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I Editor's Introduction 

Jane C. Blake 
Editor 

'T'his special issue of tlie Digit~ll Teclnrlical Jourf1crl 
presents the computer architecture that Digital 
believes will become the universal platform for 
computing over the next 25 years. A signific;uit 
~liilestone in the comp;cny's history the i\lplia A S P  

architecture arises out of Digital's extensive etigi- 
neering experience antl puts into place a cohesive, 
.I'lexible framework for high-perform:~nce 64-bit 
IlISC computing. This issue contains papers repre- 
sentative of the scope of tlie program across 
Digital's Engineering organization, including hartl- 
\\?;Ire systems, a n  operating system, compilers, 
binary tr;~nslators, network ant1 database software, 
and simulators. 

The results of the engineering efforts cliscusscd 
in these papers reflect three primary goals fix 
tlie Alpha AXI' architecture: high performance, 
longevit!; and e;~sy migration from tlie 32-bit VAX 

VMS computer line. Dick Sites, one of the chief 
Alpha AXl' architects, 1i;rs written a definitive p;cper 
th;lt explains how key architectural decisions were 
made relative to the gonls. He reviews the similari- 
ties and differences between the U P  ;rrcIiitecti~re 
and other RIS<: ;crchitectures, ant1 then presents 
details of-' the design, including data and instruction 
formats. In his conclusion, he projects evolutionary 
c1i:lnges in the ;~rchitect~lre antl the resultilig per- 
formance increases of a thous;~~idfold over tlie next 
25 years. 

'The first implementation of the Alpha t1XP arclii- 
tecture i.4 tlie I>EC:chip 21064 microprocessor, which 
can execute up to 400 million operations per 
secontl. I)an L)obberpuIil ancl members of the 
Alpha chip team offer an overview of the CMOS pro- 
cess tech~~olog)! the chip micro;~rchitect~~re, ant1 
the external interface. They tlieti detail the circuit 
implementation ancl explain the design choices 
directed toward meeting architectural performance 

req~~irements :~nd to allow :~pplication flexibility 
The result of their design efforts is a microproces- 
sor that operates at speeds up to 200 MHz-the 
fastest commercially available chip in the industry 

Early implementations of this chip became part of 
a prototype system, the Alpha Demonstration Unit. 
As Chuck Thacker, Dave Conro): and Larry Stewart 
explain in their paper, the prototype servecl the 
overaII Alpha ,tYl' program by giving software devel- 
opers early access (ten months) to AXP-compliant 
hardware. Because of tlie architectural emphasis on 
multiple processors, prototype designers focused 
on delivering a robust multiprocessing system. The 
;iuthors tliscuss the significance of tlie choice of a 
backplane interconnect for a multiprocessor, corn- 
pare different ;ipproaches to cache coherence, ancl 
describe the system modules and packaging. 

With constraints different from those of the pro- 
totype, the li;~rdware procloct projects are repre- 
sentetl here b), three different implementations: 
desktop, departmental, and data center systems. In 
the desktop area, the I>EC 3000 U P  family of work- 
stations are balanced u~iiprocessor syste~ns. Totlcl 
Dutton, Dan Eiref, Hugh Kurth. Jim Reisert, and 
Iiobin Stewart review tlie rlecision to replace the 
traditional common system bus with a crossbar 
system intercontiect constructetl of ASI(:S. This new 
interconnect allorved the designers to meet the 
goals of Low memory latency, high memory band- 
width, ;~nd ~>i i~ i i~nal  (:I'll-I/O memory contention in 
a cost-competitive manner. 

The I>EC 4000 AXI' system is a tlepartmental 
server that iniplements the IEEE Futurebus+ stan- 
tlard. Barry Maskas, Stephen Shirron, and Nick 
Wrcliol present tlie reasoning behind the system 
architecture antl technology decisions that resulted 
in the ;~chievement of optimized uniprocessor per- 
form;ince, tlu;rl-l>rocessor symmetric multiprocess- 
ing, and baJ;uiced 1/0  tlirouglipi~t. lletnils of the 
subsystems that make up this expanditble modular 
system are also provitled. 

'The I)EC 7000 ant1 I>E<: 10000 systems are po\ver- 
fill niitl-rangc and ~ii;~inframe platforms intended 
for large commercial applications ancl clesigned to 
utilize multiple hiti~re generations of the DECchip. 
Described by Brian Allison ancl (:;~tl~arinc van 
Ingen. tlie heart of these systems is a high-perfor- 
mancc interconnect that allows communic;~tions 
between multiple processors, memory arrays, and 
I/O subsystems. The ;~uthors revie131 e;ich of the 
modules and the I/() subsystem design, which 
includes interfaces for SMI and Futurebus. Notably, 
;I 32-bit \'AX <:I '~I ~iiodule has been designetl to tlie 



reqi~irements of the higli-performance system 
interconnect. Users who wish to migrate from the 
VAX system to Alpha U P  neetl only swap module 
boards. 

Migration to Alpha tU(P from other architectures, 
in particular from VAX VMS, is one of the major goals 
set by the Alpha architects. Existing software- 
operating systems, languages, programs-must be 
adapted to run effectively on 64-bit RISC systems. A 
paper by Nancy Kronenberg, Tom Benson, Wavne 
Cardoza, Ravintlran Jagannatlian, ant1 Ben Thomas 
addresses the ch;~llenges of porting the OpenVMS 
operating system-originally eleveloped specifi- 
cally for 32-bit VAX systems-to Alpha A X P  systems. 
To deal with the huge amount of code, the project 
team developecl a compiler that treats VrLY ,assembly 
langiiage (VLY MA<:RO-32) as a source language to be 
compiled. The authors also cliscuss the major arclii- 
tectural differences in the kernel, performance, and 
some future directions for tlie system. 

The GEM compiler system is the technology 
Iligjtal is using to build state-of-the-art compiler 
products. <;E>I is describetl here by David 
Blickstein, Peter Craig, Caroline Davidson, Neil 
Faiman, Kent <;lossop, Rich Grove, Steve Hobbs, 
and Bill Noyce. A significant achievement in the 
clevelopment of this compiler i s  that a single opti- 
mizer is used for all languages and platforms. 
Developers of compilers will find in-tlepth informa- 
tion i n  the ;~i~tIiors' disc~~ssions of optin~izatio~i 
techniques, code generation, compiler engineer- 
ing, and future enhancements. 

Binary translation is another rne;ins of moving 
cornplex software applications from one architec- 
ture and operating system to another architecture 
and operating system. Two binary translators are 
the subject of a paper by Dick Sites, Anton Chernoff, 
M;~ttliew Kirk, Maurice Marks, ~111cl Scott I<oobinson. 
The authors discuss the alternatives to translators, 
performance issi~es, and tlie development of the 
tr:unslators, VEST nntl mx, antl the complementary 
run-time environments. VEST tr;inslates OpenVMS 
\'hY images to OpenVMS images. and mx trans- 
lates ULTRIX/MII'S images to DEC OSWI AXP images. 

An easy migration path to Alpha A.XP for two 
database rnali;lgement systems usecl in large com- 
mercial applications is the subject of a paper by Jeff 
Coffler, Zia Moh;~mecl, and Peter Spiro. Tlie authors 
define the issues involved in por~ing tlie complex 
W DBMS and Rdb/VivlS proclucts to the tutP plat- 
form. Adding to the challenge but balanced by its 
advantages was the decision to have a common 
source, or single code, base. The authors review 

this design approach and provicle tletails of tlie 
individi~al porting efforts. 

The process of porting l)C<:nct-VKX to the 
OpenV1\1S operating system is described by Jim 
Colombo, Pam Rickard, and Paul Benoit. They dis- 
cuss the DECnet features supported in the operat- 
ing system, tlie softm~are techniqi~es used, and the 
importance of the clecisio~i to build common code 
for the VAX and Alpha IU;P sjSsterns. The autliors 
share details of the port ancl lessons learned that 
can be applied to tiiture porting efforts. 

Complementary to the previously mentionecl 
prototype hartlware system are h)ur software simu- 
lators that enabled engineers to tlevelop softw;ire 
for Alpha U P  concurrently with harclware develop- 
ment. Described by George Darcy Ron Brendel; 
Steve Morris, and Mike Iles, the M;ln~iequin si~nu- 
lator was i~setl by the OpenvivlS group to boot 
the entire operating system and clebug utilities; 
the ISP simulator was used by the l)EC oSF/ l  group 
with similar success. A major section of the paper 
focuses on the Alpha User-niotle Debugging Envi- 
ronment in which user-mode code being devel- 
oped for Alpha . U P  platforms c;un be compiled and 
executed as N11h;l ILYP code. 

Tlie closing paper is an uni~si~al one for tlie 
Jo~lrnnl because it addresses engineering manage- 
ment, not strictly technical issues. Peter Conklin 
offers insights into the reasons for the success of 
one of the largest engineering programs untler- 
taken in the intlustry. He defines tlie enrollment 
management rnoclel used for tlie Alpha U P  pro- 
gram and explains key concepts, i~icluding the 
program office ;~n(l project "cusps." 

The editors are very gratefill for the help of Hob 
Supnik, Vice I'resident and (:o~-porate Consultant. 
in planning this special issue ;inti for writing its 
Foreword. 

We are also pleased to note that four papers 
in this issue ;ire being copulAislied with tlie 
Co1?~1?z~117ications of the ACII, including those o n  
the Alpha ASP architecture, the Alpha Demon- 
stration Unit, OpenvhrS~XP, ant1 binary translation. 
Barbara Watterson from Digital's semiconductor 
organization; I>i;rne Crawford, Executive Eclitor of 
the CACM; the I>TJ editors; anel the ;ii~tIiors cooper- 
ated so that these inforni;~tive papers coultl be 
niacle available to ;I broad technical audience. 
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Currently a principal software engineer, she is working on the (;EM compiler 
generator project and is responsible for tlie areas of lifetimes, storage ;II location, 
and entry-exit calls. Caroline is also a project leatler for the Intel cocle generation 
effort. ller prior miork involved the VAX FOIITRAN for IJL'I'KIX, VAX Code 
Generator, ancl FORTRAN 1V software products. Caroline has a H.S.<:.S. from the 
State University of New York at Stony Brook. 



Daniel E. Dever 1);ln Dever receiveti a I3 S E.E. degree in 1988 from the 
University of Cincinn:iti. He joined Digit;il's Semiconductor Engineering Group 
in 1988, where he worked on the tlesign ant1 logic verific;~tion of CMOS V!\X 

tnicroprocessors. Since 1990 he has been involved in the design of R1S<; arcliitec- 
ture microprocessors, including the floating-point unit of the DECchip 21064 
~ ~ i i c r o p r o c e o r  Ihln is currently involvetl in the design of integer arithmetic 
logic for the next-generation processor b:lsetl 011 the Alpli;~ t\Xll  architecture. 

Daniel W. DobberpuN Dan Dobberpulil received a I3.S.E.E. degree from tlie 
[Jniversity of Illinois in 1067 Subsequent to positions with the Department of 
Defense and Ge11er;tl Electric Company, he joined Digital's Sernicontluctor 
Engineering Group in 1976. Since that time, he has been active in the design o f  
four generations of microprocessors, including the first single-chip PDP-11 and 
the first single-chip VAX. Most recently, 1)an was the project leader for the first 
\rl.SI implementation of IXgital's new 64-bit Alpha tD(P computing architecture. 
He is co;~u t hor of the text, The Desi'yz arld ArznI)!sis of VLSJ Cir-ctlits. 

Todd A. Dutton A priticipal hartlw;ire engineer, Totld Dutton was responsible 
for the overall design integration and timing verification of the DEC 3000 AXl' 

Motlel 500. Prior to this, he led a team in developing vector processor hardware 
in the Advanced VAS Development Group. Todd joinetl Digital in 1987 Pre- 
viously, he was employed at Xumerix Corporation and at Signal Processing 
Systems. Inc. Totltl 1i;ls a 1%.S. degree in computer science from the ~Massachusetts 
Institute of Technology and was electetl to Tau Beta Pi. He lioltls a patent on vec- 
tor processor technology and has published two papers on vector processors. 

Daniel Eiref Dan Eiref joined Digital in 1987 after receiving B.S. and M S .  
degrees in electric;il engineering from <:olumbia University. At Columbia he was 
electetl to Tau Ret;~ Pi ant1 WAS awartled tlie Steven Abbey O~~tstanding Student- 
r~thlete i4m~artl. He is currently attentling Harvard Business School. A principal 
hardware engineer, Dan was responsil>le for the design of  tlie memory and clock 
systems of the l>E(: 3000 AXP Model 500. He also designetl the workstation's 
SI.I<:E and rU)l)K ASI<:s. Prior to this project, he worketl as an ECL hardware 
tlesigner in the Advancerl VAX Development Group. 

R. Neil Faiman, Jr. Neil Fai~n;ln is ;I consultant softw:ire engineer in the 
Software Development Technologies <;roi~p. He was tlie primary architect of the 
(;EM intermediate I;lnguage and a project leader for the <;EM compiler optimizer. 
Prior to this work. he led the BLISS conipilrr project. Neil c;lme to Digital in 1983 
from MDSI (now SchIu~~~berger/Applicon). He has B.S. (1974) and k1.S. (1975) 
tlegrees in computer science, both from ~Micl~igan State Ilniversity Neil is a mem- 
ber of Tau Beta I'i and A<:M, and ;In affiliate member of the IEEE Computer 
Society. 



Bruce  Gieseke Bruce Gieseke received a B.S. degree in electrical engineering 
from the University of Cincinnati in 1984. and an M.S. degree in electrical e~lgi-  
neering from North Carolina State IJniversity in 1985. In 1986 he joined Digital's 
Sen~iconcluctor Engineering Group, where he  has been e~lgagetl in the imple- 
mentation and circuit clesign of RIS<: microprocessors. 

Kent D. Glossop  Kent Glossop is ;I princip;il engineer in the Softw;ue 
Development ?'ethnologies G ~ O L I P .  Since 1987 he h ; ~ s  worked on the GEM com- 
piler sys te~n,  focusing o n  code gencr;ition and instruction-level tr;insformations. 
Prior to  this, Kent was the  project leader for a release of the VAX PWI. compiler 
and contributed to version 1 of the VAX Performance and Coverage Arxalyzer. 
Kent joinecl Digital in 1983 after receiving a B.S. in conipilter science from the 
University of Michigan. He is a meniber of IEEE. 

R i c h a r d  B. Grove  Senior consultant software engineer Rich Grove joined 
Digital in 1971 ant1 is currently in the Software Develol>ment Technologies 
Group. He has led the GEM compiler project since the effort bcg;~n in 1985, con- 
tributing to the code generation phases. Prior to this work, Rich was the project 
leader for the PDP-11 ancl \(AX F O R T R l N  compilers, \worked o n  VAX Ada V l ,  and 
was a member of the ANSI X3.13 FOK'I'RAN Committee. He is presently a member 
of the clesign team for Alpha AXI' c;illing standarcls and architecture. Rich has H.S. 

ancl M.S. degrees in mathematics from C~rnegie-Mellon University. 

S o h a  M.N. H a s s o u n  Soha Hassoun received a H.S.E.E. degree from South 
Dakota State University in 1986, ancl all S.M.E.E. degree from the Massachusetts 
Institute of Technology in 1988. From August 1988 t o  August 1991 she was 
employecl at Digital as a custom tlesign engineer in the Semiconductor 
Engineering Group. She contributetl to  the design of tlie flo;tting-point unit of 
the  I)E<:chip 21064 processor. Soha was the  recipient of a Digital Minorit)r ;in(I 
Women's Scholarship in I991 and is pursuing a 1'h.l). degree ; ~ t  the IJniversity of 
\Vashington, Seattle, (:oniputer Systems Engineering Uepartme~?t. 

Steven 0. H o b b s  A ~ n e m b e r  of the Software Development Technoltigies 
Group, Stcven Hobbs is working on  tlie GEM compiler project. In prior contribu- 
tions at Digital, h e  was the project leader for \'AX Pascal. the  lead designer for the 
global optinlizer in VAX FORTIWN, ant1 a member of the Alpha AXP architecture 
design team. Steve received his A.R. (1069) in mathematics at Dartmouth College 
and while there, helped develop the original BASIC: time-sharing system. He has 
an M.A. (1972) in m;ithcmatics from the Univel-sit). of Michigan and has done 
additional graduate work in compiiter science at Carnegie-~Mellon University. 



Gregory W. Hoeppner Gregory Hoeppner graduatetl with tlistinction from 
I'urtlue IJniversity in 1979. His research topic was ion-implanted optical wave- 
guicles. In 1980 he worked at C;ener;~l Telephone ant1 Electronics Researc1.r 
L;~bor;itor!: \vilere he performecl basic properties rese;lrch on (;ails for fabrica- 
tion of submicrometer FETs. From 1981 to 1992 he helcl ;I number of positions at 
Digitill Eqi~ipment Corporation's Nuclson, iLL\ site, including co-implementation 
1e;lcler of 1)igit;il's DECchip 21061. He is currentl). emplo!recl ;is a senior engineel- 
at III.LI,  Adv;~nced Workstation Division. 

Michael V. Iles Michael Iles is a senior technology consultant at (he UK Alpha 
MI' Migration Centre. Since joining Digital in 1975, Mike has worketl in various 
fieltl positions, in Advanced \'AX development :IS iI microcotler, and for VMS engi- 
neering as a software engineer. He worked on the migration of OpenVMS VAX to 
the Alpha AXl) platform. designing and implemcntillg a user-mode simulation 
environment that became AuD. Mike has a B . s ~ .  in electrical engineering (hon- 
ors. 1973) from City University. Lontlon. and holds a patent for tligital speech 
synthesis techniques. Hc has several patents pentling for AriI). 

Ravindran Jaga~athan Ravintlran Jaga~inathan is :I principal software engi- 
neer in the OpenVMS l'erformance Group currently investig;~ting OpcnVMS ASI '  

~nultiprocessing performance. Since 1986, he has worked on perforrn;~nce anal- 
ysis ; I I I ~  ch;~r;lcteri~;~tio~i,  ;~nd ;~lgoritlim design jn the ;ire;is of OpenVMS ser- 
vices, S>IP, \ihXcluster sjwems, ;tncl host-b;~setl volume sh;itlowing. Ravindrian 
receivecl a H.E. (honors, 1983) from the University of M;ltlras, Incli;~, and M.S. 

degrees (1986) in oper;~tions rese:~rch and st;~tislics ant1 in computer ;rncl sys- 
tems engineering from Rcnsselaer Polytechnic Institute. 

Matthew B. Kirk Matthew Kirk is ;I senior software engineer in the SE(;/I\I> 
kYI) ,Migration Tools Group, where he works o n  binary tl.;inslator de\~elopnirnr. 
testing, ant1 support. He joined Digital in 1986 ;lnd has also tlqsignccl ;ind clevel- 
oped automated architectural test software for pipelined VAX harclw:ire and the 
( 3  computer interconnect. Matthew holds it 13,s. in computer scicnce (1986) 
from the University of Massacl~usetts. 

Nancy P. Kronenberg Nancy Kro~ienberg joined Digital in 1978 and has 
cleveloped VMS support for several vrV( systems. She designetl and wrote the VklS 

CI port clriver ;111d part o f  the VkIscluster System Communications Services. In 
1988, Nancy joined the team th;~t investigated ;~lternatives to the VAX ;irchitec- 
ture ant1 drafted the propos;il for the Alpha /\XI1 ;irchitecture and for porting the 
(.)pcn\/.LlS operating sjrstem to it. N;lncy is a senior consulting software engineer 
;inti technic;~l clirector for the OpenVhIS t\Xl1 <;SOLID. She holcls ;11i !\.1$, degree in 
physics froni <':orncll University 



I 
Kathryn Kuchler Kathryn Kuchler received a R.S. degree in electrical engi- 
neering from Cornell University in 1990. Upon graduation, she joined Digital's 
Semiconductor Engineering Group, where she worked on tlie first implementa- 
tion of a RISC microprocessor basecl on the Alpha AXP architecture. 

Hugh R. Kur th  Hugh Kurth joined Digital in 1986 after receiving a R.S. 
degree in electrical engineering, computer engineering, and mathematics from 
Carnegie-Mellon University. At Carnegie-Mellon, he was elected to Eta Kappa Nu 
and was awarded the David Tuma Undergraduate Laboratory Project Award. 
A senior hardware engineer, Hugh designed the TCDS ASIC and SCSl subsystem 
for the DEC 5000 AXP Model 500. Prior to this work, lie designed floating-point 
hardware for two projects in the Advanced VAX Development Group. 

Maureen Ladd Maureen Ladd received a B.S degree in computer engineering 
frorn tlie University of Illinois in 1986. She then joinecl tlie Semiconcliictor 
Engineering Group within Digital and worked on a 32-bit RISC microprocessor. 
Maureen received an M.S.E. degree in electrical engineering from the University 
of Michigan in 1990 through Digital's Graduate Engineering Education Program. 
Upon her return to Digital, she worked on the implementation of the first micro- 
processor based on tlie Alpha AXP architecture. 

Burton M. Leary Mike Leary is currently a consulting engineer in the 
Semiconductor Engineering Group/Advanced Developn~ent Memory Groi~p. He 
designed the instruction and data caches for the DECchip 21064 CPlJ and is cur- 
rently working on the design of advanced memory products. Milze joined Digital 
in 1980 after receiving a B.S.E.E. degree from the University of Massachusetts. 

C 
Liam Madden Liam Nladden joinecl Digital in 1984 and has since designed 
both ClSC and RISC microprocessors and contributed in the area of CMOS process 
development. He is currently a consultant engineer in Digital's CPU Advancecl 
Development Group and his interests include circuit design and CMOS tech- 
nology development. Prior to joining Digital, Liam designed industrial micro- 
controllers for ~Mahon and McPhillips, Ireland, and worked for Harris 
Semicontluctor. He received a B.S, clegree from University College Dublin in 1979 
and an M.E. degree from Cornell University in 1990. 



Maurice P. Marks Maurice Marks is a senior engineering manager in the 
Semiconcluctor Engineering Advanced Development Group. He currently man- 
ages the AXP Migration Tools Group and contributed to the design and imple- 
mentation of the translators. In Maurice's twenty years with Digital, he has led 
compiler, operating system, hardware and software tools, CAD, system, and chip 
projects. He holds B.Sc. and B.E. degrees from the University of New South Wales 
ant1 l~as publishecl papcrs on transaction processing, software portabilic): and 
CAD technology. Maurice is a member of the Australian Computer Society. 

Barry A. Maskas Barry Maskas is the project leader responsible for architec- 
ture, semiconcluctor technology, and development of the t>EC 4000 AXP system 
buses, processors, and memories. He is a consulting engineer with the Entry 
Systems Busi~~ess C;roup. In previous work, he was responsible for the architec- 
ture and development of custom vLS1 peripheral chips for VAX 4000 and MicroVAX 
systems. Prior to that work, be was a codesigner of the MicroVAX 11 CPU and mem- 
ory modules. He joined Iligital in 1979, after receiving a R.S.E.E.  from Pennsylvania 
State University. He holds three patents and has eleven patent applications. 

Edward J. McLellan Etl McLellan is a principal engjneer in the Semi- 
contluctor Engineering Group. He has co~ltributed to the design of several pro- 
cessor chips. Ed joined Digital in 1980 after receiving a B.S. degree in computer 
and systems engineering from Rensselaer Polytechnic Institute, where he was 
elected to Eta Kappa Nu. He holds three patents in computer design and l~as one 
application pentling. 

Derrick R. Meyer Dirk Meyer joined Digital's Senliconductor Engineering 
Group in 1986. He was initially involvetl in the design of the cache and memory 
systems for a chilled CMOS VAX processor. He 11% since been involved in the 
development of n~icroprocessors based on the Alpha AXP architecture. Prior to 
joining Digital, he was employed at Intel Corporation, where he was involved in 
the design of various CMOS microcontrollers, inclucling the 80C51 and 80~196. 
Dirk received a R.S. degree in compilter engineering from the University of 
Illinois in 1983. 

Zia Mohamed Zia Mohamed has been a member of the Database Systems 
Group since joining Digital in 1989. He works in the area of query optimization 
for the DEC Rdb for OpenVMs products; his contributions involve cost-based 
optimization of database queries and algorithms for execution of optimized 
cluery plans He has tleveloped clynamic O I ~  optimization techniques, refine~netlt 
of cost-model, ant1 algorithms for better access plans for views. Zia holds a B.S. 
tlegree in electrical engineering from Bangalore Universit): India, and an M.S 

degree in cornpiitcl- science from Texas Tech Universit)! 



James Montanaro James Montanaro received B.S.E.E. and M.S.E.E. degrees 
from the Massachusetts Institute of Technology in 1980. He joined Digital 
Equipment Corporation in 1982. He was a circuit designer on the floating-point 
chip for the LSI 11/74 and a MicroVAX peripheral chip. He led the physical imple- 
mentation of the uPRrSM CI'IJ, a 70-MHz prototype RlSC CPU completed in 1988. 
James also led the pllysical implementation of the first CPU chip based on the 
Alpha AXP architecture and then contributed as a circuit designer for the 
DECchip 21064 CPU. He is currently with Apple Computer, Inc. 

Stephen J. Morris Stephen Morris is a consultant software engineer in the 
Semiconductor Engineering Advanced Development Group. In addition to writ- 
ing the Alpha ISP simulator, he  wrote the OpenVMS antl OSF PALcode for the 
Alpha AXP program. In previous work, Stephen designed the control sections of 
the instruction prefetch and translation look-aside buffer for an experimental 
Digital MS<: chip. He also worked on the MicroVAX chip team, doing console ant1 
debug work, and in the RSTS/E operating system group. Stephen joined Digital 
after receiving a U i\ in biology from the University of Rochester in 1977. 

