture and Systems

anrl the bratiching hints eliniinate some branches
ant1 speetl 1111 tlie remaining ones without conipro-
mising multiple instruction issue.

Supmu ision
The ;ictions unclerpinni~ig an operating system are
perforrnetl in [?.\J.cotle subroutines ant1 are a flexi-
ble 1x11-t of the architecture. All ;isyncI~rotioiis
events, such as intet-rupts, exceptions, and m;~chine
errors, are rnediatecl by l%I,code routines. I'i\Lcotlc
establishes the initial state of the machine before
execution of the first software instruction. l'A1~c0tle
routines 11iecli;ite all Accesses to physical liartlw:~rc
resources, includitig physical main memory anel
memory-rn;i1>1>etl I/() device registers.

This design allows irnple~iienters to craft ;i set o f
l't\Lcotle routines tliat closely match an oper;tting
s),stem tlesign, not onljr for trnclitioniil oper:iting
s),stems, but also for specialized environ~iients such
;is rc;il-time or bigblj. secure cotiiputing. As new
co~~ ip i~ t ing p:ir;~dignisare atlopred ;lntl new opcr;it-
ing systems ;ire created, the Alpha r\XP architecture
may we1 l prove flexible enougli to accommotl;~le
then1 cfficie~~tly.

Future Changes
The Alpli;~ AXP ;~rchitecture will surely ch:ulge
during its lifetime. In addition to the I'~iI.cocle
flexibility discussed above, explicit performance
flexihilit)~ and instruction-set flexibility exist in
the arcliitcct~~re.

Architectural fields that are too sm;11l can limit
perfo-ni;ince. The Alpha h X P architect~~re there-
fore h;~s many fields tleliberatel!. sized for 1;iter
exp;insion.

i\lthougli initial implernentations ~1s t onl!, 43
bits of virtual ;~cldress. they check the reriiaining
21 bits, so tli;~t software can run ~inrnoclifictl 011

1;lter implementations that use (up to) :ill 0 4 bits.
Furthermore, ;~ltl~ough initi;il implementations use
only 34 bits of pliysical atldress, the nrchilcctetl
I>;lge t;tble entry (PTE) formats ancl p:~ge-size
choices allow growth to 48 bits. By exp;lncling into
a 16-bit I'?'E fieltl tli;lt is not currently used by m;~p-
ping Ii;irtlw;~re, another 16 bits of physical adtlress
grcnvth can be acl~ieved, if ever neetletl.

Initial implementations also use only SKI3 p;lges,
but tIie clesign accommodates I i ~ i i i t ~ t l growth to
6,iKIi pages. Beyontl that, page t;tljle gr:in~~l:lrit)~
liin~s :illow groups of 8, 64. or 513 p;iges to be
rrc;ttc.cl ;is ;I single large page, th~is eSf'ectivcljr
cstcncling tlic. p:~gc-sjze range b). :I ktctor o f ovc,r

1,000. liacli ;irchitected IYl'P; form:it also hi~s onc bit
reservetl for h tu re expansion.

Sevcr:il other soft 1)ALcocle registers, such ;IS tlic
1'5 or ,iSN. that need only a few bits toclay ;Ire allo-
cated ;I fi111 64 bits for future exp:insion.

Exception processing can limit perforrn;~ncr.
I'Al.code routines tleliver exceptions to an oper;lt-
ing s).stcln, so the dcsign can be gr;iclt~;~lly
im]>rovecl. In hct . I?,\Lcotle routines for t1-1~. clat;~
;~lignment Ixtve bcen iniprovetl in the Open\ ITIS A X P
;untl Ill:(: OSWI t\XP operating systcnis. Some cur-
rently specified softwarc exceptions (such ;is Ilrlil;
clenornl;il ;irithmetic) could be mo\~etl into 1'/2l,coclc
or hartl~v:ire.

?'here ;)I-e ;I llumber of areas of instl-i~ction-set
flesibilit!. designetl into the architecture. tour of
the (,-bit opcodes are no~iiinally reser\.ecl for
;itlcling intcgcr and floating-point alignctl oct:~-
\s;ort14 (128-bit) load/store instructions I ' Nine more
0-bit ol~codes remain for other cxpiinsion. Witliin
e;icli opcocle, the function firltl contains room for
fi~~-tIicr esp;tnsio~l. For csample. tlie sc;ilcd ;icltl/sirl~-
tract f~rnctions were atldcd between l~rototypc
chip iind protluct chip. The fnct th;it tlie function
fielcls ;ire not f~11Iy policecl is a mistitke.

Within the I iXE floating-point f~tnction ficltl,
coclc points are nomin~lly reserveel for clo~~blc-
estenclrtl" precision (128-bit) aritlimetic. Within
{:lie memory b:trricr instruction gr0~113, t b r e ~ COCIC'
poi~its were reserved for subset bal-ricrs. One of
these h;is alre;idy been redcfi~inetl as ;I write-write
b;trricl:

Not all changes involve growth. l'herc ;*re subsct-
ting rulcs clcfined for removing either one or both
(1I;I;l; ;uicl U S) floating-point clat:i types. I f both ;Ire
removecl, the floating-point registers c:ln ;~lso I>e
rerno\,etl. Tlie h.\ l(>Yss P~\Lcocle roiltinc> :~ntl 1<5/11(;

instructions are defined as option:il ;~ntl c;in be
tleletecl n k n the trailsirion o f tl-;insl;itcrl \ii\S coclc
is cornplcted. Other unneecled l)r\l.cocle rolltines
c:m ;~lso be removed e\;enti~;ill\:

S Z ~ V I ~ ? ~ ~ ~ ? ~ ~
FShc goals rii;lt shaped tlie Alpha AXl' ;~rchitecture
clesigli have largely been realized. For high perfor-
mance, the first irnp1ement;ttion (the I)lcc:cliil~
21004 11iicroprocessor) is listcd in the October 1992
(,'r~irilicss :soot2 of Recor.ds ;IS tlie world's cistest sill-
glc-chip microprocessor. It is too early to mc;isure
longe\..ity but tlie fact that \\.c had clesigncd-in flcsi-
bility in pl:~cea tl1;it cliangecl tlurir~g clc\.clopment is
;it 1c;ist encour:iging. OpenVYlS ,\XI', [>kc: OSI/l ,\XI'.

and Windows NT operating systems a11 run on
Alpha AXI-' implementations today. Programs from
the VAX ant1 ,\LIPS architectures transport easily to
Alpha AXIJ implenientatiolls ant1 run quickly Many
of the ideas in the Alpha AX11 design are now being
adopted by other architectures in the industry.

Appendix
Biiznry traizsl~~tioiz-A software technique to
change an executable program written for one
architecture/operating-s~rstem pair into an equiva-
lent program for a different architecture/ol>erating-
system pair.

Rig-endiaiz nleinory addressing-A view of niem-
ory jn which byte 0 of an operancl contains the
most significant (sign) bit of an integer. Compare lit-
tle-endian memory addressing.

Byte-An 8-bit datum

Byte granularity-The appearance that two pro-
cessors can update adjacent bytes in memory with-
out interfering with each other.

CLSC-Complex instruction set computer, charac-
terized by variable-length instructions, a wide vari-
ety of memory aclclressing motles, and instructions
that combine one or more memory accesses with
arithmetic. <:Is(: designs express computation as a
few complex steps.

IEEE clei~ormalizecl nunzber (denorma1)-A float-
ing-point number with magnitude between zero
and the smallest represelltable normalized number.
Numbers in this range are typically not repre-
sentable in other floating-point arithmetic systems;
such systems lnight s~gnal an untlerflow exception
or force a result to zero instead.

IEEE clouble-extended fornzat-A loosely specifed
floating-point format with at least 64 significant
bits of precision and at least 15 bits of exponent
witlth; typically implemented using a total of 80 or
128 bits.

IEEE clynntnic rounding mode-One of four differ-
ent rounding rules.

IL5k f%o~!tiizgll,oi~zt-A form of computer arith-
metic specified by lEEE standartl 754.l' IEEE arith-
metic inclr~des rules for tlenormalized numbers,
infinities, and not-a-numbers. It also specifies four
different modes for rounding results.

IEEE i~zfinitjl-An operand with an arbitrarily large
magnitude.

Digital Technical Journal %)I. 4 IVO. 4 Special Issue 1992

IEEE not-a-~zuinber (NLLAV-A symbolic entity
encoded in a floating-point format. The lEEE stan-
dard specifies some exceptional results (e.g., 0/0)
to be NaNs.

Linear crddressilzg-A memory addressing tech-
nique in which all addresses form a single range,
from 0 to the largest possible address. Subscript cal-
culations can create any address in the entire range.

Little-endian rnenzory addressirzg-A view of
memory i n which byte 0 of an operand contains the
least significant bit of an integer. The terms little-
endian and big-endian are borrowed from
Gulliver's Tr~iz~els in which religious wars were
waged over which end of an egg to break.

Longz~~ord-A 32-bit datum.

Mz~ltiple instr~iction issz~e-A highperformance
computer implementation technique of starting
more than one instruction at once. An implements
tion that starts (up to) two instructions at once is
called dual-issue; four instructions, quad-issue or
four-way issue; etc.

Quadu~orcl-A 64-bit datum.

RISC-Reduced instruction set computer, charac-
terized by fixed-length instructions, simple Inem-
ory acltlressing modes, and a strict decoupling of
load/store memory access instructions from regis-
ter-to-register arithmetic instructions. NSC designs
express computation as many simple steps.

Segmented addressi~zg-A memory addressing
technique in which acltlresses are broken into two
or more parts (segments). Subscript calc~~lations
can only be done within a single segment, and elab-
orate software techniques are needed to extend
addressing beyond a single segment

VAX dirty zero-A zero value represented with a
non-zero faction; must be converted to a true zero
result.

VAX flroating-point-A form of computer arith-
metic specified by the VAX architecture manual.4
VAX arithmetic includes rules for reserved
operands and dirty zeros.

VAX reserved operand-A non-number that signals
an exception when used as an operand in VAX float-
ing-point arithmetic.

VAX ulord su~apping-The rearrangement needed
for the 16-bit pieces of a vi\X floating-point number

Alpha AXP Architecture and Systems

to put the fields in a more ilsr~al order; this is an arti-
krct of the l'l>IJ-l L 16-bit ;~rchitecture.

W ~ I * L / -) ~ 16-bit tI:~ti~ni,

Acknowledgments
Hirntlretls o f people have worked on the Alpha AX['
;~rcli i tectt~re, h;irdware, ancl software. M;my Alpli;~
AXI' arcllitectural icleas came from the PRISM
design, most notably the PALcode i d e a . The archi-
tecture work was clone in the rich envirolirnent of
dozens ;inti later Iiundrecls of bright, thoi~gli tf i~l ,
and outspoken professional peers. Ellen bat bout;^.
Dileep 13handarkar, Richard Brunnel; Wayne
<:;irdoz;~. Dave Cutler, Daniel Dobberpuhl, Robert
(iiggi. Henry Grieb, Richard Grove, Robert
M:~lste;~d. Jr.. MicIi;~el Harvey, Nancy Kronenberg,
R~ymoncl Lanza. Stepheti Morris. Willialn Noyce,
Charles Nylanclec Ilave Orbits, Mary Payne. Audrey
Reith, Robert Supnik. Benjamin Thomas, Catharine
van Ingen, ant1 Rich Witek all contributed directl!,
to the written specification. Rich Witek is co-;rrclii-
tect ; ~ n d is the other half of the term "we" usetl in
this paper.

References and Notes

1. C;. Amdahl, G. Blaauw, and E Brooks, Jr.,
"Architecture of the IBM System/S60," Ih'M

Jou1.7~rrl oJKesearcl7 arzd Derlelopment, vol . 8,
no. 2 (April 1967): 87-101.

2. R. Sites, ed., Alkbn Architectur-e Refererlce
l L I r ~ r z ~ ~ ~ l (Burlington? h a : Digital Press, 1992).

3. 11. Conr;ltl et al., "A 50 MIPS (Peak) 32/(i4b
Nlicrolxocessor," ISSCC Digest cg ~ ~ ' c % ? I ~ ~ L . c I /
Pz~I~ers (February 1989): 76-77

4. It. Brunner, etl., I2.X Arclnitectnre Kt?jbr.er?cc.
,Wcln~~oI Second Etlition (Bedhrtl, MA: 1Iigit;ll
Press, 1991).

5. <;. Kane and J. Heinrich, ,llIP,F R1.K Ar'cbitec-
ture (Englewoocl Cliffs, NJ: Prentice-Hall,
1992).

6. R. Sites, A. Chernoff, M. Kirk, M. Marks, atid
S. Robinson, "Binary Translation," L)igitz~I
Tcclnnic-a/ Jourrznl, vol. 4. no. 4 (1992, this
issue): 137-152.

7 The little-endian bias is very slight; both big-
and little-entli;~n Alpha AXP systems and soft-
wxre are in fact being built.

8. There are two special-resource ;inornalies in
the architecture that w e were unable to avoid:
the tleclicated state for the load-locked
instruction and the dynamic rountling-mode
register required for f11ll IEEE conh)rm:~nce.

9. This is borne out in a large customer's recent
C string manipillation benchmark result, run-
ning 3 to 6 t i~iies faster than the custoniet-~s
expectation (wl~icli was basecl solely on clock
rate ratios).

10 C ~ - L I J ~ - ~ Colrzputer Systenz KeJerence ~ V l ~ ~ ~ z u o l ,
For111 2240004 (Minneapolis Crny Rese:ircli,
Inc., 1977).

I I . IB,l-1 Systenz/.?70 Prilzciples of 0~)erwtion.
Form C~22-7000-4 (Armonk. M': Ilih4 Corpo-
ration. 1974): 28.

12. Institute of Electrical and Electronics Engi-
neers. "Binary Floating-point Arithlnetic for
,Microprocessor Systems,'' Standard Number
11313-754 (New York, 1985).

3. The ca reh~ l reader will notice that A l p l ~ ; ~ ,\XI)

implementations require a longword shifter
in the loacl/store patli for 32-bit operands.
Although w e briefly considered ;I design with
no 32-bit operands, we decided to Iccep 52-bit
load/store support for good business reasons.
Similarly, iUpha AXP implementatiolls require
;I worcl swapper in the load/store patli for VAX

flo;~ting-point operands. We clecidetl t o keep
VAX floating-point support for good I)i~siness
reasons. Depending o n market needs, \'AX
floating-point support can be removetl in the
h ~ t u r e .

14. Many commercially successful arcliitcc-
tilres have grown to double-witlt11 memory
implementations in mid-life: the lohl 709
series from 36 to 72 bits; the II%M Systeni/3GO
series from 32 to 64 bits: the Digital I'1)1'-11
series from 16 t o 32 bits; ;rnd the 1)igit;ll
VAX series from 32 to 64 bits. This trentl is
likely to continue.

Daniel W Dobberpuhl
Richard 1: Witek

Randy Allmon
Robert Anglin

David Bertucci
Sharon Britton

Linda Chao

Robert A. Conrad
Daniel E. Deuer
Bruce Gieseke

Soha M.N Hassoun
Gregory W Hoeppner

Kathryn Kuchler
Maureen Ladd

Burton M. Leary

Liam Madden
EdwardJ McLellun

Derrick R. Meyer
James Montanaro
Donald A. Priore

Vidya Rajagopalan
Sridhar Samudralu

Sribalan Santhanam

A 200-MHz 64- bit Dual-issue
CMOS Microprocessor

A 400-1n~s/200-1~1FLOPS (peak) custom 64-bit VLSICPU chip is described. The chip is
fabricated in a 0.75-pm CMOS technology utilizing three levels of metnlizntio~z and
optimized for 3.3-Voperation. The die size is 168 mm X 13.9 mm and contains 1.68
lnilliolz transistors. The chi) includes sepamte 8KB instrtiction and dcit~r cacl?es and
a fully pipelined floating-point unit tlgat can handle both IEEE and VRY standard
floating-point data types. It is designed to execute two instructionsper cycle among
scorebonrded integer; floating-point, address, and branch execution units. Pozoer
dissipation is 30 W at 200-MHz operation.

A reduced instruction set computer (NSC)-style
microprocessor has been designed and tested that
operates up to 200 megahertz (MHz). The chip
implements a new 64-bit architecture, designed to
provide a huge linear address space and to be devoid
of bottlenecks that would impede highly concur-
rent implementations. Fully pipelined and capable
of issuing two instructions per clock cycle, this
implementation can execute up to 400 million oper-
ations per second. The chip includes an 8-kilobyte
(JSB) I-cache, 8KB D-cache and two associated trans
lation buffers, a four-entry, 32-byte-per-entry write
buffer, a pipelined 64-bit integer execution unit
with a 32-entry register file, and a pipelined floating-
point unit (FPU) with an additional 32 registers. The
pin interface includes integral support for an exter-
nal secondary cache. The package is a 431-pin pin
grid array (PGA) with 140 pins dedicated to V,,/y,
(power supply voltage/grouncl). The chip is fabri-
cated in a 0.75-micrometer (pm) n-well comple-
mentary metal-oxide semiconductor (CMOS)
process with three layers of metalization. The die
measures 16.8 millimeters (mm) x 13.9 mm and con-
tains 1.68 million transistors. Power dissipation is
30 watts (W) from a 3.3-volt (V) supply at 200 MHZ.

0 IEEE. Reprinted, with permiasion, from thc /EEEJortr.i?al of
SolidStute Circuils, volumc 27, number 11, pages 1555 to 1567,
November 1992.

CMOS Process Technology
The chip is fabricated in a 0.75-pm, 3.3-V, n-well
CMOS process optimized for high-performance
microprocessor design. Process characteristics are
shown in Table 1. The thin gate oxide and short
transistor lengths result in the fast transistors
required to operate at 200 MHz. There are no
explicit bipolar devices in the process as the incre-
mental process complexity and cost were deemed

Table 1 Process Description

Feature size

Channel length
Gate oxide

Ynl 4,
Power supply
Substrate
Salicide

Buried contact

Metal 1

Metal 2

Metal 3

- -

0.75 Krn
0.5 pm
10.5 nm
0.5 Vl-0.5 V
3.3 v
P-epitaxial with n-well
Cobalt-disilicide in diffusions
and gates
Titanium nitride

0.75-pm AICu, 2.25-pm pitch
(contacted)

0.75-~m AICu, 2.625-~m
pitch (contacted)

2.0-pm AICu, 7.5-pm pitch
(contacted)

Digital Tecbnicnl Jourrrnl Vol. 4 No. 4 Sl,ecinl lssi~e 1992 3 5

Alpha AXP Architecture and Systems

too large in comparison to the benefits provided-
principally more area-efficient large drivers such as
clock and I/O.

The metal structure is designed to support
the high operating frequency of the chip. Metal 3
is very thick ancl has a relatively large pitch. I t
is important at these speeds to have a low-resis-
tance metal layer available for power ant1 clock
distribution. It is also used for a small set of special
signal wires such as the clata buses to the pins
and the control wires for the two shifters. Metal 1
ancl metal 2 are maintained at close to their maxi-
mum thickness by planarization and by filling metal
1 and metal 2 contacts with tungsten plugs. This
removes a potential weak spot in the electromi-
gration characteristics of the process and allows
more freedom in the design without compromising
reliability.

Alpha AXP Architecture
The computer architecture implemented is a 64-bit
load/store RISC architecture with 168 instructions,
a11 32 bits wick.' Supportecl data types include
8-, 16-, 32-, and 64-bit integers ancl both Digital and
IEEE 32- and 64-bit floating-point formats. Each of
the two register files, integer and floating point,
contains 32 entries of (54 bits with one entry in each
being a hardwired zero. The program counter and
virtual address are 64 bits. Implementations can
subset the virtual atltlress size, but are required to
check the fi1I1 64-bit adclress for sign extension.
This ensures that when later implementations
choose to support a larger virtual address, pro-
grams will still run and not find addresses that have
dirty bits in the previously "unused" bits.

The architecture is designed to support high-
speed multi-issue implementations. ?b this end the
architecture does not include condition codes,
instructions with fixed source or destination regis-
ters, or byte writes of any kincl (byte operations are
supported by extract ant1 merge instructions
within the CPU itself). Also there are no first-gener-
ation artifacts that are optimized around tod;iy's
technology, which would represent a long-term lia-
bility to the architecture.

Chip Microarchitecture
The block diagram (Figure 1) shows the major func-
tional blocks and their interconnecting buses, most
of which are 64 bits wicle. The chip iniplements
four functional units: the integer unit (IRF plus

Figt~~-c? I CPU Cbip Block. Dingizlm

BIU

E-box), the floating-point unit (FRF plus F-box), the
loacl/store unit (A-box), and the branch unit (dis-
tributecl). T'he bus interface unit (UIU), described in
the next section, handles all communication
between the chip and external components. The
microphotograph (Figure 2) shows the boundaries
of the major functional units. The dual-issue rules
are a direct consequence of the register file ports,
t l ~ e functional units, ancl the I-cache interface. The
integer register file (IM) has two read ports and one
write port dedicated to the integer unit, and two
read anrl one write port shared between the branch
unit and the load/store unit. The floating-point reg-
ister file (FRF) has two read ports and one write
port dedicated to the floating unit, and one read
and one write port sharecl between the branch unit
and the load/store unit. This leads to dual-issue
rules that are quite general:

Any loacl/store in parallel with any operate

I-CACHE -F

An integer operate in parallel with a floating
operate

E-BOX

A floating operate and a floating branch

An integer operate and an integer branch

-

except that integer store and floating operate and
floating store and integer operate are disallowecl as
pairs.

-

36 W)1. 4 No. 4 S~ecidlssue 1992 Digilal Tecbrrical Jozrrrzal

-

- FRF

t A

7 7

A- A-BOX

t t l
F-BOX

I-BOX t t l ~

A 200-MHz 64-bit Dual-issue CMOS iMicro~~rocessor

CLOCK

Figure 2 ~klicrophotogrl,h of Chip

As shown in Figure 3a, the integer pipeline is
7 stages deep, where each stage is a 5-nanosecond
(ns) clock cycle. The first four stages are associated
with instruction fetching, dccotling, and score-
board checking of operands. Pipeline stages 0
through 3 can be stalled. Beyond 3, however, all
pipeline stages advance every cycle. Most arith-
metic and logic unit (ALU) operations complete in
cycle 4, allowing single-cycle latency, with the
shifter being the exception. Primary cache accesses
complete in cycle 6, so cache 1;ltency is three cycles.
The chip will do hits under misses to the primary
D-cache.

The I-stream is based on autonomous prefetch-
ing in cycles 0 and 1 with the final resolution of
I-cache hit not occurring until cycle 5. The
prefetcher includes a branch history table and a

subroutine return stack. The architecture provides
a convention for compilers to predict branch deci-
sions ancl destination adtlresses, inclutling those for
register indirect jumps. The penalty for branch mis-
predict is four cj~cles.

The floating-point unit is a fi~lly pipelined 64-bit
floating-point processor that supports both vioc
standard and IEEE stantlarcl data types and rouncling
modes. It can generate a 64-bit result every cycle
for all operations except divide. As shown in Figi~re
3b, the floating-point pipeline is identical and
mostly shared with the integer pipeline in stages 0
through 3; however, the execution phase is three
cycles longer. All operations, 32- and 64-bit (except
divide) have the same timing. Divide is handled by a
nonpipelined, single bit per cycle, dedicated divide
unit.

Digital Techtrical Jourt~al W1. 4 /\lo. 4 .S/)eciul lssue 1992 37

Alpha AXPArchitecture and Systems

0
IF

CACHE
ACCESS

SWAP
PREDICT

2
10

DECODE

ISSUE
RF READ

(0) Integer Unit Pipeline Tirning

4
A1

ALUl
4
4
4

PCGEN

VAGEN

KEY:

5
A2

ALU2

ITB

DTB

0
IF

CACHE
ACCESS

PC GEN GENERATE NEW PROGRAM COUNTER VALUE
VA GEN GENERATE NEW VIRTUAL ADDRESS
ITB INSTRUCTION TRANSLATION BUFFER
DTB DATA TRANSLATION BUFFER

6
W R

WRITE

I-CACHE
HITIMISS

D-CACHE
HITIMISS

Figure 3 Pipeline Tinzi~zg

1
SW

SWAP
PREDICT

In cycle 4, the register file data is formatted to
fraction, exponent, antl sign. In the first-stage
:rclder; exponent difference is calculated and ;I 3 x
~n~lltiplicand is generated for multiplies. In aclcli-
tion, a predictive leading 1 or 0 detector using
the input operands is initiated for use in resillt nor-
malization. In cycles 5 and 6, for add/subtract,
alignlnent or normalization shift and sticky-bit cal-
cul:ition are perfornietl. For both single- ant1 tlou-
ble-precision mi~ltiplication, the multiply is done in
;I radix-8 pipelined array multiplier. In cycles 7 and
8, the final acldition and rounding are performed in
parallel and the final result is selected and driven
back to the register file in cycle 9. With an ;tllowed
byp;~ss o f the register write data, floating-point
latency is six cycles.

'The <:I'IJ cont;rins all the hardware necessary to
support a tlemand paged virtual memory system. It
inclutles two translation buffers to cache virtu;il-to-
physic;~l address translation. The instruction trans-
lation buffer contains 12 entries, 8 that map 8KR

pages and 4 that map 4-megabyte (MB) pages. l'he
data tr;~nslation buffer contains 32 entries that can
map SKU, 6 4 ~ ~ , 512KB, or ~ M B pages.

T11e CPLI supports performance measurement
with two counters that accumulate system events
on the chip such as dual-issue cycles and cache
misses or external events through two dedicatetl
pins that are s;lmpled at the selected system clock
speetl.

2
10

DECODE

External Interface
The external interface (Figure 4) i s designed to
directly support an off-chip backup cache that can
range in size from 128KB to 8h4B and can be
constructed from ordinary SRAMs. For most opera-
tions, the CPU chip accesses the cache directly
in ;I combinatorial loop by presenting an address
antl waiting N CPlJ cycles for control, tag, ant1 tlat:~
to appear, where N is a mode-programmablt:nibl num-
ber between 3 and 16 set at power-up time. For
writes, both the total number of cycles and the

9
I1

4
F1

'4

ISSUE
RF READ

5
F2

ADD L I D SHIFT ADDIRND FRF WRITE

3X MULl MUL2 ADDJRND FRF WRITE

7
F4

6
F3

I

8
F5

9
FWR

I BY PASS

osc<2>
(400 MHz)

CPU
CHIP

I I

I RAM

adr-h<33:5>
4

Fi'q~1r.e 4 CPU Exterrzal I~zter;firce

RAM-cll

MEMORY
SYSTEM
INTERFACE

sys-RAM-ctl

t1ur;ltion and position of the write signal are
progranimable in units of CIJU cycles. This allows
the module designer to select the size and access
time of the SkL\ls to match the tlesirecl price/
performance point.

The interface is designed to allow all cache pol-
icy clecisions to be controllecl by logic external to
the c:l'ri chip. There are tliree control bits associ-
i~tecl with e;~ch backup cache (B-c;~che) line: valid,
shared, and dirty. The chip completes a B-cache
re;ld ;IS long as valid is true. A write is processetl by
the <:l'lJ only if valid is true and sliarecl is false.
When ;I write is performed, the dirty bit is set to
true. In ;ill other cases, the chip defers to an exter-
nal state machine to complete the transaction. This
stare m;~chine operates synchronously with the
S\'s_(;l.l< output of the chip, which is a motle-con-
trolled submultiple of tlie cPrJ clock rate ranging
from divitle by 2 to divitle by 8. It is also possible to
operate without a backup cache.

Ah shown in the diagram, the extern;il c:iche
is connected between the ClTJ chip ancl the sys-
tem memory interface. The cornbin;~torial cache
access begins with the desired address cleliveretl
o n the adr-12 lines and results in ctl, tag, data,
and checlc bits appearing at the chip receivers
within the prescribed access time. In 128-bit
mode. R-cache accesses require two external data
cyclcs to transfer the 32-byte cache line across

-1 -; -1-I
I I I SYSTEM DEPENDENT LOGIC 1 .

the 16-byte pin bus. In &-bit mode, it is four cycles.
This yields a maxiniuni backup cache read bantl-
width of 1.2 gigabytes per second ((;B/s) antl a write
bandwidth of 711MH/s. Internal cache lines can
be invalidated at the rate of one line per cycle
using tlie dedicated invalidate address pins,
iAdr-11<12:5>.

In the event extern;~l intervention is requirecl, a
request code is presented by the CDU chip to the
external state machine in the time domain of the
SYS-CLK as describecl pre\~iousl)! Figure 5 shows
the read miss timing where each cycle is a SYS-CLK
cycle. The external transaction starts with the
address, the quadword within block and instruc-
tion/data indication si~pplied on the cW>Iask-11
pins, ant1 REAII-I3I.OCK function supplied on the
cReq-11 pins. The external logic returns the first
16 bytes of dat;~ 011 the data-h and error correct-
ing cocle (ECC) or parity on the check-h pitis. The
CPU latches the data based o n receiving acknowl-
edgment o n rclAclc-H. The tliagratn shows a stall
cycle (cycle 4) between tlie request ant1 the return
data; this depencls on the external logic and coiilcl
range from zero to many cycles. The second 16
bytes o f data are returnetl in the same way with
rdAck-h signaling the return of the data antl cAck-11
signaling the completion of the transaction. cRecl-h
returns to idle and ;I new transaction can start ;it
this time.

Digital Tecbricnl Jottrnnl Vof. 4 No. 4 Spccial fswr 1992 39

Alpha , U P Architecture and Systems

sysCLKOut-h

adr-h

cWivlask-h X VALID X
cReq-h

data h /

1
ecc VALID VALID
check-h

rdAck h -
cAck-h

Tlie chip itllplements a novel set of fe;~tures sup-
porting chip ant1 motlule test. When the chip is
reset, the first action is to reael from ;I seriiil re;td-
only memory (SKOM) into the I-cache via a private
three-wire port. The <;Ptl is then enabled ancl the
program counter (PC) is forced to 0. 1'11~1s with only
three fi~nctional components (<:I'll chip, SlWkI, and
clock input), a system is able to begin executing
instructions. This initial set of instructions is r~secl
to write tlie bus control registers inside the <:I'U

chip to set the cache timing and to test the chip and
nlotlule from the CPI out. After the SKoiLI loads tlie
I-c;tchc, the pins used for the sl<o.~l interktce arc
enableel ;IS serial in and out ports. These ports can
be used to load more clata or to return status of test-
ing ;~ntl setup.

Circuit Implementation
Many novel circuit structures ;~ntl clet;~ilecl analysis
techniclues were develolxcl to support the clock
rate in conjunction with tlie complexity clemanded
by the concurrence ant1 wide data paths. Tlie clock-
ing methotl is single wire level sensitive, The bus
interk~ce unit operates from a bufferecl version of
the main clock. Signals that cross tliis interface are
tleskewed to eliminate races. This clocking method
elirnin:~tcs cle;ttl time between ph:lses ;~ncl requires
onl!. a single clock signal to be routccl t l~ ro~~g l lo i~ t
the chip.

One d ifIiculty inherent in this clocking methoel
is the substant~i;tl lo;~tl o n the clock node. 3.25
nanofaratl (nl;) in our design. This load anel the
requirement for a fast clock eclge led us to take par-
ticular care with clock routing and to do extensive
analysis o n the resulting grid. Figure 6 shows thc
distribution of clock 1o:cel among the major func-
tional units. The clock drives into a grid of vertical
metal 3 ;tnd horizont;tl metal 2. Most of the loading
occurs in tllc integer ;lnd floating-point ini its that
are fed from the more robust metal 3 lines. To
ensure the integrity of the clock grid across tlie
chip, the grid MGLS ex~r;~ctccI From the layout ancl thc
resulting network. which contained 630.000 R<; ele-
ments, w:ts simulateel using a circuit simulation
program b;lsct! o n the AWEsinl sin1u~aror from
Carnegie-Nlellon Ilniversit): Figure 7 shows :I three-
clirnensiotial representation of the output of this
simulation ;inel shows the clock delay from the
clriver to e:icli o f the 65,000 transistor gates con-
nected to the clock grid.

The 200-MHz clock signal is fed to the clriver
through :I bin;~r-y fanning tree with five levels of
buffering. There is ;I 1iorizont;tl shorting bar at the
input to the clock driver to hell-, slnooth out possi-
ble asymmetry i t1 the incoming wave front. The
driver itself consists of 145 sepzirate elements, each
of which contitins h)ur levels of prescaling into a
final output stagc that drivcs the clock grid.

A 200-MHz 64-bit Dual-iss~~e CMOS Mic~.oprocessol-

INT UNIT WRITE
1129 pF BUFFER

I-CACHE
373 pF

TOTAL CLOCK LOAD = 3.2 nF
D-CACHE
208 pF

803 pF

TOTAL BYPASS CAPACITANCE = 128 nF

Note: Total effective switching capacitance = 12.5 nF

Figure 6 Qock Load Distrib~ltiorz

Figure 7 CPU Clock Skew

The clock driver ;~nd predriver represent about on-chip. This consists o f thin oxide c;tpacit;~nce
40 percent o f the total effective switching c;~paci- that is clistributed ;irountl the chip, primarily ulider
tance cletermined by power mc:lsurement to be the data buses. In addition, there are horizont;tl
12.5 nF (wrorst case inclucling output pins). To metal 2 power and clock sliortj~ig straps adjacent
manage the problem of di/dt on the chip power to the clock generator, and the thin oxide decoup-
pins, explicit decoupling c;~pacit;tnce is provided ling cap under these lines supplies cb;~rge to

Alpha AXP Architecture and Systems

the clock driver. di/dt for the driver alone is about
2 X 101' amperes per second. The total decoupling
capacitance as extracted from the layout measures
128 nE Thus the ratio of decoupling capacitance
to switching cap is about 10: 1. With this capacitance
ratio, tlie decoupling cap could supply all the charge
associated with a complete CI'U cycle with only a 10
percent reduction in the on-chip supply voltage.

Latches
As previously described, the chip employs a single-
phase approach, with nearly all latches in the core
of the chip receiving the clock node, CLK, directly.
A representative example is illustrated in Figure 8.
Notice that L1 and L2 are transparent latches
separated by random logic and are not simultane-
ously active; 1.1 is active when CLK is high and L2
is active when CLK is low. The minimum number of
delays between latches is zero and the maximum
number of delays is constrainecl only by the cycle
time and the details of any relevant critical patlis.
The bus interface unit, many tlatepath structures,
and some critical paths deviate from this approach
and use buffered versions and/or conditionally buf-

CLK

LOGIC

LOGIC c
(h) Latching Scl?ema

L1 OPAQUE L2 OPAQUE
L2 TRANSPARENT L1 TRANSPARENT

(6) Latch Timing

fered versions of CLK. The resulting clock skew is
managed or eliminated with special latch structures.

The latches used in the chip can be classifietl into
two categories: custom ant1 standard. The custom
latches were used to meet the unique needs of tlata-
path structures ant1 the special constraints of criti-
cal paths. The standarcl latches miere used in the
design of noncritical control and in some data-path
applications. These latches were designed prior to
the start of implementation ant1 were includetl in
the library of usable elements for logic synthesis. NI
synthesized logic used only this set of latches.

The standard latches are extensions of previously
publisked work, and examples are shown in Fig-
ures 9 to 11.' To understand the operation of
these latches, refer to Figure 9a. When CLK is high,
P l , N l , and N3 function as an inverter cornplemcnt-
ing IN 1 to produce X. P2, N2, and N4 filnction as a
second inverter and complement X to produce
OUT. Therefore, the structure passes IN1 to OUT.
W%en C1.K is low, N 3 and lV4 are cut off. If I N l , X,
and OU'T are initially high, low, and high respcc-
tively, a transition of IN1 falling pi~lls X high
through P1 causing P2 to cut off, which tristates
OUT high. If IN1, X, and OUT are initially Low, high,
and low respectively a transition of ln l l rYsing
causes P1 to cut off, which tristates X high leaving
out tristatetl low. In both cases, additional transi-
tions of IN1 leave X tristated or driven high with
OUT tristated to its initial value. Therefore, the
structure implements a latch that is transparent
when CLK is high and opaque when CLK is low.
Figure 9c sliows the dual circuit of tlie latch just dis-
cussed; this structure implements a latch that is
transparent when CLK is low and opaque when
CLK is high. Figures 9b and 9d depict latches with
a n output buffer used to protect the sonietiines
dynamic node OUT and to drive large loatis.

The design of the standard latches stressed three
primary goals: flexibility, immunity to noise, and
immunity to race-through. To achieve the desired
flexibility, ;i variety of latches like those in Figures 9
to 11 it1 a variety of sizes were characterized for the
implementors. Thus the designer could select a
latch with an optional output buffer and an embecl-
decl logic function that was sized appropriately to
drive various loatls. Furthermore, it was clecided to
allow zero delay between latches, complctely free-
ing the designer from race-through considerations
when designing static logic with these latches.

In the circuit methodology adopted for the imple-
mentation, only one node, X (Figure 9a), poses

42 W)/. 4 No. 4 . Y ~ L ' c ~ c I / ISSLLL' 1992 Digitnl Technical Jour'rtrtl

CLK

IN1
OUT

CLK

CLK

(c) Noni~zverting Actiz~e-loz~~ Latcln

OUT

CLK

CLK

IN, -+ 6G

(d) Inzm-ting Actiue-lo LLI Latch

Figzcre 9 Basic Latches

inordinate noise margin risk. As noted above, X
may be tristated high with OUT tristated low when
the latch is opaque. This maps into a dynamic node
driving into a dynamic gate that is very sensitive to
noise that recluces the voltage o n X , causing leakage
through P2, thereby destroying OtlT. This problem
was addressecl by the addition of PS. This weak
feedback device is sized to source enough current
to counter reasonable noise and hold P2 in cutoff.
N5 plays an analogous role in Figure 9c.

Race-through was the major f ~ ~ n c t i o n a l concern
with the latch design. It is aggravatecl by clock skew,

the variety of available latches, and the zero clelay
goal between latches. The clock skew concern
was actually the easiest to atlclress. If data propa-
gates in a direction that opposes the propagation of
the clock wave front, clock skew is functionally
harmless ancl tends only to reduce the effective
cycle time locally. minimizing this effect is of con-
cern when designing the clock generator. If data
propagates in a direction similar to the propagation
of the clock wave front, clock skew is a functional
concern. This was acltlressed by radially distrib-
uting the clock from the center of the chip. Since

Digital Technical Jotrrnal Vol. 4 iVo. 4 .S/>ecirrl l s s ~ ~ e 1992 4 3

Alpha &W Architecture and Systems

CLK CLK

IN1 &
IN2 OUT

,-ql xp5kq
OUT

IN1 -1 X
,I -

, N3 , N4 CLK I I

N1 N2

CLn CLK

;;; -+ OUT

IN1 -1

P4
CLK T

IN1

CLK -
OUT - OUT

the clock wave front moves out radially from the
clock driver toward the periphery of the die, it is
not possil~le for tlie data to overtake tlie clock i f tlie
clock network is properly designed.

li) verify the remaining race-through concerns, ;I
mix-ancl-m;~tch approach was taken. All reasonable
combin;~tions of I:~tclies were cascatletl together
and sirn~~latetl. The simulations were stressetl by
eliminating all interconnect ant1 difilsion cap;~ci-
tancc ;inti by pushing each device into ;I comcr
o f the process that emphasizetl race-through.

'l'hen m;iny simulations mrith varying CLK rise and
fall times, temperatures, and power supply volt-
ages were performed. The results sbowetl n o
;~ppreciable evidence of race-through for C1.K rise
and fall times at or below 0.8 ns. With 1.0-ns rise
~und hll times, tlie latches showed signs of ti~ilure.
To gi~;t~-;lntee fi~nctionality, CLK was specifiecl and
tlt-signed to have an edge rate of less than 0.5 ns.
This was not a serious constraint since other
circilits in the chip required similar edge rates of
the clock.

44 Vol. 4 A'o. 4 Sper'iot Issue 1992 Digilnl Tecl~~ricnl Jorrrrrttl

I N2

IN1 -b X --
, N3

CLK

N2

OUT

-

CLK

;;; OUT

IN1

CLK

OUT

(i.) Tzilo-ii.zp~~.t OR Actiue-LOZLJ Latch

CLK

(6) T ~ i ~ o - i i ~ p ~ ~ t ArOK Aclir~e-high Lntch

CLK

-
OUT -

(d) T~t~o-i lzp~i t NOR A c t i ~ ~ e - ~ O L U LCI~CIJ

A litst design issue worth noting is the feedback
tlevices, PI5 and P5, in Figures 10c, 10d, 112, ancl
Ilb. Notice thar these devices l ~ v e their gates tied
to C1.K instead of OrJT like the other latches. This
difference is required to account for an effect not
present in the other latches. In these latches, a
stack o f tlevices is connected to node X, without
passing through the clocked transistors P.3 or N3.
Referring to Figitre Ila, assume CLK is low, X is
higli, and OllT is low. If multiple rarldoni transitions
are allowed by IN1 with IN2 high, then coupling

t l ~ r o ~ ~ g l l PI can drive X down by more th;m ;I

threshold even with weak feedback, thereby
destroying olrl'. To counter this phenomenon, P5
c:lnnot be :I weak feedback device arid thcreforc
cannot he tietl to OUT if the latch is to h~nction
properly when <:LK is high. Note that taller stacks
;iggr;tvate this problem because the devices
become larger and there are Inore tlevices to partic-
ipi~te in coupling. For this reason, st;~cl<s in these
latches were limited to three high. Also. note that
clocking P5 introcluces another race-through j ~ a ~ l i

Digirtrl Tecbrrictrl Jorrrirnl WlI. ,-I ,Vo. 4 Special lssrre 1992 4 5

Alpha AXP Architecture and Systems

since X will uncontlitionally go high with C1.K
falling, iuntl OIIT must be able to retain a stored ONE.

S o there is :I two-sidetl constraint: P5 must be large
enough to counter coupling and small enough not
to c;~use race-tlirougli. These trade-offs were ana-
lyzed by simulation in a manner similar to the one
oi~tlined ;ibove.

64-bit Ad~Zer
A tlifficult circuit problem mras the 64-bit adtler por-
tion o f the integer and floating-point ALUs. Unlike a
previous Iiigh-speed design, we set a goal to
;~cliieve single-cycle latency in this unit.3 Figure 12
h:is ;In organiz;~tional diagram of its structure. Every
p:~th t h ro~~gh the adder includes two latclies, allow-
ing fully pipelined operation. The result latches are
shown explicitly in the diawani; honlevec the input
latches ;ire somewhat implicit, taking advantage of
the predischarge characteristics of tlie carry chains.
'flit. con~l>lete adder is a combination of three meth-
ods for proclucing a binary adcl: a byte long carry
ch:iin, 21 longwortl (32-bit) carry select, ant1 local
logal-ithmic carry select.' The carry select is built as
:I set of n-channel metal-oxide sernicontluctor
(NMOS) switches that direct the data from byte
c:irry chains. The 32-bit lo~igwortl lool<ahead is
implementecl as ;I tlistributecl tlifferential circuit
controlling the final stage of the upper longword
switches. The carry chains are organizecl in groups
of eight bits.

(:;lrry c11;lin witlth was chosen to implement a
byte compare fi~nctio~i specifiecl by the architec-
ture. The citrry chain implemented with NMOS tran-
sistors is shown in Figiire 13a. Operation begins
with the c1i;iin pretlischarged to I&, with tlie con-
trolling signill an OR of CLK and the kill function.
E\~;llu:ition begins along the chain length without
the del:~y :~ssoci;itetl with the ys- thres1lold foii~ld
in ;I cli;~in precliargetl to V,,. An alternative to a pre-
tlischarged state was to precl~arge to l/o,- C;. but the
resulting low noise margins were deemed unac-
ceptable. From the least significatlt bit to the most
significsnt bit, the witlth of the NMOS gates for each
carry chain stage is tapered down, reducing t l ~ e
loading presentetl by the remainder of the chain.
The local carry nodes are received by ratioed invert-
ers. Each set of propagate, kill, and generate signals
colitrols two carry chains, one that assumes a carry
in :incl one tIi;lt assumes no carry in. The results
feetl the bit-wise tlata switches as well as the carry
selects.

The longword carry select is built as a distributed
cascode structure used to conibine tlie byte gen-
erate, k i l l , and propagate signals across the lower
52-bit longworcl. It controls tlie final data selection
into the upper longworcl output latch ant1 is out of
tlie critical path.

The NMOS byte carry select switches are con-
trolletl by a cascade of closest neighbor byte c;~rr)l
o ~ ~ t s . Data in the most significant byte of the upper
longworcl is switchecl first by the carry-out dat;~ of
the next lower byte, byte 6, then by byte 5, ancl
finally byte 4. The switches direct the sum dxta
from either the carry-in channel or the no-carry
channel (Figure 13b). Sign extension is accom-
plished by clisabling the upper longwor-tl switcli
controls on longword operations and forcing the
sign of tlie result into both data channels.

To provide maximum flexibility in applic;itions, the
external interface allows for several different
modes of operation all using common on-chip cir-
cuitry. This includes choice of logic fri~nily (CMOS/

transistor-transistor logic [TTL] or emitter-couplet1
logic [B<:L]) as well as bus width (64/128 bits), exter-
nal cache size and access time, and BIl i clock rate.
These parameters are set into mode registers dur-
ing chip power-up. The logic family choice pro-
vided an interesting circuit challenge. The input
receivers are differential an~plifiers that t~tilize an
external reference level which is set to the switcli-
ing midpoint of the external logic family. To rnain-
t;rin signal integrity of this reference voltage, it is
resistively isolated and KC-filtered at each receivec

The output driver presented a more difficult
problem clue to tlie 3.3-V V,, chip power suppl3-. To
provicle a good interface to ECL, it is important that
the outpi~t tlriver pull to the V,, rail (for ECL. operil-
tion I(,,, = O V, V,, = -3.3 V). This precludes iisitig
NhWS pi11 I-ups. P-channel metal-oxide semicon-
ductor (l1&lOs) pull-ups have the problem of well-
junction forwarcl bias and l%lOS turn-on when
biclirectional outputs are connected to 5-V logic
in (:ivlOS/T'rL mode. The solution, as sliom/n in Fig-
ure 14, is a u~iique floating-well driver circuit that
i~voicls the cost of series PMOS pul I-ups in the final
stage, \vliile providing clirect interhce to 5-V
<;MOS/Tl'l. ;Is we1 1 as ECL.i

Tr;~~isistors Q1, Q2, and Q6 are the actual output
devices. 91 and Q2 are NMOS devices arr;ingecJ in
cascocle fasl~ion to limit tlie volt;~ges itcross a single

4 0 W1. -i ,\i~, f .S/)ot irtl 1ss11c. 1992 Digital ~~chrricrrlJorrrnnI

A 200-MHz 64-bit Duc~l-isstie CMOS Microp~ocessor

Digilal Techriicnl Jozrriinl k1. 4 No. 4 Specic11 ISSLI~ 1992 47

Alpha AXP Architecture and Systems

GENERATE
DEVICE

VDD VDD VDD VDD VDD VDD VDD

-I

PREDISCHARGE -' PROPAGATE
AND KILL DEVICE DEVICE

(a) Adder Carrj~ Chain

SUM-OUT-ASSUMING-CARRY

I u1 CO GETS CO

SUM-IN-ASSUMING-NO-CARRY

(6) Adder Cufry-select Suu'tcl7e.s

Figure I.? Adclel- C ~ I . [) I

Figure 14 Floating-zuell Driver

TO
PAD

transistor to no more than 4 V: QG is a Ph4OS pull-up
device that shares a common n-well with Q7
through Q10, which have responsibility for supply-
ing the well with a positive bias voltage of either
C;,, or the I/O pin potential, whichever is higher. Q3
through Q5 control the source of voltage for the
gate of Q6-either the output of the inverter or the
I/O pad if it moves above y),,. K 1 and R2 provide
50-ohm series termination in either operating mode.

C L Z C ~ ~ S
'I'he two internal caches are almost identical in con-
struction. Each stores up to 8KB of data (D-cache)
or instri~ction (I-cache) with a cache block size of
32 bjTes. T'lie caches are direct mapped to realize
a sjngle cycle access, ancl can be accessed using

48 kt)/. 4 /Vo. 4 Sfircictl I.c.sus 1392 Digitnl Tecbiricnl Jorrrrzal

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

untranslated bits of the virtual address since the
page size is also 8KB. For a read, the address stored
in the tag and a 64-bit quadword of data are
accessed from the caches and sent to either the
memory management unit for the D-cache or the
instruction unit for the I-cache. A write-through
protocol is used for the D-cache.

The D-cache incorporates a pending fill latch
that accumulates fill clata for a cache block while
the D-cache services other load/store requests.
Once the pending fi l l latch is full, a11 entire cache
block can be written into the cache on the next
available cycle. The I-cache has a similar facility
called the stream buffer. On an [-cache miss, the
I-box fetches the required cache block from mern-
ory and loads it into the I-cache. In addition, the
I-box will prefetch the next cache block and place it
in the stream buffer. The data is held in the stream
buffer ancl is written into the I-cache only if the data
is requested by the I-box.

Each cache is organized into four banks to reduce
power consumption and current transients during
precharge. Each array is approximately 1,024 cells
wide by 66 cells tall with the top two rows used
as redundant elements. A six-transistor, 98-pm*
static RAM cell is used. The cell utilizes a local inter-
connect layer that connects between polysilicon
and active area, resulting in a 20-percent reduction
in cell area comparetl to a conventional six-transis-

tor cell. A segmented word line is used to accom-
modate the banked design, with a global word line
implemented in third-level metal and a local word
line implemented in first-metal layer. The global
word line feeds into local decoders that decode the
lower two bits of the address to generate the local
word lines. As shown in Figure 15, the word lines
are enabled while the clock is high, and the sense
amplifiers are fired on the falling edge of the clock.

Summary
A single chip microprocessor that implements a
new 64-bit high-performance architecture has been
described. By using a highly optimized design style
in conjunction with a high-performance 0.75-pm
technology, operating speeds up to 200 MHz have
been achieved

The chip is superscalar degree 2 and has 7- and
10-stage pipelines for integer and floating-point
instructions. The chip includes primary instruction
and data caches, each 8KR in size. In each 5-ns
cycle, the chip can issue two instructions to two of
four units, yielding a peak execution rate of 400
mips and 200 MFLOPS.

The chip is designed with a flexible external
interface providing integral support for a sec-
ondary cache constructed of ordinary SRAMs. The
interface is fi~lly compatible with virtually any
multiprocessor write cache coherence scheme,

PIPELINE STAGE

1 3 1 4 1 5 1 6 1 7 1 8 1

CLK

DISPLACEMENT
ADD

CACHE
WORD-LINE

SENSE AMP
ENABLE

CACHE DATA1
TAGS OUT

REGISTER FILE
WRITE PORT

ALU BYPASS IN

Figure 15 D-cache Timing Diagram

Digital Techrrical Journal Yr)f. 4 No. 4 Spedallssrre 1992 49

Alpha AXP Architecture and Systems

and can accommodate a wide range of timing
parameters. It can interface directly to standard l'TL
and CMOS as well as lOOK ECL technology.

References

1. Alpha Architecture Handbook (Maynard: Digital
Equipment Corporation, Order No. EC-~1689-10,
1992).

2. J. Yuan and C. Svensson, "High-Speed CMOS
Circuit Techniques," IEEEJotrrnal of Solid-State
Circuits, vol. 24, no. 1 (February 1989).

3. R. Conrad e t al., "A 50 MIPS (peak) 32/64b
Microprocessor," ISSCC Digest of Technical
Papers (February 1989): 76-77

4. J. Sklansk, "Conditional-Sum Addition Logic,"
IRE Transactions on Electronic Computing,
vol. EC-9 (1960): 226-231.

5. H. Lee et al. , "AII Experimental IMb ChlOS SRAW

with Configurable Organization and Operation,"
ISSCC Digest of Technical Papers (February
1988): 180-181.

50 Vol. 4 No 4 S/~acicr l fss~~e 1992 Digital Tecbrricu~Jor~rira~

Charles I? Thacker
David G. Conroy

Lawrence C. Stewart

The Alpha Demonstration Unit:
A High-pmformance Multiprocessor
for Software and Chip Development

Digital's firs1 RISC systenz built usir?g tlge 64-bit Alpha iVTP architecture is the
prototype knoz~ln as the A@ha dernorzstlwtion unit or ADU It consists of n Dackplalze
corztairzi~zg 14 slots, each of z~lhich con hold a CPU modctle, a 641118 storqe nzod~rle,
or a ?nodz~le containirzg lziu 501MB/s I/O cbcrr~~zels. A new cache cobererzce protocol
prouides eachp~.ocessor and I/O chatltzel with a consistent uieui of shared merlzorj!
T/gir&y-five ADU systenzs ulere built zvitbin Digital to nccelerwte softtonre develop-
11zent and early chi11 Iesti~zg.

There is nothing more dif'ficiilt to tnkc in hantl,
more perilous to contluct, or more uncertain in its
success, than to take the lead in the introtluction OF
:I new order of things.

-Niccolo ~Machiavelli, Ibe Prirrce

Introducing a new, 64-bit computer architecture
posed ;I number of challenges for Digital. In
addition to developing the architecture and the
first integratetl implementations, an enormous
amo~lnt of software had to be moved fronl the VAX
and MIPS (MIt'S Computer Systems, Inc.) architec-
tures to the Alpha AXP architecture. Some software
was originally written in higher-level languages and
coultl be recompiled with a few changes. Some
could be converted using binary translation too1s.l
A.11 software, however, was subject to testing and
debugging.

It became clear jn the early stages of the program
that builtling an Alpha demonstration unit (~ [) l i)
would be of great benefit to software developers.
Having a functioning hardware system would moti-
vate software developers and reduce the overall
time to market considerably. Software clevelop-
ment, even in the most disciplined organizations,
proceetls much more rapidly when real 11artlw;lre is
available for programmers. In addition, hardware
engineers could exercise early implementations of
the processor on the ADU, since a part as complex
as the DE(:cliip 21064 CPU is difficult to test i~sing
conventional integrated circuit testers.

For these reasons, a project was started in early
1989 to build a number of prototype systems as

rapidly as possible. These systems dicl not require
the high levels of reliability and availability typical
of Digital products, nor did they need to have low
cost, since only a few w o ~ ~ l t l be built. They clicl need
to be ready at the same time as the first chips, and
they had to be sufficiently robust that their pres-
ence would accelerate the over;lll program.

Digital's Systems Research Center (SRC) in Palo
Alto, CA had had experience in builtling similar pro-
totype systems. SRC: had designed nntl built much of
its computing e~ lu ipment .~ Being located in Silicon
Valley, SRC coultl employ the services of a number
of local medium-volume fabrication ant1 assembly
companies without impetling the mainstream
Digital engineering and manufacturing groups,
which were develoj>ing AXI' protluct systems.

The project team was cleliber;~tely kept small.
Two designers were locatetl at SRC. one was with the
Semiconductor Engineering Group's Aclvancetl
Development Crroul> in Hudson, a\, and one
was a member of Digital's Cambridge Research
Laboratory in Cambridge, M.A. Although the project
team was scparatecl both geographically ant1 organ-
zat ional l~ communication flowetl smoothly
because the individu;ils had collaborated on similar
projects it1 the past. The team used a commonset of
design tools, and Digital's global network made it
possible to exchange design information between
sites easily. As the project moved from the design
phase to production of the systems, the group
gren7, but at no point did the entire team exceed ten
people.

Digital Technical J o u r d Vo1. 4 /\lo. 4 .Sl,ecu~l ISS I I~ 1992 51

Alpha A;r(p Architecture and Systems

Since multiprocessing capability is central to the
Alpha AXP architecture, we decided that the ADU
had to be a multiprocessor. We chose to implement
a bus-based memory coherence protocol. A high-
speed bus connects three types of modules: The
CPU module contains one rnicroprocessor chip, its
external cache, ancl an interface to the bus. A stor-
age module contains two 32-megabyte (Me) inter-
leaved banks of dynamic random-access memory
(DRAM). The I/O module contains two 5 0 M B per
second (MB/s) 1/0 channels that are connected to
one or two DECstation 5000 workstations, which
provide disk and network I/O as well as a high-
performance debugging environment. Most of the
logic, with the exception of the CPU chip, is emit-
ter-coupled logic (ECL), which we selected for its
high speed and preclictable electrical characteris-
tics. Modules plug into a 14-slot card cage. The card
cage ancl power supplies are housed in a 0.5-meter
(m) by 1.1-m cabinet. A fully loaded cabinet tlissi-
pates approximately 4,000 watts and is cooled by
forced air. Figures 1 and 2 are photographs of the
system and the modules.

In the remaining sections of this paper, we dis-
cuss the backplane interconnect and cache coher-
ence protocol used in the m u . We then describe
the system modules and discuss the design choices.
We also present some of the uses we have found for
the ADU in addition to its original purpose as a soft-
ware development vehicle We conclude with an
assessment of the project and its impact on the
overall Alpha LKP program.

Figure I The A//~ha Dernonstrzttio~z Unit

c
(a) CPUrModtlle

r -. ; ,T ' .L~ - a-..O. ,: - , - t - \ r : r - ,, - , - L I . - I L . - ;-*mm: : =:=?=,=!= $,;- -!..;a1*
- .

-_ - , .S :)B I..,-- .: .- , - i
@ .: - -I-- : * -.-.--.d=~ ,;,t,: ,,c. -0001 - -=,b--2-*E; :b:h*h,- ,

- -* . -# -,-{- - : -:-:-.-: .ao.o: ; =::!=:=!=

Storage lModule

52 W>l. 4 No. 4 Specicll lssrce 1,992 Digital Techriictrl Journal

The Alpha De~nonstration Unit

Backplane Interconnect
The choice of a backplane interconnect has more
impact on the overall design of a multiprocessor
than any other decision. Complexit): cost, and per-
formance are the factors that must be balanced to
procluce a design that is adequate for the intended
use. Given the overall pilrpose of the project, we
chose to minimize complexity and maximize per-
formance. System cost is important in a high-vol-
ume product, but is not important when only a few
systems are produced.

To minimize complexity, we chose a pipelined
bus design in which all operations take place at
fiietl times relative to the time at which a request is
issued. To maximize performance, we defined the
operations so that two independent transactions
can be in progress at once, which h~lly utilizes the
bus.

We designed the bus to provide high banclwidth,
which is suitable for a multiprocessor system, and
to offer minimal latency. As the CPU cycle time
becomes very small, 5 nanoseco~ltls (ns) for the
I)E<:chip 21064 chip, the main memory latency
becomes an important component of system per-
formance. The ADU bus can supply 320N113/s of user
data, but still is able to satisfy a cache read miss in
just 200 ns.

Bus Signals
The i\l)lJ backplane bus uses E(:L 100K voltage lev-
els. Fifty-ohm controlled-impetlance traces, termi-
nated at both ends, provide a well-characterized
electrical environment, free from the reflections
and noise often present in high-speed systems.

Table 1 lists the signals that make LIP the bus. The
data portion consists of 64 data signals, 14 error
correction cotle (KC) signals, ant1 2 parity bits. The
ECC signals are stored in the memory modules, but
no checking or correction is clone by the memories.
Instead. the ECC bits are generated and checked
only by the ultimate producers ant1 consumers of
data, the I/O system and the CPU chip. Secondary
caches, the bus, and main memory treat the ECC as
uninterpreted data. This arrangement increases
performance, since the memories do not have to
check data before delivering it. The memory mod-
ules would have been less expensive had we used
an ECC code that protected a larger block. Since the
crrr caches are large enough to require ECC and
since the CPLI requires ECC over 32-bit words, we
chose to combine the two correction mechanisms
into one. This decision was consistent with our goal

Digilal Tecbnical Jottrnal k1. 4 /Vo. 4 .S/)rri~~l lsscie 1992

Table 1 Bus Signals

Signal Name Pins Use

-Data[63..00] 64 Data
-ECCO[6..O] 7 ECC on Data131 ..00]
-ECCl[G..O] 7 ECC on Data163.-321
-pi01 1 Even Parity over

Data[31..00], ECCO[G..O]
-PI11 1 EvenParityover

Data[63..32], ECC1[6..0]
B-shared Cache coherence
B-dirty Cache coherence
Retry 1 Storage module busy
Error 1 Data or address parity error
ArbRequest 8 Arbitration for the bus
Clock 2 100 MHz differential clock
Phase 1 50 MHz Reset 1
nTy peCl k 1 Module identification
~ T Y pe 1 Module identification
nld 4 Module slot number (0..13)

set by backplane wiring

of simplifying the design and improving perfor-
mance at the expense of increased cost. The parity
bits are provided to detect bus errors during
address and data transfers. All modules generate
and check bus parity.

The module identification signals are used only
during system initialization. Each module type is
assigned an 8-bit type code, and each backplane slot
is wired to provide the slot number to the module it
contains. Each module in the system reports its
type code serially on the nType line during the 8 X

slot number nl)lpeClk cycles after the deassertion
of system reset. A configuration process running
on the console processor toggles nTypeClk cycles
and observes the nType line to determine the type
of module in each backplane slot.

The 100-megahertz (MHz) system clock is dis-
tributed radially to each module from a clock gen-
erator on the backplane. Constant-length wiring
and a strictly specified fan-out path on each mod-
ule controls clock skew. Since a bus cycle takes two
clocks, the phase signal is used to identify the first
clock period.

Addressing
The bus supports a physical address space of 64
gigabytes (2 3 % ~ ~) . The resolution of a bus address
is a 32-byte cache block, which is the only unit
of transfer supported; consequently, 31 address
bits suffice. One-quarter of the address space is
reservetl for control registers rather than storage.

Alpha AXP Architecture and Systems

Accesses to this region are treatetl specially: (;l'us
clo not store data from this region in their caches,
ant1 the target need not supply correct E<:<: bits.

'I"11e methocl used to select the target ~notlule of
;I bus operatjon is geographic. The initi;itor sencls
the target module's slot number with the :iddress
tluring a request cycle. In addition to the 4-bit slot
number. the initiator supplies a 3-bit subizo~le idem
tiJier with the address. Subnodes are the itnit of
memory interleaving. The 6 4 ~ ~ storage moclule,
for ex:~rnple, contains two intlepentlent 32MB sub-
nodes that can operate concurrently

'The geographic selectio~i of the target means that
a particular subnode only needs to compare the
requested slot and subnode bits with its own slot
and subnode numbers to decicle whether it is tlie
tiirget. This reduces the time reqiliretl li)r the deci-
sion compared to a scheme in which the target
inspects the atldress fielcl, but it means that e;lch ini-
tiator rnilst niaintain a mapping between physical
addresses and slot and subnotle numbers. This map-
ping is performed by a Iw;M in each initiator. For
CPII modules, tlie RAM lookup tloes not reduce per-
formance, since the access is clone in parallel with
the access of the module's secontlary cache. The
slot-mapping W\ls in each initiator are lontled at

system initialization time by the configuration pro-
cess described previously.

Bus Operation
The timing of adtlresses and data is shown in Figure 3.
All dat:~ transfers take place at fixetl times relative
to the start o f a n operation. Eight of tlie backplane
slots can contain modules capable of initiating
requests. These slots are numbered from 0 to 7, but
are located at the center of the backplane to retluce
tlie transit time between initiators and targets.

A bus cycle starts when one of the initiators arbi-
trates lor the bus. The arbitration metliotl gu;iran-
tces t11;lt no initiator can be st;~rvetl. Each initiator

monitors all bus operations and must request only
those cycles that it knows the target can accept.
Initiators are ;~llowetl to arbitrate for a particular
target nine or more cycles after that target has
started a read, or ten or more cycles after the target
has started a write. To arbitrate, an initiator asserts
the ArbReqilest line correspontling to its current
priority. Priorities range from 0 (lowest) to 7 (high-
est). If a module is the highest priority requester
(i.e.. no higher priority ArbRequest line than its
own is asserted). that motlule wins the arbitration,
and i t transmits an ;iclclress ant1 a comma~lcl i n the
next cycle. The winning module sets its priority to
zero, ant1 all initiators with priority less than the ini-
tial priority of the winner increment their priority
regclrdless of u~hetl~er thcy made a request dztrirzg
the ctr6itrclTion cycle. Initially, each initiator's prior-
ity is set to its slot number. Priorities are thus
distinct initially 21ncl remain so over time. This algo-
rithm favors initiators that have not macle a recent
request, since the priority of such an initiator
increases even if it tloes not make requests. If all ini-
tiators make continuous requests, the algorithm
provides rountl-robin servicing, but the implemen-
tation is simpler than round robin.

An arbitr;~tion cycle is followeel by a request
cycle. The initiator pl;ices ;in address, node and
subllode numbers, ;ind a command on the bus.
There are only three commands. A read command
requests a 32-byte cache block from memory. The
target memory or a cache that contains a more
recent copy supl'ljes the clata after a five-cycle
delay A write comnialld transmits a 32-byte block
to memory, using the same cycles for the clata trans-
fer as the read cornm;it~d. Other caches may also
take the block ant1 itpdate their contents. A victim
writc is issued by a <;IYJ module when a block is
evicted from the seconclary cache. When such an
eviction occurs, nny other c:lches that contain the
block are guaranteed to cont;~in the same value, so

This figure shows the contenls of the bus during four read cycles. I f requests are made at full rate, the bus is fully occupied
wilh addresses and data. Bshared and 0-dirty are sen1 in Ihe fifth cycle after the arbilration request. I f any module detects a
parily error during an address cycle, it asserls error two cycles later.

CYCLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5 4 Vol 4 No. 1 S/)et iitl I s s r ~ c , 19%' Digilnl Techrricrtl JortrwrrI

ARB REQUEST
DATA
B-SHARED, B-DIRTY
ERROR

R1

E l

A1
S2 S4

E3

The AlJ!bcr Delnonstration Unit

they need not participate in the transfer at all. The
block is stored in memory, as in a nor~iial write.

Cache Coherence
In ;I multiprocessor system with caches, it is essen-
tial that writes clone by one processor be made
available to tlie other processors in the system in
;I timely fashion. A number of approaches to the
cache coherence problem have appeared in the Jit-
erature. These approaches fall into two categories,
depending on the way in which they liancl Ie proces-
sor writes. Azt~nlidntiorz or oti!lzership protocols
require th:lt ;I processor's cache must acquire an
exclusive copy of the block before the write can be
clone.? If another cache contains a copy of the
block, that copy is invalidated. On the other hand,
~rpd~zte protocols maintain coherence by perform-
ing write-through operations to other caches that
sh;~re the block.2 Each caclie maintains enough
state to determine whether any other cache shares
the block. If the data is not present in another
cache, then write through is unnecessary and is
not done.

The two protocols have quite clifferent perfor-
mances, depending on system activity. An update
pl-orocol performs better than an invaliclation pro-
tocol in an application in which data is sharetl (and
written) by multiple processors (e.g., a parallel
algorithm executing on several processors). In an
inv;~lid;~tion protocol, each time a processor writes
a location, the block is inrralidateci in all other
caches that share it. All caches require an expensive
miss to retrieve the bloclc when it is next refel=
enccd. On the other hand, an update protocol per-
forms lx)orly in a system in which processes can
migrate between processors. With migration, data
iippears in both caches, and each time a processor
writes a location, a write-through operation
uptlates the other cache, even though its CI'U is no
longer interested in the block. Larger c;~ches with
long block lifetimes exacerbate this problem.

Coherence Protocol
The coherence protocol usetl in the ADIJ is :I hybrid
of an update ancl an invalidation protocol, ant1 like
many hybritls, it combines the good features of
both parents. The protocol depends on the fact that
the CPrJ chips contain an on-chip cache backed by
a much larger secondary caclie that monitors all
bus operations. Initially, the seco~iclary caches use
;in update protocol. Caches that contain shared
d;rt;~ perform a write-through operation to upclate

the blocks in other caches whenever the associated
CPU performs a write. If no other cache shares
a block, this write through is unnecessary ant1 is
not done. Wlien a secontlary caclie receives an
update (i.e., it observes a write on the bus directed
to a block it contains), it has two options. It can
invalidate tlie block and report to the writer that
it has done so. If it is the only cache sharing the
block, subsequent write-through operations will
not occur. Alternatively, it cat1 accept the uptlate
and report that it did so, in which case the cache
that performed the write-through operation con-
tinues to send upclates whenever its CPU writes the
block.

The actions taken by a cache that receives an
update are determined by whether the block is in
the CPU's on-chip cache. The seco~idary cache con-
tains a table that allows it to determine this without
interfering with the CI'IJ. If tlie block is in the on-
chip caclie, tlie secondary c;~che accepts the
update and invalidates the block in the on-chip
cache. If the block is not in the on-chip caclie, tlie
secondary cache block is invalidated. If tlie block is
being actively shared, it will be reloaclecl by the CPIJ
before the next upd;~te arrives, and the block will
continue to be sharetl. If not, the block will be inval-
idated when the second update arrives.

Implementation of the P~otocol
The implementation of the coherence protocol is
not complex. The five possible states of a secondary
cache block are shown in Figure 4. Initially, all
blocks in the cache are marked invalid. Misses in
the CPU's on-chip cache cause a bus read to be
issued if the block is not in the secondary cache. If
the cache block is assigned to another memory loca-
tion and is dirty (i.e., has been written since it was
read from memory), a victim write is issued to evict
the block, then a read is issuetl. Other caches moni-
tor operations on tlie bus and assert the block-
shared (B-shared) signal if they contain the block.
If a cache contains a dirty block ancl it observes
a bus reacl, it asserts B-shared and B-dirty, and
supplies the data. B-dirty inhibits the memory's
delive~y of data.

The CPu's on-chip caclie uses a write-through
strategy. A CPU write to a shared block in the sec-
ondary caclie initiates a bus write to update the
contents of other caches that share tlie block.
Memory is written, so the block beconies clean. If
another cache takes the uptlate, i t asserts B-shared,
and tlie initiator's state beconles Shared not (-)

Digital Ticbrrical Jorrrnnl Vol. -I No. 4 .S/)ec'irrl Issue 1992 5 5

Alpha AXP Architecture and Systems

C-READ
C-READ C-WRITE

C-WRITE
-SHARED

C-WRITE (-6-SHARED)
* -SHARED

-DIRTY 4 DIRTY

C-WRITE
(-6-SHARED) B-WRITE, INC; 6-READ

6-READ INVALID

SHARED +
-DIRTY

C-WRITE (6-SHARED) C-READ
C-READ 6-READ
B-WRITE, INC
B-READ

Transitions occur as a result of CPU reads and writes (C-read. C-write) and bus operations
initiated by other caches or I10 controllers (6-read, 6-write). A C-read or C-write to an invalid
block causes a 6-read; a C-write to a shared block causes a 6-write. The 6-shared response
ind~cates that some other cache contains the block. INC indicates that the block is in the CPU's
on-chip cache.

Figrrre 4 Secondary Cache Line States

Dirty. If no other cache takes the update, either
because it does not contain the block or because it
decicles to invalidate it, then the B-shared signal is
not asserted, and the initiator's state becomes
-Shared -Dirty. The B-shared and B-dirty signals
may be asserted by several moclules during cycle
five of bus operations. The responses are ORed by
the open-emitter ECL backplane drivers. More than
one cache can contain a block with Shared = true,
but only one cache at a time can contain a block
wit11 Dirty = true.

Designing the bus interconnect and coherence
protocol was an experiment in specification. The
informal description required approximately 15
pages of prose to describe the bus. The real specifi-
cation was a multithreaded program that repre-
sented the various interfaces at a level of detail
sufficient to describe every signal, but, when exe-
cuted, simulatecl the components at a Iiigher level.

By running this program with sequences of sitnu-
lated memory requests, we were able to refine the
design rapidly and nleasure the performance of the
system before clesigning any logic. Most design
errors were discovered at this time, and prototype
system debugging took much less time than usual.

System Modules
In this section, we describe the system modules
ant1 the packaging of the ADU. We discuss the
design choices made to produce the c:IjU module,
storage modules, and I/O niodule on scheclule. We
also cliscuss applications of the ADU beyond its
intended use as ;I vehicle for software development.

CPU Module
The ADU CPU module collsists of a single CPU chip,
a 256-kilobyte (KR) secondary cache, and an inter-
face to the system bus. All CPU modules in the

56 Vol. 4 ,\'o. 4 .S/):[,ci'iol ISSILP 1992 D i g i l ~ l Tecbrricnl Jorrrnnl

The Alphrr De~norzstmtiorr Unit

system are identical. The CPll motlules are not self-
sufficient; they must be initialized by the console
workstation before the Cl'u can he enabled.

The CPti module contains exterisive test access
logic that allows other bus agents to read and write
most of the module's internal state. We irnple-
rnented this logic because we knew these motlules
would be used to debug <:Pll chips. Test access logic
would help us determine the cause of a CPU chip
malfunction and would make it possible for us to
introduce errors into tlie secondary cache to test
the error detection and correction capabilities of
the C;I'LJ chip. This logic was used to perform almost
all initi;~lization of the Cl'u nioclule ;~nd W;IS also
ilsed to troubleshoot CI'U modules ;ifter they were
htbricatetl.

Tlie central featlire of the (:rri motlule (shown
in Figi~re 5) is the secondary c;~che; built using 16K
by 4 BiCMOS static lL\Ms. Each of the 16K half-
blocks in the data store is IS6 bits wide (4 long-
words of data, each protectecl by 7 ECC bits). Each
of the 8 K entries in the tag store is an 18-bit address
(protected by parity) ancl ;I +bit control fieltl
(valid/sliared/dirty, also protected by parity). In
addition, it secondary cache cluplicate tag store,
consisting of an 18-bit ;idtlress ancl a valid bit
(protected by parity), is used as a hint to speecl pro-
cessing of reads and writes encountered on tlie
system bus. Finally, a CPIl chip data cache duplicate
tag store (protected hy parity) filnctions as an

BYPASS

invalidation filter and selects between update and
invalidation strategies.

Tlie system bus interface w;~tclies for reads and
writes on the bus, and looks up e;icli ;idtlress in the
secontlary cache. On read hits, it ;isserts B-shared
on the bus, ;ltid, if the block is dirty in the sec-
ond;u-y c;iche, it asserts B-dirty ;und supplies read
data to the bus. On write hits, it selects between the
invalidate and update strategies, modifies the con-
trol fieltl in the secondary cache tag store appropri-
ately, and, if tlie update strategy is selected, it
;iccepts tlata from the system bus.

Unlike most bus devices, the <;Plr module's
system bus interface must accept a new ;td<lress
every five cycles. To do this, it is iniplementecl as
two intlependcnt finite state rr~;icIiines connected
together in a pipelined fashion.

Tlie t ~ g state machine, which operates during
bus cycles 1 through 5. watches for addresses, per-
forms all tag store reads (in bus cycle 4. just in time
to assert B-shared ant1 U-di1.t). in bus cycle j), ancl
performs any needed tag store writes (in bus cycle
5) . If the tag state machine tletermines that bus data
must bc suppliecl or accepted, it enables the data
state ms~chine, and, at tlie same tinic, begins pro-
cessing the next bus request.

The clata state machine, which operates during
bus cycles 6 through 10. moves data to ancl from
the bus and handles the reatling and writing of the
seconclary cache data store. 'l'he liiglily pipelinetl

DATA STORE REGISTERS

BUS DATA

WRITE CPU DATA
LATCH

- BUS DATA , BUSTAG
ADDRESS ADDRESS

-
I

SYSTEM
BUS

Digital Technical Journrrrl Vd. 4 No. 4 Spec-id Lss~fe 199.2 57

Alpha AXP Architecture and Systems

fi;~tllt-e of the sjatern bus liiakes reading and writing
the data store somewhat trichy. Figure 61 shows
;I write hit that has selected the update strategy
immedi;~tely followed by a read hit that must supply
d ~ t a to the bus. High performance mandates
the use of clocked transceivers, which means the
second;~rj~ cache data store must reacl one cycle
ahcad of the bus ancl must write one cycle behind
thc bus, resulting in a conflict in bus cycle 11.
However, the bus transfers data in a fixed order,
so thc reat1 will always access quadword 0 of
the block, ant1 the write will always :~ccess quacl-
word 3 of the block. By implementing the data
store ;IS two 64-bit-wide banks, it is possible to lian-
tlle these back-to-back transactions without creat-
ing :uliy special cases, as shown in Figilre 6b. This
example is typical of the style of design used in the
t\1)11, wliich eliminates extra mechanisms wherever
possible.