William B. Noyce Senior consultant software engineer William Noyce is a 
member of the Software Development Technologies Group. He has developetl 
several GEM comp~ler optimizations, inch~ding those that eliminate branches. In 
prior positions at Digital, Bill implementetl support for new disks and proces- 
sors on the RSl'S/E project, led the development of VAX DBMS V1 and VAX 

RdbNMS V1, and designed and implemented automatic parallel processing for 
VAX FORTIIAN/HPO. Bill received a B.A (1976) in mathematics from Dartmouth 
College, where he implemented enhancements to the time-sharing system. 

Donald A. Priore After receiving an S.M. degree in electrical engineering and 
computer science from the Massacli~lsetts Institute of Technology, Donald 
Priore joined Digital in 1984. Initially, he worked on device characterization, 
yield enhancement, and yield modeling of NMOS and CMOS processes in manu- 
facturing. Subsequently, he joined a CMOS design group, working first with 
low-temperature CMOS technology and later with conventional CMOS in high- 
performance microprocessor design. His interests include signal, clock, and 

- power integrity in the on-chip environment. 

Vidya Rajagopalan Vidya Rajagopalan received a B.E degree in electronics 
engineering from Visvesvaraya Regional College of Engineering, Nagpur, India, 
in 1986, and an M.S. degree in electrical engineering from the University of 
Maryland in 1989. She was with Norsk Data India Ltd, from 1986 to 1987 as a 
systems design engineer. In 1989 she joined Digital's Semiconductor Engineer- 
ing Group and was a member of the design team of the DECchip 21064 RISc 

microprocessor. Vidya i s  currently involvecl in the design of high-performance 
microprocessors. 



James J. Reisert A senior hardware engineer.Jim Reisert designecl the TC ASIC 

for tlie DE(: 3000 AX[' Moclel 500. I'rior to this project work, he designed instruc- 
tion parsers/decotlers for two \RX imp1ement:itions. Jim holtls a patent for his 
tlesign of a method for replaying instructjons after a microtrap. Before joining 
I>igital in 1986. he received an S.B. in electrical engineering from tlie Massa- 
cliusetts institute of Technolog)! He is currently in charge of timing verific;ition 
h)r another AXP workstation. 

Pamela J. Rickard Principal software engineer Pan1 Rickard is a member of 
the team porting DECnet/OSI for OpenVMS to tlie Alpha AS1' pl;rtform. As the ini- 
tial member of the DECnet for OpenVMS AXP porting team, Pam took responsi- 
bility for creating an effective team, ported NETDRIVER ant1 other MACRO-32 
cocle, atitl debugged major portions of the portecl product. Si~lce joining Digital 
in 1978, she has contributed to I.'hTHWORKS for OS/2 ant1 led the console, 
microcode, and system test activities of the VAX-11/785 project. Pam receivecl a 
H.S. (1970) in mathematics and computer science from the IJniversity o f  1)enver. 

Scott G.  Robinson Scott Robinson is a software engineering mirnager in the 
AXP Migration Tools Group. He contributed to the design ant1 implementation of 
the binary translators, particularly the \'AX tratislatecl iniagc environment. Scott 
has also developed iniplementations of DE<:net ilntl CAI)/<:ANl systems to design 
\%X processors. Prior to joining Digital in 1978, Scott worketl on ;I vi4riety of 
Digital hardware ant1 software implementations. He holds a B.S. in electrical engi- 
neering from the University of Arizona anel is a member of IEEE. 

Sridhar Samudrala Sridliar Sa~~iutlrala is ;I consulting li;rrtl.iv;~re engineer in 
the Semicontlirctor Engineering Group, where lie is currently working on a new 
(:I'[I chip. He joined Digital in 1977. Since t1i:rt time, lie h;rs \vorketl o n  tlie design 
and verification of PDPil1/23 chips, VAX 8200 micrococle tlevelopnient, ancl on 
the ;rrchitecture ;~ntl design of floating-point chips. He holtls t\vo p:ttcnts :rnd has 
three patent app1ic;rtions pending, all on floating-point design. Sritlhar received 
;III M.Sc. ('Tech) tlegree from Antlhra Universit); India, and ;III M.S E.E. tlegree fron'l 
the llniversity of Wisconsin. 

Sribalan Santhanam Sri Santhanam receivccl a n .E .  degree in e1ectric;il cngi- 
neering from Anna University, Maclr;~s, India, in 1987, anel an M.s.E. dcgrcc in co~il- 
lxtter xiecne crntl engineering from the University of Michigan in 1089. I Jpon 
gratluation, he joined Digital as a design engineer h)r the Semicontluctor 
Engineering Group, responsible for tlie full-custo11-1 tlesign rind clevelopnient of 
high-perform;~nce CMOS VLSI processors. Sri worked on the design of the flo;ct- 
ing-point unit of the UECchip 21064 CPU. He is currently involveel in the tlesig~l of 
another high-performance microprocessor. 



Stephen F. Shirron Stephen Shirron is a consulting software engineer in the 
Entry Systems Business Group and is responsible for Open\/MS support of new 
systems. He contributed to man)' ;lre;is of the I>EC 4000, including PALcode, con- 
sole, and OpenVMs support. Stephen joined Digital in 1981 after completing B.S. 

ant1 MS. degrees (summa cum lautle) at <>~tholic University In previous work, he 
tleveloped an interpreter for VAX/Smalltalk-80 and wrote the firmware for the 
ItQDX3 disk controller. Stephen has two patent applications and has written a 
chapter in Smc~lltalk-80: Hits of lfistor:~~, Words oJAdi)ice. 

Richard L. Sites Dick Sites is a senior consultant engineer in the Semicon- 
tluctor Engineering Group. where he is working on binary translators ;~ntl tlie 
Npha AXP architecture. He joined Digital in 1980 and I~as contributecl to v;lrious 
VAX implementations. Previously, he was employetl by IBhl, Hewlett-Packard, 
and Burroughs, and taught at the I.iniversit)' of C;~lifornia. Dick received a 13,s. in 
mathematics from MIT and a Ph.1). in computer science from Stanford University 
He also studied computer architecture at tlie Ilniversity of North Carolina. He 
Iiolds a number of patents on computer hnrclware and software. 

Peter M. Spiro Peter Spiro. ;I consulting software engineer, is presently the 
technical director for the Rdl:, ant1 IIt3;MS software proclucts. Peter's current focus 
is database performance for Alpha AXl' systems and very large database issues. 
Peter joined Digital in 1985, after receiving 1M.s. degrees in forest science ant1 
computer science from the Ilniversity o f  Wisconsin-Madison. He has f o u r  
patents related to database journaling and recover): and he has authoretl two 
papers for earlier issues of the L)i<yilzil Techi~icalJour~znL, 

Lawrence C. Stewart Larry Stewart received an S.U.  in electrical engineering 
from M1'1 in 1976, followed by M.S. (1977) and P1i.D. (1981) degrees from Stanfortl 
IJniversity, both in electrical engineering. His PI1.D. thesis work was on data com- 
pression of speech waveforms using trellis cotling. Upon graduation, he joinetl 
the Computer Science Lab : ~ t  the Scrox Palo Alto Resr:~rch Center. I n  1984 he 
joined Digital's Systems Research Center to work on the Firefly multiprocessor 
workstation. In 1985) he moved to Digitnl's Gunibridge Research Lab, where he is 
currently involved with projects relating to multimetlia ant1 A X P  products. 

Robin L. Stewart Robin Stewart joined I)igit;~l in 1986 after receiving a 1l.s. in 
electrical engineering from tlie University of \/ermont. She is in the process of 
obtaining an M.B.A.  degree from Boston College. A senior technology (liartlware) 
engineer, Robin had responsibility for the integrated circuit teclinolog)~ in the 
I>EC 3000 a P  Moclel 500 workst:ttion. Prior to this project work, she was a com- 
l~onent engineer in Digital's Semiconductor Hi~siness Organization. 



Charles P. Thacker Chuck Thacker h;~s been with 1)igital.s Systems Research 
Center since 1983. Ikfore joiiiing Digitill, he was a senior rese;trch fellow at the 
Xerox I'alo Alto Rcsearch Center. His research interests inclutle computer archi- 
tecture, comprlter networking, ;inti computer-;~ided clesign. He holds several 
patents in the ;ires of computer organization :u~tl is coinventor of the Ethernet 
local network. [ t i  1984. Chuck was the recipient (with B. Lampson and R. 
T;~ylor) o f  the i\(:kl Software System Award. He received :In A.H. degree in physics 
from the ljniversity of California in 1967. He is a member ofACM and IEEE. 

Benjamin J. Thomas 111 Benjamin Thom;~s joined the OpenVMS AXIJ project 
in 1989 ;IS project leader for I/O subsystem design ;mcl porting. In this role, he has 
also contributetl to the I/O architecture of current ancl future AXP sgtenls. Ben 
joined Digital in 1982 ant1 has worked in the VklS g r o i ~ ~  since 1984. In prior 
work, he WAS the director of software engineel-ing ;it ;I microcomputer firm. Ben 
is ;I consulting engineer and has a H.S. (197%) in physics from tlie University o f  
New Hampshire :ulid an M.S.C.S. (1990) from Worcester Polytechnic Institute. 

Catharine van Ingen A consulting softw;lre engineer, <:atliarine van Ingcn 
was co-system ;~rchitect for the \'A)(. and [>I':(: 7000 proclucts. is cur- 
rentl!, o n  Ie;~ve from Digital and is n7orking 011 engineering document manage- 
ment in large heterogeneous systems. Hefore joining Digital in 1987. she worked 
on d;lta ncquisition systems for two I;irge physics tlctectot.~ :it tlie Ferrni N;ltio~l;iI 
Acceler;~tor 1.abor;ttory and Stanfortl Linc;ir Acceler;~tor Center. She holcls serf- 
era1 clegrees in civil engineeri~ig, inclutling a 13 s. ;untl ;In k1.S. from the University 
of <hlifortlia :uncl a 1'h.D. from the California Institute of Technology. 

Nicholas A. Warchol Nick Warchol, a consulting engineer in the Entry 
Systems Ii~isiness <;soup, is the project le;itler responsible for I/O architecture 
and I / ( )  rnoclule tlevelopment for the DE(: 4000 AXI' systems. In previous work, 
he contributeti to  he development of VAX 4000  s)rstelils. He was also a tlesigner 
of the MicroV,\\S 3300 and 3400 processor moclules and the RQDXJ disk con- 
troller. Nick joined 1)igitnl in 1977 ;lfter receiving a I3.S.E.E. (cum 1;rude) from the 
New Jersey Institute of Technology. In 1984 he received an k1.S.E.E. from 
Worcester Polylechnic Institute. He h;~s hmr patent :ipplications. 

Richard T. Witek Rich Witek joined l>igit;~l in 1977 to work on DE(:net 
network nrchitecture during Phase 11. In 1982 lhe joined lligital's Semiconductor 
Engineering < ; S O L I ~ ~  where he worked o n  <:,\I> rlevclopment, MicroVAX VLSr 

chil>s, ant1 ;I variety of internal MS<: projects. Rich \v;~s ;I coclesigner of the ALpha 1 'w!. 1 - 

.\XI' ;uchitectilre :rntl the principal micso;~rchitect of the DECchip 21064 CP11 
chip. He recei\rctl a 13.,1. degree in computer sciencc from 11uror;a College. Rich is 
currently employed by Apple Computer. Inc. 



I Foreword 

Robert M. Supnik 
Corporate Consultant, 
Vice Preside~zt 
Tkch~icnl Llirectol; 
Engineering 

I t  all started with eight people in a conference 
room.':' 

The time was the summer of 1988. Digital 
Equipment Corporation had just closed the best 
fiscal year in its history, with record revenues ancl 
profits. Digital's vA>; systems were the most widely 
i~secl timesharing systems in the intlustry and were 
the "blue-ribbon standard" for mid-range comput- 
ing. Digital was tlie second-largest workstation ven- 
dor. The company hat1 just introducetl the VA>( 6000 
system, its first exlxmdable multiprocessor, was 
deveJ.oping a true VAX mainframe, ancl had decided 
on a rapid thrust into lilSC workstations to capital- 
ize on that growing market. What could possibly go 
wrong? 

Nonetheless, senior managers and engineers saw 
trouble ahead. Workstations hat1 displaced VAX W S  

from its original technical market. Networks of per- 
sonal computers were replacing timesharing. 
Application investment was moving to standarcl, 
high-volume computers. Microprocessors had sur- 
passed the performance of traditional mid-range 
computers ant1 were closing in on mainframes. And 
aclvances in RISC technology threatened to aggra- 
vate all of these trends. Accordingl): the Executive 
Committee asketl Engineering to develop ;I long- 
term strategy for keeping Digital's systems cornpet- 
itive. Engineering convened a task force to study 
the problem. 

l'he task force looked at a wide range ofpotential 
solutions, from the application of atlvancetl pipe- 
lining techniques in Vtm systems to the tleployment 
of a new architecture. A basic constraint was that 

the proposed solution l~acl to provide strong conl- 
patibility with current products. After several 
months of study, tlie team concluded that only a 
new RISC architecture could meet the stated objec- 
tive of long-term competitiveness, and that only the 
existing VMS and UNlX environments coulcl meet 
the stated constraint of strong compatibility. Thus, 
the challenge posed by the task force was to design 
the most competitive MS<; systems that would run 
the current software environments. 

Key groups in Engineering responded to this 
challenge. A cross-functional team from hardware 
and software defined the basic architecture. 
Advanced development teams began work on the 
knotty eiigineering problems: it1 the serniconduc- 
tor group, the specification ant1 design of a fast 
microprocessor, and the automatic translation of 
executable binary images; in the operating systems 
groups, on the porting of ULTRlX and of VMS (which 
was not portable!); and in the compiler group, on 
superscalar code generation. In the fall of 1989, 
Alpha became an officially sanctioned advanced 
development p r ~ g r a m . ~  In the summer o f  1990, it  
transitioned to product development. 

From the original core in semiconductors, oper- 
ating systems, and compilers, work expantlecl 
throughout Engineering. The server and work- 
station hardware groups specified and started 
designing a family of systems, from desktop to clata 
center. The networks group began porting DE<:net, 
TCP/IP, X.25, LAT, ant1 the many other network- 
ing products. 'l'he layeretl software group inve~l- 
toried the existing portfolio of products and 
prioritized the ortier and i~nportance of clelivei-J: 
The research group pitched in by designing an 
experimental multiprocessor as a software devel- 
opment testbed. 

In parallel with the engineering work, market- 
ing, sales, and service teams worked closely with 
business partners and customers to shape tlie tleliv- 
erables and messages to meet external require- 
ments. These teams briefed key customers ancl 
partners early in the development process ant1 

The Corona Borealis conferencr room in the LTNI f:~ciljry in 
Littletoi~. Mass. !,I4N1 was clloscn bec:~ilsc ~t nins thc geogr;~phic 
epicenter of the arc o f  Digital engineering k~cilities on ,\lassa- 
chusetts Koc~te 495, the Corona Borealis bec:~use it was the 
only conference room mith ~.c'iotlo.ivs. 

+ M e r  going through Illore than one nanlc change. Thc original 
study team was c;~lletl the 'RIS(:y \'AX Tksk Forcc:"The 
;~tlvanced tlcvclopment nlorli W;IS labeled "EVhX:' W l ~ e ~ i  rhc 
program w;kh al,provetl, the Executive Committee den~;~ntletl ;I 

n r ~ ~ t r a l  code tl;lrne, hence "Alph;~." 



incorporated their aclvice into the develol~ment 
prog~-:lm. Ongoing partner ant1 customer aclvisory 
bo;~rtls provitlecl 1-egr1l;ir !kc.tlb;~ck on all aspects 
of the 1xogr;Im ;uicl helped shape two critic;il 
extensions of the original concept: the open licens- 
ing of Alpha technology. and the porting of 
Wi ndo\vs N1'. 

Taken together. the scope of the Engineering 
effort, the ~ieetl for il1:lrketing. Field, and Service 
involvement, ant1 the liigli degree of customer antl 
bilsiness partner p;~rticipation, posed irniclue man- 
agement challenges. Rather than organize a large- 
scale hierarchical project, the company chose to 
manage Alpha as a clistributed program. A small 
progr;lni te;m irsed enrollment m;~nagernent prac- 
tices ancl strict operation;~l discipline to coortlillate 
and inspect activities ;Icross the cornp;lny. This net- 
worked appro;~ch to n1;ln;lgernent g;ivc the program 
both flexibility ant1 resiliency in the face of rapitlly 
changing business and organizational conditions. 

The work of Engineering, M;~n~~hcturing. M;II-- 
keting, Sales, and Service c;rme together in Noveni- 
ber 1992 with the annoilncement of the Alpli;~ &XI' 
systems family: seven s),stenls, three operating sys- 
tems, six languages, multiple networks, migration 
tools, open licensing of technology, hartlwilre ancl 
software partnersl>ips, and more than 2000 com- 
mitted applic;~tions. Totl;~; A l p h : ~  ASI' e~iibodies 21 

fi~ndamental repositioning of 1)igit:il Equipment 
Corporation to be the technology alitl solutions 
leader in twentjyfirst centrlry conipi~ting: ;I com- 
pan). dedicated to meeting customers' neetls n~ith 
the best computing, business, ancl service technol- 
ogy available. The tlelivery o f  Alpl~a AXI' recluired 
the largest engineering progr;lm in 1)igit;il's histor): 
spanning lllore tli;tn twenly Engineering groups 
worldwide. This issue o f  tlie lli~qit~il Exlnt?icnl 
Jozrrr?al documents just ;I few of tlie lli~ntlreds of 
projects involved in bringing Alph:c to fruition; 
filture issues will continue the story. 
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Alpha AXP Architecture 

The Alpha A X P  64-bit conzptiter. arcl~itect~ire is designed for. high pefonizance G I H ~  

l o r~~ev i t l !  Bewi~ise oftlnefoc~is or1 i ~ ~ ~ ~ l t i p l ~ i l i s t r ~ ~ d i o r ~  iss~/e, the ar-chitectui~ does 
not contain jhcilities s~ich cis brc~~zch ~ l e l c ~ ~  slots, lyte zur3ites, arzclprecise arithnzetic 
e,vceptions. Brccluse of the focus 012 multiple processors, the architecture does con- 
tail? a careful shared-memory rrzodel, atomic-tipdate pri~nitire i~zstluctio~zs, atzd 
r.elcixed read/ii~rite orcleri~zg. T l ~ e  first itrzplenzentation ofthe Alpha A X P  arclgitec- 
ture is the zi~orld'sfastest sirzgle-chill ~~zicr~oprocessor The DECtbip 21064 r.utzs 11zulti- 
ple operwti~~g sjsterns and r ~ i ~ z s  nati~le-conzpiled progra~rzs that were tra~ulated 
fro111 the 1!4X arzd 11.flPS architect~ires. 

Thus in all these cases the Romans did what all 
wise princes ought to [lo; namely, not only to look 
to  all present troilbles. I,ut ;~lso to those in tlie 
fut~lre, ;lgailist which they provided with the 
Lltniost prudence. 

-Niccolo Machial-i-lli. The Y~Yrrce 

Historical Context 
The Alpha I U P  architecture grew out of a srn;~ll task 
force chartered in 1988 to explore ways to preserve 
the VAX VMS custon~er  base through the 1990s. This 
group eventually came to the conclusion that ;I new 
retlucecl instruction set computer (RISC) architec- 
ture would be neecled before the turn of the cen- 
tury, primarily because 32-bit architectures will run 
out of address bits. Once we 11i;ltle the decision to 
pursue a new architecture, we shaped it to do 
much more than just preserve the VL I 15 .' customer 
base. 

This paper cliscusses the architecture from a 
number of points of view. It begins by making the 
distinction between ;lrcIiitecture and implementa- 
tion. The paper then states the overriding arclii- 
tectural goals and cliscusses a number of key 
arcli i tect~~ral  decisions that were derived directly 
from these goals. The key clecisions distinguish the 
Alpha A X P  architecture from other architectures. 
The remaining sections of the paper discuss the 
;irchitecture in more (letail, From data and instruc- 
tion formats through the detailed instruction set. 
The paper conclirtles with a discussion o f  the 
designed-in fu t i~ re  growth of the architecture. An 
Appenclis explains some o f  the key technical terms 
l~secl in this paper. These terms are highlightecl 
with ;In asterisk in tlie text. 

Architecture Distinct 
from Implementations 
From tlie beginning of the Alpha AX[' design, w e  
distinguished the architecture from tlie implemen- 
tations, following the distinction made by the IL\M 
System/360 architects: 

Computer ;~rcliitecture is tlefinetl as cl~c ;~tt[.ibutes 
ant1 behaviol. o f  ;I computer as seen by :I mz~chine- 
language I,rogr:unmer. This definition includes the 
instruction set, instruction formats. oper:~tion 
codes, addressing motles, and all registers ;~ntl 
memory loc:rtions th;~t may be tlirec[ly m;~nipu- 
laced by a machine-1:lnguage progr;lninier. 
1mplement:itioll is tlefinccl as the actu:~l h;trdw;~re 
structure, logic design. and data-path org;~nization 
of a particular embotliment oF the architecture.' 

Thus, the architecture is a d o c ~ ~ m e n t  that 
describes the behavior of all possible irnplementa- 
tions; an implementation is typically a single com- 
puter c h i p 2  The architecture and software written 
to the architecture are intended to last several 
decades, while indivitlual implementations will 
have much shorter lifetimes. The architecture must 
therefore carefi~lly describe the behnvior that a 
machine-langu:lgr programmer sees, but must not 
describe tlie nie;lns by which a p;lrticul;~r imple- 
mentation achieves that behavior. 

A similar appro;~ch has been used with much 
success in specifying the PDP-11 ant! VtlX klmilies of 
computers. An alternate approach is to design and 
build a fast RISC chip, then wait to sce if it is suc- 
cessful in the marketplace. If so, successive imple- 
mentations are often forced to reproduce accidents 
of the initial design, or  to introduce slight software 
incompatibilities. This approach works, but with 
varying success. 
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Architectural Goals 
When we st;irted the tletailetl clesign of the Alpha 
AXP architecture, we had ;I short list of goals: 

1 .  High perfi)rrnance 

3. Capability to run both Vh1S ;lnd IJNIX oper;iting 
s!stems 

4 Easy migr;ition from Vr\X ancl MIPS architectures 

Tliese goals directly influencecl our key decisions 
in clesigning tlie architecture. 

In consiclering performance atlcl longevity, we 
set a 15- to 25-year design horizon and tried to avoitl 
any clesign elements that we thought could hrco~iie 
limitations during this ti~iie. In current arcliitec- 
tures, ;I primary limitation is the 32-bit memory 
address. Thus we adopted a fill1 64-bit architecture, 
with :I mjnimal number of 52-bit operations for 
backw:irtl compatibility. 

W'e also cotlsidered how implenietitation perfor- 
mance shoi~ld scale over 25 years. During the p;ist 
25 ye:irs, computers have become about 1,000 
times faster. Therefore we focusetl our design deci- 
sions on :~llowing Alpli;~ ASP system imple~nentn- 
tions to become 1,000 times kister over tlie coming 
25 years. 111 011s projections of future perforni;ince, 
we re;lsoned that raw clock rates woulcl improve by 
a factor of 10 over that time, ant1 that other tlesign 
dimensions would have to provide two niore kic- 
tors of 10. 

If the clock cannot be made fastel; then more 
work milst be done per clock tick. We therefore 
designed the Alpha AXP architectirre to encourage 
~nultiple instruction issue" implementations that 
will eventi~;illy sust:iin ;~l)oi~t ten new instructions 
starting every clock cycle. This aggressive tech- 
nique of starting multiple instructions distin- 
guishes tlie Alpha AXI' architecture froni many 
other I<ls(: ;irchitectirres. 

The remaining factor of 10 will come from m~ilti- 
ple processors. A single s).stem will cont;~in per- 
11;ips tell processors ant1 s1i;ire memory. We 
therefore designed a niultiprocessor memory 
model :incl matching instructions from the begin- 
ning. 'This early accommotl;ition for multiple pro- 
cessors also distingi~ishes the Alpha AXI' 

architecture from many other RlSC architect~rres, 
which try to atltl the proper primitives later. 

To run the OpenVMS AM-' and the DE<: OSF/l 
AXP-;inel now the Microsoft Wjntlows N'Y-operat- 
ing systcms, we adopted ;111 itlea from :I previous 

Digital RIS(: clesign cnlletl I ' R I S M . ~  We p1:icetl the 
underpinnings for interrupt tlelivery ;uid ret i~m, 
exceptions. context switchitig, memory manage- 
ment, ant1 error hantlling in a set of privileged 
sol'twarc subroutines c:~lled I'r\Lcotle. These sub- 
routines have control let1 entry points, run with 
interrupts ti~rned off, ;~nd 11;lve access to real hard- 
ware (implementation) registers. By inclueling tlif- 
ferent sets of PA1.code h)r different operating 
systems, neither the harclware nor the operating 
system is burclened wit11 ;I b;itl interface m;~tch, anti 
the arcl~itecture itself is not bi:isetl tow;ircl a partic- 
ular compi~ting style. 

To r u ~ i  existing V A ~  and MIPS binary images, we 
atloptetl the idea of bin;rry tr;msl~~tion,':' as tlescribed 
in n cornpanion  paper.^.^.'^ The co~iil,in:ttion of 
Pr\I.cocle anel binary transl;ition gave us tlie luxury 
of designing ;I new architecture. Other tli;ln the h ~ n -  
clamental integer and floating-point tlata types. 
there ;Ire no specific VAX or M ~ P S  features carried 
directly into tlie Alpha i\>;ll instruction-set architec- 
tilre for compatibility re;isons. 

Key Design Decisions 
This section presents the design tlecisions that clis- 
tinguisli the Alp1-1;~ AXI' arcl~itccture from others. 