?'hc <:1'lJ interface handles the arbitration for the
seconclary cache and generates the necessary reads
ant1 writes on the system bus when the CPI' sec-
ontl:~ry ciiche misses.

Thc (:PIJ chip is supplied with a clock that is not
rel;~tetl to the system clock in frecl~lency or phase.
This factor made it easier to use both the 100-MHz
frequency of the DC227 prototype chip ant1 tlie
200-MHz frequency of tlie DECcliip 21064 CPIJ. It
;~lso ;~llowed us to vary the operating freqilency
tluring (:PU chip debugging. However, the clata
lxlses connecting the CPIJ chip to the rest of the
(:I'IJ motlule must cross a clock-domain boundary.
Perhaps more significant, the secondary cache tag
and data stores have two asynchronous sources of
control, since the <:PU chip contains an integrated
secoticlary cache controllel:

CYCLE

The bidirectional tlata b ~ ~ s of the CPU chip is con-
verted into tlie unidirectional data buses used b).
the rest of the <:I'I! module by transparent cutoff
latches. 'These latches, wliich are located in a ring
surrounding the <:Pli, also convert the quasi-ECL lell-
els generated by the Cl'U chip into true E<:L levels
for the rest of the <:P'IJ module. These latches are
norn~ally Iield open, so tlie CI3[! chip is, in effect,
connected directly to the secondary cache tag and
data RAMS. Control signals from the CPU cl~ip's inte-
grated seconcl;rry c;lche controller are simply OKed
into the appropri;~te secontlary cache f t ~ \ , 1 drivers.

These latches are ;tlso ~lsecl to pass data across
the two-clock-clom:~i~i bounclary Normally all
latches are open. On reatls, logic in tlie CPU chip
clock clomain closes all the latches and sends a read
reqi~est into the bus clock domain. Logic in the bus
clock domain obtains the cli~ta, writes both the sec-
ontlary c;lcIie and the reacl latches, and sends an
acknowledgment back into the CPlJ chip clock
domain. Logic in the CPtJ chip clock tlotnain
accepts the first half-block of the data, opens the
first read I;ltch, accepts the second half-line of the
data, ancl opens all remaining latches. Writes are
similar: Logic in the <:l'Ll chip clock dolnaiti writes
the first half-line into the write latch, makes the
second half-line valid (behintl the latch), and sentls
a write request into the bus clock tlomain. Logic in
the bus clock clomain accepts the first half-line of
data, opens tlie write I;~tcli, accepts the secontl 1i;rlf-
block of clata, and scncls an acknowledgment back
into the <:Hi chip clock tlo~iiain.

Logic in tlie <:IW chip clock tlomain controls all
latches. Only two signals pass through synchroniz-
ers: a single request signiil passes from the CPU chip
clock domain to the bus clock clom;iin, ant1 a single

CYCLE

- ~

toihe secondary cache RAMS Caused

WRITE CYCLE
READ CYCLE
CACHE EVEN
CACHE ODD

Figzlr-r 6 CPU Timing

f cycle R7.

R8
R9

WRITECYCLE
READ CYCLE
CACHE

W8
R3
W7

14 15 Figure 6b shows how this conflict can
be resolved by treating the cache as

R9

R10

by back-to-back cycles. In the marked
cycle, thecache writes the bus data
thal arrived in cycle W10. but it also
needs to read data lo supply it during

W9
R4
W8

R9
R10

WO
R1O

W3

R10

W10
R5
W9

W1

two independent banks (even and odd)

W4 W2
R6

{$O

R7
R8

W7
R2

W5
RO

W6
R1

acknowledge signal passes from the bus clock
domain to the CPU cliip clocl< domain.

'I'lie secondary cache arbitration scheme is
i~nconventional because the system bus has no stall
mechanism. If a reatl or a write appears on the
system bus, the bus interface tnust have uncondi-
tional access to the secondary cache; it cannot wait
for the CPU to finish its current cycle. In fact, the
bus interf~ce cannot detect if a cycle is in progress
in tlie CPU chip's integrated cache controller.

Nevertheless, all events in the system bus inter-
face occur at fixed times with respect to bus arbi-
tration cycles. As a result, the system bus interface
can supply a busy signal to the CPU interface, which
allows it to preclict the bus interface's use of the
secondary cache in the immediate future. The Cl'U

interface, therefore, waits until the secontlary
cache can be accessetl without conflict and then
performs its cycle without additional checking.
.This waiting is performetl by the cpU chip's inte-
grated secondary cache controller for some cycles,
and by logic in the CPIJ interface running in tlie bus
clock domain for other cycles. To reduce latency
the CPU reatls the seco~ltlary cache while waiting.
and ignores tlie data if it is not yet valitl.

All operations use ownership of the system bus
;IS an interlock. For example, if the CPU writes to a
location in the secondary cache that is marked as
shared, the CPIJ interfrrce accluires the system bus,
ancl then updates the secondary cache at the same
time as it broadcasts the write. This does not elimi-
nate all race conditions; in particular, it allows a
dirty secondary cache block to be invalidated by
;I system bus write while the CPU interface is wait-
ing to acquire the bus to write the block to memory.
l'liis is easily handled, however, by having the Cpll

interface generate a signal (always-update) that
insists that the systeni hus interface select the
update strategy.

The combination of arbitration by predicting
fiiture events and the use of the system bus as an
interlock makes tlie (:I'IJ rnotlule's control logic
extremely simple. The bus interface and the (:pu
interface have no knowledge of one another
beyond the busy ant1 alw;~ys-update signals. Since
no complicatecl interactions between the (:l'lJ and
tlie bus exist, no time-consuming simulations of the
interactions needed to be performed, and we had
none of the clifficult-to-track-down bugs that are
usually associated with multiprocessor systems.

The CPU module contains a number of control
registers. TIie bus c)lcles that reatl and write these

registers are processetl by the system bus inter-
face as ortlinar): hut somewliat degenerirtc, cases.
The local CPlJ accesses its local registers over tlie
system bus, using ordinary system bus rc;itls ant1
writes, so no special logic is neetlecl to resolve r:~ce
conclitions.

To keep pace with our schedule. we ;~rr;~ngetl for
niost of the system to be debugged before the (:I'Ij
cliip arrived. By 11si11g ;I suitably wired intcgr;~tetl
circuit test clip, we could place cornnlantls o~ i to
the CPU chip's comm;~~ltl bus and verify tlie contl-ol
signals with an oscilloscope. The results 01.' these
tests left us fairly confident that the system worked
before the first chip arrived.

We resumetl testing the CPIJ rnotlulc :it'tcr tlic
CPU chip was installed. We placetl short (three to
five instructions) programs into milin rnenior);
enabled the c:PrJ chip for a short rime, then
inspected the secondary cache (using tlic (:I'll mod-
ule's test access logic) to examine tlie results.

Eventually we connected an external pulse gen-
erator to the (:t'[J chip's clock ancl ;in external
power supply to the chip. These moclific;~tions
permitted us to vary both the operating frequency
and tlie operating voltage of the c:t'rr cliil,. R!, using
a pulse generator and a power supply that coultl be
remotely controlled by another computer, we were
able to write siniple programs that coi~lcl 1.~111 (:1'11

cliip diagnostics, without manual intervention,
over a wide range of operating conditions. l'his
greatly simplificcl the task of collecting the r;~\\; cl;ir:~

needed by the cliip designers to verie the critical
paths in the chip.

Storage Modules
The ADU's storage modules must provitlc high
bandwidth, both to service cache nlisses ;111t1 t o

support dernantling I/O tlevices. More iniport:~nt,
they must provicle Low latenc): since in the c;lse of a
cache miss, the processor is stalled until tlie miss is
satisfied. It is also important to pro\7itle ;I motlest
amount of memory interleaving. Altliough tlie bus
protocol allows only two memory subnotlcs to be
active at once, higher interleave increases the prob-
ability that ;I moclule will be free when a memory
request is issued.

Each storage module is organizecl as two
independent bus subnodes, so that even i n ;I sys-
tem with one module, menlory is two-way inter-
leaved. Each of the subnodes consists of four banks,
each of whicli stores two longwortls of t l ;~t ;~
and their associatecl error correction bits. With

Digilrrl Techrricnl Jorrrirrrl WJI 4 i\b. 4 Specinl lssr!c. I 992 59

Alpha AXP Architecture and Systems

1-megabit (Mb) I&\,i chips, the capacity of each
niotlule is 6 4 M B . Figure 7 sllows the organization
of the storage modille. The module consists of
two independent subnodes, each with four banks
o f storage. Control signals are pipelinetl through
the banks so that the module can deliver or accept
a 64-bit data word (plus EC:<:) every 20 ns. With
the exception of the DIb\IM interface sign~ls, all
signals are ECL levels. The GO14 gallium arse-
nitle (<;aAs) driver chip improves performance
by allowing parallel termination of the DRAM
adclress lines.

A memory cycle consists of a five-bus-cycle
access period followed by four bus cycles of data
transfer. Each data transfer cycle moves two 39-bit
longwords between the module and the backplane
bus, for a total of 32 data bytes per memory cycle.
This is the size of a CPU module cache block. A read
operation takes 10 bus cycles to complete, but a
write requires 11 cycles.

Since a data rate of 1 word every 20 ns is beyond
the capabilities of even the fastest nibble-mode
RAMS, we needed an approach that did not require
each to provide more than 1 bit per access.

.
BANK 3 1

1 M BY 39-BIT 1 M BY 39-BIT I
I , n STORAGECARD STORAGECARD n

+--------t--t--j--------
BANK 2

A I
-. .. . - I

1 M BY 39-BIT 1 M BY 39-BIT
STORAGE CARD

1 M BY 39-BIT
STORAGE CARD

t STORAGE CARD

A

1 M BY 39-BIT
STORAGE CARD

I M BY 39-BIT
STORAGE CARD

STORAGE CARD

- - - - - - - - - - - - - - - - - - - - - - J t ADDRESS

I BANK ENABLES I

Figure 7 ADU Stor~~~qe Modtlle

4
SUBNODE 1 SUBNODE 2

60 I'ol. 4 ,Vo. 4 Specir~l lss~re I992 Digital TecbnicnlJorrrnnl

4

TRANSCEIVER

BACKPLANE

CONTROL CONTROL

DATA +
ECC (39)

CONTROL DATA + ECC,
ADDRESS (39)

The Alpha Demonstration Unit

We chose to pipeline the four banks of each sub-
node. Each of the four banks contributes only one
78-bit word to the block. The banks are started
sequentially, with a one-cycle delay between each
bank.

The high performance of the storage module
is achieved by maintaining ECL levels and using
ECL lOOK components wherever possible. The
W\1 1/0 pin levels are converted to ECL levels by
latching transceivers associated with each bank.
Fortunately, the timing of accesses to the two sub-
nodes of a module makes it possible to share these
transceivers between the same banks of the mod-
ule's two subnodes.

The DRhM chips are packaged on small daughter
cards that plug into connectors on both sides of the
main array module. There are 2 daughter cards for
each bank within a subnode, for a total of 16 daugh-
ter cards per module. The DRAM address and con-
trol lines are carried on controlled impedance
traces. Since each of the 39 DUMs on an address
line represents a capacitive load of approximately 8
picofarads, the loaded impedance of the line is
about 30 ohms.

The usual approach to driving the address ancl
control lines of a RAM array uses series termination,
as shown in Figure 8a. This arrangement has the
advantage that the driver current is reduced, since
the load impedance seen by the driver (R, + Z, is
twice that of the loaded transmission line (Zo).
Unfortunately, thc RpuM access time is increased,
because the signal from the driver (5,) must propa-
gate to the far end of the line, be reflected, and
return to the driver before the first rwlM on the line
sees a full-amplitude signal. Since the capacitive
loading added by the RAM pins lowers the signal
propagation velocity in addition to reducing the
impedance, the added delay can be a significant
fraction of the overall cycle time.

Since low latency was a primary design goal, we
chose parallel termination of the 1ziiiM address ant1
control lines, as shown in Figure 8b. Each address
line is terminated to +3 volts with a series resistor
(R,) of 33 ohms, slightly higher than the line
impedance. In this configuration, each line's driver
must sink a current of almost 0.1 ampere. Since no
commercial chip could meet this requirement at
the needed speed, we com~ilissioned a semicustom
GaAs chip.'

As shown in Figure 9, each CaAs chip contains a
register for eight address bits, row/column address
nlultiplexing ant1 high current drivers for the U M

VC: v h ~ - - 0

DRAM

Series term~nat~on results In a half-amplilude signal at the first
RAM on the line until the signal reflects from point C

DRAM -.. DRAM

(a) Series Terrninal.io7z

B Zo C

DRIVER

A

VA: " h ~ p 0

Parallel termination saves one line lranslt time, but increases
driver current.

(6) Parallel Terniiuafioiz

F ~ ~ L L I - e 8 Aclclress Line Ter.r?zinntion

address lines, and a clriver for one o f the three I b i M

control signals (U S , CAS, Write). To reduce the cur-
rent switched by each chip, each address bit tlrives
two output pins. One pin carries true data, ant1 the
other is complemented. The total cunent is there-
fore constant. Each pin drives one of the two I w M
modules of a bank. A total of three GaAs chips
is required per bank. In the present module, with
1M- by 1-bit U M chips, only 10 of the 12 address
drivers are usrcl, so the system can be easily
expanded to make use of 16M RhiMs.

The storage module contains only a small
amount of control logic. This logic generates the
control signals for the IWiLls and the various
transceivers that route data from the backplane to
each bank. This logic also generates the signals

Digital Tecbnicnl Jozrrnnl Vol. 4 1X;o. .I Specin1 lssiie 1992 6 1

Alpha &XP Architecture and Systems

I I
SELlN , I D O 1 SELOUT

I+TCy~lr.e 9 Add~.c.ss and Control Driver

to exercise new CPIJ chips and untested software.
With this in mind, we org~nized the I/O system
 round a DECstation 5000 workstation as a front-
end ant1 console processor. This reduced our work
consitlerably, as all I/<) is clone by the workstation. A
'I'IlRt3Ochannel module connects the DECstation
5000 over a SOMB/s cable to the I/O module in the
A1)Ii. We selectetl SOMU/s in orcler to support the
simultaneous, peak-bandwitlth operation of two
SCSI disk strings, an Ethernet, and a fiber dis-
tributed data interface (FI)Ol) network adapter. The
I / () module contains two of these channels, which
;tllows two DECstation 5000 worl<stations to be
attachecl.

At tlie hardware level, the I / () system supports
block transfers of data from the main memory of
tlie workstation to and from t\I)lJ memory In addi-
tion. the I/O module includes command and door-
be1 1 registers, which are used by AI)t! processors to
attract the attention of the l/O bysteln.

In software, 1/0 requests are placed by ADU pro-
cessors into command rings in t\ l>U niemory, The
memory address of a comm;lnd ring is placed into
an I/() control register, ;mcl the associated doorbell
is rung. The doorbell causes a hardware interrupt
on the front-end DECstxtion 5000, which alerts the
I/<) server process that action is needed. The I/o
server reads the command ring from ADU memory
and performs the requested I/(). 1/0 completion sta-
tus is stored into ADU memot-); and an interrupt is
sent to the requesting t\DI1 processor.

In addition to its role as an I/O front-end proces-
sor, the DECstation 5000 workstation acts as a cliag-
nostic and console processor. When an ADU is
powerecl on, diagnostic software is run from the

ncccled to refresh the I<t\l\r,s xncl to assert the retry
workstation. First, the correct functioning of the

signal if another nocle attempts to access the mod-
I/() module is tested. Then tlie AD17 module identifi-

ule \vliile it is refreshing itself.
ciition process determines tlie types and locations

I/O iWodule
The I/O module for the A[>U contains two 50Mn/s
I/o channels ant1 ;I loc;~l (:I'll subsystem. The I/O
ch;innels connect to one or two DECstation 5000
workstations, which act as I/() front-end proces-
sors ;ud also provide console and tliagtlostic fi~nc-
tions. The local CPlJ subsystem is used to provitle
interval timer and time-of-day clock services to ADll

processors.
'l'he original specification for the ADIJ I/O system

required support only for serial line, small com-
puter s)-stems interface (S(:Sr) disk, and Ethernet
I/o clevices. We knew that the ADU would be used

o f all CPU ant1 storage modules in the system.
1)i;ignostics are then run for e;lcli module.

Once diagnostic software has run, the console
soft~vi~re is given control. This software is responsi-
ble for loading privileged architecture library (PAL)
;~nd operating system software. Once the operating
system is running, the workst;ition becomes an 1/0
server.

The presence of the I>E<:statjon 5000 gave the
chip team and operating system developers a stable
place to stand while cliecking o u t their own com-
ponents. In addition, the complete diagnostic capa-
bility ;lnd error checking coverage of the ADCJ
hardware helped to isolate faults.

62 W1. 4 ,Ira. 4 SpecJnl lssrre 1392 Digilnl Tecbnicnl Jorrrnal

The Alpha Den?orzsrrzrtion Unit

The central features of the I/o moclule, shown in
Figul-e 10, are two 1K- by 80-bit register files built
from 5-1-1s ECL WMs. These memories are cycled
every 10 ns to simulate dual-portecl memories at the
20-11s bus cycle rate. One memory is used as a stag-
ing RAM for block transfers from the I/O processors
1.0 ADlJ memory. The other memory is shared
between use as commancl register space for the I/O
system and a staging W M for transfers from AI)II
memory to the 110 system.

On the bus side, the register files are connected
directly to the backpl;~ne bus transceivers. On the
I/O side, the register files are connected to a shareel
40-11s bus that connects to the two I/O channels.

The buses are time-slotted to eliminate the
need for arbitration logic. As a consequence, the
1 / 0 module control logic is contained in a small
number of programmable array logic chips that
implement the 1 /0 channel controllers ant1 a

block-transfer st;ite machine that 11;lncl les bus
transfers.

Each I/O ch;~nnel carries 32 bits of t l ; ~ t ~ plus 7 bits
of ECC in parallel on a SO-pair cable. Each dat:~ word
also carries a 3-bit tag that specifies the destin;~tion
of the data. The cable is half-duplex. wr i t11 the tlirec-
tion of data flow uncler the control of softw;lre on
the DECstation. Data arriving from the I)ECst;~tion is
buffered in 1K E'[FOs. These FIFOs c;irry data across
the clock-domain boundary between the I/O
system and the AULI nncl permit both 1 / 0 cIi;~nnels
to run at h ~ l l speed simultaneously.

Each I/O channel interface also has a11 ;~ddress
counter and a slot-mapping IWM, which are loadecl
from the workstation. The slot-mapping function
sets the correspondence between t\l)ll bus
addresses and the geographically addressed storage
and CPU moclules. The address ant1 slot m;~p for
each cllannel are connected to a common adclress

TO
DECSTATION

TO
DECSTATION

-
INTERFACE

SYSTEM
BUS

(61) ADU I/O Module

OUTBOUND FlFO

n

INBOUND FlFO

TURBO- 4-1 4yB-k
(I ?) TURBOchan~zel I/O M o d ~ i l e

CHANNEL INTERFACE

Digital Technical Jotrrrrrrl 161 4 No. 4 Spec i~~l Issue 1992 63

INTERFACE

Alpha AXP Architecture and Systems

bus. This bus bypasses the register files ancl directly
clrives the backplane transceivers during bus
address cycles.

The far end of tlie I / () cable connecls to a single-
width TI'RBOchannel niotliile in the 1)EC:station
5000. This nodule cont;~ins EC<: gener:ltion and
checking logic, and FIFO clueues for buffering data
between the citblc antl tlie 1~ClRBOch;uinel. The FIFO

queues also carry tlatn across the clock-domain
boundary between the I/O channel ;rml the
nJRBOchannel motlules.

The I/<> module has a local <:PU subsystem con-
taining a 12-MHz Motorola 68302 processot; 128KH
of erasable programmable read-only memory
(EI'KOM). anel 128KI3 of R A V . The CPll subs!.stem
also includes an Ethernet interface, two serial
ports, an SCSl interface, an Integrated Services
Digital Network (ISDN) interfidce. and auclio input
ant1 output ports. When in use, the loc;tl <;l'r r sub-
system uses one of the 1/0 channels otherwise i~vail-
able for the connection of a DE(;st;~tiotl 5000.
Although the local <:I't! on the I/O module is capltble
of rilnning the ~ L I I [Al>rl 1 / 0 system, in pr;ictice \ve
~1st. it for supplying interval timer and real-time
clock service for the Al>lJ.

The VO morlule was somewhat overdesignetl h)r
its original purpose o f supplying disk, networl<, :tntl
console I/O service for A D l J processors. This capa-
bil ity was piit to use in mid-1991 when the tle~nand
for ADUs became so intense that we considered
building adtlitional systems. Instead. by using the
excess 1/0 resources, the slot-mapping featilres of
the hardware, nncl the capabilities of PAI.code, we
were able to use ;I three-processor A l) u ;IS three
independent virtual computers. Inclependet~t
copies of the console program shared the I/() h;ircl-
ware through software locking and were allocateel
one CP'LJ ant1 one storxge motlule e;lch.
lMultiprocessor xl>[ls now routinely run both
OpenVi\fJS AXl' ;incl l>T:(: OSW1 AXP oper:iting sys-
tems :it the same time.

Packaging
Simplicity was the primary goal in tlie tlesign of the
Al)U package. Our short schedule dem;~ncletl that
we avoicl innovation and use standard p;irts wher-
ever possible.

The WU's modules ant1 card cage are st;ind;ircl 9U
(280 millimeter by 367 tnillimeter) Euroc;~rtl com-
ponents, which ;Ire avail;tble from a nurnbcr o f ven-
dors. The cabinet is ;I st;tndard Digital unit. ~~su; i l l '~ '

usecl to hold disks. Power supplies are off-the-shelf
units. Three supplies are requiretl to provide the
4,000 watts consumed by a system containing a full
complement of 111otluIes. A stantl;lrd power condi-
tioner provides line filtering and distributes pri-
mary ti(; to the power supplies. This unit ;tllows the
system to operate on 110-volt tic in the United
States, or 220-\wit A C in Europe.

Coolitig was the most difficult part of the packag-
ing effort. The use of ECL throughout the system
meant that we had to provide an airflow of at least
2.5 m/s over the modules. After st~ldying several
alternatives. we selected a reverse impeller blower
usecl on Digital3 VAX 6000 series m;~cliines. Two of
these blowers provide the requireel airflow, while
generating much less acoustic noise than conven-
tional fans.

Since blower tiiilure woulcl result in a catas-
trophic meltclown, airflow and temperature sen-
sors are provided. A small module containing a
rnicrocontrolle~- monitors these parameters as well
as all power supply voltages. In the event of failure,
the ;iutonoruorls controller can shut down the
power supplies. This module also generates the
system clock.

Conclusions
Sometimes it is better to have twenty million
instruct~onb by Fritlay than twenty million instruc-
tions per seconcl. -Wesley Cl;~rk

One liuntlred <:I'lJ antl storage modules and 35 I/O
modules haw been built. packaged as 35 ADU sys-
tems, :untl dcliverecl to software development
groups throughout Digital. Not just laboratory
curiosities, these systems have become part of the
mainstream AXP clevelopment environment. They
are in regul:~r usc by compiler development groups,
operating system developers, and :~pplications
groups.

The AJ)II also provided a full-speed, ill-system
exerciser h)r the chips. By using the ti1)U. the chip
tlevelopers were ;~ble to detect several subtle prob-
lems in carly chip implementations.

The /\I>[] project was quite successful. AIIU sys-
tems were in the hands of tlevelopers ;ipproximately
ten months before the first product prototypes.
The systems esceedcd our initial expectations for
reliability. ;rntl provided a rugged, stable platform
for software clevelopment ant1 chip test. The proj-
ect demonstratetl that a small team, with focused
objectives. can protluce systems of substatltial com-
plexity in a short time.

64 V d . 4 No. 4 SpccZL(tlsuue 1992 Digital Technical Journal

The AlJlna Denzo~zstratio?~ Unit

Acknowledgments
John Dillon designed the power control subsystem
and the package. Steve Morris wrote the ADU con-
sole software. Andrew Paync contributed to ADU

tliagnostics. Tom Levergood assisted with the physi-
cal design of the VO modules. Herb Year): Scott
Kreider, and Steve 1,loytl tlitl module debugging and
testing at Huclson ant1 at SIK:. Ted Equi handled proj-
ect logistics at Hutlson, ant1 Dick Parle was respon-
sible for material accluibition and supervision of
outsicle venclors at SRC.

References

1. R. Sites, A. Chernoff, M . Kirk, M. Marks, and
S. Robinson, "Binary Translation," Digital
Rclnlzical Jo~lrnal, vol. 4 , no. 4 (1992, this issue):
137- 152.

2. C. Thacker, L. Stewart, and E. Satterthwaite, Jr.,
"Firefly: A Multiprocessor Workstation:'
IEEE Transactions on Conzputers, vol. 37,
no. 8 (August 1988): 909-920.

3. R. Katz, S. Eggers, D. Wood, C. Perkins, and
R. Sheldon, "Implementing a Cache Consistency
Protocol," in Proceeclirigs of the 12th Interna-
tional S~~nzpositlm on Co~lzputer Architecture
(I E E E , 1985).

4. J. Archibald and L. Baer, "Cache Coherence Pro-
tocols: Evaluation Using a Multiprocessor Simu-
lation Model," ACM Transactions on Computer
Systems, vol. 4 (November 1986): 273-298.

5. 1991 GaAs IC Data Book and Desigizer's Guide
(GigaBit Logic, Newbury Park, CA, 1991): 2-39.

Digital Tecbnkal Journal Vol. 4 No. 4 Speciallssue 1992 65

ToddR Dtitton
Daniel EireJ

Hugh R. Kurth
JamesJ RReisert
Robin L. Stewart

The Design of the DEC3000 AXP
Systems, Two High-performance
Workstations

A fanzily of bigh-perJ-bnnance 64-bit RISC zuorkst~~tions alzd serzlers based 012 the
izeuJ Digital Alpha AXP ar~chitecture is described. The bar-du~are implementatiot?
uses the pozue~zzll new DECcl?$21064 CPU and ernploys a sophisticated neLc sj~stenz
interconnect structzrre to achieve the necessary high Da~tdwidth and lmu-latency
cache, memory, and t/O 6tues. The melnory subsjlstem of the high-end DEC 3000
AXP Model 500prouides a 512KB secondary cache and up to I GB of tnemory The I/O
subsyst@?z of the Model 500 has integral two-dime1.2sionalgrqbics, SC.51, ISDIV, and
six TURBOchannel expansion slots.

The DEC 3000 AXP system family consists of both
workstations and servers that are basecl on Digital's
Alpha I U P architecture.' The family includes the
desktop (DEC 3000 A?(P Model 400) ancl desk-side
and rack-mounted (DEC 3000 AXP lMoclel 500) sjls-
terns. The available operating systems are the DEC
OSF/1 AXP and the OperlViMS AX-' systems. All sys-
tems use the DECchip 21064 microprocessoc2

Table 1 gives the specifications for the three DEC
3000 AXP systems.

The IIEC 3000 iucP systems are designed to be sig-
nificantly faster than all previous Digital work-
stations and to offer performance competitive with
that of other reduced instruction set computer
(RISC) workstations currently available. In general,
NSC systems have larger code sizes ancl conse-
quently require more instruction-stream bantl-
width than complex instruction set computer
(CISC) systems. Further, 64-bit machines recluire
more data-stream bandwidth than 32-bit machines.
To complement the power of the DECchip 21064
microprocessor, the systems need a balanced
system architecture, including a high-bandwidth,
low-latency memory system and an efficient, high-
performance 1/0 subsystem.

Traditional workstation designs that use a com-
mon system bus exhibit increased memory latency
and reduced memory bandwidth due to system bus
contention. This is a special concern for clesigiis

using a large number of high-performance I/O
devices. Increased latency can also result from the
additional levels of buffering ancl system bus loaci-
ing common to traditional architectures. Many
system Isi~ses also exhibit multiplexing between
address and data, leading to further performance
degradation.

To meet the goals of low memory latency, high
memory bandwidth, ancl minimal CPU-1/0 mcrnory
contention in a cost-competitive manner, the
designers implemented the DEC 3000 AXP system
architecture in an unusual way. They chose to build
the system interconnect from inexpensive applicit-
tion-specific integrated circuits (ASICs), as shown
in Figure 1. Tlie ASICs act as a crossbar between the
CPU, memory, and VO buses. Addresses and data are
switched independently by the crossbar.

The system block diagram in Figure 2 shows the
system architectl~re of the DEC 3000 U P systcrns.
The system crossbar in the center of the diagram is
composed of six ASlCs, consisting of the N) D R ASIC,
the TURBOchannel (TC) ASIC, and four SLICE ASICs.
The ADDR ASIC switches addresses between
the CPU, the memory, and the TC ASIC. The four
SLICE AS~CS switch data between the CPU, the mem-
ory, and the TC ASIC. The TC ASIC switches I/O
acldresses and clat;~ between the ADDK ant1 SLlCL

ASKS ancl the TClRUOchannel bus. Connected to the
TURBOchannel bus are the various 1/0 controllers,

66 1f01. 4 1%. 4 spec.int / .YSI I~ 1992 Digital Tecbrzical Juurtrnl

The Design oftbe DEC 3000 AXP Systems, Two High-performance Workstations

Table 1 DEC 3000 AXP Family Specifications

Desk-side Rack-mount Desktop
Specifications Model 500 Model 500 Model 400

Height, inches 24.7 15.75 5

Width, inches 12.75 17.5 20

Depth, inches 29.7 27 16.75

Maximum DC power 480 480 295
output, watts

Memory
Standard, MB
Maximum, MB

Internal hard disk
Standard, MB
Maximum, MB

Serial ports
ISDN port
SCSl ports*
Ethernet portst
TURBOchannel slots
Removable media*
Integral graphics accelerator
Audio

Notes:
' One internal and one external.
1 AUI (th~ck wire) and 10Base-T (twisted pair).

5.25-inch half-height slots.

1050
4200

2

1

2

2

6
2

Yes
Yes

1050
4200

2

1
2

2
6
2

Yes
Yes

426
21 00

2

1

2
2

3
1

No
Yes

F i e I Simple Crossbar

CPU

including the dual small computer systems inter-
face (SCSI) controller ASIC, the general t/O con-
troller ASIC, and the two-dimensional graphics
accelerator ASIC (not present in DEC 3000 AXP
Model 400 systems). In addition, six TURBOchannel
option slots are available for expansion (three slots
in DEC 3000 AXP Model 400 systems).

MEMORY

CPU Module
The DEC 3000 AXP systems are composed of two
primary modules, the CPU module and the l/O mod-
ule. The CI'U module contains the processor,

secondary cache, control logic, TURBOchannel
interface and, in the Model 500, the two-dimen-
sional graphics subsystem. It has connectors for the
I/O module, four memory mother boards, a lights
and switches module (LSM), three TURBOchannel
options, and the power supply. Figure 3 shows the
layout of the module. CACHE

CPU
The DECchip 21064 microprocessor is the CPU of
the DEC 3000 AXP systems. On the Model 500. the
CPU runs at 150 megahertz (MHz), and on the Model
400, it runs at 133 MHz. The processor is a super-
scalar, fully pipelined implementation of the Alpha
AXP a r c h i t e c t ~ r e . ~ It contains two on-chip %kilo-
byte (KB) direct-mapped caches, one for use as an
instruction cache, the other as a data cache. Both
the integer and floating-point units are contained
on-chip.

B-cache Szlbsystem
The system employs a second-level cache (B-cache)
to help minimize the performance penalty of
misses and write throughs in the two relatively

SYSTEM
CROSSBAR

Digflal Technical Journal 1/01, 4 No. 4 Special Issue 1992 67

- I10

I FOUR MEMORY MOTHER BOARDS

.L ----....---- 0 8 8
_C - - - - - _ _ _ _ _ . . I I I I

I d -C ------..---- # # # I #
n n , , , 4
0 0 0 8 8 8 - CPU ADDRESS, TAG, AND I 1: 4 : TC
I I I I I,
0 0 I I,

CACHE PROBE BUSES CPU. 110, DMA I10 ADDRESS BUS I P j OPTIONS j::'
1 - - - - - - - - _ - . . - ,

BUFFERING

I
DECCHIP I ADDRASIC I I J L

21064 CACHE I v -

CPU I
CPU I

/
BUFFERING I ,/ ONE LONGWORD

LONGWORDS 1 - I

FOUR SLICE ASlCS
- -

I SYSTEM CROSSBAR L - J

1 - - - -

ISDN AND AUDIO

ADDRESS ::OR. Fw
EIGHT LONGWORDS

- - - - - - - - - - - - - - - - - - - - - -

Figure 2 System Block Diagram

The D e s i ~ n o f the DEC 3000 AXP Systems, Tzvo HighQerformnfzce Workstutiofzs

MEMORY
CONNECTORS

I

I I DECCHIP
21 064 CPL

SECONDARY CACHE I

MEMORY CLOCK TC
CONNECTORS SUBSYSTEM CONNECTOR 0

I INTEGRAL GRAPHICS

1 TURBOCHANNEL
n A T A - D A T U I W-IP

, " C SU"", ,,...,. LL I CONTROL LOGIC

SYSTEM RESET LOGIC I

110 MODULE TC ' TC '
CONNECTOR CONNECTOR 1 CONNECTOR 2

Fgure 3 CPU Module

small 8KB primary caches of the DECchip 21064
processor. The B-cache is a 512KB, direct-mapped,
write-back cache. A direct-mapped cache elimi-
nates the logic needed to choose among the multi-
ple sets of a set-associative cache, resulting in a
faster cache cycle time. A write-back protocol was
selected because it reduces the amount of write
traffic from the B-cache to main memory, leaving
more main memory bandwidth available for other
memory transactions.

The block size of the B-cache is 32 bytes, match-
ing the block size of the primary caches. The cache
block allocation policy used is to allocate on both
read miss and write miss. Hardware keeps the cache
coherent on direct memory access (D M) trans-
actions; DMA reads probe the cache and DMA writes
update the B-cache (and invalidate the primary data
cache).

The DEC 3000 AXP systems are designed to be
uniprocessor systems, which simplifies the cache

Digital Technical Journal Vo1. 4 No. 4 Special Issue 1992 69

Alpha AXP Architecture and Systems

controller design in a number of ways. For example,
since no other CPU's cache can contain a copy of a
cache block, there is no need to implement cache
coherency constructs such ;IS a shared bit. Further,
by loading the B-cache during the power-up
sequence and keeping it coherent during D I M by
using an always-update protocol, cache blocks in
the B-cache are always guaranteed to be valitl. This
method eliminates stale data problems without
needing to use a valid bit.

In addition to the cache memor): the subsystem
consists of the cache controller, the main memory
controller, and the protocol control logic for mem-
ory access arbitration. A block diagram of the CPU
and B-cache subsystem is shown in Figure 4.

The B-cache is alternately controlled by the CPU
and the external cache controller. When controlled
by the CPU, the cache may be read by the CPIJ in five
CPU cycles. The cache data bus width is 16 bytes;
therefore two reads are necessary to f i l l a cache

block. The Model 500 has a maximum cache read
bandwidth of 480 megabytes per second (MB/s).
The cache may be written by the CPU with an initial
tag probe latency of five CPU cycles followed by up
to two write cycles of five CPU cycles each. The
Model 500 has a cache write bandwidth of 320 MB/s.

When a CPU probe misses in the B-cache, or
when the CPli accesses the external lock register,
control of the cache is turned over to the external
cache controller This logic controls filling the
cache with the required data from main memory,
handing the data to the CPlJ during reads, merging
CPU write data into the cache on writes, and main-
taining the contents of the external cache tag ancl
tag control store. In addition, this logic maintains
the architecturally defined lock flag and locked
physical address register, which can be used to
implement software semaphores and other con-
structs normally requiring atomic read-mod@-
write memory transactions.

Figure 4 CPCJ and R-cache Block D i a p m

kl. 4 No. 4 Special Issue I992 Digigllal Tecbrrical Jouriral

SYSTEM
CROSSBAR

DECCHIP
21064
MICROPROCESSOR

SIGNALS

110 CONTROLLER CONTROL

MAIN SEQUENCER
SIGNALS *

CPU ADDRESS BUS >
DMA CACHE INDEX

2:1 MUX

CACHE DATAIECC
STORE

512KB
16K X 32-BYTE BLOCKS

CACHE TAGIPARITY
STORE

16K x 1 1 -BIT TAGS

CACHE TAG CONTROU
PARITY STORE

16K x 2-BIT CONTROL
TAGS

CPUDATABUS

CPU TAG BUS

CPU TAG CONTROL BUS

>
>
>

MEMORY CONTROL
SIGNALS *

CROSSBAR STATUS SIGNALS

CROSSBAR CONTROL SIGNALS

CPU STATUS SIGNALS

CPU CONTROL SIGNALS

I10 CONTROLLER STATUS

CPUICACHE
CONTROL LOGIC
AND
SEQUENCERS *a-

CYCLE DECODER

The Design of the DEC3000 AXP Systems, Two High-perfo~nnance Workstations

The control logic for the B-cache consists of two
interlocking state machines. These state machines
control arbitration and decoding of processor and
110 subsystem requests. They also generate the con-
trol signals needed to execute these requests to the
CPII. B-cache, and main memory.

The state machines prioritize and arbitrate
requests from various sources, including the CI-'U,
the 1 / 0 subsystem, and the memory refresh logic.
Arbitration is done according to a fixed priority
First priority goes to DMA requests from the I/O sub-
system. Second priority goes to memory refresh
requests. Lowest in priority are requests made by
the CPU. The one exception to this scheme occurs
at the conclusion of a D m transaction. In this case,
the first arbitration cycle following the DMA
changes the priority to memory refresh first, CPU
request second, and DLMA last. This guarantees that
requests for CPll and memory refreshes are granted
during heavy DiMA traffic.

The larger state machine, o r main sequencer,
examines the commancl generated by the smaller
state machine, or cycle decoder, and initiates the
control flow necessary to perform that command.
Fifteen unique flows are implemented by the main
sequencer. They are

Read cache;rblc memory with/without victim
block

Write cacheable memory with/without victim
block

Write noncacheable memory (diagnostic use
only)

Full block write cacheable memory with/with-
out victim block

Tag space write (cliagnostic use only)

Programmed I/O read/write

Load lockliit

Store conclitional hit

Memory refresh

When a cache miss occurs and the new cache
block replaces a cache block that has been modi-
fiecl, as intlicatetl by the "dirty" status bit, the dis-
placed data is referred to as a "victim block" o r
"victim data."

The many variants of cacheable reads and writes
provide optimized flows that maximize the paral-
lelism of cache accesses and memory accesses. For

example, during the "read cacheable memory with
victim block" flow, the n ~ a i n sequencer reads the
victim block from the B-cache and stores it in the
SLICE ASKS in parallel with reading the new block
from main memor)l. The same flow without a vic-
tim block makes use of the main memory access
time to update the tag store. The control flows for
writes to cacheable memory also take advantage of
this parallelism. A hlrther write optimization is
used when the cycle decoder determines that the
entire cache block will be written; in this case the
data from memory is completely overwritten, and
therefore it is never fetched from memory.

D m flows are entered upon request of the D M
controller in the I/O control section. DIM control
flows start by asserting a "hold request" to the CPU,
causing the CPu to cease B-cache operations within
a specified time, after which it asserts a "hold
acknowledge" signal. It shoulcl be noted that the
CPU will continue to execute instructions inter-
nally until such time as it experiences a miss in one
of its internal caches, or it requires some other
external cycle.

Each DM.% write to memory results in a probe of
the B-cache for the D M target block, with a hit
resulting in the B-cache block being updated in par-
allel with main memory and the corresponding pri-
mary data cache block being invalidated. D M reads
cause main memory to be read in parallel with
probes and reads of the R-cache. If a cache probe
hits, the B-cache data is used to fill the D m read
buffer in the SLICE ASICs; otherwise the main mem-
ory data is used. In this manner, cache coherence is
maintained.

Memory System and System Crossbar
The DEC 3000 ltYP Model 400 and Motlel 500 archi-
tecture supplants the traditional system bus with a
system crossbar constructetl from ASICs. Tightly
coupled to the crossbar is the system memot-).. Three
types of ASICs-SLICE, ADDR, and TC-form the
crossbar. SLICE and t D D R are cliscussetl next and TC
is discussed in the I/O Subsystem Interface section.

SWCE ASICs
The four SLICE ASICs are used strictly for data path;
together they form a 32-byte bus to main memory, a
16-byte bus to the CPU and cache, and a 4-byte bus
to the TC ASIC. It is helpful to think of the SLICE
ASICs as a train station for data with the data buses
as train tracks. Data can come and go on any track,
different tracks have different speeds and widths,

D i g i l ~ l Tech~ricnl Jorrrrrcrl Vol. 4 IVO. 4 Special lsstre 1992 7 1

Alpha AXP Architecture and Systems

and data can find temporary storage in the ASKS.

The SLICE ASlCs provide the systems with a location
to buffer D m , I/O read, I/O write, ant1 victim data
while the data waits to trwel the next leg of its jour-
ney The use of the SLICE ASICs also eliminates one
to two levels of buffering between the dynamic ran-
dom-access memories (DMMs) and the <:PLl, thus
decreasing latency and improving bandwidth.

A key design decision was determining the width
of tlie memory data bus. A conventional design
would have matched the width of the memory bus
to the width of the cache bus (16 bytes). However,
to reduce the memory latency of the second half of
the cache block (cache line size is 32 bytes), the
system reads the entire cache block from memory
at once using a 32-byte memory bils. Tliis technique
eliniinates the additional latency from ;I seconcl
page-mode read.

Tlie DEC 3000 AXP Model 500 returns the entire
block to tlie cache ant1 CPlJ with an average latency
of only 180 nanoseconds (ns) from the <;PU memory
request. In contrast, a less aggressive prelimin;~ry
design using a system bus ant1 16-byte-wide mem-
ory bus yielded an average memory latency of 320
ns. The 32-byte n1emoi-y bus costs little more tli;ln a
16-byte bus-two low-cost ASlC:s, resistor p;~cks,
and some address fan-out parts.

ADDR ASIC
The ADDR ASIC is a crossbar for addresses. AJ)I)R

sends addresses from the CPU to memory (CI'II
reads ant1 writes), from the c~rl to I/O (I/<) reacls
and writes), ant1 from the I/O to CPri and meniory
(D I M reads and writes). ADDR selects between <:1-'1J

read, victim write, ant1 DivU atltlresses to send to
memory. A counter that increments DLMA addresses
on long TIRROchannel DMAs :llso resides in AIIDR.

AI)I>R provides a home to the memory configura-
tion registers. At power-on time, the boot firmware
writes ant1 reacls memory space, determines tlie
memory configuration, ant1 writes the configura-
tion registers. At run time, each memory address
maps into a i~nique bank, regardless of the type and
order of the single in-line memory modules (SIMMs)
installed.

AI)I>R also provides a home for niiscellaneous
functions such as tag parity checking, refresh
counter. ;~ncl the lockecl physical address register. It
generates the c;lche probe intles to check the cache
tags for ;I hit or a miss on .DMA probes.

Memory Mother Board and S1MlV.s
?'he memory system is composetl of memory
mother bo;lrcls (MMRs) th:~t rise from the system
card. and SIMMS. This arrangement is a good solu-
tion to the problem of limited space on the system
motlule. I t ;~llows for a wide dicta bus and for good
sign:~l integrity for short propagation times on the
memory data bus.

As shown in Figure 5, an MMB module supports
up to eight SlMMs at a time (four SIMMs in Motlel400
systems). A minimum of two SIMMs is required for
each boarcl. A system always contains four MMUs.
Tlie MMHs act as a carrier for the SIlLlMs ant1 also con-
tain tlrive~-s for adclress and control signals.

A total ofX, 16, 24, or 32 SlMPls (m;~xim~~rn of I6 in
Morlel400 systems) can be pluggcd into tlie system.
Slhh~ls m;ly be single- or double-sitled with LO DRhikIs

1 TO 8 DRAMS INSTALLED

I I I I
I I I I I

MEMORY MOTHER BOARD

I CACHE RAM I
CACHE DATA BUS

MEMORY DATA BUS

I I 1 SLICE ASIC 1 I CPU I

72 l id 4 ,\'(A 4 S/)ecirrl I.v.vrfr. 1332 Digital Tecb~icnl Jorrrrtal

The Design of the DEC 3000 AXP Systems, Two High-pwfo fonnnnce Workstations

per side. Each side of a SIMM constitutes one-eighth
of a bank. Eight SlMMs must be plugged in to com-
plete a bank; hence the 320-bit-wide data bus (4 bits
per D W M by 10 DRAivls per SIMM by 8 SIMMs). One
megabit (Mb), 4Mb, and 1 6 ~ b DRATMs are sup-
ported, and users are allowed to populate banks in
any order. In this way, the DEC 3000 AXP Model 500
can support from 8MB to 1 gigabyte (GB) of mem-
ory, and the DEC 3000 AXP Model 400 can support
8MB to 512MB of memory.

Main memory is protected by a single-bit-correct,
tlouble-bit-detect error-correcting code (E X) . In
addition, the arrangement of data bits allows the
detection of any number of errors restricted to a
single DWM chip. ECC corrections for CPU trans-
actions are performed by the CPU, and corrections
for I/O transactions are done in the TC ASIC.

Memory Transactions
When data is stored in the B-cache by the CPU, it is
not immediately sent to memory. Data is written to
main memory only when a dirty block in the cache
is replaced. Data tlestined for the cache is read from
main memory only on cache misses Reads to main
memory, whether from the CPU or from D I M ,
always return 32 bytes. On CPU reads of main
memory, data is returned to the cache and CPU in
two halves by the SLICE ASICs. Likewise when the
B-cache control writes victim data to main mem-
ory, two reads are made of the cache, but only one
write is made to main memory.

On D h c ~ writes, 4 bytes of clata arrive from the
TURBOchannel interface ASIC each cycle and are
storetl in the SLICE ASICs. The SLICE ASICs can buffer
up to 128 bytes of data prior to writing the data to
main memory using page-mode writes, 32 bytes at a
time. To maintain cache/memory coherence, data is
also provided to the cache RAMS so that it may be
written in the case of a cache hit. On DlMA reads, up
to 128 bytes of data are read page mode out of main
memory and buffered in the SLICE ASICs. Data flows
out to the TC ASIC and the TURBOchannel bus at the
rate of 4 bytes per cycle (100MB/s). In the event of a
cache hit, data is taken preferentially from the
cache.

The crossbar employs a techniclue that permits
simultaneous transactions from C1'U to main menl-
ory and DMA. The TURBOchannel bus supports D m
transactions of up to 512 bytes in length. Once the
D I M starts, the system must be able to provide or
receive data without any gaps. However, while the
D m buffer in the SLICE ASICs is sufficiently fill1 (for

DMA reads) or empty (for DMA writes), the CPU is
allowed to use memory. When the I/O controller
detects that the buffer is too full or too empty, it
requests memory time to service the DMA buffer.
At this time, further CPU requests are temporarily
ignored. This technique prevents the CPU from
being locked out of main memory, even cluri~~g long
DMA transactions ant1 even though D M has priority
over CPU transactions.

The crossbar also permits sirnultaneous write
transactions from the CPU to main memory and
from the CPU to an I/O device. SLICE and ADDR ASICs
can buffer one I/O write transaction of up to 32
bytes in size. Once the ASICs have accepted the data
and address, the cache and crossbar are free to pro-
cess other CPU transactions, which can include
cache and main memory reads and writes. If the
CPU issues an I/O write while a previous write
is still pending in the ASIcs, the cache controller
simply stalls.

I.0 Subsystem Interface/
TURBOchannel ASIC
The I/O system is based on the TURBOchannel, a 32-
bit high-performance, bidirectional, multiplexed
address and data bus developed by Digital for work-
stations."he DEC 3000 AXP supports up to six
plug-in options, as well as the integral smart frame
buffer (SFB) graphics ASIC, the I/O controller
(IOCTL) ASIC, and the TURBOchannel dual SCSI
(TCDS) ASIC. The TURBOchannel bus is synchronous
and requires only five control signals in each direc-
tion between the system and the option cards.

The system interfaces to the TURsOchannel bus
by a data-path Tc ASIC ancl control logic contained
in a number of progra~nmable array logic devices
(PALS). The TC ASIC: completes the system crossbar
by passing addresses between the TURBOchannel
bus and the address ASIC, and passing data between
the TURROchannel bus and the SLICE ASICs.
Furthermore, the TC ASIC checks and generates par-
ity on the TURBOchannel, and checks, corrects, and
generates ECC on the data bus to the SLICE ASICs.
Parity checking of TURBOchannel data is optional
and is enabled on a per-option basis through a con-
figuration register in the TC ASIC. Finally, the TC
ASIC contains a number of counters for tracking
Divh progress, as well as configuration and error
registers. All control logic was implemented in PALS
to minimize the impact to the project schedule of
any design changes. The TURBOchannel interface
block diagram in shown in Figure 6.

Digital Technical Jouml 1/01. 4 r\b. 4 Speciullssue 1992 73

Alpha AXP Architecture and Systems

TURBOCHANNEL

SLICE ASlCS

DMA REQUEST .
CONTROL

STATE MACHINES
AND DECODE LOGIC TC - OPTIONS

.

Figure 6- TURBOcbaiznel Interface Block Diagram

There are two types of TURI30channel opera-
tions: the system initiates I/O reads and writes, and
the options initiate D h f i reads and writes. On an
I /O operation, the system sends the I/o address
from the ADDR ASIC to the TC ASIC, ant1 from there
to the TURBOchannel. For I/O reads, the option
returns data on the TLJRBOchannel. This data passes
through the "I'C ASIC ancl over the bus to the SLICE

ASlCs. The system inclucles some special hardware
for byte rnasking of [/O read data. This hardware is
used to provide support for VIMEbus adapters.

For 1/0 writes, the system sends data from
the SLICE ASlCs across the data bus to the TC ASIC.
The TC ASIC: then sends i t to the option over the
TIIRROchannel. The DEC 3000 AX-' workstation
supports a block write extension to the original
TURBOchannel protocol. In this mode, the system
supplies a single address followed by multiple
consecutive data transfers for improved I/O write
performance. This extension is also config~~rable
on a per-option basis through the TC configuration
register.

The TURBOchannel protocol specifies that before
any option can use the bus for D&U, it must issue a

recpest to the system. The DEC 3000 AXP architec-
ture employs an arbitration scheme using rotating
priority that prevents any option from being locked
out. After being granted the bus, the option sup-
plies a D M address on the TURBOchannel bus. This
address routes through the TC ASIC and onto the
address ASIC. In the case of a DLMA write, data imme-
diately follows the address on the r u ~ o c h a n n e l .
This data passes through the T<: ASIC and onto the
clata bus to the SLICE buffers.

DMA reads are more complicated than writes
because the TURROchannel bus does not transmit
ahead of time the number of bytes of data to be read
from memory. Instead, it continues to assert its
read request signal for as long as it is requesting
data. The SLICE buffers begin to fill up with D,W
data, and only when they can guarantee that there
will be no gaps in the DlMA will the data transfer
start. The TC ASIC receives the read data from the
SLICE ASlCs and sends it onto the TURBOchannel to
the requesting option.

Virtual D M allows the system to map non-
contiguous regions of physical address space into
contiguous regions of virtual address space. This

74 Vol. 4 No. 4 S'pecicrl Jssue 1992 Digital Tecbtricnl Jozrrtinl

The Design of the DEC 3000 AXP Systems, Two Highperformance Workstations

method allows TURBOchannel options to transfer
large blocks of DMA data without knowledge of how
that data is mapped in the physical address space in
main memory Virtual DIMA enhances operating
system performance because the memory mapping
is performed before the transfer of DMA data.

The DEC 3000 AXP workstation supports virtual
DMA through the use of a scatter/gather (SG) map,
which acts as a translation buffer. SG mapping is
enabled on a per-option basis through the configura-
tion register in the TC ASIC. The SG map is organized
as 32K 24-bit entries. Each entry contains a 17-bit
physical page number (PPN), parity, and valid bit.
Software sets up the map through 1/0 space reads
and writes. DMA byte address bits [27:13] index the
SG map, which produces a 17-bit PPN (bits [29:13]) to
append to the virtual DMA byte address bits [12:0].
The resulting 30-bit physical DMA byte address can
then address all IGB of the possible system address
space. An SG map is shown in Figure 7

I/O Subsystem
Most of the I/O subsystem is implemented on
its own module. This I/O module, shown in Figure
8, contains the connectors for attachment unit

interface (AUI) Ethernet, 10Base-T Ethernet,
Integrated Services Digital Network (ISDN), alter-
nate console/serial printer, mouse/keyboard, com-
munications, internal and external SCSI, three
TURBOchannel options, and audio module port.
The various I/O controllers interface to the
TURBOchannel through one of three ASICs. These
ASICs are the smart frame buffer (SFB) on the CPU
module and the TURBOchannel dual SCSl (TCDS)
ASIC and the I/O controller (IOCTL) ASIC on the I/o
module.

VIRTUAL DMA BYTE ADDRESS FROM TURBOCHANNEL

SG MAP

33 28 27 1312 0

UNUSED

Figure 7 Scattec/Gather Mafifiing

29 + 13 12 + 0

Mousv TPlC
\ EXTERNAL SCSl COMMUNICATIONS KEYBOARD ISDM AUI CONNECTOR

VIRTUAL PAGE

PPN

I \
INTERNAL SCSl TC

I
CPU MODULE TC

\ \ I
REAL-TIME FLASH TC

\
AUDIO

CONNECTOR 5 CONNECTOR CONNECTOR 4 CLOCK MEMORY CONNECTOR 3

BYTE

BYTE

Figure 8 V O Module

PHYSICAL DMA BYTE ADDRESS TO MEMORY SYSTEM

Digital Technical Journal Vo1. 4 No. 4 Speciallss~te 1992 75

Alpha AXP Architecture and Systems

I/O Module-IOCTL ASIC
A key I/O subsystem design tlecision was to reduce
time-to-market by elinii~iating unnecessary new
harclware and software development. I'o support
most of the I/<) functionalit): the designers chose
the lOCTL ASIC developed for the I>E<:st;~tion 5000
Motlel 240.

Tlie lO<:TL ASIC provides ; i n interface to a 16-bit,
general-purpose I/O bus, which supports the fol-
lowing devices: two Zilog Z85C30 serial communi-
cations controllers (S<;Cs), an &\.I[) 7990 Loc;~l ;tre;i
netnlork controller for Ethernet (ILANCE), a I);~ll:is
semicontluctor DS1287 real-time clock. an ~ , \ l l >

79C30A ISDN data controller (IIIC), a S<:SI coo-
troller. and an AVlD 27C020 2 5 6 ~ ~ er;ls:ible pro-
grarnrn;ible re;~d-only memory (El)l<~)x~).

The SCCs implement the keyboard, mouse, alter-
nate console/printe~-. and cornmunic;itions ports.
The mouse and keyboanl tlo not use I>Yl~lr\. The alter-
nate console/printer and the communic;itions port
do use Dkw.

The 1.ANCE implements the Ethernet interface,
wliich connects to the loc;il area network (LAN)
tliroiigh either the Arrl (thickwire) or lOH;~se-~l
(twisted-pair interconnect [I'I'IC]) connectors. Soft-
ware controls which one of these interfaces is
enabled.

'The real-ti~iie clock provitles time-of-year (TOY')

reference ant1 50 IsjTes o f nonvol;~tile Iwhl. A
lithium battery supplies power in the event of
system power-off or failure.

The IDC implelilents both an ISDN interk~ce ant1
telepl~one-quality autlio. The autlio connects to the
autlio interface module (AIM), which provides the
audio I/O in the Model 500. Audio I/<> in the Model
400 is on its f/O motlule.

Tlie i \ lV on the iModel 500 supports ;~uclio input
through either a X-inch minijack for microphone
input, a 4-pin modular jack (8lJ) connector for use
of a telephone handset, or ;In RCA-style phonogr;lph
jack used as a line-in i n p ~ ~ t Output is provitletl by
the i~lJ connector ;IS well as by a %inch stereo-
pl~onic jack. The stereophonic jack accepts only a
stereophonic plug. If monophonic headphones are
usctl, ;I mono-to-stereopl~onic atl;ipter is requiretl.
On the Nlotlel400, audio input ;lnd o i ~ t p l ~ t is imple-
mented using a 4-pin 8 1 ~ connector.

Analysis of the complete audio system in a Motlel
500 shows a frequency response of '145 I-Jz to 3,500
Hz, with typical distortion in the 0.8 percent to 1.9
percent range for the microphone ;ind 0.4 percent
to 1.5 percent for the telephone handset. 'Che

signal-to-noise ratio ranged from 24 decibels with a
minim;~l signal input to 58 decibels with a high-
level sign;ll inpiit.

I/O Module-TCDS ASIC
Although the IO<:TL ASIC contains an interface
t o a SC:SI controller, the DE<: 3000 A X P s)Istems
implement their SCSI interface using the TCDS
ASIC:. This design has several advantages. First, the
l'<:I>S ASIC: supports two SCSI ports rather than
the one supportetl by the IOCTI.. ASIC, permitting
separate internal and external SCSI chains. Second,
this design eliminates contention between the
Ethernet controller ant1 the SCSI controller for the
10(:'1'1.. 1x1s. 'T'hird, tlie T<:l>S t\SIC supports much
longer 'I'1JReoch;lnnel I>,W\ bursts (64-byte bursts
rather than 16-byte bursts). Finally, tlie resulting
ASIC: design is i~sed to implement a dual SCSl

-l'lJi~l$OclianneI option module.
The 'I3c:1)S i\Slc: inlplenients two separate SCSl

ports using two NCK 5SC94 advanced SCSI con-
trollers (A~<:S). The TcDs allows both controllers to
h;lve I>lLli\ transfers in progress s i ~ ~ ~ i ~ l t a ~ ~ e o ~ ~ s l j ~ .

'L'CIIS TIJRHOchan~iel DIMA transactions are
aligned 64-byte blocks. Starting Dim addresses that
:Ire not aligned to these bounclaries begin with a
sm;rller IIMA tr;ins;rction. This technique aligns tlie
atlclress so that succeeding transactions are aligned
64-byte blocks. Large, alig~letl transactions increase
both ~ l ~ ~ ~ o c h a n n e l and memory access efficiency.

The TCns ASIC: and the AS(;s provicle odd parity
protection on major data paths. This protection
inclutles 8-bit parity on the 16-bit bus between the
TCOS and the AS<:s, 32-bit parity on TCDS DIMA buffer
entries, and 32-bit parity on TIJRROchannel trans-
:ictions, both I/O ;ind IIILIA.

Grap bics
The gr;rphics subsystem on the Model 500 sys-
tem c:irtl provides integral 8-plane graphics with
hardware enhancements for improved frame buf-
fer performance. These enklncements increase
the performance of stipple, line drawing, ant1 copy
operations. The grapl~ics system consists of an SFB

ASIC:, 2MH video l U M , ant1 the Brooktree Bt459
IL4MI)A<: chip for sourcing the 8-plane RGB data.
The user can select either a 66-Hz or a 72-Hz moni-
tor refresh rate through a switch on the back of the
workstation. The graphics subsystem can draw
6I5K two-dimensional vectors per second and can
perform copy operations at 31.8MH/s.

76 I b l . .-I 1Vo. .Fpcc.ic~l LSSII~ 1992 Digital Techtrical Joun~al

The Design of the DEC 3000 A X P Sj/sle?ns, Tzijo High-perfimance Workstations

The graphics subsystem is available separately as
the T ~ ~ s o c h a n n e l HX graphics option card. In acldi-
tion, high-performance two-dimensional and three-
dimensional graphics accelerators are available
through the TURBOchannel bus for all systems.

Clock System
The input clock circuitry to the DECchip 21064 CPU
contains a differential 300-MHz oscillator (266 MHz
for the Model 400), which drives an alternating cur-
rent (AC) decoupling circuit and the CPU chip. The
CPU chip divides down the input clock frequency
by a factor of two ancl operates internally at 150
MHz. The DEC 3000 AXP Model 500 is capable of sup-
porting a 200-MHz CPU with a ~ ~ O - M H Z oscillator.

The entire system, with the exception of some
I/O devices, runs synchronously. The master system
clock is generated by the <:PU chip at a frequency of
25 MHz (22 MHz for the Model 400), resillting in
system clock cycles of 40-ns duration. This master
system clock is duplicated and distributed with
differential pseudo-emitter coupled logic (PECI.)
to maintain minimum skew and to improve noise

3.3-v rFd-T 25 MHz F G E L , DELAY

SYSCLK

300 MHZ

margin. The PECL clocks are converted to transistor-
transistor logic (nL) in the last stage of the clock
fan-out tree.

Two stages of system clock fan-out are used as
shown in Figure 9. Two MClOOEll l ECL clock buffer
chips (PECL input and output) provide 18 lorn.-
skew differential copies of the clock. Seventeen
@1~100~641 ECL-to-TTL converters (PECL input, T T L
output) are distributed throughoi~t the system and
I/O boards to provide more than 100 clock lines. All
clock lines are length matched to reduce skew, and
PECL wires are separated from TTL. Worst-case
SPICE simulation indicates a skew between typical
components such as PALS to be 1.5 11s. Actual skews
measisurecl in the lab are approximately 0.5 ns.

To give designers maximum flexibility, four
phases of the system clock are generated, one every
10 ns. Delay lines are used to generate an offset of 10
ns. By swapping the 11igI1 and low differential inputs
to selected ~ ~ 1 0 0 ~ 6 4 1 com7erters, the 20- and 30-
ns delayed clocks are generated. The master system
clock is delayed using delay lines so that the even-
tual system clock is synchronous with the (:PrJ chip.

TTL

I ib
Figure 9 Clock Distribution

LEVELS

Digital Tecbnical Journal Vo1. 4 No. 4 Special Issue 1992 77

PECL
LEVELS

C

-
0
1
2

ECL-TO-TTL 4
CONVERTER 5

1

ECL

0-

13

LEVELS BUFFER 5 2
CMOS-TO- CHIP ECL-TO-TTL - -
PECL CONVERTER -
CONVERSION -

I CLK

3 - -
-

6-
7-
8-

PECL

0

BUFFER
1

CHIP 10-NS
ECL-TO-TTL - DELAY CONVERTER

LINES

> PAL

> GA

> FLOP

0- -

-
2 - - DELAYED

CLK

2 - > PAL

6-

Alpha AXP Architecture and Systems

The goal in choosing semiconductor devices was to
select mature silicon technologies and then push
those technologies to the limit. Module- and chip-
level signal integrity was verified by correlating
silicon bench characterization data to device simu-
lation modules. CAD tools were used to perform
worst-case module timing and signal integrity sim-
ulation. This methodology minimized device costs,
reduced risks, and shortened time-to-market.

The nine ASICs in a DEC 3000 AXP workstation
use six unique 1.0-micrometer complementary
metal-oxide semiconductor (CMOS) designs. (See
Table 2.) Plastic quad flat packs (PQFP) are used as
the packaging technology to limit device cost.
Because the ASICs are 1/0 limited and the PQFPs do
not have ground planes, the effects of simultaneous
switching outputs (SSOs) were a concern. The
potential effects of ssos in CMOS output buffers
include corrupted data and undesirable oscil-
lations. Simulation and bench characterization
were used to quant@ the SSO effects, and in some
cases SSOs were reduced by staggering output
driver timing.

Although ASICS were chosen for the data path,
PALS were used for control logic due to their greater
flexibility and faster turnaround time. A total of 63
20XX (5 ns) and 22V10 (10 ns) PALS with 57 different
codes was used. Exhaustive system-level simula-
tion and bench characterizations were performed
to understand device behavior in the man)? differ-
ent loading scenarios.

The CPU board technology proved moderately
difficult for system-level assembly due to the large
distance between the fine-pitch (25 mil) compo-
nents. There are 19 fine-pitch components on the
14- by 16-inch CPU board, with a maxinlunl distance
of 14 inches between any two devices. With this
large distance, an aggressive, true positional diam-
eter (TPD) tolerance requirement of 6 mils was

implemented. TPD is defined as the total diameter
of permissible movement from a theoretical exact
location around the true position of the pads. This
TPD requirement ensures proper positional accu-
racy between the solder paste stencil apertures and
the surface-mount features. In addition, solder
mask between pads on the fine-pitch components
is used to reduce manufacturing defects.

To reduce power and cost, the slower DEC 3000
AXP Model 400 design substitutes CMOS technology
for the BiCMOS cache SRAMs and for many of the
bipolar P U .

Pawer and Packaging
The following fixed disk drive options are currently
available.

RZ25 3.5-inch half-height 4 2 6 1 ~ ~ disk drive

~ ~ 2 6 3.5-inch half-height 1050MB disk drive

The following removable media options are also
available.

R R D ~ ~ 5.25-inch half-height 6 0 0 ~ ~ CD-ROM drive

~ X 2 6 3.5-inch half-height 2.8MB floppy disk drive

TZKlO 5.25-inch half-height 525MB QIC tape
drive

T L Z O ~ 5.25-inch half-height 4 0 0 0 ~ 0 DAT drive

The Model 500 has a 480-watt output, off-line,
switching regulated power supply, which includes
a capacitor-input, automatic voltage-selecting cir-
cuit to permit worldwide operation without a volt-
age-select jumper for 120 or 240 volt (V) input. The
power supply provides five outputs to the load:
+3.3 V, +5.1 V-CPU, +5.1 V-turbo, +12.1 V, and - 12.1 't:

The power supply also provides power for three
external fans. Temperature-sensing fan speed con-
trol is provided to reduce system noise. The power

Table 2 ASlCs Used on the DEC 3000 AXP Workstations

Total Number Number of Number of Used Available
Chip of Pins Pins Used Signal Pins Gates Gates

SFB 184 184 150 21.6K 54 K

TC 1 84 182 144 12.1K 44K

SLICE 184 184 153 11.2K 44 K

ADDR 1 84 183 148 5.7K 44K

TCDS 120 120 94 26.5K 68K

IOCTL 160 160 126 11.2K 44K

78 Vol. 4 Ale 4 Special Issue 1992 Digital Techtricnl Journal

The Design of the DEC 3000 AXP Systems, Two High~erforrnnnce Workstc~tiorzs

supply senses tachometer outputs from the fans,
and when a fan fails, it shuts down and illuminates
an indicator.

The designers provided several debugging features,
including test points on the module, tristate out-
puts on ASICS and PALS, an on-board diagnostic
ROM, and programmable console ROkI. Since the
module is composed almost exclusively of surface-
mount devices, the designers specified as many vias
as possible for use as test points. Consequently, all
wires on the board have test points, which allows
for 100 percent short-circuit coverage and 94 per-
cent open-circuit coverage.

The DEC 3000 AXP workstation takes full advan-
tage of the serial ROM port on the DECchip 21064
CPU. This port allows code to be directly loaded
into the instruction cache. During prototype devel-
opment, designers loaded special debug programs
into the C:PU through this port. However, the real
innovation is in also wiring this port to the output
of a 64K by 8 EPROM on the module to provide 8
programs that are individually selectable by moving
a jumper on the module. On system reset, serial
program data from the selected EPROM output is

Table 3 System Performance

loaded into the instruction cache. 'These programs
include power-up code for loading the real console,
a miniconsole, and five tliagnostic programs for
testing memory and the graphics subsystem. Other
tests are available by replacing the EPROM. These
programs are of great value in the manufacturing
debug environment.

Two flash EPROMs contain the console code for
the system. On power-up, code in the serial ROM
loads the console code into memory and begins
executing it. Users can easily update the console
ROMs (for example, to provide PAL code enhatice-
ments) through a special utility booted off a CD-
RO&i connected to the system. Field service can
update the console code in the system remotely
through the Ethernet.

Conclusions
The primary goal of this project was to design a bal-
anced system that exhibited low memory latencj:
high memory bandwidth, and mini~nal <;pU-I/O
memory contention in a cost-effective manner.
Table 3 gives the measured peformancc numbers
for these characteristics. Except where noted, all
numbers are for sustained performance. Of particu-
lar note are the numbers showing that the CPU

DEC 3000 AXP
Model 500

-

DEC 3000 AXP
Model 400

CPU speed
B-cache size
B-cache read bandwidth
B-cache write bandwidth
Maximum main memory
CPU memory latency (average)
CPU memory read bandwith
CPU read with victim write

memory bandwidth
TURBOchannel peak bandwidth
I10 read bandwidth 8 bytes
I10 write bandwidth 8 bytes
Block I/O write bandwidth 32 bytes
Block I/O write bandwidth 32 bytes with CPU

read and victim write memory bandwidth
DMA read bandwidth 51 2 bytes

64 bytes
DMA write bandwidth 512 bytes

64 bytes
64-byte DMA write bandwith with

CPU reads from memory

150 MHz
51 2KB
480MB/s
320MB/s

1 GB
32 bytes11 80 ns
1 14MBIs
16OMB/s

133 MHz
51 2KB
426MBls
284MB/s

51 2MB
32 bytes1203 ns
101 MBIs
141 MBls

89MBIs
12MBIs
29MB/s
59MB/s
I/O=47MB/s
MEM=95MB/s

81 MBIs
51 M B/s
82MB/s
52MBIs
DMA=52MB/s
CPU=27MB/s

Digital Technical Journal V'l 4 No. 4 . 5 p e c r ~ 1 l l s s ~ ~ e 1992 79

Alpha AXP Architecture and Systems

receives significant memory bandwidth even in the
presence of heavy block VO and DIMA traffic.

Another goal of the project was to offer per-
formance that is cotnpetitive with RISC worksta-
tions available from other vendors. The benchmark
performance of any system derives from the inter-
dependent performance of the hardware, the oper-
ating system, and the compilers that generate the
application code. The benchmark perforn~ance
should improve as each element matures. Table 4
shows the performance of the DEC 3000 AXP sys-
tems on a selected set of benchmarks as of the
announcement dates of these products. Table 5
compares the performance of the DEC 3000 AXP
Model 500 to the published performance of several
currently available competitive systems.-'

Acknowledgments
The DEC 3000 AXP Model 500 design was a team
effort-more people were involved than can be
acknowledged in this space. Recognition is due to

Table 4 Benchmark Performance

those mrho contributed to the design of original
hardware: Dave Archer, Mark Baxter, John DeRosa,
Chris Gianos, Leon Hesch, Dave Laurello, Bob
McNarnara, Dick Miller, Rick Ruclman, Dave
Senerchia, Petr Spacek, Bob Stewart, Ned Utzig.
Debbie Vogt, and John Zurawski. The tight schedule
could not have been met without the special efforts
of the Power and Packaging, Console, Qualifi-
cation, Proto Management, and Technology and
Operating Systems Groups. The design team for the
DEC 3000 AXP Model 400 project is also recognized:
John Da): Jamie Pierce, Dennis Rainville, and Ken
Warcl. The thorough device evaluations by Rob
Zahora contributed significantly to the success of
the projects. We would also like to acknowleclge
the contributions by FXO personnel. The Electronic
Storage Development Group was responsible for
the design of the nEC 3000 AXP Model 500 memory
module. Significant efforts by the Maynard TIME,
Albuquerque, and Ayr Manufacturing Plants should
be recognized for delivering quality hardware

DEC 3000 AXP
Model 400

DEC 3000 AXP
Model 500

Clock (MHz)
SPECmark89
Dhrystones
V1.l (Dhrystones per second)
V2.1 (Dhrystones per second)
LINPACK 64-bit double precision
100 x 100 (MFLOPS)*
1000 x 1000 (MFLOPS)
Xl 1 PERF

Two-dimensional vectors per second
Two-dimensional pixels per second

Note: *Million floating-point operations per second

Table 5 Com~etitive Com~arison

DEC 3000 IBM RS6000 HP9000
Model 500 Model 580 Model 750

SPECmark89 121.5 126.2 86.6
Dhrystones
V1.l (Dhrystones per second) 257.7K nla 133.7K
V2.1 (Dhrystones per second) 281.2K nla 122.3K
LINPACK 64-bit double precision
100 x 100 (MFLOPS) 26.4 38.1 23.7
1000 x 1000 (MFLOPS) 79.9 84.0 nla

80 Vol. 4 No. 4 Special Issue 1 9 2 Digital Technical Journal

Tbe Design of the DEC -3000 A X P S]lster?zs, TLPO High performance Workstations

during the development ancl production phases; a
special thanks to Jirn Ersfelcl for his significant
efforts in this regard.

References

1. R. Sites, etl., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, Order
No. EY-L520E-DP, 1992).

2. D. Dobberpuhl CL al., "A 200-MHz 64-bit Dual-
issue CMOS Microprocessor," 1EEE Jout,lza/ oJ
Solid-Stc~te Circuits, vol. 27, no. 11 (November

1992) 1555-1567 and Digital TecI7~zical J o ~ i ~ ~ n a l ,
vol 4, no 4 (1992, this issue) 35-50

3. TI:RROchannel Specifications, Version 2C (Palo
Mto, CA: Digital Equipment Corporation,
TRI/ADD Program, Order NO. EK-TCDEV-DK-004,
September 1991).

4. Alpha AXP Workstation Family Performance
Brief-Openv>lS, Secontl Edition (Maynard:
Digital Ecluipment Corporation, Order No.
EB-N0102-51, November 20, 1992).

Digilul Techrrical Journal Vo1. 4 IVO. 4 Spccirtl Issue 1992 8 1

Barry A. Maskas
Stephen F. Shindon

Nicholas A. Warclgol

Design and Performance of the
DEC 4000 AXP Departmental
Server Computing Systems

DEC 4000 AXP systems demonstrate the highest performance and fu~zctionality
for Digital's 4000 series of departmental server systems. DEC 4000 AXP sjatems
are based on Digital's Alpha AXP architecttire and the IEEE's Futurebust profile B
stczndard. They provide sy~nnzetric multiprocessing perforwza~zce for Open EVJSRYP

and DEC OSF/I AXP operating systems in an office enz~ironment. The DEC 4000
AXP systems were designed to optimize the cost-perforinance ratio and to irzclticle
zqgmdability and expa~zdability. The systems combine the DECchip 21064 nzicro-
processol; submicron CIMU sea-of-gates techrzolog7~ ClVIOS memory and I/Oper.~ph-
erals technolog3,, a high-performance multiprocessing backplane interconnect, and
modular system design to supply the most advanced functionality forperformance-
driven applications.

The goal of the departmental server project was to
establish Digital's 4000 family as the inclustry's most
cost-effective and highest-performance depart-
mental server computing systems. To achieve this
goal, two clesign objectives were proposed for the
DEC 4000 AXP server. First, migration was necessary
from the VAX architecture, which is based on a com-
plex instruction set computer (CISC), to the Alpha
AXP architecture, which is basecl on a reduced
instruction set computer (RIsc). Second, for expan-
sion I/o in an upgradable office environment enclo-
sure, migration was necessary from the Q-bus
to the Futurebus+ I/O bus.' In addition, the new
system had to provide balance between processor
performance and I/O performance. maintaining
customer investments in VAX and MIPS app1ic;ltions
through support of OpenvMS AXP and DEC OSF/1
AXP operating systems was implicit in the archi-
tecture migration objective. Migration, porting,
and upgrade paths of various applications were
defined.

This paper focuses on the design of the DEC 4000
AXP hardware and firmware. It begins with a discus-
sion of the system architecture and the selection of
the system technology. The paper then details the
CPU, 1/0, memory and power subsystems. It con-
cludes with a performance summary.

System Overview
The DEC 4000 AXP system provides supercomputer
class performance at office system cost.? This com-
bination was achieved through architecture and
technology selections that provide optimized
tuniprocessor performance, low additional cost
symmetric multiprocessing (SMP), and balanced
I/O throughput. High I/O throughput was accom-
plished through a combination of integrated con-
trollers and a bridge to Futurebus+ expansion I/().