Tlie Alpha AXP architecture is ;I tradition;il HIS<: 

loacl/store ;irchitecture, All ti;it;i is J I I ~ V ~ ~  between 
registers ;inti Iiletnory without cornpiitalion, ;lnd ;il l  

'ISteI-S. computation is done bctwcen values it1 re&' 
Little-entlian byte adtlressing ;lnd both VAX and IEEE 
floating-point operations':' arc carried over from the 
\biS ;ind %]IPS ;~rchitecturcs.- We assumed th;it most 
irnpleoicntations woultl pipeline instrilctions, i . ~ . ,  

they woulcl start execution o f  a second, thircl, etc. 
instruction before the execution of ;I first instruc- 
tion con~pletes. We ;~ssunirtl that the implementa- 
tjon Iiitency of ni;lny oper;itions would be 
import;int. L;itency is the number of cycles ;I pro- 
gr:111i I ~ ? L I S ~  wait to i~ sc  tlie result of a preceding 
instruction. We assumetl that the vast majority of 
memory operands woultl be aligned. An ;iligned 
operand of  size 2**N bytes" has an adclress with N 
low-orcler zeros. Other memory oj>erantls ;ire 
tenlied u11:iligned. 

Fz~ll64-bit Design 
Tlie Alphii hXl' architecture uses a linear::' &-bit vir- 
tual ;~ddress space. Registers, acldresses, integers, 
f1o:iting-[?oilit numbers, :inti character strings are 



;ill operated on ;IS full &-bit qi~antities. There ;Ire 
no segmented atldresses." 

Register File 
In choosing the register file design, we consideretl 
both a single combined I-egister file ant1 split integer 
and floating-point register files. We chose a split 
register file to support aggressive multiple issue. A 
combined file is somewhat more flexible, espe- 
cially for programs that are heavily skewed toward 
integer-only or floating-point-only computation. A 
combined file also makes it easier to pass a misture 
of integer and floating-point subroutine parameters 
in registers. However, split files ;illow graceh~l two- 
chip implementations ant1 smaller integer-only 
implementations. They also need fewer read/write 
ports per file to sustain a given amount of mi~ltiple 
instruction issue. 

We ;ilso considered whether e;icli file s h o ~ ~ l d  con- 
t;iin 32 or 64 registers. We chose 32, largely hecause 

1. Thirty-two registers in each file are enough to 
support at least eight-way multiple issue. 

2. Two valuable instruction bits are better i~sed to 
make a 16-bit tlisp1:icenient fjelcl in memory- 
h)rmat instructions. 

More registers might seem better, but excess reg- 
isters consume chip area and access time, 
save/restore speetl across subroutines and context 
switches, and instruction bits that might be put to 
better use. Compilers can deliver substantial per- 
h)rm;~nce gains when given 32 registers instead of 
16, but there is no clear evidence of similar gains 
with 64 registers. Deniantl for registers is likely to 
increase slowly in the future, but a number of 
implementatio~l techniques, such as short latency 
pipelines ant1 register renxrning, shoultl satisfy this 
demand. 

Mtiltiple I~zsl'ructio~z Issue 
Our design sought to eliminate any mechanism that 
would hinder aggressive multiple instruction issue 
implementations. Therefore we tried to ;ivoitl ;II . I  
special or Iiidclen processor r e sou rces .~hus ,  the 
Alpha AXP ;lrchitecture 1i;is no condition codes, no 
glolx~l exception enables. no multiplier-quotient or 
string registers, no bsanch delay slots, no sup- 
pressed instructions or skips, no precise arithmetic 
exceptions, and no single-byte writes to memory. 
All of these features, found in some 1US(: :~rchitec- 
tures, have the effect of hintlering multiple instruc- 
tion issue, or hinclering pipelining of multiple 

instances of the same instruction. For example, a 
dedicated string wgister makes it hard to 11;lve three 
unrelated string operations in the pipeline at once. 

To illustrate the performance loss associated 
witli special or liitltlen processor resources, con- 
sider a dual-issuc implementation witli ;I four-cycle- 
deep pipeline. At the beginning of each cycle. up to 
six prior instructions are partially executed and 
two more are about to be issuetl. Six prior instruc- 
tions can have six pending writes to result regis- 
ters, plus six sets of side effects on special or 
hidclen processor resources. The next two instruc- 
tions can specify ;I total of four operand registers, 
two more result registers, ant1 two more sets o f  sitle 
effects on special or hidtlen resources. The decision 
to issue 0, 1, or 2 of the next instructions involves 
36 simple comparisons of pairs of register numbers 
and 12 complex coniparisons of sets ofsitle effects. 
The number of sucll comparisons incre;ises as a 
function of the issue width, the pipeline tlepth, and 
the number of special or hicltlen processor 

' I lsons resources. The complexity of these comp-I -' 
can limit the clock rate. The register-number con]- 
pr isons are unavoicl;tble, therefore we triecl to 
lj~nit special or Ilidtlen processor resources. 

Bmrzcb Delay Slots The Alpha AX]' ;irchitecture 
has no brancl-1 delay slots. The branch tlelay slots 
found in some KISC architectures require exactly 
one following instruction to be executetl after a 
conditional br;incIi. In 1988 this was, perIi;ips, a 
goocl itlea for overlapping branch Intenclr jn a sin- 
gle-issue chip with a one-cycle instruction cache. In 
1995, however, it will not scale well to a h)ur-w~y 
issue chip with a two-cycle instruction cache. 
Illstead of one instruction, up to eight instructions 
would be needed in tlie delay slot. Br;uncli del;~y 
slots also introtluce ;I restart problem jf the instruc- 
tion in the tlela)~ slot fiiults: one restart pr.ogr;rm 
counter is needed for the delay slot and ;inother one 
for the actual br;inch target. 

Slippressed Iizstructioizs The Alpha A X P  archi tec- 
ture has no suppressecl instructions, wllerehy tlie 
execution of one instruction conclition;llly sup- 
presses a 1-01 Lowing one. Suppressetl (or skipped) 
instructions are fountl in other RISC architectures. 
The suppression bit(s) represent nonreplicated 
hidden state, so multiple instruction issue is diffi- 
cult for more than one potential suppressor. If an 
interrupt is taken between a suppressor ;uncl sup- 
pressee, or i f  the silppressee takes a rest;~rtable 
exception (e.g., page fault), tlie correct version of 
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tlie suppression state 111irst be swed ant1 restored. 
There are ;~lso clefinitiotlal problems with this 
;ipproach: Are exceptions ever reported for sup- 
pressed instructions? What happens if the sup- 
pressed instruction suppresses a third instruction? 

Byte Loud or Store Iristt-uctions The Alpha AXl' 

architectlrre has no byte load or store instructions 
anel no iniplicit irnalignetl accesses. There also are 
no partial-register writes. The byte load/store 
instructiolis and unaligned accesses found in some 
RIS<: architectures can be a perforniance bottle- 
neck. They require an extra byte sl~ifter in tlie 
speetl-critical loatl and store paths, ant1 they force a 
hard choice in fast cache tlesign. The partial-regis- 
ter writes found in other RlSC architectures can also 
be a performance bottleneck because they require 
masking ancl shifting in the filndamental operation 
of accessing a register. 

On a previous project involving a MII'S implen~en- 
t;~tion, we found the shifter for the loatl-left/lo;rd- 
right instri~ctions to he a direct cycle-time 
bottleneck. Also, the VAX 8700 i~~iplementation~tio~~ 
(circa 1986) removed the byte shifter in the 
lo;~cl/store hardware in favor of a faster microcycle, 
with 2 cycles for ;I byte 1o;rcl and 6 c!.cles for :III 
~ln;rlignetl 32-bit access. This decision irchieved ;I 

net performance gain. Our experience encour;~getl 
11s to avoid byte load/store. 

A n  addition;il problem with byte stores is that an 
iliiple~ilenter niay easily choose only two of the 
three design features: fast write-back cache, single- 
bit error correction code (E<:<:), or byte stores. 

Byte stores are straightforward in simple byte- 
parity write-through cache implementations. 
Except for tlie expensive design of four or five E<:<: 
bits for every eight bits of  clata, a byte store to ;I fast 
E<:<; write-back cache ilivolves 

1. Reading a11 entire caclic word::' 

2. Checking tlie ECC bits and correcting any single- 
bit error 

3. Moclifiing the byte 

4. Calculating the new E<:<: bits 

5. Writing the entire cachc word 

This reatl-rnotlifi-write sequence requires l~iclclen 
seqire~icer li;~rtlware and hidden state to hold the 
c:rche word temporarily. The secluelicer tencls to 
slow clown ortlinary full-cirche-wortl stores. The 
neetl for  byte stores tends to ripple tl~roughout 
the memory subsystem tlesign, m;rking each piece 

;I little more complicatetl anel a little slower. With 
nonreplicated hitlden state, it is difficult t o  issue 
another byte store until the first one finishes. 
Fin;~lly, the existence of a byte store instruction has 
led to programs and library routines for other NSC 

implementations with single-byte move ancl com- 
pare loops. String manipillatioa on Alpha AXP 
implementations is up to eight times faster by pro- 
cessing eight bytes ;it a time." 

Insteacl of inclueling byte loacl/store, we followed 
tlie RISC philosophy of exposing hidden computa- 
tion as a sequence of many simple, fast instructions. 
In the Alpha U P  architecture, a byte load is clone as 
an explicit load/shift sequence; a byte store as an 
explicit load/modify/store sequence. We tuned the 
instruction set to keep these sequences short. The 
instructions in tliese sequences can be intermixed, 
scheduled, and issued as multiples with other com- 
putation, as can tlie rest of the instructions jn the 
architecture. Table I gives :I sunlmary of the Alpha 
f i t '  instruction set. 

A~'il%?/rietic E.vceplio7l.s The Alpha IU(P architec- 
ture has no precise arithmetic exceptions. 
Reporting an arithmetic exception (e.g,,  overflow, 
unclerflow) precisely means that instri~ctions 
subsecluent to tlie one c;rusing the exception 
must not be executetl. This is straightforwarcl 
in 21 slow implementation that runs a single instruc- 
tion to completion before starting the next one, 
but becomes substantially more difficult to do 
qi~ickly in a pipelined four-way issue implemen- 
tation. There are standard techniques available 
for clelivering precise exceptions while run- 
ning quickly (checking exponents, supl~ressing 
register writes, exception silos and backout), but 
thesc techniqiles consume substantial design 
time and can cost some performance. They appear 
not to scale well with wider multiple issue or 
faster clocks. 

Exceptional cases are just that-exceptional, or 
mre, events. Based p;~rtly on customer requests, we 
cleciclecl to eliipliasize the performance of normal 
operations at the expense of exceptional cases. 
Rather than an implicit exception ortlering 
between every pair of instructions, we atlopted the 
Cr;iy-1 model of :~rithmetic exceptions-in which 
exceptions are reported eventirally-plus an 
explicit trap barrier (T1WR) instruction that c;111 be 
used to make exception reporting as precise as 
desired.lo We also tlocumented ;I code-generation 
clesign that needs one trap b;rrrier per branch (at 
most) to give precise reporting. Using TRAPB 
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Table 1 Alpha AXP Architecture Instruction Set Summary 
I 

Load/Store, Byte Manipulation 

LDA 
LDAH 
LDL 
LDQ 
LDQ-U 
LDL-L 

LDQ-L 
STL-C 
STQ-C 
STL 
STQ 
STQ-U 
EXTBL 
EXTWL 
EXTLL 
EXTQL 
EXTWH 
EXTLH 
EXTQH 
INSBL 
INSWL 
INSLL 
INSQL 
INSWH 
INSLH 
INSQH 
MSKBL 
MSKWL 
MSKLL 
MSKQL 
MSKWH 
MSKLH 
MSKQH 

Load address 
Load address high 
Load sign-extended longword 
Load quadword 
Load unaligned quadword 
Load sign-extended 

longword, locked 
Load quadword locked 
Store longword, conditional 
Store quadword, conditional 
Store longword 
Store quadword 
Store unaligned quadword 
Extract byte low 
Extract word low 
Extract longword low 
Extract quadword low 
Extract word high 
Extract longword high 
Extract quadword high 
lnsert byte low 
lnsert word low 
lnsert longword low 
lnsert quadword low 
lnsert word high 
lnsert longword high 
lnsert quadword high 
Mask byte low 
Mask word low 
Mask longword low 
Mask quadword low 
Mask word high 
Mask longword high 
Mask quadword high 

Floating Point Load/Store 

LDF 
LDG 
LDS 
LDT 
STF 
STG 
STS 
STT 

Load F format (VAX single) 
Load G format (VAX double) 
Load S format (IEEE single) 
Load T format (IEEE double) 
Store F format (VAX single) 
Store G format (VAX double) 
Store S format (IEEE single) 
Store T format (IEEE double) 

CMPLT 
CMPLE 
CMPULT 
CMPULE 
MULL 
MULQ 
UMULH 
SUBL 
S4SUBL 
S8SUBL 
SUBQ 
S4SUBQ 
S8SUBQ 
AND 
BIS 
XOR 
BIC 
ORNOT 
EQV 
SLL 
SRL 
SRA 
CMOVEQ 
CMOVNE 
CMOVLT 
CMOVLE 
CMOVGT 
CMOVGE 
CMOVLBC 

CMOVLBS 

CMPBGE 
ZAP 
ZAPNOT 

lnteger Branch 

BEQ 
BNE 
BLT 
BLE 
BGT 
BGE 
BLBC 
BLBS 
BR 

Compare signed quadword < 
Compare signed quadword 5 
Compare unsigned quadword < 
Compare unsigned quadword 5 
Multiply longword 
Multiply quadword 
Multiply quadword high, unsigned 
Subtract longword 
Subtract longword, scale by 4 
Subtract longword, scale by 8 
Subtract quadword 
Subtract quadword, scale by 4 
Subtract quadword, scale by 8 
AND logical 
OR logical 
XOR logical 
AND-NOT logical 
OR-NOT logical 
XOR-NOT logical 
Shift left, logical 
Shift right, logical 
Shift right, arithmetic 
Conditional move if reg = 0 
Conditional move if reg # 0 
Conditional move if reg < 0 
Conditional move if reg 5 0 
Conditional move if reg > 0 
Conditional move if reg 2 0 
Conditional move if reg low 

bit clear 
Conditional move if reg low 

bit set 
Compare bytes, unsigned 
Clear selected bytes 
Clear unselected bytes 

AddressIConstant 

Branch if reg = 0 
Branch if reg # 0 
Branch if reg < 0 
Branch if reg I 0  
Branch if reg > 0 
Branch if reg t 0 
Branch if low bit clear 
Branch if low bit set 
Branch 

BSR 
JMP 

Branch to subroutine 
J U ~ D  

S4ADDL Add longword, scale by 4 
SBADDL Add longword, scale by 8 
ADDQ Add quadword 
S4ADDQ Add quadword, scale by 4 
S8ADDQ Add quadword, scale by 8 
CMPEQ Compare signed quadword = 

LDA Load address 
LDAH Load address high - 
lnteger Computation and Conditional Move 

ADDL Add longword 
FBEQ FP branch if = 0 
FBNE FP branch if # 0 
FBLT FP branch if < 0 
FBLE FP branch if I 0  
FBGT FP branch if > 0 
FBGE FP branch if 2 0 

JSR ~ u m p  to subroutine 
R ET Return from subroutine 
JSR-COROUTINE Jump to subroutine, return 

Floating Point Branch 

I I I 

conrinucd on  n c x ~  page 
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Table 1 Alpha AXP Architecture Instruction Set Summary (continued) 

instructions in the first Alpli;~ AXP imp1emenl';ttion 
lowers ~,erformance 3 percent to 25 percent in  real 
floating-point progralms ;~iir l  less than 1 percent ill 
integer progr;irns, but improves cycle time :lpprosi- 
mately 10 percent. 

I n  co11tr;tst to a r i t l l ~ l~e t i c  exceptions, nlemor). 
nlanagenicnt exceptions, such :IS page faults. ;Ire 
reportetl precisel!: This is not ;IS much o f  ;I I,urtlen 
on implemcnters as precise arithtnetic mceprions 
a ~ o ~ ~ l t l  be. ;tntl I;lck of precise nlenior!r manapmcl1t 
faults would be a severe burden on  softw:tre 
writers. 

Floating Point Computation 
and Conditional Move 

CPYS Copy sign 
CPYSN Copy sign, negate 
CPYSE Copy sign and exponent 
CVTQL Convert quadword to longword 
CVTLQ Convert longword to quadword 
FCMOVEQ FP conditional move if reg = 0 
FCMOVNE FP conditional move if reg ;t 0 
FCMOVLT FP conditional move if reg < 0 
FCMOVLE FP conditional move if reg 5 0 
FCMOVGT FP conditional move if reg > 0 
FCMOVGE FP conditional move if reg 2 0 
MF-FPCR Move from FP control register 
MT-FPCR Move to FP control register 
ADDF Add F format (VAX single) 
ADDG Add G format (VAX double) 
ADDS Add S format (IEEE single) 
ADDT Add T format (IEEE double) 
CMPGEQ Compare G format = 

(VAX double) 
CMPGLT Compare G format < 

(VAX double) 
CMPGLE Compare G format 5 

(VAX double) 
Compare T format = CMPTEQ 

(IEEE double) 
CMPTLT Compare T format < 

(IEEE double) 
CMPTLE Compare T format I 

(IEEE double) 
CMPTUN Compare T format 

unordered (IEEE double) 
CVTGQ Convert G format to quadword 

(VAX double) 
CVTQF Convert quadword to F format 

(VAX single) 
CVTQG Convert quadword to G format 

(VAX double) 
CVTDG Convert D to G format 

(VAX double/double) 
CVTGD Convert G to D format 

(VAX double/double) 

The Alpha ASP architecturc's sl~arecl-nlcmory 
~ ~ l u l t i p l - o c ~ ~ s i ~ ~ g  modcl is ;In integral p;irr of  the 
clesign. I t  is 1101 the ;~tlt l-on founcl i n  other RlSc: 

CVTGF Convert G to F format 
(VAX double/single) 

C W Q  Convert T format to quadword 
(IEEE double) 

CVTQS Convert quadword to S format 
(IEEE single) 

CWQT Convert quadword to T format 
(IEEE double) 

C ~ S  Convert T to S format 
(IEEE doublelsingle) 

CVTST Convert S to T format 
(IEEE singleldouble) 

Dlw Divide F format (VAX single) 
DNG Divide G format (VAX double) 
D~VS D~vide S format (IEEE single) 
DlVT Divide T format (IEEE double) 
MULF Multiply F format (VAX single) 
MULG Multiply G format WAX double) 
MULS Multiply S format (IEEE single) 
MULT Multiply T format (IEEE double) 
SUBF Subtract F format (VAX single) 
SUBG Subtract G format (VAX double) 
SUBS Subtract S format (IEEE single) 
SUBT Subtract T format (IEEE double) 

Srstem 
CALCPAL Call privileged architecture 

library 
TRAP8 Trap barrier (precise exception) 
FETCH Prefetch (cache) date hint 
FFICH-M Prefetch (cache) data, 

modify hint 
ME Memory barrier (serialize) 
WMB Memory barrier (serialize) write 
RPCC Read process cycle counter 
RC Read and clear 
RS Read and set 
PALRESO PALcode reserved opcode 0 
PALRES1 PALcode reserved opcode 1 
PALRES2 PALcode reserved opcode 2 
PALRES3 PALcode reserved opcode 3 
PALRESQ PALcode reserved opcode 4 

arcl~itcctures. 
'I'hc untlerl!ing pr i~ i i i t ivc  for safe updating o f  

a mi~ltilxocesor-s11:trctl memory location is a 
sequcncc o f  RI:.r' instructions: loacl-locked. in-regis- 
ter modify, store-conditional. test. I f  this seqilence 
completes w i th  no  i t~terrupts,  no exceptions, ;~ i i t l  
no interfering write from anothc-r processor, then 
the store-conditional stores the motlified result. 
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ant1 the test indic;~tes success: an atomic update 
was in fact performed. 

If anything goes wrong, the store-conditional 
does not store a result, and the test i~iclicates fail- 
ure. The program must then retry the sequence 
until it succeetls. We chose this primitive sequence 
(quite similar t o  tlie MIPS R4000 chip designs) 
because it can be implemented in a way that scales 
up with processor performance. 111 the xbsence of 
an interfering write, the entire secluence can be 
tlone in an on-chip write-back cache, ant1 hi~ndreds 
of chips can tlo noninterfering sequences simulta- 
neously. The sequence can also be ilsetl to achieve 
byte granularity" of writes in sharecl memory.(' 

Tlie Alpha AX[' arcliitecture has no strict multi- 
processor reatl/write ordering, whereby the 
sequence of re;icls ant1 writes issuetl 1,y one proces- 
sor in a mi~ltiprocessor configuration is tlelivered 
to :ill other processors in exactly tlie order issued. 
Strict order is simple, but has a problem similar to 
that of byte stores. An implenienter may easily 
choose only two of the three tlesign llentures: 
pipelined writes. bus retry, or strict reacl/write 
ordering. 

If one processor starts ;i write to location A and a 
write to location 13, then tliscovers t l i ;~ t  the write to 
i\ 11;ls hiled (bus parity error. etc.) :11itl retries it suc- 
cessfully, then a second processor will observe the 
writes out of order: H, then A. 

Before Alpha AXI' implementations, many VAX 
implementations ;ivoicletl pipelinetl wrilcs to main 
memory, multibank c;~ches, write-buffer bypassing, 
routing networks, crossbar memory interconnect, 
etc.. to preserve strict reatl/write ordering. Tlie 
Alpha AXl' architecture's shared-n~emory 111otlel 
instead specifies 110 implicit orclering between tlie 
reads and writes issuecl on one processor, ;IS viewed 
by a different processor. This programming model 
is an enabling technology for a wide variety of high- 
perfor~iiance i~iil)lement;~tion techniq~~es. Strict 
orclering can be hpecificd when neecletl by insertion 
of explicit memory barrier (Me) instructions, quite 
similar to the lB*l System/370 serinlizatio~i tlesign.11 

Data Representation 
and Processor St-ate 
This section tlescribes the fundamental Alpha AXP 
tlata types ant1 their representation in memory and 
I-egisters. It also tlescribes the con~plete Il;~rdware 
register state for e;ich processor ant1 outlitles 
the adtlitio~ial state maintained by operating- 
system-specific 1'AI.cotle routines. The Alpha AXP 

arcliitecture differs from other Rlsc architectures 
by careli~lly specifying a canonical form for 32-bit 
tlat;~ in 64-bit registers. A c;inonical form is ;I stan- 
cl;lrclizetl choice of clata representation for retlun- 
d;~ntly encoded values. Since 32-bit operations 
assume canonical operands and give canonical 
results, very few explicit conversions between 32- 
;incl64-bit representations are needed. 

The fi~ndamental unit of data in the Al~lpli;~ AXl' 

architecture is a 64-bit quadword." As shown in 
Figure I, quadwortls may reside in memory or regis- 
ters. For backwartls compatibility, 32-bit long- 
wortls:' may also be stored in memory. 

There are three fi~ntlamental clata types: integer, 
IEEE floating point, and VAX floating point; each 
is available in 32-bit and 64-bit f o r m ~ . ~ - I ~  VAX floating- 
point values in memory have 16-bit words swapped, 
for compatibility with VAS (and PDP-11) formats. 
The VAX floating-point load and store instructions 
tlo word swapping" to give a common register 
order. The 9-b i t  loat1 instructions expand vali~es to 
64-hit canonical form, anti tlie 32-bit store instruc- 
tions contract 64-bit values back to 32."AII register 
to-register operations are thus done on fill 1 64-bit 
values in a common integer or floating-point for- 
111at. N o  partial-register I.~:ICIS or writes ;ire tlone. 

The cano~lical form of ;I 32-bit value in ;I 64-bit 
integer register has the most significant 33 bits all 
equal to bit<31>. In essence, bit<31> is kept ;IS ;I 

"fat bit." This allows signet1 integer values to be 
used directly in 64-bit ;~ritIimetic and branches. 
This canonical for111 is maintained as ;I closed 
system (even for 32-bit data considered to be 
"i~nsigned") by using a combination of 64-bit oper- 
ates, 32-bit add/subtract/rnulti~>ly, and two-instruc- 
tion sequences for shifts. 

'T'he canonical form of a 32-bit value in a 
64-bit floating-point register has the %bit exponent 
field expanded to 11 bits ant1 the 23-bit mantissa 
field expanded to 52 bits. Except for IEEE tlenor- 
mals.':' this allows single-precision floating-point 
values to be used directly in double-precision arith- 
metic and branches. This canonical form is main- 
tained as a closecl slatem by using single-precision 
instructions. 

Bytes nntl words (16-bit quantities) are not  fund;^- 

mental data types. Tl~e!. may be transferred 
between memory ant1 registers with short 
sequences of jnstructioiis ;~ncl manipulatetl jn regis- 
ters using normal arithmetic ;incl the byte-m;inipil- 
lation instructions described in the Operate 
Instructions section. 
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QUAbH6RD lNfffiER (MEMORY) QUADWORD INTEGER (REGISTER) 

f iR  
TEE€ T#.mlWG POINT (MEMORY) IEEE T-FLOATING POlNT (REGISTER) 

VAX G-FLOATING POlNT (MEMORY) ,-. mn VAX G-FLOATING POINT (REGISTER) - 

LONGWORD INTEGER (MEMORY) LONGWORD INTEGER (REGISTER) 
0 

- .  
SSSSSSSsssSsSSSSsSs ... S - - RX 

1 3 1 32 1 31 

U OJ L 

Im war. r '.=. ' . .  . . I .. 
W 1 M2 EXP M I  M2 ~3 

I I I M4 FX 

16 16 16 1 11 4 52 

IEEE S-FLOATING POlNT (MEMORY) 
31 

IEEE S-FLOATING POlNT (REGISTER) 
0 63 0 

'rlie liartlware processor state, shown in Fig~rre 2, 
includes 9 integer registers RO..K?I of 64 bits each; 
R31 is alw;~!ls zero. There are ;ilso 32 floating-point 
registers FO..P31 of 64 bits cacli; FS1 is alw:ys zero. 
Writes to R31 ;rnd F31 ;Ire ignorecl. 

A 64-bit program counter (IIC) contains a long- 
word-aligned virtual byte atldress (i.e., tlie low 2 
bits of the I>(: ;Ire ;~lways zero). The VAX arcliitectr~rr 
keeps tlie I><: in general I-egister 15, wlicre it is 
directly used for PC-rel;~ti\:e memory ;iddressing. In 
the Pclgh;~ AX]' architecti~rc, lio\vever, code ;rntl tl:~t;~ 
pages are usirally separated by 64 kilobytes (K11) or 
more to allow separate memory protection, but tlie 
16-bit displ;lcement in lo;~d/store instructions c:ln- 
not span more than 64~11. 

The hardware processor state includcs ;I lock flag 
ant1 ;I locked physic;il atltlress for the lo:rtl- 
locketl/storc-condiriornrl sccjirence. It also h;ts ;I 

floating-point control register containing the IEEE 
dynamic rountling motle."' 

VAX F-FLOATING POlNT (MEMORY) 
31 

VAX F-FLOATING POlNT (REGISTER) 
0 63 0 

Hardware implementations may optionally 
inclutle ;I pair of state registers for menlory 
prefetching (FETCN/FFI'(:I-I-hl instructions), ;inti an 
optional interrupt flag for use only by tr;rnslatetl 
VAX OlxnVMS ASP progr;lms th;rt reprotluce com- 
plex instruction set computer (C1SC8) instruction 
atomicity using a sequence of RISC instructions.(> 

In acltli tion to the above hartlw;rre state, the privi- 
legctl :ircIiitecture library routines for the \;;irio~rs 
operatitlg systems implement ;itltlitional st;rte. This 
state m;iy be m:~intained by h;rrtlware or (I'AI.code) 
softw;ire, ;it the option of the implementer, and it 

varies from one operating system to anotlier. 

EXP 

Typical I'i.\l.cotle state includes a processor st:ltrrs 
(13s) worcl, kernel and user stack pointers, ;l process 
control block base for context switching, a process- 
unique v;tlire for thre;ids. ;rntl ;I processor number 
for mi11 tipl-ocessor disp;itchil~g. Atldition;il I'til.code 
state may include a floating-point enable bit, inter- 
rupt jxiority level, ant1 translation loolc-aside 

1 8  23 1' 11 ' 52 

MANTISSA 

M2 

FX SXX 

16 1 8  7 1' 11 ' 52 

FX S SXX 

EXP 

EXP 

MANTISSA 

WI EXP 

00000000000000000 ... 0 

M1 M2 00000000000000000 ... 0 
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HARDWARE STATE 

I LOCKED PHYSICAL ADDRESS I 

a IEEE FLOATING-POINT DYNAMIC ROUNDING MODE 

/ / 4 d 

0 LOCK-FLAG 

R30 (STACK POINTER) 
R31 (ALWAYS ZERO) 

F30 
F31 (ALWAYS ZERO) 

TYPICAL PALCODE STATE 

OPTIONAL HARDWARE STATE 

I PS I 
I KERNEL STACK POINTER I 

I PREFETCH STATE A I 

I PROCESS CONTROL BLOCK BASE I 

PREFETCH STATE B I 

I WHO AM I (PROCESSOR NUMBER) I 

0 INTR-FLAG 

I] FLOATING-POINT ENABLE (FEN) 

1 INTERRUPT PRIORITY LEVEL 

- 

I-STREAM TRANSLATION BUFFER 1 

USER STACK POINTER 

PROCESS-UNIQUE VALUE 

1 D-STREAM TRANSLATION BUFFER T 

buffers for mapping instruction-stream nnd clata- 
stream virtual adclresses. All of this state is soft in 
the sense t1i:lt it is defined only in relationship to 
the I'ALcotle routines for a specific operating 
systeni. In ;I tni~ltiprocessor implementation, all of 
the above state is replicated for each processor. 

Mernory Access 
Alpha AX11 memory is byte atltlressetl, using the low- 
est-numbered byte of a datum. Only aligned long- 
wortls or clu:cclwords may be accessetl: an :~ligned 
longworcl is a fonr-byte clati~m whose atltlress is a 
niultiple of four; an aligned quadwortl is an eight- 
byte datum m~liose address is ;I multij,le of eight. 
Normal loatl or store instructions that specify an 
unaligned :~cltlress take a precise data alignment 
trap to I?4Lcocle (which may clo the access irsing 

two aligned accesses or report a fat;~l error, depentl- 
ing on the operating system design). 

illpha I\XP implementations allow clata to be 
accessed using either a little-e11di:tn"' view (byte 0 is 
tlie low byte of an integer), or ;I big-entlian'. view 
(byte 0 is the high byte o f  an integer). As tlescribetl 
in the Load/Store Instructions section, there is a 
one-instruction bhs in tlie secluenceb for little- ant1 
big-endian byte manipi~lation. 

Virtual addresses are a full 64 bits; implenienta- 
tions may restrict ;~tlclresses to have some number 
of identical high-ostler bits, but must always distin- 
guish at Least 43 bits. Virtual ;~ddresses ;Ire nx~pped 
in an operating-specific way to plij~sical ;~dtlresses, 
using fixed-size pages. Memory protection is clone 
on a per-page basis. Atldrcss mapping errors (e.g.. 
protection, page faults) take precise traps to 
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I'i\l.code. Each page ma!. :~lso be m;irkccl to provicle 
a fault 011 each read, write, or instruction-fetch. 

Virt11;il ;~ddresses may be further qu;~lifietl bj- 
atltlress space numbers (ASAS). to allo\v multiple 
disjoint addresses spaces. l 'hc choice ofclisjoint or 
common mapping across all processes is clone on a 
per-page basis. 

'The virtual- to physical-atltlrt.ss mapping is tlonc 
011 :I per-page basis. Each i~iiplc~~ient;irio~i m;iy 1i;ive 
;I p;tge size of 8m, I ~ K H ,  -32Kll. or 64Kl1. ?'he 0 i h ; ~  
up1?er bound allows a linker to ;~lloc;ite blocks of 
memory with cliffering protection o r  , \ h \  proper- 
ties htr enough apart to work on all implementa- 
tions. The virtual- to p.hysic;~l-;ttltlrcsh mapping can 
be m;in) to one, i.e.. sgnon!.ms :~rc  ;~llo\i~ecl. In ;I 

multiprocessor implement;ition, sIi;~recl main rnern- 
ory 1oc;ltions haw tlie same pl1ysic;ll ;~tltlrc.ss on all 
processors. Per-processor i~~i.sI~:irccl 1oc;ttions ;ire 
also ;~llowetl. 

Memory has longworcl gl-;~ni~l:irity: two proces- 
sors III;IJ' si1ni1Itaneo~is1y ~CCC.SS ;tclj:tccnL longwortls 
without rnut~~al  interScrcnce. T1ie loatl-locketl/ 
store-co~~tlitiollal sequence d isc i~sx~l  ~>re\,io~~sl!. c;in 
be i~sed to achieve rnultiproccs~or bj,te granul;lrit!: 

Inpi~t /oi~tpi~t  is memory m:~ppeti: some phys- 
ical memory adclresses may refer to I / ( )  device 
registers whose access trigpcrs sirlc cl'l'ccts (such 
as tlie transfer of d;~t;l). Sicle effects on re;~cls are 
cliscour;tgecl. 

Irtstraiction F o r m a t s  
Four funclamental instruction format>-operate, 
menlor!;, branch, and <:h1.IL124L-are shown in 
Figi~re 3. All instructions :Ire 32 bits witlc ant1 reside 
ill memory at aligned longwortl ;icltlresses. E;tch 
i~~struction contains :1 &bit opcocle fieltl :mtl zero 
to three ?-bit register-number t'ieltls. Kh, Rl ) .  ;tntl RC:. 

The rem;~ining bits cont;~i~i  filtlction (opcode 
extension). literal, or dispI;~cetnent fields. To mini- 
mize register file ports in fast implementations, R13 
is never written, ;~ncl R(: is never rcatl. 

All the operate instructions are three-operand 
register-to-register, c:llcul;rting RC = RA oper~lte RR. 

In integer operzttes, tlic opcode and a 7-bit firnction 
field specify tlic exact operation. Integer operates 
may Iinve ;In 8-bit zero-extentlecl literal instead of 
RH. In floating-point operates, the opcode and ;in 
11-bit function fieltl specify the exact operation. 
Tliere :ire n o  flo;iting-point literals. 

Memory format instructions are used for lo;tds. 
stores, ;und a few miscellaneous operations. Loads 
ant1 stores ;ire two-opcrancl instructions, specifying 
a register KA ;uid a base-disp1;lcernent virtual byte 
adtlress. l'hc effective atltlress calculation sign 
extertcls the 16-bit clispl;~cement to 64 bits ancl :iclcls 
the 64-bit RI$ b;ac rcgister (ignoring overflow). The 
resulting virtu:~l byte ntldress is mappecl to a pliysi- 
cal adclrrss. The ~nisceIl;~aeous instructions makc 
other uses of the 11A, RH. ;ulcl displacement fields. 

Branch h)rm;lt instructions spec@ a single regis- 
ter It1 ant1 ;I signet1 PC:-relative lotigword displ:ice- 
rnent, The br;uicIi target c;tlculation shifts tlie 21-bit 
tlisplacemcnt left b)~  2 bits to make it a longwortl 
(not byte) tlisplacemetit. then sign extc~lds it anel 
atltls it to tlie uptlatecl I>(:. Conditional br;inch 
instructions test register hi, ;ind unconclitional 
branches write tlie uptl;~ted PC to FU for subroutine 
linkage. The 1:lrge longwortl displacement allows a 
range of+4Rill3, subst;~ntially reducing the need h)r 
branches arountl or to other branches. 

The (:~r.I.-l%l. instruction has only a 6-bit opcotle 
;ind :I 26-bit function fielcl. The hnction fieltl is ;I 

small integer specifying one of a few dozen privi- 
Iegecl ;ircl-litecture Iil)r;~rj~s~~broutines. 

OPERATE FORMAT 
31 

LITERAL 1 FUNC. INTEGER. LITERAL 

INTEGER. REGISTER 

RB FUNC. FLOATING POINT 

6 5 5 11  5 

BRANCH FORMAT 

MEMORY FORMAT 
31 26 21 16 0 

OP 

CALL-PAL FORMAT 
31 26 0 
I I 1 

31 26 21 0 

1 Op 1 FUNCTION I 

OP 

6 5 5 16 

RA 
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6 5 21 

RA 

RB 

DISPLACEMENT 

DISPLACEMENT 
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OJemte Instructions 
'I'here arc five g r o ~ ~ p s  of register-to-register operate 
instructions: integer arithmetic, logical, byte- 
manipulation, floating-point, and misce l l ;~neo~~s .  
All instructions operate on  64-bit qu;~dworcls 
unless otherwise specified. 

Integer Arithinetic I~~structiorzs The integer arith- 
metic instructions are add, subtract, multiply, and 
compare. Acld. subtract, and multiply have variants 
t11;lt enable ;~rithmetic overflou~ tr ;~ps.  ?'liejr ; ~ l s o  
11;lve longword variants that check h)r  32-bit over- 
flow (instc:id of 64) ancl force the high 33 bits of the  
result to all equal bit<31>. Add ancl subtract also 
Ihave sc;~lecl v;lri;rnts that shift the first operanel left 
by 2 o r  3 bits (with no overflow cl~ecl~ing)  t o  speed 
1113 simple subscripted address arithmetic. The 
IIMII1.H instruction (from I'RISM) gives the higll 64 
bits of an unsigned 128-bit product and may be 
used for dividing by a constant. rl'lie~.e is n o  integer 
clividc instruction; a software subroutine is usecl to 
tlivicle by a nonconstant. The compare instructions 
are signed o r  i~nsigned ancl write a Hoole;~n result (0 
or  I )  to the target register. 

Logiccrl Itistr~lctiorls The logical instructions :Ire 
AND,  OR, and XOR, with the secontl opcs;lnd 
optionally complemented (ANDNOT, O R N O T ,  

SOIINOT). The sliifts are shift left logic;il, shift right 
logical, ;lncl shift right arithmetic. The (,-bit shift 
count is given by RB o r  a literal. The conclition;~l 
move instructions test RA (same tests as the branch- 
ing instructions) and conditionally move RIi to It(:. 
These can be llsetl t o  eliminate branches in short 
sequences such as &llN(a,b). 

Bj)te-~i~unip~~btioncton It~structiorts The byte-manip- 
i11;ition instructions are usetl with the lo;~tl :~ncl 
store i~naligned instructions to manip11l;lte short 
un;~ligned strings of bytes. Long strings shoultl be 
manipulated in groups of eight (aligned quad- 
worcls) whe~iever  possible. The b\~e-m;u~iipi~l:ltion 
instructions :Ire fi~nclamentally maskecl shifts. They 
differ born normal shifts by h;~ving a byte count 
(0..7) instead o f  ;i bit count (0..63), ;lncl by zcroing 
some bytes of the result, based on  tlic cl ;~t;~ size 
given in the function field. 

The extract (ESTxx) instructions extract part 
of a I - ,  2-, 4-, or  8-byte field from ;I qu;iclworcl 
anel place the resulting bytes in a fielcl of zeros. A 
single ES'l'xL instruction can perform b!.te or  worrl 
loads, p ~ ~ l l i n g  the datum out  of a qi~aclwortl ;11ic1 

placing it in the low end of a register with h i g h  
order zeros. A pair ol E>(Txl./EXt'xFI instructions can 
perform unalignecl loacls, pulling the two parts of 
an unalignecl cl:~tum out of two qlladwords anel 
placing the parts in result registers. A s i~nple  O R  

operation can then co~nb ine  the two parts into the 
full tlatum. 

The insert (INSxx) ;ind mask (MSKxx) instruc- 
tions position new t1:1r;1 :incl zero o ~ ~ t  oIt1 data in reg- 
isters for storing bytes. words, and i~naligtled data. 
I f  the Alpha AXI1 ;ircliitecture were a four-operantl 
one, inserting and masking coulcl have been com- 
bined into ;I single instruction. 

The compare-byte instruction ;~llows character- 
string search and conipnre to be done eight bytes at 
a time. The ZAP instructions ;~ l low zeroing of arbi- 
trary patterns of bytes in a register. These instruc- 
tions allow very fast iml>leme~lt;~tions of the C 
language string routines, among other uses. 

Floatingpoilzt AritI~~~zeIic Ii~struc'tior?~ Tlie float- 
ing-point arithmetic instructions :ire aclcl, subtract, 
multiply, clivide. conipare, ;inti convert. The first 
four have v;iriants for IEEE ; ~ n d  \b\X floating-point, 
a ~ i d  single- and double-precisio~i clat;~ t!.pes. ?'hey 
~ l s o  have variants that en;ible combin;ttions of arith- 
metic t ra l~sancl  t1i;lt spcc ih  the roi~ncling mode. 
Tlie single-precision instructions write canonical 
64-bit results, but clo exponent checking and 
rouncling to  single-precision ranges. The compare 
instructions write ;I Boolean result (0 or  nonzero) 
to the target register. Tlie convert instr11ctio1.1~ 
transfer between single nncl clouble, floating-point 
and integer, ancl two  forms of Vt\X double (D-float 
;Inel G - b a t ) .  A conlbination o f  liarelware and soft- 
ware provides full IEi(li ;~ri thmetic.  Operations on 
\%S reserved operancls;' clirty zeros,'.' IEEE denor- 
mals, infinities, and not-;1-1ii1rnht.rs are done in 
softnlare. 

There are also :I fc\v f1o:lting-point i n s t r ~ ~ c t i o ~ i s  
tlxit move tlata wi thoi~t  ;~pl,lying any interpretation 
to it. These include a complete set of conditional 
move instructions similar to  the integer conditional 
moves. 

h4iscellar~eon.s I~zslruclio~zs The miscellaneous 
instructions i n c l ~ ~ d e :  Inernory prefetching instruc- 
tions to help decre:~se memory latency a re:ld cycle 
counter instruction for perh)rrn;111ce measurement, 
;I trap barrier instruction for forcing precise arith- 
metic traps, ancl nlernor!. barrier instructions for 
forcing multiprocessor rc:lcl/write ordering. 
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The load ant1 store instructions only move data. 
They never apply an interpretation to tlie data and 
therefore never take any data-tlepentlent traps. This 
design allows moving completely z~rbitrary bit pat- 
tcl-ns in and out of registers ant1 ;illows con~pletely 
tr;insl'arent saving/restoring of registers. 

'l'lie integer load and store quadword unaligned 
(I.l)Q-lJ, STQ-U) instructions ignore the Ion7 three 
bits of the byte address antl ;~lw:lys transfer an 
;~ligned quadword. These instructions are ~isetl 
with the in-register byte manipiilation instructions 
to operate on byte, word. and itn;tiigned tlat;~ by 
short sequences of RISC ilistructions. 

Ex;unple 1 in Figure 4 shows :I two-instruction 
seclilence for loacli~ig ;I byte into the low entl of a 
register. using little-entlian byte numbering. 
Example 2 shows a similar secluence for loatling a 
byte into the high end of ;I register, using big-entlian 
byte nunlbering. Example 3 shows a sequence for 
storing ;I byte (the first two and last two instruc- 
tions might issue sin~ultiineously o n  the first Alpha 
AXP implementation). Example 4 shows a sequence 
for ;In explicit unalig~ietl Ioatl quatlwortl (no data 
;il ignment trap). 

'l'lie integer load-lockecl ;lnd store-conditional 
(1,I)Q-I., LDL-L, ST(>-C, STL-<:) instri~ctions are 
inclutled in the architecture to facilitate atomic 
i11~tl;ites of multiprocessor-sh;~red t i  As 
tlescribed above, they can be i~sed in short 
sequences of RISC instructions to do atomic read- 
modify-writes, Example 5 shows ;I sequence for 
doing a multiprocessor test-;inti-set. Note that 
ch;lnging the r.DQ-~J/Sl'Q-tl in Exr~niple 5 to 
ANI)/~.I>Q-L/ST(~-C/BEQ gives a byte-store sequence 
chat is s;ll'c to use with n~~~Itiproccssor-~l~:~recl data. 

There :ire two related loxl :~dtlrcss instructions. 
1 . 1 ) ~  calculates the effective atltlress and writes 
it into R(;. LDAH first shifts the tlisp1;lcernent 
left 16 bits, then calculates the effective aclclress 
;inti writes i t  into RC. LDAM is inclilcletl to give a sirn- 
pie way of creating most $2-bit constants jn a 
pair of instructions. (Because I.I>A sign-extends 
the tlisplacement, some v;ilucs in the range 
0 0 0 0 0 0 0 0 7 F F F 8 0 0 O  .. 0 0 0 0 0 0 0 0 7 F F F F I : F F  require 
three instructions.) Constants o f  64 [?its :ire loadetl 
with I,DQ instructions. 

Blwrzclning Instructions 
'The br;incli instructions include conditional 
branches, unco~ld i t io~l ;~~ br;lnches, and  c;llculated 
jumps. In ;~cltlition to the previously described 

conditional moves, the ;irchitecture contains hints 
to improve branching performance. 

The integer contlitional branches test register RA 
for an opcotle-specified condition (>O >=O =O !=O 
<=O <O even odd) and either branch to the target 
adclress or fall through to the updated PC adtlress. 
The floating-point contlitio~~al branches are the 
same, except they d o  not include even/odtl tests. 
Arbitrary testing (and faulting on VAX or IEEE nonfi- 
liite values) can be done by sequences of con1p;u.e 
instructions and branch instructions. Logical or 
arithmetic instructions can combine compare 
results without using br;~nches. 

LJnconditional b ~ m c h e s  write tlie updatetl PC to 
Rt\ for subroutine linkage ant1 branch to the target 
atlclress. R i i  = R31 may be i~secl if no linkage is 
needed. 

Calcu1:ltetl jumps write the updatccl PC: to hi ;lnd 
jump to the target ;~tltlress in M. Calculated junlps 
are used for suk>routine call, return, CASE (or 
SWIT(:H) statements, and coroutine linkage. 

The architecture specifies three kinds of brancli- 
ing hints in instructions. The hints need not be 
correct, but to tlie extent that they are, implementa- 
tions may perform bster. 

The first for111 of llint is an architectetl static 
branch precliction rule: forward conditional 
branches :ire predicted not-taken, and backw;~rcl 
ones taken. To the extent that compilers and hard- 
ware implenlenters follow this rule, programs c ;~n  
run more quicldy with little hardware cost. This 
hint does not eliminate the use of dynamic br:unch 
prediction in ;in implementation, but it may recluce 
tlie need to use it. 

The secontl for111 describes co~npi~ted  jump tar- 
gets. Unusetl instruction hits are defined to give the 
low bits of the most likely target, using the same tar- 
get calcul;~tion as unco~iditional branches. Tlie 14 
bits providetl are enough to specifi the instruction 
offset within ;I page, which is often enough to start 
a fastest-level instruction-cache read many cycles 
before the :~ctual target value is known. 

Tlie third for111 tlescrjbes sr~broutine ;lot1 corou- 
tine returns. By marking each branch and jump as 
c:ill, return, or neither, the architecture provides 
enough information to maintain a small stack o f  
likely subroutine retilrn atldresses within an iniple- 
mentation. This implement;~tion stack can be usecl 
to prefetch subroi~tine returns quickly. 

The conditional move instructions (discussed 
previously in the L.ogic:~l Instructions section and 
the Floating-point Arithmetic Instructions section) 
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EXAMPLE 1: LOAD BYTE (UNSIGNED. LITTLE-ENDIAN) 

7 6 0 4 3 2  1 0  
LDQ-U R2,O(R1) 1 ( BYTE 1 R2 

7 6 5 4 3 2 1 0  

EXTBL R2,Rl ,R2 r 0 IBYTE R2 

EXAMPLE 2: LOAD BYTE (SIGNED. BIG-ENDIAN) 

0 1 0 3 4 5 6 7  
LDQ-U R2,O(R1) I ( BYTE ( R2 

SUBQ R31 ,R1 ,R3 I -2 R3 

EXAMPLE 3: STORE BYTE (LITTLE-ENDIAN) 

0 1 2 3 4 5 6 7  

7 6 0 4 3 2 1 0  
LDQ-U R2,O(Rl) I I OLD I R2 

EXTQH R2,R3,R2 BYTE 1 R2 

OR R2,R3,R2 I ( NEW ( R2 

7 6 5 4 3 2 1 0  

7 6 5 4 3 2 1 0  
STQ-U R2,O(R1) I NEW I ( o ( ~ 1 )  

INSBL RO,Rl,R3 

EXAMPLE 4: EXPLICIT LOAD QUADWORD (UNALIGNED, LITTLE-ENDIAN) 

7 6 0 4 3 2 1 0  
LDQ-U R2,O(RI) LOW PART I R2 

1 NEW 1 R3 

15 14 13 @ 11 10 9 8 

EXAMPLE 5: MULTIPROCESSOR TEST-AND-SET 

LDQ-U R3,7(R1) 

7 6 5 4 3 2 1 0  

HIGH PART R3 

EXTQL R2,Rl ,R2 

BNE R2,FLAG-SET FLAG R2 

I LOW PART R2 

LDQ-L R2,O(R1) I FLAG 

BEQ R2,CONTENTION I STORED? I R2 

Figure 4 Load/Store Instrzlctio17s 

R2 
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7 6 5 4 3 2 1 0  
EXTQH R3,Rl ,R3 I HIGH PART R3 

7 6 5 4 3 2 1 0  

OR R2,R3.R2 I HIGH PART ( LOW PART R2 



Alpha AXP Architecture and Systems 

anrl the bratiching hints eliniinate some branches 
ant1 speetl 1111 tlie remaining ones without conipro- 
mising multiple instruction issue. 

Supmu ision 
The ;ictions unclerpinni~ig an operating system are 
perforrnetl in [?.\J.cotle subroutines ant1 are a flexi- 
ble 1x11-t of the architecture. All ;isyncI~rotioiis 
events, such as intet-rupts, exceptions, and m;~chine 
errors, are rnediatecl by l%I,code routines. I'i\Lcotlc 
establishes the initial state of the machine before 
execution of the first software instruction. l'A1~c0tle 
routines 11iecli;ite all Accesses to physical liartlw:~rc 
resources, includitig physical main memory anel 
memory-rn;i1>1>etl I/() device registers. 

This design allows irnple~iienters to  craft ;i set o f  
l't\Lcotle routines tliat closely match an oper;tting 
s),stem tlesign, not onljr for trnclitioniil oper:iting 
s),stems, but also for specialized environ~iients such 
;is rc;il-time or bigblj. secure cotiiputing. As new 
co~~ ip i~ t ing  p:ir;~dignisare atlopred ;lntl new opcr;it- 
ing systems ;ire created, the Alpha r\XP architecture 
may we1 l prove flexible enougli to accommotl;~le 
then1 cfficie~~tly. 

Future Changes 
The Alpli;~ AXP ;~rchitecture will surely ch:ulge 
during its lifetime. In addition to the I'~iI.cocle 
flexibility discussed above, explicit performance 
flexihilit)~ and instruction-set flexibility exist in 
the arcliitcct~~re. 