The system uses a modular, expandable, and
portable enclosure, as shown in Figure 1. With
current technologies, the system supports up to
2 gigabytes (GB) of dynamic random-access nlem-
ory (DRAM), 24GB of fixed mass storage, and 1 6 ~ ~
of removable mass storage. The DEC 4000 AXP

system is partitioned into the following modular
subsysten~s:

Enclosure (~ ~ 6 4 0 box)

CPU module (DECchip 21064 processor)

110 module

Memory modules

Mass storage compartments and storage device
assembly (brick)

82 Vi l . 4 IVO. 4 Special Issue 1992 Digital Techrrical JoztrtraI

Design and Perfor~nance of tbe DEC 4000 AXP Depclrtmeiztul Seri~cr Conzputirzg Sjntenzs

increased processing power provided by the
DECchip 21064 CI'11. Although processing power
was taking a revolutionary jump in performance
with no cost increase, disk and main memory tech-

Figure I DEC 4000 AXP S~a tem Enclos~tre

Futurebus+ Expansion I/O, Futurebus+ con-
troller module (FBE)

Power supply modules - universal line front-encl
unit (FEU)

- Power system controller (PSC)
- DC-DC converter unit 5.0 volt (V) (DC5)

- DC-DC converter unit 2.1 V, 3.3 V, 12.0 V (DC3)

Cooling subsystem

Centerplane module

Operator control panel (OCP)

Digital storage systems interface (DSSl) and small
computer systems interface (SCSI) termination
voltage converter (VTERM)

Figure 2 shows these subsystems in a functional
diagram. The subsystems are interconnected by a
serial control bus, which is based on Signetic's 12C
bus.+

System Architecture
From the beginning of the project, it was apparent
that the I/O subsystem had to be equal to the

nology were still o n an evolutionary cost ancl per-
formance curve. 'l'he nietrics that had been used
for V A ~ systems were difficult, if not impossible, to
meet through lineill- scaling within a fixed cost
bracket. These metrics were based on VAX-11/780
units of performance (VtlPs); they give main mem-
ory capacity in megabytes (MR)/VLIP, clisk-queuecl
I/O (($0) completions in QlOIs/\~lTP, and disk data
rate in MB/s/VUP. As an example, Table 1 gives
the metrics for ;I VAX 4000 ivlodel 300 scaled lin-
early to 125 wl's i~nd then nonlinearly scaled
for the DEC 4000 system implementation.
Performance rnoc.leling of the DECchip 21064 <:PlJ
suggested that 125 VllI's was a reasonable goal for
the DEC 4000 AXP.

Without an Alph;~ AXP architecture custo~ner
base, we did not know if these metrics woulcl scale
linearly with the processor performance. The
DECchip 21064 processor technology has the poten-
tial for attracting new classes of compute-intensive
applications that may make these metrics obsolete.
We therefore chose a nonlinear extrapolation of the
metrics for our initial implementation. By trading
off disk and memory capacity for I/O throughput
performance, we kept within established cost ant1
performance goals. The implementation metrics
were not limited by the architecture; further scal-
ing up of metrics was planned. Of the four metrics,
the disk capacity metric has the most growth
potential.

To ensure conipliance with both the Alpha &?<I'
architecture and the Futurebus+ specifications, the
system was partitioned as shown in Figure 2. The
bridge between tlie <:l'lJ subsystem ant1 the
Futurebus+ subsystem afforcletl maximum design
flexibility to accomrnotlate specification changes,
modularit): ant1 i~pgr;~dability The I/O module was
organized to balance the requirements between
CPU performance and I/O throughput rates. The
DEC 4000 AXP system implementation is based o n
open standards, with a six-slot Futurebus+ serving
as tlie expansion 1 / 0 bus ancl the system bus serving
to interconnect memory (:PUS, ant1 the I/o module.
The modularity of the system enables module swap
upgrades and configurability of the I/O subsystem
such that performance and f~unctionality may be
tailored to user recluirements. The modularity
aspects ofthe system design extend into the storage

Digital Technical Joumnl Vo1. 4 iVo. 4 Sprcirrl Issrbe 1992 83

Alpha AXP Architecture and Systems

CONNECTION
MODULE

CONTROL
PANEL

- - - - - - - - - - - - -
I CPU SUBSYSTEM

I
I
I
I
I
I
I
I

ASYNCHRONOUS SERIAL LlNE
(AUXILIARY WITH MODEM CONTROL)

I ASYNCHRONOUS SERIAL LINE -
I I

- -

(CONSOLE LINE)

I

FUTUREBUS+ 1 I10 EXPANSION 1 1 ;==========2
1 I MASS STORAGE COMPARTMENT I
I I

I 1 I DSSIISCSI 0 FIXED
I

161 MEDIA
DEVICE

110 I I
DSSIISCSI 1 FIXED

) MEDIA
DEVICE I i c DSSllSCSl2 4 0 b; >
DEVICE

I I n h, DSSIISCSI 3

1 . 8

I I
.

DEVICE U ' I '

DSSIISCS14 REMOVABLE > MEDIA >
DE\JICE

I I I

1 / 1 q ~EE::~A~A~~~F-+ DEVICE

ETHERNET PORT 1

ETHERNET PORT 0 TOETHERNET

r - - - - - - - I r - - - - - - - i
I POWERSUBSYSTEM I COOLING SUBSYSTEM I

I I

AC POWER
CABLE 1 - - - - - - - A

KEY:

fl EXTERNAL PORT CONNECTION

Figure 2 DEC 4000 AXP S'lstem F~~~zctioural Partitiotr

TO STORAGE
EXPANSION
DEVICES

84 Vol 4 ,Vo. 4 Specin1 Issue 1992 Digital Technical Journal

Design and Pevorrnance of the DEC 4000 AXP Departmental Server Comnpziting Systems

Table 1 Extrapolated VAX Metrics

VAX 4000 Scaled Scaled
Model 300 Linearly Nonlinearly
Metrics to 125 VUPs for DEC 4000 AXP

Memory capacity 60 MBIVUP 7.5 GB 2 GB

Disk capacity 1.65 GBIVUP 206 GB 100 GB

Disk QIO rate 49 QlO/s/VUP 6,125 QlOIs >4,000 QlOls

I10 data transfer rate 1.4 MBIslVUP 175 MBIs 210 MBIs

compartment where each brick has a dedicated
controller and power converter. Support for DSSI,
SCSI, and high-speed 10MB/s SCSI provides maxi-
mum flexibility in the storage compartment. The
modular mass storage compartments enable user
optimization for bulk storage, fast access, or both.

The cost of SIMP was a key issue initially, since
Digital's SMP systems were considerecl high-end sys-
tems. Pulling high-end functionality into lower-
cost systems through architecture and technology
selection was managed by evaluation of perfor-
mance and cost through trial designs and software
breadboarding. Several tlesigns of a CPU module
were proposed, including various organizations of
one or two DECchip 21064 CPUs per module inter-
faced to I/O and memory subsystems. Optimization
of complexity, parts cost, performance, and power
density resulted in a CPU module with one proces-
sor that could operate in either of two CPU slots on
the centerplane. Consequently, a system bus had to
be developed that coulcl be interfaced by proces-
sors, memory, ant1 I/O subsystems in support of the
shared-memory architecture.

As development of the DECchip 21064 processor
progressed, hardware engineers and chip designers
established a prioritized list of design goals for the
system bus as follows:

1. Provide ;I low-latency response to the CPLl's
secontl-level cache-miss transactions and I/O
moclule read transactions without pending
transactions.

2. Provide a low-cost shared-memory bus, based
on the cache coherence protocol, that woulcl
facilitate upgrades to faster CPU modules. This
provision implied a simple protocol, synchro-
nous timing, and the use of transistor-transistor
logic OTL) levels rather than special electrical
interfaces.

3. Provide I/O bandwidth enabling local VO to
operate at 25 megabytes per second (MB/s) and
the Futurebus+ to operate at 100MB/s.

4. Provide scalable memory banclwidth, based on
protocol timing of 25 nanoseconds (ns) per
cycle, which scales with improvements in DRAM
and static memory (S W ~) access times.

5. Use module and connector technology consis-
tent with Futurebus+ specifications.

The cache coherence protocol of the system bus
is designed to support the Alpha t\XP architecture
and provide each CPU and the I/O bus with a consis-
tent view of shared memory. To satisfy the band-
width and latency requirements of the processor's
instruction issue rate, the processor's second-level
cache size, 128-bit access width, and 32-byte block
size were optimized to avoid bandwidth limits to
performance. The block size and access width were
made consistent with the system bus, which satis-
fied the VO throughpilt metrics. Consitleration was
given to support of a 64-byte block on the 128-bit-
wide bus. Such support would have resulted in a 17
percent larger miss penalty ant1 higher average
memory access time for the CPU and I/(), more stor-
age and control complexity, and hence higher cost.

Simplicity of the bus protocol was achieved by
limiting the number and variations of transactions
to four types-read, write, exchange, and null. The
exchange transaction enables the second-level
cache of the CPU to exchange data, that is, to per-
form a victim write to memory at the same time as
the replacement read transaction. This avoided the
coherence complexity associated with a lingering
victim block after the replacement read transaction
completed.

To address the issue of bandwidth requirements
o17er time as faster processors become available, an
estimate of 40 percent bus utilization for each pro-
cessor with a l M B second-level cache was obtained
from trace-based performance models. The utiliza-
tion was shown to be reduced by using a 4MB sec-
ond-level cache or by using larger caches on the
DECchip 21064 chip. This approach was reserved as
a means to support future CPU upgrades.

Digital Technical Journal Vol 4 iVo 4 S j ~ e c r ~ ~ l Issue 1992

Alpha AXP Architecture and Systems

Figure 3 is a block diagram of the length-limited
seven-slot synchronous system bus. To achieve
tight motlule-to-modulc clock skew control for this
single-phase clock scheme, clocks are radially dis-
tributed from the CPU 1 module to the seven slots.
This avoided the added cost of a separate module
dedicated for radial clock clistribution, and enabled
the bus arbitration circuitry to be integrated onto
the CPlJ 1 module.

Arbitration of the two CPU modules ancl the I/O
module for the system bus is centralized on the (;ptJ
1 motlule. To satisfy the I/O motlule's latency
requirements, the arbitration priority allows the
I/O nloclule to interleave with each CPU module. In
the absence of other requests, a module may utilize
the system bus continnously. Shared-memory state
evaluations from the bus adclresses during continu-
ous bus utilization causes CPU "starvation" from
the seconcl-level cache. To avoid CPU starvation
from the second-level cache, the arbitration con-
troller creates one free cycle after three consecu-
tive bus transactions.

Technology Selection
The primary force behind technology selection was
to realize the f ~ ~ l l performance potential of the
DECchip 21064 microprocessor with a balanced I / O
subsystem, weighted by cost minimization, sched-
ule goals, and operation in an office environment.
SPICE analysis was used to evaluate various module
and semiconductor technologies. A technology
tlemonstration module was designed ancl fabri-
catecl to correlate the SPICE models and to validate
possible technology. Basetl on clemonstrations, the
project proceeded with analytical data supported
by empirical data.

The 25-watt DECchip 21064 c:PU was designed in
a 3.3-V, 0.75-micrometer compleincntary metal-
oxide semiconductor (CMOS) technology and was
packaged in a 43-pin pin grid array (PGA). The CPU
was the only given technology in the system. The
power supply, air cooling, and logical and electrical
CPU chip interfacing aspects of the CPU module and
system bus designs evolved from the DECchip 21064
specifications. System design attention focused on
powering ancl cooling the Cr-'rJ chip. Compliance
with power and cooling specifications was deter-
mined to be achievable through conventional volt-
age regulation and decoupling teclino1og)r and
conventional fan technology.

To adtlress system integrity and reliability
requirements, all data transfer interconnects and

storage devices had to be protected. Tlie DECchip
21064 CPU's data bus and secontl-level cache are
lo~lgword error detection and correction (EDC) pro-
tected. The system bus is longword parity pro-
tected. The memory subsystem has 280-bit-wide
EDC-protected memory arrays. The Futurebus+ is
longword parity protected.

System Bus Clocking
To establish the 25-11s bus cycle time, analog models
of the interconnect were developed and analyzed
for 5 0-V CMOS transceivers. Assuming an edge-to-
edge data transfer scheme, the modelers evaluated
the timing from a driver transition to its settled sig-
nal, including clock input to driver delay, receiver
setup time, and module-to-module clock skew. The
cycle time and the data transfer width were com-
bined to determine compliance with low latency
and bandwidth. Further analysis revealed that the
second-level cache access timing was critical for
performing shared-memory state look~rps from the
bus. One solution to this problem was to store
duplicate tag values of the second-level cache. This
was evaluated and found to be too expensive to
implement. However, the stucly did show that a
duplicate tag store of the CPU's primary data cache
had a performance advantage and was affordable if
implemented in the CPU module's bus interface unit
(BIu) chips.

To evaluate second-level cache access timing,
a survey of SRAM access times, density, availabil-
ity, and cost was taken. Results showed that a IMB
cache using 12-11s access time S W s was optimal.
With a 12-11s access time SRAM, the critical timing
could be managed through the design of the BlU
chips. The SRAM survey also showed that a ~ M B
second-level cache could be planned as a follow-on
boost to performance, as SRAII,~ prices declined.
Trace-based performance simulations proved that
these cache sizes satisfied performance goals of 125
WPs. This clock rate required a bus stall mecha-
nism to accommodate current DRAII access times
in the memory subsystem, which will enable future
enhancements as access times are reduced.

The system bus clocks are distributed as positive
emitter-coupled level (PECL) differential signals;
four single-phase clocks are available to each slot.
Each module receives, terminates, and capacitively
couples the clock signals into noninverting and
inverting PECL-to-CMOS level converters to provide
four edges per 25-ns clock cycle. System bus hand-
shake and data transfers occur from clock edge to

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journrrl

Fi'qure 3 DEC 4000 AXP Sj~stenz Bus

Alpha AXP Architecture and Systems

clock edge ancl utilize one of two system bus
clocks. A custom clock chip was implemented to
provide process, voltage, temperature, and load
(PVTL) reg~llation to the pair of application-specific
integrated circuit (ASIC) chips that compose each
BKl. The clock chip achieves module-to-module
skews of less than 1 ns.

Our search for a clock repeater chip that coulcl
minimize module-to-module skew and chip-to-
chip skew on a module, and yet directly drive high
fan-out ASIC chips with CMOS-level clocks, led us
to Digital's Semiconcluctor Operations Group. Such
a chip was in design; however, it was tailored
for use at the DEC 6000 system bus frequency.
The Semiconductor Operations Group agreed to
change the chip to accommoclate the DE(: 4000 MI'
system bus frequency.

I /O Bus Technology
Because of technology obsolescelice, 1 / 0 buses
have a 21-year life cycle divideel into 3 phases.
During the first 7 years of acceptance, peripherals
and applications are developed anel supportecl.
Sustained acceptance takes holcl in the next 7 years
as peripherals and applications are enhanced. In
the last 7 years, a phase out or rnigmtion of periph-
erals ant1 applications occurs. For the DEC 4000 AXP
systems, our first priority was selection of an open
expansion I/O bus in the first third of its life cycle.
In addition, we wanted to select an open IEEE stan-
dard bus that woulcl attract third-party developers
to provide I/<) solutions to customers. The follow-
ing prioritized criteria were established for the
selection of a new 1/0 bus:

1. Open bus that is an accepted industry standard
in the beginning third of its life cycle

2. Compatibility with Alpha hXP architecture

3. Minimum data rate of 100MB/s

4. Scalable features that are perfor~nance-exten-
bible through architecture (e.g., bus width),
and/or t h r o ~ ~ g h technology improvements
(e.g., semiconductor device performance and
integration)

5. Nlinimum 64-bit data path

6. Support of bridges to other I/O buses

7. Minim;~l interoperability problenls between
devices from different venclors

After examination of several I/O buses that satis-
fied these criteria, the Futi~rebus+ was selected. At
the time of our investigation, however, the
Futurebus+ specification was in development by
the IEEE and a wide range of interest was evident
throughout Lhe industry By providing the right sup-
port to the Futurebus+ committee, Digital was in a
position to help stabilize and bring the specifica-
tion to con-2lctjon.

A DigiLal team represented the project's interests
on the IEEE P896.2 Spccification Committee and
proposecl standards as the DEC 4000 AXP system
design evolvecl. This team achiewd its goal by help-
ing the IEEE Committee define a profile that
enabled the Futurebus+ to operate as a high-perfor-
mance I/O expansion bus. To mitigate schedule
impact due to instability of the Futurebus+ specifi-
cations, the I/O module's Futurebus+ interface was
architected to accommodate changes through a
more discrete, rather than a highly integrated
implementation Compliance with thr I;uturebus+
specifications influenced most mechanical aspects
of the module compartment design, as is eviclent
from the centerplane, card cage, rnodu le construc-
tion and size, and power supply voltage specifica-
tions and implementations.

Module Technology
1Module technology was selected to maximize sig-
lyal density w-ithin the fewest layers with minimal
crosstalk and to provide a uniform signal distribu-
tion impedance for any module layer. Physical-to-
electrical modcling tools were used to create SPICE
models of connectors, chip packages, power
planes, signal lincs of various lengths and
impedances (based 011 the nlodule construction
technology), ant1 multiplc signal lines. Uecause the
placement of components affects signal perfor-
mance anel quality and system performance (e.g., in
the sccond-lev(:' processor cache), moclule floor
plans and trial layouts wcrr. cornpletecl. A moclule
layout tool was used to ensure procli~cibility com-
pliance wit11 manufacn~ring standarcls as well as sig-
nal routing constraints. The moclule layout process
was iterative. As sections of the module routing
were completed. SPICE moctels of the etch were
extracteel. These ext~-actecl moclcls were connectecl
to S P I G models of chip elrivers and run. Analysis
was completed and reqi~irecl changes were imple-
mented and a~lalyzed again. The process continuecl
until the optimal specification conformance was
achieved for all signals.

88 Vnt. 4 >Vo. 4 Spect'ul Issue I992 Dtgital Techrrical Journal

Desiqlz and Perfor~nnnce of the DEC 4000 A X P Deprrt~nental Seri~er Co~nput ing Sjntenzs

Motlule size was estimated basecl on system h~nc -
tionnlity requirements and a stutly of tlie size and
power recli~irements of that fi~nctionality. To simpli-
fy the enclos~~re design, module size specifications
are consistent with the Futurebus+ motlule specifi-
cations. To achieve lower system costs, the proces-
sor, memory, and I/o modules arc basecl on the
same ten-layer controlled impedance construction.

Chip engineers avoitled the specification of fine-
pitch surface-mount chips when possible. Compo-
nent choices and module layouts were completed
with ;I view toward ma~iufactur;tbility. Cost 2111alysis
showetl th:~t mixetl, tlouble-sitletl surface-mount
components and through-hole components had
insignificant aclded cost when fusecl tin-lead mod-
ule technology ancl wet-film solder-mask technol-
ogy were i~setl. The required layer constri~ction and
impetlances of 45, 70, and 100 ohms coulcl easily be
achieved within cost goals through this technology.
Solder-mask over bare copper technology was also
ev;~lu;~tetl to determine if fine-pitch surfi~ce-mount
components achieved higher yield througli the sol-
der reflow process. This evaluation showed fused
tin-le;~tl technology was better suited, based on
defect densities, for the manufacturing process.
Consequently, all DEC 4000 U P modules are imple-
mented with fused tin-lead module technology ;~nd
wet-film solder-mask technology

Semiconductor Technology
As ;I result of a performance, cost, power, ancl mod-
ule real est;ite study, CMOS technology was used
extensively. The custo~ii-tlesignecl I'VTI. clock chips
were developed in 1.0-micrometer (:MOS technol-
ogy to supply CMOS-level signals for driving directly
into the HllJ chips. Each module's RIlJ used the same
0.8-micrometer ASIC technology ant1 die size to
closely manage clock skews. Each system bus mod-
~ ~ l e ' s 1%11l is implemented by two iclentical chips
operatetl in an even ant1 an odd slice rnotle. Chip
clesignrrs invented a rnetliotl for accepting 5.0-V
sign;ils to be driven into their 3.3-V biased IIECchip
21064 (:1'IJ. Consequently, the selection ;~nd irnple-
ment;~tion of 5.0-V ASIC: technology were easier.
ASI(: vendor selection was based on (1) perfor-
mance of trial tlesigns and timing analysis of parity
and El)<: trees, (2) SPICE analysis of 1/0 drivers with
direct-drive input clock cells, and (3) a layout abil-
ity to si~pport wide clock trunks ant1 distributed
clock buffering to effect low skews.

All memory chips on the CPr! moclule, memory
module, and I/() module were implemented in

submicron CMOS or Hi(:i\.IOS technolog)! All the I/O
and power subsystem controller chips such as the
SCSI ancl DSSl controllers, Ethernet controllers,
serial line interfaces, and analog-to-digital convert-
ers were implemented in CMOS technology.

Speed or high drive is critical in radial clock dis-
tribution, Futurebus+ interfacing, or memory mod-
ule address and control signal fan-out. In these
special cases, lOOK ECL operated in positive motle
(PECL) or BII'OLAR technology was ernployeel.

S y s t ~ n . Bus Protocol and Technology
The cache coherence protocol for the shared-mem-
ory system bus is based on a scheme in which each
cache that has a copy of the data from memory also
has a copy of the information about it. All cache
controllers monitor or snoop on the bus to deter-
mine whether or not they have a copy of tlie shared
block. Hence tlie system bus protocol is referred to
as a snooping protocol, and the system bus is
referred to as a snooping bus:'

The 128-bit-wide synchronous system bus pro-
vides a write update 5-state snooping protocol for
write-back cache-coherent 32-byte block read and
write transactions to system memory address space.
Each module uses a 192-pin signal connector-the
same connector used by Futurebus+ modules. Each
module interfaces between the system bus and its
back port with two 299-pin PGA packages contain-
ing CpIOS ASIC chips, which implement the bus pro-
tocol. A total of 157 signals ant1 35 reference
connections implement the system bus in the 192-
pin connector (6 interrupt and error, 8 clock and
initialization, 128 command and address or data, 4
parity, 11 protocol). All control/status registers
(CSRs) are visible from the bus to simplify the data
paths as well as to support SNIP.

To sinipldy the snooping protocol, only full
block transactions are supported; masking or sub-
block transactions occur in each module's BIU.
Transactions are described from the perspectives
of a commandel; a responder, and a bystander. The
address space is partitioned into CSR space that can-
not be cached, memory space that can be cached,
and secondary VO space for the Futurebus+ and I/O
module devices. Seconclary 1/0 space is accessible
through an 1/0 module mailbox transaction, which
pends or retries the system bus when access to very
slow I/O controller registers conflicts with direct
memory access (Div1.A) traffic. 'This software-
assistecl procedure also provides masked byte read
and write access to VO devices as well as a standard

Uigitrrl 7tcbnicnl Jorrrnal).%I. 4 IVO. 4 .Speciul Isare 1992 89

Alpha kW Architecture and Systems

software interface. The use of 32-bit peripheral
I > I & ~ devices :~voiclecl tlie need to imple~nent harcl-
ware acltlress tr;insl;itors. Tlie software drivers pro-
vide physical addresses; hence mapping registers
are not necess:lr):

The I/O mod~lle drives two device-related inter-
rupt signals that are received by both CPI. modules
clue to SMI' requirements. One interrupt is associ-
;ited with tlie Fut~~rebus+, ;lnd the other is associated
wit11 :ill tlie device control.lers local to the I/O mocl-
ule. Tlie 1/0 niodule 1,rovicles a silo register of
Futurebus+ interrupt pointers and a device request
register of local clevice interrupt requests. CPU 1 or
CPU 2 is the clesignated interrupt dispatcher mod-
ule. I'rivileged architecture library software sub-
routines, Icnown ;IS I'Al.cocle, run 01-1 the prin1a1-y
CPIJ module ancl re;id tlie device interrupt register
or Futurebus+ interrupt register to cletermine
which local devices or which Futurebus+ device
handlers are to be dispatched.

The enclosure, power, and cooling subsystems
;Ire capable of interrupting both processors when
immecliate attention js required. A CP1J can obtain
information fro111 s~~bsystenis sliow~i in Figure 2
through tlie serial control bus. The serial control
bus enables highly reli;~ble conirnunications
between field replaceable subsystems. [luring
power-up, it is used to obtain configuration infor-
mation. It is also used as an errol--logging channel
and as a me;lns to communicate between the CPlJ

subsystem, power subsystem, and the OCP. Tlie
nonvolatile RAhl (NVKAM) chip iniplementecl 011

each module :lllovled the firni\vare to use software
switches to configure the system. Tlie software
switches avoidecl the need for hardware switches
and jumpers, fielcl replaceable unit identification
tags. and handwritten error logs. As ;i result, the
h;irtlware system is fully configured tllrough
firmw;lre, ;i t i t l fault information travels with tlie
fielcl repl:ice;lble unit.

The five-state c;~clic coherence protocol assumes
that tlie processor's primary write-through cache is
maintained as ;I subset of the seconcl-levcl write-
back cache. The slr: on the CPrI module enforces
this subset policy to simplify the simulation verifi-
cation process. Wjtl-~out it, tlie number of verifica-
tion cases woulcl h;ivc been escessive, difficult
to exlxess, :~ntl clifficult to simi~l:~te anel check for
correctness. Tlie l/O module implements an invali-
date-on-write policy, such that a block it has read
from memory will be invalicl;lted and then re-read
if a <:PI1 writes to the block. The I/O module parti-

cipates in the coherency policy by signs~ling slis~red
status to a CPU reacl of :I block it lias bufksecl. The
five states of the cache coherence protocol ;ire
given in Table 2.

The cache coherence protocol etisures that only
one CPU rnoclule can return a dirty response. The
dirty response obligates the responding <:I'li mod-
ule to supply the read clata to the bus, since the
memory copy is stale and the memory controller
aborts the return of tlie re:icl data 1311s writes ;ilw;lys
clear the dirty bit of the seferencecl c:~clie block in
both the comrnantler niodule ;~ncl tlie module that
takes the update.

A CPlJ hiu two options when a bus transaction is
a write and the block is found to be valid in its
cache. A CPLJ either invalitlates tlie block or accepts
the blocl< and upd:ites its copy, keeping tlie block
valicl. This decision is basecl on the state o f tlie pri-
mary cache's duplicate tag slore iuid tlie state of the
second-level cache tag store. Acceptance o C the
transactiol~ into the second-level cache on a tag

Table 2 Five States of the Cache
Coherence Protocol

State

1 NOT VALlD
2 VALlD

NOT SHARED
NOT DIRTY

3 VALlD
NOT SHARED
DIRTY

4 VALlD
SHARED
NOT DIRTY

5 VALlD
SHARED
Dl RTY

Remarks
- - -

Block is invalid.
Valid for read or write, this
cached block contains the only
copy of the block; the copy is
identical to the memory copy.
Valid for read or write, this
cached block contains the
only cached copy of the block.
Thecachedcopyhasbeen
modified more recently than
the memory copy.
Block is valid for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the memory
copy is identical.
Block is valid for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the contents
have been modified more
recently than the memory copy.
This is a transitional state that
occurs when arbitrating for the
bus to broadcast a write or
when an unshared dirty block is
returned to a bus read
transaction.

Design and Perfirrnai?ce of the DEC

m;ltcli is c;tlled conditional update. When the com-
mander is the I/O module, the write is accepted by a
CPtr only if the block is valid. Depending on the
state of the primary data cache tluplicate tag store,
two types of hit responses can be sent to an 1/0

commander-I/O update always ancl VO conditional
update. In the case of either I/O or CPU commander
writes, if the valid block is in the primary data
c:tclie, the block is invalidated. The two acceptance
modes of I/() writes by a CPIi are programmable
because ilccepting writes uses approximately 50
percent more second-level cache bandwidth than
invalidating writes.

To implement the cache coherence protocol, the
<:l'tJ motlulc's second-level cache stores informa-
tion as shown in Figure 4 for each 32-byte cache
block.

Figure 5 shows the cycle timing and transaction
sequences of the system bus. Write transactions
occur in six clock cycles. Read, null, ant1 exch;u~ige
transactions occur in seven clock cycles. A null
tr;tnsaction enables a commander to nullify the
active transaction request or to acquire the bus and
avoid resource contention, without motltying
memory. The arbitration controller monitors the
bits transaction type and follows the transactions,
cycle by cycle, to know when to rearbitr~te and sig-
nal a new atltlress and command cycle. Atlditional
cycles can be added by stalling in cycle 2 or cycle 4.
Transactions begin when the arbitration controller
grants the use of the CPrJ motlule's second-level

4000 AXP Depnrt7neiztal Seriier Corlz,!!t~ting Systenzs

caches to a commander module. The controller
then signals the start of the adclress and commantl
cycle 0 (CA). The commander drives a valid address,
command, and parity (CAI)) in cycle I . A comman-
der may stall in cycle 2 before supplying write data
(W) in cycles 2 and 3.

Read data (RD) is received in cycles 5 and 6. The
addressed responder confirms the clata cycles by
asserting the acknowledge signal two cycles later.
The commancler checks for the acknowledgment
and, regardless of the presence or absence, com-
pletes the number of cycles specified for the trans-
action. Snooping protocol results are made
available half way through cycle 3. As shown in
Figure 5, the protocol timing from valid address to
response of two cyclcs is critical. A responder or
bystander may stall any transaction in cycle 4 by
asserting a stall signal in cycle 3. The bus stalls ;IS

long as the stall signal is assertecl. Arbitration is
overlappecl with the last cycle of a transaction, such
that tristate conflict is avoiclcd.

A 29-bit lock address register provides a lock
mechanism per cache block to assist with software
synchronization operations. The lock address regis-
ter is managetl by each CP1J as it executes load from
memory to register locket1 longword or quadwortl
(LDx-L) and store register to memory conditional
longword or quadwortl (STx-C) instruction^.^ The
lock adtlress register holds an address and a valid
bit, which are compared with all bus transaction
addresses. The valid bit is cleared by bus writes to a

TAG conslsts of 9 physical address blts with a 4MB second-level cache, or 11 physical
address blts with a 1 MB second-level cache.

TAG PARITY (TP) bit indicates even parity

TAG

VALID (V) b ~ t lndlcates whether or not th~s block can be considered for a response lo the
snoop transaction

V Tp

SHARED (S) b11 indicales whether or not this block may also be resident in another
module's cache.

DIRTY (D) bit indicates whether or not this block has been modified by thls processor

S
LW4

CONTROL PARITY (CP) bit indicates even parity.

CK5

DATA (LW) b~ts organized as two 128-b~t-wide half blocks; each 128-bit block is composed
of tour longwords.

CK4

Digital Tecbnicnl Jotrnrc11 W)l. 4 ~VO. 4 S/)c.cial lss~lr 19%

D
LW5 LW6

CHECK (CKO through CK7) bits detect errors for each longword.

Cp

Figur'e 4 Second-level Cache Structure

LWO
CK6

CK1 CKO
LW7

LWI LW2
CK7

CK2 LW3 CK3

Alpha AXP Architecture and Systems

WRITE
CYCLE

ARBITRATE
COMMAND
ADDRESS
ACKNOWLEDGE
SHARED
DATA

READ, NULL,
EXCHANGE CYCLE

ARBITRATE
COMMAND
ADDRESS
ACKNOWLEDGE
SHAREDJDIRTY
DATA

KEY:

6

GRANT

CA COMMAND
CAD ADDRESS
WD WRITE DATA

0

C A
CAD

1

CAD

5

GRANT

RD READ DATA

Figure 5 System Bus Tlwizs~ictio~z Sequetzces

2

WDI

0

C A
CAD

2

WDl

~llatcbing address or by CI-'lJ execution of STx-C
instructions. The register is loaded and validated by
a CPll's LDx-L instruction. This hardware and soft-
ware construct, as ;i means of memory synchroniza-
tion, statistically avoids the known problellls with
exclusionary locking schemes. Exclusionar~7 lock-
ing schemes create resource deatllocks, transaction
ordering issues, and performance degraclation ;is
side effects of the exclusion. This construct allows
a processor to continue program execution while
harclware provitles the branch conditions. The lock
f;tils only when it loses the race on a write collision
t o the locked block.

A bus transaction address that hits on a valid lock
address register must return a snooping protocol
shared response, even if the block is not valid in the
primary anti seconcl-level caches. The shared
response forces writes to the block to be broadc:tst,
and STx-C instructions to function correctly. The
NULL transaction is issued when a STx-C write is
abortetl clue to the failure of the Jock to avoici
system memory modification.

1

CAD

3

CA
CAD
WD2

4

WD1

CPU Module Sz~bsystems
Each <:PU modiile consists of a number of subsys-
telns as shown in Figure 3. The CPU module's sub-
systems are

3

CA
CAD
WD2

1. DE<:chip 21064 processor

2. l M B or 4bIB physically addressed write-back
secontl-level cache

4

WDI

0

C A

5

WD2

RDI

3. BIlJ chips containing write merge buffers, a
duplicate tag store of the processor's 8-kilobyte
(KR) data cache for invalidate filtering and write
update policy decisions, an arbitration con-
troller, a system bus interface, an address lock
register, and CsRs

6

GRANT

RD2

4. System bus and processor clock genera-
tors, clock and voltage detectors, and clock
tlistributors

5

GRANT

WD2

5. System bus reset control

6 . 8 K R serial KOkI for power-up software loading
of the processor

0

C A

7 Microcontroller (MC) with serial system bus
interface allcl serial line unit for communication
with the processor's serial line interface

I

8. i\WhM. chip on the serial control bus

Sincc a (:PU nlodule bas to operate in either CPU 1
or CPlJ 2 rnocle, the CPU 2 connector was designed
to provide an identification code that enables or dis-
ables the clock drivers and configures the CSRs'

Vo1. 4 iVo. 4 .Specic~l Iss~te /992 Digitul Technical Jounzul

Design and Perfir.r?~unce (J lhe 111:

atldress space and CPU identification code. As a
result, arbitration and other slot-depentlent func-
tions are enabled or disabled when power is applied.

A re1i;ibility sti~dy of a parity-protected second-
lcvel cache showed that the SWMs contributed 44.7
percent of tlie failure rate. By implementing El)(: on
the data S~W&I portion of the secontl-le\iel cache, a
tenfold improvement in per processor me;ln time to
failure was achieved. Consequently, six Slli\M chips
per processor were implemented to ensure high
reliabilit)!

The niultiplcxecl interface to tlie second-level
cache of the CPU module allows tlie processor chip
ant1 tlie system bus equal ant1 sh;~retl access to the
second-level cache. To achieve low-latency memory
access, both the microprocessor and the system
bus operate the second-level caclie ;is fast ;is pos-
sible based on their clocks. Hence the seconcl-
level cache is multiplexed, and ownership deh~ults
to the microprocessor. When the system bus
requires access, ownership is transferred cluickly
with tlat;i Slii\l\l parallelism while the t;ig SlbiMs are
monitored.

Many of the CPLJ module subsyste~ns are found in
the interkice gate array called tlie < ; A chip. Two of
these chips working in tandem implement the
and tlie secontl-level caclie controller. Write merge
buffers combine masked write data from the micro-
processor with the cache block as p;irt of :11i allo-
cate-on-write policy. Since the microprocessor has
write buffers that perform packing, fill1 block write
arouncl the second-level cache w;rs implementetl ;is
an exception to the allocate-on-nrrite policy. To
meet schedule atid cost goals with few personnel,
one complex gate array was designecl r;ither t11;ln
sever;~l lower-complexity gate arrays. Hence the
data path and the control functions were parti-
tioned such that the microprocessor could operate
as an even or odtl member of ;I pair on the <:IJ[I 1 o r
the <:lJU 2 niodule.

Tlie system bus clock design is somewhat intle-
pentlent of the processor clock, but the r;ilige is
restricted clue to the implementation of the snoop-
ing protocol timing, the multiplexed us;Ige o f tlie
secontl-level caclie, ant1 the CPrJ interk~ce Ii;~ntl-
shake and data timing. Therefore, the system bus
cycle time is optimized to provide the rn;~xin~um
performance regardless of the processor speed.
Likewise, tlie processor's cycle time is optimized to
provide maximum performance reg;~rdless of the
bus speed. Considerable eff'ort resultetl in a second-
level caclic ;~cccss time that enablecl tlie (:IJ~I's reat1

or write accesses to complete in four internal clock
cycles, calletl the four-tick loop timing of the sec-
ond-level cache. To realize hoth optimizations, tlie
CPlJ's synchronous interface is supportecl by an
asynchronous interkrce in tlie DllJ. \fiarious timing
relationships between tlie processor and the
system bus are control lecl by programmable timing
controls in the IlllJ chips.

To achieve the tight, four-tick timing of the sec-
ond-level cache, clouble-sided surface-nlount tech-
nologjrm7as used to place the SIL4M chips physically
close together. This minimized address wire length
and the number of tiiodule vias; hence tlie driver
was loaded effectively This c;~reful placement was
combined with the tlesign of a custom CMOS
address fan-out buffer ;Inel ~iii~ltiplexer chip (<;I\H)
to achieve hst propagation delays. The CAB chip
was implementeel in the same <:MOS process ;IS tlie
DECchip 21064 (:I)[! to obt;lin the desired through-
put clelay. Combiliecl with 12-11s S W M chips, tlie <:At%

chip enabled optimiz;~tion ol'the (;rrl's second-level
caclie timing 21s well as the system bus snooping
protocol response timing.

I/O Module, Mass Storage, and
Expansion I/O Subsystems
The I/O moclule co~isists of a local I/O subsystem
that interfaces to the common I/() core ancl a bridge
to the Futi~rebus+ for I / () options. By incorporating
modularity into the tlesign, a bro;itl range of appli-
cations could be supported. To satisfy the tlisk per-
formance and bulk storage ~iietrics given in Table 1,
mass storage was configured based on applications
requirements. Elst access times of 3.5-inch tlisks
and multiple spindles were selectetl for applica-
tions with results in QlO/s. Tlie density of 5.25-inch
disks was selected for ;~pplications requiring more
storage space. As intlic;~tetl in T~ble 1. the metrics of
greater than 4,000 QlO/s tletermined the perfor-
malice requirrrnents of tlie storage colilpartrnent.
Each of the four disk storage com],artn~ents in the
system enclosi~re can holcl a till I-size 5.25-inch tlisk
i f cost-effective bulk storage is needed. If the neetl
is for the mnximuni numI>er of I/Os per secontl,
each compartment can holtl 1113 to four 3.5-inch
tlisks in a mini array.

Co~ifigurations of 5.5-inch disks in a brick enable
optimization of throughput tlirough parallelism
techniques such ;IS stripe sets and redundant arr;q7
of inexpensive tlisks (1b111)) sets. Tlie brick con-
figuration also enables hult tolerance, at the
expense of tIiroi~glil>i~t, 13)' 11si11g sliatlow sets. With

Digital Technical Jorirtral Vol. 4 iVo. 4 Specicrl l s s~ lc I991 9.5

Npha AXP Architecture and Systems

this technique, each storage compartment is inter-
faced to the system through a separate built-in con-
troller. The controller is capable of running in
either DSSI mode for high availability storage in
cluster connections with other OpenVMS U P or
VMS systems, or in SCSI mode for local disk storage
available from many different vendors. For applica-
tions in which a disk volume is striped across multi-
ple drives that are in different storage cavities, the
benefit from the parallel seek operations of the
drives combines with the parallel data transfers
provided by the multiple bus interfaces. The main
memory capacity of the system allows for disk
caching or RAM disks to be created, and the process-
ing power of the system can be applied to managing
the multiple disk drives as a RAID array. With cur-
rent technology, maximum fixed storage is 8GB
with 5.25-inch disks ancl 2 4 G ~ with 3.5-inch disks. If
the built-in storage system is inadequate, connec-
tion to an external solution can occur through the
Futurebus+.

Tlie BlU is implemented by two 299-pin ASIC
chips. The bridge to the Futurebus+ and the inter-
face to the IocaJ I/O devices are provided with sepa-
rate interfaces to the system bus. Each interface
contains two buffers that can each contain a hex-
word of data. This allows for double buffering of I/O
writes to memory for both interfaces and for the
prefetching of read data by which the bridge
improves throughput. These buffers also serve to
merge byte and longword write transaction data
into a fill1 block for transfer over the system bus. In
this case, the write to main memory is preceded by
a read operation to merge modified and unmodi-
fied bytes within the block.

The Ethernet controllers and SCSI and DSSI
controllers can handle block transfers for most
operations, thus avoiding unnecessary merge trans-
actions. As shown in Figure 3, the I/O module inte-
grates the following:

1. Four storage controllers that support SCSI,
high-speecl SCSI, or DSSI for fivecl disk drives
and one SCSI controller for removable media
elrives

2. 128K.B of SRAM for disk-controller-loadable
microcode scripts

3. Two Ethernet controllers and their station
address ROMs, with switch-selectable
ThinWire or thick-wire interfaces

4. 512KB flash erase programmable ROM
(FEPROM) for console firmwdre

5. Console serial line unit (SLIJ) interface

6. Auxiliary SLU interface with modem control
supp01-t

7 Time-of-year (TOY) clock, with battery backup

8. 8KB of electrically erasable memory (EEKOM)
for console firmware support

9. Serial control bus controller and 2 kilobits of
m 1 1

10. 64-bit-wide Futurebus+ bridge

11. BIU, containing four hexwords of cache block
buffering, two mailbox registers, and the
system bus interface

The instability of the Futurebus+ specifications
and the use of new, poorly specified controller
chips presented a high design risk for a highly inte-
grated implementation. Therefore the Futurebus+
bridge and local VO control logic were imple-
mented in programn~able logic to isolate the
high risk design areas from the ASIC development
process.

Memory Subsystem
As shown in Figure 3, up to four menlory modules
can reside on the system bus. This modularity of
the memory subsystem enabled maximum configu-
ration flexibility. Based on tlle metrics listed in
Table 1, 2GB of memory were expected to satisfy
most applications requirements. Given this 2GB
design goal, the available DRAM technology, and the
module size, the total memory size was configured
for various applications.

The memory connectors provide a unique slot
identification code to each BIU, which is used to
configure the CSRs' address space based on the slot
position. Memory modules are synchronous to the
system bus and provide high-bantlwidth, low-
latency dynamic storage. Each memory module
uses 4-bit-wide, 1- and 4-megabit-deep DRAW tech-
nology in various configurations to provide 6 4 ~ ~ ,
128MB, 2 5 6 ~ 8 , or 512MB of storage on each module.

To satisfy memory performance goals, each
memory module is capable of operating alone or in
one of numerous cache block interleaving configu-
rations with other memory modules with a reacl-
stream capability. A performance study of stream
buffers revealed an increase in performance from
memory-resident read-stream buffers. The strean1
buffers allow each memory module to reduce the

94 Vo1. 4 No. 4 Special Issue I992 Digital Technical Journal

IlesiLyn arzd PerorA~?zance of the DEC 4000 U P Del,artw?e?ltul Server. C o ~ ~ z p ~ l t i ~ z g .Sj(j_~'sterns

average read latency of ;I <:I)(or I / O module. 'Thus
more banclwidth is us;lble on a congested bus
because the anticipated read data in a detected
access sequence is prefetched. The stream buffer
orefetch activity is st;rtistically determined by bus
;~ctivity.

Overall memory bandwidth is also improveel
through exchange trvis;lctions, which use victim
writes with repl;~cernent reacl parallelism. Intel-
ligent memory refresh is scheduled based o n bus
iictivity and anticipatecl opportunities. Write trans-
actions are buffered from the bus before being writ-
ten into the DbWs to ;~voicl stalling the bus.

Data integrity, memory reliability, and system
;~vailability are enh;lnced by the EDC circuitry Each
memory niotlule consists of 2 or 4 banks with 70
I)RrW chips each. This enables 256 data bits ant1 24
El><: hits to be accessetl at once to provide low
latency for the system bus. A cost-benefit ;inalysis
sl?owetl a savings of IIRAM chips when ED<: is in~ple-
nientcd on each memory module. The processor's
32-bit EDC requires 7 check bits as opposed to the
128-bit ED<:, which reqilires 12 check bits zinc1 uses
['ewer chips per bank. 'T'lie selected EDC code also
provides better error detection capabilit-y of 4-bit-
wide chips than the processor's 32-bit EDC.

To improve performance, separate EDC logic
is implemented on tlie write path and read path
of each memory nlodule's RIU. The EDC logic
performs detection anel correction of all single-
bit errors and most 2-bit, .)-bit, and 4-bit errors in
tlie D&\1 array Tlie El>(:'s generate function can
detect certain types of addressing failures associ-
ated with the DRAM row and column address bits,
along with the bank's select address bits. Failures
associated with these ;~dtlressing fields can be
detected, thus improving data integrity. Software
errors can be scrubbed from liiemory by the <:PU

when requested through use of PALcode subrou-
tines, which use tlie LUX-L and STx-C synchroniza-
tion construct without having to suspend system
operations.

Enclosure and Paver Subsystems
The DEC 4000 AXP enclosure seen in Figure 1 is
c;~lled the ~ ~ 6 4 0 box and is 88.0 centimeters (cm)
high, 50.6 cm wide, and 76.2 cm deep. It weighs 118
to 125 kilograms hl ly configured. The enclosure is
designed to operate in an ol'fice environment from
10 to 35 degrees Celsius. The power cord can con-
nect to a conventional will1 outlet which supplies
up to 20 amperes at either 120 V AC or 240 V AC.

Tlie DE(: 4000 AXP system is a portable unit that
provides rear access and simplified install;~tion and
maintenance. Tlie systelii is mounted o n casters
and fits easily into an open office environnient.
Modular design allowed con~pliance with stan-
dards, ease of manufacturing, and easy fielcl servic-
ing. Constructed of molded plastics, the chi~ssis
is sectioned into a card cage, :I storage compart-
ment, a base containing four 6-inch variable-speed
D c fans and casters, an air plenum ;uicl baffle assem-
bly, front ant1 rear doors, ancl side panels. The
mass storage compartment supports 111, to I6
fixed-storage clevices and 4 removable storage
devices. Expansion to storage enclosures is sup-
ported for applications that recjuire speci;~lizecl
storage subsystems.

Feedback from fielcl service engineers proriiptecl
11s to omit uselcss light-emitting devices (LEIIS) in
each subsystem, since access to most electronics is
from the rear. As a result, the OCP was m;~de coni-
n~oli to all sul>systems through the serial control
bus and made visible inside the front door of the
enclosure. It provides DC on/off, hz~lt. ;lncl restart
switches, and eight LEDs, which inclic:~te faults of
CPU, I/O, memory, and Futurebus+ nlodules. The
fault lights are controlled either by a microcon-
troller on either <:I'(J module or by ;In interhce on
the 1/0 module.

Futurebus+ slot spacing was provided by the lEEE
specification. The system bus slot spacing for each
module was cleterniined by h~nctional require-
ments. For example, the CPU moclule requires 300
linear feet of air flow across the DE<:chip 21064
microprocessor's 3-inch square heat sink, as seen in
Figure 1, to ensure the 25-watt chip could be
cooletl reliably. Since 4000 systems provide this
same air flow across modules, cooling was not a
major design obst;~cle. The rnotlule compartment's
Futurebus+, systerri bus, and power subsystems can
be seen in the enclosure back view of Figure 6.

All electronics in the enclosure, as shown in
Figure 7, are air cooled by four 6-inch fans in the
base. Air is drawn into the enclosure grill at the top
front, guided along a pleni~m ancl baffle ;lssernbly
and down through the module compartment and
power supply comp;lrtrnent to the base. Air is also
drawn tlirougli front door louvers and across the
storage compartments and down to tlie base.
Electro~iics connected to the power subsystem
monitor ambient and nodule compartment
exhaust teniperatures. Thus the fan speed c;ln be
regulated based on temperatllre measurements,

Digilal Technical Joun1~11 1/01. 4 rVo. 4 Special 1.ssr1.e 1992 95

Alpha AXP Architecture and Systems

SYSTEM BUS are for fixecl storage bricks. A storage brick consists

I
of a base plate and mounting hardware, disk drives,
local disk converter (LDC). front bezel assembly,
anel wiring harnesses. The LDC converts ;I tlis-
tributed 48.0 V to 12.0-V and 5.0-V supplies :lnd a
5.0-V termination reference for the brick to ensure
compliance with voltage regulation specific;~tlons

POWER

Figure 6 DEC 4000 AXP Enclosure Rear View

reducing acou5tic noise in an air-conditioned office
environment.

The centerplane assembly consists of a storage
backplane, a module backplane, and an electroniag-
netic shielcl. This implementation avoids depen-
clence on cable assemblies, which are unre1i;tble
and d~fficult to install and repair. Defined connec-
tors and module sizes allowed the enclosure devel-
opment to proceecl unencumbered by moclule
specification changes. The shielded module com-
partment provides effective attenuation of signals
UP to 5 gigahertz. There are six Futurebus+ slots,
four memory slots, two CPU slots, one 1/0 slot, and
four central power module slots, which include the
FEU, PSC, DC5, and DC3 units

The storage compartment contains six cavities,
as seen in the enclosure front vlew of F~gure 8
Two cavities are for removable media, and four

and termir~ation voltage levels of current ;ul~cl fi~tilre
disks.

The 20-ampere power subsysteni can cleliver
1,400 watts of DC power divided across 2.1 V, 3.3 V,
5.0 V, 12.0 V, ant1 48.0 V. The enclosure can cool
1,500 watts of power and can be configured as a
master or a slave of AC power application. IJse of ;I

universal FEU eliminates the neecl for selecting
operating voltages of 120 V or 240 V A<;. The F H r
converts the input AC into 385 V DC, which is clis-
tributed to provide 48 V DC to two step-down I)(:-
to-I)C converters. which work in parallel to share
the lo;~d current. The combined 48 V I)(: outpi~t
from these converters is deliverecl to the rest of the
system.

Control of tlistributed power electronics is diffi-
cult anel expensive with dedicated electronics. A
cost-effective alternative was use ol a one-chip
<:l\lOS microcontroller, surrounded with a n array of
sensor inputs through CMOS analog-to-digital con-
verters, to provide PSC intelligence. I>ecisiori-mak-
ing ;ubility in the power subs!~stern enabled
compliance witli voltage-sequencing specific;~tions
anel fail-safe operation of the system. l'he micro-
controller can control each LDC and communicate
witli the C:Pl.I and OCP over the serial control bus. I t
monitors over and under voltage, temperature, and
energy storage conditions in tlie n~oditle and stor-
age compartments. It also reports status ancl failure
information either to the CPU or to a elisplay o n the
PS(: rnocl~~le, whicli is visible insicle the enclosure
back door.

Firmware
The prim;lry goal of the console interface is to
bootstrap the operating system tliro~lgh a process
c;ulled boot-block booting. The console inter-
face runs a nlinimal I/O device h;lncller routine
(boot primitive) to read a boot block fro111 a device
that has descriptors. The descriptors point to the
logical block numbers where the prinlar); boot-
strap program can be found, and the console
interface loads it into system memory To accom-
plish this task, t11e firmware must configure at~cl

96 Vo1. 4 i\b. 4 Special Issue 1992 Digital Technical Jouniol

Design and Performance of the DEC 4000AXP Departmental Server Computing Systems

OCP STORAGE BRICK CENTERPLANE STORAGE BRICK FBE

, r q 9 :;;$qm!p'.:-
0% '4~ . 4 .. ' y,t; .uT

, - ,,!, 7 , -*-a ..*>.-
-..- fit,?

.<?##,:$;t 1 : r . p 2 k - ?

VTERM PSC MEMORY CPU

Figure 7 DEC 4000 AXP Modular Electronics

test the whole system to ensure the boot process
can complcte without failures. To minimize the
bootstrap time, a fast menlory test executes in the
time necessary to test the largest memory module,
regardless of the number of memory modules. If
fa~lures are detected after configuration is com-
pleted, the firmware must provide a means for diag-
nosis, error isolation, and error logging to facilitate
the repair process. The DEC 4000 AXP system pro-
vides a new console command interface as well as
integrated diagnostic exercisers in the loadable
firmware.

The firmware resides on two separate entities, a
block of serial ROM on the CPU moclule and a block
of FEPROM o n the I/O module. The serial ROM con-
tains software that is automatically loaded into the
processor on power-up or reset. This software is
responsible for initial configuration of the CpU
module, testing minimal module h~nctionality, mi-
tializing enough memory for the console, copying
the contents of the FEPROM into this initialized

console memory, and then transferring control to
the console code.

The FEPIiOM firmware consists of halt dispatch,
entry/exit, diagnostics, system restart, system boot-
strap, and console services functional blocks.

PALcode subroutines prov~de a layer of software
with common interfaces to upper levels of sofware.
PALcode serves as a bridge between the hardware
behavior and service requirements and the require-
ments of the operating system. The system takes
advantage of I'ALcode for hardware-level interrupt
handling and return, security, implementation of
special operating system kernel procedures such as
queue management, dispatching to the operating
system's special calls, exception handling, DECchip
21064 virtual instruction cache management,
virtual memory management, and secondary I/o
operations. Through a combination of hardware-
and software-dependent I'ALcode subroutines,
OpenVMS AXP, DEC OSF/l AXP, and future operating
systems can execute on this hardware arcliitecture

Digital Tecbnical Journal Vo1. 4 No. 4 Special Issue 1992 97

Alpha AXP Architecture and Systems

Ackmnuledgments
Development of a new system requires contribu-
tions from individuals throughout the corporation.
The authors wish to acknowledge those who con-
tributed to the key aspects of the DEC 4000 AXP
system. Centerplanes: Henry Entnan, Jim Padgett;
CPU: Nitin Godiwala, George Harris, Jeff Metzger,
Eugene Smith, Kurt Thaller; Firmware: Dave Baird,
Harold Buckingham, Marco Ciaffi, John DeNisco.
Charlie Devane, Paul LaRochelle, Keven Peterson;
Futurebus Exerciser: Philippe Klein, Kevin Ludlam,
Dave Maruska; Futurebus+: Barbara Archinger,
Ernie Crocker, Jim Duval, Sam Duncan, Bill
Samaras; 110: Randy Hinrichs, Tom Hunt, Sub Pal,
Prasad Paranjape, Chet Pawlowski, Paul Rotker,
Russ Weaver; Management: Jesse Lipcon, Gary I?
Lidington; Manufacturing: Mary Doddj: Al Lewis,
Allan LyaII, Cher Nicholas; Marketing: Kami
Ajgaonkar, Charks Monk, Pam Reid; Mechanical:
Jeff Lewis, Dave Moore, Bryan Porter, Dave Simms;
Memory: Paul Goodwin, Don Smelser, Dave
Tatosian; Operations: Jeff Kerrigan; Operating
Systems: AJ Beaverson, Peter Smith; Power: John
Ardunio, Robert White; Simulation: Paul
Kinzelman; Systems: Vince Asbridge, Mike Collins,
Dave Conro): A1 Deluca, Roger Gagne, Tom Orr;
Eric Piip; Thermal: Steve Cieluch, Sharad Shah.

Figure 8 DEC 4000 AXP System
Enclosure Front Vieru

Refmence and Note

Performance Summary
The DEC 4000 AXP Model 610 system's performance
numbers as of November 10, 1992 are given in Table
3. Its performance will continue to improve.

Summary
r)EC 4000 IU(P systems demonstrate the highest
performance and functionality for Digital's 4000
series of departmental server systems. Based on
Digital's Alpha i\xP architecture and the IEEE's
Futurebus+ profile B standard, the systems provide
symmetric multiprocessing performance for
OpenVMS AXP and DEC OSF/l AXP operating systems
in an office environment. The L)EC 4000 AXP systems
were designed to optimize the cost-performance
ratio ant1 t o include upgradability and expanclabil-
ity. The systems combine Digital's CMOS technol-
ogy, I/O peripherals teclmology, ahigh-performance
multiprocessing backplane interconnect, ant1 mod-
ular system design to supply the most advanced
filnctionality for performance-driven applications.

1. IEEE Standard for FzttztreDus+-Physical Layer
and Profile Spec~iccltion lEEE Standard P896.2-
1991 (New York: The Institute of Electrical and
Electronics Engineers, April 24, 1992).

2. Supercomputer performance as defined by the
composite theoretical performance (CTP) rating
of 397, with the or:<:cliip 21064 operated at 6.25
ns, as established by the U.S. export regulations.

3 Inter-l7ztegr~1lc.d Circuit Ser3ial Bus Specvi-
catior~ (ILC Bus Specification). (Sunnjwale, CA:
Signetics Company, 1988).

4. J. Hennessy and D. I'atterson, compute^^
Architecture: A Quantitative Approach (San
iMateo, ct\: Morgan Kailfm;inn Publishers, Inc.,
1990): 467-474.

5. R. Sites, ed. , Alpha AX'P Sjjstenz Reference
Manual, Version 5.0 (Maynard: Digital
Equipment Corporation, 1992).

98 Vol d iVo 4 Ypccmllsc~~c~ I992 Digital Technical Jorrrrral

Table 3 CPU Performance Summary for the DEC 4000 AXP System

Futurebus+ Performance
Latency Bandwidth

Peak 16 bytes/l 00 ns 16OMBls
Read 16 bytedl 82 ns 88M B/s
Write 16 bytes11 33 ns 1 20MB/s

Local Bus Performance

Peak
Read
Write

Latency
4 bytes180 ns
4 bytes11 60 ns
4 bytedl 60 ns

Bandwidth

50MBIs
25MBIs
25MB/s

System Bus Performance
Latency

Peak 16 bytes125 ns
Read 32 bytes/l 75 ns
Write 32 bytedl 50 ns
Exchange 64 bytedl 75 ns

Internal Cache Miss, Second-level Cache Hit (Four-tick) Performance

Latency
Read 16 bytes/25 ns
Write 16 bytes125 ns

Bandwidth

640MB/s
182MB/s
21 3MB/s
365MBIs

Bandwidth

640MB/s
640MBIs

CPU Second-level Cache Miss Performance

Read
Write
Exchange

Latency
32 bytes/275 ns
32 bytes1200 ns
64 bytes/275 ns

Bandwidth

1 1 6MB/s
16OMBIs
232MB/s

- - -

DEC 4000 Model 610 SPECmark89 and SPECthruput89* Estimated CPU Performance Summary

Integer (INT) Benchmarks Ratio
GCC 61.58
ESPRESSO 82.91
LI 93.05
EQNTOTT 103.46

Floating-point (FP) Benchmarks
SPICE2G6 72.58
DODUC 11 3.81
NASA7 229.27
MATRIX300 101 9.1 7
FPPPP 180.32
TOMCATV 128.70

SPECmark > 136.23
SPECint > 83.73
SPECfp > 188.45

Ratio

1 @ 54.80
I@ 81.76
I@ 92.19
1 @ 100.76

I@ 68.19
1 @ 11 3.53
1 @ 221.56
1 @ 963.81
1 @ 177.89
1 @ 123.25

SPECthruput > I@ 131.18
SPECintthruput > I@ 80.32
SPECfpthruput > I@ 181.92

Ratio

2@ 50.78
2 8 78.33
2@ 92.18
2@ 97.94

LINPACK - double precision 100 X 100 36.8 MFLOPS
LINPACK - double precision 1000 X 1000 78.4 MFLOPS
Dhrystone 165.0 MIPS

Note:
'Version 1.0 OpenVMS AXP operating system, 160-MHz clocked DECchip 21064 microprocessor, 1 ME3 second-level cache. Notice the 1.9
scaling of the second CPU.

Digital Techrricwl Journal &)I. 4 :Yo. 4 SpeciolIssrrr 1 9 2 99

Brian R Allison
Catharine van Ingen

Technical Description
of the DEC 7000 and
DEC 10000 AXP Fame@

The DEC 7000 ar7d DEC 100OOprod~rcts ~11.0 rizicl-lwrlye nlzd nzairIfrnlrze Alphcr A X P

sjb-tei~z ($fk/'illgs ~ ; ' O I ? I Digitcll E y ~ ~ i l ~ i l i e i ~ t Corpoiriti011. These r?zucbir7es ~1le1.e
designed to lneet the rieeds of large colnnzerrial al7d scientific c,yl,licutiolzs arzd
ther.@re ore /?igl?$erfon.nc~i?ce, expattcl~rble sj~sterns that can be e~rs ib~ ~ ~ p g ~ w d e d .
The DEC' 7000 ~17d 10000 ~j~ster'lzs zltilize t/7e IlI:Cc/?if) 21064 17zicroprocessoi operat-
illg a t speeds LIP to -300 MHz. The high-speed chips, large c~~cbes , ~~lultip~~oce.ssor
sj~ste~iz ai.c/~itc~ctui.e, hiyl~$eifornza17c D L I C ~ ~ ~ L I I ~ C ir?te~.cot~~~ect, a~?d IGII;~C I I I P I I I O I : ~ ~

cclprpacit~l colnbiile to create ~ ~ z n h ~ i z ~ ~ ~ ~ e - L k I s s p e r ~ f i , ~ ~ ~ i ~ a ~ ~ c e zllith a cost ri17d sizej)i.e-
zliousl)~ att~.iDuted to ~/zid-ralzge sjlsten~s.

The tlesign of the DE<: 7000 and 10000 systems pro-
vides a high-end pl ;~thrm nntl system environment
for rn~~l.tiple generations of iilpha A X P chips. This
platform, combined with a multiprocessor archi-
tecture, yields a multidimensional upgrade capabil-
ity that will allow the s)rstem to meet users' needs
Cor several years. System i~pgratle can take place by
;ttlding processors, replacing existing processors
with next-generation processors, or both. 'l'his
upgrade capability ensures stability to the system
in terms of the physical and fiscal ;tspects of the entl
user's computing erivironment.

The DEC 7000 and LIE<: 10000 systems are
the logical follow-on products of the highly suc-
cessf~~l VAX 6000 himily 'The new systems are capa-
ble of supporting either VAX processors or Alpli;~
A S P processors. The c;tpabilit)- to upgrade from
;I VAX processor to ;rn Alpha AXI' processor with-
out ch;inges to the system is essential for niini-
rnal disruption of large commercial applications.
Most fe;~tures of the V A S 6000 systems have
been carried forward to the 1)E(: 7000 and DE(:

10000 proclucts, ant1 any tleficiencies have been
corrected.

The DEC 7000 :1nc1 I)E(: I0000 products :KC

derived from the same system tlesign. The DE<:
10000 is a more Si111y configured system and
inclutles ;ln 1z+1 ~~~iinterruptible power system.
atlditional 1 / 0 subsystems. ;mcl 1 / 0 expansion cabi-
nets. 'l'he DEC 7000 uses n 182-megahertz (MHz)

I)E<:chip 21064 whereas the I)E<: 10000 uses a 200-
MHz I)E<:chip 21064.

A \/er!, important goal h)r the project that encom-
passed the clevclopment of the I>E<: 7000 and 10000
systems was to provitle a si~llil:ir pair of systems
b;isecl o n a VAX microproccssoc A Vi\X niicroproces-
sor, called hWAS+, W;IS designed to be pin com-
patible with the DECchip 21064 (the Alpha AXP
microprocess~r).~ + The S!~S~CIII '~V;IS designed to be
somewhat microprocesso~- independent, and both
VAX and Alpha AXP versions of the systems were
i~iiplernentetl. The VAX prodr~cts (VAX 7000 ancl VAS
10000) were introduced in July 1992 and can be
upgraded to DEC 7000 ;uld I)E(: 10000 systems by a
simple swap of C P r r modules.

System Architecture
The 1>E<: 7000 system consists of <:PIl(s), memory
an I/() port controller, ancl I/() ;td;~pters, as shown in
1:igure 1. The system is configurecl in a variety of
w:~ys, depending on the size and f~~nc t ion of the
system. A system backplane consists of nine slots
and houses CPlJs, memory, and an I/(> port con-
troller. The I/O port controller resides in a fixed
slot, ;ind CPlrs and memories occupy the remaining
eight slots. The initial system offerings allow up to 6
(:r'rts. (Architecturally, the s!.steni may support i ~ p
to 16 CPUs.) Up to I4 gig:tbytes ((;I3) of memory can
bc supported if onlj. 1 (; I > [: niodule is present and
;ill remaining slots contain memory.

100 Vi1. 4 No. 4 Speciallssue 1992 Digital Technical Journal

TecLw~icu[Description of the DEC 7000 and DEC IOOOOAXP Fcrmi l]~

ALPHA AXP OR VAX
PROCESSOR(S) 64,128,256,512MB

+ f
SYSTEM BUS 640MBlS

4

I 110 PORT CONTROLLER I

XMl ADAPTER I10 ADAPTER I10 ADAPTER US+ k 'V '77
XMI FUTUREBUS+

Note: All four I10 ports are ~dentical. Any combination of XMI,
Futurebust, or "custom" inlerfaces may be configured.

Figure 1 DEC 7000 nncl LIE(: 10000
System Architecture

The 1 /0 subsystem consists of ;In I/O port con-
troller and four I/() ports which have been ;~d;~pted
to the X1\41 or the Futurebus+. Tlie I/O ports are
generic ;~ntl may be adapted to other forms of inter-
connect in the fiuture. The system b;~ckplane.
power system, and up to two 1/0 backplanes are
housed in the system cabinet. Adtlitional 1/0 bi~ck-
planes (up to ;I system total of h)ur) may be config-
i~red in expansion cabinets.

Technology
The I)E<: 7000 system is built prim;lrily of C:MOS

(coniple~nentary metal-oxide semiconductor) coni-
ponents. The IIECchip 21064 microprocessor is
built using Digital's 0.75-micrometer <:MOS-~ pro-
cess. AJI modules utilize LSI I.ogic l.<:r\lOOK series
gate arrays for tlie system bus interface and for
on-bo;~rcl logic fi~nctions. Tlie LSl Logic LCA100K
features up to 235K two-input NAN> gates. MI
motlules use the same custom r / o tlriver circuit
within their respective gate ;Irr:.tys to drive ant1
receive the system bus. A custo~ii 419-pin pin gritl
array (P<;A) package was tleveloped to house all bus
interface gAte arrays. Unlike the VAX 6000 series, a
common bus driver part is not used in ortler to min-
imize tlie nunlber of levels of buffering in the
system.

Moclule technology is standard 10-I,], ' ver construc-
tion with 4 signal layers, 4 power I;lyers, and top
;rncl I,ottom cap layers. Double-side, surfi~ce-mount
construction is used extensively throughout the

systeni. Etch width is 5 mils with 7.5-mil minimum
spacing. Via sizes down to 15 mils are used. A t i i i s -

ture of physical coniponent technologies is used
with all large vl.sI (very large-scale integration)
parts in 100-~iiil I'<;A packages. Most standard logic
utilizes 50-mil surface-mount technology Moclule
interconnect to the backplane is made through a
340/420-connection, four- row, 100-mil-spaced pin
and socket type connector. Forty-eight-volt power
is distributed throughout the system; local regula-
tion is provided on tlie niodule for specific voltages
required.

System Interconnect
The heart of tlie I>E<: 7000 systeni is a high-perfor-
mance system interconnect, called the LSR, which
allows communications between multiple proces-
sors, memory arrays, ant1 I/O subsystems. I t pro-
vides a low-latency, high-l~~ndwitlth data path
among all components. A common shared view of
menlory is maintained by means of the systeni intcr-
connect and cache logic on processor modules.

Three types of niodules ;Ire defined for the LSD.

Processor modules, which contain the CPli chip,
cache subsystem, ;~nd console functions. The ini-
tial DEC 7000 design has the capacity for a maxi-
mum of six processor modules.

Memory moclules, wllicb contain dynamic raii-
dorn-access memory (I)Ib\ii\iLI) chips and a mem-
ory controller. A system can contain up to seven
memory niotlules, e;~cli with a capacity of 64
megabytes (MIj) to 2(;13.

I/O interface motll~les, which provide access to
I/O buses and I/O adapters. Only a single I/O port
controller niotlule may reside in the system. Tlie
1/0 port controller niotlule can arbitrate at a
higher priorit! than <:l-'tJ nocles to improve I/O

direct memory ;lccess (IIMA) latency and provide
atomic DMA writes of tl;lt;~ less than ;I c;~che
block in size.

Tlie LSB is a liniitecl-length, non-pended, pipe-
lined, synchrotious, 128-bit-wide bus with clistrib-
i~ted arbitration. All transactions occur in ;I set of
fixed cycles rel;~tive to ;in ;isbitration cycle. Up to
three transactions can be in the pipeline at a given
time. enabling the fill1 capability of the bus to be
realized. Arbitration occurs on a dedicated set of
control signals :~ntl may he overl:~pped with tlata
transfer. Data ;inti :~tldress are n~ultiplexed on tlie
same set of signals. 'The bus protocol supports

Alpha AXP Architecture and Systems

write-back caches, ancl all memory transfers are 64
I~j~tes in length. The cycle time of the bus is 20
nanoseconcls (ns), providing an overall clnta rate of
8001MB per second ancl a utilized system bandwitlth
of 6 4 0 ~ 1 ~ per second.

The T.SR transmits 40-bit physical addresses, pro-
viding a physical address space of 1 terabyte. Given
the current rate of DRAM technology evolution, the
LSIj will have a usef~il life of 8 to 10 years before
physical atldress space is exhausted. A 40-bit physi-
cal address was chosen to minimize the data path
width in the processor bus control gate array

A non-pencled pipelined bus was chosen instead
of :I tr;iditional pended bus to allow for si~nple node
interface clesigns. Transactions start ;cncl finish at
precisely defined times. A "stall" function may be
used if a given transaction cannot be completed
within the system timing constraints. The "stall"
function freezes the bus pipeline, maintaining the
order of all transactions. Consequently, nodes can
be clesignetl with no queuing between tlie bus
interface and local storage (D ~ i l s for main mem-
ory or static RANIS [SFGuVs] for cache memory). The
maintenance of strict bus transaction ortlering also
allevi;ites many potential lockout conclitions expe-
rienced on petided buses.

Digital's previous mainframe systems have usetl a
switch-based system interconnect instead of a bus.
This interconnect was typic;~lly requiretl because
these systems were based on emitter coupled logic
(E<:L) with only a small, single-level cache suh-
system; therefore, high bandwitltli was required
between main memory and the processor. The
<;MOS clesign of the DEC 7000 allows a large (4MR)
seconcl-level cache to complement the 16-kilobyte
(KB) on-chip cache. Tlie large amount of c;iche
minimizes the need for memory bandwidth. A
bus-based design was chosen over a switch-based
design to minimize memory latency minimize
clesign complexit): and reduce system cost.

All I 5 R transactiotis consist of a single commantl
cycle ant1 four dnt;~ cycles. These five cycles appear
in fixed cycles relative to the arbitration c)lcles. Up
to three transactions may be pipelined, as shown in
Figure 2.

The LSR uses a distributed arbitration scheme.
Ten request wires are driven by the cpus or the I/o
module that wishes to use the bus. Eight request
lines are ;~lloc;itetl to tlie eight potential CPU ~iiocl-
ules. The remaining two request lilies arc i~setl by
the I/O controller moclule. All modules indepen-
dently monitor the request wires to determine
whether a transaction has been requested, and if so.
which module wins tlie right to sentl a cornm;lncl
cycle to start the transaction.

The arbitration scheme employs a least-recently-
used rotating priority algorithm for CplJ modules
ancl a fixed high/low scheme for the I/O port con-
troller. The I/() port controller arbitrates using the
highest ant1 lowest priority levels, arbitrating high
six times then low two times. This arrangement
ensures that the 1/0 port controller can i~tilize
greater than 50 percent of tlie available system bus
bandwidth while still ensuring the CPUs some
access to the system bus. The I/() port controller
also uses its uniqi~e ;~rbitration scheme to ensure
atomic reatl/modify/write sequences on the bus
necessary for performing writes of less than a full
naturally aligned 64-byte quantity. Tlie I/O port
controller does the rend at its next scheduled prior-
ity ant1 then imrnet1i:itely follows up with the write
at highest priorit)! This scheme ensures that 110

other node can access the data between tlie read
and the write.

A1 comm;incl/acldress anel control/status register
(CSR) cycles are protected with parity Data cycles
to and from niemory are protected with error cor-
rection code (E(;(:). Transmit check is used by all
modules to verifj that what a given module is
asserting on the bus is ;~ctually being seen on the

41 I+ BUS CYCLE TlME = 20 NS

ARBITRATE
COMMAND
CONFIRMATION
SHARElDlRTY
DATA

I+ BUS ACCESS TlME = 340 NS +I
Bus Data Rate = 16 bytes per 20 ns = 800MBls
Utilized Bus Bandwidth = 16 bytes per 20 ns x 4 data cycles per 5 bus cycles = 640MBIs

lo:! 161. 4 ,Vo. 4 .Sprci~~lI .ss~~c 19'11 Digital Techtrical Jozrrnnl

Teclmical Description of the DEC 7000 and DEC 20000 AXP Family

bus. Transmit check allows the detection of bus col-
lisiolis and faulty bus drivers or receivers.

The system interconnect is physically imple-
mented as a centerplane which is 350 millimeters
(rnrn) wick ancl 500 mm high. There are four mod-
ule connections on one sicle, ancl five on the other.
The centerplane-moclule connection is imple-
mented using a four-row pin and socket connector
with connections on a 100-mil grid. Modules are
410 mm high and 340 mrn deep. This module size
was chosen to allow the maximum module size
within the constraints of an 865-mm-deep cabinet
and of the centerplane technology. Moclules are
spaced 011 65-mm centers ant1 are contained within
a box that provides customized air flow for each dif-
ferent module design.

The DEC 7000 was tlcsigned with a centerplane
interconnect to solve the problem of bus length
and to meet the need for wide moclule spacing
that allows for the anticipated heat-dissipation
requirements of future processor chips. With a
centerplane, the number of module slots available
for a given length of bus increases by (72.2)-1
where n is the number of slots available in a con-
ventional backplane. t\ centerplane configuration
leaves little space on the backplane for termination

networks. Designers solvecl this problem by adopt-
ing a distributed termination scheme with bus ter-
minator networks present on all modules in the
backplane.

Processor Module
The primary purpose of the processor module is to
provide a large second-level cache to the processor
chip and to act as an interface to the system bus and
memory for missed cache references. The proces-
sor module in the DEC 7000 system was designed to
use either VAX or Alpha AXP chips. As noted above,
a common design is used in the implementation of
the VAX ant1 DEC 7000 and 10000 systems, with the
only significant clifferences being the processor
chip and the console/diagnostic cocle. Figure 3 is a
block diagram of the processor module.

The processor module provides ;I 4MB external
cache, which is shared by the processor chip and
the bus interface chips. The cache is organized as a
single set (direct mapped), with a block ancl f i l l size
of 64 bytes. The external cache conforms to a write-
back, conditional update, cache coherency proto-
col. The processor on-chip clata cache is a proper
subset of the external cache and uses a write-
through protocol.*4

BACKMAP
D-CACHE

-
DECCHIP CONTROL + * BUS INTERFACE
21 064 GATE ARRAYS

PROCESSOR ADDRESS *
LSB ADDRESS *-

D-CACHE

B-CACHE 0-CACHE TAG, VALID

DATA TAG AND
STATUS

I-CACHE
DATA, ECC BUFFER

F646 DATA. ECC

W-BUFFER

TAG, VALID, SHARED, DIRTY
VICTIM

ROM

ROM I WATCH rttH UART

I I I
A SYSTEM

BUS

Figz~re 3 Block Dicigram of the DEC 7000 Processor Module

Digital Technical Joz~mnl ti,/. 4 .Vo. 4 Sl~ecictl Issue 192 103

Alpha AXP Architecture and Systems

The structure of the cache is shown in Figure 4.
Each cache line consists of 512 bits of data (with 112
bits of ECC), 12 bits of tag (with 1 parity bit), and 3
status bits (with 1 parity bit). The 12 bits of tag data
applied to a ~ M B cache size sets a processor pliysi-
cal address capability of 1 6 ~ ; ~ . (This is a processor
limitation, ant1 fi~ture processors will address larger
memory sizes.) The control bits contain informa-
tion that allows the c;~che and mernory systems to
maintain coherency The control bits are tlefinetl :IS

follows:

A valitl bit, indicating whether or not this line
contains valid data

A shared bit, indicating whether or not this line
niny also be resident in another procesbor's
cache in the system

A clirty bit, indicating whether or not this line
has been written to by this processor

Upon detection of a cache read miss in the pro-
cessor on-chip cache, the processor accesses the
extern;~l cache tag to see if the given block is resi-
dent. The processor chip contains the tag compari-
tor ancl status logic to cletcrrnitie ;I "hit." If the block
is resident in the external cache, the processor then
cycles the external cache d;tt;i store twice, each time
reading in 128 bits of data and 28 bits of ECC for a
total of 32 bytes (internal processor cache block
size is 32 bytes). The external cache cycles at a rate
five tjnles the processor chip clock period (and at
two times the period for the VAX variant). Upon the
detection of a "miss," the processor chip informs
the bus interface chips by means of hanc1sh;lke sig-
nals and waits until the miss is serviced on the I S H .