Architectural fields that are too sm;11l can limit 
perfo-ni;ince. The Alpha h X P  architect~~re there- 
fore h;~s many fields tleliberatel!. sized for 1;iter 
exp;insion. 

i\lthougli initial implernentations ~1s t  onl!, 43 
bits of virtual ;~cldress. they check the reriiaining 
21 bits, so tli;~t software can run ~inrnoclifictl 011 

1;lter implementations that use (up to) :ill 0 4  bits. 
Furthermore, ;~ltl~ough initi;il implementations use 
only 34 bits of pliysical atldress, the nrchilcctetl 
I>;lge t;tble entry (PTE) formats ancl p:~ge-size 
choices allow growth to 48 bits. By exp;lncling into 
a 16-bit I'?'E fieltl tli;lt is not currently used by m;~p- 
ping Ii;irtlw;~re, another 16 bits of physical adtlress 
grcnvth can be acl~ieved, if ever neetletl. 

Initial implementations also use only SKI3 p;lges, 
but tIie clesign accommodates I i ~ i i i t ~ t l  growth to 
6,iKIi pages. Beyontl that, page t;tljle gr:in~~l:lrit)~ 
liin~s :illow groups of 8, 64. or 513 p;iges to be 
rrc;ttc.cl ;is ;I single large page, th~is  eSf'ectivcljr 
cstcncling tlic. p:~gc-sjze range b). :I ktctor o f  ovc,r 

1,000. liacli ;irchitected IYl'P; form:it also hi~s onc bit 
reservetl for h tu re  expansion. 

Sevcr:il other soft 1)ALcocle registers, such ;IS tlic 
1'5 or ,iSN. that need only a few bits toclay ;Ire allo- 
cated ;I fi111 64 bits for future exp:insion. 

Exception processing can limit perforrn;~ncr. 
I'Al.code routines tleliver exceptions to an oper;lt- 
ing s).stcln, so the dcsign can be gr;iclt~;~lly 
im]>rovecl. In hct .  I?,\Lcotle routines for t1-1~. clat;~ 
;~lignment Ixtve bcen iniprovetl in the Open\ ITIS A X P  
;untl Ill:(: OSWI t\XP operating systcnis. Some cur- 
rently specified softwarc exceptions (such ;is Ilrlil; 
clenornl;il ;irithmetic) could be mo\~etl into 1'/2l,coclc 
or hartl~v:ire. 

?'here ;)I-e ;I llumber of areas of instl-i~ction-set 
flesibilit!. designetl into the architecture. tour of 
the (,-bit opcodes are no~iiinally reser\.ecl for 
;itlcling intcgcr and floating-point alignctl oct:~- 
\s;ort14 (128-bit) load/store instructions I '  Nine more 
0-bit ol~codes remain for other cxpiinsion. Witliin 
e;icli opcocle, the function firltl contains room for 
fi~~-tIicr esp;tnsio~l. For csample. tlie sc;ilcd ;icltl/sirl~- 
tract f~rnctions were atldcd between l~rototypc 
chip iind protluct chip. The fnct th;it tlie function 
fielcls ;ire not f~11Iy policecl is a mistitke. 

Within the I iXE floating-point f~tnction ficltl, 
coclc points are nomin~lly reserveel for clo~~blc- 
estenclrtl" precision (128-bit) aritlimetic. Within 
{:lie memory b:trricr instruction gr0~113, t b r e ~  COCIC' 
poi~its were reserved for subset bal-ricrs. One of 
these h;is alre;idy been redcfi~inetl as ;I write-write 
b;trricl: 

Not all changes involve growth. l'herc ;*re subsct- 
ting rulcs clcfined for removing either one or both 
(1I;I;l; ;uicl U S )  floating-point clat:i types. I f  both ;Ire 
removecl, the floating-point registers c:ln ;~lso I>e 
rerno\,etl. Tlie h.\ l(>Yss P~\Lcocle roiltinc> :~ntl 1<5/11(; 

instructions are defined as option:il ;~ntl c;in be 
tleletecl n k n  the trailsirion o f  tl-;insl;itcrl \ii\S coclc 
is cornplcted. Other unneecled l)r\l.cocle rolltines 
c:m ;~lso be removed e\;enti~;ill\: 

S Z ~ V I ~ ? ~ ~ ~ ? ~ ~  
FShc goals rii;lt shaped tlie Alpha AXl' ;~rchitecture 
clesigli have largely been realized. For high perfor- 
mance, the first irnp1ement;ttion (the I)lcc:cliil~ 
21004 11iicroprocessor) is listcd in the October 1992 
(,'r~irilicss :soot2 of Recor.ds ;IS tlie world's cistest sill- 
glc-chip microprocessor. It is too early to mc;isure 
longe\..ity but tlie fact that \\.c had clesigncd-in flcsi- 
bility in pl:~cea tl1;it cliangecl tlurir~g clc\.clopment is 
;it 1c;ist encour:iging. OpenVYlS ,\XI', [>kc: OSI/l  ,\XI'. 



and Windows NT operating systems a11 run on 
Alpha AXI-' implementations today. Programs from 
the VAX ant1 ,\LIPS architectures transport easily to 
Alpha AXIJ implenientatiolls ant1 run quickly Many 
of the ideas in the Alpha AX11 design are now being 
adopted by other architectures in the industry. 

Appendix 
Biiznry traizsl~~tioiz-A software technique to 
change an executable program written for one 
architecture/operating-s~rstem pair into an equiva- 
lent program for a different architecture/ol>erating- 
system pair. 

Rig-endiaiz nleinory addressing-A view of niem- 
ory jn which byte 0 of an operancl contains the 
most significant (sign) bit of an integer. Compare lit- 
tle-endian memory addressing. 

Byte-An 8-bit datum 

Byte granularity-The appearance that two pro- 
cessors can update adjacent bytes in memory with- 
out interfering with each other. 

CLSC-Complex instruction set computer, charac- 
terized by variable-length instructions, a wide vari- 
ety of memory aclclressing motles, and instructions 
that combine one or more memory accesses with 
arithmetic. <:Is(: designs express computation as a 
few complex steps. 

IEEE clei~ormalizecl nunzber (denorma1)-A float- 
ing-point number with magnitude between zero 
and the smallest represelltable normalized number. 
Numbers in this range are typically not repre- 
sentable in other floating-point arithmetic systems; 
such systems lnight s~gnal an untlerflow exception 
or force a result to zero instead. 

IEEE clouble-extended fornzat-A loosely specifed 
floating-point format with at least 64 significant 
bits of precision and at least 15 bits of exponent 
witlth; typically implemented using a total of 80 or 
128 bits. 

IEEE clynntnic rounding mode-One of four differ- 
ent rounding rules. 

IL5k f%o~!tiizgll,oi~zt-A form of computer arith- 
metic specified by lEEE standartl 754.l' IEEE arith- 
metic inclr~des rules for tlenormalized numbers, 
infinities, and not-a-numbers. It also specifies four 
different modes for rounding results. 

IEEE i~zfinitjl-An operand with an arbitrarily large 
magnitude. 
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IEEE not-a-~zuinber (NLLAV-A symbolic entity 
encoded in a floating-point format. The lEEE stan- 
dard specifies some exceptional results (e.g., 0/0) 
to be NaNs. 

Linear crddressilzg-A memory addressing tech- 
nique in which all addresses form a single range, 
from 0 to the largest possible address. Subscript cal- 
culations can create any address in the entire range. 

Little-endian rnenzory addressirzg-A view of 
memory i n  which byte 0 of an operand contains the 
least significant bit of an integer. The terms little- 
endian and big-endian are borrowed from 
Gulliver's Tr~iz~els in which religious wars were 
waged over which end of an egg to break. 

Longz~~ord-A 32-bit datum. 

Mz~ltiple instr~iction issz~e-A highperformance 
computer implementation technique of starting 
more than one instruction at once. An implements 
tion that starts (up to) two instructions at once is 
called dual-issue; four instructions, quad-issue or 
four-way issue; etc. 

Quadu~orcl-A 64-bit datum. 

RISC-Reduced instruction set computer, charac- 
terized by fixed-length instructions, simple Inem- 
ory acltlressing modes, and a strict decoupling of 
load/store memory access instructions from regis- 
ter-to-register arithmetic instructions. NSC designs 
express computation as many simple steps. 

Segmented addressi~zg-A memory addressing 
technique in which acltlresses are broken into two 
or more parts (segments). Subscript calc~~lations 
can only be done within a single segment, and elab- 
orate software techniques are needed to extend 
addressing beyond a single segment 

VAX dirty zero-A zero value represented with a 
non-zero faction; must be converted to a true zero 
result. 

VAX flroating-point-A form of computer arith- 
metic specified by the VAX architecture manual.4 
VAX arithmetic includes rules for reserved 
operands and dirty zeros. 

VAX reserved operand-A non-number that signals 
an exception when used as an operand in VAX float- 
ing-point arithmetic. 

VAX ulord su~apping-The rearrangement needed 
for the 16-bit pieces of a vi\X floating-point number 
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to put the fields in a more ilsr~al order; this is an arti- 
krct of the l'l>IJ-l L 16-bit ;~rchitecture. 

W ~ I * L / - ) ~  16-bit tI:~ti~ni, 
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ning 3 to 6 t i~iies faster than the custoniet-~s 
expectation (wl~icli was basecl solely on  clock 
rate ratios). 

10 C ~ - L I J ~ - ~  Colrzputer Systenz KeJerence ~ V l ~ ~ ~ z u o l ,  
For111 2240004 (Minneapolis Crny Rese:ircli, 
Inc., 1977). 

I I .  IB,l-1 Systenz/.?70 Prilzciples of 0~)erwtion. 
Form C~22-7000-4 (Armonk. M': Ilih4 Corpo- 
ration. 1974): 28. 

12. Institute of Electrical and Electronics Engi- 
neers. "Binary Floating-point Arithlnetic for 
,Microprocessor Systems,'' Standard Number 
11313-754 (New York, 1985). 

3. The ca reh~ l  reader will notice that A l p l ~ ; ~  ,\XI) 

implementations require a longword shifter 
in the loacl/store patli for 32-bit operands. 
Although w e  briefly considered ;I design with 
no 32-bit operands, we decided to Iccep 52-bit 
load/store support  for good business reasons. 
Similarly, iUpha AXP implementatiolls require 
;I worcl swapper in the load/store patli for VAX 

flo;~ting-point operands. We clecidetl t o  keep 
VAX floating-point support  for good I)i~siness 
reasons. Depending o n  market needs, \'AX 
floating-point support  can be removetl in the 
h ~ t u r e .  

14. Many commercially successful arcliitcc- 
tilres have grown to double-witlt11 memory 
implementations in mid-life: the lohl 709 
series from 36 to 72 bits; the II%M Systeni/3GO 
series from 32 to 64  bits: the Digital I'1)1'-11 
series from 16 t o  32 bits; ;rnd the 1)igit;ll 
VAX series from 32 to 64 bits. This trentl is 
likely to continue. 
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A 200-MHz 64- bit Dual-issue 
CMOS Microprocessor 

A 400-1n~s/200-1~1FLOPS (peak) custom 64-bit VLSICPU chip is described. The chip is 
fabricated in a 0.75-pm CMOS technology utilizing three levels of metnlizntio~z and 
optimized for 3.3-Voperation. The die size is 168 mm X 13.9 mm and contains 1.68 
lnilliolz transistors. The chi) includes sepamte 8KB instrtiction and dcit~r cacl?es and 
a fully pipelined floating-point unit tlgat can handle both IEEE and VRY standard 
floating-point data types. It is designed to execute two instructionsper cycle among 
scorebonrded integer; floating-point, address, and branch execution units. Pozoer 
dissipation is 30 W at 200-MHz operation. 

A reduced instruction set computer (NSC)-style 
microprocessor has been designed and tested that 
operates up to 200 megahertz (MHz). The chip 
implements a new 64-bit architecture, designed to 
provide a huge linear address space and to be devoid 
of bottlenecks that would impede highly concur- 
rent implementations. Fully pipelined and capable 
of issuing two instructions per clock cycle, this 
implementation can execute up to 400 million oper- 
ations per second. The chip includes an 8-kilobyte 
(JSB) I-cache, 8KB D-cache and two associated trans 
lation buffers, a four-entry, 32-byte-per-entry write 
buffer, a pipelined 64-bit integer execution unit 
with a 32-entry register file, and a pipelined floating- 
point unit (FPU) with an additional 32 registers. The 
pin interface includes integral support for an exter- 
nal secondary cache. The package is a 431-pin pin 
grid array (PGA) with 140 pins dedicated to V,,/y, 
(power supply voltage/grouncl). The chip is fabri- 
cated in a 0.75-micrometer (pm) n-well comple- 
mentary metal-oxide semiconductor (CMOS) 
process with three layers of metalization. The die 
measures 16.8 millimeters (mm) x 13.9 mm and con- 
tains 1.68 million transistors. Power dissipation is 
30 watts (W) from a 3.3-volt (V) supply at 200 MHZ. 

0 IEEE.  Reprinted, with permiasion, from thc  /EEEJortr.i?al of 
SolidStute Circuils, volumc 27, number 11, pages 1555 to  1567, 
November 1992. 

CMOS Process Technology 
The chip is fabricated in a 0.75-pm, 3.3-V, n-well 
CMOS process optimized for high-performance 
microprocessor design. Process characteristics are 
shown in Table 1. The thin gate oxide and short 
transistor lengths result in the fast transistors 
required to operate at 200 MHz. There are no 
explicit bipolar devices in the process as the incre- 
mental process complexity and cost were deemed 

Table 1 Process Description 

Feature size 

Channel length 
Gate oxide 

Ynl  4, 
Power supply 
Substrate 
Salicide 

Buried contact 

Metal 1 

Metal 2 

Metal 3 

- - 

0.75 Krn 
0.5 pm 
10.5 nm 
0.5 Vl-0.5 V 
3.3 v 
P-epitaxial with n-well 
Cobalt-disilicide in diffusions 
and gates 
Titanium nitride 

0.75-pm AICu, 2.25-pm pitch 
(contacted) 

0.75-~m AICu, 2.625-~m 
pitch (contacted) 

2.0-pm AICu, 7.5-pm pitch 
(contacted) 
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too large in comparison to the benefits provided- 
principally more area-efficient large drivers such as 
clock and I/O. 

The metal structure is designed to support 
the high operating frequency of the chip. Metal 3 
is very thick ancl has a relatively large pitch. I t  
is important at these speeds to have a low-resis- 
tance metal layer available for power ant1 clock 
distribution. It is also used for a small set of special 
signal wires such as the clata buses to the pins 
and the control wires for the two shifters. Metal 1 
ancl metal 2 are maintained at close to their maxi- 
mum thickness by planarization and by filling metal 
1 and metal 2 contacts with tungsten plugs. This 
removes a potential weak spot in the electromi- 
gration characteristics of the process and allows 
more freedom in the design without compromising 
reliability. 

Alpha AXP Architecture 
The computer architecture implemented is a 64-bit 
load/store RISC architecture with 168 instructions, 
a11 32 bits wick.' Supportecl data types include 
8-, 16-, 32-, and 64-bit integers ancl both Digital and 
IEEE 32- and 64-bit floating-point formats. Each of 
the two register files, integer and floating point, 
contains 32 entries of (54 bits with one entry in each 
being a hardwired zero. The program counter and 
virtual address are 64 bits. Implementations can 
subset the virtual atltlress size, but are required to 
check the fi1I1 64-bit adclress for sign extension. 
This ensures that when later implementations 
choose to support a larger virtual address, pro- 
grams will still run and not find addresses that have 
dirty bits in the previously "unused" bits. 

The architecture is designed to support high- 
speed multi-issue implementations. ?b this end the 
architecture does not include condition codes, 
instructions with fixed source or destination regis- 
ters, or byte writes of any kincl (byte operations are 
supported by extract ant1 merge instructions 
within the CPU itself). Also there are no first-gener- 
ation artifacts that are optimized around tod;iy's 
technology, which would represent a long-term lia- 
bility to the architecture. 

Chip Microarchitecture 
The block diagram (Figure 1) shows the major func- 
tional blocks and their interconnecting buses, most 
of which are 64 bits wicle. The chip iniplements 
four functional units: the integer unit (IRF plus 

Figt~~-c? I CPU Cbip Block. Dingizlm 

BIU 

E-box), the floating-point unit (FRF plus F-box), the 
loacl/store unit (A-box), and the branch unit (dis- 
tributecl). T'he bus interface unit (UIU), described in 
the next section, handles all communication 
between the chip and external components. The 
microphotograph (Figure 2) shows the boundaries 
of the major functional units. The dual-issue rules 
are a direct consequence of the register file ports, 
t l ~ e  functional units, ancl the I-cache interface. The 
integer register file (IM) has two read ports and one 
write port dedicated to the integer unit, and two 
read anrl one write port shared between the branch 
unit and the load/store unit. The floating-point reg- 
ister file (FRF) has two read ports and one write 
port dedicated to the floating unit, and one read 
and one write port sharecl between the branch unit 
and the load/store unit. This leads to dual-issue 
rules that are quite general: 

Any loacl/store in parallel with any operate 

I-CACHE -F 

An integer operate in parallel with a floating 
operate 

E-BOX 

A floating operate and a floating branch 

An integer operate and an integer branch 

- 

except that integer store and floating operate and 
floating store and integer operate are disallowecl as 
pairs. 

- 
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A 200-MHz 64-bit Dual-issue CMOS iMicro~~rocessor 

CLOCK 

Figure 2 ~klicrophotogrl,h of Chip 

As shown in Figure 3a, the integer pipeline is 
7 stages deep, where each stage is a 5-nanosecond 
(ns) clock cycle. The first four stages are associated 
with instruction fetching, dccotling, and score- 
board checking of operands. Pipeline stages 0 
through 3 can be stalled. Beyond 3, however, all 
pipeline stages advance every cycle. Most arith- 
metic and logic unit (ALU) operations complete in 
cycle 4, allowing single-cycle latency, with the 
shifter being the exception. Primary cache accesses 
complete in cycle 6, so cache 1;ltency is three cycles. 
The chip will do hits under misses to the primary 
D-cache. 

The I-stream is based on autonomous prefetch- 
ing in cycles 0 and 1 with the final resolution of 
I-cache hit not occurring until cycle 5. The 
prefetcher includes a branch history table and a 

subroutine return stack. The architecture provides 
a convention for compilers to predict branch deci- 
sions ancl destination adtlresses, inclutling those for 
register indirect jumps. The penalty for branch mis- 
predict is four cj~cles. 

The floating-point unit is a fi~lly pipelined 64-bit 
floating-point processor that supports both vioc 
standard and IEEE stantlarcl data types and rouncling 
modes. It can generate a 64-bit result every cycle 
for all operations except divide. As shown in Figi~re 
3b, the floating-point pipeline is identical and 
mostly shared with the integer pipeline in stages 0 
through 3;  however, the execution phase is three 
cycles longer. All operations, 32- and 64-bit (except 
divide) have the same timing. Divide is handled by a 
nonpipelined, single bit per cycle, dedicated divide 
unit. 
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ITB INSTRUCTION TRANSLATION BUFFER 
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6 
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WRITE 

I-CACHE 
HITIMISS 

D-CACHE 
HITIMISS 

Figure 3 Pipeline Tinzi~zg 

1 
SW 

SWAP 
PREDICT 

In cycle 4, the register file data is formatted to 
fraction, exponent, antl sign. In the first-stage 
:rclder; exponent difference is calculated and ;I 3 x 
~n~lltiplicand is generated for multiplies. In aclcli- 
tion, a predictive leading 1 or 0 detector using 
the input operands is initiated for use in resillt nor- 
malization. In cycles 5 and 6, for add/subtract, 
alignlnent or normalization shift and sticky-bit cal- 
cul:ition are perfornietl. For both single- ant1 tlou- 
ble-precision mi~ltiplication, the multiply is done in 
;I radix-8 pipelined array multiplier. In cycles 7 and 
8, the final acldition and rounding are performed in 
parallel and the final result is selected and driven 
back to the register file in cycle 9. With an ;tllowed 
byp;~ss o f  the register write data, floating-point 
latency is six cycles. 

'The <:I'IJ cont;rins all the hardware necessary to 
support a tlemand paged virtual memory system. It 
inclutles two translation buffers to cache virtu;il-to- 
physic;~l address translation. The instruction trans- 
lation buffer contains 12 entries, 8 that map 8KR 

pages and 4 that map 4-megabyte (MB) pages. l'he 
data tr;~nslation buffer contains 32 entries that can 
map SKU, 6 4 ~ ~ ,  512KB, or ~ M B  pages. 

T11e CPLI supports performance measurement 
with two counters that accumulate system events 
on the chip such as dual-issue cycles and cache 
misses or external events through two dedicatetl 
pins that are s;lmpled at the selected system clock 
speetl. 

2 
10 

DECODE 

External Interface 
The external interface (Figure 4) i s  designed to 
directly support an off-chip backup cache that can 
range in size from 128KB to 8h4B and can be 
constructed from ordinary SRAMs. For most opera- 
tions, the CPU chip accesses the cache directly 
in ;I combinatorial loop by presenting an address 
antl waiting N CPlJ cycles for control, tag, ant1 tlat:~ 
to appear, where N is a mode-programmablt:nibl num- 
ber between 3 and 16 set at power-up time. For 
writes, both the total number of cycles and the 

9 
I1 

4 
F1 

'4 

ISSUE 
RF READ 

5 
F2 

ADD L I D  SHIFT ADDIRND FRF WRITE 

3X MULl MUL2 ADDJRND FRF WRITE 
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F4 
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9 
FWR 
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osc<2> 
(400 MHz) 

CPU 
CHIP 

I I 

I RAM 

adr-h<33:5> 
4 

Fi'q~1r.e 4 CPU Exterrzal I~zter;firce 

RAM-cll 

MEMORY 
SYSTEM 
INTERFACE 

sys-RAM-ctl 

t1ur;ltion and position of the write signal are 
progranimable in units of CIJU cycles. This allows 
the module designer to select the size and access 
time of the SkL\ls to match the tlesirecl price/ 
performance point. 

The interface is designed to allow all cache pol- 
icy clecisions to be controllecl by logic external to 
the c:l'ri chip. There are tliree control bits associ- 
i~tecl with e;~ch backup cache (B-c;~che) line: valid, 
shared, and dirty. The chip completes a B-cache 
re;ld ;IS long as valid is true. A write is processetl by 
the <:l'lJ only if valid is true and sliarecl is false. 
When ;I write is performed, the dirty bit is set to 
true. In ;ill other cases, the chip defers to an exter- 
nal state machine to complete the transaction. This 
stare m;~chine operates synchronously with the 
S\'s_(;l.l< output of the chip, which is a motle-con- 
trolled submultiple of tlie cPrJ clock rate ranging 
from divitle by 2 to divitle by 8. It is also possible to 
operate without a backup cache. 

Ah shown in the diagram, the extern;il c:iche 
is connected between the ClTJ chip ancl the sys- 
tem memory interface. The cornbin;~torial cache 
access begins with the desired address cleliveretl 
o n  the adr-12 lines and results in ctl, tag, data, 
and checlc bits appearing at the chip receivers 
within the prescribed access time. In 128-bit 
mode. R-cache accesses require two external data 
cyclcs to transfer the 32-byte cache line across 

-1 -; -1-I 
I I I SYSTEM DEPENDENT LOGIC 1 . 

the 16-byte pin bus. In &-bit mode, it is four cycles. 
This yields a maxiniuni backup cache read bantl- 
width of 1.2 gigabytes per second ((;B/s) antl a write 
bandwidth of 711MH/s. Internal cache lines can 
be invalidated at the rate of one line per cycle 
using tlie dedicated invalidate address pins, 
iAdr-11<12:5>. 

In the event extern;~l intervention is requirecl, a 
request code is presented by the CDU chip to the 
external state machine in the time domain of the 
SYS-CLK as describecl pre\~iousl)! Figure 5 shows 
the read miss timing where each cycle is a SYS-CLK 
cycle. The external transaction starts with the 
address, the quadword within block and instruc- 
tion/data indication si~pplied on the cW>Iask-11 
pins, ant1 REAII-I3I.OCK function supplied on the 
cReq-11 pins. The external logic returns the first 
16 bytes of dat;~ 011 the data-h and error correct- 
ing cocle (ECC) or parity on the check-h pitis. The 
CPU latches the data based o n  receiving acknowl- 
edgment o n  rclAclc-H. The tliagratn shows a stall 
cycle (cycle 4 )  between tlie request ant1 the return 
data; this depencls on the external logic and coiilcl 
range from zero to  many cycles. The second 16 
bytes o f  data are returnetl in the same way with 
rdAck-h signaling the return of the data antl cAck-11 
signaling the completion of the transaction. cRecl-h 
returns to idle and ;I new transaction can start ;it 
this time. 
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sysCLKOut-h 

adr-h 

cWivlask-h X VALID X 
cReq-h 

data h / 

1 
ecc VALID VALID 
check-h 

rdAck h - 
cAck-h 

Tlie chip itllplements a novel set of fe;~tures sup- 
porting chip ant1 motlule test. When the chip is 
reset, the first action is to reael from ;I seriiil re;td- 
only memory (SKOM) into the I-cache via a private 
three-wire port. The <;Ptl is then enabled ancl the 
program counter (PC) is forced to 0. 1'11~1s with only 
three fi~nctional components (<:I'll chip, SlWkI, and 
clock input), a system is able to begin executing 
instructions. This initial set of instructions is r~secl 
to write tlie bus control registers inside the <:I'U 

chip to set the cache timing and to test the chip and 
nlotlule from the CPI out. After the SKoiLI loads tlie 
I-c;tchc, the pins used for the sl<o.~l interktce arc 
enableel ;IS serial in and out ports. These ports can 
be used to load more clata or to return status of test- 
ing ;~ntl setup. 