IJpon a data write by the processor, the clata is
written through to the external cache. If the data
is already resident in the cache. it is updated and
conditionally bro;tdcast onto the system bus if
marked as sh;lred. If the selectecl cache line cont21ins
a different valid tag, the current (old) cache line is
written to memory and replaced by the new tag ancl
data. To improve performance during this opera-

tion, the current cache line is stored in a local victim
buffer while the new data is read. After the new data
has been placed in the cache, the oltl clata is written
back to memory :IS ;I background operation.

A cluplicate set of cache tags (backniaps) are kept
by the bus interface logic for both the external
cache and the internal processor chip Ikache .
These backmaps are accessed by the bus interface
logic 011 all bus references to determine the action
necessary to maintain cache/memory coherency

On bus read requests, the processor bus inter-
face references its external cache backnlap and sup-
plies data from the on-board cache if a "dirt)"' copy
of the d;lt;l is present. On bus writes, a check is per-
for~netl to see if the data is present in the processor
on-chip D-c;tche. If the data line is present, the
i~pdated data is ;~ccepted. If the data line is not pre-
sent but is instead in the external cache, the line is
inv;llitlated. This cache update policy is an attempt
to minimize false sharing of tlata by only updating
on references to a cache line in the processor on-
chip cache, which is small 2nd should contain only
freshly referenced data.

False sharing of data is a problem common to
multiprocessor systems running fully symmetric
operating systems. When a process is migrated
fi-on1 one processor to nothe her, dirty data often
remains in the cache of the previoi~s processor.
When the new processor requests that data, it
becomes "shared," resulting in the need to update
all copies by means o f bus transactions on all subse-
quent modifications of the tl:it;~. Since the process
has migrated, there is no need to maintain the state
of the clat;~ it1 the cache of the previous processor;
tloing so slows down execution of the process due
to the bus tr;~ns;~ctions recluired to update. The
write-upd;tte policy described in the previous para-
graph provides a means to estimate if "sl~ared" data
is still in use by the previous processor and pro-
vides ;I means to flush it from the previous cache if
it has not been recently referenced.

The external cache is 128 bits wide with long-
word E<:<: protection. The E<:<: scheme i~sed to

X 64K CACHE ENTRIES

104 14)l. 4 I\?). 4 , S /) C L . ~ C I / I S S ~ I ~ 199.2 Digital Technical Joui-nnl

ECC
ECC
ECC
ECC

PARITY

P I V IS I D 112-BIT TAG I P

L DIRTY
SHARED
VALID

LONGWORD 2
LONGWORD 6
LONGWORD 10
LONGWORD 14

LONGWORD 3
LONGWORD 7

LONGWORD 11
LONGWORD 15

ECC
ECC
ECC
ECC

ECC
ECC
ECC
ECC

LONGWORD 1
LONGWORD 5

LONGWORD 9
LONGWORD 13

ECC
ECC
ECC
ECC

LONGWORD 0
LONGWORD 4
LONGWORD 8
LONGWORD 12

Technical Description of the LlEC 7000 and DEC 10000 A X P Fanzilj)

protect the external cache is identical to that used
on the LSB, which allows flow-through ECC. The
processor chip checks and corrects data for all pro-
cessor refills. The bus interface chips perform
lookaside ECC checking for fault isolation purposes
but do not perform ECC correction.

The processor module also provides system con-
sole functions. The moclule includes universal
asynchronous receiver/transrnitters (IJARTs) for
communication with the console terminal and
power subsystems, a time-of-year clock, and 8 9 6 ~ ~
of flash read-only memories (]<OMS) for console and
diagnostic code. Each processor contains a com-
plete console subsystem, but only one motlule uses
this function in a multiprocessor system. This
approach allows static reconfiguration of the
system in the event of a module failure.

A 4Mu module-level cache was chosen because
it was the largest natural implementation using
256K X 4 S U M S drivel1 by the 128-bit-wide cache
data path defined by the DECchip 21064 micropro-
cessor. Denser S W i s were not available at the nec-
essary speetl (10 to 12 ns), ant1 a multiway cache
architecture is not easily implemented with the
DECchip 21064. The fill size of 64 bytes was
selected to efficiently use the 16-byte-wide system
bus and provide 80 percent bus data efficiency.

Figure 5 shows a photograph of side 1 of a pro-
cessor module. Atltlitional cache m i s and drivers
reside on side 2.

Memory Module
The memory subsystem of the DEC 7000 cornpr~ses
one to seven memory array modules with a single
moclule capacity of 64 to 2 0 4 8 ~ ~ . The primary
functions of the memory array modules are to
respond to bus read/write functions, refresh the
memory &is, and maintain ECC data for the mem-
ory. The design supports either ~ M R or 1 6 ~ 1 ~
DRkMs, on-board interleaving on modules with
greater than 6 4 ~ ~ , and niultimodule interleav~ng
under many cond~tions.

The DEC 7000 memory modules run synchro-
nous with the LSB Memory transactions occur in
fixed cycles relative to the system bus. All memory
space transfers consist of 64-byte blocks that are
transferred 16 bytes at a time over four contiguous
data cycles. Read and write data wrapping is done
on 32-byte naturally aligned boundaries. The
DRkMs are 4-bit-wide parts, and an entire 64-byte
block is read or written in parallel and buffered for
bus transmission.

Data wrapping is a method used to provide a
lower latency return of the data required by a read
commantl. The bus contains an extra address bit
that indicates in which half of a 64-byte block the
requested data lies. The memory colitroller returns
the half block containing the target clata first, allow-
ing Faster resumption of processing. Data wrapping
has no benefit on write transactions but is clone to
sirnplrfy the design of the system.

DEC 7000 memory modules are protected with a
quadword ECC algorithm. The chosen ECC: imple-
mentation allows detection and correction of sin-
gle-bit failures, detection of all 2-bit failures, and
detection and correction of any error wholly con-
tained within a 4-bit-wide D M l . Memory motlules
convert LSB longword (32-bit) ECC into quadword
(64-bit) E<:C; that is stored with LSB data on writes.
During LSB reads, quadword ECC is converted to
longword ECC. Quadword ECC allows for higlier
packing densities on the memory module with
fewer DRAM components. Longwortl ECC is used on
the system bus because the DECchip 21064 micro-
processor dictates the use of longworcl ECC in its
external caches, and the timing of the external
cache will not allow a conversion to a different ECC

for bus transactions.
The memory module contains a hardware-based

self test that checks each bit on the module to be
sure it can be set to either a 0 or a 1 state and initial-
izes the memory to a known good E(:C state. All
memory moclules execute self-test in parallel upon
system initialization at a rate of approximately
35MB per secontl. This approach results in substan-
tial savings in boot time as compared to a system
that tests memory with initialization code executed
by the processor. Moreover, the self-test provides
excellent error isolation in the event of a failure.

DEC 7000 memory is designed in A ~ M B , 128MB,
2 5 6 ~ ~ , 512MB, and 2GB modules. The 6 4 ~ ~ , 128MR,
and 256&1\1~ modules use ~ M R DW~fls, double-side
surface mounted. The 512MB modules use ~ M R
DRAMS mounted on soldered-in single in-line mem-
ory modules (SIMMs). (PC-style socketed SIMMs
proved unreliable for large configurations.) The
2GB modules use 1 6 ~ ~ DRAMS mounted on sol-
dered-in SIMMs.

I/O Subsystem
The DEC 7000 1/0 subsystem consists of an l/O port
controller and four high-speed parallel ports. The
I/O controller provides an interface between
the system bus and the parallel ports. Atlclitional

Digital Tecb~ricalJonrnal Vol. 4 iVo. 4 Special I.ss~lc, 1992 105

Alpha AXP Architecture and Systems

182 TO 200 MHZ
ALPHA AXP
CPU CHIP 4MB CACHE

m - r

-& yg
Y...

POWER SUPPLY SYSTEM BUS INTERFACE

Figure -5 Processor Moduk Major CornJ~onents HigIdighted

modules provide the interface between the high-
speed parallel ports and specific standard 1/0 buses.
To date, interfaces have been designed for the XMI,
which is used as the I/O bus on the VAX 6000 and
VAX 9000 systems, ancl for the Futurebus+, which is
an IEEE standard high-performance bus definition.

The I/O port controller and specific bus adapter
architecture was adopted to allow a flexible bus
strategy that can evolve over time, as well as to
accommodate the pl~ysical separation of processor
and I/o subsystems necessary in an expandable
system with multiple I/O channels The 1/0 port

controller cable(s) will function to a maximum
cable length of 3 meters. T h ~ s length allows 110
expansion cabinets to be placed o n e ~ t h e r side of
the main system cabinet.

The aggregate bandwidth of the I/O port con-
troller is 2 5 6 ~ ~ per second. Each parallel port 1s
capable of operating at a maximum of 135MB per
second for data flowing from the I/O subsystem to
memory and at 8 8 M B per second for data flowing
from memoly to the 1/O subsystem.

The I/O port controller module with its four
parallel ports is a st;~ndard part of all DEC, 7000

106 Vol. 4 No. 4 .Ypecial lssrte 1992 Digital Technical Journnl

systems and resides in a tletlicated system back-
plane slot. Various systeni configurations are avail-
able that contain between one ancl flour S M I I/()
buses. 'The Futurebus+ subsystems will be available
when Futurebus+ components become :~v;tilable in
the computer industry.

The I/O port controller provides :I "mailbox'.
interface between the processor ancl I/O tlevices. A
processor instruction cannot tlirectly access a regis-
ter in ;In I/(> tlevice, as was possible on previous Vt\X

in~plementations. To use the "nlailbox" interface, a
processor creates a work descriptor packet in meni-
ory and then issues a conimantl to tlie I/() port con-
troller to execute the cotiimancl. Comniand
completion is asynchronous and the processor may
choose to tlo otlier work while the conimancl is exe-
cuted. The "mailbox" interface between proces-
sors and I/() devices was createtl to allow relatively
slow I/O devices to interface to ;I high-speed, non-
pended systeni bus. I f a processor were allowetl to
access the I/() device tlirectly, the system bus u~oi~ld
be stalletl for I;irge portions of time.

Clearly the mailbox communic:~tions methotl is
more con1plic;rted than traditiolyal direct access.
Fortunately the mailbox is usetl only when a pro-
cessor neecls to directly access an I/O device. The
I/O device can clirectly access main memory (or
possibly a Ct'U cache) with all necessary buffering
done by tlie I/() port controller. Most modern higli-
performance 1/0 adapters use high-level, packet-
based protocols, which require very little direct
access of the r/o adapter by the processor.

A typical <:P1J-initiated I/<) trans;iction to an intel-
ligent tlisk controller on an XNII bus to re;~tl from
the disk would have the following steps.

The CPU jAaces ;I disk controller conim;~nd
packet requesting ;I disk read into system
nlenior)r.

The CHI sets up an I/(> mailbox structure with a
conimantl to inform the disk controller that
there is a command packet in memory, writes a
register in the I/O port controller to inform it
that there is a mailbox transaction to complete,
and then spins on ;I clone bit in tlie mailbox
structure.

The I/O port controller fetches the mailbox
strLlctilre from memory gener:!tes ;in S M I write
cornrn;~ncl to the disk controller, and sets the
done bit in the mailbox structure. The CI'U sees
the assertion of tlie done bit and goes on to other
work,

Tlie disk controller receives the m;iilbox data
ant1 then generiites ;In request to reatl its
command packet from niemor)I.

'The r/o port controller re:~tls the specified corn-
nivitl packet from Inenlory 64 bytes at a time
and sends it back to the disk controller 32 bytes
;it a time.

Tlie disk controller decodes the command packet,
reads the requested data from tlisk, and starts
writing to system memory in 32-byte segments.

The I/<) port controller buffers tlie 32-byte
writes from tlie disk controller into 64-byte seg-
ments ;rntl writes the data to system memory.

'The tlisk controller sig11:ils a n interrupt o ~ l tlie
>(IL~[to indic;~te that tlie requested operation is
complete, wliicli is received 1))' the 1 /0 port coli-
troller. The I/() port controller signals an inter-
rupt to the <:PII.

Console and Diagnostics
Like m:lny previous VtiS systems, the DEC 7000
systeni employs ;in enibedtletl console. The console
function is performed by code run on the proces-
sors within the system r:ither tli;~n bjr a dedicatecl,
detached front-end processor.

Unlike the strategy for previous VA); systems, a
unifietl console and tliagnostic strategy w;is
adopted for the DE(: 7000 and 10000, VAX 7000 ant1
10000, ;mtl IIEC 4000 systems. A single code base
not only provides tlie basic console functions but
also extends diagnostic support for manufacturing
and fieltl firmware upgrade support. This i~nifietl
strategy has reduced the total development effort
and promoted :I common "look and feel" across the
different systems.

The console development also differed from that
of previous Vt\x systems. The priniary implemen-
tation 1;lnguage was (1, \vith only various architec-
ture-specific code in Alpha AXP (or VAX) assembly
I:~nguage. Tlie console :~ntl processor cliagnostic
code was simulated prior to the arrival of hardware.
This simulation greatly simplifietl early hardware
tlel~i~g; the console h;ld basic functio~lality after a
single debi~g session.

At power-up, each processor ~ c t s independently
to execute processor-specific diagnostics ;uitl con-
sole initializ~tion. The processors then select a con-
sole primary, which then proceetls to test and
configure the memory atid I/O subsystems. Tlie
console primary also retains control of tlie console
terminal line; console second;lries communicate

Digital Techrricnl Jorrrrral k l . .4 No. 4 .S/)eciol lssrlc I992 107

Alpha AXP Architecture and Systems

with the primary through memory-resident mes-
sages. After initialization, diagnostic or other con-
sole tasks can be assigned to any processor in the
configuration. One benefit of this arrangement is
that system tliagnostics and exercisers can be run in
parallel.

Like previous DECsystem consoles (that is, sys-
tems based on MIPS Co. chips). the DEC 7000 con-
sole provides a set of services, or callbacks, to the
operating system. These services can be used to
control automatic bootstrapping across operating
system crashes as well as primitive l/O servicvs
used by the operating system during bootstrap ancl
system crash. The latter simplifies the operating
system device support by providing simple
read/write functions common to all clevices.

A feature of the power of the console is the field
firmware update utility. Field upgrade of all system
firmware (console and I/O adapters) is accorn-
plished by the DEC 7000 firmware update i~tility
(LVU). LFll is really a dedicated console image which
is tlistributecl on CDROM. The system console is
used to boot LFU, which is then usetl to update all
system firnlware.

System Packaging
The DEC 7000 system cabinet is 1700 mm high
by 800 mm wide by 865 nim deep. The cabinet
houses the system backplane, up to two T/O subsys-
tems, and disk arrays or batteries for the system bat-
tery-bacicup function. Expansion is possible by
using one or t w I/<) expander cabinets, each of

which houses up to two additional 1 /0 subsystems
and additional disk arrdys. Further mass storage
expansion is possible with Digital's standard line of
mass storage cabinets connected by CI, DSSI, or S1

iilterconnects.
The DEC 7000 cabinetry has been designed for

easy system upgrade and servicing. The system
backplane assenlbly, power system, and 1/0 subsys-
tems are modular and easily replaced by field per-
sonnel. The process of future upgrades can be
accomplished more quickly and reliably through
the use of modular subassemblies.

As shown in Figure 6, the DEC 7000 main system
cabinet contains a central air mover with logic
assemblies above and below it. The air mover is a
single motor with a large molded vane assembly
and can pull air througl~ both the upper and the
lower logic assemblies. An air flow of approxi-
mately 900 cubic feet per minute with velocities
up to 1800 linear feet per minute is maintained
through the upper logic assembly, which contains
the processor ant1 memory subsystems. Although
not necessary for the DECchip 21064, this large
volume of air movement was designed into the
machine to allow upgrades through several genera-
tions of processor chips. Hy using standard air-cool-
ing techniques and customized module "boxes"
that optimize local air flow, it is possible to cool
processor chips of up to 70 watts in the DEC 7000
system cabinet.

Above the air mover are the system backplane
and the modular power subsystenl. Below the air

REMOVABLE MEDIA

CPU OR MEMORY
MODULES

N + 1 POWER
SYSTEM

110 PORT
CONTROLLER
MODULE

COOLING SYSTEM

110 SUBSYSTEM
(XMI)

MASS STORAGE

Figure 6 DEC 7000 1Wui11 System Cuhitzet, hv~zl (Left) and Rear (Right) Vieztls

108 161. 4 No. 4 Specirrl Issue 19.92 Digital Technical Joul-nu1

./'tion of the DEC 7000 ctnd DEC 10000 AXP Fninily

mover are four modular spaces for I/O bus back-
planes, disk drives, or batteries.

I/O, disk, ant1 battery subsystems occupy varying
amounts of the four modular spaces. The XMI sub-
system occupies two spaces and is oriented front to
back because of its rear-exit cabling scheme. The
Futurebus+ subsystem occupies a single rear space.
Disk subsystems consisting of up to six 5.25-inch
(DSSI or SCSl [small computer system interface]) or
fourteen 3.5-inch (3.31 only) drives may occupy any
of the modular spaces. Batteries for the uninter-
ruptible power system occupy two modular
spaces, which may be oriented either front to back
(for SI\/lI-based systems) or side to side (for
Futurebus+ systems).

The expander cabinet is identical to the main
system cabinet, with two exceptions: disks may be
packaged in the area occupietl by the system back-
plane, and there is no control panel. Up to two XMn
or Futurebus+ subsystems may be placed in an
expander cabinet.

Power Subsystem
The power subsystem of the DEC 7000 family has
a highly modular, hierarchical design. The basic
power system provides 48-volt direct current (VDC)
to all subassemblies which in turn further regulate
to necessary voltages. Each module in the system
backplane contains on-board regu1;ltion. This fea-
ture will allow the system to easily evolve wit11
changing voltage requirements as <;MOS technology
moves to lower voltages to reduce power consump-
tion. Voltage toler;~nces can be tightly controllecl
since transmission clrops are negated; a precise
voltage level can be set at the time of module manu-
facture. The voltage and tolerance to a high-per-
formance CMOS processor must be very tightly
controllecl in order to extract maximu~n perfor-
mance. %MI, Puturebiis+, ant1 disk subsystems
all regulate the 48 VDC to lower voltages at a subsys-
tem-wide level, not at the module level.

The 48-lTDC modular power system consists of
one to three pasallel regulators, each of which pro-
duces 2400 watts of power. A maximally config
used cabinet needs 110 more than two power
regulators. An additional regulator can be config-
ured into the system to provide an ? z + l capability
for higher availabilitj~.

The power system also includes a battery
standby function that provides 48 VDC throughout
the system in the event of an AC power failure.
Unlike earlier VAX systems in which power was

niaintainetl o d y to systeln memory, the DEC 7000
keeps the entire system powered, including in-cabi-
net mass storage. Depending on the system config-
uration, power is maintained for a minimum of 20
minutes in an n+l power configuration. N+l
power with fill1 battery backup is standard on all
DEC 10000 systems.

The DEC 7000 system employs a highly intelligent
power subsystem with microprocessors in all 48-
volt regulators, which report status to processor
modules by means of a serial interconnect. System
software can therefore monitor a wide range of
power system operating parameters, including
voltage output, AC inpi~t, efficient): and battery
charge state. In a large configuration with optional
expander cabinets, the expander cabinet power sys-
tems also communicate with the systenl processors
to provide system-wide power status.

The UEC: 7000 and DEC 10000 systems are the fastest
uniprocessor and multiprocessor, microprocessor-
based computer systems in the worlcl as of their
introduction date (10 November 1992) and as
definecl by SPEC89 and SPEC92 benchmark data. For
compute-intensive benchmarks, the I>EC 10000 is
approximately 10 percent faster than the DEC 7000,
basetl entirely on the difference in processor clock
speed.

The base performance of the DEC: 7000 ant1 DEC
10000 systems is determined by the speed of the
processor chip and is heavily influencetl by cache,
memory, and 1/0 subsystems. The design goal for
the DEC 7000 and DEC 10000 systems was to extract
the maximum possible performance from the
DECchip 21064 by providing an electrical and physi-
cal environment capable of supporting 200-MHz
processor operation as well as large c;tclies, a
large and fast memory s~tbsystem, and m~~lt iyle t/O

subsystems.
While h111 system-level performance data is still

being collected, the very high speecl processor per-
formance measurecl on the SPEC benchmarlcs com-
bined with the very high performance cache,
memory, and I/O subsystems of the DEC 7000 ant1
DEC 10000 systems s h o ~ ~ l d yield very im],ressive
overall systenl performance. See Table 1.

Design Process
The DEC 7000 system was specified, designecl, ant1
tested by a group of approximately 200 people in
Boxboro, Massachusetts. The system design teani

Digital Technical Journal 1/01. 4 No. 4 SpectalIss~te 19% 109

Alpha AXP Architecture and Systems

Table 1 DEC 7000 and DEC 10000 System (primarily multiprocessor VAX 6000 Model 500 sys-
Performance Measurements tems) and used over 325,000 hours of CPtJ time

DEC 7000 DEC ,0000 for simulations.
- - - --

SPECmark89 167.4 184.1
SPECint89 95.1 104.5
SPECfp89 244.2 268.6
SPECint92 96.9 106.5
SPECfp92 182.1 200.4
SPECthroughput89

(4 CPUs) 604.4 654.6

LINPACK double-precision
100x1 00 (MFLOPS) 38.6 42.5
1000x1 000 (MFLOPS) 102.1 111.6

was responsible for all aspects of the design except
the DECchip 21064 microprocessor.

Conceptual work on a system to follow the Vi\x
6000 family was started in early 1989, although at
that time design work was focused on iniplernenta-
tions using VAX and MIPS R4000 processors. I11 the
latter part of 1989, the tlecision was made to pursue
the Alpha AXP strategy, and earlier concepts were
reworked to incorporate much higher levels of per-
formance to accommodate the proposed Alpha
AXP chip.

In October-December 1989, a core team of
approximately 10 engineers was assembled to
firmly define system architecture and to produce
specifications for all subassemblies. By July 1990 all
specifications were complete, and implementatjon
was started. The first processor module was pow-
ered up in June 1991, followed by a full system
power-up in September 1991. The VMS operating
system was booted on a DEC 7000 system on
September 9, 1991, ancl OSF was booted in
November 1991.

A minimal DEC 7000 system includes 430,000
gates of logic contained in gate arrays, whereas a
minimal VAX 6000 Motlel200 includes 94,000 gates.
Despite more than four times the gate count,
the clesign portion of the DEC 7000 program was
completed in approximately 9 months as com-
pared to 12 months for the VAX 6000 program. This
reduction in design time was achievable in part
because of the maturing of the engineering pop-
ulation (many of the DEC 7000 engineers had
worked on various VAX 6000 implementations),
as well as advances in design tool technology alld
the availability of significantly more powerh~l
computers for design simulation. At its peak, the
DEC 7000 program was consuming 1500 VAX units
of performance, or WPs, of compute power

Conclusion
Tlle DEC 7000 and DEC 10000 systems are the sec-
oncl generation of highly configurable and expand-
able systems produced by Digital Equipment
Corporation. These are the first systems expressly
designed to accommodate multiple-processor archi-
tecture types. As computer technology moves for-
ward at an ever-increasing pace, this type of clesign
will be cletnandetl by computer users and will be
necessary to manage engineering costs.

The DEC 7000 and DEC 10000 system platform
will accommodate new VAX and Alpha AXP proces-
sors for several years. Over that time, this platform
will span a performance range of greater than 50:l.
It will provide computer users with a stable system
environment tl~at should help minimize the changes
caused by the continued development of new pro-
cessor chil?s. While this level of flexibility incurs
additional initial engineering ant1 product costs, it
does provide a very cost-effective way to cleal with
the inexorable forward march of technology

Ackninuledgments
The following engineers formed the system archi-
tecture team of the project that protluced the DEC
7000 and DEC 10000 and VAX 7000 and VAX 10000
products: Frank Romba, Reinhard Schumann, Mike
Callander, Steve Polzin, Kathy Harrington, Dave
Mayo, Catharine van Ingen, Vicky Triolo, Bob
Dickson, Dave O'Keefe, Jim Leahy, Hansel Collins,
Jim Stegeman, Darrel Donaldson, Dave I-Iartwell,
Charlie Barker, Mark Stefanski. Brian Allison.
Various parts of this text originated within engi-
neering specifications written by this team.

References

1. Digital Technical./o~trnal, vol. 2, no 2, featuring
papers on the VA;\; 6000 Model 400 (Spring 1990).

2. G. lJNer et a]., "The ~VAX and NVAX+ High-perfor-
mance VAX Microprocessors," Digital Teclwzical
Journal, vol. 4, no. 3 (Summer 1992): 11 -23.

3. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual-
issue CMOS Microprocessor," Digital Technical
Jounzal, vol. 4, no. 4 (1992, this issue): 35-50.

4. A.J. Smith, "Cache Memories," Coflzpc~ting
S~rrvq1s, vol. 14, no. 3 (September 1982).

110 W1. 4 A1o. 4 .Fpecial lsslre 1991 Digital Technical Journal

Nancy l? Kronenberg
Thomms R. Benson
Wayne M. Cardora

Ravindran Jagannuthan
BenjaminJ Thomas 111

Porting OpenVMS
from VAX to Alpha AXP

The Open ViVlS operating system, developed by Digital for the VAX famnilj~ of comnput-
ers, zuas recently moved from the VAX to the Alpha AXP architecture. The Alpha AXP
architect~lre is n new RISC architect~~re introduced In/ Digital in 1992. This paper
describes solutions to severalproblerns in porting the operating systeml in addition
to perjonnance benefits nzeaszlred on one of the systems that implements this new
architecture.

The VAX architecture is an example of complex
instruction set coniputing (CISC), whereas the
Alpha AXP architecture is basecl on reduced instruc-
tion set conlputing (RISC). The two architectures
are very different.' ClSC architectures have perfor-
mance disadvantages as compared to RISC architec-
t u r e ~ . ~ Digital ported the OpenVblS system to the
Alpha architecture mainly to deliver tlie perfor-
mance advantages of RISC to OpenVMS appli-
cations. This paper focuses on how Digital's
Open\lMS AXP operating system group dealt with
the large volume of VAX assembly language and
with system kernel modifications that had VAX
architecture dependencies.

The OpenVMS AXP group had two impor-
tant requirements in addition to tlie primary goal
of increasing performance: first, to make it easy
to move existing users and applications from
OpellVMs VAX to OpenVlMS U P systems; second, to
deliver a high-quality first version of the product
as early as possible. These requirements led us to
adopt a fairly straightforward porting strategy with
minimal redesigns or rewrites. We view the first
version of the OpenVMS i\XP product as a begin-
ning, with other evolutiona1-y steps to follow.

The Alpha ASP architecture was designed for
high performance but also with software migration
from the \AX to the Alpha t\Xp architecture in mind.
Included in the Alpha AXP architecture are some
\'/I>; features that ease the migration without com-
promising hardware performance. VAX features
in the Alpha IU(P architecture that are important
to OpenVMS system software are: four protec-
tion mocles, per-page protection, and 32 interrupt

priority levels. The Alpha AXP architecture also
defines a privileged architecture library (PAL) envi-
ronment, which runs with interrupts disabled and
in the most privileged of the four modes (kernel).
PALcode is a set of Alpha ASP instructions that exe-
cutes in the PAL environment, implementing such
basic system software functions as translation
buffer (TB) miss service. On OpenVMS AXP systems,
PALcode also implements some OpenVMs VAX fea-
tures such as software interrupts and asynchronous
traps (ASTs). The combination of hardware archi-
tecture assists and OpenVMS AXP PALcode made it
easier to port the operating system to the Alpha
AXP architecture.

The VAX architectrlre is 32-bit; it has 32 bits
of virtual address space, 16 32-bit registers, and a
comprehensive set of byte, word (16-bit), and long-
word (32-bit) instructions. The Alpha ASP archi-
tecture is 64-bit, with 64 bits of virtual address
space, 64-bit registers (32 integer and 32 floating-
point), and instructions that load, store, and oper-
ate on 64-bit quantities. There are also longword
load, store, and operate instructions, and a canoni-
cal sign-extended form for a longword in a 64-bit
register.

The OpenVMS AXP system has anticipated evolu-
tion from 32-bit address space size to 64-bit address
space by changing to a page table format that sup-
ports large address space. However, the OpellVMS
software assumes that an address is the same size as
a longword integer. The same assumption can exist
in applications. Therefore, the first version of the
OpenVMS iUCP system supports %-bit address space
only.

Digital Techrtical Journal Vo/ 4 N o 4 .T /~e~ la l lssne 1992 111

Alpha AXP Architecture and Systems

Most of the OpenV,\j1s kernel is in Vt\X assembly
language (VAX MA<:It0-32). Instead of rewriting the
VAX h,h\CR(>-32 code in nothe her language, we devel-
opecl a compiler. In adtlition, we requiretl inspec-
tion and ~nanual ~nodification of the Vt\S MA(:KO-32
code to deal with certain VAX' architecttlr;il tlepen-
dencies. Parts of the ker~lel that dependetl heavily
on the VAX ;~rcliitccture were rewritten, but this
was a small percentage of the total volume of \lilX
MACRO-32 source cocle.

Compiling VAX MACRO-32 Code for the
Alpha AXP Architecture
Simply statetl, tlie VAX >IACI<O-32 compiler treilts
VAX >lA<:llO-32 as a source language to be conlpiled
;ant1 creates native OpenVMS AXP object files just ;is
;I FORTRAN compiler might. This task is f;lr more
cornplex than a simple ins t ruct ion-by- ins t r~~ct io~~
translation because of fi~ndamental differences in
the architectures, :~ncl because source cocle fre-
cluently contains assuml,tions about the \/AX archi-
tecture ancl the OpenV>lS Calling Stantlartl o n VAX

systen1s.5.~ The compiler must either transp;u-ently
convert these Vr\X depcntlencies to rlieir OpenVMS
AXP counterpans or inform the user that the source
cvtle has to be cli;~~igetl.

Source Code Annotation
We extentled the Vt\X MACRO-32 source I;~ngu;ige to
inclucle entr!.-point tleclarations and other tlirec-
rives for the compiler's use, which provjcle more
information about the intentled behavior of the pro-
gram. Entry-point decl;~rations were introtlucecl to
allow declaration o f : (1) tlie register semantics for
;I routine when the tlel;~ults are not approlxi;~te ;lnd
(2) the speci;~lized semantics of frameless subrou-
tines and exception routines to be dec1;irecl.

The differing register size between the VAX and
the Alpha ,\XP arcliitect~~res influencetl tlie clesign
of tlie compiler. On tlie VAX, BWCRO-32 operates on
32-bit registers, :mtl in general, the compiletl code
~iiaintains 32-bit sign-estendetl values in Alpha AXP

64-bit registers. However, this code is now part
of a system th;~t uses true 64-bit values. As a result,
we designed the compiler to generate 64-bit regis-
ter saves of ;illy registers modified in a routine,
:IS part of the "routine prologue cotle." Autoni;~tic
register preservation 11;s proven to be the safest
default but must be overriclden for routines that
return valires in registel-s, using appropri;~te entry-
point dec1ar:itions.

Other directives allow the user to provide addi-
tional information about register state and code
flow to improve generated code. Another class of
directives instructs the compiler to preserve the
VAX behavior with respect to gran11l;lrity of mem-
ory writes or atomicity of memory updates. The
Alpha t \XP architecture makes atomic updates and
gu;~ranteed write granularity sufficie~ltly costly to
performance that they shou Id be enabled only
when required. These concepts are discusset1 in
the section Major Architecti~r:il Differences in the
OpenV31S Kernel.

As mentioned earlier, the compiler must either
transparently support VAX architecture-tlepe~itlent
constructs or infor111 the user that ;I source change
is necess;rrv. A good example of the latter case is
reliance on VAS)SH/RS13 (jump to subroutine and
return) instruction return atltlress semantics. On
VAX systems, :I JSB instruction leaves the return
acldress on top o f the stack, which is used by the
HS13 instruction to r e t u r ~ i . ~ System subroutines
often take ;~tlvant;~ge of this semantic in order to
change the rettrrn adtlress. This level of stack con-
trol is not ;~v;rilable in a compiletl language. In
porting the OpenVMS system to the Alpha L Y P
architecture, we developed altern;~tive cotling prac-
tices for this and many other notltr;rnsportal~le
itlioms.

The co~npiler must also account for the dif-
ferences in tlie Openvh4S Calling St:~ndartl on the
VAS and Alpha AX]' architectures. Although trans-
parent to high-level language progr;lniniers, these
differences are very significant in assembly lan-
guage p rog ra~ i~n~ ing .~ To operate correctly in a
mixed language environment, the code generated
by the \(AX hlA<:RO-32 co~iipiler must conform to
the <)penVMS (blling Standard on the Alpha LYP
architecture.

On WX systems, a routine refers to its argurnents
by means of a11 argument pointer (AP) register,
which points to an argument list that was built in
nien1or)l by tlie soutitie's caller. 011 Alpha AXP sys-
tems, up to six routine arguments are passed to the
c;~lletl routine in registers: any ;~dtlitional argii-
ments ;ire p;~ssetl in stack locatiorls. Normally, the
VAS Mt\(;RO-32 co~iipiler transparentl). converts
M-basecl references to their correct Alph:~ AXP loca-
tions ant1 converts the cotle that builtis the list to

112 Vol. 4 hb. 4 Speclnl Issne 1 9 2 Digital Technical Jotrmnl

Porting OpenVMS from VXX to Alpha AXP

initialize the arguments correctly. In some cases,
the compiler cannot convert all references to their
new locations, so an emulated VAX argument list
must be constructed from the arguments received
in the registers. This so-calletl "homing" of the argu-
ment list is required if the routine contains indexed
references into the argument list or stores or p?. , sses .
the address of an argument list element to another
routine.

The compiler identifies these coding practices
during its process of flow analysis, wliich is similar
to the analysis done by a standard high-level lan-
guage optimizing compiler. The compiler builds a
flow graph for each routine and tracks stack depth,
register use, condition code use, and loop depth
through all paths in the routine flow. This same
information is requiretl for generating correct and
efficient code.

Access to Alpha AXP
Instructions and Registers
In addition to providing migration of existing VA>;

cocle. the VAX ,MACRO-32 compiler includes support
for a subset of Alpha AXP instructions and PALcotle
calls and access to the 16 integer registers beyond
those that map to the VAX register set. The instruc-
tions supported either have no direct counterpart
in the VAX architecture or are required for efficient
operation on a full 64-bit register value. These
"built-ins" were required because the OpenviMs
AXP system uses full 64-bit values for some opera-
tions, such as manipul;~tion of 64-bit page table
entries (PTEs).

Optimization
The compiler includes certain optimizations that
are particularly important for the Alpha AXP archi-
tecture. For example, on a VAX system, a reference
to an external symbol would not be considered
expensive. On an Npha AX'P system, however, such
a reference requlres a load from the linkage section
to obtain the address of the symbol prior to loading
the symbol's value (The linkage section is a data
region used for resolving external references ')
Multiple loads of this address from the linkage
section may be reduced to a single load, or the
load may be moved out of a loop to reduce memory
references.

Other optimizations include the elimination
of memory reads on multiple safe references, regis-
ter state tracking for optimal register-based mem-
ory references, redun~lant register save/restore

removal, and many local code generation optimiza-
tions for particular operand types. Peephole opti-
mization of local code sequences and low-level
instruction scheduling are performed by the back
end of the compiler.

In some instances, the programmer has knowl-
edge of register state or other code behavior that
cannot be inferred from the source code alone.
Compiler directives are provided for specifying reg-
ister alignment state, structure base address align-
ment, and likely flow paths at branch points.

Certain types of optimization typically per-
formed by a high-level language compiler cannot be
performed by the VAX W R O - 3 2 compiler, because
assumptions made by the MACRO-32 programmer
cannot be broken. For example, the order of mem-
ory reads may not be changed.

Major Architectural DtHerences
in the OpenVMS Kernel
This section concentrates on architectural changes
that affect synchronization, memory management,
and I/O. These are not the only architectural differ-
ences that cause significant changes in the kernel.
However, they are the major differences and are
representative of the effort involved in porting the
OpenVMS system to the Alpha AXP architecture.

For the most part, it was possible to isolate archi-
tecture-dependent changes to a few major sub-
systems. However, differences in the memory
reference architecture had a pervasive impact on
users of shared data and many common synchro-
nization techniques. Other differences such as
those related to memory management, context
switching, or access to I/O devices were confined
mostly to the relevant subsystems.

Effects of Architectural Dzffeel-ences
in Memory Subsystems
The following differences between the VAX ancl
Alpha AXP memory reference architectures affected
synchronization:',3

Load/store architecture rather than atomic mod-
Ify instructions

Longword and quadword writes with no byte
write instructions

Read/write ordering not guaranteed

Load/store memory reference instructions are
characteristic of most RlSC designs. However, the
other differences are less typical. The reasons for all

Digital Technical Jorrrnnl Vvl. 4 No. 4 Special Issue 1992 113

Alpha AXP Architecture and Systems

three rlifferences were hiirdware simplification and
opportilnities for increased hardware perfor-
mance.' These differences result in significant
changes in system software ant1 in many opportitni-
ties for subtle errors, which can be detected only
under heavy loacl. Adapting to these architecti~ral
changes without greatly inilxrcting performance
was one of the major c11;tllenges that faced the
group in porting the OpenVMS system to the Alpha
AXP architecture.

A load/store architecture s i~ch as Alpha I-IS~' can-
not provide the atomic read-motlify-write instruc-
tions present in the vt\X architecture. Tllus,
instruction sequences are necessary for many oper-
ations performed by a single, atomic VAX instruc-
tion, such as incrementing a memory location. The
consequence is 21 need for increased awareness of
synchronization. Insteatl of depending on hartl-
ware to prevent interference between multiple
threads of execution on a single processor, explicit
softw;u-e synchronization may be reqi~iretl.
Without this synchronization, the interleaving of
indepentlent load-modify-store sequences to a sin-
gle tnemory location may result in overwritten
stores and other incorrect results.

The lack of byte writes i~iiposes addition;ll syn-
chronization burdens on software. Unlike VAX and
most lus(: systems, an Alph;~ t\Sp syster-il has instruc-
tions to write only longwords and 64-bit quad-
words, not bytes or words. 'l'hus to write bytes, the
software must include a sequence of instructions
that reads the encompassing longword, merges in
the byte, and writes the longword to memory. As
a conseqitence, software must be concernetl not
only with shared access to the same memory cell by
multiple threads, but also with access to indepen-
dent but adjacent variables. Synchronization aware-
ness is now extencled from sharetl data to tlata
items that are merely near each other.

The OpenVMS tV(P operating system group
avoided the above-mentionetl problems introduced
by the ;~rchitectural changes in one of three ways:

Explicit software synchronization was added
between threads.

Data items were relocated to aligned Longwords
or quadw~ortls.

= Alph;~ ,\XP load locked and store conditional
instructions were used.

The obvious solution ofatlding explicit synchro-
nization in the form of a software lock is not always

appropriate for several reasons. First, the problem
may be independent data items that happen to
share a longword. Synchronizing this sort of access
in unrelated code paths is prone to error. Explicit
syncl1roniz;ition ma)! also have an unaccept;~ble
performance impact. Finally, deadlocks are a possi-
bility if one thread interri~pts nothe her.

Ensuring that data items are in aligned long\vords
or qu;itlwords both improves performance ant1
eliminates interactions between unrelated data.
This technique is used wherever possible but can-
not be used in two major cases. One case occurs
when the replication fictor is too l;irge. Exp;incling
an array of thousantls of bytes to longwortls may
simply not be acceptable. The other major problem
case is data structures that cannot be changed
because of external constr;lints. For example, tliita
may represent a protocol message or a structure
primarily resitlent on disk. Separate internnl and
extem;il fonlis of such data strilctilres could exist,
but the performance cost of continuous conver-
sions may not be acceptable.

Often the easiest and highest-performance WAY
to solve synchronization problems is to use
sequences of load locked and store conditional
instructions. 'The load locl<ed instruction loads ;in
aligned longword or quaclwortl while setting a
hart1w;tre flag that indicates the physical atltlress
that was loadecl. The h;~rtlware flag is cleared if any
other tlire:id, processor, or I/() device writes t o the
locked memory location. The store conditional
instruction stores an aligner1 longworcl or cluacl-
word if and only if the hardware lock flag is still set.
Otherwise, the store returns ;in error i~ldic;itiot~
without modifying the storage location. These
instructions ;~llow the construction of atomic rcad-
modify-write sequences to update any datum th;rt is
contained within a single aligned quadword. Thcse
sequences of instructions are significantly slower
than normal loads and stores due to the necessity o f
waiting for the write to reach a point in the meni-
ory hierarchy where consistency can be girar;tn-
teed. In atltlition, their use i?lay inhibit 111any
compiler optimizations because of restrictions on
the instructions between the load and store.
Although faster than most other synchronization
methods, this mechanism shoi~ld be used sparingly

The lack of guaranteed read/write ordering
between multiple processors is another complic;i-
tion for the programmer trying to achieve proper
s)~nchronization. Although not visible 011 a single
processor, this lack of ordering means that one

114 Vol. 4 ,Ib, 4 .Spc.cinl [safe 1992 Digilnl Tecb~ricnl Jourrrnl

Porting 0penVMS f r o m VAX to Alpha AXP

processor will not necessarily observe memory
operations in the ordcr in which they were issuecl
by another processor. Thus, many obvious synchro-
nization protocols will not work when writes to
the synchronization variable and to the data being
protected are observed to occur out of order.
A memory barrier instruction is provided in the
architecture to ensure ordering. However, the nega-
tive impact of this instruction on system perfor-
mance requires that it be used only when
necessary.

As described in the previous section, we used
various mechanisms to solve the synchronization
problems. Having multiple solutions allowecl us to
choose the one with the least performance impact
for each case. In some cases, explicit synchroniza-
tion was already in place due to multiprocessor syn-
chronization requirements. In other cases, we
expancled dat;~ structures at a cost of modest
amounts of memory to avoid expensive synchro-
nization when referencing clata.

Privileged Arcbitectzlre Changes
Unlike tlie pervasive architectural changes
describecl in the previous section, the privileged
architecture clifferences had a more limited impact.
'The primary remaining areas of change are the
new page table formats and the details of process
contest switching. This section describes mem-
ory managenlent as a representative example.
However, many limited changes still amount to
modifying virtually every source niodule in the
OpenVMs kernel, even if only to add compiler
directives.

Melnory Management Not surprisingly the mem-
ory man;igement subsystem required the most
change when moving from tlie VAX to the Alpha
A S P architecture. Aside from the obvious 64-bit
addressing capability, two significant differences
exist between the page table structures on the VAX

and the Alpha AXP architectures. First, Alpha A S P
does not have an architectural division between
shared ancl process private address space. Seconcl,
the Alpha AXP three-level page table structure
shown in Figure 1 allows the sharing of arbitrary
subtrees of the page table structure and the effi-
cient creation of large, sparse address spaces. In
ziddition, future Alpha AXP processors may have
larger page sizes.

To meet our schedule goals, we decided initially
to emulate the VAX architecture's 32-bit address

space as closely ;IS possible. This decision recjuirecl
creating a 2-gigtbyte (GU) process private address
region (i.e., VAX PO and PI) ant1 a 2(;B shared
acldress region (i.e., VAX SO and S 1) for each pro-
cess. This is easily accomplished by giving each
process a private level 1 page table (Ll m) that con-
tains two entries for level 2 page tables (L2t'Ts).
One of these L2Ws is shared and implements tlie
sharecl system region, whereas the other is private
and implements tlie process private address
regions. Although the smallest allowed page size of
8 kilobytes (KB) results in an 8GR region for each
level 2 page table, we use only 2GB of each region
to keep within our ~ G B 32-bit limit. As shown
in Figure 1, the L2PTs are chosen to place the
base address of the shared system region at
F F F F F F F F 8 0 0 0 0 0 0 0 (hexadecimal), the same as the
sign-extencled address of the top half of the \'AS
arcliitecture's 32-bit address space.

Although changes were extensive in the memory
management subsystem, many were not conceptii-
ally difficult. Once we dealt with tlie new page
table structure, most changes were merely for alter-
native page sizes, new page table entry formats, and
changes to associated data structures. We tlitl

clecide to keep the OpenVMS VAX concept of map-
ping process page tables as a single array in shared
system space for our initial implementation.
Although not viable in the long term due to the
potentially huge size of sparse process page tables,
this decision minimized changes to code that refer-
ences process page tables. Having process page
tables visible in shared system space turned out to
be a significant complication in paging and in
address space creation, but the schedule benefits
derived from avoiding changes to other subs)~stcms
were considered worthwhile. We expect to ch~nge
to :I more general mechanism of self-mapping pro-
cess page tables in process space for a subsequent
OpenVMS AXP release.

Retaining the VAX appearance of process page
tables allowed us to meet our goals of minimum
change outside of tlie memory management subs)ls-
tenl. Unprivileged code is unaffected by the niem-
ory management changes unless it is sensitive to the
new page size. Even privileged code is generally
unaffected unless it has knowledge of the length or
format of PTEs.

Opl.i?r?ixcd T~*acllzslatio~z Buffer Use Thus fiir, we
may have given the impression that architectural
changes always create problems for software. This
was not universally true; some changes offered us

Digital Tcchrrical Jo~rrrrnl Vol 4 /\To. 4 Jpecrrrl lssrre 199.2 115

Alpha AXP Architecture and Systems

PAGE TABLE
BASE
REGISTER

m
LEVEL 1 I PAGETABLE
(L l PT)

LEVEL 3
PAGE TABLES

CODE OR
DATA PAGES

PO SPACE

LEVEL2 flyn +VIRTUAL ADDRESS 0
PAGE TABLES

PROCESS- I
PRIVATE

UNUSED

P I SPACE

+SOME P1 SPACE
VIRTUAL ADDRESS

LlPTE

+SOME SYSTEM SPACE
VIRTUAL ADDRESS

SYSTEM
SPACE
L3PT -

SYSTEM
SPACE
L3PT

Figure I OpenVMS AXP Page Table Structure

L3PTE

opportunities for significant gains. One such
change was an Alpha AXP translation buffer feature
called granularity hints. TBs are key to performance
on any virtual memory system. Without them, it
would be necessary to reference main memory
page tables to translate every virtual address to
a physical address. However, there never seems to
be enough TB entries. The Alpha AXP architecture
allows a single TB entry to optionally map a virtu-
ally and physically contiguous block of properly
aligned pages, all with identical protection
attributes. These pages are marked for the hard-
ware by a flag in the PTE.

Given granularity hints, near-zero TB miss rates
for the kernel became attainable. To this end, we
e~~hanced the kernel loading mechanisms to create
and use granularity hint regions.

The OpenVMS AXP kernel is made up of many
separate images, each of which contains several
regions of memory with varying protections. For

--n
example, there is read-only code, read-only data,
and read-write data. Normally, a kernel image is
loaded virtually contiguously and relocated so that
it can execute at any address. To take advantage of
granularity hints, kernel code and data are loaded in
pieces and relocated to execute from discontigu-
ous regions of memory. Only a very few TB entries
are actually used to map the entire nonpaged ker-
nel, and the goal of near-zero TB misses was
reached.

The benefits of granularity hints became immedi-
ately obvious, and the mechanism has since been
expanded. Now, the OpenVMS AXP system also uses
the code region for user images and libraries. This
feature extends the benefits not only to images sup-
plied by the OpenVMs system, but to customer
applications and layered products as well. Of
course, usage of this feature is only reasonable for
images and libraries used so frequently that the
permanent allocation of physical memory is

'0
+VIRTUAL ADDRESS

L3PTE FFFFFFFF80000000 SHARED
L2PT

116 Vol. 4 No. 4 Specinllssue 1992 Digital Technical Journal

4 UNUSED

L2PTE -

Porting OpenVMS from VXX to Alpha AXP

warranted. However, most applications are likely to
have such images, and the performance advantage
can be impressive.

I/O
Unlike the architectural changes, the new I/O archi-
tecture structures an area that previously was
rather uncontrolled. The project goal was to allow
more flexibility in defining hardware 1/0 systems
while presenting software with a consistent inter-
face. These seem like contradictory aims, but both
must be met to build a range of competitive, high-
performance hardware that can be supported with
a reasonable software effort.

The Alpha AXP architecture presents a number of
differences and challenges that impacted the
OpenVMS AXP I/O system. These changes spanned
areas from longword granularity to device control
and status register (CSR) access to how adapters
may be built.

CSR Access A fundamental element of I/O is the
access of CSRs. On VAX systems, CSR access is
accomplished as simply another memory reference
that is subject to a few restrictions. Alpha AXP sys-
tems present a variety of CSR access models.

Early in the project, the concept of I/O mailboxes
was developed as an alternative CSR access model.
The I/O mailbox is basically an aligned piece of
memory that describes the intended CSR access.
Instead of referencing CSRs by means of instruc-
tions, an I/O mailbox is constructed and used as
a command packet to an 1/0 processor. The mail-
box solves three problems: the mailbox allows
access to an I/O address space larger than the
address space of the system; byte and word refer-
ences may be specified; and the system bus is sirn-
plified by not having to accommodate CSR
references that may stall the bus. As systems get
faster, these bus stal Is are increasingly larger imped-
iments to performance.

Mailboxes are the I/O access mechanism on
some, but not all, systems. To preserve investment
in driver software, the OpenVMS U P operating
system implemented a number of routines that
allow all drivers to be coded as if CsRs were
accessed by a mailbox. Systems that do not support
mailbox I/O have routines that emulate the access.
These routines provide insulation from hardware
implementation details at the cost of a slight perfor-
mance impact. Drivers may be written once and
used on a number of differing systems.

Red/Write Ordering An I/O device is simply
another processor, and the sharing of data is a
multiprocessing issue. Since the Alpha AXP archi-
tecture does not provide strict read/write ordering,
a number of rules must be followed to prevent
incorrect behavior. One of the easiest changes is to
use the memory barrier instructions to force order-
ing. Driver code was modified to insert memory
barriers where appropriate.

The devices and adapters must also follow these
rules and enforce proper ordering in their interac-
tions with the host. An example is the requirement
that an interrupt also act like a memory barrier in
providing ordering. In addition, the device must
ensure proper ordering for access to shared data
and direct memory access.

Kernel Processes Another important way in
which the Alpha AXP architecture differs from the
VAX architecture is the lack of an interrupt stack.
On VAX systems, the interrupt stack is a separate
stack for system context. With the new Alpha AXP
design, any system code must use the kernel stack
of the current process. Therefore, a process kernel
stack must be large enough for the process and for
any nested system activity. This burden is unreason-
able. A second problem is that the VAX V 0 sub-
system depends on absolute stack control to
implement threads. As a result, most of the I/O code
is in MACRO-32, which is a compiled language on the
OpenvMS AXP system that does not provide abso-
lute stack control.

These facts resulted in the creation of a kernel
threading package for system code at elevated inter-
rupt priority levels. This package, called kernel pro-
cesses, provides a set of routines that support a
private stack for any given thread of execution. The
routines include support for starting, terminating,
suspending, and resuming a thread of execution.

The private stack is managed and preserved
across the suspension with no special measures on
the part of the execution thread. Removing require-
ments for absolute stack control will facilitate the
introduction of high-level languages into the I/O
system.

Performance
As stated earlier, the main purpose of the project
was to deliver the performance advantages of RISC
to OpenVMS applications. We adopted several
methods, including simulation, trace analysis, and a
variety of measurements, to track and improve

Digital Technical Jorrrrrnl Vol. 4 No. 4 Special ISSLL~ 1992 117

Alpha AXP Architecture and Systems

operating system and application performance. 35

This section presents data on the performance of
OpenVMS services and on the SPEC Release 1 bench- 30

mark suite.5 Note that all Alpha LYP results are
preliminar)! m25 +

(I)

Performance of OpenVMS Services 20
0

To evaluate the performance of the OpenvlLls l 5
system, we used a set of tests that measure the CPU 5
processing time of a range of OpenVMS services. 10

These tests are neither exhaustive nor representa-
tive of any particular workload. We w e relative CPU 5

speed (i t . , VAX CPU time divided by Alpha U P CPU

time) as a metric to truly conlpare CPU perfor- ~
~p -

O 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0>2.0
mance. For I/O-related services, a RAM disk was RELATIVE CPU SPEED

used to eliminate I/O latencies. Notes:

The tests were run on a Vi\X system and an Alpha
LYP system that are the same except for the CPrJ
Table 1 shows the configuration details of the two
systems. Figure 2 shows the distribution of the rela-
tive CPU speed for the OpenVMS services measured.
Most tests ran between 0.9 and 1.7 times faster on
the Alpha AXP system than on the VAX system. Table
2 contains the results for a representative subset of
the measured OpenvlLls services.

Application Performance
Applications vary in their use of operating system
services. Most applications spend the ~najority of

1. The relative CPU speed equals the CPU time on a VAX system
divided by the CPU time on an Alpha AXP system.

2. A relative CPU speed greater than 1.0 implies that the Alpha AXP
system is faster.

3. The total number of tests is 198.

Figure 2 Distribution of Relative CPUSpeed
for OpenVMS Services

their time performing application-specific work
and a small fraction of their time using operating
system services. For these applications, perfor-
mance tlepends mainly on the performance of
hardware, compilers, and run-time libraries. We

Table 1 Configuration Details for OpenVMS Services Test Environment

VAX System Alpha AXP System

Model number

Clock rate

VAX 7000 Model 61 0

91 MHz

DEC 7000 Model 61 0
182 MHz

Memory size
On-chip cache size

Backup cache size
Translation buffer

Page size

Number of registers

OpenVMS version

1 KB virtual I-cache
8KB physical I- and
D-caches
4MB I- and D-caches
96 entries

51 2 bytes
16 32-bit GPRs

8KB physical I-cache
8KB physical D-cache

4MB I- and D-caches
12 ITB entries
32 DTB entries

32 64-bit integer
32 64-bit floating-point

Key:
I Instruction
D Data
ITB Instruction translation buffer
DTB Data translation buffer
GPR General-purpose register

118 Vol. 4 No. 4 Special Iss~ce 1992 Digital Tecb$rical Jourrral

Pol-ting OpenVMSfro~n VAX to Alphcr AXP

Table 2 Relative CPU Speed for a Subse t
of OpenVMS System Services
and Primitives

OpenVMS System Service Relative
or Primitive CPU Speed

Memory Management Services
Create virtual address space
Delete virtual address space
Expand address region
Page fault without I10

(soft page fault)
Logical Name Services

Translate a logical name
Event Flag Services

Set an event flag
Clear an event flag

Process Control Services
Create a process and

activate an image
File System Services
(File on a RAM Disk)

File open
File close
File create
File delete

Record Management System (RMS)
Services (File on a RAM Disk)

Get record from a sequential file
Put record into a sequential file

Note that the relative CPU speed equals the CPU time on a VAX
system divided by the CPU time on an Alpha AXP system. A
relative CPU speed greater than 1.0 implies that the Alpha AXP
system is faster.

used the SI'E(: Release 1 benchm;~rks as representa-
tive of such applications. Table 3 shows the details
of the VAX ;llid Alpha A S P systems on which the
SPEC Release I suite was run, ;inti Table 4 contains
the results. "l'he Sl-'E(:rnark89 comparison shows
that the OpenV1US AXI' system outperforms the
OpenViLIs M\X system by ;I blctor of 3.59.

The perform;~nce of OpenVNlS services and the
SPECmark results ;Ire consistent with other stiidies
of how operating system primitives and SPECmark
results scale between ClSC and RISC6 Overall, the
results are very encour;~ging for a first-version
product in which redesigns were purposely limited
to meet an aggressive sclietli~le.

Conclusions
Some OpenVMS VtlX features such as symmetric
multiprocessing and VMScluster support were

deferred from the first version of the OpenVMS AX]'
system. Beyond this, we anticipate taking signifi-
cant steps to better exploit the hardware architec-
ture, including evolving to a true 64-bit operating
system in a staged fashion. Also, detailed ;~n;~lysis of
performance results shows the ~ieecl to alter inter-
nal designs to better match KISC architecture.
Finally, a graclual replacement of Vr\S NLlCRO-32
source with a high-level 1;ingu;lge is essential to sup-
port a 64-bit virtual address space and is an impor-
tant element for increasing performance.

The OpenVMS AXP system clearly tlemonstrates
the viability of making dramatic changes in tlic
fundamental assumptions of a m;lture opernt-
ing system while preserving the investment
in software Iayeretl on the system. Thc future
challenge is to continue operating system evolu-
tion in order to provide more capabilities to appli-
cations while maintaining that essential level of
compatibility.

Acknowledgments
The work described in this paper was done by
members of the Open\JMS A X P operating system
group. This work would have been impossible witli-
out the help of many software and hardware engi-
neering groups at Digital. Thanks to Bradley
Waters, who measured OpenVMS performance, ant1
to John Shakshober ancl Sandeep Dcshmukh, who
obtained the SPEC Release 1 benchmark results. We
also thank Barbara A. Heath and Kathleen D. Morse
for their comments, which lielpetl in preparing this
paper.

References

1. R. Sites, "Alpha ASP Architecture," I)i~itrrl Tech-
nicfll Jotirncll, vol. 4, 1 1 ~) . 4 (1992, this issue):
19-34.

2. D. Bhandarkar and D. Clark, "Performance from
Architecture: Comparing a NS<; ancl a CISC with
Similar Hardware Organization," Proceedings
the Fourth International Corzferelzce o r z Arcbi-
tectzlre Support Jor Propmmitzg Larz~rtrct~,es
and Operating Systems (ASI-?(,OS-IV) (New York,
NY: The Association for Computing Machinery,
1991): 310-319.

3. T. Leonard, ed., VAX Architecture ReJerence
Manual (Bedfortl. ,MA: Digital Press, 1987).

Alpha AXP Architecture and Systems

Table 3 Configuration Details for the SPEC Release 1 Benchmark Test Environment

VAX System Alpha AXP System

Hardware
Model number

Clock rate
Backup cache size

Memory size

Software

Operating system and version

Compilers and version

Other software

VAX 7000 Model 61 0
91 MHz

4MB I- and D-caches
128MB

OpenVMS V5.5-2 Field Test
VAX C V3.2
VAX FORTRAN V5.7
with HPO V1.3
(high-performance option)
KAP V1.O for VAX C
and FORTRAN

DEC 7000 Model 61 0
182 MHz
4MB I- and D-caches

256MB

OpenVMS V1.O

Pre-release C compiler
Pre-release FORTRAN compiler

KAPFIKAPC V1.49 native
KAP for Alpha AXP systems

Key:
I Instruction
D Data

Note that DECram, a memory-resident disk device, was used to create and manage memory-resident disks

Table 4 SPEC Release 1 Benchmark Results

SPEC Benchmark
Name and Number

VAX 7000
Model 610
SPECratio

DEC 7000
Model 61 0
SPECratio

Relative
Performance

Note that relative performance represents the ratio of DEC 7000 Model 610 performance to VAX 7000 Model 610 performance.

4. 0penKtfS Calling Standard (Maynard, MA:
Digital Equipment Corporation, October 1992).

5. SpecNewslettel; vol. 4, no. 1 (March 1992).

6. T. Anderson, H. Levy, B. Bershad, and E.
Lazowska, "The Interaction of Architecture and
Operating System Design," Proceedings of the
Fourth International Conference on Architec-
ture Strpport for Programming Langtlages an61
Operating Systems (ASPLOS-IV) (New York, NY:
The Association for Computing Machinery,
1991): 108-120.

General References

R. Goldenberg ancl S. Saravanan, VlW forAlyhu Plnt-
forms Internals ancl Data Strzrctures, Preliminary
edition of vols. 1 ancl 2 (Maynard, {MA: Digital Press,
1993, forthcoming).

J. Hennessy ant1 D. Patterson, Computer Architec-
tzrre, A Quantitative Approach (San Mateo, CA:

Morgan Kaufmann Publishers, Inc., 1990).

R. Sites, ed., Alpha Architecture Refi?rerzce Mnr?unl
(Burlington, MA: Digital Press, 1992).

120 Vo1. 4 I\'(). 4 Specinllssue 1992 Digilnl Technicul Jouri~c~l

David S. Blickstein
Peter W Craig

Caroline S. Dauidson
R. Neil Faiman, Jr.

Kent D. Glossop
Richard B. Grove

Steven 0. Hobbs
William B. Noyce

The GEM Optimizing
Compiler System

The GEIVI colnpiler systenz is the technology Digital is using to bziild state-of-the-art
conzpiler prod~lcts for a uc11~iet31 of langz~clges and ha?.d~~~are/softzilare platforms.
Portc~ble, modt~lar soJltuare colnponemzts with carefttllly specifiecl intevaces simplify
the engineering of diverse compilers. A single optimizer; independent of the kcin-
gtiage and the targetplntfonn, transjomns the intermediate lnmzgzlage gene~uted @ J

the front end into a semantic all]^ equiu~rlent fornz that execzltes faster on the target
machine. The GLibl system supports a range of languages and has been s~lccessfL11ly
retargeted and rehosted for the Alpba AXP G I I Z ~ ,VlIPS architectures and for several
operating environl?zents.

I11 the past, Digital has made major investments
in optimizing compilers that were specifically
directed at one hartlware platform, namely \',AX

computers. When Digital began broadening its
hardware offerings to include reduced instruction
set computer (MSC) architectures, it became clear
that new optimization technology was needed, as
well as a new strategy for leveraging investments in
compiler techno log)^ across an increasing rllrmber
of I~ardware platforms.

This paper presents a technical description of
the GEM compiler technology that Digital uses to
generate compiler products for a wide range of
hartlware and software combinations. We begin
with an explanation of the GEM strategy of leverag-
ing investmellts by using portable, modular soft-
ware components to build compiler products. The
bulk of the paper describes the GEM optimizer and
cotle generator technologies, with a focus on how
they adclress challenges posed by the Alplla AXP
architect~1re.l W then move to a discussion of com-
piler engineering and conclutle with an overview
of some planned enhancements to the software.

GEM Compiler Architecture
Because of the many hardware platforms available,
often with multiple operating systems and a v;~riety
of languages offered on those platforms, builtling a
compiler from scratch for each combination is no
longer feasible. To simplify the engineering of

diverse compilers, GEM compiler products share a
basic architecture. The compiler is divided into sev-
eral major components, in effect, the fi~ntlamental
building blocks from which a compiler is con-
structed. The interfaces among these components
are carefully specified. The major components of a
GEM compiler are the front end, the optimizer, the
code generator, and the compiler shell. The logical
clivision of GEM colltponents and the range of GEM
support is shown in Figure I. Note that the host is
the computer on which the conlpiler runs, and the
target is the computer on which the generated
object runs.

The front end performs lexical analysis anel pars-
ing of the source program. The primary outputs are
interme~liate bng~ iage (IL) graphs and symbol
tables, which are both standardized. In an IL graph,
each node, referred to as a tctple, represents a n
operation. Front ends for a11 source languages
translate to the single standard IL. All Ianguage-spe-
cific code is encapsulated in the front end. All
knowledge of the source language is cornmuni-
cated in the IL or through callbacks to the front end.
Knowledge of the target liarclware is represented in
tables and in a minimal amount of conditional cocle.

The optimizer transforms the IL generateel by the
front end into a semantically equivalent form that
will execute faster on the target machine. A signifi-
cant technical achievement is that a single opti-
mizer is used for all languages and target platforms.

Digilrrl Technical Jorrrtirrl Vol. 4 IVO. 4 Spccirrl I s s l~e 1992 121

Alpha AXP Architecture and Systems

FRONT END SHELL CODE GENERATOR

LANGUAGES OPERATING SYSTEM HOST CPU OPERATING SYSTEM TARGET CPU

Alpha AXP OpenVMS
BLISS

ULTRIX ULTRIX Olhers
Windows NT Windows NT

COBOL
Fortran
Pascal OPTIMIZER

Opal

Figzlre I GEIM Corlzponents and Supported CPUs, Operatiizg Syste~ns, cind Lcrngz~~zglges

The codegc.rzerc~r"or translates the 11. into ;I list ot
code cells, each of which represents one machine
instruction for the target hardware. Virtually all the
target machine instruction-specific code is encap-
sulated in the cotle generator.

The shell is a collection of common compiler
functions such as listing generators, object file
emitters, and command line processors. Basically,
the shell is a portable interface to the external envi-
ronnient in which the compiler is used. 7'liis inter-
face allows the other components to remain
independent of the operating system.

There are numerous benefits to this modu1;ir
approacli:

Adding a new feature to a common component
enhances many products.

Source language compatibility is ensr~red ;itnong
all cornl~ilers that use the same front entl.

Standardizetl interfaces enable us to plug in ;I

new front end to build a conlpiler for a new [;in-
guage, or a new shell to allow the compiler to
run on a new host.

Wlien ;I new language is added, it can be offered
quickly on rnany platforms.

When a new target Cpu or operating system is
supported, many 1;lnguages are i~nmediately
;ivailable to that target.

Order of Processing
When compiling a program, the overall order of pro-
cessing must be carefully arranged so that each com-
ponent of the compiler can see a large portion of the
program at one time. When processing one portion

of ;I program, certain information about other rele-
vant piu-ts of the source program can be useful.

Figure 2 illustrates the overall process of compil-
ing a program. Since <;EM compilers include inter-
procedural optimizations, as much of the program
as possible shoultl be presentetl to the optimizer at
the same time. For this reason. <;EM co~i~pilers
allow the user to process multiple source files in a
single compil;~tion. The front end parses these
source files ;ind constructs the symbol t;ible ant1 a
compact form of 1L in memory before invoking tlie
<;EM back end. The portion of tlie user's program
thus compiletl is called a con~pil;~tion unit.

The GEM back-end interprocedural optimization
phase is the first to operate on tlie program. This
phase analy~cs the routines within a compilation
unit to tlevelop a call graph that shows which
routines might call which other routines.
Interpsocedural optimizations :ire applietl to the
routines ;a ;I group.

Next, the global optimizer and the cotle genera-
tor process each routine in a bottom-up order,
resulting in :I tr;inslation of the program to cotle
cells th;~t represent oper;~tions at niacliine level.
This bottom-up order is convenient li)r certain opti-
mizations, as discussed in the Optimization section.
The first action of the global optimizer is to trans-
late the roiltine's IT. from the compact form pro-
videcl by tlie front entl to ;in exp;intlecl form i~secl by
the optimizer and the cotle generator. Since only
one routine at ;I time is storetl in expanded form, a
much 1;lrger tlat:~ structilre c;111 be used to store the
results o f the optimizer ;~nalysis. The expansion
from comp;1ct form illso expands certain shorthand
forms, which are convenient for a front end, into
explicit oper;itions in the expanded 11.. much like a
ni;lcro expansion facility in a source language.

122 H>1. 4 No. 4 Special Issue 1992 Digilnl Tecbnicrrl Jorrrtrrrl

D.7e GEM Optimizing Compiler System

SOURCE PROGRAM

1
FRONT END

SCANNER
PARSER
SEMANTIC PROCESSING

SYMBOL TABLE
COMPACT INTERMEDIATE LANGUAGE

INTERPROCEDURAL INLINING
OPTIMIZATION

COMPILATION ORDERING

I I

SYMBOL TABLE
COMPACT INTERMEDIATE LANGUAGE

GLOBAL
OPTIMIZATION INTERMEDIATE LANGUAGE EXPANSION

FLOW GRAPH REDUCTION
LOOP UNROLLING
COMMON SUBEXPRESSION
CODE MOTION
VALUE AND CONSTANT PROPAGATION
STRENGTH REDUCTION
TEST REPLACEMENT
SPLIT LIFETIME ANALYSIS

1 SYMBOL TABLE
EXPANDED INTERMEDIATE LANGUAGE

CODE
GENERATION CODE SELECTION

INTERMEDIATE LANGUAGE SCHEDULING
REGISTER HISTORY
REGISTER ALLOCATION
CODE EMISSION
STORAGE ALLOCATION

I SYMBOL TABLE
CODE CELLS

INSTRUCTION
PROCESSING PEEPHOLING

CODE SCHEDULING
I BRANCHIJUMP RESOLUTION

COMPILER SHELL
AND UTILITIES

FILE 110 SUPPORT
MESSAGING
COMPILER DEBUGGING TOOLS
LOCATOR PACKAGE
COMMAND PROCESSING
LISTING GENERATION
MEMORY MANAGEMENT

I SYMBOL TABLE
CODE CELLS

OBJECT MODULE
CONSTRUCTION

0 OBJECT MODULE

Figure 2 GEM Compiler Order of Processing

Once all the routines have been processed by mizations and instruction scheduling, are per-
the global optimizer and the code generator, a formed on this program description. Finally, the
complete description of the program is available at optimized machine instructions are converted to
the machine instruction level. Certain machine- the appropriate object language for the target oper-
specific optimizations, such as peephole opti- atingsystem.

Digital Techrrical Joccrrrnl Vol. 4 No. 4 Sf)eciol Iss t~e 1992 123

Alpha AXP Architecture and Systems

Optimization
The GEM compiler system's optimizer is state-of-
the-art ant1 independent of the language ancl the tar-
get platform. The input to the optimizer is the 1L
and symbol table for multiple routines; the output
is the semantically eq~~ivalent IL and symbol table,
both modified to run faster on the target platform.

GEM optimizations include interprocedural opti-
mizations, modern optimizations for superscalar
IUSC architectures such as the Alpha U P archi-
tecture, plus a robust implementation of the classi-
cal global optimizations. In addition, (;EM'S code
generator includes a number of optimization fea-
tures that help it produce extremely high Local code
quality.

Design Principles
Certain general design approaches or principles
were applied throughout the optimizer. For
instance, choices had to be made in the design of
the IL; the front end could either provide a higher-
level description of program features or rely on the
back end to derive the higher-level description
frorn an analysis of a lower-level description. In
cases where accurate, well-defined algorithms for
deriving those higher-level features exist, GEM

chooses to derive the descriptions.
Describing source code loops is a key example of

the implementation of this design principle. Most
source languages have explicit syntax for writing
loops, and the front end could translate these lan-
guages into a higher-level I L that designates those
loops. Instead, GEM uses a lower-level I L with primi-
tives such as conditional branch and label opera-
tors. The advantage of this approach is that GEM
recognizes all loops, even those constructetl with
GOT0 statements.

A general design approach that emerged from
experience gained during the GEM project is the
use of cnahling or expanding transformations to
support fundamental optimizations. Often, repre-
senting operations in the IL in a way that hides cer-
tain implicit operations is a compact ancl efficient
approach. However at times, making these implicit
operations explicit allows a particular optimization
routine to operate on them. Agood solution to this
problem is to initially represent the operations in
the 1L in the compact form. Then, before applying
optimizations that could benefit from seeing the
ituplicit operations, apply expanding transforma-
tions to convert the IL into a longer form in which
all operations are explicit.

Out of concern for the time required to compile
large programs, GEM also established the design
principle that the order of complexity as a function
of the number of IL operations should be as close to
linear as possible.

Data Access Model and
Side Effects Interface
Since GEM compilers translate all source languages
to a common IL and symbol table format, the
semantics of these languages must be specified
precisely. Many optimizations require an exact
understanding of which symbols are being written
or read by operations in the IL, and which opera-
tions might affect the results computed by other
operations.

The GEM team developed a detailed specification
known as the data access model, which defines
those operations that can write to memory and
those that can read from memoq7. Each of these
memory-accessing operations can explicitly desig-
nate the syn~bol being accessed when it is known.
The model also requires the front end to speclfy
when symbols may be aliased with parameters and
when they may be pointer aliased A pointer-
aliased symbol may be accessed through pointers
or other operations that do not spec@ the symbol
that they access.

The model can indicate that the pointer-aliased
property is derivable, i.e., a symbol is pointer
aliasecl only if an operation that stores its address is
present in the IL. A special IL operator marks such
operations. When the derivation of this property is
deferred, the optimizer can avoid marking symbols
pointer aliased.

The data access model provides a standard way
for a front encl to indicate how IL operations affect
or depend upon synlbols. However, some front
ends can provide additional language-specific dis-
crimination of operations that cannot be allowed to
interfere with one another. For example, a strongly
typed language like Pascal may stipulate that an
assignment to a floating-point target must refer to
different storage than an integer read, even when
the assignment target is accessed indirectly through
a pointer.

To represent language-specific rules while adher-
ing to the philosophy that the back end should have
no knowledge of the source language, GEM compil-
ers employ a unique interface with the front end,
calletl the side effects interface. The front end pro-
vides a set of procedures that GEM can call during

124 1/01. 4 No. 4 Special Isstre 1992 Digital Tecbnicul Journal

The GEM Opti~nizing Co~npiler System

optimization to ask which IL operations have side
effects and which IL operations depend upon those
side effects.

Interprocedural Optimization
GEM's interprocedural optimization phase starts
by walking over the 1L for all routines to build
the call graph. The call graph is a directed multi-
graph in which the nodes are routines, and the
edges are calls from one routine to another. The
graph is not a tree because recursion is allowed.
A special virtual routine node represents all
unknown routines that might call or be called by
a routine in this compilation.

GEM walks the graph to determine which local
symbols that are potential targets of up-level access
are actually referenced in a called routine. When
up-level references do occur, GEM can also deter-
mine the most efficient way to pass that context
from the routine that declares the variable to the
routine that references it.

On the same walk, GEM analyzes the use of sym-
bols whose pointer-aliased property is derivable. If
operations that store the address of such a symbol
are present, then the symbol is marked as pointer
aliased. The front end's indication is also retained
so that this analysis can be repeated after address
storing operations are eliminated.

The most significant interprocedural optimiza-
tion that GEM performs is procedure inlining.
Inlining is a well-known method for reducing
procedure call overhead and for increasing the
effectiveness of global optimizations by enlarging
the scope of the operations seen at one time.
Inlining has additional benefits on superscalar
FUSC architectures, like the Alpha AXP system,
because the optimization allows the compiler to
schedule the instructions of the two routines
together.

GEM's inliner reviews all calls in the call graph
and uses heuristic algorithms to determine which
calls should be inlined for maximum speed without
unreasonable increases in code size or compilation
time. The heuristics consider the number and kind
of IL operations, the number of symbols referenced,
and the kinds of optimization that would likely be
enabled or disabled by inlining.

When callers pass constants as actual parame-
ters, better optimization is likely to result from
inlining because the corresponding formal parame-
ter will have a known constant value. On the other
hand, when two sections of the same array are

passed as arguments, and the corresponding for-
mals are described as not aliased with one another,
eliminating the formal parameters through inlining
discards valuable alias information."5

Also, the order in which inlining clecisions are
made can be important. In a chain of calls in w.hich
A calls B and B calls C, the call from A to B might be
the most desirable inlining candidate. However, if
the call from B to C is inlined first, the size of B may
increase, making it a less attractive candidate for
inlining into A. Consequently, GEM uses its heuris-
tics to preevaluate all calls and then orders the calls
by desirability. GEM inlines the most desirable can-
didate first, and then reevaluates the caller's prop-
erties, possibly acijusting its position in the ordered
list.

In many C programs, the acldress of a variable
(especially a struct) is passecl to a called routine
that refers to the variable through a pointer for-
mal parameter. After inlining, a symbol's address
is stored in a pointer and indirect references are
made through the pointer. Later, while optimizing
the routine, GEM's value propagation often elimi-
nates the pointer variable. Finally, whet1 one or
more pointer-storing operations have been elimi-
nated, GEM reevaluates the pointer-aliased prop-
erty of derivable local symbols, ant1 the variable that
was once passed by address is no longer pointer
aliased.

After interprocedural analysis, the routines of the
user's program pass through the optimizer and
code generator one at a time. GEM'S interprocedural
phase chooses a bottom-up routine order in the call
graph. Except for recursive cycles, this order causes
GEM to generate the code for a called routine before
generating the caller's code. GEM takes advantage of
this property by recording the scratch registers that
were actually used in a called routine ant1 adjusting
register usage at its call sites.' GEM also determines
whether or not the called routine requires an argu-
ment count.

Intermediate Lnlzguage Peepholes
GEM uses a peephole optinlizer to improve the 1L. In
addition to performing the many obvious simplifi-
cations such as n~ultiplying by one or adding zero,
the optimizer performs other transformations.
Integer division by a constant is expanded into a
multiply by a reciprocal operation, which can be
efficiently inlplemented with a UMULH instruction.
String operations on short fixed-length strings are
converted into integer operations, to benefit from

Digital Technical Joumnl Vo1. 4 No. 4 Special Issue 1992

Alpha AXP Architecture and Systems

various optimizations performed only on scalars.
Also, integer multiply operations by a constant are
converted into an equivalent set of shift and add or
subtract operations.