Circuit Implementation 
Many novel circuit structures ;~ntl clet;~ilecl analysis 
techniclues were develolxcl to support the clock 
rate in conjunction with tlie complexity clemanded 
by the concurrence ant1 wide data paths. Tlie clock- 
ing methotl is single wire level sensitive, The bus 
interk~ce unit operates from a bufferecl version of 
the main clock. Signals that cross tliis interface are 
tleskewed to eliminate races. This clocking method 
elirnin:~tcs cle;ttl time between ph:lses ;~ncl requires 
onl!. a single clock signal to be routccl t l~ ro~~g l lo i~ t  
the chip. 

One d ifIiculty inherent in this clocking methoel 
is the substant~i;tl lo;~tl o n  the clock node. 3.25 
nanofaratl (nl;) in our design. This load anel the 
requirement for a fast clock eclge led us to take par- 
ticular care with clock routing and to do extensive 
analysis o n  the resulting grid. Figure 6 shows thc 
distribution of clock 1o:cel among the major func- 
tional units. The clock drives into a grid of vertical 
metal 3 ;tnd horizont;tl metal 2. Most of the loading 
occurs in tllc integer ;lnd floating-point  ini its that 
are fed from the more robust metal 3 lines. To 
ensure the integrity of the clock grid across tlie 
chip, the grid MGLS ex~r;~ctccI From the layout ancl thc 
resulting network. which contained 630.000 R<; ele- 
ments, w:ts simulateel using a circuit simulation 
program b;lsct! o n  the AWEsinl sin1u~aror from 
Carnegie-Nlellon Ilniversit): Figure 7 shows :I three- 
clirnensiotial representation of the output of this 
simulation ;inel shows the clock delay from the 
clriver to e:icli o f  the 65,000 transistor gates con- 
nected to the clock grid. 

The 200-MHz clock signal is fed to the clriver 
through :I bin;~r-y fanning tree with five levels of 
buffering. There is ;I 1iorizont;tl shorting bar at the 
input to the clock driver to hell-, slnooth out possi- 
ble asymmetry i t1  the incoming wave front. The 
driver itself consists of 145 sepzirate elements, each 
of which contitins h)ur levels of prescaling into a 
final output stagc that drivcs the clock grid. 
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I-CACHE 
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D-CACHE 
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Figure 6 Qock Load Distrib~ltiorz 

Figure 7 CPU Clock Skew 

The clock driver ;~nd  predriver represent about on-chip. This consists o f  thin oxide c;tpacit;~nce 
40 percent o f  the total effective switching c;~paci- that is clistributed ;irountl the chip, primarily ulider 
tance cletermined by power mc:lsurement to be the data buses. In addition, there are horizont;tl 
12.5 nF (wrorst case inclucling output pins). To metal 2 power and clock sliortj~ig straps adjacent 
manage the problem of di/dt on the chip power to the clock generator, and the thin oxide decoup- 
pins, explicit decoupling c;~pacit;tnce is provided ling cap under these lines supplies cb;~rge to 
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the clock driver. di/dt for the driver alone is about 
2 X 101' amperes per second. The total decoupling 
capacitance as extracted from the layout measures 
128 nE Thus the ratio of decoupling capacitance 
to switching cap is about 10: 1. With this capacitance 
ratio, tlie decoupling cap could supply all the charge 
associated with a complete CI'U cycle with only a 10 
percent reduction in the on-chip supply voltage. 

Latches 
As previously described, the chip employs a single- 
phase approach, with nearly all latches in the core 
of the chip receiving the clock node, CLK, directly. 
A representative example is illustrated in Figure 8. 
Notice that L1 and L2 are transparent latches 
separated by random logic and are not simultane- 
ously active; 1.1 is active when CLK is high and L2 
is active when CLK is low. The minimum number of 
delays between latches is zero and the maximum 
number of delays is constrainecl only by the cycle 
time and the details of any relevant critical patlis. 
The bus interface unit, many tlatepath structures, 
and some critical paths deviate from this approach 
and use buffered versions and/or conditionally buf- 

CLK 

LOGIC 

LOGIC c 
(h) Latching Scl?ema 

L1 OPAQUE L2 OPAQUE 
L2 TRANSPARENT L1 TRANSPARENT 

(6) Latch Timing 

fered versions of CLK. The resulting clock skew is 
managed or eliminated with special latch structures. 

The latches used in the chip can be classifietl into 
two categories: custom ant1 standard. The custom 
latches were used to meet the unique needs of tlata- 
path structures ant1 the special constraints of criti- 
cal paths. The standarcl latches miere used in the 
design of noncritical control and in some data-path 
applications. These latches were designed prior to 
the start of implementation ant1 were includetl in 
the library of usable elements for logic synthesis. NI 
synthesized logic used only this set of latches. 

The standard latches are extensions of previously 
publisked work, and examples are shown in Fig- 
ures 9 to 11.' To understand the operation of 
these latches, refer to Figure 9a. When CLK is high, 
P l , N l ,  and N3 function as an inverter cornplemcnt- 
ing IN 1 to produce X. P2, N2, and N4 filnction as a 
second inverter and complement X to produce 
OUT. Therefore, the structure passes IN1 to OUT. 
W%en C1.K is low, N 3  and lV4 are cut off. If I N l ,  X, 
and OU'T are initially high, low, and high respcc- 
tively, a transition of IN1 falling pi~lls X high 
through P1 causing P2 to cut off, which tristates 
OUT high. If IN1, X, and OUT are initially Low, high, 
and low respectively a transition of ln l l  rYsing 
causes P1 to cut off, which tristates X high leaving 
out tristatetl low. In both cases, additional transi- 
tions of IN1 leave X tristated or driven high with 
OUT tristated to its initial value. Therefore, the 
structure implements a latch that is transparent 
when CLK is high and opaque when CLK is low. 
Figure 9c sliows the dual circuit of tlie latch just dis- 
cussed; this structure implements a latch that is 
transparent when CLK is low and opaque when 
CLK is high. Figures 9b and 9d depict latches with 
a n  output buffer used to protect the sonietiines 
dynamic node OUT and to drive large loatis. 

The design of the standard latches stressed three 
primary goals: flexibility, immunity to noise, and 
immunity to race-through. To achieve the desired 
flexibility, ;i variety of latches like those in Figures 9 
to 11 it1 a variety of sizes were characterized for the 
implementors. Thus the designer could select a 
latch with an optional output buffer and an embecl- 
decl logic function that was sized appropriately to 
drive various loatls. Furthermore, it was clecided to 
allow zero delay between latches, complctely free- 
ing the designer from race-through considerations 
when designing static logic with these latches. 

In the circuit methodology adopted for the imple- 
mentation, only one node, X (Figure 9a), poses 
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inordinate noise margin risk. As noted above, X 
may be tristated high with OUT tristated low when 
the latch is opaque. This maps into a dynamic node 
driving into a dynamic gate that is very sensitive to 
noise that recluces the voltage o n X ,  causing leakage 
through P2, thereby destroying OtlT. This problem 
was addressecl by the addition of PS. This weak 
feedback device is sized to source enough current 
to counter reasonable noise and hold P2 in cutoff. 
N5 plays an analogous role in Figure 9c. 

Race-through was the major f ~ ~ n c t i o n a l  concern 
with the latch design. It is aggravatecl by clock skew, 

the variety of available latches, and the zero clelay 
goal between latches. The clock skew concern 
was actually the easiest to atlclress. If data propa- 
gates in a direction that opposes the propagation of 
the clock wave front, clock skew is functionally 
harmless ancl tends only to reduce the effective 
cycle time locally.  minimizing this effect is of con- 
cern when  designing the clock generator. If  data 
propagates in a direction similar to the propagation 
of the  clock wave front, clock skew is a functional 
concern. This was acltlressed by radially distrib- 
uting the  clock from the center of the chip. Since 
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CLK CLK 
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IN2 OUT 
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N1 N2 

CLn CLK 

;;; -+ OUT 

IN1 -1 

P4 
CLK T 

IN1 

CLK - 
OUT - OUT 

the clock wave front moves out radially from the 
clock driver toward the periphery of the die, it is 
not possil~le for tlie data to overtake tlie clock i f  tlie 
clock network is properly designed. 

li) verify the remaining race-through concerns, ;I 
mix-ancl-m;~tch approach was taken. All reasonable 
combin;~tions of I:~tclies were cascatletl together 
and sirn~~latetl. The simulations were stressetl by 
eliminating all interconnect ant1 difilsion cap;~ci- 
tancc ;inti by pushing each device into ;I comcr 
o f  the process that emphasizetl race-through. 

'l'hen m;iny simulations mrith varying CLK rise and 
fall times, temperatures, and power supply volt- 
ages were performed. The results sbowetl n o  
;~ppreciable evidence of race-through for C1.K rise 
and fall times at or below 0.8 ns. With 1.0-ns rise 
~und hll times, tlie latches showed signs of ti~ilure. 
To gi~;t~-;lntee fi~nctionality, CLK was specifiecl and 
tlt-signed to have an edge rate of less than 0.5 ns. 
This was not a serious constraint since other 
circilits in the chip required similar edge rates of 
the clock. 
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A litst design issue worth noting is the feedback 
tlevices, PI5 and P5, in Figures 10c, 10d, 112, ancl 
Ilb. Notice thar these devices l ~ v e  their gates tied 
to  C1.K instead of OrJT like the other latches. This 
difference is required to account for an effect not 
present in the other latches. In these latches, a 
stack o f  tlevices is connected to node X, without 
passing through the clocked transistors P.3 or N3. 
Referring to Figitre Ila,  assume CLK is low, X is 
higli, and OllT is low. If multiple rarldoni transitions 
are allowed by IN1  with IN2 high, then coupling 

t l ~ r o ~ ~ g l l  PI can drive X down by more th;m ;I 

threshold even with weak feedback, thereby 
destroying olrl'. To counter this phenomenon, P5 
c:lnnot be :I weak feedback device arid thcreforc 
cannot he tietl to OUT if the latch is to h~nction 
properly when <:LK is high. Note that taller stacks 
;iggr;tvate this problem because the devices 
become larger and there are Inore tlevices to partic- 
ipi~te in coupling. For this reason, st;~cl<s in these 
latches were limited to three high. Also. note that 
clocking P5 introcluces another race-through j ~ a ~ l i  
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since X will uncontlitionally go high with C1.K 
falling, iuntl OIIT must be able to retain a stored ONE.  

S o  there is :I two-sidetl constraint: P5 must be large 
enough to counter coupling and small enough not 
to c;~use race-tlirougli. These trade-offs were ana- 
lyzed by simulation in a manner similar to the one 
oi~tlined ;ibove. 

64-bit Ad~Zer 
A tlifficult circuit problem mras the 64-bit adtler por- 
tion o f  the integer and floating-point ALUs. Unlike a 
previous Iiigh-speed design, we set a goal to 
;~cliieve single-cycle latency in this unit.3 Figure 12 
h:is ;In organiz;~tional diagram of its structure. Every 
p:~th t h ro~~gh  the adder includes two latclies, allow- 
ing fully pipelined operation. The result latches are 
shown explicitly in the diawani; honlevec the input 
latches ;ire somewhat implicit, taking advantage of 
the predischarge characteristics of tlie carry chains. 
'flit. con~l>lete adder is a combination of three meth- 
ods for proclucing a binary adcl: a byte long carry 
ch:iin, 21 longwortl (32-bit) carry select, ant1 local 
logal-ithmic carry select.' The carry select is built as 
:I set of n-channel metal-oxide sernicontluctor 
(NMOS) switches that direct the data from byte 
c:irry chains. The 32-bit lo~igwortl lool<ahead is 
implementecl as ;I tlistributecl tlifferential circuit 
controlling the final stage of the upper longword 
switches. The carry chains are organizecl in groups 
of eight bits. 

(:;lrry c11;lin witlth was chosen to implement a 
byte compare fi~nctio~i specifiecl by the architec- 
ture. The citrry chain implemented with NMOS tran- 
sistors is shown in Figiire 13a. Operation begins 
with the c1i;iin pretlischarged to I&, with tlie con- 
trolling signill an OR of CLK and the kill function. 
E\~;llu:ition begins along the chain length without 
the del:~y :~ssoci;itetl with the ys- thres1lold foii~ld 
in ;I cli;~in precliargetl to V,,. An alternative to a pre- 
tlischarged state was to precl~arge to l/o,- C;. but the 
resulting low noise margins were deemed unac- 
ceptable. From the least significatlt bit to the most 
significsnt bit, the witlth of the NMOS gates for each 
carry chain stage is tapered down, reducing t l ~ e  
loading presentetl by the remainder of the chain. 
The local carry nodes are received by ratioed invert- 
ers. Each set of propagate, kill, and generate signals 
colitrols two carry chains, one that assumes a carry 
in :incl one tIi;lt assumes no carry in. The results 
feetl the bit-wise tlata switches as well as the carry 
selects. 

The longword carry select is built as a distributed 
cascode structure used to conibine tlie byte gen- 
erate, k i l l ,  and propagate signals across the lower 
52-bit longworcl. It controls tlie final data selection 
into the upper longworcl output latch ant1 is out of 
tlie critical path. 

The NMOS byte carry select switches are con- 
trolletl by a cascade of closest neighbor byte c;~rr)l 
o ~ ~ t s .  Data in the most significant byte of the upper 
longworcl is switchecl first by the carry-out dat;~ of 
the next lower byte, byte 6, then by byte 5, ancl 
finally byte 4. The switches direct the sum dxta 
from either the carry-in channel or the no-carry 
channel (Figure 13b). Sign extension is accom- 
plished by clisabling the upper longwor-tl switcli 
controls on longword operations and forcing the 
sign of tlie result into both data channels. 

To provide maximum flexibility in applic;itions, the 
external interface allows for several different 
modes of operation all using common on-chip cir- 
cuitry. This includes choice of logic fri~nily (CMOS/ 

transistor-transistor logic [TTL] or emitter-couplet1 
logic [B<:L]) as well as bus width (64/128 bits), exter- 
nal cache size and access time, and BIl i  clock rate. 
These parameters are set into mode registers dur- 
ing chip power-up. The logic family choice pro- 
vided an interesting circuit challenge. The input 
receivers are differential an~plifiers that t~tilize an 
external reference level which is set to the switcli- 
ing midpoint of the external logic family. To rnain- 
t;rin signal integrity of this reference voltage, it is 
resistively isolated and KC-filtered at each receivec 

The output driver presented a more difficult 
problem clue to tlie 3.3-V V,, chip power suppl3-. To 
provicle a good interface to ECL, it is important that 
the outpi~t tlriver pull to the V,, rail (for ECL. operil- 
tion I(,,, = O V, V,, = -3.3 V). This precludes iisitig 
NhWS pi11 I-ups. P-channel metal-oxide semicon- 
ductor (l1&lOs) pull-ups have the problem of well- 
junction forwarcl bias and l%lOS turn-on when 
biclirectional outputs are connected to 5-V logic 
in (:ivlOS/T'rL mode. The solution, as sliom/n in Fig- 
ure 14, is a u~iique floating-well driver circuit that 
i~voicls the cost of series PMOS pul I-ups in the final 
stage, \vliile providing clirect interhce to 5-V 
<;MOS/Tl'l. ;Is we1 1 as ECL.i 

Tr;~~isistors Q1, Q2, and Q6 are the actual output 
devices. 91 and Q2 are NMOS devices arr;ingecJ in 
cascocle fasl~ion to limit tlie volt;~ges itcross a single 
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Figure 14 Floating-zuell Driver 

TO 
PAD 

transistor to no more than 4 V: QG is a Ph4OS pull-up 
device that shares a common n-well with Q7 
through Q10, which have responsibility for supply- 
ing the well with a positive bias voltage of either 
C;,, or the I/O pin potential, whichever is higher. Q3 
through Q5 control the source of voltage for the 
gate of Q6-either the output of the inverter or the 
I/O pad if it moves above y),,. K 1  and R2 provide 
50-ohm series termination in either operating mode. 

C L Z C ~ ~ S  
'I'he two internal caches are almost identical in con- 
struction. Each stores up to 8KB of data (D-cache) 
or instri~ction (I-cache) with a cache block size of 
32 bjTes. T'lie caches are direct mapped to realize 
a sjngle cycle access, ancl can be accessed using 
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untranslated bits of the virtual address since the 
page size is also 8KB. For a read, the address stored 
in the tag and a 64-bit quadword of data are 
accessed from the caches and sent to either the 
memory management unit for the D-cache or the 
instruction unit for the I-cache. A write-through 
protocol is used for the D-cache. 

The D-cache incorporates a pending fill latch 
that accumulates fill clata for a cache block while 
the D-cache services other load/store requests. 
Once the pending fi l l  latch is full, a11 entire cache 
block can be written into the cache on the next 
available cycle. The I-cache has a similar facility 
called the stream buffer. On an [-cache miss, the 
I-box fetches the required cache block from mern- 
ory and loads it  into the I-cache. In addition, the 
I-box will prefetch the next cache block and place it 
in the stream buffer. The data is held in the stream 
buffer ancl is written into the I-cache only if the data 
is requested by the I-box. 

Each cache is organized into four banks to reduce 
power consumption and current transients during 
precharge. Each array is approximately 1,024 cells 
wide by 66 cells tall with the top two rows used 
as redundant elements. A six-transistor, 98-pm* 
static RAM cell is used. The cell utilizes a local inter- 
connect layer that connects between polysilicon 
and active area, resulting in a 20-percent reduction 
in cell area comparetl to a conventional six-transis- 

tor cell. A segmented word line is used to accom- 
modate the banked design, with a global word line 
implemented in third-level metal and a local word 
line implemented in first-metal layer. The global 
word line feeds into local decoders that decode the 
lower two bits of the address to generate the local 
word lines. As shown in Figure 15, the word lines 
are enabled while the clock is high, and the sense 
amplifiers are fired on the falling edge of the clock. 

Summary 
A single chip microprocessor that implements a 
new 64-bit high-performance architecture has been 
described. By using a highly optimized design style 
in conjunction with a high-performance 0.75-pm 
technology, operating speeds up to 200 MHz have 
been achieved 

The chip is superscalar degree 2 and has 7- and 
10-stage pipelines for integer and floating-point 
instructions. The chip includes primary instruction 
and data caches, each 8KR in size. In each 5-ns 
cycle, the chip can issue two instructions to two of 
four units, yielding a peak execution rate of 400 
mips and 200 MFLOPS. 

The chip is designed with a flexible external 
interface providing integral support for a sec- 
ondary cache constructed of ordinary SRAMs. The 
interface is fi~lly compatible with virtually any 
multiprocessor write cache coherence scheme, 

PIPELINE STAGE 

1 3 1 4 1 5 1 6 1 7 1 8 1  

CLK 

DISPLACEMENT 
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REGISTER FILE 
WRITE PORT 

ALU BYPASS IN 

Figure 15 D-cache Timing Diagram 
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and can accommodate a wide range of timing 
parameters. It can interface directly to standard l'TL 
and CMOS as well as lOOK ECL technology. 
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The Alpha Demonstration Unit: 
A High-pmformance Multiprocessor 
for Software and Chip Development 

Digital's firs1 RISC systenz built usir?g tlge 64-bit Alpha iVTP architecture is the 
prototype knoz~ln as the A@ha dernorzstlwtion unit or ADU It consists of n Dackplalze 
corztairzi~zg 14 slots, each of z~lhich con hold a CPU modctle, a 641118 storqe nzod~rle, 
or a ?nodz~le containirzg lziu 501MB/s I/O cbcrr~~zels. A new cache cobererzce protocol 
prouides eachp~.ocessor and I/O chatltzel with a consistent uieui of shared merlzorj! 
T/gir&y-five ADU systenzs ulere built zvitbin Digital to nccelerwte softtonre develop- 
11zent and early chi11 Iesti~zg. 

There is nothing more dif'ficiilt to tnkc in hantl, 
more perilous to contluct, or more uncertain in its 
success, than to take the lead in the introtluction OF 
:I new order of things. 

-Niccolo ~Machiavelli, Ibe  Prirrce 

Introducing a new, 64-bit computer architecture 
posed ;I number of challenges for Digital. In 
addition to developing the architecture and the 
first integratetl implementations, an enormous 
amo~lnt  of software had to be moved fronl the VAX 
and MIPS (MIt'S Computer Systems, Inc.) architec- 
tures to the Alpha AXP architecture. Some software 
was originally written in higher-level languages and 
coultl be recompiled with a few changes. Some 
could be converted using binary translation too1s.l 
A.11 software, however, was subject to testing and 
debugging. 

It became clear jn the early stages of the program 
that builtling an Alpha demonstration unit ( ~ [ ) l i )  
would be of great benefit to software developers. 
Having a functioning hardware system would moti- 
vate software developers and reduce the overall 
time to market considerably. Software clevelop- 
ment, even in the most disciplined organizations, 
proceetls much more rapidly when real 11artlw;lre is 
available for programmers. In addition, hardware 
engineers could exercise early implementations of 
the processor on the ADU, since a part as complex 
as the DE(:cliip 21064 CPU is difficult to test i~sing 
conventional integrated circuit testers. 

For these reasons, a project was started in early 
1989 to build a number of prototype systems as 

rapidly as possible. These systems dicl not require 
the high levels of reliability and availability typical 
of Digital products, nor did they need to have low 
cost, since only a few w o ~ ~ l t l  be built. They clicl need 
to be ready at the same time as the first chips, and 
they had to be sufficiently robust that their pres- 
ence would accelerate the over;lll program. 

Digital's Systems Research Center (SRC) in Palo 
Alto, CA had had experience in builtling similar pro- 
totype systems. SRC: had designed nntl built much of 
its computing e~ lu ipment .~  Being located in Silicon 
Valley, SRC coultl employ the services of a number 
of local medium-volume fabrication ant1 assembly 
companies without impetling the mainstream 
Digital engineering and manufacturing groups, 
which were develoj>ing AXI' protluct systems. 

The project team was cleliber;~tely kept small. 
Two designers were locatetl at SRC. one was with the 
Semiconductor Engineering Group's Aclvancetl 
Development Crroul> in Hudson, a\, and one 
was a member of Digital's Cambridge Research 
Laboratory in Cambridge, M.A. Although the project 
team was scparatecl both geographically ant1 organ- 
zat ional l~ communication flowetl smoothly 
because the individu;ils had collaborated on similar 
projects it1 the past. The team used a commonset of 
design tools, and Digital's global network made it 
possible to exchange design information between 
sites easily. As the project moved from the design 
phase to production of the systems, the group 
gren7, but at no  point did the entire team exceed ten 
people. 
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Since multiprocessing capability is central to the 
Alpha AXP architecture, we decided that the ADU 
had to be a multiprocessor. We chose to implement 
a bus-based memory coherence protocol. A high- 
speed bus connects three types of modules: The 
CPU module contains one rnicroprocessor chip, its 
external cache, ancl an interface to the bus. A stor- 
age module contains two 32-megabyte (Me) inter- 
leaved banks of dynamic random-access memory 
(DRAM). The I/O module contains two 5 0 M B  per 
second (MB/s) 1/0 channels that are connected to 
one or two DECstation 5000 workstations, which 
provide disk and network I/O as well as a high- 
performance debugging environment. Most of the 
logic, with the exception of the CPU chip, is emit- 
ter-coupled logic (ECL), which we selected for its 
high speed and preclictable electrical characteris- 
tics. Modules plug into a 14-slot card cage. The card 
cage ancl power supplies are housed in a 0.5-meter 
(m) by 1.1-m cabinet. A fully loaded cabinet tlissi- 
pates approximately 4,000 watts and is cooled by 
forced air. Figures 1 and 2 are photographs of the 
system and the modules. 

In the remaining sections of this paper, we dis- 
cuss the backplane interconnect and cache coher- 
ence protocol used in the m u .  We then describe 
the system modules and discuss the design choices. 
We also present some of the uses we have found for 
the ADU in addition to its original purpose as a soft- 
ware development vehicle We conclude with an 
assessment of the project and its impact on the 
overall Alpha LKP program. 

Figure I The A//~ha Dernonstrzttio~z Unit 
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Backplane Interconnect 
The choice of a backplane interconnect has more 
impact on the overall design of a multiprocessor 
than any other decision. Complexit): cost, and per- 
formance are the factors that must be balanced to 
procluce a design that is adequate for the intended 
use. Given the overall pilrpose of the project, we 
chose to minimize complexity and maximize per- 
formance. System cost is important in a high-vol- 
ume product, but is not important when only a few 
systems are produced. 

To minimize complexity, we chose a pipelined 
bus design in which all operations take place at 
fiietl times relative to the time at which a request is 
issued. To maximize performance, we defined the 
operations so that two independent transactions 
can be in progress at once, which h~lly utilizes the 
bus. 

We designed the bus to provide high banclwidth, 
which is suitable for a multiprocessor system, and 
to offer minimal latency. As the CPU cycle time 
becomes very small, 5 nanoseco~ltls (ns) for the 
I)E<:chip 21064 chip, the main memory latency 
becomes an important component of system per- 
formance. The ADU bus can supply 320N113/s of user 
data, but still is able to satisfy a cache read miss in 
just 200 ns. 

Bus Signals 
The i\l)lJ backplane bus uses E(:L 100K voltage lev- 
els. Fifty-ohm controlled-impetlance traces, termi- 
nated at both ends, provide a well-characterized 
electrical environment, free from the reflections 
and noise often present in high-speed systems. 