IL peepholes sometimes expose new optimiza-
tion opportunities by expanding complex opera-
tions into more explicit components. Also, other
optimizations such as value propagation may create
new opportunities to apply peepholes. To take
advantage of these opportunities, GEM compilers
apply these IL peepholes n~ultiple times during the
optimization of a routine.

Data-flow Analysis
In previous Digital compilers, the use of data-flow
analysis was limited largely to the elimination of
common subexpressions (CSEs), value propaga-
tions, and code motions. We generalized the data-
flow analysis technique to perform a wider variety
of optimizations including field merging, induction
variable detection, dead store elimination, base
binding, and strength recluction.

The process of detecting <:SEs is divided into the
tasks of

Knowing when two expressions would com-
pute the same results given identical inputs.
Within GEM compilers, such expressions are said
to be fomnlly eqttirmlent.

Verifying that the inputs to formally equivalent
subexpressions are always identical. Such
expressions are said to be value eyuiunlent. This
verification is accomplishetl by using the side
effects mechanism.

Determining when an expression dominates a
value eqi~ivalent expression.5 This information
guarantees that GEM will have computed the
dominating expression whenever the dorniilated
expression is needed.

Code motions introduce the additional task of
finding those places in the flow graph to which an
expression could be legally moved such that

The moved expression would be value equiva-
lent to the original expression, ant1

The moved expression would execute less often
than the original expression.

The following sections describe how GEM
detects base-binding and strength-reduction candi-
dates by substituting slightly different equivalence
functions.

Base Binding
On RISC machines, a variable in memory is refer-
enced by loading the address into a base register and
then using indirect addressing through the base reg-
ister. To reduce the number of address loads, sets of
variables that are closely allocated share base regis-
ters. GEM considers two address expressio~ls for-
mally ecli1i\7alent ifthey differ by an amount less than
the range of the hardware instruction offset field.
The CSE detection algorithm determines which
adtlress expressions are formally ecluivalent and
thus can share a base register, and the code motion
algorithm moves the base register loads out of loops.

Induction Variables
Some of GEM'S most valuable optimizations require
the identification of inductive expressions and
induction variables, which is done during data-flow
analysis. An expression in a loop is inductive if its
value on a particular iteration is a linear function of
the trip count. The simplest forms of inductive
expressions are the control variables of counted
loops. Expressions that are linear functions of
induction variables are also inductive.

GEM'S implementation of data-flow analysis uses
a technique for determining what variables are
modified between basic blocks in the flow graph.6'
The variables modified between a basic block ant1
its dominator are represented as a set called the
IDEF set. The mapping from variables to set ele-
ments is clone using the side effects interface.

The algorithm for detecting induction variables
starts by presuming that all variables modified in
the loop are induction variable candidates. It then
tlisqualifies variables not redefined as a linear func-
tion of themselves with a coefficient equal to one.
The loops that GEM chooses to analyze have a loop
top that dominates all nodes within the loop. The
IDEF set for a loop top is exactly those variables that
are modified within the loop and thus serves as the
starting value for the induction variable candidate
set, again using the side effects mapping of vari-
ables to set elements. During the walk of the loop,
whenever a disqualifying store is encountered, the
contents of the candidate set are updated. Thus, at
the end of the walk, the remaining variables it1 the
set are known to be true induction variables.

Strength Reduction of Induction Variables
Strength reductiol~ is the process of replacing an
expensive operation with a less expensive opera-
tion. The most basic example of strength reduction
on induction is as follows:

126 Vol. 4 No. 4 Special Issue 1992 Digital Techtrical Journal

The GEM Optimizing Compiler Sjntem

If the original source prowam was

D O 20 I = 1,10
2 0 P R I N T 1*4

strength reduction would reduce the multiply to an
acld as follows:

I ' = 4
D O 20 I = 1,10
P R I N T I' 20
I' = I ' + 4

Note that the most common array references are
of the forin A(I), which implies a multiplication of
I by the stride of the array. Thus, strength reduction
yields a significant performance improvement in
array-intensive conlputations.

To detect strength-reduction candidates, we
redefine formal and value equivalence as follows:

Two inductive expressions are formally equiva-
lent if, given identical inputs, they differ only by
a constant.

Two formally equivalent inductive expressions
are value equivalent if their inpiits are value
equivalent or are direct references to induction
variables.

Thus, strength-reduction candidates appear
loop invariant, and two expressions that are value
equivalent can share a single strength reduction.
Code motion yields the initial value of the strength
reduction.

Split Lijetime Analysis
The GEM optimizer analyzes the usage of certain
variables to determine if the stores and fetches of a
variable can be partitioned, i.e., split, into disjoint
variables or lifelinzes.

For example, consider the following program
segment.

The references to V can be divided into two dis-
joint lifetimes V' and V" without changing the
semantics of the program as in:

V' and V" can be treated as two completely
independent variables. This has several useful
applications.

V' and V" can be assigned to different registers,
each with shorter lifetimes than the original vari-
able V 'The allocator can thus pack registers and
memory more tightly.

V' and V" can be scheduled indepentlently. For
example, the computation of Z in line 2 could be
scheduled after the redefinition of V in line 3.

A lifetime that begins with a fetch is an uninitial-
ized variable. GEM issues a diagnostic in such cases.

Any lifetime with only stores is effectively
"dead," and thus, the stores can be eliminated.

When a lifetime of an incluction variable con-
tains an equal number of stores and fetches, the
variable is used only to compute itself. Thus, the
whole lifetime can be eliminated. This is called
induction variable elimination.

GEM uses split lifetime information to optimize
the flushing and reloading of register variables
around routine calls.

GEM uses split lifetime information to determine
what variables are potentially refcrenced by
exception handlers.

Lifetimes often need to be extended around loop
tops and loop bottoms. Split lifetime analysis has
fill1 information in many cases in which the code
generator's lifetime computation must make
pessimistic assumptions. Thus, analyzed vari-
ables are allocated more efficiently inside loops.

The technique GEM uses for split lifetime analysis
is based on the VAX Fortran SPLIT phase.# The tech-
nique includes several extensioils in the areas of
induction variables, unselected variables (the origi-
nal algorithm analyzed only a fixed number of vari-
ables), and exception handling.

Code Generation
The GEM code generator matches code templates to
sections of IL trees.9 The code generator has a set of
approximately 600 code patterns and uses dynamic
programming to guide the selection of a least-cost
covering for each statement tree in the IL graph pro-
duced by the global optimizer.

Each code pattern specifies a set of interpretive
code-generation actions to be applied if the tem-
plate is selected. The code-generation actions cre-
ate temporaries, determine their lifetimes, allocate
registers and stack locations, and actually emit
sequences of instructions. These actions are
applied during the following four separate code-
generation passes over the IL graph for a procedure:

Digital Techtrical Jourital '01. 4 No. 4 Special lsszie 1992 127

Alpha AXP Architecture and Systems

Context. During the context pass, the code gen-
erator crcates tlat;~ structures t11;lt describe eiich
temporary variable. The information computerl
includes the lifetime, usage counts, and ;I \wiglit
scaled by loop depth.

Register history. 1)liring the register history p;iss,
the code generator eloes a rlominator-order
walk of the flow graph to identify pote11ti;il
redundant loads of values t1i:lt could be ;ivail;tble
in registers.

Temp name. During the temp name pass. the
code generator performs register allocation
using the lifetime ;inel weigllt inform;ition coni-
piited tluring the context pass. The code genera-
tor also ilses register I i i~tor)~ to ;llloc:ite
temporaries that holtl the same vi~lue in the same
register. I f successfi11, this ;lction eliminates lo:~tl
ancl move instr~ctions.

<:otle. I>uring tlie cotle pass, the code generiitor
emits instructions ;~ncl cotle labels. 'The resulting
code cells are an internal representation : ~ t the
assembly code level. Each cotlc cell conL;~ins ;I

single target mirchine instruction. The cotle cells
have specific registers ;rncl boiincl offsets from
base registers. References to Iiibels in the cotle
stream are in a symbolic form, pentling further
optilnization and final offset ;lssignmcnt after
instruction peephole optimiz;ition and instruc-
tion schecluling.

Code tenlpli~te enumeration and selection occurs
during tlie context pass. The enumeration pllase
scans IL notles in execution ortler (11otto111-tip) ;ind
labels each node with alterni~tive patterns ant1
costs. When ;I root notle such ;IS n store or br;inch
ti~ple is reached, the lowest-cost ternpl;~te h)r that
node is selectetl. l'he selection process is then
applietl recursively to the leavcs for the entire
tree. l o

The IL tree pattern oPa cocle-generi~tion tenipl;~te
consists of four pieces of inform;rtion:

A pattern tree that clescribes thc rirr;1ngemcnt of
11. nodes that can be cotled by this template. The
interior nodes of the pattern tree are I f . operit-
tors; the It.dves are either result rnocle sets or 11,

operxtors with no operantls.

A predicate on the tree notles of the pattern. The
pretlic:ite milst be true in orcler for the piittern to
be i~pplicable.

A result mode that encodes the representation
 of;^ value computed by the template's generated
code.

An intcger that represents the cost of the code
generated by this template.

The result modes :ire an enurner;ttion of the tlif-
ferent ways the compiler can represent a value in
the m ; ~ c h i n e . ~ ~ <;EM conipjlers llse the following
result modes:

Sc;iL;ir, for ii value, negated value. and comple-
mented value

Hoolean, for low-bit, high-bit, and nonzero values

Flow, for ;I Boole;ln represented ;IS control flow

Result motles for different sizes of integer literals

Result nodes for clelayetl generation of adclress-
ing calculations

Result modes indicating that only a part of a
v;ilue has been materialized, i.e., the low byte, or
that the n1ateri;ilizecl \;;ilue has usetl :i lower-cost
solution

As templates are m;~tchetl to portions of the 1L

tree, c:ich node is 1;tbeled with ii vector of possible
solutionb. The vector is inclexed by result mode,
ancl the lowest-cost solution for each result mode is
recortletl on the forw;lrd bottom-up walk. When a
root nocle is encountered, the lowest-cost template
in its vector of solutjons is chosen. 'This choice then
tietcrmines the required result mode and solution
for e;1c11 leaf of the pattern, recursivel!~.

GEM Code Generator Action Language
Tllc (;I;&] cocle generittor uses and extends methods
clcvelopccl in the 131,lsS compilers, the Ci~megie-
Mellon llniversity 1)rocliiction-Quality Compiler-
Compiler Project, ancl Digital's VAX Pascal
cornpiler.1i.13 One key <;EM innovation is the use of
:I formalizctl action Language to give a ~~nif ied
description of all actions performecl in the four
cotle-generation passes. The same formal action
descriptions ;ire interpretetl by four different inter-
preters. For example, the Allocate-TN action is
ilscd to iilloc;~te long-lived temporaries that may be
in a register or in memory. This action creates a data
structiire describing tlie temporary in the context
pass, ailocates a register tluring the temp name
pass, and provides the actual temporary location
h)r code emission.

I*/. 4 IUo. 4 Specir11 lssrre I992 Digital TechrticulJourtial

The GEM Optimizing Compiler System

Tree-matching code generators were originally
developed for complex instruction set computer
(CISC) machines, like the PDP-11 and VAX comput-
ers. The technique is also an effective way to build
a retargetable compiler system for current NSC
architectures. The overall code-generation struc-
ture and many of the actions are target indepen-
dent. Some IL trees use simple, general code
patterns, whereas special cases use more elaborate
patterns and result modes.

Register Allocation
GEM compilers use a simple linear model to charac-
terize register lifetimes. The context, temp name,
and code passes process the basic blocks and the IL
nodes of each block in execution order. Each code
pattern has a certain number of lifetime ticks to
represent points at which a temporary value is cre-
ated or used. The lifetime of a temporary is then the
interval defined by its starting lifetime tick and end-
ing lifetime tick.

Simple expression temporaries have a linear life-
time contained within a basic block. User variables
and CSEs may require that lifetimes be extended to
cover loop tops and loop bottoms. The optimizer
inserts special begin and end markers to delimit the
precise lifetimes of variables created by the split
lifetime phase.

The code generator uses a number of heuristics
to allocate registers to avoid copying. If a new
lifetime begins at exactly the same tick as another
lifetime ends, this may indicate that they should
share a register. Otherwise, the allocator uses a
round-robin allocation to avoid packing registers
too tightly, which would inhibit scheduling. The
Move-Value action is used to copy one register to
another and provides a hint that the source and des-
tination should be allocated to the same register.

Actual allocation of registers and stack tempo-
raries occurs in the temp name pass. The allocator
uses a bin-packing technique to allocate each com-
piler and user variable to a register or to memory.'*
The allocator first attempts to assign variables to
registers; lifetimes that conflict cannot be assigned
to the same register. The allocator uses a density
fi~nction to control the process. A new candidate
can displace a previous variable that has a conflict-
ing lifetime if this action increases the density mea-
sure. After the allocation of temporaries to registers
is completed, any unallocated or spilled tempo-
raries are allocated to stack locations.

Scheduling
To take advantage of high instruction-issue rates in
Alpha AXP systems, compilers must carefully sched-
ule the object code, interleaving instructions from
several parts of the program being compiled.
Performing instruction scheduling only once after
registers have been allocated places artificial con-
straints on the ordering, as illustrated in the follow-
ing code example:

rO, a (s p) ; Copy a t o b
rO, b (s p)
rO, c (s p) ; Copy c t o d
rO, d (s p)

If the load of c and store of d were to use some
other register, the code could be rescheduled to
save three cycles on the DECchip 21064 processor,
as shown in the following code:

rO, a (s p) ; Copy a t o b
r l , c (s p) ; Copy c t o d
rO, b (s p)
r l , d (s p)

On the other hand, scheduling only before regis-
ter allocation does not incorporate decisions made
by the code generator. Therefore, instruction
scheduling in GEM compilers occurs twice, before
and after registers are allocated. This practice is
fairly common in contemporary RISC compiler sys-
tems. In most other systems, scheduling is per-
formed only on machine code. GEM has two
different schedulers-one that schedules machine
code and one that schedules IL.

Intermediate Language Scbedziling
IL scheduling is performed one basic block at a
time. First, a forward pass over the block gathers
information needed to control the scheduling, and
then a backward pass builds the new ordered list of
tuples. During the forward pass, the con~piler
builds dependence edges to represent the neces-
sary ordering relationships between pairs of tuples.
Tuples that would require an excessive number of
edges, such as CALL tuples, are considered markers.
No tuples can be reordered across a marker.

The compiler uses the data access model to
determine whether two memory-access tuples con-
flict. Also, if two tuples have address operands with
the same value (using data-flow information) but
different offset attributes, the tuples must access
different memory. Thus, no dependence edge is
needed, and more rescheduling is possible.

Dfgftal Technical Journal Vol. 4 No. 4 Special Issue 1992 129

Alpha AXP Architecture and Systems

The general code for an expression tuple places
the result into a compiler-generated temporar):
and the general code for a store into a register vari-
able moves the value from a temporary into the
variable. Many GEM code patterns for expression
tuples allow targeting, where the expression is
computed directly into the variable instead of into
a temporary. These cocle patterns are valid only if
there are no fetches of the variable between the
expression tuple and the store operation. Similarly,
a fetch tuple need not generate any code (called
virtual), if no stores exist between the fetch and its
consumer. For example,

T = A - I ; A = B+1; C = T;

might generate the GEM IL

In this example, SUB operates directly on the reg-
ister allocated for A, and ADD targets its result to the
register allocated for A. The obvious dependence
edge is from FETCH(A) to STORE(A,. . .). However, I L
scheduling must be careful not to invalidate the
code patterns, which would happen if it moved
FETCH(A) between ADD and STORE(A) or STORE(A)
between FETCH(A) and SUB. To ensure valid code
patterns, the first pass moves the head of clepen-
dence edges backward from targeted stores to the
expression tuple that does the targeting Sinlilarly,
the first pass moves the tail of dependence edges
forward from virtual fetches to their consumers. In
this example, the edge runs from 2$ to 4$ and pre-
vents either of the illegal reorderings.

In addition to building dependelice edges, the
first pass computes heuristics for each tuple, to be
used by the second, i.e., scheduling, pass. One
heuristic, the anticipated execution time (AET),
estimates the earliest time at which the tuple could
execute. The AET for tuple T is either the maximum
AET of any tuple that must precede T, or the
maximum AET plus the latency of T's operands. If
some of the tuples that must precede T require the
same hardware resources, the AET may be opti-
mistic Nevertheless, the AET is a usefill guide to the
scheduling pass.

The first pass also computes the minimum
number of registers (separately for integer and
floating-point registers) needed to evaluate the
subexpression rooted at a particular tuple. The

value of this heuristic is the Sethi-Ullman number,
i.e., the number of registers needed to evaluate the
subexpressions in tlie optimal order, keeping their
intermediate values, plus the additional registers to
evaluate the tuple itself.Ii If the second pass sched-
ules tuples with a lower count later in the program,
the register usage will be kept low. Without such a
mechanism, scheduling before register allocation
tends to cause excessive register pressure.

CSEs can be treated similarly to subexpressions in
this computation, but with two complications. The
first pass cannot predict the last use of the CSE and
therefore treats each use as the last one. The sched-
uler ignores any register usage associated with CSEs
that are not both created and used within the block
being scheduled. This action allows the register
allocator to place the CSEs in memory, if the sched-
uled code has better uses for registers.

The second pass of the IL scheduler works back-
ward over the basic block. The scheduler removes
all tlie tuples up to the last marker and makes avail-
able those that have no clependence edges to tuples
that must follow. The scheduler then selects an
available tuple and places it in the scheduled out-
put, updates the state of each modeled f~~nctional
unit, and makes available new tuples whose depen-
dences are now satisfied. When the marker is
scheduled, the scheduler continues to remove the
preceding group of tuples from the block until the
entire block has been scheduled.

The scheduler keeps track of the number of
scheduled cycles and the estimated number of live
registers. When choosing among tuples, the schetl-
uler prefers one whose subtree can be evaluatetl
within the available registers, or, failing that, one
whose subtree can be evaluated with the fewest
registers. When several tuples qualify, the sched-
uler chooses the one with the greatest AET.

Limiting register pressure, while not important
for all programs, is important in blocks with a lot of
available parallelism. With this feature, IL schedul-
ing is a significant contributor to the high perfor-
mance of GEM-compiled programs.

Instruction Peepholing
After cocle has been generated or code cells have
been created directl-): the instruction processing
phases are run as a group. Instruction peepholing
performs a variety of localized transformations, typ-
ically by matching patterns of adjacent instructions
and replacing them with better patterns. From the
perspective of instruction scheduling, the most

130 \lo/. 4 No. 4 SDeci~~l Issue 1392 Digital Technical Journal

The GEM Optimizing Compiler System

interesting function of the instruction peepholer
is to perform a set of branch reductions. The peep-
holer also replicates short sequences of code to
facilitate instruction scheduling and to eliminate
the instruction pipeline effects of branches.

A control flow processing phase follows the
instruction peepholing phase. Currently, this phase
determines labels that are backward branch targets
for alignment purposes. This action occurs before
instruction scheduling, because instruction align-
ment is important for the DECchip 21064 Alpha AXP
processor, in which instructions must be aligned
on qiiadword boundaries to exploit dual instruc-
tion issue. In the near future, the control flow pro-
cessing phase will collect register information for
each basic block to allow additional scheduling
transformations.

Instruction Scheduling
The instruction scheduler is the next phase. At this
point, all register binding ancl code modifications
other than branch/jump resolution have occurred.
The scheduler docs a forward walk over the basic
blocks in each code section to determine the align-
ment of the first instruction in each block.

For each basic block, the instruction scheduler
does two passes that are effectively the inverse of
the passes that the IL scheduler performs, namely a
backward walk to determine instruction-ortlering
requirements and path length to the entl of the
block, and a forward pass that actually schedules
the cotle.

The backward ordering pass uses an AET compu-
tation similar to the one usecl by the 1L scheduler.
The instruction scheduler knows the actual instruc-
tions to be scheduled and has a more detailed
machine model. For the DECchip 21064 processor,
for example, the instruction scheduler has tletailed
asymmetric bypassing information ant1 information
about multiple issue. For architectures that have
branch delay slots, the AET computation is biasetl
so that instructions Likely to be able to fill branch
delay slots will occur immediately before branch
operations.

The forwarcl scheduling pass does a cycle-by-
cycle model of the machine, inclutling modeling
multiple issue. The reasons for choosing this
approach rather than an approach that just selects
an ordering of the instructions are ;IS follows:

For machines with significant issue limitations,
e.g., nonpipelined functional units or multiple
issue pairing rules, packing the limiting resource

well is often preferable to obtaining a good sched-
ule. A cycle model allows other instructions to
"float" into the no-issue slots, while allowing the
critical resource to be scheduled well.

~Mocleling the machine allows easy determination
of where stalls are occurring, which in turn allows
instructions from the current block or from suc-
cessor blocks to be moved into no-issue slots.

Modeling the machine in a forward direction
captures the fact that processors are typically
"greedy" and issue all the instructions that they
can issue at a given time.

The cycle model allows a variety of dumps,
which can be useful both to users of the com-
piler system and to developers who are trying to
improve the performance of generated code.

The forward pass does a topological sort of the
instructions. The scheduler moves instructions that
have either a direct dependence or an antidepen-
dence (e.g., register reuse) to a data structure
called the issuing ring for fiiture issue.

The scheduler represents the instructions avail-
able for issuing ;IS ;I list of data structures known as
heaps, which are priority clueues. Each heap on the
list contains instructions with a similar "signature."
For example, a heap might contain all store instruc-
tions. When looking for the next instruction to
issue, the scheduler examines the top instruction in
each heap. Within each heap, instructions are typi-
cally ordered by their AET values, with occasional
small biases for different instruction properties,
such as loads that may have a variable execution
time longer than the projected time.

The heaps are, in turn, orcleretl in the list accord-
ing to how desirable it is that a particular heap's top
instruction be issued. All nonpipelined instruction
heaps are first on the list, followed by all semi-
pipelineil heaps and, last, all fully pipelinecl ones.
A semipipelined resource may prevent particular
instructions from issuing in certain fiiture cycles
but can issue every cycle. For example, stores on
somc machines interact with later loads.

Instructions that use multiple resources are rep-
resented in the heap ordering. For example, float-
ing-point multiplies on the MIPS R3000 machine
use both the multiplier ancl some of the same
resources as additions. As a result, the heap that
holcls multiplies is always kept ahead of the heap
that holds adds. This ordering scheme works well
for both machines with a significant number of
nonpipelined units, such as the MIPS processors,

Digital Technical Journal 1/01. 4 rVo. 4 Speciul lssrre 1992 131

Alpha AXP Architecture and Systems

and machines that have largely pipelined fi~nctional
units with only particular combinations of multiple
issue allowed, like the DECchip 21064 processors.

Note that, other than the architecture-specific
computation for AET and per-processor imple-
mentation data tables, the scheduler is completely
target independent. For example, currently, proces-
sor implementation tables exist for the MIPS R3000
and R4000 processors, the DECchip 21064 pro-
cessor, and Alpha AXP processors that are under
development.

Field Merging Example
Generating efficient code for the extraction and
insertion of fields within records is particularly
challenging on RlSC architectures, like Alpha AXP,
that provide only 32-bit (longword) or 64-bit (quad-
word) memory operations.

Often, a program will fetch or store several fields
that are contained in the same longword. Without
optimization, each fetch would load the longnlord
from memory, and each store would both load and
store the longword. However, it is possible to per-
form a collection of field fetches and stores with a
single load ant1 store to memory. As another exam-
ple, two bit tests within the same longword could
be done in parallel as a mask operation.

In the IL generated by the front end, each field
operation is generated as a separate IL operation.
Thus, the real task of optimizing field accesses is to
identify IL operations that can be combined.

In the initial IL, a field fetch or store is repre-
sented as an IL operator. The underlying problem is
that the redundant loads and stores are not visible
in this representation. The first part of the solution
involves expanding the field fetch or store into

lower-level operators. The I L generated by the front
end for two field extractions as shown in (a) of
Figure 3 is expanded into the IL shown in (b)
of Figure 3. With the loads exposed as fetches, data-
flow analysis is now capable of finding the common
subexpressions of 1 $ and 3$.

Similarly, each field store expands into a fetch of
the background longword, an insertion of the new
data into the proper position, and a store back.
Given two field stores, value propagation can elimi-
nate the second fetch, and then dead-store elimina-
tion can eliminate the first store.

In some cases, a program operates on the field
and thus eliminates the extract and insert opera-
tions. For example, the following example gener-
ates the machine code shown in Figure 4.

t y p e d e f s t r u c t n o d e C
c h a r n - k i n d ;
c h a r n-f L a g s ;
s t r u c t n o d e * x l - c a r ;
s t r u c t n o d e * x l - c d r ;

1 NODE;

d e f i n e MARK 1
d e f i n e L E F T 2

v o i d d e m o (p t r 1
NODE * p t r ;

w h i l e (p t r) C
i f (p t r - > n - k i n d == 0) C

p t r - > n - f l a g s I = MARK;
p t r - > n - f l a g s & = - L E F T ;

1
p t r = p t r - > x l - c d r ;

1

The unoptimized code would contain a load and
an extract for each reference to n-kind or n-flags,
plus an insert and a store for the latter two
references. The optimizer has eliminated two of the

I $: FETCHX(RECORD, C O I , [I]) ; F e t c h t h e #I (l o w - o r d e r) b i t
; f r o m m e m o r y

2s: FETCHX(RECORD, C I I , [I]) ; F e t c h t h e # 2 b i t f r o m m e m o r y

(a) Pre-field merging 1L

1 $: F E T C H (R E C 0 R D)
2 s : E X T V (l $, LO], C I I) ;

3s: FETCH(RECORD1
4 s : E X T V (I $, [I], [I]);

(b) Post-field merging I L

; F e t c h t h e l o n g w o r d
; E x t r a c t t h e # I f r o m t h e l o n g w o r d

; F e t c h t h e l o n g w o r d
; E x t r a c t t h e # 2 f r o m t h e L o n g w o r d

Figure 3 Field Merging Example

132 Vo1. 4 No. 4 Speciallssue I992 Digital Technical Journal

The GEM Optimizing Compiler System

d e m o : :
BEQ
NOP

L S 7 :
L D L
AND
BNE
MOV
B I S
M 0 V
AND
S T L

L S 9 :
LDL
BNE

L S 5 :
RE T

p t r , L S 5

RO, (R 1 6) ; L o a d n - k i n d a n d n - f l a g s
RO, 2 5 5 , R1 ; E x t r a c t n - k i n d
R1, L S 9
2 5 6 , R 1 7
RO, R 1 7 , R 1 7 ; S e t MARK (i n p l a c e)
- 5 1 3 , R1
R 1 7 , R1, R 1 7 ; C l e a r L E F T (i n p l a c e)
R 1 7 , (R 1 6) ; S t o r e b a c k

p t r , 8 (R 1 6)
p t r , L $ 7

Figure 4 Machine Code w i t h Field Merging

three loads, two of the three extracts, both inserts,
and one of the two stores.

Brancb Optimization Examples
Branch instructions can hurt the performance
of high-performance systems in several ways. In
addition to consuming space and causing time to be
expended while issuing the instruction, branches
can disrupt the hardware pipeline. Also, branches
can inhibit optimizations such as code scheduling.
Therefore, the GEM compiler system uses several
strategies to avoid branches in the I L and generated
code or to eliminate some bad effects of branch
instructions.

Some branches appear as part of a we1 I-defined
pattern that need not inhibit optimizations. GEM

uses special operators for these cases. A simple
example is the MAX function. For Alpha AXP sys-
tems, IMAX can be implemented using the CMOVxx
instructions, avoiding branch instructions entirely.
For other architectures, the main benefit is that the
branch does not appear in the IL. A more compli-
cated example involves the so-called "flow-
Boolean" operators. Consider the C code example,

which generates the following GEM JL:

The ANDSKlP and WNDC tuples implement the
conditional-AND operator. If tuple 2$ is false, tuples
4$ and 5$ are skipped, and the result of the LANDC

is false. Otherwise, the LANDC uses the result of
tuple 5$.

Similarly, the SELTHEN, SELELSE, and SELC tuples
implement the select operator. If tuple 6$ is true,
then tuples 8$ and 9$ compute the result, and
tuples 11$ and 12$ are skipped. If tuple 6$ is false,
then tuples 8$ and 9$ are skipped, and tuples 11$
and 12$ compute the result.

These operators allow programs to represent
branching code within the standard basic-block
framework but require branches in the generated
code, to avoid undesired side effects of the skipped
tuples. In some cases, though, GEM can determine
that the skipped tuples have no side effects and then
converts the operators to an unconditional form,
allowing the generated code to be free of branches.

GEM ~e r fo rms other transformations on the IL to
eliminate branches and thus enable further opti-
mizations. For example, GEM transforms

i f (e x p r) v a r = 1 ; e l s e v a r = 0;

into

v a r = ((e x p r) ! = 0)

Alpha AXP implementations typically include a
branch prediction mechanism. Correctly predicted

Digital Technical Journal Vol. 4 No. 4 Speciullssssrre 1992 133

Alpha AXP Architecture and Systems

branches take several cycles less time than mispre-
dictecl branches. The fastest conditional branch is
one that is correctly predicted not to be taken. GEM
uses several strategies to arrange branches for best
performance.

GEM selects an order for the basic blocks of a pro-
gram that may differ from the order in the source
program. For each basic block that ends with an
unconditional branch, GEM places the target block
next, unless that block has already been placed.
Similarly, ifa basic block within a loop ends with an
ilnconditional branch, a target block within that
loop is placed next, if possible. For example,

w h i l e (--i > 0) C
i f (a C i 1 ! = b C i 1) r e t u r n a C i 1 - b C i 3 ;
a C i 1 = 0;

1

To eliminate the unco~~ditional branch when the
loop iterates, GEM transforms the pretested loop
into a posttested loop. Since the return statement is
outsidc the loop, the generated code looks like

i f (--i > 0)
d o (

i f (a C i l ! = b C i l) g o t o L a b e l ;
a C i 1 = 0;

) w h i l e (--i > 0) ;
. . .

l a b e l : r e t u r n a C i l - b C i l ;

(;Eht can also ilnroll loops and thus reduce the
number of times the branch back must be exe-
cutecl. more important. GEM often allows opera-
tions from different iterations to be scheduled
together. Unrolling by four transforms the above
loop into a cleanup loop and the main loop into
code that resembles

d o c
i f (a C i 1 ! = b C i 1) g o t o L a b e l ;
a C i 1 = 0;
i f (a C i - 1 1 ! = b C i - 1 1) g o t o L a b e l ;
a C i - 1 1 = 0;
i f (a C i - 2 1 ! = b C i - 2 1) g o t o L a b e l ;
a C i - 2 1 = 0;
i f (a C i - 3 1 ! = b C i - 3 1) g o t o l a b e l ;
a C i - 3 1 = 0;

1 w h i l e (i -= 4) ;

This code executes four fall-through branches
and one taken branch, whereas the original code
executed four fall-through branches and four taken
branches.

Certain code patterns generate code that is likely
not to be executed. For example, when the com-
piler believes th;it ;I 16-bit value in memory is apt to
be naturally aligned, but may be unaligned, it gen-
erates the instructions shown jn Figure 5 to load
the value, given the address in 10. The code runs
quickly for the aligned case, bec;~use the branch is
correctly predictetl to fall through, but gets the cor-
rect value for unalignetl data, as well. A similar code
pattern hantlles stores.

Compiler Engineering
Engineering compilers for a large combination of
languages and platforms required a considerable
number of innovations in the area of project engi-
neering. In this section we describe some of the
project methods and tools GEM uses.

Opal Intermediate Language Compiler
The task of a <;EM compiler is to translate a pro-
gram presented by the front end in the form of an
IL graph and symbol table into machine code. In
the early stages of GEM tlevelopment. no front

: 3 - i n s t r u c t i o n i n l i n e s e q u e n c e i f a l i g n e d

Ldq-u r l , (1-0)
e x t w l r l , r0 , r l
b l b s r O , 1 0 8

2 0 8 :

; o u t - o f - l i n e s e q u e n c e t o L o a d a n d m e r g e
,

1 0 s : Ldq-u r 2 8 , l (r 0)
e x t w h r 2 8 , r O , r 2 8
o r r l , r 2 8 , r l
b r r 3 1 , 2 0 8

ends existetl to generate I L graphs ant1 symbol
tables. To f i l l this recluirement, a synt;~ctic speci-
fication of the 1L and symbol table was designed
and an 1L assembler called Opal was built to com-
pile this syntax. Opal uses GEM components such
as tlie slicll and thus supports a robust set of fea-
tures including listing generation, object files,
inclutle files, clebug support, and language editor
diagnostics.

Even with the availability of front ends, Opal
rem;iins a vital project tool: it allows GEM develop-
el-s to exercise new features before front-entl sup-
port is available; front-end developers use Opal to
experiment wit11 different 1L alternatives; ant1 the
Opal syntax serves as the output form;~t of the J L

d ~ ~ ~ i p e r .

Attrib.~lte and Operator Signature Tables
<;EM tables give a complete description of all <;EM
data structures, including IL operators and symbol
t;tble nodes. The operator sign;tture table contains
the operator type, result type, ntlmber of operantls,
and leg;~l operand types for I L operators. The
;~ttribute t;tbles describe each component in a notle
including loci~tion, abstract GEM data type, legal val-
ues, node type for pointers, and special print for-
mats. 1Vhen a new attribute is added to the <;EM

specification, the attribute is described once in the
tables and automatically the Opal compiler 11ndel.-
stands the syntax and semantics, the <;EM dump
utility is able to clump the attribute, and tlie <;EM
integrity checker is able to verify tlie structure.

Automatic KFOLD Builder
The <;EM compiler needs to evaluate constant
expressions at compile tinie, which is referred to as
constant folding. GEM'S intermediate language has
many IL operators ant1 data types. A constant folder
is ~ I I L I S ;I complic;ited routine with many cases, and
the compile-time and run-time results must be
itlentical.

After writing our first, incomplete, hantlcraftecl
const;lnt folder, we searched for a methocl to ;~uto-
marc the process. No source language supported all
the operators and data types of the GEM IL. The key
insight was that there is one language in which IL

progr;lrns can be written precisely ;~nd tersely: the
G E M JJ.. itself. Since GEM already embodies knowl-
edge of the code sequences to evaluate every IL
operator, no other encoding is needed.

The automatic KFOLD builder is a speci;llized
(;EM compiler that uses the standard (;EM b ~ c k end

but has a front entl that compiles only one program.
The KFOLD builder scans the G E M operator signa-
ture table ant1 constructs a procedure that contains
a many-way conditional branch to select a case
based on the I[* operator specified in the argument
list. Each case fetches operand values from the
argument list, applies the oper;itor, and returns the
result. Since most GEM 11. tuples operate on several
data types, additional subcases rnay be based on tlie
operator type or result type. We have already recov-
ered the investment in developing the automatic
KFOLD builder, and it significantly eases the task of
retargeting GEM.

Conclusion
This paper describes the current GEM compiler
system. However, a portable, optimizing compiler
provides many opportunities that we have not yet
exploited. Some enhancements planned for future
versions are:

Additional 1L operators ant1 data types, to sup-
port more langliages

Support for xtltlitional architect~lre and operat-
ing system combinations

Dependence analysis, to enable some of the
following enhancements

Loop transformations, to improve the use of the
memory hierarchy

Software pipelining, to increase parallelism in
vectorizable loops

Better reordering of memory references during
instruction scheduling

The schecluling of instructions into different
basic blocks

The relaxing of tlie linear restriction on the
lifetime model, i.c., ;~llomling holes in register
lifetimes

The GEM compiler system has met demanding
technical and time-to-niarl<et goals. The system has
been successfi~lly retargeted and rehosted for tlie
Alpha AXP and MIPS ;ircliitectures and several oper-
ating en\~ironnients. G E M supports a wide range of
la~igi~ages and provides high levels of optimization
for each. The current version of GEM generates effi-
cient code for Alpha A X P systems, and the imple-
mentation is robust and flexible enough to support
filture iniprovernents.

Alpha AXP Architecture and Systems

Acknozuledgments
The authors wish to acknowletlge the contribu-
tions of the following indivicluals to the design and
implementation of the GEM con~pilers: Ron
Brender, Patsy Griffin, Lucy Hamnett, Brian
Koblenz, Dennis Murphy, Bob Peterson, Paul
Winalski, Stan Whitlock (Fortran), Bevin Brett
(Ada), and Farokh Morshed (C).

References

1. R Sites, ed. , Alpha Architeclure Reference
k h n z ~ a l (Burlington, bLA: Digital Press, 1992).

2. K. Cooper, M. Hall, and L. Torczon, "The Per-
ils of Interprocedural Knowledge," Rice COkIP

Th'90-132 (1990).

3. K. Cooper, M. Hall, and L. Torczon, "Unes-
pected Side Effects o f Inlilie Substitution: t\
Case Study," TOPLAS (March 1992): 22-32.

4. E Chow, "Minimizing Register Usage Penalty
at Procedure Calls," SI(;PD~IV '88 Conference
on Program~ning Lcrnguage Design and
Implementation (June 1988): 85-94.

5. T. Lengauer ancl R. Tarjan, "A Fast Algorithm
for Finding Dominators in a Flowgraph,"
TOPLAS, vol. 1, no. 1 (July 1979): 121-141.

6. J. Reif, "Symbolic Interpretation in Almost Lin-
ear Time," CotzJivwux Records of the Fzyth
ACtW Symposi~lrn on Principles of Program
ming Languages (1978): 76-83.

7. J. Reif and R. Tarjan, "Symbolic Program Anal-
ysis in Almost-Linear Time," SIAtW Journal of
Computing, vol. 11, no. 1 (February 1981):
81-93.

8. K Harris and S. Hobbs, "VAX Fortran,"
Optimization in Co~npilers, ed. , F. Allen,
B. Rosen, and E Zndek (New York, NY: ACM

Press, forthcoming).

9. R. Cattell, "Form;~liz;~tion and Automatic
Derivation of Code Generators," P1i.D. thesis,
CMU-CS-78-115, Carnegie-Mellon Universit):
April 1978.

10. A. Aho and S. Johnson, "Optimal Code Gener-
ation for Expression Trees," J o ~ ~ r n a l of the
AChI: vol. 23, no. 3 (July 1976): 488-501.

11. B. Leverett, "Register Allocation in Optimiz-
ing Compilers," Ph.D. thesis, CMU-CS-81-103,
Carnegie-Mellon University, February 1981.

13. W Wulf et al., The Design of a n Opti7nizi7zg
Compiler (New York, h?': American Elsevier
Publishing Co., 1975).

13. B. Leverett et al., "An Overview of the Pro-
duction-Quality Compiler-Compiler Project,"
Conzpz~ter; vol. 13, no. 8 (iiugust 1980): 38-49.

14. R Johnsson, "An Approach to Global Register
Allocation." P1i.D thesis, Carnegie-Mellon
University December 1975.

15. R. Sethi and J. Ullni;ln, "The Generation of
Optimal Code for Arithmetic Expressions,"
J o ~ ~ r n a l of the ACM, vol. 17, no. 4 (October,
1970): 715-728.

General Reference

I? Puiklam e t al., Engineering a Co~~.piler (Bedford,
ILL\: Digital Press, 1982).

136 It11 4 1\10 4 S p e c t n l l \ \ ~ ~ e 1'1% Digitul Technical Jourrral

Richard L. Sites
Anton Chernofl

Matthew K Kirk
Maurice I? Marks
Scott G. Robinson

Binary Translation

Binary translatio~z is a technique used to change an exect~table progmnz for one
computer architect~ire and operating system into an e x e c ~ ~ t a b l e p ~ ~ o g m ~ ~ o r a d q
&rent comnptiter architecture and opemtirzg system. Two binmy tra~zslators are
6imong the nzigmtion tools available for Alpha AXP computers: E S T translates
Open VIMS VAX binary images to Open KVIS AXP images; ~ n x translates ULTRIX I\IIP~P
images to DEC OSF/I AXP images. In both cases, translated code zisually runs 011

Alpha AXP computers as fast or faster than the original code runs oiz the origilzal ?.
nrchitectz~re. In contrast to other migration eflorts in the industry, the VAX transla-
tor reprod~ices subtle CISC behauior on a RISC machine, and both open-ended trans-
lators provide good performance on ~Lynai~zically modified programs. Alpha A X P
Di~zary translators are importalzt migration tools-hundreds of translated
Open VbfS MX and ULTRIXIIIIPS images currently run on Alpha AXP systems.

When Digital started to design the Alpha A?(P archi-
tecture in the fall of 1988, the Alpha jLYP team was
concerned about how to run existing VAX code and
soon-to-exist MIPS code on the new Alpha N(P coni-
puters.l.2 To take fill1 advantage of the performance
capability of a new compilter architecture, an appli-
cation must be ported by rebuilding, using native
compilers. For a single program written in a stan-
dard programming language, this is a matter of
recompile and run. A complex softmiare application,
however, can be built from hundreds of source
pieces using dozens of tools. A native port of such
an application is possible only when all parts of the
build path are running on the new architecture.

Therefore, devising a way to run an existing (old
architecture) binary version of a complex applica-
tion on a new architecture is an important interim
measure. Such a technique allows a user to get
applications up and running immediately, with
minimal porting effort. Once a user's everyclay envi-
ronment is established, applications can be rebuilt
over time, using handwritten native code or par-
tially native and partially old code.

Background
Several techniques are used in the industry to run
the binary code of an old architecture on a new
architecture. Figure 1 shows four conimon tech-
niques, from slowest to fastest:

Software interpreter (e.g., Insignla Soluttons'
SoftPC)

Microcodeti emulator (e.g., PD1'-11 compatibility
mode in early VAX computers)

Binary translator (e.g., Hunter System's XDOS)

Native compiler

A software interpreter is a program that reads
instructions of the old architecture one at a time,
performing each operation in turn on a soft-
ware-maintained version of the olcl architecture's
state. Interpreters are not very fast, but they run
on a wide variety of machines and can faithfully

FASTER

TRANSLATOR

SOFTWARE
INTERPRETER

Figcli"e1 Co1n1nonTecl~1ziyuesforRu1zni1zg01d
Code on Nezu Conz)ctter.s

Digital Techtrical Joc~rrral Vol. 4 iVo. 4 Sl~ecinl issue I992 137

Alpha AXP Architecture and Systems

reproduce the behavior of self-modifying pro-
grams, programs that branch to clata, programs that
branch to a checksum of themselves, etc. Caching
interpreters gain speed by retaining pretlecocled
forms of previously interpreted instructions.

A microcociecl emulator operates similarly to a
software interpreter but usually with some key
hardware assists to decode the old instructions
quickly and to hold hardware state information in
registers of the micromachine. An emulator is typi-
cally faster than an interpreter but can run only on
a specific microcoded new macl~jne. This technique
cannot be used to run existing code on a recluced
instruction set computer (RISC) machine, since RlSC

:trchitectures do not have a microcoded hardware
layer unclerlyjng the visible machine architecture.

A translated binary program is a sequence of
new-architecture instructions that reproduce the
behavior of an old-architecture program. Typically,
much of the state information of the old machine is
kept in registers in the new machine. Translated
cocle hithfillly reproduces the calling stantlard,
implicit state, instruction side effects, branching
flow, and other artifacts of the old machine.
Translated programs can be much faster than
interpreters or emulators, but slower than native-
compiled programs.

'Translators can be classified as either (1)
bounded translation systems, in which all the
instructions of the old program must exist at trans-
late time ant1 must be found and translated to new
instru~tions,3-~.~ or (2) open-ended translation sys-
tems, in which code may also be discovered, cre-
ated, or moclifiecl at execution time. Bounded
s)rstems usually require manual intervention to find
100 percent of the code; open-ended systems can
be fi~lly automatic.

To run existing VAX and MIPS programs, an open-
ended system is absolutely necessary. For example,
some customer programs write license-check code
(VAX instructions) to memory, ant1 branch to that
code. A bounclecl system fails on such programs.

A native-compiled program is a sequence of new-
architecture instructions produced by recompiling
the program. Native-compiled programs usually
use newer, faster calling co~lventions than old pro-
grams. With a well-tuned optimizing compiler,
native-compiled programs can be substantially
faster than any of the other choices.

Most large programs are not self-contained; they
call library routines, winclowing services, data-
bases, and toolkits, for example. These programs

also directly or indirectly invoke operating system
services. In simple environments with a single dom-
inant library, it can be sufficient to rewrite that
library in native code and to interpret user pro-
grams, particularly user programs that actually
spend no st of their time in the librar),. This strategy
is conllnonly used to run Witldows and Macintosh
programs ilncler the UNIX operating system.

In more robust environments, it is not practical
to rewrite all the sharecl libraries by hand; collec-
tions of dozens or even hundreds of images (such as
typical VAX ALL-IN-I systems) must be run in the old
environment, with an occasional excursion into the
native operating system. Over time, it is desirable to
rebuilt1 some images using a native compiler while
retaining other images as translatecl code, and to
achieve interoperability between these old and
new images. The interface between an old environ-
ment and a new one typically consists of "jacket"
routines that receive a call using old conventions
and data structures, reformat the parameters, per-
form a native call using new conventions anel data
structures, reformat the result, and return.

The Alpha ILYP Migration Tools team considerecl
runnjng olcl VAX binary programs on Alpha AXP
compilters using a simple software interpreter, but
rejected this method because the performance
would be too slow to be useful. We also rejected
the idea of using some form of microcoded emula-
tor. This technique would compromise the perfor-
Jnance of a native Alpha AXP implementation, and
VA)r' compatibility woultl be nearly impossible to
achieve without microcode, which is inconsistent
with a high-speecl NS(: design.

We therefore tilriied to open-ended binary trans
lation. We were aware of the earlier Hewlett-
Packartl binary translator, but its single-image HP
3000 input code looked much simpler to translate
than large collections of hancl-coded VAX assembly
language programs.' One member of the team
(R. Sites) wrote a V~x-to-vAX binary translator in
October 1988 as proof-of-concept. The concept
looked feasible, so we set the following ambitious
protluct goals:

1. Ope1-1-ended (completely automatic) translation
of almost all user-mode applications from the
OpenVMS VkY system to the OpenVMS AXP
system

2. Open-ended translation of almost all user-mode
applications from the 'lJT.TRIX system to the DEC
O S W ~ system

138 Wl. 4 No. 4 .$peci~~l Isstre 19.92 Digital Tec/~tricalJournal

3. Run-time performance of translated code on
Alpha .UP computers that meets or exceeds the
performance of tlie original code on the original
architecture

4. Optional reproduction of subtle old-architecture
details, at the cost of run-time performance, e.g.,
complex instruction set computer (CISC)
instruction atomicity for multithreaded applica-
tions and exact arithmetic traps for sophisti-
cated error handlers

To achieve these goals, the Alpha AXP Migration
Tools team created two binary translators: VEST,
which translates OpenViMS VN(binary images to
OpenVMS t\)(P images, and mx, which translates
ULTRlX MlPS images to DEC OSWl AXP images.
However, binary translation is only half the migra-
tion process. As shown it1 Figure 2, the other half is
to build a run-time environment in which to exe-
cute the translated code. This second half of tlie
process must bridge any differences between old
and new operating systems, calling standards,
exception handling, etc. For open-ended transla-

5. If translation is not possible, generation of
tion, this part of the process must also include a

explicit messages that give reasons and speclCy
way to run old code that was not discovered (or did

what source changes are necessary
not exist) at translate time. The translated image

While we were creating the VLY translator, we
discovered that the process of building flow graphs
of the cocle and tracking data clepenclencies yielded
information about source code bugs, performance
bottlenecks, and dependencies on features not avail-
able in all Alpha AXP operating systems. This analy-
sis information could be valuable to a source code
maintainer. Thus, we aclded one more product goal:

6. Optional source analysis information

environment (TIE) and mxr run-time environment
support the VEST and mx translators, respectively,
by reproducing the old operating environments.
Each environment supports open-encled transla-
tion by including a fallback interpreter of old code,
and extensive run-time feedback to avoid using the
interpreter except for dyt~atnically created code.
Our design philosophy is to do everything feasible
to stay out of the interpreter, rather than to increase
the speed of the interpreter. This approach gives

OLD BINARY

TRANSLATOR
(VESTIMX)

I ::? IMAGE I I I I OPTIONAL I I ZFi'AL I OLD CODE AND ERROR
NEW CODE MESSAGES GRAPHS

RUN-TIME OTHER OTHER
SUPPORT TRANSLATED NATIVE
(TIEJMX) IMAGES IMAGES

Figure 2 Binary Translation and Execution Process

Digital Tech~iicnl Journal Vol. 4 No. 4 Special Issue 1992 139

Alpha AXP Architecture and Systems

better performance over :I wicler range of progranis
than using pure interpreters o r bounded transla-
tion systems.

The remainder of this paper tliscusses the two
binary translator/run-time environment pairs ;~v;iil-
able for Alph;~ icvP computers: VEST/'T'IE and
mx/mxr. ?b establish a basis for the discussion, the
reader must ilnderstarid the following terms:
datum, alignment, instruction atomicity granular-
ity interlocked uptlate, :ind word tearing.
Definitions of these terms appear in the References
and Note section.-

VEST: Translating a VAX Image
Translating a V.kX image involves two main steps:
analyzing VkY cock and generating Alpha AXP code.
The translated images produced are OpenVMS i\XP
images and may he run just like native i~i iages .~
Translateel images run with the ;issistance of the
translated image environment, wliich is discussed
later in this paper. The VEST binary translator is
written in C++ and runs on V f i , MIPS, ancl Alpha
MI' machines. The TIE is written in the Open\lbls
system programming langu;lges, BLISS ;Inti A.lpha
assembler.

To locate VAX code, \ fESI ' starts disassembling code
at known entry points ant1 recursively traces the
progr:~m's flow of control. Entry points come from
main and global routines, debug symbol table
entries, and optional information files (including
run-time feedback from the TIE).

As VEST traces the program, i t builcls ;I flow graph
that consists of basic blocks (i t . , htr;iight-line code
sequenccs) annotateel with information clerivetl
from parsing instructions. VEST then performs sev-
eral ;in;ilyses on the flow graph to propagate con-
text information to each basic block and eliminate
unnecessary operations. Context information
includes contlition code us;ige, register contents,
stack depth, ancl ;I variety of other information that
allows VEST to generate optimized code.

Analysis is important for achieving good perfor-
mance. For exanlple, no condition codes exist in
the Alpha LYP architecti~re. Without analysis it
woultl be necessary to conlpute condition codes
for each VAX instruction even if the codes were not
used. Furthermore, several forms of ;lnalysis were
invented to ;~llow correct tr;~nslation. For example,
VEST automatically determines if a subroutine does
a normal return.

Cotle analysis can detect many problems, includ-
ing some that indicate latent bugs in the source
image. VEST can detect, for example, uninitialized
variables, improperly formed VAX CASE instruc-
tions, stack depth mismatches along two different
paths to tlie s;lme code (the program expects data
to be at a certain stack depth), improperly formed
returns from subroutines, and modifications to a
VAX call frame. A latent bug in the source image
should be fixed, since the translated image may
demonstrate incorrect behavior due to that bug.

Aniilysis also detects the use of unsupported
OlxnVMS features inclutling unsupported system
services. The source image must be modified to
eliminate the use of these features.

Some problems reported by VEST result from
code that is hackish in nature. For example, we
foi~nd code that expects a call mask at an entry
point to be executed as a no-op instruction so that
the code preceding the subroutine can simply exe-
cute the call mask, rather than go through the over-
head of a \%X jump (JMP) instruction. VEST
reproduces the behavior of the VAX program, even
if this beh:~vior is a result of luck.

A VEST-generated flow graph is displayed in
Figure 3. Dashed lines represent code paths fol-
lowed if a conditional branch is taken. Solid lines
indicate fall-through paths. A problem is high-
lighted by a wide, dashed pointer whose bottom
entl inclicates tlie basic block in which the problem
was uncovered. Full blocks show the path that
reveals the error; empty blocks show basic blocks
that are not in the error path. In Figure 3, a path
exists by which register 3 (R3) may be used without
being set if the VtLK BNEQ (branch if tlie register
tloes not equal zero) instruction in the second basic
block is true the first time through the code
sequence.

Code Generation
The VEST tr;inslator generates code by converting
each VA>< instruction into zero o r more Alpha .GYP
instructions. The ;irchitecture mapping is straight-
forward because there are more Alpha AXP registers
than VAx registers. The VAX architecture has only 15
registers, which ;ire used for both floating-point
and integer operations. The Alpha AXP architecture
h;~s separate integer and floating-point registers.
VAX RO through R14 are mapped to Alpha AXP RO
through R14 for all operations except floating
point. R12, RJ3, and R14 retain their V . desig-
nations ;is argument pointer, frame pointer, and

140 Vo1. 4 No. 4 Specictl lssrre 1992 Digital Tecbnicul Journal

Binar), Translation

DHRY'srMC\Prcc2\504 ICI
R3 used
t V E S - I - W 5 T K A L l , U , P I C W : Nen-standard call uses A j .

Figure .? VESTgenemted Flow Graph Sboioing
Uninitialized Variable

stack pointer, and R15 is used to resolve PC-relative
references. Floating-point operations are mappecl
to FO through F14.

The VAX architecture has condition codes that
may be referenced explicitly. In translated images,
condition codes are mapped into R22 and R23.
Similar to the HP 3000 translator, R23 is used as a
fast condition code register for positive/negative/
zero results." R22 contains all four condition code
bits and is calculated only when necessary. All

remaining Alpha AXP registers are used as scratch
registers or for OpenvMS MI' standard calls.

VEST connects simple branches directly to their
translated targets. VEST performs backward sym-
bolic execution of VAX instructions to resolve as
many computed branch targets as feasible. If more
than one possible computed target exists, a run-
time lookup is done on the V k d target adclress. If the
lookup fails to find a translated target, a fallback
V M interpreter is used, as described in the TIE sec-
tion Failure to Find All Code during Translation.
Unlike boundetl translation systenls, which must
achieve 100 percent resolution of computed tar-
gets, the VEST and mx binary translators require no
manual intervention.

Translated Images
A translated image has the same format ;IS an
OpenVMS AXP image and contains the original
OpenVMS VAX image as well as the Alpha AXP
instructions that were generated for the VAX coclc.
The run-time VAX interpreter TIE needs the original

instructions as a fallback. (Also, some error
handlers look u p the call stack for pointers to spe-
cific V M instructions.) The addresses of statically
allocated data in the translated image are identical
to their V.&X addresses. The image contains a VM-to-
Alpha AXP address m:~pping table for use during
lookups and may contain an instruction atomicity
table, described in the VAX Instruction Guarantees
section.

Translated images use the OpenVMS VAX calling
standard. Native images use different conventions,
but translated images interoperate with native o r
translated shareable images. Automatic jacketing
services are providetl in the TIE to convert calls
using one set of conventions into the other. In
many cases, jacketing services permit substitution
of a native shareable image for a translated share-
able image without modification. However, a jacket
routine is sometimes required. For example, o n
OpenVhlS U P systems, the translated FORTRAN
run-time library, FORRTL-TV, invokes the native
Alpha IU(P library DEC$FORRTL for I/O-related sub-
routine calls. DEC$FORRTL has a different interface
than FORRTL has on an OpenVMS VAX system. For
these calls, FORRTL-TV contains handwritten jacket
routines.

Files Used
Translating an image requires only one file-a VAX
executable image. Several optional files make t rans
lation more effective.

Digital Tecbnical Journal Vol. 4 No. 4 Special Issue 13-2

Alpha AXP Architecture and Systems

1 . 1ni;lge information Files (IIFs). VEST automati-
c:llly creates IIFs to provide information ;ibout
shareable image interfaces. The inform:ition
inclucles the adtlresses o f e n t ~ ~ ~ points, n;lnies of
routines, and resource utilization.

2. Symbol information files (SIN). VEST automati-
cally generates sIFs to control the global syrubol
table in a translated shared library, facilitating
interoperation between translated ant1 n;~tive
image>.

3. Hand-edited information files (HIFs). The TIE
a~~tomatically generates I-IIFs, which m;ly be
hand-edited to supply information that VEST can-
not cleduce. HIFs cont:~in directives to tell VEST
about i~ndetected entry points, to force it to
ch;lnge specific assumptions ;ibout an image tliir-
ing translation, ant1 to provide known interpice
properties to be prop;~g;~ted into an [IF.

VEST Per$ormance Considerations
I n evr~lu;~ting translated cotle performance, we rec-
ognized that there was a significant trade-off
between performance ant1 the accuracy of emulat-
ing the VAX architecture. VEST perlnits i~sers to
select several architectural assumptions and opti-
miz;ltions, including:

D-float precision. The Alpha U P architecti~re
jxovitles hardware support for D-float with only
53-bit mantissas, whereas the vhx architecture
provitles 56-bit mantissiis. Tile user may select
translation with either 53-bit hardware support
(f~ster) or 56-bit software support (slower).

Alignment. Alpha AXP instructions slipport Only
nati~rally aligned longword (32-hit) ant1 quatl-
wortl (Whit) memos). operations. LJnalignetl
memory operations cause alignment fi~ults,
wliicli :Ire handled tr:unsp;rrently by softw;~re at
signitlcant run-time expense. The user may
direct VEST to assume th;it data references are
~~n:~lignetl whenever ;rlignment information is
~~n;~v;iil:~ble,

Instruction aton1icit)l. Multitasking and multi-
processing programs may depend on jnstri~ction
atomicity and memory operation cllaracteristics
simil;~r- to those of the VAS architecture. VEST
uses special code sequences to produce exact
\/AX memory characteristics. VEST and the TIE
cooperate to ensure VAX instruction atomicity
wlien instructed to d o so. This mecliaoisni is

describcd in detail in the section Special
Considerations for Instruction Atomicity.

Untranslatable Images
Some characteristics make OpenVMS VAX images
untranslatable, including:

Exception handler issues. Images that tlepend
on ex;~mini~ig the V s processor status longword
(~'sL) (luring exception Iianclling must be niodi-
fiecl, because the VAX PSL is not available within
exception handlers.

Direct reference to undoci~nlented system ser-
vices. Some software contains references to
unsuj>l'orted and undocumented system ser-
vices, such as an intern2il-to-\/MS service, which
parses image symbol tables. VEST highlights
these references.

Exact VAX memory management requirements.
Images that tlepend on exact VtU(memory man-
agement behavior clo not function properly and
must be modified. These images inclucle those
that tlepentl on VN(page size or that cxpect
certain objects to be m;ippetl to particular
addresses.

1m;ige format. Programs that use images as data
are not able to read Open\OtS S P images with-
out modifications, because the image formats
are different.

TIE Design Overuiew
The run-time translatetl image environment TIE
assists 111 executing translated OpenVMS VrU(images
under the OpenmSA)(P operating sptem. Figure 4
and Table 1 show the contents of the TIC

Problems Solved at Run Time
Complici~tions may occur when translated
OpenVMS \ I U images arc run under the OpenVMS
AXP operating system. This section tliscusses the
following related topics: the failure to find a11 code
during translation, \'AX instruction guarantees,
instruction atomicity, memory update, and preserv-
ing VtLY exceptions.

Failure to Find All Code dt~ring TI-c~nslation
When the \/EST binary translator encounters ;i

brancli or subroutine c;ill to an unknown destina-
tion, VEST generates code to call one of the TIE
lookup ro~~tines. The lookup soutilies niap a V a

142 kl. 4 Vo. 4 Specic~l r.sslrr I992 Digital 7ecbrriccrl Jour~inl

instruction address to a translated Alpha tLYP code If the target of the flo-w change is translated cotle,
address. If an address mapping exists, then a trans- the interpreter exits to this code. Otherwise, the
fer to the translatetl code is performed. Otherwise, interpreter continues to interpret the target.
the VAX interpreter executes the destination code. Lookup operations that transfer control to the
When the VAX interpreter encounters a flow of con- interpreter also record the starting V k u code
trol change, it checks for returns to translated code, address in an HIF file. The ViU(image can then be

retranslatecl with the HIF information, resulting in
an image that runs faster.

Lookup routines are also usecl to call native
Alpha AXP (nontranslated) routines. The TIE sup-
plies the required special autojacketing processing
that allows interoperation between translated and
native routines with no manual intervention. At
load time, each translated image identifies itself to
the TIE anti supplies a mapping table ilsetl by the
lookup routines. The TIE maintains a cache of trans-
lations to speed LIP the actual lookup processing.

Every translated image contains both the original
VAX code and the corresponding Alpha U P code.
When a translated image identifies itself, tlie TIE
marks its original VtU(addresses with the page pro-
tection called fault on execute (FOE). An Alpha AXP
processor that attempts to execute an instruction
on one of these pages generates an access violation
fault. This fault is processed by a TIE condition Iian-
dler to convert the FOE page protection into an
appropriate destination address lookup operation.
For example, the FOE might occur when a trans-
lated routine returns to its caller. If the caller was
interpreted, then its return address is a Vtm code
address insteatl of a translated VAx (Alpha Axp

Figztrc? 4 VEST Run-time Eizzlirontnent code) address. The Alpha AXP processor attempts

MAIN AND
SHAREABLE
IMAGES

Table 1 TIE Contents

NATIVE
IMAGES

VAX-to-Alpha AXP Address Mapping
(VAX State Manager)

OPENVMS AXP

CALLBACKS

4 4 4

MANAGER

INTERPRETER

VAX Instruction Atomicity Controller
(VAX State Manager)

VAX Instruction Interpreter
VAX Complex Instructions

OpenVMS VAX Exception Processing

Routines for Differences between OpenVMS
VAX and OpenVMS AXP System Services

Used to find computed destinations and other cases
where VEST did not find the original VAX code. Each
translated image has a mapping table included.
Achieves VAX instruction atomicity for asynchronous
events. This allows data sharing between the single
asynchronous execution context (AST) provided by
OpenVMS and non-AST level routines.
Executes VAX instructions not found by VEST.
Some VAX instructions do not have code generated in-line
by VEST. Those instructions are processed in the TIE.
Examples are MOVC3 and MOVC5 that move byte strings.
Certain aspects of OpenVMS AXP exception processing
are necessarily different from OpenVMS VAX. For
example, the VAX computers have two scratch registers,
but Alpha AXP computers have 15. Translated condition
handlers are passed the VAX equivalents.
Some operating system interfaces were rearchitected.
The TIE intervenes to make the differences transwarent.

Digital Technical Jourt~al 1'01. 4 1Vo.4 SpeciuI Issue 1992 143

Alpha AXP Architecture and Systems

to exccute the VXZ code ant1 generates a FOE condi-
tion. The T I E condition h;~ndler converts this into a
,1J41' lookt~p operation.

VAX I~zstt~zrctio~z Gunr~rritees Instruction guaran-
tees :ire characteristics of a computer architecture
th:~t are inhercnt to instructions executecl on that
architecl~rre. For example, o n ;I VLG computer, if
instruction 1 writes data to memory ancl then
instruction 2 writes data to memory, a second pro-
cessor must not see the write from jnstruction 2
before thc write from instruction I.. This property
i s called strict read-write ordering.

The VES'IYTIE pair can provide the illusion that a
single (:IS<: instruction is executed in its entirety,
even thougli the underlying translation is :I series
of RlX: instructions. VEST/?'IE can also provide the
illusion o f two processors updating adjacent mem-
ory l3yte.s without interference, even thoirgh the

unclerlying IUSC instructions manipulate four o r
eight bytes at a time. Finally, VEST/TIE can provide
exact memory read-write ordering and arithmetic
exceptions, e . g . , overflom~. All these provisjons are
option;~l and require extra execution time.

Tables 2 and 3 show the visibility differences
between various guarantees on VAX and Alpha AXP

systems as well as for translated VhX programs.

Special Considerations for- Instrzrction Atoi?licity
The VAX' ;lrchitecture requires that interrupted
instructions complete o r appear never to have
started. Since translation is ;I process of converting
one VAX instruction to potentially many Alpha AXP
instructions. run-time processing must achieve this
gu;lr;lntee of instruction atomicity Hence, a \'AX
instruction atomicity controller (MC) was created
to manipulate Alpha AXP state to an equivalent
VAX state. When a translated asynchronous event

Table 2 Single P r o c e s s o r G u a r a n t e e s

Single Processor Guarantees Characterized by What an Observer Sees
on t h e Same Processor That Executes t h e Data Change

Topic VAX Translated VAX Native Alpha AXP

Instruction An entire An entire translated A single Alpha AXP
Atomicity VAX instruction VAX instruction with instruction

/PRESERVE=INSTRUCTION
-ATOMICITY and TIE'S
instruction atomicity
controller, else a single
Alpha AXP instruction

Table 3 M u l t i ~ l e P r o c e s s o r G u a r a n t e e s

Multiple Processor Guarantees Characterized by What a n Observer
on a Different Processor S e e s versus the One Executing the Data Change

Topic VAX Translated VAX Native Alpha AXP

Byte Granularity Yes, hardware
ensures this

Interlocked Update

Word Tearing

Yes, for aligned
datum using interlock
instructions
Aligned longword
writes change all
bytes at once

Other writes are
allowed to change
one byte a t a time

Yes, with
/PRESERVE=MEMORY
- ATOMICITY
Yes, for aligned datum
using VAX interlock
instructions
Aligned longword or
quadword writes
change all bytes
at once

Yes, via LDx-L,
merge, STx-C
sequence
Yes, via LDx-L,
modify, STx-C
sequence
Aligned longword or
quadword writes
change all bytes
at once

144 Vo1. 4 iVo. 4 Speciallssue I992 Digital Technical Journal

Binary Translation

processing routine is called, the L4C is invoked. The
LAC examines the Alpha ASP instruction stream and
either backs up the interrupted program counter to
restart at the equivalent v a instruction boundary
or executes the remaining instructions to the next
boundary. Many V ! programs do not require this
guarantee to operate correctly, so VEST emits code
that is VAX instruction atomic only if the qualifier
/PRESERVE=INSTRUCTION-ATOMICITY is specified
when translating an image.

VEST-generated code consists of four sections
that are detected by the L4C. These sections have
the following functions:

Get operands to temporary registers

Operate on these temporary registers

Atomically update VAX results that could gener-
ate side effects (i.e., an exception or interlocked
access)

Perform any updates that cannot generate side
effects (e.g., register updates)

The \TAX interpreter achieves VAX instruction
atomicity by using the atomic move, register to
memory (AMOVRM) instruction. The AIIOVRM
instruction is implemented in privileged archi-
tecture library (PAL) subroutines and updates a
contiguous region of memory containing \TAX

state without being interrupted. At the begin-
ning of each interpreted vAx instruction, a read and
set flag (RS) instruction sets a flag that is cleared
when an interrupt occurs on the processor.
AMOVRM tests the flag, and if set, performs the
update ant1 returns a success indication. If the flag
is clear, the h10VRhl instruction indicates failure,
and the interpreter reprocesses the interrupted
instruction.

Isszles with Changing Memory VAX instruction
atomicity ensures that an arithmetic instruction
does not have any partially updated memory loca-
tions, as viewed from the processor on which that
instruction is executed. In a multiprocessing envi-
ronment, inspection from another processor could
result in a perception of partial results.

Since an Alpha M P processor accesses mem-
ory only in aligned longwords or quadwords, it
is therefore not byte granular. To achieve byte
granularity, VEST generates a load-locked/store-
conditional code sequence, which ensures that a
memory location is updated as if it were byte granu-
lar. This sequence is also used to ensure interlocked

Digital Technical Journal Vo1. 4 No. 4 Special Issue 2992

access to shared memory. Longword-size updates
to aligned locations are performed using nor-
mal load/store instructions to ensure longword
granularity.

Many multiprocessing vAX programs depend
on byte granularity for memory update. VEST
generates byte-granular code if the condition
/PRESEU\~E=MEMOU\'-ATOMICln is specified when
translating an image. In addition, VEST generates
strict read-write ordering code if the qualifier
/PRESERVE=RUD-WRITE-ORDERING is specified
when translating an image.

Preserving VAX Exceptions Alpha AXP instruc-
tions do not have the same exception characteris-
tics as VA); instructions. For instance, an arithmetic
fault is imprecise, i.e., not synchronous with the
instruction that caused it. The Alpha kXP hardware
generates an arithmetic fault that gets mapped
into an OpenvMS AXP high-performance arith
metic (HPARITH) exception. To retain compati-
bility with VkY condition handlers, the TIE maps
HPrUiITH into a corresponding VA?< exception when
calling a translated condition handler. Most VAX
languages do not require precise exceptions.
For those that do, like BASIC, VEST generates
the necessary trap barrier (TRAPB) instructions
if /PRESERVE=FLOATING-LYCEPTIONS is specified
when translating an image.

OpenVMS AXP and
OpenVfWS VAX DzIfferences
Functional Differences Most OpenVMS AXP
system services are identical to their OpenVMS VAx
counterparts. Services that depend on a \TAX-spe-
cific mechanism are changed for the Alpha AXP
architecture. The TIE intervenes in such system ser-
vices to ensure the translated code sees the old
interface.

For example, the declare change mode handler
($DCLCMH) system service establishes a handler for
VAX change mode to user (CHMU) instructions. The
handler is invoked as if it were an interrupt service
routine required to use the V . return from inter-
rupt or exception (REI) instruction to return to the
invoker's context. On OpenVMS AXP systems, the
handler is called as a normal procedure. To ensure
compatibility, the TIE inserts its own handler when
calling OpenVMS iiXP $DCLCMH. When a CHMU is
invoked on Alpha t U P computers, the TIE handler
calls the handler of the translated image, using the
same VAX-specific mechanisms that the handler
expects.

Alpha AXP Architecture and Systems

Exceptio?z Handlirg OpenVMS AXP exception
processing is alrnost identical to that performed in
the OpenVMS VAX system. The niiijor tlitference is
that the VA)C. mechanism array neetls to hold the
value of only two temporary registers, RO and R1,
whereas the Alpli~ LYP mechanism array neetls to
holcl the value of 15 temporary registers, RO, R1, ant1
R16 through R28.

Co~nl~ lex Instrz~ctions Translating some VAS

instri~ctions woulcl require many Alpha AXI-'
instructions. Instead, VEST generates code that calls
a TIE subroutine. Subroutines are implemcntetl in
two ways: (1) handwritten native enlulation rou-
tines, e.g., MOVC5, ancl (2) VEST-translatecl VAX emu-
lation routines, e.g., POLYH.

Together, VEST ant1 TIE can translate ant1 run most
existing user-mode VAX bin;irlr inxlges. As shown in
Table 4, performance of translated VAX programs
slightly exceeds the original goal. Performance
depends heavily on tlie frequency of use of VAX fea-
tures that are not present in Alpli;l AM-' machines.

ULTRYX MIPS Translation
mx is the translator that converts IJ1:SRIX >lIl'S pro-
grams to DEC OSF/l AXP programs. The rnx project

started after VEST was filnctional, and we took
advantage of the VEST common code base for much
of tlie analysis nnd Alpha AXP code assembly phases
of the translator. In hc t , about h;ilf of the cotle in
mx is compilecl from the same source files as those
usetl for VEST, with some architectural specifics
suppljecl by differing inclutle files. The cocle-shar-
ing aspects of C++ have proven quite valuable in
this regard.

mxr is the run-time support system for translated
programs. It provicles services simil;~r to TIE, emu-
lating the ULTRIX MIPS environment on a DE<: OSUl
AXP system. mxr is written in C++, C , and Alpha
;~ssenibler.

Challenges
Creating a translator for the MIPS R2000/R3000
architecture presented us with a Iiost of new oppor
tunities, along with some significant challenges.
The basic structure of the mx triinslator is much
simpler than that of VEST. Both the source and
the target architectures are IIISC: niachines; there-
fore, the two instruction sets have a consideriible
similaritj~. Many instructions translate one for one.
The MIPS architecture has very few instruction sick
effects or subtle architect~~ral ciet;lils, although

Table 4 Translated VAX Performance, Normalized to Native-compiled OpenVMS AXP Code

VEST
VAX Time Translated Time Native Time
on VAX 6610 on DEC 7000 AXP on DEC 7000 AXP

Program (83.3 MHz) (167 MHz)* (1 67 MHz)

gee
express0
spice2g6
doduc
nasa7
l i
eqntott
matrix300
~PPPP
tomcatv

Geometric Mean
(without gcc)

Notes:
The larger the number, the slower the performance. These performance numbers were measured on derated field test hardware and
software at various times during 1992; production results will vary somewhat. The SPEC benchmarks are written in FORTRAN and C;
no conclusions should be drawn about other classes of programs wr~tten in other languages.

'The DEC 7000 system was running at a derated speed compared to product~on DEC 7000 systems.

t~ iming information for this run is not available.

those that are present are particularly tricky.
Furthermore, the format of an executable program
i~ncler the IJLTRIX system collects all code in a single
contiguous segment and makes it easy for rnx to
reliably find close to 100 percent of the code in the
MIPS application. The system interfaces to the
rJLTRIX and DEC OSF/1 systems are similar enough
that most ULTRlX system calls have functionally
identical counterparts under the DEC OSF/l system.

The challenges in mx stem from the fact that the
source architecture is a RlSC machine. For example,
DEC OSF/l L K P is a 64-bit computing environment,
i.e., all pointers used to communicate with the
operating system are 64 bits witle. This environ-
ment does not present a problem when the pointer
is passed in a register. However, when a pointer (or
a long data item, such as a file size) is passed in
memory, it must be converted between the 32-bit
representation, used by the LILTRIX system, and the
64-bit mP representation, even when the seman-
tics of the operating system call are the same on
both systems.

A significant challenge is the fact that our users'
expectations for performance of translated pro-
grams are much higher than for VEST. Reasoning
that the source and target machines are similar,
users also expect mx to achieve a translated pro-
gram perfornlance better than that of the source
program, since Alpha U P processors are faster.
Thus, as our performance goal, we set out to pro-
duce a translated program that runs at about the
same speed as the original program would run on a
MIPS R4000 machine with a 100-megahertz (MHz)
internal clock rate.

Mapping the Architectures
At first glance, it appears that we could simply
assign each MITJS register to a corresponding Alpha
iu;P register, because each machine has 32 general-
purpose registers. The translated code would then
have two scratch registers, since the MIPS architec-
ture does not allow user-level programs to use reg-
isters KO and K1, which are reserved for the
operating system kernel.

Unfortunately, translation requires more than
two scratch registers The Alpha I\XP arch~tecture
does not have byte or halfword (16-bit) loads or
stores, and the code sequences for perform-
lng these operations require four or five scratch
registers. Furthermore, rnx reclulres a base register
to locate mxr without having to load a 64-bit
address constant at each call. Finally, the ivlIPs

architecture has more than 32 registers, including
the HI and LO registers used by the multiply and
divide instructions, and a floating-point condition
register, whose layout and contents do not corre-
spond to the Alpha &YP floating-point condition
register.

In mx, we assign registers using standard conl-
piler techniques. To assign registers to 33 MII-'S
resources (the 32 general registers plus one 64-bit
register to Iiold both HI and LO), certain registers
are permanently mapped, and other M[PS registers
are kept in either AXP registers or memory. The
MIPS argument-passing registers A0 through A3 are
permanently assigned to Alpha AXP registers R16
through R19, mihicll are the argument registers in
the DEC OSF/l AXP calling standard. This correspon-
dence simplifies the work needed when mxr must
take arguments for an UUrlUX system call and pass
them to a DEC OSF/1 system call. Similarly, the argu-
ment return registers VO and V1 are mapped to the
Alpha &XI3 argument return registers RO and R1. The
return address registers and stack pointer registers
of the two machines are also mapped. MIPS RO is
mapped to Alpha AXP R31, where both registers
contain the same hard-wired zero value. We reserve
Alpha AXP registers R22 through R24 as scratch reg-
isters and also use them when interfacing to mxr.
We reserve Alpha L K P R14 as a pointer to an mxr
communication area. Finally, we reserve three
more registers as scratch registers for use by the
code generator.

The remaining 16 Alpha AXP registers are avail-
able to be assigned to the remaining 23 MIPS
resources. After the code is analyzed and we have
register usage information, the 16 most freqi~ently
used MIPS registers get mapped to the remaining 16
Alpha AXP registers, and the remaining registers are
assigned to memory slots in the mur cornmunica-
tion area. When a MIPS basic block uses one of the
slotted registers, rnx assigns it to one of the scratch
registers. If the first reference reads the old con-
tents of the register, mx generates a load instruc-
tion from the communications area. If the value of
the MIPS resource changes in the basic block, the
scratch register is stored in the communication
area before the end of the block. As in most compil-
ers, if we run out of registers, a spill algorithm
chooses a value to save in the communication area
and frees up a register.

Alpha AYI-' integer registers are 64 bits witle,
whereas MlPS registers are only 32 bits wide. We
chose to keep all 32-bit values in Alpha U P integer

Digital Trchtrical Jourtcal Val. 4 No. 4 Special Issue 1992 147

Alpha AXP Architecture and Systems

registers as sign-extended values, with the high 32
bits equal to bit 31. This approach occasionally
requires mx to generate additional code to create
canonical 32-bit integer results, but the &-bit com-
pare operations do not need to change the values
that they are comparing.

The floating-point architecture is more complex.
Each of the 32 MIPS floating-point registers is 32 bits
wide. Only the even registers are used for single
precision, and a double-precision number is kept
in an even-odd register pair. We map each pair of
MIPS floating-point registers onto a single 64-bit
Alpha AXP floating-point register. Also, one Alpha
AXP floating-point register represents the condition
code bit of the MIPS floating-point control register.
Thus, the mx code generator can use 14 scratch
registers. nLu goes to considerable effort to find
paired loads and stores in the MIPS code stream, and
to merge them into one Alpha AXP floating-point
operation.

MII'S single-precision operations cause problems
with floating-point corresponclence. Since on MIPS
machines, the single-precision number is kept in
only the even register of the register pair, the even
and odd registers in a pair are independent when
single-precision (or integer) operations are done in
the floating-point unit. On Alpha AXP machines,
computation must be done on a value extended to
double format in the whole 64-bit register. We
defined two forms for values in Alpha AXP floating-
point registers: computational form, in which com-
putation is done, and canonical form, which
mimics the MIPS even and odd registers. If a MlPS
program loads an even register and uses this regis-
ter as a single-precision value, mx loads the value
from memory to be used computationally. Lf a MlPS
program loads only an even register but does not
use this register in the basic block, mx puts the 32-
bit value into half of the Alpha AXP floating-point
register. This permits correct behavior in the patho-
logical case where half of a floating-point number is
lo:~ded in one place, and the other half is loaded in
some other basic block. If a register is used as a sin-
gle-precision number in a basic block without first
being loaded, the code generator inserts code to
convert it from canonical to computational float-
ing-point form. If a single-precision value has been
computed in a block and is live at the end of the
block, it is converted to canonical form.

mx inserts a register mapping table into the
translated program that indicates which MIPS
resources are statically mapped to which Alpha

AXP registers, ancl which MIPS resources are nor-
mally kept in memory. This table allows mxr to find
the MIPS resources at run time.

Finding Code
As with the VEST translator, mx finds code by
starting at entry points and recursively tracing
down the flow of control. mx finds entry points
using the executable file header, the symbol table
(if present), and feedback from mxr (if present).
Finally, mx performs a linear scan of the entire
text section for unexaminetl words. mx analyzes
any data that looks like plausible code but does not
connect this data into the main flow graph.
Plausible code consists of a series of valid MIPS
instructions terminated by an unconditional trans-
fer of control.

While finding code and connecting the basic
blocks into a flow graph, mx looks for the code
sequence that indicates ;I switch statement, i.e., a
multi-way branch, usually through an element of a
table. mx finds the branch table and connects each
of the possible targets as successors of the branch.

Code Analysis
Our static analysis of hundreds of NlIPS programs
indicates that only 10 instructions account for
about 85 percent of all code. These instructions are
LW, ADDIU, SW, NOP, ADDIJ, BEQ, JAL, BNE, Lt J I , and
SLL. The corresponding sequences of Alpha AXP
code range from zero operation codes, or opcodes,
(for NOP, since the Alpha AXP architecture does not
require NOPs anywhere in the code stream) to two
opcodes (for SLL).

Code analysis for source programs is much more
important in mx than in VEST, because the coding
idioms for many common operations dlffer
between the Alpha AXP and MlPS processors. The
simple technique of mapping each MIPS instruction
to a sequence of one or more Alpha AXP instruc-
tions loses much of the context information in the
original program.

For example, the idiom used to load a 32-bit
constant into a register on M[PS machines is to gen-
erate a load upper immediate (LUI) opcode, placing
a 16-bit constant in the high-order 16 bits of a
register. This operation is followecl by an OR imme-
diate (OM) opcode, logically ORing a 16-bit
zero-extended value into the register. The LUI
corresponds exactly to the Alpha i \xP load address
high (LDAH) opcode. However, the Alpha AXP

148 1/01. 4 No. 4 Special Issue 1992 Digital Technical Jourtral

Binary Translation

architecture has no way of directly ORing a 16-bit
value into a register and cannot even load a zero-
extended 16-bit constant into a register. When the
high-order bit of the 16-bit constant is 1, the short-
est translation for the ORI is three instructions. The
mx translator scans the code looking for such
idioms, and generates the optimal two-instruction
sequence of Alpha AXP code that performs the 32-
bit load. No opcode exists that corresponds to the
ON, but the results in the registers are correct.

When we started writing the mx translator,
we listed a number of code possibilities that we
thought we would never see. In retrospect, this was
a misguided assumption. For example, we have
seen programs that branch into the delay slot of
other instructions, requiring us to indicate that the
delay slot instruction is a member of two different
basic blocks-the block it ends, and the one it
starts. We have observed programs that put soft-
ware breakpoint (BREAK) instructions in the branch
delay slot, and thus BREAK ends a basic block with-
out being the last instruction. Some compilers
schedule code so that half of a floating-point regis-
ter is stored and then reused before the other half is
stored. The general principle that we intuit from
these observations is "if a code sequence is not
expressly prohibited by the architecture, some pro-
gram somewhere will use it."

Code Generation
After the program is parsed and analyzed and the
flow graph is built, the code generator is called. It
builds the register mapping table and then, in turn,
processes each basic block, generating Alpha AXP
code that performs the same functions as the MIPS
code.

At each subroutine entry, mx scans the code
stream with a pattern-matching algorithm to see if
the code corresponds to any of a number of stan-
dard MlPS library routines, such as strcpy. (Note that
the ULTRlX operating system has no shared
libraries, so library routines are bound into each
binary image.) If a correspondence exists, the
entire subroutine is recursively deleted from the
flow graph and replaced with a canned routine to
perform the subroutine's work on Alpha AXP pro-
cessors. This technique contributes significantly to
the performance of translated programs.

For each remaining basic block, the instructions
are converted to a linked list of intermediate
opcodes. At first, each opcode corresponds exactly
to a MIPS opcode. Tlie list is then scanned by an

optimization phase, which looks for MlPS coding
idioms and replaces them with abstract machine
instructions that better reflect the idiom. For exam-
ple, mx changes loads of immediate values to a non-
MlPS hardware load immediate (LI) instruction; shift
and add sequences to abstract operations that
reflect the Alpha AXP scaled add and subtract
sequences; and sequences that change the floating-
point rounding mode (used to truncate a floating-
point number to an integer) to a single opcode that
represents the Alpha &V convert operation with
the chopped mode (/C) modifier.

MlPS code contains a number of common code
sequences that cross basic block boundaries,
but which can be compressed into a single basic
block in Alpha AXP code. Examples of these are
the min and max functions, which map neatly
onto a single conditional move (CMOVxx) instruc-
tion in Alpha AXP code. The code generator looks
for these sequences, merges the basic blocks,
and creates an extended basic block, which
includes pseudo-opcodes that indicate the MIPS
code idiom.

After the optimizer completes the list of instruc-
tions, it translates each abstract opcode to zero or
more Alpha AXP opcodes, again building a linked
list of instructions. This process may permit further
improvements, so the optimizer makes a second
pass over the Alpha AXP code.

When processing a basic block, the code genera-
tor assumes that it has an unlimited number of tem-
porary resources. Since this is not actually true, the
code generator then calls a register assigner to allo-
cate the real Alpha AXP temporary resources to the
intermediate temporary registers. Tlie register
assigner will load and spill MIPS resources and gen-
erated temporary registers as needed.

Finally, the list of Alpha AXP instructions is assem-
bled into a binary stream, and the instruction
scheduler rearranges them to remove resource
latencies and use the chip's multiple issue capability.

Image Formats
The file format for input is the standard ULTRIX
extended common object file format (COFF). In
most ULTRIX MlPS programs, the text section starts
at 00400000 (hexadecimal) and the data at
10000000 (hexadecimal). In virtually all programs,
a large gap exists between the virtual address for
the end of text and the start of the data section.
When mx creates the output image, it places the
generated Alpha AXP code after the MIPS code and

Digital Technical Joztrnal Vol. 4 No. 4 Speciallssue 1992

Alpha AXP Architecture and Systems

before the MIPS data. This allows the program to
have one large text section. The Alpha AXP code
begins at an Alpha AYP page boundary, so that we
can set the memory protection on the IMII'S code
separately from the Alpha t\XP code.

The translatecl image is not in LIE<: OSF/l tU1' exe-
cutable format. Instead, i t looks like a Mil's (:OFF
file, but with tlie first few bytes changetl to the
string "*!/usr/bin/mxr".

Execw ting n Translated Program
When a translated image is run on I)E(: OSWl x x ~ .
its ~i~otlifiecl header invokes mxr first. mxr uses tlie
nienior!r map (mrnap) system call to loacl the trans-
lated program at the same virtual atltlress th;lt it

would have liad under tlie LlL'I"I1LX operating
system. rnxr resets the protection of the MIi-'S code
to read/no-write/no-execute, the Alpha ASP code
to read/no-write/esecute, and the c1;1t;1 to read/
write/no-execute.

mxr allocates a communication area ancl ini-
tializes Alpha &YP R14 to point to this are;). The
colnmi~nication area contains save areas for
>,IIPS resources, iliitialized pointers to nlxr ser-
vice routines, ancl other scr:~tcli space. mxr then
constructs new conimantl argument (nrgv) and
environment vectors as 32-bit wicle pointers (as the
MII-'S program expects). arranges to intercept cer-
tain signals from the I>EC OSF/l U P system. and
transfers control. to the translated start acldress of
the program.

When a system signal is tleliveretl to the program,
control goes to the signal intercept code in mxr.
This cocle transforms the signal context structure
from the DEC OSF/l ILYP system and constructs a n
LIL'TRIX PIIPS style context, which it tllen passes to
the translated signal h:lncller.

Certain signals are processed specially. For
instance, a program that attempts to transfer con-
trol to a location containing MIPS code rather than
translated code gets a segmentation violation, since
the MIPS code is not executable. This situation
can occur if a routine modifies its return adclress
to be a MIPS address constant, mxr will examine
the target address antl, if it correspontls to the start
of ;I pretranslated MIPS basic block, divert the flow
of control to the translatetl cocle for that block.
If not, mxr enters the MII-'S interpreter. The
interpreter proceeds to emulate the MIPS code
until a translated point is reached. mxr then
resynchronizes its machine state and reenters the
translated code.

Translation Goals and Classes
of Programs Not Supported
011s goill was to translate most user-mode MIPS pro-
grams compiled for a MIPS R2000 or R3000 machine
running III*TRIX Release 4.0 (or later) to run iclenti-
cally on the I>EC OSF/l AYP system with acceptable
1xrh)rrn;lnce. As shown in Table 5, performance of
translatetl MIPS programs meets or exceeds the
origin;~l goal.

Table 5 Translated MlPS
Relative Performance

MlPS Time on Translated Time
DECstation on DEC 3000
5000 Model 240 AXP Model 500

Program (40 MHz) (1 50 MHz)

SPECint92
espresso 2.4 1.1 (1 .O)*
l i 1.6 1.2 (1 .O)
eqntott 1.6 2.1 (1 .O)
compress 2.7 1.0 (1.0)
SC -t -
gee 2.1 1.2 (1 .O)

Geometric Mean 2.0 1.3 (1.0)
(without sc)

SPECfp92
spice2g6 -
doduc 1.7
mdljdp2 2.7
wave5 1.1
tomcatv 3.0
o ra 1.5
alvinn 1.6
ear 1.7
mdljsp2 1.4
swm256 2.3
su2cor 2.7
hydro2d 2.9
nasa7 2.6

~ P P P P 2.2
Geometric Mean 2.0
(without
spice2g6)

Notes:
The larger the number, the slower the performance. These
performance numbers were measured on derated field test
hardware and software at various times during 1992; production
results will vary somewhat. The SPEC benchmarks are written
in FORTRAN and C; no conclus~ons should be drawn about other
classes of programs wr~tten In other languages.

'The values in parentheses are from running once, then
retranslating with the run-time feedback from the f~rst run;
this gave a significant performance difference only for the
programs shown.

t ~ i m i n a information for this run is not available.

I50 It)/. 4 i\'o. I .S/)c,cir/l I.<S/IC 1992 Digilnl Technical Jorrnral

Due to extreme technical obstacles, some classes
of programs will never be supported by mx. U'c
decidecl not to translate programs that use privi-
leged opcodes or system calls o r that neetl to run
with superuser privileges. In cases where the file
system hierarchy differs between the LJLTRIX and
I>E<: SF/^ at' systems, programs that expect files
to be in particular places o r in a particular format
m;ry fail. Similarly, programs that read /dev/kmem
and expect to see an LJLTRIX MIPS memory layout
f ~ i l .

Certain other classes of programs are not cur-
rently supported, but are technically feasible.
These include big entlian MIPS programs from non-
L)igit;~l >Ill'!, environments, programs that use
1c4000 or 116000 instructions that are not present
011 tlie R3000 motlel, programs that need to be
~nu l t i~ rocesso r safe, and programs that require cer-
tain categories of precise exception heh;~vior.

Szcmmary
Builtling successful turnkey binary translators
reqi~ires hartl work but not magic. We built two dif
ferent translators; VEST and mx. In both c;rses, the
oltl and new environments are, by design, quite
similar in fundamental data types, memory atltlress
ing, register ;rnd stack usage, and operating system
services. Translators between dissiniil;~r ;rrchitec-
tures or operating systems are :I different matter.
Translating tlie code might be a reason;lbly straight-
h~rward task. However, emulating a run-time envi-
ronment in which to execute the code might
,?resent insurmountable technical ;rntl business
01~st:icles. Without capturing the environment, an
instruction translator would be of no use.

The ide;~ of binary translation is becoming more
common in the conlputer industry, as v;~rious other
co11ip;lnies start on their transitions to 64-bit
;~rchitectures.

Acknowledgments
Steve Hobbs originally suggestetl the binziry transla-
tion p:rth in the arcliitect~lre task force tliscirssions.
N:~ncy Kronenberg ancl Bob Supnik ;~clded critical
e:rrly support and later coordination. Jucl 1.eonard
set the engineering direction of cloing careful static
translation once, instead of on-the-fly dynamic
tr21nslation ;it each execution. Butler Lampson
boostetl morale at a critical time. Jim Gettys has
also been an important and vocal supporter.

The success of the translators would not have
been possil~le without the enthusiastic support of
the OpenVklS tCYP and DEC OSWl iUCP operating

system groups, and tlie rcspcctivc run-time library
groups, especially Matt I..aPine, 1.arry Woodman,
Hai Huang, Dan Murphy Nitin Karkhanis, Ray
Lanza, Anton Verh~~l s t , :rntI Terry Grieb.

Tlie Porting ant1 Performance Engineering
Group did extensive porting and testing of cus-
tomer applications. Tlie group members, especially
Shamin Bhindarwala and Robi d-Jaar, were sources
of extremely valuable customer feedback. The
Engineering System Group under Mike Greenfielcl
also made extensive early ilse of tlie translators and
provided valuable feedback.

The Alpha iLYP Migration Tools team is relatively
small for tlie subst;lnti;rl ;rmoutit of work acconi-
plished in the past two and one-half years. Every
person has made several key contributions. In atltli-
tion to the authors of this paper, the team members
are: Kate Burleson, Peigi Cleniinshaw, George
Darc): Catherine Frean, Bruce Gordon, Rick
Gorton, Kevin Koch, Mark Herdeg, Giovanni Della
Libera, Nikki Mirghafori, Srinivasan Murari, J i m
Paradis, and Ashutosh Roy.

References and Note

1. R. Sites, ecl., Alpha Ar.cbitect~rr-e ReJerellce
rllanunl (Burlington. MA: Digital Press, 1992).

2. R. Sites, "Alph;~ tLYt' Architecture," Digital
Tech~zical./ounza~,L, vol. 4, no. 4 (1992, this issue):
19-34.

3. C. Hunter ant1 J. Banning, "DOS at RISC," Byte
~Mngnzine (Novern her 1989): 361- 368.

4. Echo Logic, News Release (May 4, 1992).

5. L. Wirbel, "1)OS-to-lJNlX Compiler," Electronic
Eizgineel.i~lg Tilnes (,M;lrch 14, 1988): 83.

6. A. Bergh, K. Keilman, D Magcnheime~ ancl
J. Miller, "HP 3000 Emulation on HP Precision
Architecture Coniputcrs," He~ulett-Packor-clJour.-
1zc11 (December 1987).

7 Datum is the term ilsetl to refer to a piece
of information that has ;in adtlress ancl a size.

Alignment is the property of a datum of size
2" bytes. This clati~m is aligned if its byte atldress
has n low-order zeros. A size o r address not
meeting this constr;~int implies that the datum is
irnaligned.

Instruction atomicity is the property of instruc-
tion execution on single processor systems
such that an interrupted instruction has been

Digital Tecbrricnl J o ~ ~ r n n l %I. 4 ,Vo 4 Specitrl 1ss11e 1992 151

Alpha AXP Architecture and Systems

completed or has never started, i.e., partial exe-
cution of an instruction is never observetl.

Granularity is tlie property of memory n~rites on
niultiprocessor systems such that independent
writes to adjacent alignetl tlata produce consis-
tent results. The terms byte, word, longword,
quadwortl, and octaword granularity refer to
writing I-, 2-, 4- , 8-, and 16-byte size adjacent
data.

Interlocked update is the property of memory
updates (read-modify-write sequences) on niulti-
processor systems such that simultaneous

intlepenclent uptlates to the saine alignetl datum
will be consistent. This property causes serial-
ization of the independent re;id-niodify-write
sequences ant1 is not guaranteed for an
unalignetl datum.

Word tearing is tlie property of alignetl memory
writes on multiprocessor systems such tli;it a
reader inclepenclent of the writer c;in see partial
results of the write.

8. N. Kronenberg et al., "Porting OpenVMS from
VAX to Alpha AX[-'," Digitul Tech~zical J o ~ ~ r r z d ,
vol. 4, 110. 4 (1992, this issue): 11 1-120.

152 Vol. 4 ATo 4 Speciol Isslie 1 9 2 Digital Techrrical JorrrrrnI

Jeflrey A. Co fJler
Zia Mohamed
Peter M. Spiro

Porting Digital's Database
Management Products to the
Alpha AXP Platform

The cornerstowe softulare conzpolzent of higb-end production sjatevns is a database
rnancrgenzent y~stetn Digital has successfklly ported the DEC Rd6 for Open Kt/.$ rela-
tiolzal dc~t~~buse ~narzage1tze1zt s.yste~?z and the DEC DB,IlS for OpenKrrs nettilor15
d~lt~dxrse nzanagen~erzt systelrz to the Alpha AXPplatforln Rd6 nrzd Dfi1ll5 z1ler.e per-
haps the most co~~zplex h~)e~eclproducts to be ported The tzght couplii~g o j these two
products to the Open KVS VAX system made theport a challetzgi~zg tcuk. To avoid the
fz~tz~re problem of integrati~zg tu~o source code bases, the porting teailz decrded to
cise a common code base and to overlap current VAX development with the Alpha
AXP port. The goal ZLIC~S to l~ronide cln easy ~nigmtion pclth for softzvnre products to
the Alpha AXPplc~~orm

Digital is one of a small number of ventlors conipet-
ing in the high-end, complex production systems
market. Applications for this market support i n t l ~ ~ s -
tries such as banking, stock exchanges, telecomrnu-
nications, ant1 information services. The Alpha AXI'

platform is ideally suited to meet the response
time, throughput, and availability requirements of
these applic;ttions, since it offers increasetl perfor-
mance while maintaining the superb :~vailability
characteristics of VMScluster systems.

Although high-end production systems involve a
collection of software packages, the cornerstone
software component is a database management
system. Digital offers two database management
systems for high-end commercial systems: I)E<: ILIb
for OpenVMs, a relational database n1;lnagement
system, ;lnd DEC DBMS for OpenVMS, a network
(<:OI)ASYL) database management system. Digital
had to port the DEC Rdb for OpenVMS VAX and DE<:
DHMS for OpenVMS VAX database systems to the
Alph;~ i \XI j pl;~tforni as early as possible to continue
to compete in this commercial arena. The resulting
products are the DEC Rdb for OpellViMS A X P and
DE<: DBMS for OpenVivIS AXP systems. (Since these
two products for tlie Alpha AXP system are the
same as those for the VAX system, hereafter, w e
will refer to the protlucts as Rclb and III3MS.)
Atldition;illy, both software protlucts clrive many
sales of Digital's OpenVMS operating system ant1

transaction processing and information manage-
ment products such as <:I)I>. A<;MS, and DEC RALLY,
which integsatc with the Rclb and DBMS systems.

Database management systems are anlong the
most conlplex of all software protlucts. Applica-
tions expect these systems to have 7 by 24 availabil-
ity, sophisticated concurrency capabilities, fast data
access, high-speecl backup and restore mecha-
nisms, and largc buffer pools. 17) provide such hlnc-
tionality, the Rtlb and 1>13>IS products make
extensive w e of the OpenV~\4S \!AX system, the VAX

run-time libraries, and the HLISS and VAX MACRO-32
programming languages. The current release of the
product set uses more than 100 system services o r
run-time library c;~lls. The two protlucts utilize
almost every RI.lSS D1IILTIN function, i t . , a machine-
specific function c:ill tli;it generates in-line code.
Combined, Rtlb and 1)HMS comprise more than 30
different images. The products run in elevated pro-
cessing modes, both executive and kernel, and
inclucle user-written system services.

Further compounding tlie coniplexit)~ of porting
tlie Rclb ant1 DBMS software to tlie Alpha AXI' plat-
form is the fact that they are niatilre products; DHMS
was released in 1981, ltclb in 1984. Because varioi~s
system capabilities did not exist in the early 1980s,
the two database n1an:igement systems include
code that is no longer required. For example, both
prorlucts have code to move bytes from one data

Digilal Technical Jozrrnnl Vol. 4 IVo. 4 .S/~rcictl lsst~e 1992 153

Alpha AXE' Architecture and Systems

type to another. Also, during image runclown, the
products rely on undocumented, operating system
behavioral patterns such as the ;~synclironous
system trap (AST) delivery protocols. In ;tddition,
the lidb software contains a niotlifiecl version of the
Ope11\~1\4s SORT routine.

Rdb and DBMS were initially clesignetl to run
only on the OpenVMS VAX operating system.
Consequently, both products heavily utilize VAX-

specific features for performance gains.' For exam-
ple, Rdb generates VAX machine code routines as
part of query execution plans; the machine cocle is
carefully generateel for maximum execution effi-
ciency. This tight coupling of Rdb ancl DBMS to the
OpenvMs vAX system made the port a challenging
task.

Since the OpenVNJS ant1 BLISS groups were busy
with their own porting projects, m e in the Database
Systems Group had to ;iccomplish our port with lit-
tle outside help. The task was noteworthy because,
by necessity, the team had to port its procluct set to
the Alpha AXP platform earlier than most of the
other porting groups. At the same time, Rdb and
I>IlkfS were perhaps the most complex layered
proclucts that \voulcl be ported. Our goal was to
port these two proclucts in a timely fiisliion, so that
lligital woulcl truly succeetl in providing an easy
migration path for software products to the Alpha
AXP platform.

In this paper, we first present a brief description
of the architecti~re of the two database manage-
ment system products. We nest clescribe tlie guitl-
ing policies we formulatecl to allow the port to
proceed as efficiently as possible. Then, we docu-
ment porting issues that we resolved for the two
products. Finally, we summarize our experiences
related to this effort.

The DBMS procluct also provides language pre-
processors, an interactive query front encl. ;uncl
other software necessary to define, create, ancl
manage data in simple or complex databases. In
contrast to Rtlb, I>IlMS provides a CODASYL inter-
face to the d;it;ib;~se.

Fjgure 1 shows tlie relationship of the Rtlb anti
L)BMS software products to the KODA d;~tab:ise
kernel.

Porting Policies
Initially, we cle\~elopecl policies to guide our port to
the Alpha ,\S1' platform. These policies, which
applied to the KOl>r\, Rtlb, anel I>RklS teams. mere
clesigned to simplify the port ;ind to ease long-term
maintenance requirements.

Common Source Code Base
Our most important clecisiorl was to have a com-
mon source code base. 'That is, mie wantetl to 1i;ive
one set of source code that could be compiletl a~?d
run on either a VAX or an Alpha AXP system. At the
time we began our port, the OpenVMS group was
the only other software group that had started their
port, anel they had chosen to have two distinct cock
bases. (The OpenVMS AXP porting schedule dic-
tated the choice.) S o with respect to code base, the
path we chose was untested. \Ve also decidecl to
maintain common command procedures to con1-
pile, builcl, and link, and common regression tests
between the VAX and Alpha IGYP systems.

A primary season for our code base decision w;ls
that we did n o t 11;ive the resources to manage two
different code b:ises. Also, :~lthougli two divergent
code sources woulcl have ;illowetl for a stable cocle

Product Architecture
lligital is unique in tlie tlatahase industry in that we
provitle two different types of clatahise manage-
ment systems that layer on top of the same database
kernel, which is called KOIIA. The KOIIA kernel
provicles journaling and recovery, locking, access
nietliods (e.g., B-tree, hashing), recorcl ancl page
nianagenient, and buffer pool m:in:igement.

The Rtlb software provides 1:ingu;ige preproces-
sors, an interactive query front end, a ca1l;tble inter-
face, catalogue management, query optimization,
and relational operations such as join, select, ancl
project. Rtlb supplies a relational interface to tlie
cl;it;ibase.

RDB DBMS

KODA DATABASE KERNEI

OPENVMS OPERATING SYSTEM

Figure I Rel~~tionship of Rdb n77d DB1Lf.S
to the KODA Dat~d>nse Ker~~el

154 Vat. 4 No. 4 Sjx~Jn l Isstti? 1992 Dk i tn l T ~ L . ~ / J I Z ~ C O / J O I ~ / " I I ~ /

Porting Digitc~I'J' Database Mcirt~ige~rterzt Products to the Alpha AXP PlcrfJi,r~n

base witli wliicll to begin the Alpha AXP port, the
group strongly wantetl to avoid having to merge the
two code bases at a future date. Consequentl}:
since our prelirnin;lry investigation indicated that a
single code base was feasible and that we could
hick most of the platform dependencies through
the superb macro capability of the BLISS language,
we proceecletl with tlie common source cotle
implementation. The single code base allowed us to
built1 and release Alpha A X P ant1 VAX versions of our
products at the same time.

Concurrent Releases
Our release scheclule complicated the process of
adhering to the single code base policy. To meet the
schedule, we hat1 to overlap some of the Alpha A X P
port with our current VAX releases. That is, the sce-
nario we followed was Nm': work on a VAX release;
complete all necessary code changes; stabilize the
release; ant1 then create ;I newer set of sources for
the Alpha)jXI-' port. Rather, for the beginning por-
tion of the Alpha AXP port, we also had to change
source code destinetl for a \'AX release. Tlius, if a
module had to be changed for the earlier VAX
release and the same module bacl already been
ported h)r tlie Alph;~ AXP release, the engineer had
to propagate the code change to the Alpha AXP
source cotle.

To minimize the effect of double cocle changes,
we first worked on those modules for the Alpha
A X P release that were reasonably stable in the cur-
rent VAX code stream. For example, the BLISS

REQUIRE files that we use for data definitions were
reasonably stable for the VAX release by the time the
Alpli;~ AXI-' port began. The modules that did not
change for the vt\X release were also good cancli-
dates for helping us to avoid making double code
changes. When we finally began to port the bulk of
the motlules, they were mostly stable and, as a
result, only bug fixes for the VAX release required
that we manually modiQ the same module for the
Alpha AXl' release.

F~rrtherrnore, once we began work on the Alplia
AXI' release, we neetled the capability of being able
to compile, link, ;mtl test on both the Alpha AXP
ant1 VAX platforms. So m7e had to modify our devel-
opment environment to allow us to identify the
code change session as either an Alpha ,UP or a VAX
session.

Ab New Functionality
The Alpha AXI' release of the database management
system PI-oduct set contains no new fi~nctionality.

On the first pass, we decidecl to port the \'AX cocle
wjthout designing any new algorithms. We tlitl
clean up some code for style, conventioti, and per-
formance, but basically, the Alpha ,+XI-' relei~se
remains functionally equivalent to the latest \'AX
release.

Correct and Fast Code Execution
We clitl not prioritize our effort to first, be correct,
anti second, be kist. We clecided that we must be
correct a~zd fast on certain key issues. For ex;rmplc,
011 VAX systems, our argument-passing mechanism
i~tilizetl the argumetit pointer (AP). To minimize
code chatlges, we could have used the AR<;I'?'II con-
struct it1 the BLISS cross compiler. However, ARGITR

is inefficient aml, therefore, not appropriate for our
needs. Consequently! we ensured that our new
argument-passing design was efficient, even
thougli cloi~ig so was time-consuming.

Minimizing Platform -specific Modz~les
Cotle contlitionalizatio11, i.e., producing sep;lr;lte
code for tlie VAX and the Alpha AXP platforms,
requires various levels of code duplication. For
example, the process may require the duplication
of an entire module, routines within a tnodule, or
certain lines of code within a routine. To rnini~iiize
the amount of cotle duplicatecl, we condition;~lizetl
on the srnallest code segment possible, using a sen-
sible approach. For example, when forced into
using conditional code, we avoidetl duplicating
motlules by choosing to keep within a single mod-
ule. Ideally, we conditionalized just a few lines.
Wherever possible. BLISS macros were motlifiecl to
hide tlie code conditionalization.

Rd6 Is Rdb
\Ve wanted our database management protlucts to
"look and feel" the same on an Alplia I\XP system as
they did on a VAX system. So, to paraphrase from the
OlxnVMS operating system maxim, we wantetl Rdb
to be Rdb! That is, the ported Rdb should have tlie
same utilities, the same data structures, tlie s l m e
data tlefinitjon c;~pabilities, tlie same tlata manipu-
lation constructs, etc., as the DEC Rdb for 0penV~MS
Vhx' j>rotluct. Incorporated in this tlesire h)r s;lme-
ness was the fi~ndamental point t l~at we were not
going to change the on-disk structures. IIRMS was
ported witli the same goal in mind.

No Changes to On-disk St?~zrctures
The KODA kernel stores recortls on database pages
Unfortunatelj: the database page is not nat11r;llly

Mpha A;YP Architecture and Systems

aligned; page heatler fields and fields within the
reconls are not aligned. Although aligni~ig these
fields \vo~ilcl boost performance, to realign all the
structures 011 the d;ltabase page woulti r eq~~ i r e tlie
tlat:ib;we to be unloatled and then reloaded. Current
customers c:innot afford the downtime needecl to
perh)rm the conversion, so we decided to maint;~in
the sztrne p;tge/recortl structure. Furthermore, by
m;~int;iining the same on-disk structure for the VAX

zinc1 Alpha .\>(I' tlatabases, we tlo not preclude
f~t i tse concurrent access to the database in a
mixed-architecture \'MScluster. Thus, our present
clesign tloes not require an unload/reloatl opera-
tion, since performing that action woultl be too
1i1~1cli o l an impeclime~lt to migrating to the Alplia
AXI' p1;ttforrn. However, we do plan to investig;~te
the potential performance boost from aligned
p;tges/reco~-cls ;inti, if the gain is substantial, to offer
some alignment solution. Note that tliis section
refers only to data structures tied to on-disk struc-
tures. We did align all in-memory structures. ant1
we cl;~bos;itc on this topic in the next section.

Porting Details
In this section we describe a general set of issues
;1nd solutions that ;~pplietl to all the groups involved
in porting the tlat;tb;tse management system soft-
ware to the Alpha AXP platform. We then explain
sorlie of the more interesting issues and solutions
pcrt;iining to each group.

(;i)??znzoiz Issues
t\ collection ot'genes:~l posting issues applietl to tlie
Rtlb. I)lnls, :lncl KOIIA groups. For ex;trnple, all
groups needed the cap;tbility to contlitionalize
code jn ;I motlule. so that the compiler on an Alplia
/\XI' s!.atc.~n \vould procluce one set of object cocle.
;~nd the compiler on a \%X sj~stern woultl produce
;tnothcr set. <:on~rnon issues were:

Varianted code

Data alignment and field resizing

Argument- as sing mechanism

BUILTIN functions

VAX testing

The CALI.('; mechanism and AP references

VAX MACRO-32 modules

Message file support

Vurbnted Code To simplify conditional code, we
added a set of literals, for example KOD$K-VAX or
KOI)$K-ALPHA, that can be usetl in all our BLISS
modules. We could then use these literals to concli-
tionalize code. The code example shown in Figure
2 illustrates the conditionalizing of the PROBE
instr~~ction. The I'liOBE instruction checks the
re;~d/write access of a memory location. On Alpha
ASP systems, the instruction is quite different from
the corresponding instruction on VAX systems.
However, BLISS easily handles tliis difference in :I

macro, which allows us to change the name and the
order of the arguments, pass arguments by value
instead of reference, and use an offset instead of a
length. By developing such a macro, the actual
source code tlitl not have to change.

Ll~itct Aligtztnent and Field Resizing On the first
pass, we it~imecliately modified all in-memory data
strilctilres so that they were naturally aligned. 'This
step avoided incurring a significant performance
penalty on the Alpha AXP platform. In atldition,
since no single Alpha AXP instructions exist that
could be i~setl to easily manipulate bytc5 or wortls,
111:11iy o f our in-memory byte (8-bit) and word
(16-bit) fieltls were changed to longwords (32 bits)
to reduce the object code size and i~nprove
performance.

$ P R O B E R (B A S E , L E N = 4, MODE = 0) =
% I F KOD$K-ALPHA
% T H E N (B U I L T I N PAL-PROBER;

PAL-PROBER (B A S E , L E N - 1, M A X (MODE, $ P R E V - M O D E)))
% E L S E (B U I L T I N PROBER;

PROBER (% R E F (M O D E) , % R E F (L E N) , B A S E))
% F I %, I

Figzire 2 Conditiorzalized PROBE Itzsh'uction

156 \+,I. 4 :Vo. 4 Speiinl Issue 1992 Digital Techtzicrrl Jourtrnl

Porting Digilnlj: Dat~~lbase

Once w e aligned tlie in-memory data strilctilres,
two groups of data structures remained unaligned:
those tied to the database root file, which records
database parameters such as associated files and
database settings, and the database pages that actu-
ally contain the data records. Since the database
root file is relatively small (i.e., less than 100 blocks
in size), it was aligned also. Thus, the root file is
automatically re-created in a conversion that
occurs when upgracling a database product to sup-
port both the t\lplia AXP and VAX architectures.
Since this conversion invariably takes place when
converting to a newer version of either the Rdb o r
the DBMS product, the additional realignment of
the root is a minor additional expense.

Thus far, w e have not pursued any potential mod-
ifications of the page data structures, s~icli as align-
ing them once they are fetched into memory. Note
that these structures d o not generate un:~lignetl
faults. Insteacl, they force the compiler to generate
a few aclditional instructions to hanclle the odd
alignment.

Argurne~zt-J~clssing Mechanism The VAX ;Inel
Alpha AXP argument-passing mechanisms are
entirely different. Rather than using the st;lntlarcl
BLISS mechanism, the existing code clepended
strongly on the VAX argument-passing mech;~nisms
by using BLISS macros to reference arguments from
the AP. This approach was not possible on Alplia
A X P systems due to the lack of an A P register. (You
coulcl force the AP to be generated, but that process
would be slow and would waste memory.)
Therefore, w e changed our procedure headings to
declare a generic formal parameter list (e.g., 1'1
through PN) for both the Alpha tLYP and the VAX
systems and then developed another set of BLISS
macros that allowed us to bind to the arguments
based on the generated formal parameter list. Since
this process involved changing every routine decla-
ration, we developed a text-processing tool tIi;lt
would autoniatically change the routine headings
and thereby avoid the expensive ant1 error-prone
taslz of nianually changing each routine.

BlJILTIN Fzinctions Together, the KODA, Rdb, ;u~itl
DBMS code uses most of the BLISS BlJlLTlN hlnc-
tions. This fact presented a problem for the team
porting the software to tlie Alpha AXP platform.
Some VAX BUlLTlNs were not supported, some
behaved differently, and some were eliminated as
BUILTIN5 but emulated by Starlet, an OpenVMS

support library. Again, w e used BLISS macros to
solve the problem. Essentially. ou r macros catego-
rized the RLJlLTINs ant1 then performed the appro-
priate expansion, basecl o n the category. For
example, the PROHE IlIllLTlN differed markedly
between the \AX ant1 Alpha A S P implementatioiis,
as indicated by Figure 2.

VXX Testing Another general problem that we
had to guard against was the possibility that tlie
Alpha &\'IJ cocle changes wo~tlcl introduce bugs into
the VAX versions of the products. Consequently, w e
adopted a policy whereby all Alplia AXP changes
had to be testeel o n :I VAX system. Tliis policy
ensured that w e maintained a stcady pattern of cor-
rect VAX behavior. Also, since tlie VAX environment
was more stable than tlie i\lp11;1)\XI' environment,
testing on a \%X system helped tremendously in
identtfying and fixing bugs rel:~tecl to the port.

The CALLG ~ l f c c h a r ~ i s ~ ~ i a~zd AP Refcreizces The
Alpha iD(P platform does not tlirectly support
CALLG, a VAX procedure calling mechanism, and
references to the AP. The <:.-\l.I.<; ~ilechanisni ancl A P

references are slow since they :Ire sin1ul:ited iintl
automatically allocate st;lck space to accommotlate
the largest possible argument list (i.e., 255). In sitil-
ations where perforin;~nce was not critical, for
example, in an error hancl Ier, w e replaced CALLG by
a standard routine call o n both the VAX ant1 the
Alpha software versions. When performance
was an issue, w e usetl conclition;~l code to retain the
CALLG mechanism for the VAX code and to use ;I

standard routine call in the Alpha AXP code. 111
instances where the (:t\LL<; mechanism is used to
pass the argument list to the next routine, we con-
structed an arguiuent vector ;~ntl replaced CALLG by
a special call linkage. The new mechanism passed
the pointer to the argument vector b!, means of a
single parameter o r a global register. This solution
guaranteed good performxnce o n both VAX :lntl
Alpha A X P systems yet avoided any conclitionalizing
of the code.

VAXMACRO--32 Mo~lzilcs For ;I variety of reasons,
we used VAX LMACRO-s2 to code some rot~tines in
the Rdb, DBMS, and KOl>A softw;~re. For example,
basic operations such ;IS record compression, record
expansion, ant1 buffer initii~lization are performed
through calls to VAX MA<:RO-32 routines that are
heavily optirnizetl for efficient operation. Some
routilies are cocted in \ii\X MACRO-32 for ease

Digital Techirical J O U ~ H U ~ 1/01, 4 IVO 4 4pe~icrl Issue 1992 157

Alpha AXP Architecture and Systems

of character manipulation. Also. we used u\X
,\.W<:RO-32 to code machine instructions that were
not avai1;tble tl~rough a Ul.1Ss BIJIL1'IN function.

We adopted various solutions for these VAS
MA<:110-32 routines. For those routines where per-
formance was not an issue and BLISS generated
acceptable code, we converted to t3I.ISS cotle. For
routines where performance wns absolutely criti-
cal, we rewrote the routine in Alpha AXP m c : ~ O - 6 4
to utilize the additional registers. Fin;illy, in some
c;lses where we could not rewrite the routine in
13LJSS code and did not have tlie resources to con-
vert t o X I A < : I < O - ~ ~ code, we employetl the Alpha
MA<:RO cross compiler.

il.lc.ssc~gc File 5~1'por.l Due to the structure of the
clatabasc products, as shown in Figure 1, each com-
ponent has separate message files. Both Rtlb and
1)1%&tS have a message file that is separate From the
KODA message file. Furthermore, the Rdb and DBMS
software share the KODA message file.

The message files are merged during the build
cycle, so that customers are not required to be
;iw;lre of the modular layout of the cotle. As a result,
KODA messages, when appentletl to Rclb's message
file, print as Rdb messages (e.g., Rl),VIS-F-msgcode,
message text). However, the Rdb source code still
references the KODA message codes with the
liOl)$- message prefix.

Prior to the introduction of the Alpha ASP archi-
tecture, the KODA messages were defined with
.I.ITERAL declarations in the message files. Since we
occasionally link images with multiple message
files, we wrote a program that woiild read an .Ow

file and write a new .OBJ file without writing the
KOl>i\ literal declarations. This process woultl no
longer work since Alpha AXP object files have a clif-
ferent format than \IAX object files. As a result, we

changed the mechanism to define the KOD$- sym-
bolic values to be compatible with both the VAx
and Alpha t1)cl' architectures.

First, we removed all .LITERAL declarations from
the KODA message file. As a result, all KODA mes-
sages were defined strictly as RDMS or DBMS
messages. Then, after passing the message source
file tlirough the 111ess;lge c o ~ i ~ ~ i l e r to get tlie mes-
sage object file, we invoked tlie ANALYZWORJECT
facility to get 3 listing of the message symbol codes
ant1 values for each message. Finally, we wrote a
small utility to reatl the ANALYZWOBJECT output
ant1 generate a I3I..ISS .B32 file, which is shown in
Figure 3.

This BLISS program, when compiled and included
in an execut;rble image, defines the appropriate
KODS- message cocles ant1 their associated values.
This proceclure is used on both the OpenVMS V I G
and the OpenVMS ASP operating systems to gener-
ate the message files. Furthermore, since this group
no longer writes programs that read object code,
the resulting methotl is easier to maintain.

l'he following three sections discuss some proh-
lems encounteretl by each of the porting teams.

Porting the KODA Database Kernel
Among the issues that the KODA group dealt with
were those related to calling mechanisms, kernel-
motle rundown I~andlers, ant1 a bugcheck dump
mechanism.

Stc~ck-su~itchirzg/.Stall rl.lecl~a~zism The KODA data-
base kernel performs its own multithreacling activi-
ties. A single process can be actively attached to
multiple databases in the context of a single install-
tiation of the software. For example, in the D B M S

interactive query (DHQ) facility, the user can per-
form the following operzition:

M O D U L E D B M K O D M S G =
B E G I N

G L O B A L L I T E R A L K O D $ - A B O R T - W A I T
G L O B A L L I T E R A L K O D $ - A C C V I O
G L O B A L L I T E R A L K O D $ - A I J A C T I V E
G L O B A L L I T E R A L K O D $ - A I J A L L D O N E
. . .

E N D
E L U D O M

Figure .3 BLISS Cocle to Gerzelz~te KOD ~%Iessage Dclfinitiorzs

158 VoI. 4 So. 4 .S/)c2ciol lssrrc 1992 Digital Techrricnl Jorrrtral

iWol?nge~?zrnt Prod~~cls to the Alpha AXP l'/~~@r.rn

d b q > ! A t t a c h t o f i r s t d a t a b a s e a s u s e r l .
d b q > B I N D D B I O N S T R E A M 1
d b q >
d b q > ! A t t a c h t o s e c o n d d a t a b a s e a s u s e r 2 .
d b q > B I N D D B 2 O N S T R E A M 2
d b q >
d b q > ! E s t a b l i s h u s e r l c o n t e x t .
d b q > S E T S T R E A M 1

This example has tlie user ;~ttachecl to two differ-
enr databases, DH1 ancl 1>132. To issue queries against
either elatabase, the user enters the SET STRM,tl
command. 111 response, KOIIA establishes the cor-
rect data structures :~nd stream context for this
database session. This process involves switching
dxta structures and stack context. Consequentlj:
KOIIA manages its own stack for its executive rnode
code ant1 data structures. This stack-switching
mechanism is con~plex, and this code is intin1:ltely
tied to tlie VAX procetlure calling mechanism. For
cxa~iiple, whenever a (1ilel-y must stall (e.g., while
waiting for a lock request), KOIIA saves the current
executive mode context and then switches back
throi~gh the stream cocle o i ~ t to user mode. This
iiction allows the process to receive user-mode
ASTs. This mech:anism essentially saves a call fsame
so that after the user-niocle stall has con~pletetl,
KOIIA can set up the appropri;~te stack and return to
the calling routine by me;ins of the saved call frame.

The calling/retum mechanism is entirely differ-
ent for tlie VAX anel Alpha AXP architectures. On
Alpha AXI-' systems, for each routine, the compiler
generates prologi~e code and epilogue code to man-
age the routine calling nlechanism. Accortlingly,
the KODA stack mech:inism had to rely on this new
mechanism. In adclition, for this level of support,
tlie routine that was coclcd in BLISS for the \iAX plat-
form had to be cotled in N M < : R O - ~ ~ on the Alpha
AX1' platform.

Kc.1.r7e/-1node R L I I Z L / O ~ . ~ J I Z fI~1nd1ers Another esanl-
ple of KODA's close tie to OpenVMS behavior
involved the use of KOfIt\'s kernel-mode rundown
hancllec On \RX systems, in the event of an abnor-
m;ll failure, we must cle;ln up certain data struc-
tures and release resources such as locks or
ch;~nnels. Furthermore, elatabase recovery must
start before the image sunclown is completed, so
that surviving processes cannot acquire locks on
resources before the databases are recoverecl.

We accomplish tliis image cleanup through the
use of a user-definecl system service (i.e., a system
service not defined by the OpenViLlS system),
which acts as a kernel-mocle rundown handler.
111 atldition to releasing tlatabase resources, the

handler also cleaned up OpenVMS clata structilres
such as the pending AST queue. These OpenVMS
data structures changed significantly for the Alpha
AXP architecture. For example, an Alpli;~ AXI-'
system has five pending AST queues instead of one.
In addition, this Iiancller routine would acquire the
OpenVMS scheduler spinlock and perform ,'poor
man's locktlown," wliicli effectively pages the entire
routine into memory (since the code cannot incur a
page fault at elevated interrupt priority level, IPL).
For Alpha AXP, code and data cannot be 1oc;lted in
the same PSECT, so this trick was not possible.
Instead, we used the $LK\vsET macro to lock pages
in memory and then to clean up the Opcn\'h,lS data
structures.

After we completetl and tested the code, the
database and OpenVMS engineering teams clecidecl
that such intricacy was needlessly con~plex, and
that the OpenVMS AXl' software could clean up
the data structures based on its image control
block and related structures. This example shows
how the OpenVMS AXP system offers clifferent func-
tionality than the OpenvMS M X system, i.e., the
port offered the opportunit)r to clean up existing
mechanisms.

Bc~gcheck Drr~~z/) Mechanism Complex, sophisti-
cated software products are by nature clifficult to
tlebug, Most of these products utilize ;I data struc-
ture dumping mechanism whenever an internal
software or hardware error is encountered. KODA

has a mechanism called a bugcheck (lump that per-
forms tliis service. Wlien an unexpected exception
is generated, the bugcheck dump code prints all rel-
evant data structures into a file. In addition, the
dump includes a stack dump. On VAX systems, the
bugcheck clump traces back clown the st;lck using
the saved call frames and prints out all the fielcis in
each call frame, the routine name, and tlie argu-
ments passecl.

In particular, the method for printing the syni-
bolic name of the routines is especially clever. After
linking an image, we utilize a program that scans
the symbol table (.STR file) produceel by the linker.
Then the program creates its own object file, which
inclucles a relative offset of all the routines ancl their
symbolic names. Finally, the image is relinkecl, and
this new object file is included into tlie image in a
particular PSE<:I'. When tracing back clown the call
frames, the bugcheck tlump also checks the special
PSECT to locate ;~ntl print the correct routine name.
This dump is an invaluable tool in determining tlie
causes of unexpected errors. Figi~re 4 includes two

Alpha AXP Architecture and Systems

S a v e d PC = 0 0 0 4 0 8 A F : DIOSFETCH-DBKEY + 0 0 0 0 0 0 4 F
ARG# A r g u m e n t [d a t a . . .] ...

1 0 0 2 0 6 4 8 4 : OOOIFCFC 0 0 2 0 6 4 F 4 0 0 2 0 6 5 0 C 207COOOO 0 0 0 2 7 7 C 7 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1
2 0 0 0 0 0 0 0 1

H a n d l e r = 0 0 0 0 0 0 0 0 , PSW = 0000, CALLS = 1, STACKOFFS = 0
S a v e d AP = 0020644C, S a v e d FP = 0 0 2 0 6 4 3 0 , PC O p c o d e = EO

SR2 = 002646DO: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 9 1 8 FFDAA3E8 F F F 6 3 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SR3 = 0 0 0 0 B C 4 1 : 0 1 3 A 2 0 4 8 CZFFFFFF FFFFF85E EOO09507 D512A4EO 4 0 0 0 0 0 0 0 1 8 C 0 0 0 4 0
SR4 = 0 0 2 6 4 6 0 0 : 0 0 0 0 0 0 0 8 0 0 2 0 6 4 5 C 002646AO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 b y t e s o f s t a c k d a t a f r o m 0 0 2 0 6 4 1 C t o 0 0 2 0 6 4 3 0 :
0 0 2 6 4 6 B 0 0 0 0 0 0 0 0 1 0 0 2 0 6 4 B 4 0 0 0 0 0 0 0 2 0 0 0 0 ' 4 d O F & . '

0 0 1 C7D08 0 0 1 0 ' . I . . '

S a v e d PC = 0 0 0 5 5 2 4 1 : PSI$MODIFY-STITM + 0 0 0 0 0 0 3 3
ARG# A r g u m e n t [d a t a . . .] ...

I 0 0 2 0 6 4 B 4 : OOOIFCFC 0 0 2 0 6 4 F 4 0 0 2 0 6 5 0 C 2 0 7 C 0 0 0 0 0 0 0 2 7 7 C 7 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1
2 0 0 0 0 0 0 9 6
3 002646DO: 0 0 0 0 0 0 0 0 O O O O O O O O 0 0 0 0 6 9 1 8 FFDAA3E8 F F F 6 3 7 7 0 0 0 0 0 0 0 0 0 OOOOOOOO

H a n d l e r = 0 0 0 0 0 0 0 0 , PSW = 0000 , CALLS = 1, STACKOFFS = 0
S a v e d AP = 0 0 2 0 6 4 9 0 , S a v e d FP = 0 0 2 0 6 4 6 4 , PC O p c o d e = D D

SR2 = 0 0 2 5 6 0 4 2 : 0 0 0 2 0 0 9 6 0 0 0 0 0 0 5 F 0 0 0 0 0 0 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 OOOIOOOO 0 0 2 E 2 A 1 3
SR3 = 0 0 2 6 4 6 8 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8 0 0 2 6 4 6 A 0 0 0 2 6 4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 b y t e s o f s t a c k d a t a f r o m 0 0 2 0 6 4 4 C t o 0 0 2 0 6 4 6 4 :
0 0 2 6 4 6 D 0 0 0 0 0 0 0 9 6 0 0 2 0 6 4 0 4 0 0 0 0 0 0 0 3 0 0 0 0 ' 4 d P F & . '

OOlC7CF8002646CO 0 0 1 0 ' @ F & . x (. . '

Figure 4 R~~gcbeck D I I I I Z ~)

routine calls from a stack trace, intlicatetl by the
lines of code thi~t begin with "S;~vecl PC."

Alpha ASI' systems have tio equi\alent to the \:iX
c ~ l l frames, so it is impossible to use the call frii~iie
mechanism to trace down through the stack. As
meiitionetl previously, Alph;~ AXP routines i~tilize
prologue ant1 epilogue code for returning from rou-
tine calls. I-'rocetlure clescriptors contain informa-
tion such as entry address :mcl register s;nre
inforn1;ition.

On Alpha AXP systems, another Digital group
supplietl ;I set of routines that allows tracing tlie
call sequence. This set provitled the basic calxibil-
ity to print the routine calling sequence tIi;it lecl to
an ;tbnormal exception. In ;iclclition. the Alpha AXI'
linker ~)rocluced a symbol t:tble file. However, we
decided to simplify our bugcheck mecIi;~nism.
Although we still search thc symbol table file for all
routine addresses, rather t l i ; ~ ~ create an Alpha AXI'
object file, we create a W\X JLIACRO-.~~ file th;lt
inclutles the routine name and address/offset.
Then, \vr simply use the Alpli:~ hlt\(:RO cross co~ii-
piler to generate the Alph;~ AXI' object, which gets
linked into the image on the second p;lss. In fact,
we changed our VAX bugclieck routine to produce a
>WCR0-.52 file with routine n;ime and offsets. ?'his

process is simpler than directly creating an object
file, as we tlicl previously.

E\len though tlie routines provitled this call trace-
back capabilit~ we were missing the arguments
passed to the routines, perhaps the most important
part of the s t ~ k trace. The VtlX mechanism cap-
tured this tlata, because very often a bugcheck
results fro111 one ro~itine passing an improper ; I ~ ~ L I -

tnent to another routine. The Alpha A X P system
does not provicle a way to capture this information,
because the routine calling sequence reuses regis-
ters R16 through R21 for passing arguments.

Porting Rdb
Some issues handled by the Rrlb porting group
were :~ssoci:~ted with the clisp;rtch code, Alpha I\XP
code generation, Rdb precompilers, and Rdb
system relations.

Disl~crtch Code The tlispatcli cocle is the topmost
layer of the Rdb software ant1 is called tlirectly by
the user ;ipplication by means of relational call
interface (K I) calls.? The main h~nction of dispatch
cotle is to direct the user request to tlie correct tar-
get Rdb executive (local o r remote) for processing.
On VAX systems, tlie dispatch code passes the user

160 Ibl. 4 No. 4 Special Issue 1992 Digital Technical Journnl

Por-tirig Iligitlilk Dritribase 11.Iuiz~igenzelzt Pr-odircts Lo the Alpha AXP PlntJbrnz

arguments to the Rdb software using the <:hl.LC;

linkage.', On Alpha AX'P systems, <:AI.I.<; linki~ge is
very inefficient. Therefore, the dispatch code was
ch;lngetl to build a user argument vector in the
same style ;IS the VAX argument list, :rnd the pointer
to the argument vector was passed as a single
par;inieter. The cocle in Rdb was cli;~ngetl to bintl to
tlie user arguments using the offset fro111 the
pointer to the argument vector.

Using two clifferent calling niecli;~nisrns in the
tlispatch to pass user arguments WAS a c;~reful
design. On VAX systems, the existing <:AI.I.<; mecha-
nism was ret;~inetl to ensure backward compatibil-
ity between different versions of the Rclb clispatch,
Rdb layered protlucts, ant1 gateways. A new calling
mechanism was used on Alpha ASl ' sysl.enis t o
ensure gootl performance, since every user request
to tlie Rdb executive goes through the tlispatch.

Cock lcCelz~.mto~* Rrlb uses compilecl BLISS cocle
ant1 generated machine code to execute user
recluests. I l ~ ~ r i n g request compilation, Rclb gener-
ates highly efficient routines using the target
m;tchine instructions. These routines perform
basic data operations inclucling d ; ~ t ; ~ con\iersion,
data movement between buffers, aggregirtion. ;rncl
expression evaluation.

'The design of the Rdb code generator to protluce
Alpha ASP machine code was i~ncloubtedly the
most complex porting task. Iisc of a niechnnism
other than code generation woulcl h;~ve retli~cecl
the porting effort. However, at the time we beg;~n
porting Rdb, it was not clear if an alternate mecIi;~-
nism woulcl gu;~rantee an accept;lble level of perfor-
mance. Good performance was consitleretl critical
to tlie success of Iitlb on Alpliil ?\XIJ systems.
TI~ereh)re, we decided to add f~rnction;llity to the
Rclb code generator to produce Alpli;~ A S P cocle. To
generate efficient Alpha AXI-' cotle sequences, we
obsrrvetl specific gi1ide1ines.l

On Alpha ASP systems, cocle that references data
itenis with incre;rsing memory atltlresses executes
more efficiently. Therefore, the ;ilgorithrn was
changed to first order tlie data items by increasing
memory ;rtldresses and then generate code to pro-
cess tlie dnt:~.

In Rdb, e;~ch data item has ;I null bit that indicates
whether or not the value of the dat;~ item is known.
As shown in Figure 5, to conserve space, the nirll
bits of clifferent data items arc stored together like
21 bit vector within a record. Loading/storing ;I

null bit is ;In expensive operation 011 Alph;~ ASP

DATA ITEM^ I DATA ITEMZ I . . . NULL BIT VECTOR

systems.? Therefore, the algorithm was motlifiecl to
fetch a batcli of null bits into a register. \When all
null bits in the register are processed, the batcli is
written and the next l>atcli of null bits is fetched.
This approach reducetl the number of load and
store instructions and niacle the code sequence
nli~ch more efficient.

On A p h : ~ A S P systems. the machine code rou-
tines generatetl by Rtlb use four different aclclress-
ing modes to access clata items: absolute atldress,
base register pills offset, integer register content,
and floating-point register content. Each of the
Alpha ASt' registers 1112 through R15 is used as a
base register. Thus, any data stored within 256K
(4 X 6 4 K) of memory space can be accessed effi-
ciently. To maximize tlata access efficiency and
caching, changes were rnacle in the code generator
to allocate data densely. To improve performance
hlrtlier, data items were allocatecl at quatlword or
longwortl aligned addresses.

An Alpha A S P code sequence executes more
efficiently when instructions cxn be multi-issuetl
and executed in p;~rallel. 'This can be achieved
by reordering the sequence of instructions
while maintaining any chronological depenclency
between instructions. 1-0 take advantage of this
Alpha AXP feature, I%I..ISS n1;rcros were developetl
to reorder and interleave tlie instrirctio~is in a gen-
erated cocle sequence.

On Alpha i\SP systems, backward branches in tlie
code slow clown the exec~~tion because of instruc-
tion stream invali~lation.~ Changes were made in
the Rdb code generator to minimize bachw;rrtl
branches. This cli;~nge at times increased the size of
the generatecl code but improvetl the code execu-
tion efficiency Further, Boolean code generation
algorithnis were modified to incorporate branch
prediction logic; code sequences with a smaller
probability of execution were branched out of tlie
main cotle stream. 'T'his technique maximized tlie
effect of instruction stream caching.

KLID P~~ecoi~zl,ilc.r=s An Rclb precompiler prepro-
cesses a user app1ic;rtion program that includes
Rdb statements ant1 repl:lces these statements by
standard R<:I c;rlls to rlie Rdb software.' The Rtlb

Digital Technical Jourtral Vol. 4 r\To. 4 .SI~ec.inl I.SSLI~ 1992 161

Alpha AXP Architecture and Systems

statements ernbedcled in the applications can be
one of three types: structured query 1;lnguage
(SQL), Rdb preprocessors language (Kdbl'KE). or
re1ation;ll data manipulation language (f<I)ML).
There are three different Kdb precompilers to sup-
port these languages.

The SQL precompiler, an industry-stanclard lan-
guage interface to Rdb, is a strategic Rdb compo-
nent. A long-term goal of this precompiler is
flexibility in fi~ture developments and ease of main-
tenance. To meet this goal, the SQLprecompiler was
reclesignetl to use tlie GEM compiler on Alpha AXI-'
systems to preprocess SQL application programs
and produce Alph;~ t\SP object code.

The RclbPRE precon~piler is a proprietary lan-
guage interfice to Rclb. The long-term goal is no
new functionality and minimal maintenance. So
the main objective was to recluce the effort
required to port this compiler. This was achieved by
retaining the existing tlesign and using the Alpha
MACRO cross compiler to produce Alpha AXP

objects froni VAX NlA<:R0-:$2 files.
The RD>IL precompiler is also a proprietilry Ian-

gilage interface to Rclb. I;nlike the Rclbr~1: precom-
piler, this compiler does not produce MX AWCRO-52
files. So porting it was an e~ts)~ ancl straightforw;~rd
task.

Rd6 Sj~sten? Relutions Rdb uses system relations
to record infornlation bout the user relations and
the database. Tlie system relations are storetl on
disk and loadetl into memory on deni;~nd. Since
they are frequently referenced during user request
processing, efficient access to data in system rela-
tions is critical for performance. On Alpha A X P
systems, accessing data froni memory is efficient if
it is located on either a longword or a quadword
address boundary Therefore, changes were niatle
to the in-memory system data structures to align
each dat;~ fielcl to at least ;I longword address bound-
ary. Further, data fields that were a byte or ;I word
were espancled to ;I longwortl.

The data in system relations was accessed by
using RdbPRE st;iternents embedded in Rdb source
modules. Porting such Rdb modules posed a
dilemma. To compile these mocli~les, first the
RtlbPRE compiler had to be ported to the Alpha t\XP
platform. Vice versa, to port and test the Rdbl'RE
precompiler, Rtlb hatl to be portetl ant1 running on
the Alpha AX[' platform. Moreover, Rdbl'RE was no
longer a strategic language interface. Therefore,
new BLISS macros were clesigned that replacecl the
embeddecl RdbPRE st:ltements.

Porting DBMS
This section tliscusses some experiences of the
DBMS porting group, namely those related to the
Database Control System (I)I3CS) interfiice, tlie
H-FLOAT data type support, ancl the use of the
Alpha IJser-niotle Debugging Environment (t\llD).

DBiLI$.32. the Pril?mt-JJ 1nte1$1ce to the 1lHrlllS The
DBCS for the OHMS software uses a single subrou-
tine (DBMS32) ;IS its primary entry point. This entr-y
point is used by the DBMS precompilers (FDML,
for Fortran, ;lntl DML, for other I;ingu;~ges except
COBOL), as well as other layeretl proclucts, such as
COBOL and I>tvI;i71'RIEVE.

After receiving control, DBMS32 performs some
processing and then, using the <:~1.1.(; mechanism,
passes the entire argument list to lower-level rou-
tines for furtl~er processing. These lower-level rou-
tines, in turn, often pass on the argument list,
sometimes :IS tleep as five or six levels.

Because we founcl CALLG to be inefficient, we
tlecidccl to ch:~nge the primary entry point into the
DBCS. Rather than passing up to 26 separate argu-
ments, DDMS creates a vector of longwords; each
longword contains an argument that would have
been passed using a p;lrametel: Once this vector is
created (often during the compilation phase for the
precompilers), l>UM$J2-\IEC (the \fE<:'I30II version
of D B M $ ~ ~) is called with a single parameter: the
atlclress of the argument list. An ex;tniple is show1i
in Figure 6.

Layereel products using DBMS were ;idvised of the
new interface and were requested to use it as soon
as possible. I-Iowever, since the cli;~nged interface
was incomjx~tible with some existing proclucts, the
old interface was retained. DB~$32-\/1l<: uses the
new interface, ;~nd D B M $ ~ ~ homes the ;Irgument list
(thus creating the above vector) ;md then passes
that, by reference, to DBM$~Z-VE<:.

Sllyyorl o$ H-FLOAT Data o p e s Tlie H-FLOAT
data type is fully supportecl on tlie vi\X processor,
but the Alpha AXl' processor has no high-precision
floating-point formats. Although Eicilities esist on
Alpha A X P processors to read an H-ITLOAT data
type, no such Pdcility exists to write :in H-FLOAT
data type.

As a result, I)HMS customers arc atlvised to elimi-
nate any H-FI.OAT data in tlatabases beh)re moving
them to an Alpha AXP system. Tlie 1)1%,\4S Ilatabase
Restructure IJtility (DR'II) can be llsetl to change all
H-FLOAT data to ;unother common floating-point
form:~t.

Po~-tit~'y Di~,ilal'.s JlatuDase Manag,oone?zt PI-ocllrcts to the Alpha AXP Platforr~

DBM$32 INTERFACE

ARGl = FIRST PARAMETER
ARGP = SECOND PARAMETER

ARGN = NTH PARAMETER

DBM$32_VEC INTERFACE

ARGl -t

FIRST PARAMETER

NTH PARAMETER H
Figure 6 DBCS Routine-calli~zg Interface

In preparation for mixed VAX and Alpl~a A X P

VMScluster systems, DBMS was modified such that
tlatabases with H-FLOAT data can still be accessed.
However, a rim-time co~iversion error occurs if
H-FLOA'I' data is accessed from an Alpha AXP
system.

Use of AfJl) The Alpha User-mode Ilebugging
Environment is a set of facilities that aids testing
atit1 tlebugging of native Alpha AXI' code on any
OpenVMS Vt\X system. AUD allowetl as much Alpha
AXP user-niode code as possible to be ported imme-
diately to the Alpha AXP system and to be substan-
tially debugged before Alpha A X P hardware was
avail;tble. Early in the DBMS porting effort, we used
A[~I> t o verify our por t and to ensure that our code
was working correctly.

However, several issues hampered the success of
using AlJl) in porting the DBMS software:

I . I)RMS makes frequent use of signaled excep-
tions. AlJl) hat1 difficulty in handling exceptions
that cross the boundary between the Alpha AX])
and VAX systems.

2 1113MS uses special stack m;~nipulation code
(stream code) to perform n~ultithreading h ~ n c -
tions. MID woultl become confusetl if the stack
were to change unexpectedly

3. At the time w e were using AUD, the l>BCS hat1
been ported, but KODA (i.e., the low-level ser-
vices used by the DRCS) had not. As 21 result,
many variables needed to be defined as crossing
the boundary between the Alpha AXP and VAX
systems. The setup time to define this informa-
tion was significant.

4. Since the code was still running on a VAX proces-
sor, many VAX dependencies were not c;~ught by

In p;~rticulal; system services that ch;inged
in subtle ways would work as before because the
operating system was still the OpenVMs system.

5 . Most of the changes that we made in DRMS were
not conditional, that is. tlie changes would affect
both VAX and Alpha AX]' systems. As a result, we
were able to test our code on vh\; aystems with a
fairly I ~ i g l ~ degree of cert i~inty that our code was
correct, barring any operating system o r com-
piler bugs.

We did eventually get an AIID version of DBMS
working. However, since w e spent a considerable
amount of time ;~ccomplishing this, and w e did not
actually find any bugs in our code by using AlJD, w e
decided not to use MJI) in further areas of DBMS.

Shortly after using AUI>, w e received our Alpha
Demonstration Unit (t\1)11) and coultl test our cock
on actual Alpha AXP hardware. The only problems
w e found, which were missed tluring our initial
port, were VtlX-style argument list assumptions.
Some of our code assunietl that routine arguments
were contiguo~is in virtual memory; on Alpha AXP
systems, this is not the case.

Conclusion
To conclude tlie paper, w e discuss our plans for per-
formance testing ant1 our reflectiolis on the porting
process.

Performance
We have only begun our performance tests. Cur-
rently, w e are running the 'TPC-B performance
benchmark. We also plan to test against all TPC

benchmarks (A, B, and C) and other benchmarks
such as the Wisconsin benchmark. We are trying to
minimize the amount o f time spent in PALcotle,
decreasing the code path length, reducing the cycles
pe r instruction, and optimizing internal algorithms.

Planned testing will also evaluate the effect of
additional data alignment. As mentioned earlier, the
ease-of-migration issue is par;lmount for our current
customers. Consequently, w e have not realigned
the database pages because that action would

Digital Technical Journal Vol. 4 1Vo. 4 Sl~eciril Issire 1992 163

Alpha AXP Architecture and Systems

require too much clowntime. Nevertheless, we do
not want to preclude new customers, or current
customers who need the performance boost, from
utilizing a properly aligned database page. To test
the potential performance improvement, we plat1
to create ;I test database that is completely aligned,
in memory 21nd on disk, and compare tlie 'TPC per-
formance against the standard database.

Reflections
A t the beginning of the paper, we stated that oilr
goi11 Mias for Digital to provide an easy migration
path to tlie Alpha AXIJ platform for software prod-
ucts. Although we encountered some difficulties,
we believe our Rtlb and DBMS porting efforts attest
to Iligital's success in this endeavor.

As one example of how the experience influ-
enced our ;~ppro:~ch to porting, we had to 1e;lt-n
new methodologies, practices, and system behavior
on the Alpha A S P machines. For instance, when
stepping through a particular code sequence n~itli
the debugger, we would entl up in an infinite loop;
if we just rrrn the cotle, the sequence would work.
Althoi~gh this behavior was documented, we
encountered the problem several times before we
fully untlerstood the ramifications ant1 appropri-
ately changed our development methods.

Overall, the porting effort had the following pos-
itive results:

The port allowed us to clean up our cocle. even
though we tried to avoid algorithm changes.
Ijcc;iuse we had to port ancl review ever). line of
cotle. we managed to moire the code to ;I more
consistent cotling convention.

The port :~cteri as a learning experience for nlost
of the engineers. Most niature products contain
home code that has not been modified in years.
The port forced us to review ancl understand
such code becluences As a result, we ended up
with more knowletlgeable engineers.

Thc port allowetl us to transform the code into
a more portable state. As we moved away from
tight ties to \/AX behavior, we simplified future
tasks such ;IS moving to the OSF/l alitl Wi~itlows
NT oper:lting systems.

Although overlapping current VAX development
with the Alpha A X P port slowecl dow~l tlie port-
ing process, the tlecisiorl to use a common code
base elimin;~ted the future need to integrate two
divergent source codes.

Surprisingly the code dicl not grow appreciably
in size or complexity. One strength of the Kdb
and IlUMS softnrare has been the ability to easily
modify the code and to add new functionality
Even after the port, m7e fincl that the products
;ire as malleable ant1 as easy to modify as before.

We h,und i~nreported bugs in our \ h X products.

Virtually all the groups involved did a masterfill
job. 'The program team and various Alpha)\XI' com-
mittees anticipated potential issues and ensured
thi~t the program proceeded smoothly and pre-
clict:ibly. The cross compilers from the language
groups worked superblj~. The OpenVMS AX[' and
hardware groups delivered their products on time,
;~ncl when a user logs in to an Alpha to(P system, the
OpenVA4S AXP system is not only familiar but faster.

Acknowledgments
The successf~il port of the Rdb and IIHMS software
to the OpenViMS AXP operating system was a result
of the contributions made by many of the engineers
in the Database Syste111s G ~ o L I ~ . The autliors sin-
cerely acknowledge the effort of each engineer in
achieving tlie project goal, that is, to be able to
quickly offer correct versions of Rdb ant1 DBMS on
the Alpha AXP platform. Finally, an unsung hero in
the company-wide effort was Digital's VAX Notes
coninlunications facility. VAX Notes h~nctionetl as
;in excellent medium for identifying and sIi;lring
problems ant1 solutions.

References

1. T. Leonartl, VA X Architectzir-e Refesence iMa17ual
(Betlford. MA: Digital Press, Order No. EY-3459E-
Ill', 1987),

2. /lMI Hnizc[Dook (Maynard, hw: Digital Equipment
Corporation, Order No. AA-GV71 A-TE, 1986).

3. O/~erzKb%\' Cnllilzg Stnndald (Maynard, M/\:
Digital Equipment Corporation, Order No. AA-
1'QY2A-TK, 1992).

4. R. Sites, ed., Alpha Architect~ire Rcfere~zcc
Mar?ual (BurJington, M A : Digital Press, Order
NO. EY-IJ52OE-DP, 1992).

James K Colombo
PamelnJ Rickard

Paul Benoit

DECnet for OpenVMS AXP:
A Case History

The DECnet for OpenVlMS AXP networking software facilitates the itztegration of
Open R?fS AXP systems into existing DECnet computing environments. This new soft-
ware product supports application migration by prouidiizg the follozui~zg net-
working capabilities: support of compatible libraries, consistent application
programming intetfaces, and the assurance of a common semantic operation with
the OpenE\fS VAX system. The tecim implemented a phasedporti~zg process and e e -
cuted the project coopemtiue& The eflort resulted in a solid knowledge Ocise with
~uhich to approach filtureporting u~zdertakings Using comnzon code wwherepossi-
61e and avoiding architectz~re-specific code were lessons learned during the project.

The DECnet for OpenVMS IU(P networking software
product plays an important role in the integration
of OpenVMS AXP systems into existing DECnet com-
puting environments. The availability of DECnet
software on the Alpha A?(P hardware platform facil-
itates application migration. The networking capa-
bilities needed to support this migration activity
include support of compatible libraries, consistent
application programming interfaces (APIs), ant1 the
assurance of a common semantic operation with
the OpenViMS VAX system. The network features
such as network file transfer, remote file access,
remote login, downline load, and local and remote
network management allow the OpenVMS M P
system to participate fully in a DECnet network.

The purpose of this paper is to describe the pro-
cess of porting the DECnet-\AX product to the
OpenVMS AXP operating system. The DECnet-VAX
product consists of networking software written in
the MACRO-32 and BLISS-32 programming languages.
The software contains privileged system code,
device drivers, and user-mode utilities.

This paper is divided into two major sections.
The first section presents an overview of the proj-
ect, including discussions about the DECnet fea-
tures supported in the OpenVMS AXP operating
system, the project schedule, and the major DECnet
for OpenvMS AXP components. The second major
section details the process of porting DECnet-VAX
software to the OpenvMS AXP operating system,
including testing and clebugging. This section pro-
vides information on nonportable coding practices

and identifies specific problem areas. It concludes
with a summary of the lessons learned during the
course of the project.

Project Overview
In addition to presenting the DECnet for OpenvMs
AXP features, this section details how we derived a
project schedule and gives an overview of the soft-
ware components.

Software Code Base
Prior to the formation of a team to port a DECnet
product from VAX: to the Alpha AXP architecture,
the DECnet-VAX development group completed
a feasibility study of porting DECnet-VAX Phase IV

to the Alpha AXP architecture. This effort was nec-
essary because the DECnet-VAX software was not
designed with porting in mind. The study con-
clutled that it woultl take four engineers twelve
months (i.e., 48 person-months) to port DE<:net-
VAX to the OpenVMS AXP operating system. After
examining the proposal and investigating the alter-
natives, we decided that the best approach would
be to start by porting DECnet-VAX V5-4.3, a Digital
Network Architecture (DNA) Phase IV implementa-
tion.' One of the n~os t important factors in making
this decision was that this software version was
in external field test and was nearly ready for
shipment to customers. Another consideration was
that some very important fixes had been made in
that release, and we wanted to offer our customers

Digital Technical Journal &)I. 4 r\'o. 4 Special lssr.te l992 165

Alpha AXP Architecture and Systems

the highest quality possible in the first version of
DECnet for OpenVMS AXIJ software. Since that time,
we have continued to improve our DECnet software
for the OpenWS AXP operating system ancl have
recently incorporated some fixes from DECnet for
OpenVMS VAX V5.5-2.

DECnet for OpenVMSAXP Features
The first release of the DECnet for OpenVNIS ASP

networking product is packaged with the OpenVMs
ASP operating system. The initial offering includes
the support of DECnet Phase IV protocols running
over Ethernet or fiber clistributecl data interface
(FDDI) local area networks. This release supports
distributed task-to-task communications using the
same set of documentecl programming interfaces
supported in the DECnet-VAX environment. At this
time, DECnet for OpenVMS AXP software does not
support wide area communications devices and
host-based routing. Future releases of DECnet for
OpenVMS AXP may include symmetric multi-
processor (SMP) and cluster alias support.

Project Schedule
The DECnet for Open\lMS iD(P project scheclule was
primarily driven by the overall OpenVMS i \ x l l oper-
ating system product schedule, with the DECnet com-
ponent scheduled for clelivery in November 1991.
The DECnet-\RX porting project officially began in
early January 1991, after the code base was selected.

Porting Estimates After analyzing the work
required to achieve the port, we developed general
porting guidelines and estimates based on a num-
ber of factors, including the language the software
was written in, the amount of software to port, and
the number of software component modules. We
then combined these estimates to determine an
overall project schedule. Table 1 presents the
guidelines we used for the porting estimates.