Table 1 lists the signals that make LIP the bus. The 
data portion consists of 64 data signals, 14 error 
correction cotle (KC) signals, ant1 2 parity bits. The 
ECC signals are stored in the memory modules, but 
no checking or correction is clone by the memories. 
Instead. the ECC bits are generated and checked 
only by the ultimate producers ant1 consumers of 
data, the I/O system and the CPU chip. Secondary 
caches, the bus, and main memory treat the ECC as 
uninterpreted data. This arrangement increases 
performance, since the memories do not have to 
check data before delivering it. The memory mod- 
ules would have been less expensive had we used 
an ECC code that protected a larger block. Since the 
crrr caches are large enough to require ECC and 
since the CPLI requires ECC over 32-bit words, we 
chose to combine the two correction mechanisms 
into one. This decision was consistent with our goal 
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Table 1 Bus Signals 

Signal Name Pins Use 

-Data[63..00] 64 Data 
-ECCO[6..O] 7 ECC on Data131 ..00] 
-ECCl[G..O] 7 ECC on Data163.-321 
-pi01 1 Even Parity over 

Data[31..00], ECCO[G..O] 
-PI11 1 EvenParityover 

Data[63..32], ECC1[6..0] 
B-shared Cache coherence 
B-dirty Cache coherence 
Retry 1 Storage module busy 
Error 1 Data or address parity error 
ArbRequest 8 Arbitration for the bus 
Clock 2 100 MHz differential clock 
Phase 1 50 MHz Reset 1 
nTy peCl k 1 Module identification 
~ T Y  pe 1 Module identification 
nld 4 Module slot number (0..13) 

set by backplane wiring 

of simplifying the design and improving perfor- 
mance at the expense of increased cost. The parity 
bits are provided to detect bus errors during 
address and data transfers. All modules generate 
and check bus parity. 

The module identification signals are used only 
during system initialization. Each module type is 
assigned an 8-bit type code, and each backplane slot 
is wired to provide the slot number to the module it 
contains. Each module in the system reports its 
type code serially on the nType line during the 8 X 

slot number nl)lpeClk cycles after the deassertion 
of system reset. A configuration process running 
on the console processor toggles nTypeClk cycles 
and observes the nType line to determine the type 
of module in each backplane slot. 

The 100-megahertz (MHz) system clock is dis- 
tributed radially to each module from a clock gen- 
erator on the backplane. Constant-length wiring 
and a strictly specified fan-out path on each mod- 
ule controls clock skew. Since a bus cycle takes two 
clocks, the phase signal is used to identify the first 
clock period. 

Addressing 
The bus supports a physical address space of 64 
gigabytes ( 2 3 % ~ ~ ) .  The resolution of a bus address 
is a 32-byte cache block, which is the only unit 
of transfer supported; consequently, 31 address 
bits suffice. One-quarter of the address space is 
reservetl for control registers rather than storage. 
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Accesses to this region are treatetl specially: (;l'us 
clo not store data from this region in their caches, 
ant1 the target need not supply correct E<:<: bits. 

'I"11e methocl used to select the target ~notlule of 
;I bus operatjon is geographic. The initi;itor sencls 
the target module's slot number with the :iddress 
tluring a request cycle. In addition to the 4-bit slot 
number. the initiator supplies a 3-bit subizo~le idem 
tiJier with the address. Subnodes are the itnit of 
memory interleaving. The 6 4 ~ ~  storage moclule, 
for ex:~rnple, contains two intlepentlent 32MB sub- 
nodes that can operate concurrently 

'The geographic selectio~i of the target means that 
a particular subnode only needs to compare the 
requested slot and subnode bits with its own slot 
and subnode numbers to decicle whether it is tlie 
tiirget. This reduces the time reqiliretl li)r the deci- 
sion compared to a scheme in which the target 
inspects the atldress fielcl, but it means that e;lch ini- 
tiator rnilst niaintain a mapping between physical 
addresses and slot and subnotle numbers. This map- 
ping is performed by a Iw;M in each initiator. For 
CPII modules, tlie RAM lookup tloes not reduce per- 
formance, since the access is clone in parallel with 
the access of the module's secontlary cache. The 
slot-mapping W\ls in each initiator are lontled at  

system initialization time by the configuration pro- 
cess described previously. 

Bus Operation 
The timing of adtlresses and data is shown in Figure 3. 
All dat:~ transfers take place at fixetl times relative 
to the start o f  a n  operation. Eight of tlie backplane 
slots can contain modules capable of initiating 
requests. These slots are numbered from 0 to 7, but 
are located at the center of the backplane to retluce 
tlie transit time between initiators and targets. 

A bus cycle starts when one of the initiators arbi- 
trates lor the bus. The arbitration metliotl gu;iran- 
tces t11;lt no initiator can be st;~rvetl. Each initiator 

monitors all bus operations and must request only 
those cycles that it knows the target can accept. 
Initiators are ;~llowetl to arbitrate for a particular 
target nine or more cycles after that target has 
started a read, or ten or more cycles after the target 
has started a write. To arbitrate, an initiator asserts 
the ArbReqilest line correspontling to its current 
priority. Priorities range from 0 (lowest) to 7 (high- 
est). If a module is the highest priority requester 
(i.e.. no higher priority ArbRequest line than its 
own is asserted). that motlule wins the arbitration, 
and i t  transmits an ;iclclress ant1 a comma~lcl i n  the 
next cycle. The winning module sets its priority to 
zero, ant1 all initiators with priority less than the ini- 
tial priority of the winner increment their priority 
regclrdless of u~hetl~er thcy made a request dztrirzg 
the ctr6itrclTion cycle. Initially, each initiator's prior- 
ity is set to its slot number. Priorities are thus 
distinct initially 21ncl remain so over time. This algo- 
rithm favors initiators that have not macle a recent 
request, since the priority of such an initiator 
increases even if it tloes not make requests. If all ini- 
tiators make continuous requests, the algorithm 
provides rountl-robin servicing, but the implemen- 
tation is simpler than round robin. 

An arbitr;~tion cycle is followeel by a request 
cycle. The initiator pl;ices ;in address, node and 
subllode numbers, ;ind a command on the bus. 
There are only three commands. A read command 
requests a 32-byte cache block from memory. The 
target memory or a cache that contains a more 
recent copy supl'ljes the clata after a five-cycle 
delay A write comnialld transmits a 32-byte block 
to memory, using the same cycles for the clata trans- 
fer as the read cornm;it~d. Other caches may also 
take the block ant1 itpdate their contents. A victim 
writc is issued by a <;IYJ module when a block is 
evicted from the seconclary cache. When such an 
eviction occurs, nny other c:lches that contain the 
block are guaranteed to cont;~in the same value, so 

This figure shows the contenls of the bus during four read cycles. I f  requests are made at full rate, the bus is fully occupied 
wilh addresses and data. Bshared and 0-dirty are sen1 in Ihe fifth cycle after the arbilration request. I f  any module detects a 
parily error during an address cycle, it asserls error two cycles later. 

CYCLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

5 4 Vol 4 No. 1 S/)et iitl I s s r ~ c ,  19%' Digilnl Techrricrtl JortrwrrI 

ARB REQUEST 
DATA 
B-SHARED, B-DIRTY 
ERROR 

R1 

E l  

A1 
S2 S4 

E3 



The AlJ!bcr Delnonstration Unit 

they need not participate in the transfer at all. The 
block is stored in memory, as in a nor~iial write. 

Cache Coherence 
In ;I multiprocessor system with caches, it is essen- 
tial that writes clone by one processor be made 
available to tlie other processors in the system in 
;I timely fashion. A number of approaches to the 
cache coherence problem have appeared in the Jit- 
erature. These approaches fall into two categories, 
depending on the way in which they liancl Ie proces- 
sor writes. Azt~nlidntiorz or oti!lzership protocols 
require th:lt ;I processor's cache must acquire an 
exclusive copy of the block before the write can be 
clone.? If another cache contains a copy of the 
block, that copy is invalidated. On the other hand, 
~rpd~zte  protocols maintain coherence by perform- 
ing write-through operations to other caches that 
sh;~re the block.2 Each caclie maintains enough 
state to determine whether any other cache shares 
the block. If  the data is not present in another 
cache, then write through is unnecessary and is 
not done. 

The two protocols have quite clifferent perfor- 
mances, depending on system activity. An update 
pl-orocol performs better than an invaliclation pro- 
tocol in an application in which data is sharetl (and 
written) by multiple processors (e.g., a parallel 
algorithm executing on several processors). In an 
inv;~lid;~tion protocol, each time a processor writes 
a location, the block is inrralidateci in all other 
caches that share it. All caches require an expensive 
miss to retrieve the bloclc when it is next refel= 
enccd. On the other hand, an update protocol per- 
forms lx)orly in a system in which processes can 
migrate between processors. With migration, data 
iippears in both caches, and each time a processor 
writes a location, a write-through operation 
uptlates the other cache, even though its CI'U is no 
longer interested in the block. Larger c;~ches with 
long block lifetimes exacerbate this problem. 

Coherence Protocol 
The coherence protocol usetl in the ADIJ is :I hybrid 
of an update ancl an invalidation protocol, ant1 like 
many hybritls, it combines the good features of 
both parents. The protocol depends on the fact that 
the CPrJ chips contain an on-chip cache backed by 
a much larger secondary caclie that monitors all 
bus operations. Initially, the seco~iclary caches use 
;in update protocol. Caches that contain shared 
d;rt;~ perform a write-through operation to upclate 

the blocks in other caches whenever the associated 
CPU performs a write. If no other cache shares 
a block, this write through is unnecessary ant1 is 
not done. Wlien a secontlary caclie receives an 
update (i.e., it observes a write on the bus directed 
to a block it contains), it has two options. It can 
invalidate tlie block and report to the writer that 
it has done so. If it is the only cache sharing the 
block, subsequent write-through operations will 
not occur. Alternatively, it cat1 accept the uptlate 
and report that it did so, in which case the cache 
that performed the write-through operation con- 
tinues to send upclates whenever its CPU writes the 
block. 

The actions taken by a cache that receives an 
update are determined by whether the block is in 
the CPU's on-chip cache. The seco~idary cache con- 
tains a table that allows it to determine this without 
interfering with the CI'IJ. If tlie block is in the on- 
chip caclie, tlie secondary c;~che accepts the 
update and invalidates the block in the on-chip 
cache. If the block is not in the on-chip caclie, tlie 
secondary cache block is invalidated. If tlie block is 
being actively shared, it will be reloaclecl by the CPIJ 
before the next upd;~te arrives, and the block will 
continue to be sharetl. If not, the block will be inval- 
idated when the second update arrives. 

Implementation of the P~otocol 
The implementation of the coherence protocol is 
not complex. The five possible states of a secondary 
cache block are shown in Figure 4. Initially, all 
blocks in the cache are marked invalid. Misses in 
the CPU's on-chip cache cause a bus read to be 
issued if the block is not in the secondary cache. If 
the cache block is assigned to another memory loca- 
tion and is dirty (i.e., has been written since it was 
read from memory), a victim write is issued to evict 
the block, then a read is issuetl. Other caches moni- 
tor operations on tlie bus and assert the block- 
shared (B-shared) signal if they contain the block. 
If a cache contains a dirty block ancl it observes 
a bus reacl, it asserts B-shared and B-dirty, and 
supplies the data. B-dirty inhibits the memory's 
delive~y of data. 

The CPu's on-chip caclie uses a write-through 
strategy. A CPU write to a shared block in the sec- 
ondary caclie initiates a bus write to update the 
contents of other caches that share tlie block. 
Memory is written, so the block beconies clean. If 
another cache takes the uptlate, i t  asserts B-shared, 
and tlie initiator's state beconles Shared not (-) 
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C-READ 
C-READ C-WRITE 

C-WRITE 
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C-WRITE 
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6-READ INVALID 
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B-WRITE, INC 
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Transitions occur as a result of CPU reads and writes (C-read. C-write) and bus operations 
initiated by other caches or I10 controllers (6-read, 6-write). A C-read or C-write to an invalid 
block causes a 6-read; a C-write to a shared block causes a 6-write. The 6-shared response 
ind~cates that some other cache contains the block. INC indicates that the block is in the CPU's 
on-chip cache. 

Figrrre 4 Secondary Cache Line States 

Dirty. If no other cache takes the update, either 
because it does not contain the block or because it  
decicles to invalidate it, then the B-shared signal is 
not asserted, and the initiator's state becomes 
-Shared -Dirty. The B-shared and B-dirty signals 
may be asserted by several moclules during cycle 
five of bus operations. The responses are ORed by 
the open-emitter ECL backplane drivers. More than 
one cache can contain a block with Shared = true, 
but only one cache at a time can contain a block 
wit11 Dirty = true. 

Designing the bus interconnect and coherence 
protocol was an experiment in specification. The 
informal description required approximately 15 
pages of prose to describe the bus. The real specifi- 
cation was a multithreaded program that repre- 
sented the various interfaces at a level of detail 
sufficient to describe every signal, but, when exe- 
cuted, simulatecl the components at a Iiigher level. 

By running this program with sequences of sitnu- 
lated memory requests, we were able to refine the 
design rapidly and nleasure the performance of the 
system before clesigning any logic. Most design 
errors were discovered at this time, and prototype 
system debugging took much less time than usual. 

System Modules 
In this section, we describe the system modules 
ant1 the packaging of the ADU. We discuss the 
design choices made to produce the c:IjU module, 
storage modules, and I/O niodule on scheclule. We 
also cliscuss applications of the ADU beyond its 
intended use as ;I vehicle for software development. 

CPU Module 
The ADU CPU module collsists of a single CPU chip, 
a 256-kilobyte (KR) secondary cache, and an inter- 
face to the system bus. All CPU modules in the 
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system are identical. The CPll motlules are not self- 
sufficient; they must be initialized by the console 
workstation before the Cl'u can he enabled. 

The CPti module contains exterisive test access 
logic that allows other bus agents to read and write 
most of the module's internal state. We irnple- 
rnented this logic because we knew these motlules 
would be used to debug <:Pll chips. Test access logic 
would help us determine the cause of a CPU chip 
malfunction and would make it possible for us to 
introduce errors into tlie secondary cache to test 
the error detection and correction capabilities of 
the C;I'LJ chip. This logic was used to perform almost 
all initi;~lization of the Cl'u nioclule ;~nd W;IS also 
ilsed to troubleshoot CI'U modules ;ifter they were 
htbricatetl. 

Tlie central featlire of the (:rri motlule (shown 
in Figi~re 5 )  is the secondary c;~che; built using 16K 
by 4 BiCMOS static lL\Ms. Each of the 16K half- 
blocks in the data store is IS6 bits wide (4 long- 
words of data, each protectecl by 7 ECC bits). Each 
of the 8 K  entries in the tag store is an 18-bit address 
(protected by parity) ancl ;I +bit control fieltl 
(valid/sliared/dirty, also protected by parity). In 
addition, it secondary cache cluplicate tag store, 
consisting of an 18-bit ;idtlress ancl a valid bit 
(protected by parity), is used as a hint to speecl pro- 
cessing of reads and writes encountered on tlie 
system bus. Finally, a CPIl chip data cache duplicate 
tag store (protected hy parity) filnctions as an 

BYPASS 

invalidation filter and selects between update and 
invalidation strategies. 

Tlie system bus interface w;~tclies for reads and 
writes on the bus, and looks up e;icli ;idtlress in the 
secontlary cache. On read hits, it ;isserts B-shared 
on the bus, ;ltid, if the block is dirty in the sec- 
ond;u-y c;iche, it asserts B-dirty ;und supplies read 
data to the bus. On write hits, it selects between the 
invalidate and update strategies, modifies the con- 
trol fieltl in the secondary cache tag store appropri- 
ately, and, if tlie update strategy is selected, it 
;iccepts tlata from the system bus. 

Unlike most bus devices, the <;Plr module's 
system bus interface must accept a new ;td<lress 
every five cycles. To do this, it is iniplementecl as 
two intlependcnt finite state rr~;icIiines connected 
together in a pipelined fashion. 

Tlie t ~ g  state machine, which operates during 
bus cycles 1 through 5. watches for addresses, per- 
forms all tag store reads (in bus cycle 4. just in time 
to assert B-shared ant1 U-di1.t). in bus cycle j), ancl 
performs any needed tag store writes (in bus cycle 
5 ) .  If the tag state machine tletermines that bus data 
must bc suppliecl or accepted, it enables the data 
state ms~chine, and, at tlie same tinic, begins pro- 
cessing the next bus request. 

The clata state machine, which operates during 
bus cycles 6 through 10. moves data to ancl from 
the bus and handles the reatling and writing of the 
seconclary cache data store. 'l'he liiglily pipelinetl 
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fi;~tllt-e of the sjatern bus liiakes reading and writing 
the data store somewhat trichy. Figure 61 shows 
;I write hit that has selected the update strategy 
immedi;~tely followed by a read hit that must supply 
d ~ t a  to the bus. High performance mandates 
the use of clocked transceivers, which means the 
second;~rj~ cache data store must reacl one cycle 
ahcad of the bus ancl must write one cycle behind 
thc bus, resulting in a conflict in bus cycle 11. 
However, the bus transfers data in a fixed order, 
so thc reat1 will always access quadword 0 of 
the block, ant1 the write will always :~ccess quacl- 
word 3 of the block. By implementing the data 
store ;IS two 64-bit-wide banks, it is possible to lian- 
tlle these back-to-back transactions without creat- 
ing :uliy special cases, as shown in Figilre 6b. This 
example is typical of the style of design used in the 
t\1)11, wliich eliminates extra mechanisms wherever 
possible. 

?'hc <:1'lJ interface handles the arbitration for the 
seconclary cache and generates the necessary reads 
ant1 writes on the system bus when the CPI' sec- 
ontl:~ry ciiche misses. 

Thc (:PIJ chip is supplied with a clock that is not 
rel;~tetl to the system clock in frecl~lency or phase. 
This factor made it easier to use both the 100-MHz 
frequency of the DC227 prototype chip ant1 tlie 
200-MHz frequency of tlie DECcliip 21064 CPIJ. It 
;~lso ;~llowed us to vary the operating freqilency 
tluring (:PU chip debugging. However, the clata 
lxlses connecting the CPIJ chip to the rest of the 
(:I'IJ motlule must cross a clock-domain boundary. 
Perhaps more significant, the secondary cache tag 
and data stores have two asynchronous sources of 
control, since the <:PU chip contains an integrated 
secoticlary cache controllel: 

CYCLE 

The bidirectional tlata b ~ ~ s  of the CPU chip is con- 
verted into tlie unidirectional data buses used b). 
the rest of the <:I'I! module by transparent cutoff 
latches. 'These latches, wliich are located in a ring 
surrounding the <:Pli, also convert the quasi-ECL lell- 
els generated by the Cl'U chip into true E<:L levels 
for the rest of the <:P'IJ module. These latches are 
norn~ally Iield open, so tlie CI3[! chip is, in effect, 
connected directly to the secondary cache tag and 
data RAMS. Control signals from the CPU cl~ip's inte- 
grated seconcl;rry c;lche controller are simply OKed 
into the appropri;~te secontlary cache f t ~ \ , 1  drivers. 

These latches are ;tlso ~lsecl to pass data across 
the two-clock-clom:~i~i bounclary Normally all 
latches are open. On reatls, logic in tlie CPU chip 
clock clomain closes all the latches and sends a read 
reqi~est into the bus clock domain. Logic in the bus 
clock domain obtains the cli~ta, writes both the sec- 
ontlary c;lcIie and the reacl latches, and sends an 
acknowledgment back into the CPlJ chip clock 
domain. Logic in the CPtJ chip clock tlotnain 
accepts the first half-block of the data, opens the 
first read I;ltch, accepts the second half-line of the 
data, ancl opens all remaining latches. Writes are 
similar: Logic in the <:l'Ll chip clock dolnaiti writes 
the first half-line into the write latch, makes the 
second half-line valid (behintl the latch), and sentls 
a write request into the bus clock tlomain. Logic in 
the bus clock clomain accepts the first half-line of 
data, opens tlie write I;~tcli, accepts the secontl 1i;rlf- 
block of clata, and scncls an acknowledgment back 
into the <:Hi chip clock tlo~iiain. 

Logic in tlie <:IW chip clock tlomain controls all 
latches. Only two signals pass through synchroniz- 
ers: a single request signiil passes from the CPU chip 
clock domain to the bus clock clom;iin, ant1 a single 
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acknowledge signal passes from the bus clock 
domain to the CPU cliip clocl< domain. 

'I'lie secondary cache arbitration scheme is 
i~nconventional because the system bus has no stall 
mechanism. If a reatl or a write appears on the 
system bus, the bus interface tnust have uncondi- 
tional access to the secondary cache; it cannot wait 
for the CPU to finish its current cycle. In fact, the 
bus interf~ce cannot detect if a cycle is in progress 
in tlie CPU chip's integrated cache controller. 

Nevertheless, all events in the system bus inter- 
face occur at fixed times with respect to bus arbi- 
tration cycles. As a result, the system bus interface 
can supply a busy signal to the CPU interface, which 
allows it to preclict the bus interface's use of the 
secondary cache in the immediate future. The Cl'U 

interface, therefore, waits until the secontlary 
cache can be accessetl without conflict and then 
performs its cycle without additional checking. 
.This waiting is performetl by the cpU chip's inte- 
grated secondary cache controller for some cycles, 
and by logic in the CPIJ interface running in tlie bus 
clock domain for other cycles. To reduce latency 
the CPU reatls the seco~ltlary cache while waiting. 
and ignores tlie data if it is not yet valitl. 

All operations use ownership of the system bus 
;IS an interlock. For example, if the CPU writes to a 
location in the secondary cache that is marked as 
shared, the CPIJ interfrrce accluires the system bus, 
ancl then updates the secondary cache at the same 
time as it broadcasts the write. This does not elimi- 
nate all race conditions; in particular, it allows a 
dirty secondary cache block to be invalidated by 
;I system bus write while the CPU interface is wait- 
ing to acquire the bus to write the block to memory. 
l'liis is easily handled, however, by having the Cpll 

interface generate a signal (always-update) that 
insists that the systeni hus interface select the 
update strategy. 

The combination of arbitration by predicting 
fiiture events and the use of the system bus as an 
interlock makes tlie (:I'IJ rnotlule's control logic 
extremely simple. The bus interface and the (:pu 
interface have no knowledge of one another 
beyond the busy ant1 alw;~ys-update signals. Since 
no complicatecl interactions between the (:l'lJ and 
tlie bus exist, no time-consuming simulations of the 
interactions needed to be performed, and we had 
none of the clifficult-to-track-down bugs that are 
usually associated with multiprocessor systems. 

The CPU module contains a number of control 
registers. TIie bus c)lcles that reatl and write these 

registers are processetl by the system bus inter- 
face as ortlinar): hut somewliat degenerirtc, cases. 
The local CPlJ accesses its local registers over tlie 
system bus, using ordinary system bus rc;itls ant1 
writes, so no special logic is neetlecl to resolve r:~ce 
conclitions. 

To keep pace with our schedule. we ;~rr;~ngetl for 
niost of the system to be debugged before the (:I'Ij 
cliip arrived. By 11si11g ;I suitably wired intcgr;~tetl 
circuit test clip, we could place cornnlantls o~ i to  
the CPU chip's comm;~~ltl bus and verify tlie contl-ol 
signals with an oscilloscope. The results 01.' these 
tests left us fairly confident that the system worked 
before the first chip arrived. 

We resumetl testing the CPIJ rnotlulc :it'tcr tlic 
CPU chip was installed. We placetl short (three to 
five instructions) programs into milin rnenior); 
enabled the c:PrJ chip for a short rime, then 
inspected the secondary cache (using tlic (:I'll mod- 
ule's test access logic) to examine tlie results. 

Eventually we connected an external pulse gen- 
erator to the (:t'[J chip's clock ancl ;in external 
power supply to the chip. These moclific;~tions 
permitted us to vary both the operating frequency 
and tlie operating voltage of the c:t'rr cliil,. R!, using 
a pulse generator and a power supply that coultl be 
remotely controlled by another computer, we were 
able to write siniple programs that coi~lcl 1.~111 (:1'11 

cliip diagnostics, without manual intervention, 
over a wide range of operating conditions. l'his 
greatly simplificcl the task of collecting the r;~\\; cl;ir:~ 

needed by the cliip designers to verie the critical 
paths in the chip. 

Storage Modules 
The ADU's storage modules must provitlc high 
bandwidth, both to service cache nlisses ;111t1 t o  

support dernantling I/O tlevices. More iniport:~nt, 
they must provicle Low latenc): since in the c;lse of a 
cache miss, the processor is stalled until tlie miss is 
satisfied. It is also important to pro\7itle ;I motlest 
amount of memory interleaving. Altliough tlie bus 
protocol allows only two memory subnotlcs to be 
active at once, higher interleave increases the prob- 
ability that ;I moclule will be free when a memory 
request is issued. 

Each storage module is organizecl as two 
independent bus subnodes, so that even i n  ;I sys- 
tem with one module, menlory is two-way inter- 
leaved. Each of the subnodes consists of four banks, 
each of whicli stores two longwortls of t l ;~t ;~ 
and their associatecl error correction bits. With 
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1-megabit (Mb) I&\,i chips, the capacity of each 
niotlule is 6 4 M B .  Figure 7 sllows the organization 
of the storage modille. The module consists of 
two independent subnodes, each with four banks 
o f  storage. Control signals are pipelinetl through 
the banks so that the module can deliver or accept 
a 64-bit data word (plus EC:<:) every 20 ns. With 
the exception of the DIb\IM interface sign~ls,  all 
signals are ECL levels. The GO14 gallium arse- 
nitle (<;aAs) driver chip improves performance 
by allowing parallel termination of the DRAM 
adclress lines. 

A memory cycle consists of a five-bus-cycle 
access period followed by four bus cycles of data 
transfer. Each data transfer cycle moves two 39-bit 
longwords between the module and the backplane 
bus, for a total of 32 data bytes per memory cycle. 
This is the size of a CPU module cache block. A read 
operation takes 10 bus cycles to complete, but a 
write requires 11 cycles. 

Since a data rate of 1 word every 20 ns is beyond 
the capabilities of even the fastest nibble-mode 
RAMS, we needed an approach that did not require 
each to provide more than 1 bit per access. 

. . . . . . . . . . . . . . . . . . . . . . . . .  
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We chose to pipeline the four banks of each sub- 
node. Each of the four banks contributes only one 
78-bit word to the block. The banks are started 
sequentially, with a one-cycle delay between each 
bank. 