We used two methods to estimate the amount of
work required to complete the port. The Module
Size i~lethod taltes into account the number of lines

Table 1 Guidelines for Porting Estimates

Lines of Code Module Count
Language (Per week) (Per week)

BLISS 10,000 10
MACRO 3,000 5

of code per software module. The Motlule Count
Method uses the number of moclules per software
component to determine the workload. Both meth-
ods talze into consideration the programming lan-
guage used in each module. Table 2 presents details
of the component module count and sizes. Me fur-
ther categorized the software being ported into
three groups: privileged code, device driver, and
user-mode utility The software type was used to
estimate tlie amount of time needed for linking. In
general, we allocated more time for privileged code
ant1 device drivers.

The estimates were used to derive a first-pass
scliedule ancl to determine resource allocation. A
number of other factors affected the final schedule.
A major factor that we could not quickly estimate
was the portability of the software. The software
techniques encountered and described in this
paper such a s coroutines, up-level stack references,
and condition code usage had a direct impact on
the schedule. Also, during tlie first three months of
the project, significant time was spent learning
how to port code. During this learning period, we
developed the skills, knowledge, and techniclues
used throughout the remainder of our porting
work.

Once we established the estimation metrics, the
data was compiled ancl time estimates calculated
for each component. Tables 3 and 4 show the aver-
age amount of time required to port each DECnet
for OpenVMS AXP component.

Based on these calculations, we estimated that it
would take 13 person-months just to port the
 net-VAX software. We then used project man-
agement software to plan the scheclule. The schecl-
ule shown it1 Table 5 indicated that it would take 48
person-months to meet the OpenVkiS AXP sched-
uled completion date of November 22, 1991. We
made our first network connection on July 25, 1991,
20 person-months into the project. Although much
work remained, we were well ahead of the
November target date.

Since we were ahead of schedule, we assisted in
the porting of other components, including RTPrU),
CTDRIVER, RTTDRNER, ancl REMACP, all cliscussed
later in the paper. In addition, we were able to add
support for FDDI.

Milestones The OpenVMS AXP project schedule
consisted of a series of functional internal base
levels numbered one to five. In terms of the whole
OpenVMS AXP project scliedule, DECnet for

Val. 4 No. 4 Special Issue 19.92 Digitul Technical Jozir~tal

Table 2 Component Module Count and Sizes

Average
Software Module Number Number

Component TY pe Language Count of Lines of Lines

DTRIDTS User
EVL Privileged
HLD Privileged
MIRROR Privileged

MOM Privileged

Subtotal

NCP

Subtotal

NETACP
NETDRIVER*
NlCONFlG

NMLt

Subtotal

NETSERVER

User

Privileged
Driver
User

Privileged

Privileged

Notes:
* Includes estimates for NDDRIVER

Includes estlmates for NMLSHR

MACRO
BLlSS
MACRO
MACRO

BLlSS
MACRO

BLlSS
MACRO

MACRO
MACRO
BLISS

BLlSS
MACRO

BLlSS

Table 3 Module Size Method

Component

DTRIDTS
EVL
HLD
MIRROR
MOM
NCP
N ETAC P
NETDRIVER*
NlCONFlG
NMLt
NETSERVER

TOTAL
Weeks
Months
Years

BLlSS MACRO Link
Total Time
per Component

Notes:
' Includes estlmates for NDDRIVER

Includes estlmates for NMLSHR

Note that the data presented IS in weeks, unless otherw~se specified. A week equals five working days, a month equals 4.33 weeks, and
a year equals 12 months or 52 weeks.

Digilnl Techrr ical Jorrr~rd %I. 4 l\'o. $.c;l,ecirrl /ssl(e 1992 167

Alpha AXP Architecture and Syste~ns

Table 4 Modu le Count M e t h o d

Total Time
Component BLISS MACRO Link per Component

DT WDTS 0.00 2.80 2.00 4.80
EVL 1 .OO 0.00 2.00 3.00
HLD 0.00 1.80 2.00 3.80
MIRROR 0.00 0.20 2.00 2.20
MOM 1.50 1.40 4.00 6.90
NCP 3.50 0.40 4.00 7.90
NETACP 0.00 4.80 6.00 10.80
NETDRIVER* 0.00 0.80 6.00 6.80
NlCONFlG 0.70 0.00 2.00 2.70
NMLt 3.1 0 1.40 4.00 8.50
NETSERVER 0.30 0.00 2.00 2.30
TOTALS
Weeks 10.1 0 13.60 36.00 59.70
Months 2.33 3.1 4 8.31 13.78
Years 0.1 9 0.26 0.69 1.15

Notes:
* lncludes estimates for NDDRIVER

lncludes estimates for NMLSHR

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and
a year equals 1 2 months or 52 weeks.

Table 5 Planned Pro ject Schedule

Code Total Time
Component Port Debug Review Test per Component

DTWDTS
EVL
HLD
MIRROR
MOM
NCP
NETACP
NETDRIVER"
NlCONFlG
NMLt
NETSERVER
TOTALS
Weeks
Months
Years

Notes:
* lncludes estimates for NDDRIVER

Includes estimates for NMLSHR

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and
a vear eauals 12 months or 52 weeks.

DECnet for OpenVMS AXP: A Case History

OpenVMS AXP was targeted for base level five.
However, it was highly desirable to provide file
transfer and remote login capability over DECnet as
early as possible. The project team worked closely
with the OpenVMs AXP group to deliver this sup-
port prior to b;~se level four.

Common Code
One of the most important decisions that helped us
deliver our software ahead of schedt~le was build-
ing common code for the VAX and Alpha AXP
systems. During the course of porting code, we dis-
covered two advantages to building common code.
The first was having the ability to generate Vi\X and
Alpha AXI' images from a single set of source code.
The second was being able to debug our ported
changes in a stable OpenV&fS VAX environment. We
accomplished this by rewriting code that required
change so that it worked on both platforms. We

made arcl~itecture-specific code conditional on the
platform on which it would execute. Our long-term
goal is to incorporate common code into future
DECnet for OpenVMS products.

DECnet for OpenWS AXP Components
This section describes the major DECnet for
OpenVMS AXP components and lists the porting
issues relevant to each.* Figure 1 shows the inter-
connection of the various components of the
DECnet for OpenVMS LYP software. Detailed infor-
mation for each porting issue is fi~rther discussed in
this paper under the Porting Issues heading.

IVETDRWER NETDRIVER is a pseudo device
driver, i.e., a device driver that does not directly
control any hardware devices. It implements the
routing, end communication, and session control
layers of the Phase rV version of DNA.'

APPLICATION 7'7
I NICE MESSAGES I

LOCAL 1 1 REMOTE

I DATA LINK DRIVER I

$QIO

Figure I DECnet for OpenVMS AXP Components

NETSERVER

$QIO -

Digital Tech~zicnl Jourtrtrl Ih1. 4 A1o. 4 Specin1 /ssrre 1992 169

NETDRIVER

SESSION
-

END COMMUNICATION

ROUTING

$010

MOM

$QIO

NDDRIVER

I

- NETACP

DATABASE

DATABASE

Alpha AXP Architecture and Systems

'I'lle queue 1/0 request ($ ~ l 0) s)lstenl service is
the interface into the session control layer. The
NETL)IWER routing layer communicates with other
device drivers that implement the clata link layer of
DNA. NETDRlVER communicates with NETACP
(another component discussetl later in this section)
to perform network management functions, to
report state and network topology changes, and to
perform operations that require process context.

NETDRIVER is written in NMCItO-32 code and pre-
sented us with many porting issues, includ-
ing device driver changes, coroutines, memory
management changes, page size clependencies,
atomicity ancl granularity problems, OpenVMS ASP

operating system data structure changes, unaligned
references, and up-level stack references.

IMO~W The mainte~~ance operations module
(M O M) image processes service operations defined
by the maintenance operation protocol (MOP). One
such service operation is downline loading remote
systems. MOM uses NDDRWER (described in the
next subsection) to communicate with the remote
system over a DECnet circuit. MOM comnlunicates
with NETACP to gather information about nodes
req~~esting to be downline loadetl. NETACP creates a
process running the MOM image when a request for
a service operation is receivecl on a circuit enabled
to perform service operations.

MOM is written pri~narily in BLISS-32 code. Porting
issues inclucled removing dependencies on the for-
mat of a VAX argument list, condition handling
changes, and Alpha tLYP image Ileacler changes.

NlmR/VER The pseudo clevice driver NDDNVER
implements an interface that allows MOM to use a
DECnet circuit to perform service operations using
DNA MOP. The &IOM image uses the $QIO system
service interface to send MOP messages to and
receive klOP messages from NDL)KNER, which then
communicates with the data link device clrivers to
transmit and receive these messages. NDDNVER
communicates with NETACP to perform tasks
that require process context and to receive notifica-
tion of state changes to circuits enabled for service
operations.

NDDlUVER is written in MACRO32 code. Porting
issues includecl changes to device clrivers, memory
management, and OpenViMS U P operating system
data structures, as well as page size dependencies.

CmRfVER, RTTDRIVER, anlzd REMACP CTDWER

is a pseudo device driver for remote terminals using

the DNA command terminal (CTEIbVl) protocol.
CTDRIVER and RTTDIUVEII perform similar func-
tions with the exception t l~at RIIDRIVER is used for
interoperability with older implementations of
remote terminal support. REMACP is an ancillary
control process (AW) that receives incoming
requests for remote terminal support. After REMACP
establishes ;I connection with the remote nocle,
either CTDRIVER or RTTDRIVER communicates
directly with NETDRIVER to send and receive
remote terminal protocol messages.

CTDRIVEI1, KTTDRNER, and RE;LWCP are written in
MACRO-32 code and presented the following port-
jng issues: device clriver changes, unaligned refer-
ences, OpenVMS AXP operating system data
structure changes, and for KEMI\CP, changes in the
interface with CTDRIVER.

NETACP NETACP runs as an ACP that assists
NE'['[)RTVER in performing network operations that
require process context. Examples include creating
processes for incoming logical links and assigning
channels to data link clevices. NEI'DRNER ancl
NE'TACP also work together to maintain information
about the state of the network. Another major firnc-
tion performed by NETKP is the management of
the network configuration parameters residing in
virti~al memory.

NETACP is written in MACRO-32 code. Porting
issues included coroutines, usage of processor
status longword (PSL) condition cocles, memory
management changes, page size dependencies,
atomicity and granularity problems, O p e n m s AXP
operating system data structure changes, and
unaligned references. It1 addition, tlie use of "poor
programmer's lockdown," a method of locking
pages into a working set, required moclification.

NETSERVER The NETSERVER image is run by
server processes created to handle incoming logi-
cal link requests. NBTSERVER invokes the image or
command procetlure associated with the network
object specified by the incoming logical link. To
avoid the overhead of process creation, a server
process can be reused after the logical link it was
servicing is terminated. Iclle server processes regis-
ter the~nselves wit11 NETACP so that they map be
reused for another logical link.

NETSERVER is written in RLISS-32 code. The
only porting change necessary was the addition
of the BLISS VOLATILE attribute to several clata
declarations.

170 Vol 4 No. 4 .Specral/s.c~~c 1992 Digital Techrricnl Jorrrtrnl

DECnet for ODenVM.7 A XP: A C~rsc. Histor))

NCP The network control program (NCP) is tlie
user interface for network m;in;Igement. NCP com-
municates with other network management com-
ponents using the network information and
control exchange (NICE) protocol. NCP can be usetl
to manage thc 1oc;ll node ;15 well as I-emote nodes.
When managing the local node, NCP exchanges
NICE protocol messages with the NMLSHR shareable
image. For remote management, NCI' creates a logi-
cal link to the network rnzlnagement listener (NMI.)
object o n the remote node ancl exchanges NICE pro-
tocol messages over this logical link.

N<:l' consists primarily of HI..ISS-32 moclules. The
major porting issue ;~ssociatecl with NCP was chang-
ing the code to use I,IB$TAHI.E-PARSE rather than
LIB$TPARSE.

1VMLSHK NMLSHR is ;z shareable image that pro-
cesses NICE protocol nctwork management mes-
sages on an Open\/MS system. NMLSHR decodes
NICE messages received as input alld performs the
requested n1an;lgernent operation. NMLSHR builcls
NICE protocol messages as a response to requests
asking for network n1an:lgement information to be
returned. NCP and NML both link with tlie NMISHR
image to call the routines th ;~t process tlie NICE pro-
tocol messages.

NiMLSHR is written in BLISS-32 and MACRO-32.
Porting issues inclutletl dependencies on the for-
mat of a VAX ;Irgument list and ch;inges required to
link shareable images.

IV,~!IL The network rn;~nagement listener (NML)
image is run when a remote node requests a con-
nection to the NML object to perform remote
network management operations. NML sentls NICE

protocol messages to and receives them from the
remote node. NML passes NICE protocol messages
receivetl from the remote 11otle to NMLSHR for
tlecoding and receives messages from NMISHR to
send to the remote notle.

N M L is written in I3LISS-32 code. The only porting
change made to N M L code was to atlcl the BLlSS
VOLATILE attribute to one data declaration.

EVL 'I'he event logger (EVL) receives event mes-
sages from the various DNA layers. EVL can also act
as an event sink for messages generated at a remote
node. EVL is started by NETACI1 ant1 declares itself
*as a network object s o that remote nodes can con-
nect to the EVL object ant1 send event messages. EVL

can log events to a file in binary form or format the

messages into something readable by a network
manager.

EVL is written in BLISS-32 code. Porting ibsues
included adding the BLISS VOLriTILE attribute to
some data structure definitions and aligning data
structure fields on natural bountlaries.

DT5 and DTR The DECnet test sender (DTS) and
the DECnet test receiver (DTR) are cooperating pro-
grams that can be used to test the network connec-
tion between two nodes. DTS runs o n the local node
and commuiiicates with DTR o n the remote nocle.
DTS and DTR can be used to test the througliput and
reliability of a line over which IIECnet is running.

DTS and DTR are writ ten primarily in MACRO-32
cocle. The two major porting issues associated with
DTS and DTR were changing the code to use
LIB$TABLE-PARSE rather than LIR$TI'ARSE ; ~ n d add-
ing some BLISS-32 code to support flo;~ting-point
operations.

RTPAD RTPAD provides the connection between
a local terminal and the remote terminal services of
a remote node. RTPAD is invoked as the result of
executing the SET HOST cornm;lntl of the Digit;~l
Command Language (DCL). RT13b\l) comniunic;~tes
with REXIACP and CTDRIVEK o r Rl-TI>RIVER on the
remote system to provide remote terminal support.
RTPm accepts input from the local terminal (whicli
could be another remote terminal) and sentls this
data over the network to the remote node. Output
from the remote nocle is receivetl by R'r'r'iil) ;incl tlis-
played on the local terminal.

RTPm is written in MACRO-32 code. Porting
issues inclucled unaligned references ;~ntl ;~ligning
data structure fields on natural boiind;~ries.

NICONFIG NICONFIG is tlie Ethernet configurator
that listens to the M<)P system itlentification mes-
sages broadcast on Ethernet circuits and maintains
a database of configi~ration information for all sys-
tems heard. NCP is used to manage ;inel tlispl;~y the
information maintained by NICONFIG. NI(:ONFI<;
runs as a process created by NMLSHR and comniuni-
cates with NMLSHR over a I>ECnet logical link using
the NICE protocol.

NICONFIG is written in BLISS-32 code. The only
porting change was to remove the module switch
LANGUAGE.

HLD The host loader (HLD) communicates with
the DECnet-RSX satellite loader to tlownline loacl

Alpha Architecture and Systems

tasks to ;In RSX-11s node. H1.D is wri t~en in ~i\(:tiO-
32 code. The only porting change was to upd;ite the
structure definition language used to create one
cI;tt;l s t ruct~~re.

MfRROR The loopback mirror p;u-ticipates ill
networlc services protocol and routing 1;lyer loop-
back testing. MIRROR is written in MM;l<O-32 cocle.
N o porti~ig changes were recluiretl though changes
were made to the link procetli~re.

DECnet-VAXPort to the OpenVMS
AXP Operating System
This section discusses the development environ-
ment, process, ancl issues related to portlng the
I>E<:net-VAX product to the OpenVlLlS operating
system.

DECnet jor OpenWS M Y
Dezielopment Environ~nent
I>E(:net for OpenVMS AXP is built with ant1 inte-
grated into the Openv~Ms AXl) operating system.
Many cl1;inges were being ni;~cle to system d;tta
structures that directly affected the I>EC:net soft-
nr;tre. These changes required the l>EC~iet for
OpenVMS AXP software to be built with ;~ntl tested
011 mnny interim operating system base levels
Ixfore the combinetl OpenV&!s ,\XI-' oper:~ting
system and OECnet for OpenVlLlS AX1' kit was
shipped for layered product development.

Bec;~use the development tools ch;ingetl t I i ro~~g[~-
out the project, we used the same tools to port the
I)l:(;net-\3X software as were usecl to develop the
opcr;tting system base levels. When we copied pol--
tions of an OpenvMS ASP base level, we also copied
the tool directories associated with the system
build. We used cross compilers for hlA(:RO-32 ;tncl
I%l.ISS-.32. which allowed us to tlevelop Alpha A S P
software on an Open\ra,Is \RS s!,stem.5 In ;tclrlition,
we i~setl the OpenVMS AX]-' linker, 1ibr;trian. ;lncl
system dump ;unalyzer (SDA) cross tools on the VAS

system. \Ye also used the Open\l,\IS r\Xl' debug-
ging tools Delta and XDelta o n the Alpha .\XI' proto-
type l~ardware.~

1niti;ll J)E(:net for Open\/i\lS AX1) testing was
accomplished on a VAX system. Such testing was
j7ossible because we designed ;i m:~jority of the
I>L<;nct for OpenVMS AXP cock to run o n bofh VblS

:111d Alpha AXP hardware plath)rms.
The Alph;~ I.W' prototype system i~secl for testing

utilizecl a sharetl disk that cont:iinetl the OpenVMS
,4XP operating system images. The imitges nnd test

procetlures were copied onto the disk from a U P

system. Each time new DECnet for OpenVMS AXP

images or test procedures hat1 to be adtletl to the
sharetl disk during a test or debug session, the Alpha
A)(P test system hat1 to be stopped, the disk
mounted on the VAX system, images copied, the disk
tlismounted, ancl the Alpha AXP system rebooted.
Providing file transfer support by means of the
DECnet for OpenVMS AXP software early in the
tllplia A S P project provicled increased prodi~ctivity
for anyone testing on Alpha U P prototype systems.

The process of- porting tlie DECliet software from
the Vt\S 11rirtlw;tre platform to the Alpha A X P
platforni consisted o f the following steps: code
preparation, compilation, linking, code review,
debug, and testing. We tlid not start the task of port-
ing DECnet-VAX with a completely clear vision of
the tot:~l process. As we progressed and learned
more about tlie tools ant1 porting process, we
improvecl our porting techniques and, as a result,
our protlucti\lit):

Our stratcg) was to begill by porting the drivers
and pri\rileged code. These components were the
most complex: thejr were written completely in
MACRO-32 cotle ;i~itl Iiad the greatest potential for
change. \Ve started with NETDRTVEK and NETACI',
assigning one engineer to work on each compo-
nent. As our porting group grew in numbel; we
began to port, in parallel, the BLISS modules that
comprise NU', NMI., NILII.SI-IR, EVL, ant1 i\lOkl.

The following is an overview of the process we
used to port the I>E<:net-VAX software to the Alphi1
A S P pl:~tform. L:~ter sections contain tletails of cotl-
ing practices that had to change.

Code PI .C/)NIYI~~OI I Our first task was to create
procedures that we coulcl use early in the porting
process to compile single ~ l l o d u l e ~ of a DECnet for
OpenV,\IS A>\']' component. We also ported the com-
ponent's bi~ild procedure to use the new Alpha AXP

cross tools.
Nest, we began to prepare the code for initial

cornpilntion. &1.\(:1{(>-.32 code must have each entry
point itlentit'iecl prior to the initial compile. Entry
points itre identified by a compiler directive such as
.ISB-ENI'RY iind .(:ALI.-ENTIIY. Each directive
accepts optional p;cl.;tmeters that identify register
usage. Howc\,er, this information is not required
at this point in the porting process. The Alpha
AXP ,\IA<:ItO-32 compiler will provide register

161. 4 No. 4 S/~cicrl Issue 1992 Digital Tecb~~icnl Jorrmnl

DECnet for OpenVMS AXP: A Case History

usage hints during the compilation, if so directed.
As the team became familiar with tlie porting
process, we were able to combine these steps
ancl include the register usage information when
declaring entry points. Also, as our experience
increased, we were able to make changes to non-
portable coding practices prior to the initial com-
pile of a module.

Our experience proved, as we expected, that
BLISS code is far easier to port than MACRO-32 code.
For the DBCnet-VAX components containing BLlSS
modules, we began the port by running the compo-
nent's build procedure. BLISS routines do not
require that entry points be identified. The com-
piler can process each module, identtfy errors, and
provide warning and informational messages.

Conzpile Process After we completed the initial
code preparation ant1 created c~~stomized build
procedures, the real iterative process of porting
began. At this point we compiled one or more
moclules, made additional modifications based on
the compilation results, and recompiled until we
were reasonably satisfied that all the errors were
fiiecl.

The Alpha AXI' cross compilers, the I\WCKO-32
compiler in particular, have the capability of pro-
viding a vast array of inforniational and warning
messages. When compiling a module, we always
requested all informational messages. The infor-
mation assisted us in identifying the input and out-
put registers as well as the registers that the
compiler automatically preserved. Using this infor-
mation, we verified tlie register usage in each rou-
tine and added the information to the entry-point
directives. Other informatiotsal and warning mes-
sages directed us to cotling techniques that
required change. By working wit11 one module at a
time, we avoidecl making repetitive porting errors
in multiple modules prior to our complete under-
standing of bow to soLve the more complex porting
problems.

Some informational messages caution that cer-
tain coding techniques such as data alignment
should be moclified. We observed that attempting
to make changes to align all data structure ele-
ments prior to completing preliminary debug and
testing caused many debug problems. Therefore,
we decicled to establish a porting policy to change
only as much code ,as was absolutely necessary
prior to the initial debug ant1 test of a DECnet for
OpenVMS AXP software component. Adhering to
this policy required careful consideration, since

some atomicity and granularity problems that are
not resolved/atldressed might cause code failures
during debug.'

NETLIIWER ancl NETACP cotitained architecture-
specific code, including memory management,
driver tables, and structure definitions, which had
to be made conditional for the OpenVMS AXP and
OpenVMS \'AX systems A prefix file was added to
each hUCKO-32 module during the Alpha AXP com-
pilation step. This file containetl an Alpha AXP dec-
laration that allowed us to include the directives
required for conditional compilation. To comp~le
the portecl code on a VAX system, it was necessary
to provide a VAX declaration and macros for the
various entry-point directives that when espanded
contained no instructions. These were placed in a
common library file ant1 conditionally compiled.
The library file is inclutled in each module. Figure 2
is an exanlple of a library file that contains a VAX

declaration and macros.
BLISS architecture-specific code was made

conditional using the %if %bliss(bliss32v) or %if
%bliss(bliss32e) constructs for OpeaVklS VAX and
OpenVMS AXP, respectively.

After porting a11 the ~ i i o d ~ ~ l e s within a compo-
nent, the component's build procedure was run to
ensure that each module hat1 been ported without
error. This was typically the first attempt to link the
component. We also ran the Openv&b v!X proce-
dure to ensure that the code would continue to
compile ancl link on tlie OpenVMS VAX operating
system.

Linking The process of linking was difficult at
times. The DECnet for OpenVMS AXP software con-
tains drivers, system images, and shareable images.
Each component required changes to the link pro-
cedures. We made these proced~~res conditional for
both the OpenVklS VAX and the OpenVMS AXP oper-
ating systems.

The process of linking the portecl modules
brought to light many unresolved references. In
general, these references were to external routines
that had changed for the OpenVMS AXP operating
system. One of the most difficult aspects of the
porting project was determining which changes
to the OpenVMS operating system had an impact
on our project. Determining these changes was
difficult because DECnet for OpenVMS AXP is
tightly integrated into the OpenVMS AXP operating
system. The process of pprting applications to
the OpenVMs ASP environment should not be as
difficult.

Digital Technical Jour~ral VoL. 4 ~\b. 4 Special Issue I992 173

Alpha AXP Architecture and Systems

. S U B T I T L E SDECNETDEF

D e f i n e a l l t h o s e s y m b o l s t h a t s h o u l d p r e c e d e a l l D E C n e t
I m a c r o m o d u l e s .

.MACRO SDECNETDEF
. I F NOT-DEFINED A l p h a - A X P

T h e s e make A l p h a A X P c o d e c o m p i l e o n VAX b u i l d s b y d o i n g
I n o t h i n g w h e n e n c o u n t e r e d

V A X = l
; .JSB-ENTRY

. m a c r o . j s b - e n t r y , i n p u t , o u t p u t , s c r a t c h , p r e s e r v e

. endm
.JSB32_ENTRY

. m a c r o . j s b 3 2 _ e n t r y , s c r a t c h , p r e s e r v e

. endm
; . CALL-ENTRY

. m a c r o . c a l l - e n t r y , p r e s e r v e , max-args=O,-
h o m e - a r g s = f a L s e , i n p u t , o u t p u t , s c r a t c h

. endm
. ENDC
. ENDM
/

Cor4e l<el~icul When ; \ I 1 tlie known porting prob-
lems fount1 during tlie compile ant1 link phases had
been corrected, we began our code review process.
The original Vi\X cotle, the ported code, ;~ntl a dif-
ference listing were avai1:tble to the porting team.
One or more members of tlie team reviewed the
ch:~nges matle ant1 pointecl o i ~ t ;In!' problems tliat
were identified to the person responsible for tlie
module being reviewetl. We ;ill had previously
;!greed that the reviews would be friendly ancl that
egos wo~lld be left out oftlie process. We found that
our successfill code reviews were well worth the
effort.

Initial reviews turnetl 1113 differing pliilos-
ophies I-egarding the porting process. We discussed
these difl'c.1.encc.s and rr;iched a consensus. The
reviews uncovered errors in the porting process,
ant1 correcting these problems r ed~~ced the amount
of delx~gging req~~ired. The review process also
;rllowed us to agree on and maintain coding stall-
dartls.

U r b ~ ~ g g i i z ~ 0i1r ; ~ p y ~) ; ~ c h to tlehiigging the
DEClieC h r OpenV>IS AXl' softw;~re \vas to build the
common portetl cocle for a \hX system and to
replitce tlie OpenVMS \)AX images with our portetl
version on one of oilr wol-kst;~tions. We began by

loading the portetl NETI>RIVER ancl NEl'I\(:I' conipo-
nents. Since many of the required chilnges were
common to both OpenVhlS A X P ;~tld OprnVICIS VAX

systems, we were able to debug much of this code
before we had access to Alpha IIXP liartlware. We
foillid and fixed a number of problems using this
technique.

W/lien we were re;ison;lbly confitlent t l i ; ~ t the
ported code was working on the Open\l$ls \%X

operating system, we began testing on Alpha A S P

prototype hardrn;lre, which fort~~nately ti:icl just
become available. We completecl the driver 1o:id
and K P initialization testing. The initial test uncov-
ered some problems tliat required special
workarountls to allow debug to continue. Fl'liese
problems were corrected in 1;lter versions o f tlie
tools. Since the user interk~ce hacl not yet been
ported, test code was written to start 1)EC:net for
OpenViMS AXP and begin debugging the $QIO inter-
face to tlie tlriver.

Eventually NCP, NMl,. ;lntl NMI.StIII were ported,
and more comprehensive clebugging begctn. We
used the OpenVMS AXl' XDelta ;~nd Delta tools to
debug the .DECnet for OpenVMS AX]' cotle on our
Alpha AXI' prototype h;~rdw;~re. System failures
were tlebi~ggecl using the sDii cross tool on a Vt\X

system. We learned how to trace c;ill chiiins b),

studying the OpenVMs calling stantl:-~rtl.-
1 ide erst an cling the format of linliage pairs, proce-
dure descriptors, ;~nd register save areas m;~tle
tlebugging niuch easier prior to the avail;lbility of
these features in SDA. 1)ebugging on ;in Alpha A S P

system is more tliffici~lt than on a VAS system since
most VAX instructions generate multiple Alpha ASr'

instructions whose positions ;Ire optirilized by the
conipiler to take ;idvantage of Alpha A X P architec-
t~lre fe;~tures. "T'lil~s, it is not ;~l\vays easy to follow
tlie AIphhiiXI' cock line by line bec;iuse the gener-
ated Alpha AXP code from one language statement
is interspersecl with Alpha AXl' code generatetl
from aoother language statement.

Testiug M'ter solving the ol?\/io~~s problems clur-
ing the tlebi~g process, we began to test the DE(:net
for OpenVk1S ASP code. Elrly versions of the
Openvprs ~ixl-' file system, record nianagement ser-
vices (RILIS), ;inti the file access listener (FA13 were
made av;rilable to us. We in turn provided tlie
1)EC:net for OpenVMS A S P cock to the group porting
Open\'&lS R>lS ;tnd FAL for their use in debugging.
We were then ;tble to run test scripts that used ;I

variety of I)(:[. con~m:inds to perform loops of
remote copies, differences, and clirectosy listings of
I-emote files. I>E(:net networl< n1;In;igement scripts
tested the network n1;lnagement interface. DTS ant1
I)TR were i~sed to perform tl:~t:~ transfer testing.
Since the I)E(:net for OpenV,LlS t\XI1 softmiare was
;~vailable early, i t w:is used by other Alpha IU(P port-
ing groups on Alpha AXP prototype llardware in
various 1oc;ltions. As the code stabilized, a timeslur-
ing system was set LIP, which provitlecl the opportu-
nity for more testing.

Portitzg Issues
When we beg;~n porting the I)E(:net-VAX softw;ire
to the Alph;~)\XI-' 11ardw:lre platf-i)rm, we fount1
many coding conventions coultl not be used. most
of these coding p~lctices are called out by the cross
compilers, which signific;~ntly helped the porting
effort.3

The following is a discussion o f some problems
we enco~~nteretl while porting ;~nd how we solvetl
them.

Eiityy Poilils Approximately four months into the
project, the porting team cletermined that usi~ig the
.,\SI3_ENl'llY clirective in NE'T'1)RIVER was going to
make porting clilficult. The tlifficulty was clue to
the complexity of the code ancl the fact that some
code paths contained more than ;I clozen layers of

subroutine c;ills. We conclutletl tlir~t tlie code,
which had existed for a long time, :ilreatly savetl ;~nd
restored the correct registers. We decided tli;~t tr!.-
ing to con~mi~nic;~te the correct list of input, out-
put, pass-through, and preserve registers to the
compiler could be an impossible task, esl>eci;illy
given our scl~etlule. We investig;~tetl the possibility
of using the .JSH32_ENTRY directive. This directive
allows the specification of registers that must be
preserved but tloes not take any input, output, or
scratcl? parameters. The OpenVMS hXP ~lh<;UO-32
cross compiler will not automatic;~lly preserve ;in!.
registers when this directive is usecl. A great cle;ll o f
care must be taken when L I S ~ I I ~ this entry-point
tlirective.

Our tlecision to use . JSB32-EN'I'RY to declare entr!-
points lecl to an interesting proble~n wit11 :IS!'II-

chronously executing code t l i ;~ t could jnterri~pt
other threads o f execution. The 1)E(:net-\'AX code
that we ported i~sed I'IJSHR anel IIOI'R instructions
to save and restore registers th;it were ~nodificcl
by DECbet-\'AX cock jnterrupting another thread of
execution. When adding the . J S I ~ ~) ~ _ I N T R Y direc-
tives, we specified a register preserve par:lrneLer
only on external entry points, assuming that the
remailider o f the original UE(:net-ViIX code was s ~ v -
ing the proper registers. The preserve parameter
ensures that all 64 bits of the registers specified ;Ire
saved at routine entry ant1 restoretl at routine exit.
The PUSl3R and L'OL'R instructions preserve only
tlie low-ortler 32 bits of the specified registers.
However, if I)G<;net-VAX code in ;I routine wi t l~oi~t
the .JSB32_ENTRY preserve p;~rameter interrupts
another threacl of execution th;~t makes use of tlie
ul>per 32 bits of a register, these upper 32 bits
would not be properly restorecl when contl-ol
returned to the interruptecl thresd. The solutjon
was to specify the register preserve parameter o n
the .JSB32_ENTR\i directives used to declare the
entry points o f routines in I>E(:Jiet I'or OpenVhdS
ASP that are c;ipable of inte~-r~~l>tjng other thre:itls
of execution.

Whenever we changed tlie i n p ~ ~ t or outl?t~t
p;lrameters to ;In internal subroutine, we ;llso
changed tlie name of that subroutine. This effoi-1
11elped identify all the internal calls lllade t o sub-
routines whose interface had c11;inged.

C O ~ O L L ~ ~ ~ L ' S A feature of the Vt \ s ;rrchitectt~re usccl
throughout the NETACP and NFI'I>RniER con>-
ponents is called a coroutine. Coroutines usetl
in >h\CRO-D a1 low a subroutine t o call cotle friig-
ments in other subroutines. This technique uses the

Alpha AXP Architecture and Systems

jump-to-subroutine construct JSB @(SP)+ to jump
between coroutines. The code example shown in
Figure 3 denlonstrates the use of the JSB construct.

The general flow of the example is for ~ ~ A I N to
call (:OKOUTINE with RO equal to 0 and R1 equal
to 1. Usually, COROUTINE changes the value of R1 to
2 and calls back i W N at address SAVE. If COROUTINE
is entered with R1 not eclu:~l to 1, then RO is set to 1
and the coroutine dialogue terminates. MAIN at
address SAVE then tests R O and exits. Under normal
circumstances, MAIN a t atlclress St\VE continues,
storing the returned value of R1 in DATA and calling
back the coroutine at adtlress FINAL. COROIJTINE at
adilress FINAL then changes the value of R1 to 3, sets
the return status in RO to 1, ant1 returns to 1ktA1N at
address TERMINATE. TEliMlNATE then exits MAIN via
the RSB instruction.

All entry points in MACRO-32 code on an
OperlvMs AXP operating system must have an entry
directive. Thus, i t is not possible to use tlie]SB con-
struct to jump to any random line of code, as the
previous example clenionstrates. To tlo so, the code
shown in Figure 3 would have to be split into sub-
routines, each with a .JSH-ENTRY or .jSB32_ENTRY
entry directive. Also, we hail to change the irnple-
mentation of coroutines. Rather than use the stack
to pass return addresses, we passed each return
address in a register.

Since some coroutines ported were more com-
plex than the example shown in Figure 3, we clevel-
oped a technique to port VAX coroutines to the

Alpha AXP architecture. When a coroutine is split
into multiple routines, some cocle, such as that test-
ing returned values. 11i;~y change relative loc;~tion.
In our example, the error processing at SAYE is no
longer necessary Insteatl. <:OIK>C)In'INE returns to
MMN if it detects an error, and ,WN siti~l>ly returns
to its caller with the status in RO. The V A ~ code
exaniple in Figure 3 was converted to Alpli;~ AXI'
code using our technique. The resulting code is
shown jn Figure 4.

The use of coroutines o n Alpha ,\XI' s),stenis
should be discouragetl because of the o\,erl~ead
associated with storing the return adtlress in regis-
ters and the ailditional consumption of stack space.
Rather than a simple return ;iddress on the st;tck,
there will be ;I register save arc.;(o n the stack for
each subro~rtine that makes up the corol~tinc.
Recursive coroutines can consume large qilantities
of stack space. We have since converted coroutines
usetl in main code paths to straight in-line s u b r o ~ ~ -
tine calls.

S t ~ ~ c k . Uscf,~e MA(:IIO-32 coclc ilseb :I number o f
common coding techniques t1i;it reqiiire knowl-
edge of the state of the stack ; ~ n d th;~t must be
changed for the OpenV,\IS ,.\XI' operating system.
One such technique, referred to as ;in up-level st;ick
reference, occurs nrhenever ;I subroutine ;Ittempts
to access information (;lddrc.ss or rl;~ta) stored on
the stack by its caller. Parameter passing sonietimes
uses this technique. If :I routine pushes ;Irjiurnents

MAIN:

SAVE:

MOVL #O, R O
MOVL # I , R1
JSB COROUTINE

; Assume f a i l u r e
; S e t i n i t i a l v a l u e
; Open a c o r o u t i n e d i a l o g u e

BLBS RO, TERMINATE ; No c h a n g e i n v a l u e
MOVL R1, DATA ; Save t h e c h a n g e d v a l u e
JSB @ (S P) + ; C o n t i n u e c o r o u t i n e d i a l o g u e

TERMINATE: RSB

COROUTINE: CMPL R 1 , # I
BNEQ E X I T
MOVL #2, R1
JSB @ (S P) +

F INAL: MOVL #3, R1

; E x i t w i t h s t a t u s i n R O

; S h o u l d we c h a n g e t h e v a l u e ' !
; I f n o t , e x i t r o u t i n e
; Change t h e v a l u e
; C a l l b a c k t o c o r o u t i n ~

; F i n a l v a l u e

E X I T : MOVL # I , R O ; S i g n a l s u c c e s s
R S B ; R e t u r n

Figure 3 VAX Code Example Shoulitzg the Use of the Construct JSB @ (SPj+ h. / l f rrll., Oetlireer~ Chr'olr tirzcs

176 Vol. 4 !\b. 4 Special Issue 1992 Digital Ticl~nicrtlJour?~a~

DECnet for 0penVlW.S AXP: A Case History

M A I N : .JSB-ENTRY OUTPUT=<RO,Rl>,-
SCRATCH=<RZ>

MOVL #O, R O ; Assume f a i l u r e
MOVL # I , R1 ; S e t i n i t i a l v a l u e
NOVAB S A V E , R Z ; N e x t c o r o u t i n e a d d r e s s
BSBW COROUTINE ; Open a c o r o u t i n e d i a l o g u e
R S B ; R e t u r n t o c a l l e r

COROUTINE: .JSB-ENTRY INPUT=<Rl,RZ>,-
OUTPUT=<RO,Rl,RZ>

C M P L R1, # I ; S h o u l d we c h a n g e t h e v a l u e ?
BNEQ E X I T ; I f n o t , e x i t r o u t i n e
PUSHL R2 ; Save n e x t c o r o u t i n e a d d r e s s
MOVL #2, R1 ; Change t h e v a l u e
MOVAB FINAL,RZ ; C o r o u t i n e a d d r e s s f o r SAVE t o u s e
J SB @ (S P) + ; C o n t i n u e a t SAVE

E X I T : MOVL # I , R O ; S e t s t a t u s
RSB ; R e t u r n t o MAIN

S A V E : .JSB-ENTRY INPUT=<RI,R2>,-
OUTPUT=<RO, R1>

PUSHL R2 ; S a v e n e x t c o r o u t i n e a d d r e s s - F INAL
MOVL R1, DATA ; S a v e t h e c h a n g e d v a l u e
J SB @ (S P) + ; C o n t i n u e c o r o u t i n e d i a l o g u e a t F INAL
RSB ; To COROUTINE

F INAL: .JSB-ENTRY OUTPUT=<RO,RI>
MOVL #3, R1 ; F i n a l v a l u e
R S B ; To SAVE

F ~ L L I - e 4 Alpha AXP Code Exu~)zple Sl~oiuirzg the Use of the Constr~tct
JSB Q(SP)+ to J~tnzp Deliueen Coro~~trnes

onto the stack prior to jumping to a subroutine, the
called subroutine does up-level stack references to
retrieve the arguments. Other techniques include
using the stack as ;I common data are;) or attempt-
ing to manipulate the caller's return address in
order to alter the progr;im flow.

MI these techniques require re-cotling. When we
encountered code that passed parameters on the
stack, we rnoclifiecl the code to pass parameters in
registers. If a structure was being passed, separate
memory was allocated and the adclress of the struc-
ture p;lssetl in ;I register. In one case, NETACP used
coroutines to perform specific functions to update
a common data area allocated on the stack. This
cotle w;is redesigned to eliminate the coroutines
and LIP-level stack references. Another alternative
woultl have been to pass the arldress of the data area
on the sc;~ck to the c;~lled routine.

Altering the program flow when error condi-
tions were encountered was also a common tech-
nique i~sed in the Dl:<:net-VAX 1blCIK)-32 code.

Subroutilles removecl the return address from the
stack and returned to the caller's caller. We modi-
fied the cotle to remove the up-level stack refer-
ence (the caller's return address) ant1 return a flag
in a register to signal the caller that a change in the
program flow was desirecl.

Condition Codes The Alpha A?<P ;~rcliitecture
does not support global condition codes in the pro-
cessor status word. Some routines set condition
codes and reti~rned to the caller, which proceeded
to perform a conditional br;lnch on the results of
the called routine. All occurrences o f this tech-
nique were changed; routines now p;~ss the result
of any conditional test to the caller in a register.

G m n ~ / l ~ l I - i t j ~ arzcl Ator?ticil IssuesX The NLTACP
and NETDRIVER components access shared data
structures. Since NETDIUVER can interrupt NETtKP,
the DECnet-VAX code relies on the atomicity of VAX

DLC'rict f?)r OperzV1l4S A X ? A Case N l s t o ~ ') ~

Conclusion
This porting effort not only provitled a solid base of
k~iowledge with which to begin the port of the
DECnet/OSI for OpenVMS VAS softwilre anc1 the
;lssociated protlucts, but also gave us an apprecia-
tion of common code and the avoitlnnce of archi-
tecture-specific code.

More and more software is being ported to new
hardware pl;~th)rms. The porting process is often
carried out by individu;ils who did not develop
the original software and who may not even be
familiar with it. Our experience porting the
I)ECnet-VtlX cotle leads us to believe that new soft-
ware development should take into account the
possibility that the code will be ported to new
hardware platforms at some filrilre date. As we con-
tinue to port the I)ECnet/OSI for OpenVMS VAX soft-
ware, it is becoming increasingly obvious that
certain coding practices are difficult to port. As a
general suggestion, if the code has knowletlge of
the architecture but can be written using system
routines, system ser\lices, or run-time library func-
tions, write the code in that manner. These system
routines will be ported with the operating system,
and in a majority of the cases, the application code
will not require modification.

Also, if architecture-specific functions are
req~liretl, provide only a minimunl amount of cocle
to perform these required functions and segregate
the code. Document how the code works, why it
had to be clone that way, what the alternatives were,
;inti why they were not taken. 111 ;~ddition to helping
maintain the cocle, this information may provide
valuable assistance to a person porting tlie code in
the future.

If a routine is written in assembly language for
the sole purpose of performance improvement.
consider rewriting i t in a high-lr\fel language. I t is
possible that tlie assembly language coding conven-
tions that may 1i;lve been optimal for one harclware
platform will be slower on ;I clifferent 1iartlw;ire
platform. Ilsing high-level langu:~ge compilers.
which generate optimizeel hardware-specific code,
will eliniinnte additional porting effort and m;~y
very likely I)e the best performance solution.

As we tliscoverecl tluring the process of porting
the DECnet-VAX software, iLLZ<:R<)-32 code is signifi-
cantly more clifficlllt to port than code written in
Iiiglier-level languages. However, certain ;~rchitec-
ture-specific functions may have to be written in
assembly 1;lnguage. Wk recommend that these func-
tions be isol;~ted. In addition, we recommend that

any other code written in &bi(\<:l<o-32 be rewritten,
over time, in :I higher-level language.

\Ve determined that the fastest approach to port-
ing was to make the minimum number of changes
required to get the DECnet for OpellVMS p u t ' soft-
ware running. The porting process was accom-
plished in phases. The first phase inclucled the
initial port :untl addressed any errors that occurrccl
until we successft~lly completecl linking the image.
This phase also included the initiiil clebug, which
was first performed on VAX systems because of o l ~ r
common code approach and, subsequently, clone
on Alpha 11x1' prototype liartlm~are. Wl?en the procl-
uct was st;~ble, we proceedecl to tlie secontl plinse
in which we began to methodically align data struc-
tures and fix gr:~ni~larity and ;rtoniicity problenls.
Small changcs coulcl then be ni;~cle and tested, ant1
any new p r o b l e ~ ~ ~ s were generall~. easy to idenritj!

Our team approach to the project worketl
extremely well. Each team member was initially
responsible for porting specific portions of tlie
code. As the project progresseel, intli\iiduals workeel
on any part of the product that needed attention.
This flexibilit)l was also used when we began to
clebug the portetl code and again when we began
to respond to lx-oblem reports. Priorities were ilsetl
to assign resources in orcler to solve problems ;IS

quickly as possible. Throughout the project, team
members worketl together to share knowledge ancl
to solve problems efficiently. This effective teani-
work allowecl us to deliver the L)E<;net for OpenVLIS
&KP product ahead of schedule.

Acknowledgments
The authors would like to thank tlie other members
of the software clevelopment team, Ken Roberts,
Cathy Wright, our manager John Heron, and the
group engineering manager ~Morea Martocchio,
whose hard work made this project a success. In
addition, we woulcl like to thank ;ill the itidividrr;lls
of the Alpha A S P project who heljxd us along the
way In particular, we woulcl like to recognize cer-
tain individuals for their important contributions to
tlie success of this project: Paul \Veiss, our porting
consultant; Lenny Scubowitz. I>;~vicl Gagne, ;inti

Ben Thomas of the I/O team; Karen Noel ancl Mike
Harvey of the executive group; and Steve Dipirro of
the XDelta te;lm.

The DECnet for OpenVMS AX1' project was only
part of the Alpha ASP teani effort. We feel fortun;ite
to have experienced the synergy that this team
created.

Digital Techr~icrrl Journal Vol. d ~Vfr,. 4 Special lsslre 199.2 170

Alpha AXP Architecture and Systems

References 7 OpenViVLS Calling Stnnclclrd (Maynard: Digital

1. A. Lauck, D. Oran, ant1 11. Perlman, "Digital Equipment Corporation, Order No. AA-PQY2A-

Network Architecture Overview," Digitul TK, 1992).
Tecbrzicnl Jo~1t.nnl vol. 1, no. 3 (September
1986): 10-24. 8. N. Kronenberg et a l . , "Porting OpenVMS from

VAX to Alpha AXP," Digit611 Z~cbniccrl Jourrzcrl,
2. l? Beck and J. Krycka, "The DECnet-VAX Prod- vol. 4, no. 4 (1992, this issue): 111 -120.

uct-An Integrated Approach to Networking,"
Digit~rll TecI3nicnl Jounlcrl, vol. 1 , no. 3 (Septem-
ber 1986): 88-99. General References

DECnet/or Open Vll-IS Nel~llork iVl~rnngetnet?l 1Jllli-
3 ~Migi-uti~zg to an Open L1f.S Alpha Systenl: Port-

ties mayna nard: Digital Equipment Corporation,
i~zg K4X ilIACRO Code (Maynard Digital Equip-

Order No AA-PQYAA-TK, 1992).
ment <:orporation, Ortler No AA-PQYEA-'TE,
1992). DECrzet Ji>r OpenKMS G~ride lo ~Vetrcorking (May-

4. Openr',lfS' Linker rLlununl (Maynartl: Digital nard: Digital Equipmcnt Corporation, Orcler No.
Equipment Corporation, Order No. At\-P()?CA- AA-I'QY8A-TK. 1992).
TK, 1992).

DECizet for Open vil4.Y Nel lvolflkiizg 1Wnn LICIL (M ;I)'-
5. Open KV1.S Alpha Sj'stem Dump Analyzer IJtility

narcl: Digital Equipment Corporation, Order No.
~Mclnr~~rl (Majlnard. Digi t ;~ l Ecluipmen t Corpora-

A A-PQ'I'YA-TK, 1992).
tion, Order No. AA-PQYCA-TE, 1992)

6. O11eiz ViMS Deltu/XDeltu Cltility i l l~zrz~~nl (May- iVligrating to arz O11en V;WS All,hcr Sjlstellz: Pl~r 1 2 rz irzg
nard: Digital Equipment Corporation, Order No. forilligrution (Majlnard: Digita1 Equipment Corpo-
A A-PQY PA-TK, 1992). ration, Order No. AA-PQY7AYTE, 1992).

180 Vol. 4 ~\b. 4 S[~ecin/ Issrre 1992 Digilul Technical Jourrrul

George A. Dccrcy III
Ronald R Brender
StephenJ Morn's

Michael K Iles

Using Simulation to Develop
and Port Software

Anio~zg the tools deueloped to silpport Digitc~l's Alpha AXPprogrnl?~ zilere jolir soft-
zuare sirnulc~tors. The iMa~inequi~z and I.SP instruction set si~)zulators were used to
port the Open VIN and OSF/l operating systems to the AQha AXP platform. The
Alpha User-nzode Debugging Eizt~ironment (AUD) allozi~ed Alpha A X P user-/node
code to be debugged iilzth s~q~port fi'o~rz the Ope~zviVS VAX rz~rz-tune enz)iron~~ient
on VAX hc~rclwc~re. AUD 1 1 ~ s b ~ i l t from a conzbinatzo~z of new and existing Digital
softlvare conzponents. The Alpha User-mode Debugging Enz~ironnzent for
Translated I~nages (AUDI) allouted translated images to be debugged 012 a sinzulator
rz~rzizi~zg on a K4X conzputer With these clebz~gginzg enuiro~z~nents, user-mode
cQplications G L I Z ~ code comn1)oizents coz~ld be tested before Alpha AXP hardware crnd
operating systnn softzuare were availc~ble.

Digital developed several software simulators to
support its Alpha AXP program.' These tools
enabled engineers to develop rind port software for
the 64-bit RISC Alpha AXP ;irchitecture concur-
rently with harclware development. The simulators
were used for a variety of purposes inclutling port-
ing, testing, verification, ancl performance analysis.
This paper discusses four Alplia iu rP software simu-
lators: Nlannecluin, ISP, AUD, and AUDI.

The Mannequin a n d ISP Simulators
Two tUpha iD(P instruction set simulators,
Mannequin and ISP, were used to port operating
systems to the Alpha AXP platform. Tlie OpenVMS
group used the Mannequin si~nulator to port the
Openv>ls v,\X system to the AJplia ASP platform.
Likewise, the OSF/l group used the ISP simulator in
their port of tlie ULTRlX ant1 OSF/l operating sys-
tems to the Alpha AXP platform. Both sinlulators
were also usetl for architectural and design verifica-
tion, and for performance modeling.

l'he Nlannequin simulator grew out of a simula-
tor developed for ;111 earlier RlSC project at Digital.
The IsP simulator was written anew by engineers
closely associated with the Alpha tLYP architecture.

The two tleveloprnent g r o ~ ~ p s were recluested to
boot their respective operating systems on the sim-
ul:itors before attempting to boot on the Alpha
Demonstration Unit (ADIJ), the Alpha ASP proto-
type hardware.' The simulators were so successfi~l

in tracking the Alpha I\XP architecture and in root-
ing out software bugs that the OSF/1 group was able
to boot the ULTRlX operating system on the hard-
ware on the first attempt. The OpenvMS group hat1
similar success and booted the OpenVMS AXP oper-
ating system in a few hours.

Note that the Alpha Demonstration Unit (ADU) is
an Alpha AXP prototype hardware system and
should not be confused with the Alpha User-mode
Debugging Environment (AUD) or the Alpha User-
mode Debugging Environment for Tr;inslated
Images (AULII), two software simulator facilities dis-
cussed later in the paper.

OpenVMS AXP Porting
The OpenvMS group usetl NIannequin as their Alpha
AXP instruction simulator in porting the OpenVMS
VAX operating system to the Alpha AXP hardw;~re.
Never before had an OpenVMS porting effort been
able to debug as much operating system code
in advance of hartlware. Prior porting efforts
debuggetl only up to VMB, a priniary boot stage in
the OpenVMS operating system. IJsing Mannequin,
operating system developers were able to boot the
entire operating system on tlie simulator ant1 actu-
ally log in and debug utilities.

Some developers used Mannequin's own win-
dows interface and debugging facilities to debug
their code. Others ran the XDelta utility on top of
 mannequin? XDelta is a low-level system debugger

Digilrrl Tecbnicril Journal 1/01. 4 Are. 4 Speci~tl Issi~e 1992 18 1

Alpha AXP Architecture and Systems

used to debug the OpenvYlS ViX kernel :~nd tlrivers.
However, the Ma~inequin interface was useful in ini-
tially clebugging XlleJta, since the Alpha AXP con-
sole allows neither breakpoints nor single stepping.

To debug their code before the fill1 OpenVMS A S P
operating system was avail;lble, other clevelopers
used Mannequin in conjunction with tlie Npha
prim;~rjr boot (A13R) cotle and a test h:~rness.
Wlannequin was especially usef~il in finding align-
mcnt hults in the boot sequence. since the align-
nielit tools are not operational until the OpenVMS
AXP system is completely booted. Alignment faults
occur when :in ;lttenlpt is rn;icle to access ;I unit of
dat ;~ locatetl ;it ;in atldress that is not a multil>le of
the size of the data.

Microcode L'@eedzip
One mail1 reason the OpenVMS team was :ible to
debug 21 large part of the operating system in real
time was tlie use of specially written microcode to
speetl LIP the siniul;ltor. Mannecluin is c;ip:~ble of
running with speci;il user-written microcotle on
thc VAX 8800 fi~mily of machines. This microcode
is :ln addition to the normal VAX micrococle for
[lie 8800 machines; the VAX microcotle remains
unchangecl. With micrococle support, a large subset
of Alpha A S P instructions is executed in microcode
;ind attains performance comparable to native VAX

instructions. The Mannequin microcode occupies
9:) percent of tlie total 1,024 worcls of thc user-
writ:ible control store.

Using microcotle assistance greatly speetls up
M;~n~ieql~in execution, yielding from 350 thousand
Alpli;~ AXP instructions per ClYJ secontf (KII'S) to a
peak perforniance of 1 million Alpha AXI' instruc-
tions per CPli secontl (IMII'S) on ;I VAX 8800.
lVitliout microcode assistance. iVIannequin perfor-
mance is on the order of 1 0 KII'S. (For conlparison,
the ISP siniul:~tor operates at approxim;~tely 30
KIl'S.) Code streams that execute completely in
Mannequin microcode show much better perfor-
mance than those that switch back ;inti forth
between micrococle ancl the software simulator.
With microcotlc ;tssistance on an unloadetl V I ~ X

8800, it takes from 20 to 30 minutes to boot the
OpenVMS ASI' system and reach the Digital
Command Language (DCL) prompt ;iftcr login.
Becai~se of this microcode speedup, softwzire engi-
ncers were able to simulate and debug a much
larger part of the operating system and utilities than
ever before.

OSF/l AXP Porting
The OSF/l operi~ting system group usetl the ISP sim-
ul;~tor as an Alpha AX'P instruction compute engine.
The strategy was to connect the ISP simulator to
dhx, a st:~ntl;ird UNIX source-level debugger, via
cll?x's remote interface. hi interface \v;ls added to
tlie ISP to support the following low-level debugger
commands:

Instruction stream exiirnine and deposit . Data stream examine ant1 deposit

Register exmnine ant1 deposit . Single step

'She dbx tlebugger was motlified to work with the
64-bit Alpha architecture. 'That is, atltlresses in
the debugger were extentlecl to 64 bits, and an
Alpha ,%XIJ clisassembler was providetl. The ISp

simulator ant1 tlbx debugger operated as separate
processes communicating on the same ni;~cliine
by means of a socket. A socket is a protocol-
independent connection point for interprocess
communic;~tions.

Hjstoric;rll): the OSF/l group used the ISP-dl~
combination to port the I.I:rlu>; oper:iting system
to the Alpha AXP platform as ;In advanced develop-
ment effort. When the group began to port the
OsW1 system, Alpha AM' prototype hardware
(141)Us) and fieltl-test coml,ilers were av;~ilable.
Thus, the OSI:/l group iisetl tlie ISP in its hl)Ii niocle.
where the ISP simulator operated as a console to
the ADU hardw;tre system. Tlie ADU consists of an
All~ha AXI' 1)ECchip 21064 processor, memory,
disks, Ethernet, ant1 a I>E<:station 5000 wwrksti~tion,
which acted ;a the console interface. Instrilctions
that norm;~lly execute on the simulator were trans-
ferrccl to the A O U for execution. However, the
entire symbolic debugging environment remained
iinchanged.

Si~nulntor Specifics
Tlie ISP simul;~tor was written entirely in portable
<;. The Manneqi~in simulator was a hybrid of the
<:++ ant1 C languages IsI' consisted of approxi-
m;~tely 27,000 lines of code, Mannequin 31,800
lines. The two simulators shared common cotle:
the ISP simulator provided Mannequin with float-
ing-point routines ant1 a comprehensive instruction

Usirzg Silrzulation to Iler~elop cind Port Softz~wre

test program; Mannequin provided ISP with I/O
device routines. Thus, the simulators verified the
Alpha AXP architecti~re as well as each other.

The Mannequin and ISP simulators tracked ancl
supported changes in the evolving Alpha AXP arclii-
tectilre ant1 in PALcode. IIALcode is special machine-
depetitlent software that provides support for
many low-level operating system services such as
faults ant1 exceptions. PALcode ;~lso provides
instructions not in tlie base Alpha ~ x l ' h;~rdware.

The two simulators 1i;lve features comnion to
many simul;~tors, i~ l c l~~ t l i~ ig support for loading
and running progr;ims, setting breakpoints and
watchpoints, accessing memory, and saving and
restoring machine state. Also supportetl are many
machine-specific features, such as I/() devices,
interval timers, and configurable translation look-
aside buffers. Besides a commantl line interface,
the Mannequin simulator has a graphical windows
interface that allowed users to see most machine
resources in a windows-hased format, as shown in
Figi~re I .

'The N1;innequin :~ncl [SP simulators support three
basic devices:

A console device ~ ~ s e t l for terminal I/()

A disk device used to boot the operating system

An interval timer used for interrupts

The disk device on the simulators can be either
a file or a physicill disk device. The OpenVMS
group usetl a shared disk so that developers could
boot from a comnion disk while running on tlie
simul:~toc

The simulators provide 16 megabytes (MB) of
physical memory with ;I tlefault page size of 8 kilo-
bytes (kH). The physical memory of the simulators
may be increased to tlie practical limit of available
virtual memory on ;I VAX system (minus a small
amount for the actu;il simulator code).

Both simulators have configur:tble instruction
stream (I-stream) ant1 data stream (D-stream) trans-
lation lookaside buffers (TLBs). A TLR is a s~ilall
cache that holds recent virtual-to-physical address
translation and protection information. The sirnula-
tor TLIb can have a variable number of entries i l l

each of tlie four gr;lnularity hint block sizes.
Granu.l;~rity hints inclic;~te to tlie tr;~nslation buffer
implementations that a block of pages can be
treated as :I single, larger page. In essence, there are
four minitr;~nslation buffers. The ISP simulator sup-
ports selectable 'rL15 replacement algorithms,

whereas Mannequin supports only the not-last-
used (NLII) algorithm. The configurable TLBs
allowed the operating system and chip design
groups to analyze and finely tune the tr;~nslation
lookaside buffers for optimum performance.

Tlie Mannequin and ISI' simulators also support
execution o f user-mode, st;~nd-alone programs, i.e.,
those with little or no operating system ri~n-time
support, by providing program loaders for several
formats. These formats include two UNlX object for-
mats ((;OFF and a.out), an OpenVMS AXP image for-
mat, and a system (raw tlata) image format.

Programs were compiled with early field-test
Alpha AXP compilers. Program execution was espe-
cially useful for hardware tlesigners ant1 conipilcr
writers for performance :lnalysis and benclimark-
ing purposes. Note that applications rccluiritig fill1
operating system support usecl the AUI> facility,
described in a later section.

The simulators can ge1ier;lte trace files in a stan-
dard trace file format. This common;~lity enabled
the two facilities to share the same trace analysis
tools. The trace files generated by Mannequin
and ISP were also used ;IS input to the Alpha
Performance Model, another simulator that gener-
ated detailetl performance data.

EVILIST ant1 ALPHA$REPORT were two tools fre-
quently used to analyze trace files and generate
statistics concerning ni:icliine resources used dur-
ing program execution. Tlie types of data generated
by A L P H ~ I \ $ R E P O R T ' ~ ~ ~ ~ L I ~ ~ the following:

Instruction distribution by opcode, class, and
format

Instruction and floating-point register utiliza-
tion summary

Distribution of code block run lengtlls

Opcode pair distribution by class

Control/branch instruction flow suniliiary

At1 acti~al trace analysis report generated by
ALPHA$REI'OHT' is shown in Figure 2. This example
conies from a scaled version of FPPPP (one of the 14
benchm:~rl<s in tlie ~PE<:fp92 floating-point test
suite), with the constant NA'TOMS set eqi~al to 2.
Figure 2 clisplays a report listing instruction distri-
bution by opcode.

Alpha AXP operating system developers and com-
piler writers relied heavily on the trace reports for

Digital Tecbnicrrl Jouiv~crl VbI. 4 ,Yo. 4 .S/)ecicrl Issue 1992 183

Alpha AXP Architecture and Systems

-I
Z Z Z Z

a 0 0 0 0
C
C U) a m -
m a a z m
E m m ~ a

L L W I
+J+JU'

I I I d
 nu^ m
U . 7 m r
c4-J a
ma,
*r E
A L
m CI
C .7

3 XL
m

O O O O O N O O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
O O O O o O r O
00000000

U l n l O h W O l O r
N N N N N N M M
E W W W C C E E E

O O O m O O O O
0 0 0 n U 0 0 m
0 0 0 r L 0 0 0
O O O O L O O O
0 0 0 l n ~ 0 0 0
O O O O L O O O
O O O O L O O O
O O O O L O O O

O O O O L O O O
0 0 0 0 L 0 0 0
0 0 0 0 ~ 0 0 0
0 0 0 0 u 0 0 0
0 0 0 0 u 0 0 0
0 0 0 0 u 0 0 0
0 0 0 0 k 0 0 0
o o o o ~ o m o

> 0 0 0 0 0 0 0 0 ", 0 0 0 0 0 m 0 0
O O O O O O r n O
O O O O O O N O
0 0 0 0 * 0 ~ 0
0 0 0 0 0 0 ~ 0
00000000
00000000

m k O O O O O O
O ~ O O O O O O
O W N O O O O O
O W O O O O O O
O l L O O O O O O
O l L O O O O O O
O I L O O O O O O
O I L O O O O O O

O k O O O O O O
0 v 0 0 0 0 0 0
O I L O O O O O O
O I L O O O O O O
O l L O O O O O O
0 v 0 0 0 0 0 0
0 ~ 0 0 0 0 0 0
O l L O O O O O O

O - N M - ~ ~ Q V
0 0 0 0 0 0 0 0
W W W W W W E D I

O O O M O O O O O O O O
0 0 0 0 0 0 0 0 0 0 0 0
000*00000000
O W O r O O O O O O O O
k v v 0 0 0 0 0 0 0 0 0
M l n u . N 0 0 0 0 0 0 0 0
000000000000
N N N * 0 0 0 0 0 0 0 0

.
o m o m o m o m o m o m
O O r r N N M M * * U t U l
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
000000000000
000000000000
000000000000

OIO
Q 0
0 0
U 0 .. 0
0 0
0 0
10

184 Vo/. 4 No. 4 Spccia!lssr4e 1992 Digitnl Techriicnl Joirrri~rl

1Jsing Si~ntrlatiorz l o Develop and Port Softwulr~?

A L P H A I n s t r u c t i o n S t a t i s t i c s R e p o r t 6-MAY-1992
FPPPP -- Q u a n t u m c h e m i s t r y c a l c u l a t i o n o f a t w o - e l e c t r o n i n t e g r a l
d e r i v a t i v e

I n s t r u c t i o n D i s t r i b u t i o n b y Opcode
(R a n k e d f r o m h i g h e s t t o l o w e s t)

I n s t r u c t i o n
C l a s s Mnemon ic O c c u r r e n c e P e r c e n t
6 L D T 2321 155 2 5 . 4 1
8 MULT 1 7 3 2 9 2 8 1 8 . 9 7
8 ADDT 1 4 3 3 7 9 8 1 5 . 7 0
6 STT 9 9 8 4 4 6 1 0 . 9 3
1 L D Q 544385 5 . 9 6
1 LDL 241 142 2 . 6 4
1 STL 178828 1 . 9 6
4 B I S 1 5 1 1 2 0 1 . 6 5
3 ADDL 1 2 6 3 2 1 1 . 3 8
8 SUBT 95045 1 . 0 4

C u m u l a t i v e
P e r c e n t

2 0
4 0
6 0
7 0

help in designing critical sections of cotle. For
example, the register usage distribution report
helped determine how many registers shoultl be
preservetl by a call ancl Ilow many shoultl be
scratcli (usable by a c;~lletl routine without being
preserved).

The AUD Facility
Whereas the Mannequin and ISP sin1ul;itors were
suitable for initial debugging of low-level software
such as operating systems, direct use of these tools
for user-motle ;~pplications, i t . , 1;lyeretl products, is
a different mzltter. Porting ;inti tlebugging Alpha
AXP user-mode code is at best tlifficult without the
full run-time support of an operating system. User-
r~iocle :~pplications typically take advantage of a
wide v;~riety of run-time libraries, including coni-
piled cocle support (such ;IS the Fortran run-time
library), mathematical routines, graphics I/() ser-
vices, ;lntl database software (such as Rdb for
0pe11\/hIS). Even if all this software were i~nmedi-
ately available for Alph;~ !\XI' systems, running it

under simulation would be proliibiti\~ely slow.
Therefore, Digital developed a mixed-execution

tlebugging environment. This Alpha User-mode
Debugging Environment (All[)) was built from a
con~bination of new ant1 existing Digitcll software
components. In the AIJD environment, user-mode
code being tleveloped for or ported to the Alpha
AXI-' pli~tforrn coulcl be compiled ;~ntl executecl as

Alph;~ t\XP code using simulation o n VAX hardwiire.
At the same time, OpenVMS VAX run-time services
calletl by the cocle could be executed ;is native VI\X
instructions. Thus, modules could be ported and
tlebugged one at ;I time, until almost the entire
;ipplication consisted of bug-free Alph;~ AXP code.

During the design o f the AUD environment, two
key technical issues were

How to efficiently tletect calls nintle by execut-
ing VAX code to a routine in Alpha A S P code tliat
could be "executetl" only by simulation, ant1
conversely, how to tletect calls made by Alpha
t\Sf'cotle being simulatecl to native \/i\X code.

How to effect the tr;~nsformation of parameters,
both location and representation, from that pro-
vided by the caller in one dom;~in into the loca-
tions and represent;~tions expected by the callecl
routine in the other domain. Altliongl-r there
existed well-defined and widely followed calling
stantlards for both tlomains. a variety of special-
purpose, 11igh-performancc c;~lling conventions
were i~secl in many situations.

This mixed-execution environment was expected
to have a relatively short lifetime, because it would
become obsolete 21s soon as significant nu~nbers of
real Alpha iLYP h;~rtlw;lre systems bec;uiie avai1;tble.
Conseq~rently, AlJl) itself had to be simple and inex-
pensive enough to be created quickly and put into
use. 'l'he clevelopment effort met this requirement.

Digital Techrricnl Joui-i~nI l'ol. Q ,\b. 4 .5peci~1I I .FSII~ 1992 185

Alpha AXP Architecture and Systems

The elapsed time from initial concept to first use
was about eiglit months; tlie total tlevelopment
effort for AIJD over its lifetime was between three
and four man-years.

AUD Components
Despite the desire for simplicity, AUD consists of a
n~~ tnbe r of cooperating components:

(21llable Mannequin Alpha Simulator

~ l r l) tlebugger

~ l j l) linker

Alpha ASP native services

vAX jacketing services

AIII) 1.inkage Analyzer (t\LA)

Selected V A ~ jackets

Callable Mcrn~zeyzii~t Alpha S i~nul~~tor . Callable
Nl;innec[uin, the Alpha AX]' instrt~ction set siniula-
tor, is essentially a subset of tlie mannequin simu-
lator described earlier. In particul;rr, Callable
Mannequin omits the user interfdce and Alpha AXP
machine state. Insteatl, tlie A~JD debugger supplies
the user interface. Also, storage for the Alpha U P
machine state is separately linkecl into the AUD
environment to make this information globally
accessible. Callable Mannequin does retain tlie
microcotle-assist feature.

AUU Ilr11~rgge-r- The ALID tlebugger is a niotlified
version of DEBUG-32, the user-mode tlebug utility
on the OpenVMS VAX operating system. The AUD
del>ugger provides most of the same fea t~~res of
DEBUG-32. A configuration option allows the
DERII(;-9 utility to use an internal. low-level
remote debugger interface to interface with a for-
eign target. (This capability was origin;~lly devel-
oped for use in other protlucts such ;IS VAXELN

Atla.) We developed new cotle to join DEH1J(;-32 ant1
Mannequin using this interface. As a result, the AIrD
debugger 'cvorks directly with VAX cotle, in the
LISLI;I[Inannet-, ant1 works with Alplia A ~ I ' cotle by
passing commands to the Callable Mannequin simu-
lator to set breakpoints, examine instructions, exe-
cute cotle, etc.

AUD J.i~zker The Alll) linker is a vari;mt of the
Alpha AX]' cross linker tliat reads Alpha AXP object
modules as input ant1 produces an OpenVMS VAX

h)rmat image as output. The stantlard VAX linker
can therefore reference locations in the Alph;t AX['

image in the normal way, :tnd the stantl;trd
OpcnVMS image activator can be ~ ~ s e d to load the
Alplia AXP image for execution. However, to mini-
mize complexity, we did constrain the Alpha A>(I'

image to be linketl as an absolute image (i.e.. a
basetl image, in OpenVMS jargon). This restriction
eliminated the problem of how to relocate Alpl1;r
AXI' instructions using the OpenvMS image activa-
tor. As mentioned previously, the Alpha AXP image
also includes a global storage area to hold the sirnu-
Ir~ted Alpha /\XI' n1;lchine state.

All~ha AXP Natirle Ser-vices Alpha AX]-' native ser-
vices is a special oper;~ting system shell, part of
which executes as Alpha AXP code (i~ntler sirnul;~-
tion) ancl part of which is includecl in the AUD jack-
eting services. ?'he native services provide the
lowest-level support for hardware esception han-
dling and the OpenVMS co~lditio~i-handling facility.
Wlljle iUiD ultini:~tely supportecl frame-based con-
dition handling within the Alphit t\XI' image, inter-
operation of applic:~tion exceptions between the
Alpha AXP and VAX domains was not supported.

VAX jacketi~lg Scrrlices VAX jacketing services is
VAX code tliat supports the ability to write jackets
that pass control back and forth between VAX and
Alpha AXP code. The mechanics h)r ;~ccotnplishing
this ;are discussed in the Jacketing section.

Linkage A~za@zer The A1.A is ;I specialized
compiler that reads a specializetl jacket description
I;~nguage. This langi~age describes how calls in
one tlomain ;ire to bc transforrnetl into calls in the
other domain on a routine-b!,-routine, parameter-
by-parameter basis. The output from tlie AM is
an Alpha AXP object module and a linker options
control file, both used to link the Alpha U P image,
;inti a VAX object module. The Alpha i\XP object
module provides a transfer veclor into tlie Alplla
ASP procedures. The linker options control file
provitles symbol definitions in an encoded form to
manage calls from tlie Npha 14x1' image to the main
VAX image, which is linked later. The VI~X object
motlule contains a table that encodes the jacketing
tlescription.

Selected VAX J~icket.s Selected \'AX jackets are A[.A

jacketing files (in both source and compiled forms)
for calling common VAX facilities from Alpba AX['

186 1W. 4 iVo. 4 Speciclllssrrc 1992 Digilnl Technical Jortr.acrl

Using Sinz ~ilntiojz to Ilei~elop aizd Port Soft~iwr,c

code. J:~ckets are provided for OpenVMS system ser-
vices, the C run-time library and some parts of the
general-purpose, run-time library (LIBRTL). The
DECwindows group also supplietl jacket definition
files for use by other groups. AUD users are able to
supplen~ent these files as neetletl by creating and
cornpiling their own jacketing descriptions for
other VAX facilities.

Figure 3 shows the main steps in building an AUD
environment. The uppermost sequence shows the
cornpililtion ancl linking of the iUpI7i1 AX^' conipo-
nents, which results in the creation of the Alpha
AXP image. The central sequence shows the compi-
lation of the jacket descriptions, which results in
the creation of components that are included in
both the Alpha AXP and the VAX images. The lower
rows o f Figure 3 show the compil;~tior~ o f the VAX

ALPHAAXP 1 n
ALPHA AXP ALPHA AXP

PROGRAM

part of an application and its linking with the AUD
manager to create the \It\>; main image. When the
mixed VtiS and Alpha AXP application is executed,
these images are combined in memory with
Callable Mannequin, the A1:D debugger, and other
shareable images. This relationship is illustrated in
Figure 4.

Jacketing
Jacketing is the key feature that allows VAX and
Alpha AXP interoperability i.e., gives a processor
the appearance of being able to execute both \/AS

and Alpha iLYP instructions. Mthough the details of
jacketing are intricate, the result is simple and ele-
gant. Calls can be made freely back and forth
between VAX compiletl code and Alpha AXP com-
piled code, without any special compilation motles

ALPHA AXP ALPHA AXP
LINKER IMAGE

DEBUG
IMAGE El-

ALPHA AXP
JACKET
OBJECTS

v

ENVIRONMENT
MANAGER COMPILER OBJECTS

JACKET
DESCRIPTIONS

CALLABLE
MANNEQUIN
IMAGE

Fig"'-e -3 Crenting an AUD Application

D- COMPILER T LOADER A A A -t MEMORY

VAX

VAX VAX
LINKER

-
IMAGE

PROGRAM

JACKET

Digi lnl Tecb~ricnl Jorrnrnl 4 LVO, 4 .Speck11 I s s ~ ~ c 1992 187

VAX VAX

Alpha AXP Architecture and Systems

ALPHA AXP
LlNK -

VAX
LlNK - AUD AND JACKETING

TABLES AUD DEBUGGER

+ r
- I VAX COMPONENTS

CALLABLE MANNEQUIN

I I

MAIN IMAGE SHAREABLE LIBRARIES

on either sicle. 'The A ~ J D support is fi11Iy rec~trsive
~ I I C I reentrim.

Static c;~lls from VAX to Alpha AXI' cocle are
clirected to cl~rmrny entry points in thc object motl-
~rle protlucecl by the AW compiler. E;ich entry point
is simply :in instruction that loads a pointer to the
jacketing clescription table for the t:lrget t\lpha ,-\>;1'

procedure, h)llowetl by a transfer into common
jacket interpretation cotle.

Calls from Alpha AXP cocle to VAX code use
the fact that the <:allable Mannequin component
stops anti returns c01itr01 to the i\lll) environment
when it detects :in instruction that trilnsfers control
out of the Alpliii ASP image. In this case, the appar-
ent address is an encoded integer (created by the
)\LA), whose high four bits make it look like an ille-
gal address (in the VAX reservecl S l space) and
whose remaining bits ;Ire a two-level index (i.e., 12
bits of facility cotle and 16 bits o f ofhet) into the
jacket description table for the target \'A>; proce-
dure. This two-level scheme wits chosen to allow
jacket descriptions for different sharetl library facil-
ities to be preparecl ant1 compiled inclepentlently.
Tlie facility cock is :i niimber norm;illy ;ilready asso-
ciated wit11 t1i:tt facility by software convention for
other purposes.

When ;I routine is calleel sing ;I dynamically
tleterminetl atltlress, such as ;in ;~clclrc.ss gi\.en in ;i

function \~;iri:~ble, a property of the VAS ;ind Alpha
AXP architectures is exploitetl to determine dynam-
ically whether the target routine is ;I VAX routine or

an Alpha AXP routine. According to the VAX archi-
tecture, the first 16 bits of a routine comprise a
mask that encodes the registers to be preserved as
part of the call. Bits 12 ;~nd 13 of this nxuk are
~lnused and recli~iretl to be 0; if one of these bits is
set n t the time of a call, then a hardware exception
results. According to the OpenVMS AX]' softwnre
;~rchitecture, an Alpha A X P procedure address is
;lctu;rlly the atldress of a procedure descriptor,
which is a data structure ancl not the actu;~l Alpha
A S P cotle. By design, bits 12 and 13 of this data
structure must be set to 1.

VAX execution of a VAX CALL instruction that
;Ittempts to transfer to ;In Alpha A X P 17rocetlure
results i l l an exception. A special AUD exception
Ii;~ndlt.r intercepts the exception, determines if the
illeg;~l entry mask is caused by ;I reference into an
Alpha AXP image, ant1 if so, calls into the All[> jacket-
ing routines to reform;tt the call frame. This mecha-
nism also works for handling asynchronous system
tl.:11x(ASTs) from the Open\JMS MIX operating
syste11-1 to Alpha A X P cocle.

For computed calls from Alpha AXP code, com-
piletl code calls an Alpha A X P run-time library rou-
tine te) perform the comparable bit 13 test (untler
simulation). If bit 13 of the target location is set to I,
then simulated execution continues ant1 ;In Alpha-
to-Alpha call is carried out. Otfierwise, control
tr;~nsfers to a speciiil V\X code entry point in A1113,

which terminates simulation and performs jacket-
ing back to the Vt\X target procedtrre.

Usirzg Sirn zrlntioll to Der~elop alzd Port Softz~wra

Basic Operation
To start executing a mixed application, the AUD

environment first performs several initializ;~tion
steps. 111 particular, AlJD scans all tlie images loaded
in process memory to identfy tlie Alpha AXl' image
(only one wirs allowed and supportecl).

Some ALJI) options are set through the use of
OpenVMS logical names, which are interrogated
during image initialization. These options include

Selecting Alpha t\XP stack size

Enabling tlelivery of ASTs to alp hi^ AXP routines

Disabling the normal Alpha ~ i x P stack consis-
tency checks

Disabling i~naligned memory reference messages

Enabling AIJD initialization tracing

Disabling integer overflow checking

Debugging combined VAX and Alpha AXP code
under the ACID e~ivironment is similar to debugging
normal VAX code untler the DEIKIG-32 OpenVMS
debugger. Basically, if the address involved in a
debug command is within an Alpha Ml' image,
then the debugger calls tlie Mannequin simulator to
perform the commantl for the Alpha AXl' cotle.
Otherwise, the DEBU(;-32 debugger itself performs
the command for the VAX code, as usual. Alph;~ ASP
machine state is kept in static global storage by
Mannecluin and thus is visible to the AUD debugger.

In the DERIK; symbol table (DST) representiltion.
variables that ;Ire allocatecl in the Alpha AXI-' regis-
ters are clescribed as being allocated in the corre-
sponding global state locations. This "trick"
allowed t\UD to handle the 64 Alpha registers
using the Vt\X DST representation, which can
encode only the 16 V A ~ registers.

Once simulation begins, Mannequin continues to
simulate Alph;~ &YP instructions untjl it either
detects an instruction that would transfer control
outside of the Alpha AXP image, completes a single-
step request, or detects an error condition. lJpon
returning to the AUD environment, 34annequin sup-
plies status information that indicates the reason
sinlulation entled.

For a transfer of control from Alpha to Vi\X

cotle, AUD must first cletermine whether the trans-
fer is a return from Alpha t\XP cotle ;IS a result of a
prior VAS call or a new call from A.lp11a AXP code to
VAX code. All0 is fully reentrant, so AUD cannot
make this determination from global state. If tlie
target address is a distingilished ;~ddress that AUD

supplies when it sets up a VAX-to-Alpha call (i.e., an
address in the reserved S1 part of the VAX address
space), the address is interpreted as a retilrn trans-
fer. Otherwise, t\LJl> initiates a new Alph;~-to-VAX
call.

For a return operation, the AllD code copies the
return \ ~ ~ l u e or values from the Alpha AXP registers
and passes them back to the VAX code. A VAX return
instruction is then executed to resume execution
of the calling \ h X cotle.

For a call operation. the VAS code fetches the
Alpha AXl' parameters and builds a VAX argument
list, whicli is then i~sed to call the target vi\S rou-
tine. When the VAX routine returns, the contents of
the result registers are copied to the corresponding
Alpha AXl' machine state loc;~tions, atid Mannequin
is restarted to resume executing Alpha ASP code.

Despite some limitations (e.g., only one Alph;~
image and no exception handling across the VAX to
Alpha AXI1 clomains), ALJD greatly aided the
OpenV,MS hXP porting effort. The simulator pro-
vided software g r o ~ 1 1 ~ with 3 pseuclo-Alpha AXI'
environment in which to debug their Alpha AX['

code, well before either Alpha t\SP harclw;ire or the
OpenvMs rU(P operating system was available.
Many OpenVMS AXI' groups successfi~lly used MID
to facilitate their porting. inclucling the Record
 management Services (ltblS), I>ECwindows, Forms
Managenlent System (FMS), various OpenVklS com-
mand utilities, text processing utility (TPI!), IXBUC;,
;~nd GEM compiler b;~cl<-end groups.

The AUDI Facility
The \'AX Environment Software Translator (VEST) is
an important part of the initial OpenVMS A X P offer-
ing.5 VES'I' translates an OpenVMS VAX executable or
shareable jniage into an Openv~MS ASI' image that
can then be executed with s ~ ~ p p o r t on ;in OpenVMS
AX11 system. As for other user-mode layer softn7are
components, it was desirable to test VEST and
images tr~nslated by VEST as e;irly as possible in a
simulation environment such as AlJl). However.
AUD coultl not be used directly to test tr;~nslated
images for two reasons:

VEST directly creates an Alpha AXP image. In
effect. VEST is a combinecl compiler 2nd linker.
Thus. the symbol mapping protocols ilsed by
AUD were extraneous, ant1 the linking protocols
had to be completely replaced.

Actual execution of a translated image on
an Oper~\~klS AXP system makes llse of the

Digital Technical Journal 1/01, 4 ~\b. 4 Special Issue I992

Alpha AXP Architecture and Systems

Trans1;cted In1;cge Environment (TIE).; The TIE
is a shareable library that contains support rou-
tines for translated images. In particular, TIE
provicles support for VAX complex instruction
procebsing, Vi\S-to-Alpha atldress tnapping, and
Open\lMS VAX exception handling. Creating a
VAX version of the TIE to use with AUl) required
intimate interfaces with the OpenVMs VAX oper-
ating system as well as comp;~tibility with AUD.

Thus, the need to debug translated images led to
the creation of the Alpha User-mode Debugging
Environme~lt for Translatetl Images (Ar1l)I). Just as
Callable Nl:innequit~ provided a key building block
for AIJI), ACID in turn provitled a key building block
for 1\111)1. Alpha 14>il' softmlare teams ant1 porting
centers used ALJIII to port both Digital alicl third-
party translatecl applications prior to the arrival
o f Alpha AXP hardware. The porting process was
;IS follows: a VAX application was translated to
Alpha AXP code by means of the VEST translator;
this code was then run on ;I \'AX system using the
ALJDI simulator.

The Atll>l process components shown in Figure 5
incli~cle the

Callable Mannecluin Alpha simulator

AUD debugger

VAX version of the TIE

Translated ViiX cotle (Alpha AXP code)

AUDI E~zuironment
Emulated VAX state in ALJDI is mai~ltainecl in a global
context block. Emulated VAX registers RO through
R14 are used ex;ictly as their Vt\X counterparts
The corresponclence between a translated and

ORIGINAL VAX CODE

TRANSLATED VAX CODE
(ALPHA AXP CODE)

TRANSLATED IMAGE I

equivalent VAX program counter (PC) is not tlirectly
available during execution, since translatetl code
occupies different address space than the original
VAX code. Thus, register R15 is used instead as an
in-image index register.

The user-mode \'AX stack is split into a VAx stack
ant1 :In A!pha and emularetl VAX stack. The VAX

stack services both the A1Il)l environn~ent 2nd any
VAX system services or run-time library routines
that the translated image may c;~ll. The Alpha ;cncl
ernulatetl VAX stack services Alpha A S P and trans-
lated code.

Tr;cnslated imxges contain calls to the TIE as nec-
essary to simul;rte VAX complex instructions and
procedure calls. Complex instruction routines are
usetl to simulate VAX instructions that would othel--
wise expand into excessive Alpha AXP code.
However, since tILln1 is running on \4\X hardw;lre,
complex instructions can be executed native on the
VAY, 1'1:rrclware.

To initialize the AUDI environment, the translntetl
image calls a n initialization routine in the TIE by
means of an initialization program section (I'SECT).
This routine determines the address range of the
Alpha A S P code and the location of the WX-to-
Alpha atlclress mapping structure, saves tlie current
Alpha A X P register state, and calls Manneclui~i to
begin executing translated code at the appropriate
entry point Tr;~nslated code uses tlie ;~dclress map-
ping structure to find computed branch destina-
tions on the fly. Callable WIannequi~i then executes
translated code until it encounters some instruc-
tion that woultl transfer control out of translated
cotle. The cause of this transfer woi~ld be either a
T[E-b;csetl procedure or complex instruction call! or
calls to native VAX routines.

1 CALLABLE MANNEQUIN I
-1

AUDl ENVIRONMENT I

OTHER IMAGES

Figure -5 AUDI Pt40cess Conzpone~zts

AUD DEBUGGER

I

I90 Vol. 4 Xo. 4 S/)ec'ilrl Isstre I992 Digital Technical Jorrrnrrl

I

Usin? Simulation to Der~elop crrzd IJort Sofku~ure

Like AUD, AIII)l allows interoperation between
translated VAX cotle (Alpha A X P cotle) and VAX
code. Translated cotle can use existing VAX system
services and run-time libr;~ries. AUDI does not use
the jacketing language described in the section The
ALJI) Facility. Instead, ALJnl automatically jackets
procedure calls between the translated VAX code
and the native VAX code. Autojacketing includes
builtling proper parameter lists and call frames for
the destination calling standnrtl.

The fact th;tt Alil>l does not use a jacketing lan-
guage leads to some proceclure call 1,imitations.
However, note that these limitations d o not appear
when running translated cocle on actual Alpha
AXI' hardware. For incoming calls (VAX code to
translatetl VAS code), all AST delivery and condition
handlers execute as VAX code rather tli;tn as trans-
lated VtiS code. Thus, translilted programs may

not function properly. For outgoing calls (trans-
lated VAX code to VAX code), routines in which
a callee modifies its caller's stack f a m e argument
list o r return address may produce 11npredict;tble
results. since the a11toj;icketing may be altered o r
clisconnected.

AUDI Example
Figure 6 shows the execution o f a translated image
under AULII. Note that both the BASIC image
(HELLO-WORLD) and the BASIC run-time lil~rary
(BASRTL) are translatetl. Run-time libraries that are
used by the AUDI environment cannot be translated
under ALJIII. Translating run-time libraries that AIll>l
itself uses causes a "circularity in activation" ;untl
incorrect o r no execution.

In the HELLO-WORLD esample, there are 28 c;~lls
to VAX routines, most likely those to LIBRTL and

$ RUN HELLO-WORLD-TV
H e l l o W o r l d f r o m V A X BASIC

AUDI V 3 . 0 R u n t i m e S t a t i s t i c s :

8 0 8 5 A l p h a AXP i n s t r u c t i o n s w e r e e x e c u t e d .

T I E L o o k u p s : CALLx J SB JMP
. .
S t a y e d i n ALpha AXP r o u t i n e s : 4 5 0

Went t o V A X r o u t i n e s : 2 8 0 0
..

T o t a l : 3 2 5 0

28 V A X r e t u r n s u s e d (2 8 RET, 0 RSB) t o r e s u m e A l p h a AXP c o d e .
T h e r e w e r e n o F a u l t - O n - E x e c u t e c o n d i t i o n s c o n v e r t e d t o L o o k u p s .
21 CALLx C o n t e x t B l o c k s w e r e a l l o c a t e d - w h i c h w e r e r e u s e d 7 times^

T h e r e w e r e 1 9 T I E - b a s e d ' c o m p l e x i n s t r u c t i o n s ' e x e c u t e d .
I n s t r u c t i o n INSQUE (OE) : 2
I n s t r u c t i o n MOVC3 (2 8) : 8
I n s t r u c t i o n MOVC5 (2 C) : 8
I n s t r u c t i o n MOVTUC (2 F) : 1

T h e r e was 1 V A X r o u t i n e c a l l t o A l p h a AXP c o d e .

T h e r e w e r e 2 i m a g e s c o n t a i n i n g A l p h a AXP c o d e :
HELLO-WORLD-TV XO.0 f r o m B L 3 . 3 VEST o f Mar 3 0 1 9 9 2 0 9 : 2 7 : 0 2
BASRTL-TV XO.0 f r o m B L 3 . 3 VEST o f Mar 3 0 1 9 9 2 0 9 : 1 4 : 1 0

E x e c u t i o n d e p e n d e d o n t h e s e i m a g e s :
LIBRTL-TV DECWSXLIBSHR L l B R T L 2
MTHRTL-TV DECWSTRANSPORT-COMMON L I B R T L
TIESSHARE VAXCRTL DBGSSISHR
MQNSSHARE MTHRTL
DECWSDWTLIBSHR CONVSHR
LBRSHR SORTSHR

Figure 6 AUDI Evamnple- Twnslated Hello World l~?zcrge

Digilul Technical Jourtcal Vol. 4 No. 4 Specir~l rss~te 2992' 1 0 1

Alpha AXP Architecture and Systems

OpenVMS system services. Therc are 21 unique
<:ALLx contexts and 7 reused ones. In acldition, the
example uses four different complex instructions.

The softw;lre simulators Mannequin, ISP, ill). ;~ncl
AIJDI grei~tly aided Alpha AX[-' software porting
and development efforts. Subst;inti;~l parts of both
system ant1 application software were sirnul;ited
and verified concurrently with hardware develop-
ment. When Alpha A S P liartlware becalne ;l\l;~ilable,
most software coultl bc plugged in simply ant1 Kin
exactly ;is expected. The use of these simulation
tools saved a year o r more from the over;~ll Alpha
A S P schetlule.

Acknowledgments
M1:1ny people throughout Digital contributetl to the
success of the Alpha A S P simulators. Ho1n:iyoon
Akhiani, Ray Lanza, Stephan Meier, Steve Morris,
Antlrew Payne, ant1 Jon lieeves worked o n Llie ISP
model. George Dare): Mark Hertleg. Kevin Koch.
Eric Rasmussen, and Scott Robinson contributrrl to
the ~Manneqi~in sininlator. The Alll) cffort includetl
several groups from across Digital. Their primary
contributors were LW~lter Arbo, Ronald Brcnder,
Henry Grieb, Nark Herdeg, Michael lles; Ja~iies
Johnson, Robert Landau, Mar~rice Marks. Dennis

Murphy, Scott Robinson, Larry Woodman, and
James Wooldridge. Finally, much of the ACID1
information jn this article is taken from work origi-
nally clone by Scott Robinson. Othcr AlJDI contrit)l~-
tors inclucle George L)arcy, Mark Hcrdeg, Matthew
Kirk, N;~ghmrh Mirghi~fori, ant1 Mut-ari Srinivas;ln.

1. R. Sites, etl., Alj,l)a Archilect~lre Rejkrc~zce
~Mclnu~I (I3urlington. hm: Digital I'ress, 1992).

L. C. Thacker, D. Conro): and I.. Stewart. "?'he
Alpha Den1onstr;ation IJnit: A High-performance
Multiprocessor for Software ;inti Chip l>evel-
opment," Ilic~itc~l T~d?i~iccll.lori~m~I, vol. 4. no. 4
(1992, this issue): 51-65.

3. Open K1f.S DeIt~~/,Yneltu Utility ~tfunlral
(,Majrn;irtl: Digit:il Equipment Corpor;~tion,
Order No. Ah-PQYPA-I'K, 1992).

4 S. Mislir;~, "The VtlS 8800 ~Microarcliitect~~re:'
Di'itcrl TccbniccllJour~c~, vol. 1. no. 4 (February
1987). 20-35

5. R. Sites, A. Chernoff, M. Kirk, M. Marks, and
S. Robinson. "I%in;~ry Tr;~nslation," Dig i t~~ l
Tec/~rzicr~l./o~i1'11~11, vol. 4, no. 4 (1992, this issue):
137-152.

192 Vol. 4 hb, 4 Speciallssue 1992 Digital Techr~ical Jorrrncrl

Peter E Conklin I

Enrollment Managemenl;
Managing the
Alpha AXP Program

Digital's ~nultjjecrr Alpha AXP program has involved more than ~ Z L J O thousand
engi~zeers across lizalzjl disciplitzes. I1znot1atiz~e mnnagenzent stjdes arlcl techniques
were required to delizler this high-quality program on an aggressiue scheclule.
The Alpha A X P Program Oflice used a four-point methodology for nzanagemelzt:
(I) establislj a17 appropriately large shared vision, (2) delegate co~rzl~letely and
elicit specific co~nrrzitments; (3) inspect rigorozis(~; proz~icling supportive feed-
Back; (4) ack~zou~lerige erJer- rldzmnce, learning ns the progmlrz progresses,
We cor-zsciocrsly used each project ezient to propelp/.ogress crtzd gall? ~nonzentt~nz.
Digital deliuered the Alpha A X P progmnz on sched~ile with industq~-Leadership
c~pa6ilities.

Introduction
The program to develop the Alpha AXP systems
has been the largest in Digital's history and one
of the largest in the compilter intlustr): During
the course of the program, the Alpha iLVP Pro-
gram Office developetl ;I moclel that provided the
tools necessary to manage the program. At times,
this paper may seem to imply that the program
team cleveloped the tools and then used them in
a pure form. In practice, the team developed these
approaches basetl on many years of experience antl
on the management tl~eories of experts; we also
learned and applied these lessons as we managed
the program.

Although the positive effects of timely delivery
and high quality are particularly noticeable results
of sucli a large program, Digital has also used the
tools to goocl effect on smaller projects. Moreover,
teams within the Alpha AXP program usetl the tools
recursively, project by project. The author's experi-
cnce is that this management model is applicable to
projects of ne;~rly any size.

The discussion t h ~ t h)llows briefly ilcfines the
scope of the program and explains why traditional
methods were inappropriate for managing the
development of such a complex product set in a
short time period. The Enrollment Management
Model and the concept of cusps-a key element of
the moilel-are then clefinetl and clarifiecl through

tliscussion of the model's evolution tluring the
Alpha AXP Program.

Size of the Alpha AXP Program
Digital's Alpha A X P program encompassed the
design of a world-leadership microprocessor chip,
a new 64-bit system architecture, multiple h;~rtl-
ware systems (from personal computers to main-
frames), multiple operating systems, and huntlreds
of softw;lre products layered on these systems. The
development of the first-generation products
extencled over several years ant1 involved more than
two thousantl hardware, softw;~re, and systems
engineers at its peak. Digital managed the overall
development program from ;i Program Office
staffed by eight professionals.

Across Digital worldwide, the Alpha AXP pro-
gram development spanned more than 22 software
engineering groups and 10 hardware engineering
groups. The hardware effort included the semicon-
tluctor design group ant1 groups for each of the
bardw;rre systems platforms. The software efforts
encompassed four opt-rating systems groups, and
groups clesigning migration tools, network sys-
tems, compilers, databases, integration frame-
works, and applications. Some groups peaked at
more than 150 development engineers plus sup-
porting staff. Many also co~ltracteil with suppliers
both within and outsitle Digital.

Digital Technical Journal Vol. 4 No. 4 Speciol Issue 1992 193

Alpha AXF Program Manage~nent

Inappropriate Organizational Approclcbes PERSONAL
PUBLIC

Implementing such a broitd, complex program pre-
sented not only technological challenges but a man-
agement challenge as well. The Program Office
therefore consiclered ant1 rejected a nirmber of tra-
ditional organizational approaches.

In the classic organizational model, a hierarchi-
cal, or line, organiz:~tion is brnlecl, containing all
the primary implenienters. The problem with this
aplxoacch to large programs is that it takes too long
to form the organization. Staffing the tealus and
establishing operational procedures take longer
tti;rn the market wintlow and avail;~ble technology
allow. Tlie result is grant1 visions ancl projects deliv-
ered ye:rrs behind schetlule. Further. "temporary"
organizations must be folcled back into the niain-
stream at the encl of the progratn. Tlie management
goal of the tUpha AX11 program was to keep esper-
tise concentratetl to achieve synergy across many
projects within a particular tliscipli~ie.~

An alternative approach is to form small
entrepreneurial teams ant1 challenge them to work
long hours to achieve the goals. This works well in
s~iiall projects suititble for "skunk works." The origi-
nal design work was concluctecl in this fashion.
However, when this approach is applied to large
programs, the result is that team members burn out
without ;tchieving the aggressive schetlules
demancled. Management then becomes frustratetl
and tries again with different teams, but the results
are no better.

The Program Office est:tblishetl tlie Alpha AX]-'
program as an integration of project teams that
woi~ld remain within the existing line organiza-
tions. Thus, for exitmple. each hardware ant1 soft-
ware project resitled within its functional group
(semicolitluctors, servers. Openv~MS, IJNIX, compil-
ers, database, CPLl development, networks, etc.).
The Program Office integr;rted the work of the intli-
vitlual project te;tms, which provided the atltli-
tional atlv;intage of program resilience in tlie face of
functional group reorganiz;rtions.

The Enrollment Managemerct Model
Tlle Enroll~~ient Management Model (Figure 1) for
the Alpha AXP program conlprises four stages.

Commitment-Delegation

Inspection-Suppost

BUSINESS GOALS
PROJECT OBJECTIVES

ENROLLMENT

COMMITMENT
DELEGATION

TRUST
ACCOUNTABILITY
(TASK-OWNER-DATE)

Figure I Bzr-olkrnent Ic.I~~~zage~~ze~?t~LIode/

The model in this form was developed by
the ~uthor . Some elements are derived from man-
agement seminars ;tnd fro111 consultants' rccom-
mendations. 'The particular forms used for vision.
coriimitment, and acknowledgment emergetl dur-
ing tlie AJpha t\Xll program. The insgection-
support stage was developed by the author tluring
many years of project management and reviews.

Two concepts are key to implementing this
model for large programs. First, the Program Office,
which has ;rlreacly bcen ~i~e~it ionet l , provides the
necessary cohesion, program vision, and inspec-
tion structures, while allowing the skills and
resources to remain within their ~lat i~ral organiza-
tions. Moreover, the office lends consistency across
the progr;Im and encourages each contributing
group to holcl to its commitments. The small Alpha
AXP Program Office, made up of a diverse group of
product and operations rn:inngers. Ii;tcl no formal
authority (not even budget autliority); so it exerted
influence only through rigorous enrollment and
delegation outlined by the ni;lnagerilent model.

The second key concept is the project "cusp,"
which is a critical event that propels chaligc. < : I I S ~ S

at-e further definetl in the sections Inspection-
Supl>ort ant1 Using Project Cusps l>elow.

Vision -Enrollment
The Program Office uses vision to enroll the related
groups in tlie goals of the program. For example,
the vision can be tlie top-level business goals and
customer needs. For subordinate projects, the
vision can be the objectives of the larger project. In
all cases, the enrollment happens only when the
goals are set in the contest- of the ;~i~dience (the
project team). In particular, the Program Office is
most effective when it expresses tlie program3

194 Vd. 4 Nr,. 4 S/~~fal f m e 1392 Digirnl Tecb8ricnl Jorrrnnl

~zt il/Jnn61gelne1it, ~ M L I I I L I ~ ~ I I ~ the Alpha U P Progtzlnz

vision in the terms and language of the group being
enrolled. The vision has to be Large enough to
encompass all the recluirerl commitments and the
ultini;~te results.

Commitment-Delegation
As the manager of a project develops plans, he or
she delegates the tasks to sub-groups ancl solicits
specific commitments to content ant1 schetlule.3
Since these commitments are made within the con-
text of the larger vision, the subortlinate commit-
ments become qiiite strong for sub-project
members. A key element of the delegation process
is the explicit specification of the results such that
they ;ire measurable ant1 identified with an intlivid-
ual owner. The owner is a single indivitlual empow-
ered by the committing group and held
accountable for the deliverable:' An important
point here is that the term "owner" does not neces-
sarily refer to the person who actually cloes the
work. The owner is responsible ancl therefore
accountable for getting the work done on time. In
our particular program, the Program Office hat1 to
clarify ant1 reinforce this distinction carefully as
part of thc enrollment stage.

Inspection-Support
The project manager trusts in the comnlitments
made and continually inspects the project to ensure
delivery on schedule. This inspection strictly takes
the form of supportive feedb;ick, thereby encourag-
ing people to disclose risks before they become
problems. Whenever the projected results are ;it
risk of falling short of the commitment, the project
manager declares a project "cusp."

The term "cusp" is adapted here from Gleick to
clescribe the potential turning points, or critical
events, in a project.5 (Other terms in conventional
parlance include "gotchas:' setbacks, crises, turning
points, project breakdowns, and "calls to action."
The ni;inagers i~sed these terms during the propam.
For our purposes, we adopt the term cusp as an
emotionally neutral term. It is importz~nt that at any
point it1 the project the term used be one that gives
an opening for the possibility of making a difference
and for moving the project forward.) At the point of
a C L I S ~ , everyone is ready to embrace change
because it furthers the overall program objectives.

The management team col1abor;itecl to take
advantage of cusps to propel project momentum
toward the established goal. Examples of cusps in
the Alpha t\XP program are presented throughout
this paper to demonstrate their integral value in the

application of the Enrollment Management Model
anel the role they played in the creation of the
model itself.

Acknowledgment-Learning
At each step of the project, the Program Office
acknowledges progress both personally and pub-
licly. For each event, the management team repeat-
edly asks what was learnetl and how managers ant1
the team can do even better nest time. Teams are
frequently coached to improve their methods for
better results.

Using the Model
111 principle, the Program Office used the Enroll-
ment Management Model in each conlponent proj-
ect. Of course in practice, not all groups used this
methodology. Early in the program, only a few
groups signet! up. As the Alpha AXP Program Office
began organizing the overall program, we started
formalizing the methoclology. As noted above, we
learned extensively as events progressed. We found
few useful manuals applicable to running such a
large program effectivel}~. Insteael, the Program
Office developetl many of the tools "on the job,"
learning as the project ~~nfoltlecl.~~ This paper exag-
gerates a pure model rather than presenting its
incremental development. To balance the picture,
we show some of the pitfalls and side paths.

Most project managers followed the Enrollment
Managemellt Motlel either by instinct (experience)
or by example. In several instances, they formally
reached outside for training in running projects
of this complexity. Depending on the size of the
project or sub-project, m;lnagers used the model
with varying tlegrecs of rigor. For example, the
larger projects anel the program overall used formal
inspection meetings and reviews. Subordinnte
projects were free to use formal or informal inspec-
tion processes. The program team inspected
each group's inspection processes to ensure that
there would not be any utlfortunate management
surprises.

Using Project Cusps
As described earliel; cusps are critical project
events, or crises. Conve~itional project manage-
ment concentrates on rigorous planning to avoid
such crises. The Program Office took the opposite
approach: We strove to iintlerstand the critical
events and nlilestones and used these cusps to
increase project momentum, as Figure 2 illustrates.
As the project approached each cusp, the Program

Digital Tecbnicnl Journal Vo1. 4 rV0.4 Spclul issue 1992 195

Alpha AXP Program Management

CUSP

Figure 2 Cusps as n Way to Change Directions

Office dealt with the event promptly to ensure that
the project continued to move toward the overarch-
ing goal. In other words, the managers did not
develop a plan just to follow the plan. Instead, they
cleveloped a plan to understand the overall project
flow and used the milestones and other events as
opportunities to adjust the project velocity to keep
moving toward the goal.' In many cases, we gener-
ated a cusp to propel the necessary change (for
example, by creating a schedule crisis). In other
cases, we took advantage of a cusp to make a neces-
sary change.

As the management team became comfortable
with using project cusps constructively, the
Program Office actively solicited more of them.
These increased the velocity and resulting momen-
tum of the program, thereby achieving a "slingshot"
effect. The Program Office used each cusp to
acknowletlge progress. As the team acknowledged
more and more progress, the program's niomentutn
moved from very low to break-even, and finally into
high gear.

Vision-Enrollment Stage:
Magnitude of the Program's Vision
The vision for a program or project becomes the
ultimate goal or deliverable. Thus, the Alpha AXP

Program Manager's first task was to establish a
vision shared by all groups that would contribute to
the program. This vision had to be large enough to
encompass all the work.

Alpha AXP Systems as
Fzyth-generation Computing
The Alpha AXP family is at the confluence of five
major trends in computing.

1. Nineteen ninety-two is the first year in which
it is feasible to achieve 64-bit computing on a
single microprocessor.

2. Nineteen ninety-two is the first year in which
microprocessors have achieved over 100 MIPS
(million instructions per second) of computing.

3. It is now cost-effective to place more than 4 giga-
bytes of main menlory on a system; hence 32-bit
addressing is insufficient.

4. Networking technology now allows the con-
struction of networks with over 100-megabit
throughput.

5. Cost-effective storage systems now exceed
the many-gigabyte range and are approaching
terabytes.

These computing systems will inclucle large
amounts of parallelism as compared with classical
designs. The levels of performance and connec-
tivity finally allow computing to realize greater
human productivity: mobile, highly inteructiue
computing that supports group work with algo-
rithms that intelligently analyze, simulate, and
synthesize in szlpport of u zuide variety of human
endeavors. The application of this technology clual-
ifies as the fifth generation of computing."9

The program vision for Alpha AXP systems, as
shown in Figure 3, is to be the first family of systems
to implement the technology and applications for
the fifth generation of computing. This family is
fiilly compatible across all members now and will
be into future generations, ensuring that applica-
tion binary programs will run unchanged. With no
compromise to hlture performance, the initial fam-
ily members also maintain a high degree of com-
patibility with current systems to allow easy
migration for customers as they begin to require
this technology. Delivering a family of high-quality
systems in a timely fashion reestablishes Digital's
reputation for technology and systems leadership.

SAME ARCHITECTURE.
COMPATIBLE SYSTEMS

5L!

I
1992

TIME

64-BIT MEMORY
TERABYTES STORAGE

Figure 3 Alpha AXP Vision

196 Vol. 4 No. 4 Special Issue I992 Digital Technical Jozrrnal

Enroll~rzent Managenzerzt, Managing the Alpha AXP Progra~rz

Getting Started
The Alpha A X P program grew out of research
on computing, specifically the teclinology and
benefits of different RlSC (reclucetl instruction set
computing) architectures, ancl from advanced
developmetit in compiler designs, VLSI (very large-
scale integration) design, and senliconductor fab-
rication. In 1988, Digital's Executive Committee
challenged Engineering to tlevelop a system that
would meet the customers' needs for competitive
performance in all of Digital's computing envi-
ronments. Engineering formed ;I cross-disciplinary
task force that developed the requisite systems
architecture :lnd designs a~itl procluced the above
vision and hence the Alpha AXP program. Digital's
Executive Committee approved the Alpha AXP pro-
gram in October 1989.1°

First Cusp: Executive Challenge
to Accelerate Schedule
By the end of 1989, Digital had completed the
advanced developments and signed off on the archi-
tecture and primary design documents. In a major
review during January 1990, upper management
challenged the program to improve the schedules
to capture the market window for this new tech-
nology. The project managers understood the
rationale for this demand but could see no way to
meet the aggressive schedule. The result was a loss
of rapport between management ant1 the technical
staff, with coninieots such as "Don't talk to me
about crazy schedules" and "This is just going to be
a lot of hard work.''

The Progr;lm Office viewed this cusp as an
opportunity rather than the crisis tlut it appeared
to be. The office enrollecl key project managers in
the overall vision, i.e., in the business value of a
timely execution. For some projects, it was suffi-
cient to focus 011 the classic "time-to-market."
However, for many, the ship date proved an insuffi-
cient motivator. Therefore the Program Office
frariied the vision clifferently, as follows. A program
becomes profitable when it reacl~es break-even
(i t . , cumul;~tivc revenues meet ant1 then exceed
cumulative expenses).

The time taken to achieve this point is known as
the 'ctime-to-profit."'l The Program Office estitliatecl
tliat the program's schetlule would affect Digital's
revenue at the rate of $1 million per hour. That is,
for each hour tliat the project could improve
(lower) the time-to-profit, Digital would achieve an
additional $1 million of revenue. 'The Program

Office pointed out to the project managers that tliis
revenue could translate to approximately $0.01 on
the stock price for eacli hour of schedule improve-
ment. With this concrete business metric in mind,
the key project managers were willing to consider
new ways to tackle the program's challenge.

Once tlie Alpha AXP program was approved, the
I'rogram Office began holding Alpha AXP quarterly
review meetings. At these forums, groups reported
plans and progress to a wide, cross-disciplinary
audience. Initially, the audience was composed of
engineering, manufacturing, and service groups. As
the program gained momentum, other disciplines
such as marketing and sales joined and began to
report on their own progress. These forums helped
generate belief and solidify enrollment. They also
helped tlie Program Office identify problem areas
before they became crises.

First Cusp Result
We established a program-wide understanding of
tlie importance of volume deliveries in 1992.

Commitment-Delegation Stage:
Delegating and Eliciting Commitment
With the key project managers sharing a common
vision, the next step was to establish a work plan
and to ensure that eacli group committed to deliver
on its parts.

It had been 15 years since Digital attempted to
change siniultaneously its architecture, hardware,
operating systems, compilers, and other layered
products. Since the introduction of the VA;Y systems
in tlie fall of 1077, each component had progressed
relatively intleyendent of the development sched-
ules of tlie others. Fewer than half a dozen project
team members had participated in the VA)(design.
For most participants, the system had always been
in existence, and hence the developer of each sub-
system could invoke and depend on tlie existence
of all tlie othcr s~~bsystems.

The need for tlie sirnult;~neous development o f
multiple hardware and software systems cornpli-
catecl the coordination task. The Program Office
addressed this complex coortlination in two climen-
sions: technical and project management. In the
teclmical dimension, the office formed a team of
technical leaders from the core engineering groups,
known as the EJST, shown in Figure 4. (EJST is an
acronym for EVA)(Joint Systems Team. E V X i was an
early name for the Alpha AXP program. An earlier
forum, the EVAX Technical Team, merged into tlie

Digital Tecbaicrrl Jortrt~nl Vol. 4 No. 4 Special Isstre 1992 197

Alpha AXP Program [Management

I ENGINEERING

I I
I I

E,ISI' process over time.) This group met weelily to
set tlirections for important cross-group technical

- -
I 1L

I PROJECT I
I MANAGERS I
I - - - - - - A 11

clesign ant1 strategy issues. Since the group's ch;lrter
nias to resolve problems and ensurc that solutions
"sti~ck," the EJST became a group to which others
brought technical problems for resolution.

In the project management dimension, the pro-
gram manager formed a team of project managers.
~Menibers of this team were e~npoweretl by their
contril>uting engineering tlevelopment groups to
11i;llte commitments and to be account;tble for
cleliverables. This team mlas known as the ASl'M

(Alph;~ t\XP System Project M;~n;tgers). Given tlie
magnitude of the overall task ant1 the complexity of
full!. untlel-standing the interdepentlencies, tlie
project m;rn;lgers tended to view tlie l>roject :IS

i~n~x~ssibl!~ complex. At the progr;lni level, the clial-
lenge then became to establish the Alpha A X P mas-
ter 1>1;11i. A master plan, however. evolvetl mi~ch
more slowly than expectetl.

-

Second Cusp: Cannot Choose
the Order of the Work

-

I\l;~n;~genient's inability to provide an overall
plan induced a crisis of disbelief. Tlie project
ni;lnagers threatened to revolt (or move to other
projects). The technical leatlers were generating
ever-larger design documents. The engineering
development group managers tleclaretl that tlie
I'rogram Office had a crisis on its Iiantls: \Ye h:lcl to

ALPHA PROGRAM
OFFICE

establisl~ a program-wide m~orl< plan that showecl
the order in which e;tch sub-project must deliver its
contribution.

How does one coordin;~te without a plan:' Tlie
Alpha r\X1-' progr;lni rn;ln;lger kept asking the indi-
vidual groups for their pl;lns. What do you depend
on? How long will it t:tke? What resources do you
neecl? Wilnat are your milestones or nietrics of
progress? Tlie repeated answer was "I don't know
because I don't know what everyone else is doing
and m~lien they will I>e clone with their piece." At
this time, we hat1 already established the cross-
functional hSl'k1 team of experiencetl project man-
agers representing most o f tlie development
groups. This team was unable to develop the com-
ponent plans bec;~i~se they 1;lcked a master plan.

Choosi~zg the Strategy
The engineering tlevelop~nent group lnanagers
met in a full-clay meeting to establish the over-
all paranietersof the Alpha A X P program's plan.
First, they est;tblished the business goals and exam-
ined the various technical constraints. The group
tested the inclusion of each component with
the question "Is this coml>onent critical to the over-
all business success o f the Alpha A)(P program?"
This process established solid reasons for the
contents of tlie mastcr pl;~n and kept the respon-
sibility for the inclusion or exclusion of a compo-
nent with the responsible clevelopment group. The

1'01. 4 \.o. .\/)cciol lss~re 1992 Digital Techrricnl Jorrrrrnl

irilt ~Mc~nnge~neizt, ~\,l~iizaging the Alpha RYP Progr~~iiz

group then tleterminetl the org;~nizational impli-
cations of such a work plan. Members of the group
balanced the climensions of bus~ness, technolog):
and organization to establish the priorities and
work order. We institutionalized this group into the
Alpha AXP System Board of Directors (ASBOD).

Representing the Plan
\With the major program priorities and constraints
established, the Alpha U P program manager then
set off to establish the master plan. For all groups to
see their contributions, he held the master plan to a
single page. He established the content during an
intense periotl in which lie asked contributors to
describe their assumptions :ind tasks and to show
where on the overall plan their pieces would fall.
The single-page format forcetl the management
team to keep the plan to a high-level view ant1
allowecl contributors to see their pieces without
aclding the complexity of their own group's tletajls.
Furthcr, in review meetings it w:rs easy for everyone
in the room to view the same picture so that the
results coultl be seen, debated, ;ind agreed upon.

Once the n1;lnagement team h;~tl outlinetl the
plan, it was recommentled by tlie project managers
(ASPM) and ;~pproved by the engineering clevelop-
ment group n1;inagers (ASROI)). Tlii~s team mern-
bers knew their goals woultl not change without
clearly statetl reasons. Further, others could start
building their pl;ins based on ;I consistent set o f
;issuniptions. The resulting single page also becanie
a reference, which we called the "straw Iiorse," to
establish ancl reinforce constancy of purpose.
Figure 5 is an example of the Straw Horse Plan. (We
later i~pgraded the name to be the "tin horse" to
connote the increasing degree of solidity of the
underlying plans ancl commitments.)

Second Cusp Result
We agreed on the overall single-page plan upon
which teams coi~ld build their own plans.

Enroll~nent and Delegation:
Value of Each Contribution
With the master plan outlined (the straw horse
reviewed ancl approved), the next step was to
obtain the commitment of each contributing
group. To :iclclress continuing skepticism about tlie
necessity of e;~cIi component and its schedule, the
program manager walked each group through the
overall program and the economic value of its
urgency. The group was then askecl to contribute to

the overall system's value. A key prerequisite to this
conversation was to establish a fi~ll-time project
manager for each component group. who became
the coordination point and who was held account-
able for each tleliver~ble.

Decide What to Do before How to Do It
The Program Office found that each group went
through a disbelief process similar to the one seen
earlier for tlie program. The program manager
urged each group to first focus on the "what" of
their de.liverable, before trying to decide the "how."
The program manager ensured that tlie group
groundecl its overall estimates in reaJity For exam-
ple, a software group might count the number o f
modules to port and estimate tlie person-days per
module. This kind of high-level, clil;intifiable esti-
mate allowetl the project manager to make an over-
all estimate without needing to understand the
order of the specific tasks.

Third Cusp: Need for Project
Mnnngenzent Expertise
Members of several of the larger projects deter-
mined that they tlid not have sufficient project man-
agement experience. Previously, this realization
woultl have resulted in replanning to move out
the target schedule, perhaps repeatedly. Instead,
given the group's commitment to the larger result,
we founcl ;I much more aggressive behavior. For
example, the OpenVMS AXI' group publicly com-
mitted to their target schetlule and stated, "We
tlon't know how to achieve this, but we commit to
finding a way." The next day they went to a project
management consultant for training on how to
build an aggressive, attainable schedule. This con-
sultant conducted the seminar nuny times through-
out the project for various groups.I2

Third Cusp Result
Groups introtluced education ant1 rigor into project
management.

Inspection-Support Stage:
Inspection with Supportive Feedbncb
One of our vice presidents in the e;lrly 1980s hat1 ;In
aphorism: M)u get what you inspect, not what you
expect. I11 other words, a conillion failing is that
managers obtain someone's promise and expect
that the results will be what they expectecl.
Unfortunately, tlespite everyone's best intentions,
circumstances and unexpected requests can easily

Digital Tecb~ricnl Journnl Vi)i J At). 4 . S /?CC~LI / ISSIIL' 1 0 0 100

Alpha AXP Program Management

Stmw Horse Plan
AUg 1990

stasxe 1: Zgchnical DeveZopWst system
PO- & c perEamsmce systmt Siwle hm%am platfon
W l i s h oaly

Forbwn. C, BUes, Assembler, Debng, License %ant Facilb,
CasE tools {TPUt COde aagnt WS't%rB. %St=,
PesPa- Cbde Aoal?@er, laagmge Sensitive -tar,
Digital Test Mgr) , kqpmnd b m m m L Archit%cture,
m e t M e Iv task-to-task. DEWincWws client iTiq tAT
S o m e

Stage 2 : -ial De~e1qarent System
setcod hardwan? platfonnt
f n I : ~ f ~ t i c K l a ; i wrsians follow 3 m3nths later

-, P-, C++r m, CRDIRetjository, m,
threads-rtl, RFC, m, ImC' s . Perma System, DBCforms,
File cad#, vhxset, Diatr semm (am=, tbz r file, queuing),
mate System kr@ager, -u - IN-1 base, CWt mite,

fV end rmde and ~ i x ? m s ,
m/IP. PATmmw, t81Ptnaster, ABSS Bxrmsims

S b g e 3 : Tscbniebl %ka%t Sptatcem
open & H C ~ ; -ic Multi-&-ins

WSP, &/I, user-qrf ttsn &rivers, K1SW, disk shadming.
neais, ABk4S, DAS or e(iuivalent, fu l l NAS, aaQlet V end node,
x.25 access, ALLIM-I fully supported

Stage c : Camercid *stem
A&h C l r t s t e f s r Btematiwal mmsiorus r e l e d
5imuJtanesusLy

New &ttch?Print, $11 Bystem Integrated Prcducts,
DECnef V rwtfng node, SWb access

stage 5: 'lmnwetim Wtem

Trmsuction Mbnitctr, thr@d%

Fig~ire 5 Tbe Sirigle#uge Pl~lrz: All Extr~~ct fr-onz the Straz~f Horse Ylun

divert the promiser away from fulfilling the
promise. Thus, managers learn to inspect regul;~rly
the progress of groups on whose commitments
they depencl.

The rnoclel, therefore, incorporates this tr:~di-
tional, essential project management practice. Its
inclusion was prompted by another project crisis,
described below.

Fourth Cusp: Project Slips Motiuate
Fornzal Opet-ational Inspection
The Program Office knew that it was working with
highly motivated teams. On the basis of the earlier
planning work, we assumed that they were ;ill
tightly focr~sed on the objectives of the Alpha AXl'

program ant1 shared our sense o f scheclule urgency.
Suddenly, we were shocl<ecl by a memo stating
that a critical project's scheclule hat1 slipped sev-
eral months. Since virtually every other project
depended upon it, this schedule slip could easily
have led to a program disaster. Instead, we used the
event to institute a regular operational inspection.
Often, instituting such regular reviews is difficult
and generally resisted by the reviewees. In this
case, every group coulcl see the danger of continu-
ing without regul:i~- inspections and reatlillr agreed
to this new process.

The Program Office ;~clol,tecl the term "inspec-
tion," rather than "reviemi," brc:~use m7e]rave found
this term to be neutral or positive. In the past,

200 W l 4 No. 4 Specirrl lsszte 1992 Digilcrl Tecktricnl Jorrrrrtrl

Evzrolbnent Management, Managing the Alpha AXP Program

reviews had been imposetl by line management ancl
tended to encourage the reviewees to cover up
issues until it was too late to recover. In contrast,
the program manager, operating under the Program
Office model, had no line authority ant1 set up the
monthly operational inspections in an open and
supportive environment. The presenters were the
designated project managers from each develop-
ment group. The Program Office encouraged all
presenters to bring in their risks and problems
before it was too late to address them effectively.
We used the single-page format again, as shown in
Figure 6. Note that the simple, visual history of all

milesto~ies is at the top, so one can readily see any
repetitive slips. The emphasis is on critical path
events completed last month and those coming up
next montll. At the bottom are listed those issues
that have been resolved and issues being opened,
with clearly inclicated ownership and due dates.

Operational Excellence
To ensure that every project implemented the
strategies, the Program Office established the prin-
ciple of operational excellence across tlle Alpha
AXP program. The office consistently recognized
teams that accomplished their results on time and

e m : ALPnh/W
DATE: April 8 , 1992

SCHEDULE:
1 Qd 1991 1 Q1 1992 1 42 1992 1 Q3 1992 1 Q4 1992
l O c t Nov =!Jan Feb MarlApr M y JunlJul Aug SeplOct N w Dec
[---[---[---[---[---[---[---[---[---[---(---[---[---[---[---

8 4 5 1 E I Sep 91
B 4 5 6 I E 1Nav 91
B 4 5 6 I E l Jan 92
B 4 5 6 1 U E IWr 92
B 4 5 6 1 U E l Apr 92

Milestones
B -- Base Level 38 (Editor, debugger, TIE, base DECnet) -- mNE
4 -- B a s e L e v e l 4 (More DECnet, utilities, andiMclients) -- DIXSE:
5 -- Base L e v e l 5 (EV4 support, TFF, performance) -- EONE
6 -- 5ase We1 6 (Performance & Tapes) -- DQNE
I -- Internal field test & Pilot Porting Activity - FiT
U -- Internal field test update - FT2
E - External field test & Early Support Program - FT3
S -- V 1 . 0 suhnit to SSB

CRITICAL PATH EVENTS PAST MCNI'H:
Shipped BL6 on March 12 - stable on ADU, Ruby, Cobra, Flamingo
Shipped BL6 AEa7 porting tmlkit
Achieved FT1 (PPA) rode freeze
Received 2 Flamingo systems in Varese, Italy, for W S I X development
With SPE (CSSE), delivered worldwide field test support training
FT1 stabilization continuing

ACTIVITIES ALONG TKE CRITICAL PATH (NEXT W3QE-I) :
Ship FT1; revised target is Ppr 10
Ship ET1 AM2 porting toolkit
Complete PPA R-diness Rwiew
Begin FI2 stabilization

ISSUES / DEPENDENCIES RESOLED:
Flamingo SFB graphics support formally accelerated into Vl. 0

ISSUES / DEPENDENCIES WT RESOLVED:
GDI BL24 compilers needed for ESP integration: D.L., May 15
Rollout support staffing is not XI anyone's plan: J.S., May 29

Figure 6 The Single-Page Rev im

Digital Techrricrcl Jouvnal Vol. 4 No. 4 Specla/ Issire 1992 201

Alpha AXP Program Management

predictably. We ;~lso used the monthly program-
wide inspections to maintain a published record of
progress. Thus. each project was encouraged to
excel operationally ant1 to learn froni the esj~eri-
ences ancl presentations of the others.

Fo ~ w t b Cusp Result
Tlie Progr:t~ii Office established monthly inspec-
tions using a consistent single-page document to
record pertinent information.

Acknowledgment-Learning Stage:
Building Momentum
Developing tlie vision ancl pli111 resul~ecl in :I Ken-
era1 sense of eupliori;~. SliortljJ ;~t'ter\vards, the real-
it!. of the work ahead clescentled like a cloutl
of despair. At this point, the primary challenge
was to start bi~iltling momentum in the program.
In the Enrollment Management Nloclel, building
momentum-the ackno\vleclg~i~ent-Imi~ig stage-
is tigl~tl!~ intertniinecl with the inspection st;~gc.;
that is, events reportecl during inspections wcrc
i~secl to built1 momentum, The Program Office rein-
forcctl the vision 21ncl usecl niomentiim b~~iltling to
mini~llize tlie time period during which tlie team
felt despair about the work a h c ~ d .

Fzytb C L L S ~ : Despair
Since tlie overall progr;1m h;itl such 21 formicl;~ble
goal, man!, of' the contributing teams 11ec:lnie
stalled with tlie m;~gnitucle of the task aheacl of
tlieni. 'This manifested itself in tlie form of com-
ments about the large amount of work. tlie result-
ing potenti;il h)r scheclule delays, :~nd a fe:~r of
overtime clemands. This syndrome is common in
any large project, especi;illy when commitments
;Ire matte that involve taking large risks. The
appro;lch the program team took \V;IS to start recog-
nizing ei~cli element of progress. As we elistributeel
;Innouncements of progress widely (using I>igit;~l's
worltlwicle electronic 11i;lil network), we beg;~n to
I)i~iltI momentum around the Alpha AXP progralii.
Other groups picket1 up o n this momentum and
contributed to it themselves. 'Tl~is effect cascaded
throughout the entire program-more groups per-
ceived their tasks alie:~d as achievable; r;~pitlly e;~cli
group wanted its own progress acknowledgetl; :~nd
momentum increasetl.

The I'rogra~ii Office founcl tli;~t the members of
a project. :~ppreciatecl ancl were niotivated by tlie
simple " t l i ; ~ ~ i k ~ O L I " rel~resentetl by tlie pi~blic

acknowletlgment of their work. This contrasts with
the conventional management wisdom that it is
necessiiry to give Ereqi~ent monetary rewarcls to
motiv;~te lxo],le. Although everyone appreciates
tlie fin;lncial rewi~rds, tlie biggest motivator is tlie
professional recognition that the contributor tlid a
good and necessary job!

The second benefit of the acknowledgment was
its effect in creating a sense of momentum throitgll-
out all the project teams. Repeateclly, peer man-
agers would comment that the Alpha ASP team was
ni:~king significant progress. This in turn gave us a
sense of ;~ccornplishnient ;IS well. S o the program
re;~lized ;I double benefit from the original :rckno\vl-
etlg~nent and ;I h~rtlier slingshot effect with recog-
nition coming back to the Program Office.

Fzytk! Cusp Result
Program-wicle. managers establishetl the norm of
fretli~ent acknowletlgment of progress.

As tlie Alpha A S P progr;1m made further prog-
ress, the 1'rogr;ini Office ;~ctively solicited third-
p;1rtjr ;~nd c ~ ~ s t o ~ i i e r invol\iement. 'T'his invol'clenient
pro\.icletl good feedback o n progress and liatl the
effect of reinforcing the fact that the program was
011 track to meet customer neetls. 111 some cases, the
project teams :rltered the Alpha A S P pl:fns to better
help our customers atlclress their business needs.
This further contributed to the credibility ;inel
monientuni of tlie progr;irn as well as the sense of
acconiplishment.

Sixth CZLS~!: Broken Debe~zde~zcies
and Replanrzi~~g
Like :~ny project, not every ;wsumption ant1 tlepen-
tlency proves to be correct or totally accurate. At
one point, one of the major Alpha A S P hardwcire
systems slipped its scheclule for delivery of proto-
types to softw:~re. After considering a number of
altern;itives, the oper;~ting system group proposed
;in ;iltern;~te pl:in using ii different hardware system
:~ncl a cIi;~iiged order of events. They s:iitl in their
management presentation at the time. "The ques-
tion is not one of blame. Insteatl our goal is to pre-
serve the ultimate schedule goal of the program,
specific;~lly its volume availability date."

Sixth Cusp Result
Program-wide, teani tnembers established the prin-
ciple of focusing on tlie desiretl state of time-to-
profit rather than on bl:~niing others for hili~res.

202 Ihl . 4 ,Vo. 4 .S/~eric~l lssi~c 1 9 9 Digilal Techrricnl Jorrrrrnl

Efzrollrnent Management, n'lunci,qing the Albba AXP Yrogrc~nz

At another point, one group was at risk because it
neetled a critical skill Ibr ;I week. A (historically)
competing hardware group responded by asking
what sort of resource, and then freely supplied the
resource despite its own very tight schetlule. In the
past, these groups woi~ltl compete for the same
resource without coll;iborating for the common
good.

Seventh Cusp: Incomplete Asst~~nptions
and the Need for the Performance Team
Less than half way through the Alpha AXP prowam,
the program team realizetl that some projects'
assumptions were incomplete. RISC systems are
notorious for recluiring careful design and tuning to
meet aggressive performance goals. Evidence from
a related program at Digital suggested that some
of our system performance homework was weak.
Tlie Program Office quietly asked the appropriate
teams to assign some resources to measure key
components ant1 subsystetns of the design. This
confirmetl the program team's concerns that the
curretit plans were incomplete. Quickly, we pulled
together ;I cross-disciplinary task force to analyze
the infortnation rigorously and to liiake recomnien-
dations. These analyses resultecl in changes in the
architecturc, the chip design, tlie systems designs,
ancl the softw;lre. 'The changes liave proved to
increase performance substanti;~ll)l.

Seventh Cusp Result
The program e\t;~blialied n performance team to
change tllc de51gn and pl'ins ~s necded

Eighth Cz~sp: Prototype Allocation Process
As manufilcturing st;irted to deliver prototypes, tlie
Program Office fount1 that the early manufiicturing
built1 rate was lower tIi;in planned. This was the
result of normal st;lrt-up problems. At the same
time, initial demand had increased substantially.
Nevertheless, the project ;~clministrators continued
to ship the systems to engineering and ;ipplications
groups in the original orcler. If this had continued,
dependent software woultl have been delivered
progressively later because of inadequate testing
cyclcs. Our impact analysis indicated that the Alpha
ASI ' volume ;~v;~ilability would slip by three
months.

The review team highlighted this problem in an
early program readiness review. Traditionally,
Digital uses readiness reviews to establish manufac-

turing's readiness to build systems. The Alph;~ A S P

Program Office broadeneel this process and asked
for a program-wide readiness review to identify
the "showstopper" risks. As a result, the Program
Office celitralized tlie allocation process so that we
could maintain tlie prototype alloc;itions in real
time. The result was to reestablish sufficient soft-
ware test time and maintain momentum with mini-
mal program impact.

Eighth Cusp Resz~lt
The program teams decided that prototypes would
be delivered based on program priorities. not solely
on existing plans.

Ninth Cusp: Need for Quality Metric.$
Each g o u p in the Alpha program adopted very
high standards for the cluality of its work. The ni;ln-
agelnent team repeatedly found reinforcement
of Phil Crosby's tlictum: "Quality is free."'{ Ilesults
in group after group showed that early ;~ncl con-
tinuous attention to quality resulted in held or
improved schetlules.

However, the program team noticecl t I i ; ~ t we
were not inspecting and rnei~suring progress in
quality at the total systems level; customers care
about only the quality of the tot;~l result. As tlie
projects started integrating into ;I tot;~l s),stelii, the
Program Office establishetl ; ~ n indepentlent group
to measure overall quality levels. 'fhe classic reac-
tion to such independently derived quality metrics
is that they are meaningless. Instead, since the
program established tlie metrics ;it tlie niollielit
when everyone saw the need, the re;iction h;~s
been to focus on the total system's cluality without
dropping attention on tlie individu;~l component
metrics.

Ninth Cusp Result
The program formalized system-wide qu;rlity
metrics.

Results and Lessons Learned
Digital met exactly tlie program's overall schedule
to the month (i.e., date for high-volume shipments),
despite numerous setbacks ;ilong the W ; I ~ Tlie
Alpha AXP systeni is meeting the original per-
formance goals, and quality is excellent. Digital's
Board of Directors has approved the fill1 Alpha AXP

program business plan and the investments neces-
sary to capitalize on the Alpha AXI' family's e:lrly

Digital Technical Joirnral Vol. 4 /Vo. 4 .'il,ecirrl lssrrr 1992 203

Alpha AXP Program management

successes. Initial reactions from customers have
been favorable. Third parties have committetl
Alpha AXP support for their products in record
numbers.

What Worked Well
The Program Office in conjunction with the
Enrollment Management Model has worked well. If
the management team had followed traditional
approaches, we would still be getting organized.
Using the model, each group has been able to bring
its fill(capabilities to bear as problems have arisen.
?'he project teams have accepted the introcluction
of multiple levels of inspection, ancl other programs
within Digital are copying this aspect of the model.
Further, the notion of ~ising project cusps creatively
has been an effective tool to huiltl momentum.
Finally, a common schedule and inspection disci-
pline allowecl the schedule to become an opportu-
nitjr to reinforce ;I shared vision. This positive view
contrasts with the conventional interpretation of
a schetlule as a burden.

As a result, most groups met very aggressive goals
on schedule. Several groups accelerated their cleliv-

erables despite having the most complex tasks. For
example, the OpenVMS AXP system group not only
met its original schedule but also accelerated num-
erous tieliverables into earlier base levels or releases.
Figure 7 shows the OpenVMS schetlule and actual
tlates of availability; footnotes indicate functional
;~ccelerations. The networks group tlelivered DECnet
on the AXP system an entire base level early. The
clatabase systems group accelerated its schedule by
several months and tlemonstrated products four
months early at Digital's DECWRLD '92 trade show.

Clearly one of the major lessons was to establish
a constancy of purpose and holcl to it while contin-
iially learning and updating the detailed plans. The
single-page representation of the goals and master
plan is a key element in maintaining this constancy.

What We Would Do Differently
Loolting back, we would have approached the
program differently in two areas. First, project
teams would have benefited from broader early
education on project methodology. Several projects
had significant slips, causing undue hardship on
other groups. The Program Office should have

ALPHA/VMS SCHEDULE RESULTS

MILESTONE

Phase 0 closure
Alpha VMS minimal lagin
BL1 ship - minimal login
BL2 ship - RTLS, DW (1) & LAT
BL3A ship - ISAM, linker
BL3B ship - prog devel L T I E (2) , DECnet (3)
EL4 ship
BL5 ship - functionally complete(4)
BL6 ship - Ruby complete(5)

FTIJPPA
Phase 1
FT2/PPA
FT3/ESP (6)
FT4/ESP
V1.0 SSB submission (LRS)

ORIGINAL

Rug 30, 1990
Jun 17, 1991
J u l 15, 1991
Aug 26, 1991
n/a
Oct 7, 1991
Nov 18, 1991
Dec 30, 1991
Feb 21, 1992

ACTUAL

Aug 30
Mar 20
May 31
Jul 12
Aug 23
Oct 10
Nov 15
J a n 10
Mar 6

A p r 3, 1992 A p r 10
May 1992 May 20
n/a 1992 May 22
J u l 2 , 1992 Jul 8
n/a 1992 Aug 14
Oct 2, 1992 O c t 26

Notes:

(1) DECwindaws
(2) Translated Image Environment (RTL far translated images)
(3) DECnet accelerated from BL4 to BL3B
(4) Full graphics support accelerated from next version to V1.0
(5) Support for multiple h a r d w a r e platforms a c c e l e r a t e d f r o m next

v e r s i o n to V1.O
(6) FDDI support accelerated from next version to V1.O

Figure 7 Original 0penVM.S wiles stone and Deliuery Dates

204 Vol. 4 iVo. .I 5plic-iol lss t~e 1992 Digital Technical Jorrrlznl

Enrolbnent ~Vunugelnent, Managing the Alpha AXP Progrum

introduced Ron LaFleur's project methodology
sooner and pervasively. Instead, we waited until
each group saw the need and then tried to intro-
duce it. For groups such as the OpenVMS AXP
system group, the methodology was introduced
early. However, other groups needed (and still
need) this discipline.

Second, the office would have conducted more
pervasive project inspections. Several groups were
very late in protlucing schedules and plans that the
Program Office could understand. The office was
unable to obtain their cooperation to hold detailed
and frequent inspections. Eventually, the Program
Office was invited to set u p and participate in
appropriate inspections of schedule, process, etc.
However, we should have insistetl on these much
sooner.

The Alpha AXP program is the most con~plex pro-
gram in Digital's history and h;w been delivered on
schetlulc with high quality. The Alpha AXI' Program
Office used a rigorous management me tho do log)^
to build the program-level teamwork necessary to
accomplish this breakthrough. The office proved
the effectiveness of the Enrollment Management
Model: vision-enrollment, commitment-delega-
tion, inspection-support, and acknowledgnlent-
learning. Integral to this motlel and empowering to
the team is to take each cusp head-on and to use
them to increase momentum. The management
team has been learning as the program progressed
and has identified areas needing strengthening for
future programs.

Acknowledgments
The author thanks the following senior managers
for tlemonstrating the importance of good manage-
ment: Gordon Bell for architect~~re and a clear strat-
egy; Ken Olsen for demanding simple, single-page
plans; Jeff Kalb for operational excellence; David
Stone for the model of focusing on the tlesiretl
state; Bob Supnik for the paradign~ of the Program
Office.

The author also thanks key members of the Alpha
hXP I'rogram Off ce for their contributions in man-
aging the program and developing the Enrollment
Management Methodology: Al Avery for systems
integration and significant help preparing this
paper; Scott Gordon for competitive benchmark-
ing; Ellen Salisbury for planning; and Ken Schultz
for operations and inspection.

References and Note

1. R. Waterman, T. Peters, and J. Phillips, "Struc-
ture is Not Organization," B~lsirless Horizor~s.
no. 80302 (June 1980).

2. C. Savage, Fiftlg Generation Manngernent
(Burlington, MA: Digital Press, 1990).

3. W. Oncken and D. Wass. "Management Time:
Who's got the nionke):" Harrwrd Busirless
Reuiew, vol. 18, no. 6 (November 1974): 75-79.

4. M. McMaster ant1 J. Grintlel-, PRECISIOIV:
A Neci! A ~ ~ I . O G I C ~ to Co~?zlnu?zicntion (Bonny
Doon, CA: Precision Models, 1980).

5. J. Gleick, CHAOS: Making a New Science
(New York: Penguin Books, 1987).

6. F? Senge, The F1ytb7 Discipline: The Art ana
Practice of tbe Learning Orflrlization (New
York: Doubleday, 1990).

7 A. Scherr, "Managing for Breakthroughs in
Protluctivity" Hzirnan Resolirce ~VIar7~1ge-
~nerzt, vol. 28, no. 3 (Fal I 1989): 403-424.

8. L. Tesler, "Networked Computing in the
1990s." Scientific A rnericarr (Sep tem ber
1991): 86-93,

9. The five generations of computing are as fol-
lows: I950s, standalone; 1960s, batch; 1970s,
timesharing; 1980s, personal: 1990s, mobile
distributed.

10. R. Comerford, "How UEc: Developed Alph;~,"
1E.M Sl,ectr~~~rz (July 1992): 26-31

11. C. House ant1 R. Price, "The Return Map:
Tracking Product Teams," Harl~ard Bcisir~ess
Rciliezu, vol. 69, no. 1 (January 1991): 92-100.

12. R. LaFleur, "A Seminar in Project manage-
ment" (Scituate, MA: Project Management
Assist;rnce Co., 1990).

13. F? Crosby, Qualit]) Is Free: The Art of rMaking
Q~iul i t j~ Certoitz (New York: McGrnw-Hill,
1979).

General References

E Brooks, The 1I4ytl?icaI ~Ma1z-irzorzth: ESSUJJS O J Z

Softulal-e E~zgineerilzg (Reading. MA: Addison-
Wesley, 1975).

R. Neustadt and E. Ma): Thinking In Time: The uses
of history for decision makers (New York: 'Tl1e
Free Press, 1986).

Digital Technical Journal Vol 4 No. 4 Special Issue 1392 205

I Fwther Readings

The Digital Technicill Journal
pu6lishespnpers that explore
the tccl?izological foz11zdatiot7s
of Digit~il's rnajor.prodrrcts. Ec~cl?
Joumalfoc~rses 0 1 2 at le~zst one
prod~lcf or*ecl and pr.e.serits ci
co~?zpi/~itio~z ofp~if?e)=~ toritten
031 t l~e crr,qilzeers risho d e ~ ~elobecl
th7eptv)dr~ct. The collteut for
thcJourn;~l is selected Oj l the
Jourr?c!l Advisory Board.
Digitcil engineers upko rvozrld
l ike t o coiztrib~rte ci paper
to the Journal should co~ztact
the editor- a t KDVAX::RM KE.

Topics coverecl in previous issues of the
Iligitnl Technical Joun7ul are as follows:

NVAX-microprocessor VAX Systems
I/i,l. 4, No. -3, S~lr?l~?zer 192, EY~1884E-l)I'

Semiconductor Technologies
I/i)l. 4, No. 2, Sprilzg 1992, ~ ~ - ~ 5 2 1 ~ - 1) 1 '

PATHWORKS: PC Integration Software
k l . 4, No. I, Wintel- 1992, EYd825E-111'

Image Processing, Video Terminals,
and Printer Technologies
Cbl. .?, IVO. 4, FLIII 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. -3, Srr~?~nze~. 1991, EY-H890E-111'

Fiber Distributed Data Interface
I/r)l. 3, iVo. 2. S/lrirzg 1991, E Y - H ~ ~ ~ E - I) ~ '

Transaction Processing, Databases,
and Fault-tolerant Systems
Val. -3, No. I , Winter IYgI, EY-F588E-Dl'

\'AX 9000 Series
Val. 2, NO. 4, I h l1 1990, E Y - E ~ ~ ~ E - D P

DECwindows Program
fi/ 2, ivo .j, Siir?11?ze1. 1990, E Y - E ~ ~ ~ c - I) ~ '

VAX 6000 Model 400 System
L'ol. 2, No. 2. .S/)l'ing 1390, T:Y-ClC)7E-I)1'

Con~pound Document Architecture
Vol. 5 No. I , Wi~ztel- 1990, E Y - ~ 1 9 6 ~ - D P

Distributed Systems
Vol. I , No. 9, June 1989, EY-C17c)E-DP

Storage Technology
Vol. I, No. 8, F ~ D I . u L I ~ ~ 1989, EY-(: 1 6 6 ~ - D P

CVAX-based Systems
VO~. I , NO. 7, A ~ ~ g u s t 1988, E Y - 6 7 4 2 ~ - ~ ~

Software Productivity Tools
Vol. I, No. 6, Febrzrarj~ 1988, EY-&!59E-DP

VAXcluster Systems
Vol. I, i\b. 5, Sef!tenzDer 1987, EY-8258E-1)P

VAX 8800 Family
Vol. 1, Are. 4, Februury 1987, EY-671 1E-DI-'

Networking Products
Vol. I , /\To. 3, Se/!te~nDer 1986; ~ ~ - 6 7 1 5 ~ - ~ 1 '

MicroVAX 11 System
Vol. I , No. 2, ~Wclrch 1986, EY-.347413-DP

VAX 8600 Processor
f i l . I, No. I, A L I ~ I I S ~ 1985, E Y - ~ ~ ~ ~ E - I I P

Subscriptions to the Digitul Tech~zicalJo~lrrzlrl are
avail;tble on a prep:~id basis. The subscription I-ate
is $ 4 0 . 0 0 for four issues ant1 $ 7 5 . 0 0 for eight issues.
Orders should be sent to Cathy Phillips, Digital
Equipment Corpor;~tion. ~ ~ 0 1 - . 3 / / 8 6 8 , 146 1M:lin
Street, M;rynartl, M A 01754-2571 , U.S.A.. 'Teleplio~~e:
(508) 4 9 3 - 2 8 9 4 , FAX: (508) 493-0637 Inquiries
can be sent electronically to IYrJ@CRL.DEC.<:OM.
Subscriptions must be paid in 1l.S. dollars, ilntl
checks shoultl be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Digital
Techtlical Jotrrnal are available for $ 1 6 . 0 0 eac1-1
from Digital Press, Department EER, 1 Burlington
Woods Drive, Uurlington, MA 0 1 8 3 0 - 4 5 9 7 Single
issues can also be orclered by c;~lting DE<;direct
at 1-80O-l11GITAI. (1 - 8 0 0 - 3 4 4 - 4 8 2 5) .

206 Vol. 4 /\'o. 4 Specir~l ls.strr 1992 Digilal Techrricrtl Jourrrd

I Recent Digital U S Patents

Thefollou~i~zgpatents were recently issued to Digital Equi)rneizt Corpomtion Titles and nallzcs s~~f~pliecl
to us @ the US Potent and Tr~~~ie~rzc~r.k Oflice c11.e re/!~~ocl~~cccl eLJraclIy as tl7ej' a f ~ f ~ e a r or^ tlge O I * I ~ I I Z L ~ /

plrblishecl /~ate?it

D327,261 K. L. Korellis and R. T. Faranda Front Face Panel Portion for Enclosure Doors for a Computer

D327,477 K. L. Korellis Front Panel for an Integrated Storage Assembly for Computer
Storage Units

5.092,631 M. G. M. Masnik ant1 Safety Enclosure for Gas Line Fittings
R. C . Martel

5,093,628 1 . T. Chan Current-Pulse Integrating Circuit and Phase-Locked Loop

5,093,775 W. R. Grunclmann, R. E ~Micrococle Control System for Iligital D a t ~ Processing System
Boucher, and T. FOSSLI~II

Method for I-'rovicling ;I Metill-Scmicondi~ctor Contrict

5,095,441 D. E Hopper, E. G. Fortmiller, Rule Inference and Localization during Synthesis of Logic
S. Kundu, and D. E Wall Circuit Designs

5,095,471 M. D. Siclman

5,095,613 K. R. Hussinger and
M. L. Mall;~ry

5,097,370 Y. Hsia

5,037,387 J. L. Griffith

Rotating Priority Encoder Operating by Selectively Masking
Inp i~ t Signals to a Fixecl Priority Encoder

Velocity Estimator in a Disk Drive Positioning Sysretn

Thin Film Head Slider Fabrication Process

Subambient Pressure Air Bearing Slicler for Disk Drive

Circuit Chip Package Employing Low Melting Point Solder for
Heat Transfer

5,007,411 I? L. Doyle, J. I? Ellenberger, Graphics Workstation for Creating Graphics Data Structure
E. 0. Jones, D. C. Carver, Which Are Stored Retrieved and Displayed by a Graphics
S. D. Dipirro, B. J. Gerovac, Subsystem for Competing Programs
W l? Armstrong, E. S. Gibson,
R . E. Shapiro, K. C. Ri~shforth;
and Vi! C. Ro;lch

5,097,436 1. H. Zurawski

5.097,468 E. Earlie

5,099,367 M. D. Sidman

High Performance Atlder IJsing Carry Prediction

Testing Asynclironous Processes

Methocl of Autorn;itic Gain Control Basis Selection and Methocl
of Half-Track Servoing

 multiple Bit Error Detection and Correction System Employing
a Modifietl Reed-Solomon Code 1ncorpor:lting Adclress I-';lrit!z
and Cat;~strophic Failure Detection

5,099,485 W F. 13ruckert, T. D. Bissett, Fault Tolerant Computer Systems with Rii~lt Isolation
D. Mazur, J. Munzer, F. Bernaby, and Repair
ant1 J. I-I. Bhatia

5,099,517 A. Gupta, W R. Hawe, Frame Status Encoding for Comrnunic;~tion Networks
IM. E Kempf, ant1 C . S. Lee

O O E. E. Cox, Jr. and M. I? Rolla Resonant Technique and Apparatus for TIierrn;~l Cap;icitor
Screening

5,101,362 E. Sirnouclis Modul;~r Blackboartl-Based Expert System

5.101.402 D. Chiu and R. Sudama Apparati~s and Method for Realtime Monitoring of Network
Sessions in a Loci11 Area Network

5,101,485 F. I... Pe~azzoli, Jr. Virtual k1emo1-y Page Table Paging Appar;~tus and Method

5,101,493 R. L. Travis and W R. Laurune Digital Computer Using Data Structure Including External
Reference Arrangement

5,103,352 W Y. Moon and R. Y. Noguclii Phased Series Tunecl Equalizer

Digital Techrrical Journal Vol. 4 IVO -1 .Tf~ectrri 13 \[re I992 207

J . I! Harris. I>. 1-eibholz,
;ind B. Miller

Methocl of I>ynamically Allocating Processors in a Massi\rely
Processing System

Rletliod of Making a M;~gtietic Recording IJead

Tunnelled Millticonductor Systeni ancl ~Metliocl

M. M;lllary

W C . Moone): J. R. Santantlreu,
ancl K. Kshonze

K. 0. Reck~iian System for Displ;~ying Vitleo from a Plurality of Sources or,
a l>isplay

Transverse Positioner for ILadfiVrite Head

Optical Heat1 with Flying Lens

E. I,. Steltzer

N. K. S. Lee, J. W Howard.
I? K. Tan, ant1 W Hsjrtsay

D. A. Bailey

W R. Grundmann, V K. Ha):
1.. 0. Herman, ;inel
1). &I. Litwi~ietz

Cooling System for Computers

Self Tiniecl llegister File Having Bit Storage Cells with
Emitter-Coul>led Output Selectors for Common Bits Sharing
:I Common Pull-Up Resistor ; ~ n d a Common Current Sink

High Blndwidth Reed-Solomon Encoding, Decoding :lnd Error
<:orrecting Circuit

Error Tr;ipping Decoding Method ant1 App;lratus

Laminatetl l'oles for Recording Heatls

Continuous-PIils-Embeclded Servo l);it;l l'osition Control
System for Miignetic Disk Ikvice

Methotl and Apparati~s IJsing ;I Source Operand List and
;I Source Ol>cr;~ncl Pointcr Queue between the Execution lJnit
;rnd the Instruction Decoding and Operand I'rocessing (.nits
of a Pipelinetl Ilata Processor

C . M . Riggle, L. Weng,
and I? N. Hui

1.. ,I. W n g ant1 H. A. Leshaty

M. 1~. &lallary

M. Sitlman

D. 13. Fite, T. Fossum, W R.
<;rundmann, D. l? M:lnle):
E X. McKeen, J. E. Murra\;
R. M. Salett, E. Samberg,
anel I>. I? Stirling

S. (1. 1);ts ;lnd M. L. NIallar)7

I). I). Donaldson and
R. H . Gillett, Jr.

Three-Pole Magnetic He;ccl with Reducetl Flus Leakage

Lookahead Bus Arbitration System with Override of
<;onditional Access Grants by Bus Cycle Extensions for
Multicycle Data Transfer

U. <:. Eclern, R. I? Helliwell,
J. T. Johnston, and R. E Lary

E Tjtcomb ant1 J. Cordova

Q, Y A'g

Data Integrity Features for a Sort Accelerator

Hytlroclyn;lniic Bearing

Methoel for Provicling ;I Lubricant Coating o n the Surbce of
:I Magneto-Optical Disk i1nt1 Resulting Optical Dislc

J. I.. Finnerty Integrating the Logical and I-'hysical Design of Electronically
Linked Objects

I). H. Fite. K . C. Hetherington,
M. M. McKeon, I). I? ,Manle):
and J. E. ~Murray

E X. McKeen, T. Fossun~,
I). l? Hli:~nd;trk;~c ancl
<:. A. Wiecek

M. 1). Sidman

Virtual Instruction Cache S!.stem [.sing Length Responsi\re
1)ecoded Instruction Shifting ant1 Merging with Prefetcli
Buffer Outputs to Fill Instruction Buffer

Method ; ~ n d Apparatus for Handling Fai~lts of Vector
Instructions <>lusing Memory ivlanagement Exceptions

F ; IL I~~ Tolerilnt Frame. <;i~arclband and Index
Detection Methotls

E~libeclded Burst Democli~l;~tion ant1 Tracking
Error (;ener;~tion

W A. Samaras. I). 'T. Vnughan,
;inel A. D. Ingraham

1. S. Fitch ancl W I<. Hamburgen

S. Miller

Method and Apparatus for Stabilized Data Tmnsmission

Micro-Channel Wafer (:oolitlg Chuck

Object Identifier Generator for Distributed Conipi~ter System

208 WJI. 4 iVo 4 Spea'rrl l s s~ le 1992 Digital Technical Journal

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Alpha AXP Architecture
	A 200-MHz 64-bit Dual-issue CMOS Microprocessor
	The Alpha Demonstration Unit: A High-performance Multiprocessor for Software and Chip Development
	The Design of the DEC3000 AXP Systems, Two High-performance Workstations
	Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems
	Technical Description of the DEC 7000 and DEC 10000 AXP Family
	Porting OpenVMS from VAX to Alpha AXP
	The GEM Optimizing Compiler System
	Binary Translation
	Porting Digital's Database Management Products to the Alpha AXP Platform
	DECnet for OpenVMS AXP: A Case History
	Using Simulation to Develop and Port Software
	Enrollment Management; Managing the Alpha AXP Program
	Further Readings
	Recent Digital U.S. Patents
	Back cover