The high performance of the storage module 
is achieved by maintaining ECL levels and using 
ECL lOOK components wherever possible. The 
W\1 1/0 pin levels are converted to ECL levels by 
latching transceivers associated with each bank. 
Fortunately, the timing of accesses to the two sub- 
nodes of a module makes it possible to share these 
transceivers between the same banks of the mod- 
ule's two subnodes. 

The DRhM chips are packaged on small daughter 
cards that plug into connectors on both sides of the 
main array module. There are 2 daughter cards for 
each bank within a subnode, for a total of 16 daugh- 
ter cards per module. The DRAM address and con- 
trol lines are carried on controlled impedance 
traces. Since each of the 39 DUMs on an address 
line represents a capacitive load of approximately 8 
picofarads, the loaded impedance of the line is 
about 30 ohms. 

The usual approach to driving the address ancl 
control lines of a RAM array uses series termination, 
as shown in Figure 8a. This arrangement has the 
advantage that the driver current is reduced, since 
the load impedance seen by the driver (R, + Z, is 
twice that of the loaded transmission line (Zo). 
Unfortunately, thc RpuM access time is increased, 
because the signal from the driver (5,) must propa- 
gate to the far end of the line, be reflected, and 
return to the driver before the first rwlM on the line 
sees a full-amplitude signal. Since the capacitive 
loading added by the RAM pins lowers the signal 
propagation velocity in addition to reducing the 
impedance, the added delay can be a significant 
fraction of the overall cycle time. 

Since low latency was a primary design goal, we 
chose parallel termination of the 1ziiiM address ant1 
control lines, as shown in Figure 8b. Each address 
line is terminated to +3 volts with a series resistor 
(R,) of 33 ohms, slightly higher than the line 
impedance. In this configuration, each line's driver 
must sink a current of almost 0.1 ampere. Since no 
commercial chip could meet this requirement at 
the needed speed, we com~ilissioned a semicustom 
GaAs chip.' 

As shown in Figure 9, each CaAs chip contains a 
register for eight address bits, row/column address 
nlultiplexing ant1 high current drivers for the U M  

VC: v h ~ - -  0 

DRAM 

Series term~nat~on results In a half-amplilude signal at the first 
RAM on the line until the signal reflects from point C 

DRAM -.. DRAM 

( a )  Series Terrninal.io7z 

B Zo C 

DRIVER 

A 

VA: " h ~ p  0 

Parallel termination saves one line lranslt time, but increases 
driver current. 

( 6 )  Parallel Terniiuafioiz 

F ~ ~ L L I - e  8 Aclclress Line Ter.r?zinntion 

address lines, and a clriver for one o f  the three I b i M  

control signals ( U S ,  CAS, Write). To reduce the cur- 
rent switched by each chip, each address bit tlrives 
two output pins. One pin carries true data, ant1 the 
other is complemented. The total cunent is there- 
fore constant. Each pin drives one of the two I w M  
modules of a bank. A total of three GaAs chips 
is required per bank. In the present module, with 
1M- by 1-bit U M  chips, only 10 of the 12 address 
drivers are usrcl, so the system can be easily 
expanded to make use of 16M RhiMs. 

The storage module contains only a small 
amount of control logic. This logic generates the 
control signals for the IWiLls and the various 
transceivers that route data from the backplane to 
each bank. This logic also generates the signals 
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I I 
SELlN , I D O  1 SELOUT 

I+TCy~lr.e 9 Add~.c.ss and Control Driver 

to exercise new CPIJ chips and untested software. 
With this in mind, we org~nized the I/O system 
 round a DECstation 5000 workstation as a front- 
end ant1 console processor. This reduced our work 
consitlerably, as all I/<) is clone by the workstation. A 
'I'IlRt3Ochannel module connects the DECstation 
5000 over a SOMB/s cable to the I/O module in the 
A1)Ii. We selectetl SOMU/s in orcler to support the 
simultaneous, peak-bandwitlth operation of two 
SCSI disk strings, an Ethernet, and a fiber dis- 
tributed data interface (FI)Ol) network adapter. The 
I / ( )  module contains two of these channels, which 
;tllows two DECstation 5000 worl<stations to be 
attachecl. 

At tlie hardware level, the I / ( )  system supports 
block transfers of data from the main memory of 
tlie workstation to and from t\I)lJ memory In addi- 
tion. the I/O module includes command and door- 
be1 1 registers, which are used by AI)t! processors to 
attract the attention of the l/O bysteln. 

In software, 1/0 requests are placed by ADU pro- 
cessors into command rings in t\ l>U niemory, The 
memory address of a comm;lnd ring is placed into 
an I/() control register, ;mcl the associated doorbell 
is rung. The doorbell causes a hardware interrupt 
on the front-end DECstxtion 5000, which alerts the 
I/<) server process that action is needed. The I/o 
server reads the command ring from ADU memory 
and performs the requested I/(). 1/0 completion sta- 
tus is stored into ADU memot-); and an interrupt is 
sent to the requesting t\DI1 processor. 

In addition to its role as an I/O front-end proces- 
sor, the DECstation 5000 workstation acts as a cliag- 
nostic and console processor. When an ADU is 
powerecl on, diagnostic software is run from the 

ncccled to refresh the I<t\l\r,s xncl to assert the retry 
workstation. First, the correct functioning of the 

signal if another nocle attempts to access the mod- 
I/()  module is tested. Then tlie AD17 module identifi- 

ule \vliile it is refreshing itself. 
ciition process determines tlie types and locations 

I/O iWodule 
The I/O module for the A[>U contains two 50Mn/s 
I/o channels ant1 ;I loc;~l (:I'll subsystem. The I/O 
ch;innels connect to one or two DECstation 5000 
workstations, which act as I/() front-end proces- 
sors ;ud  also provide console and tliagtlostic fi~nc- 
tions. The local CPlJ subsystem is used to provitle 
interval timer and time-of-day clock services to ADll 

processors. 
'l'he original specification for the ADIJ I/O system 

required support only for serial line, small com- 
puter s)-stems interface (S(:Sr) disk, and Ethernet 
I/o clevices. We knew that the ADU would be used 

o f  all CPU ant1 storage modules in the system. 
1)i;ignostics are then run  for e;lcli module. 

Once diagnostic software has run, the console 
soft~vi~re is given control. This software is responsi- 
ble for loading privileged architecture library (PAL) 
;~nd operating system software. Once the operating 
system is running, the workst;ition becomes an 1/0 
server. 

The presence of the I>E<:statjon 5000 gave the 
chip team and operating system developers a stable 
place to stand while cliecking o u t  their own com- 
ponents. In addition, the complete diagnostic capa- 
bility ;lnd error checking coverage of the ADCJ 
hardware helped to isolate faults. 
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The central features of the I/o moclule, shown in 
Figul-e 10, are two 1K- by 80-bit register files built 
from 5-1-1s ECL WMs. These memories are cycled 
every 10 ns to simulate dual-portecl memories at the 
20-11s bus cycle rate. One memory is used as a stag- 
ing RAM for block transfers from the I/O processors 
1.0 ADlJ memory. The other memory is shared 
between use as commancl register space for the I/O 
system and a staging W M  for transfers from AI)II 
memory to the 110 system. 

On the bus side, the register files are connected 
directly to the backpl;~ne bus transceivers. On the 
I/O side, the register files are connected to a shareel 
40-11s bus that connects to the two I/O channels. 

The buses are time-slotted to eliminate the 
need for arbitration logic. As a consequence, the 
1 / 0  module control logic is contained in a small 
number of programmable array logic chips that 
implement the 1 /0  channel controllers ant1 a 

block-transfer st;ite machine that 11;lncl les bus 
transfers. 

Each I/O ch;~nnel carries 32 bits of t l ; ~ t ~  plus 7 bits 
of ECC in parallel on a SO-pair cable. Each dat:~ word 
also carries a 3-bit tag that specifies the destin;~tion 
of the data. The cable is half-duplex. wr i t11  the tlirec- 
tion of data flow uncler the control of softw;lre on 
the DECstation. Data arriving from the I)ECst;~tion is 
buffered in 1K E'[FOs. These FIFOs c;irry data across 
the clock-domain boundary between the I/O 
system and the AULI nncl permit both 1 / 0  cIi;~nnels 
to run at h ~ l l  speed simultaneously. 

Each I/O channel interface also has a11 ;~ddress 
counter and a slot-mapping IWM, which are loadecl 
from the workstation. The slot-mapping function 
sets the correspondence between t\l)ll bus 
addresses and the geographically addressed storage 
and CPU moclules. The address ant1 slot m;~p for 
each cllannel are connected to a common adclress 

TO 
DECSTATION 

TO 
DECSTATION 

- 
INTERFACE 

SYSTEM 
BUS 

(61) ADU I/O Module 

OUTBOUND FlFO 

n 

INBOUND FlFO 

TURBO- 4-1 4yB-k 
( I ? )  TURBOchan~zel I/O M o d ~ i l e  

CHANNEL INTERFACE 
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bus. This bus bypasses the register files ancl directly 
clrives the backplane transceivers during bus 
address cycles. 

The far end of tlie I / ( )  cable connecls to a single- 
width TI'RBOchannel niotliile in the 1)EC:station 
5000. This  nodule cont;~ins EC<: gener:ltion and 
checking logic, and FIFO clueues for buffering data 
between the citblc antl tlie 1~ClRBOch;uinel. The FIFO 

queues also carry tlatn across the clock-domain 
boundary between the I/O channel ;rml the 
nJRBOchannel motlules. 

The I/<> module has a local <:PU subsystem con- 
taining a 12-MHz Motorola 68302 processot; 128KH 
of erasable programmable read-only memory 
(EI'KOM). anel 128KI3 of R A V .  The CPll subs!.stem 
also includes an Ethernet interface, two serial 
ports, an SCSl interface, an Integrated Services 
Digital Network (ISDN) interfidce. and auclio input 
ant1 output ports. When in use, the loc;tl <;l'r r sub- 
system uses one of the 1/0 channels otherwise i~vail- 
able for the connection of a DE(;st;~tiotl 5000. 
Although the local <:I't! on the I/O module is capltble 
of rilnning the ~ L I I [  Al>rl 1 / 0  system, in pr;ictice \ve 
~1st. it for supplying interval timer and real-time 
clock service for the Al>lJ.  

The VO morlule was somewhat overdesignetl h)r 
its original purpose o f  supplying disk, networl<, :tntl 
console I/O service for A D l J  processors. This capa- 
bil ity was piit to use in mid-1991 when the tle~nand 
for ADUs became so intense that we considered 
building adtlitional systems. Instead. by using the 
excess 1/0 resources, the slot-mapping featilres of 
the hardware, nncl the capabilities of PAI.code, we 
were able to use ;I three-processor A l ) u  ;IS three 
independent virtual computers. Inclependet~t 
copies of the console program shared the I/() h;ircl- 
ware through software locking and were allocateel 
one CP'LJ ant1 one storxge motlule e;lch. 
lMultiprocessor xl>[ls now routinely run both 
OpenVi\fJS AXl' ;incl l>T:(: OSW1 AXP oper:iting sys- 
tems :it the same time. 

Packaging 
Simplicity was the primary goal in tlie tlesign of the 
Al)U package. Our short schedule dem;~ncletl that 
we avoicl innovation and use standard p;irts wher- 
ever possible. 

The WU's modules ant1 card cage are st;ind;ircl 9U 
(280 millimeter by 367 tnillimeter) Euroc;~rtl com- 
ponents, which ;Ire avail;tble from a nurnbcr o f  ven- 
dors. The cabinet is ;I st;tndard Digital unit. ~~su; i l l '~ '  

usecl to hold disks. Power supplies are off-the-shelf 
units. Three supplies are requiretl to provide the 
4,000 watts consumed by a system containing a full 
complement of 111otluIes. A stantl;lrd power condi- 
tioner provides line filtering and distributes pri- 
mary ti(; to the power supplies. This unit ;tllows the 
system to operate on 110-volt tic in the United 
States, or 220-\wit A C  in Europe. 

Coolitig was the most difficult part of the packag- 
ing effort. The use of ECL throughout the system 
meant that we had to provide an airflow of at least 
2.5 m/s over the  modules. After st~ldying several 
alternatives. we selected a reverse impeller blower 
usecl on Digital3 VAX 6000 series m;~cliines. Two of 
these blowers provide the requireel airflow, while 
generating much less acoustic noise than conven- 
tional fans. 

Since blower tiiilure woulcl result in a catas- 
trophic meltclown, airflow and temperature sen- 
sors are provided. A small module containing a 
rnicrocontrolle~- monitors these parameters as well 
as all power supply voltages. In the event of failure, 
the ;iutonoruorls controller can shut down the 
power supplies. This module also generates the 
system clock. 

Conclusions 
Sometimes it is better to have twenty million 
instruct~onb by Fritlay than twenty million instruc- 
tions per seconcl. -Wesley Cl;~rk 

One liuntlred <:I'lJ antl storage modules and 35 I/O 
modules haw been built. packaged as 35 ADU sys- 
tems, :untl dcliverecl to software development 
groups throughout Digital. Not just laboratory 
curiosities, these systems have become part of the 
mainstream AXP clevelopment environment. They 
are in regul:~r usc by compiler development groups, 
operating system developers, and :~pplications 
groups. 

The AJ)II also provided a full-speed, ill-system 
exerciser h)r the chips. By using the ti1)U. the chip 
tlevelopers were ;~ble to detect several subtle prob- 
lems in carly chip implementations. 

The /\I>[] project was quite successful. AIIU sys- 
tems were in the hands of tlevelopers ;ipproximately 
ten months before the first product prototypes. 
The systems esceedcd our initial expectations for 
reliability. ;rntl provided a rugged, stable platform 
for software clevelopment ant1 chip test. The proj- 
ect demonstratetl that a small team, with focused 
objectives. can protluce systems of substatltial com- 
plexity in a short time. 
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The Design of the DEC3000 AXP 
Systems, Two High-performance 
Workstations 

A fanzily of bigh-perJ-bnnance 64-bit RISC zuorkst~~tions alzd serzlers based 012 the 
izeuJ Digital Alpha AXP ar~chitecture is described. The bar-du~are implementatiot? 
uses the pozue~zzll new DECcl?$21064 CPU and ernploys a sophisticated neLc sj~stenz 
interconnect structzrre to achieve the necessary high Da~tdwidth and lmu-latency 
cache, memory, and t/O 6tues. The melnory subsjlstem of the high-end DEC 3000 
AXP Model 500prouides a 512KB secondary cache and up to I GB of tnemory The I/O 
subsyst@?z of the Model 500 has integral two-dime1.2sionalgrqbics, SC.51, ISDIV, and 
six TURBOchannel expansion slots. 

The DEC 3000 AXP system family consists of both 
workstations and servers that are basecl on Digital's 
Alpha I U P  architecture.' The family includes the 
desktop (DEC 3000 A?(P Model 400) ancl desk-side 
and rack-mounted (DEC 3000 AXP lMoclel 500) sjls- 
terns. The available operating systems are the DEC 
OSF/1 AXP and the OperlViMS AX-' systems. All sys- 
tems use the DECchip 21064 microprocessoc2 

Table 1 gives the specifications for the three DEC 
3000 AXP systems. 

The IIEC 3000 iucP systems are designed to be sig- 
nificantly faster than all previous Digital work- 
stations and to offer performance competitive with 
that of other reduced instruction set computer 
(RISC) workstations currently available. In general, 
NSC systems have larger code sizes ancl conse- 
quently require more instruction-stream bantl- 
width than complex instruction set computer 
(CISC) systems. Further, 64-bit machines recluire 
more data-stream bandwidth than 32-bit machines. 
To complement the power of the DECchip 21064 
microprocessor, the systems need a balanced 
system architecture, including a high-bandwidth, 
low-latency memory system and an efficient, high- 
performance 1/0 subsystem. 

Traditional workstation designs that use a com- 
mon system bus exhibit increased memory latency 
and reduced memory bandwidth due to system bus 
contention. This is a special concern for clesigiis 

using a large number of high-performance I/O 
devices. Increased latency can also result from the 
additional levels of buffering ancl system bus loaci- 
ing common to traditional architectures. Many 
system Isi~ses also exhibit multiplexing between 
address and data, leading to further performance 
degradation. 

To meet the goals of low memory latency, high 
memory bandwidth, ancl minimal CPU-1/0 mcrnory 
contention in a cost-competitive manner, the 
designers implemented the DEC 3000 AXP system 
architecture in an unusual way. They chose to build 
the system interconnect from inexpensive applicit- 
tion-specific integrated circuits (ASICs), as shown 
in Figure 1. Tlie ASICs act as a crossbar between the 
CPU, memory, and VO buses. Addresses and data are 
switched independently by the crossbar. 

The system block diagram in Figure 2 shows the 
system architectl~re of the DEC 3000 U P  systcrns. 
The system crossbar in the center of the diagram is 
composed of six ASlCs, consisting of the N ) D R  ASIC, 
the TURBOchannel (TC) ASIC, and four SLICE ASICs. 
The ADDR ASIC switches addresses between 
the CPU, the memory, and the TC ASIC. The four 
SLICE AS~CS switch data between the CPU, the mem- 
ory, and the TC ASIC. The TC ASIC switches I/O 
acldresses and clat;~ between the ADDK ant1 SLlCL 

ASKS ancl the TClRUOchannel bus. Connected to the 
TURBOchannel bus are the various 1/0 controllers, 
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Table 1 DEC 3000 AXP Family Specifications 

Desk-side Rack-mount Desktop 
Specifications Model 500 Model 500 Model 400 

Height, inches 24.7 15.75 5 

Width, inches 12.75 17.5 20 

Depth, inches 29.7 27 16.75 

Maximum DC power 480 480 295 
output, watts 

Memory 
Standard, MB 
Maximum, MB 

Internal hard disk 
Standard, MB 
Maximum, MB 

Serial ports 
ISDN port 
SCSl ports* 
Ethernet portst 
TURBOchannel slots 
Removable media* 
Integral graphics accelerator 
Audio 

Notes: 
' One internal and one external. 
1 AUI (th~ck wire) and 10Base-T (twisted pair). 

5.25-inch half-height slots. 

1050 
4200 

2 

1 

2 

2 

6 
2 

Yes 
Yes 

1050 
4200 

2 

1 
2 

2 
6 
2 

Yes 
Yes 

426 
21 00 

2 

1 

2 
2 

3 
1 

No 
Yes 

F i e  I Simple Crossbar 

CPU 

including the dual small computer systems inter- 
face (SCSI) controller ASIC, the general t/O con- 
troller ASIC, and the two-dimensional graphics 
accelerator ASIC (not present in DEC 3000 AXP 
Model 400 systems). In addition, six TURBOchannel 
option slots are available for expansion (three slots 
in DEC 3000 AXP Model 400 systems). 

MEMORY 

CPU Module 
The DEC 3000 AXP systems are composed of two  
primary modules, the CPU module and the l/O mod- 
ule. The CI'U module contains the processor, 

secondary cache, control logic, TURBOchannel 
interface and, in the Model 500, the two-dimen- 
sional graphics subsystem. It has connectors for the 
I/O module, four memory mother boards, a lights 
and switches module (LSM), three TURBOchannel 
options, and the power supply. Figure 3 shows the 
layout of the module. CACHE 

CPU 
The DECchip 21064 microprocessor is the CPU of 
the DEC 3000 AXP systems. On the Model 500. the 
CPU runs at 150 megahertz (MHz), and on the Model 
400, it runs at 133 MHz. The processor is a super- 
scalar, fully pipelined implementation of the Alpha 
AXP a r c h i t e c t ~ r e . ~  It  contains two on-chip %kilo- 
byte (KB) direct-mapped caches, one for use as an 
instruction cache, the other as a data cache. Both 
the integer and floating-point units are contained 
on-chip. 

B-cache Szlbsystem 
The system employs a second-level cache (B-cache) 
to help minimize the performance penalty of 
misses and write throughs in the two relatively 

SYSTEM 
CROSSBAR 
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Fgure 3 CPU Module 

small 8KB primary caches of the DECchip 21064 
processor. The B-cache is a 512KB, direct-mapped, 
write-back cache. A direct-mapped cache elimi- 
nates the logic needed to choose among the multi- 
ple sets of a set-associative cache, resulting in a 
faster cache cycle time. A write-back protocol was 
selected because it reduces the amount of write 
traffic from the B-cache to main memory, leaving 
more main memory bandwidth available for other 
memory transactions. 

The block size of the B-cache is 32 bytes, match- 
ing the block size of the primary caches. The cache 
block allocation policy used is to allocate on both 
read miss and write miss. Hardware keeps the cache 
coherent on direct memory access ( D M )  trans- 
actions; DMA reads probe the cache and DMA writes 
update the B-cache (and invalidate the primary data 
cache). 

The DEC 3000 AXP systems are designed to be 
uniprocessor systems, which simplifies the cache 
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controller design in a number of ways. For example, 
since no other CPU's cache can contain a copy of a 
cache block, there is no need to implement cache 
coherency constructs such ;IS a shared bit. Further, 
by loading the B-cache during the power-up 
sequence and keeping it coherent during D I M  by 
using an always-update protocol, cache blocks in 
the B-cache are always guaranteed to be valitl. This 
method eliminates stale data problems without 
needing to use a valid bit. 

In addition to the cache memor): the subsystem 
consists of the cache controller, the main memory 
controller, and the protocol control logic for mem- 
ory access arbitration. A block diagram of the CPU 
and B-cache subsystem is shown in Figure 4. 

The B-cache is alternately controlled by the CPU 
and the external cache controller. When controlled 
by the CPU, the cache may be read by the CPIJ in five 
CPU cycles. The cache data bus width is 16 bytes; 
therefore two reads are necessary to f i l l  a cache 

block. The Model 500 has a maximum cache read 
bandwidth of 480 megabytes per second (MB/s). 
The cache may be written by the CPU with an initial 
tag probe latency of five CPU cycles followed by up 
to two write cycles of five CPU cycles each. The 
Model 500 has a cache write bandwidth of 320 MB/s. 

When a CPU probe misses in the B-cache, or 
when the CPli accesses the external lock register, 
control of the cache is turned over to the external 
cache controller This logic controls filling the 
cache with the required data from main memory, 
handing the data to the CPlJ during reads, merging 
CPU write data into the cache on writes, and main- 
taining the contents of the external cache tag ancl 
tag control store. In addition, this logic maintains 
the architecturally defined lock flag and locked 
physical address register, which can be used to 
implement software semaphores and other con- 
structs normally requiring atomic read-mod@- 
write memory transactions. 

Figure 4 CPCJ and R-cache Block D i a p m  
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The control logic for the B-cache consists of two 
interlocking state machines. These state machines 
control arbitration and decoding of processor and 
110 subsystem requests. They also generate the con- 
trol signals needed to execute these requests to the 
CPII. B-cache, and main memory. 

The state machines prioritize and arbitrate 
requests from various sources, including the CI-'U, 
the 1 / 0  subsystem, and the memory refresh logic. 
Arbitration is done according to a fixed priority 
First priority goes to DMA requests from the I/O sub- 
system. Second priority goes to memory refresh 
requests. Lowest in priority are requests made by 
the CPU. The one  exception to  this scheme occurs 
at the conclusion of a D m  transaction. In this case, 
the first arbitration cycle following the  DMA 
changes the priority to memory refresh first, CPU 
request second, and DLMA last. This guarantees that 
requests for CPll and memory refreshes are granted 
during heavy DiMA traffic. 

The larger state machine, o r  main sequencer, 
examines the commancl generated by the smaller 
state machine, or  cycle decoder, and initiates the 
control flow necessary to perform that command. 
Fifteen unique flows are implemented by the main 
sequencer. They are 

Read cache;rblc memory with/without victim 
block 

Write cacheable memory with/without victim 
block 

Write noncacheable memory (diagnostic use 
only) 

Full block write cacheable memory with/with- 
out victim block 

Tag space write (cliagnostic use only) 

Programmed I/O read/write 

Load lockliit 

Store conclitional hit 

Memory refresh 

When a cache miss occurs and the new cache 
block replaces a cache block that has been modi- 
fiecl, as intlicatetl by the "dirty" status bit, the dis- 
placed data is referred to as a "victim block" o r  
"victim data." 

The many variants of cacheable reads and writes 
provide optimized flows that maximize the paral- 
lelism of cache accesses and memory accesses. For 

example, during the  "read cacheable memory with 
victim block" flow, the n ~ a i n  sequencer reads the 
victim block from the B-cache and stores it in the 
SLICE ASKS in parallel with reading the new block 
from main memor)l. The same flow without a vic- 
tim block makes use of the main memory access 
time to update the tag store. The control flows for 
writes to cacheable memory also take advantage of 
this parallelism. A hlrther write optimization is 
used when the cycle decoder determines that the 
entire cache block will be written; in this case the 
data from memory is completely overwritten, and 
therefore it is never fetched from memory. 

D m  flows are entered upon request of the  D M  
controller in the  I/O control section. DIM control 
flows start by asserting a "hold request" to the CPU, 
causing the CPu to  cease B-cache operations within 
a specified time, after which it asserts a "hold 
acknowledge" signal. It shoulcl be noted that the 
CPU will continue to execute instructions inter- 
nally until such time as it experiences a miss in one  
of its internal caches, or  it requires some other 
external cycle. 

Each DM.% write to memory results in a probe of 
the B-cache for the D M  target block, with a hit 
resulting in the B-cache block being updated in par- 
allel with main memory and the corresponding pri- 
mary data cache block being invalidated. D M  reads 
cause main memory to be read in parallel with 
probes and reads of the R-cache. If a cache probe 
hits, the B-cache data is used to fill the D m  read 
buffer in the SLICE ASICs; otherwise the main mem- 
ory data is used. In this manner, cache coherence is 
maintained. 

Memory System and System Crossbar 
The DEC 3000 ltYP Model 400 and Motlel 500 archi- 
tecture supplants the traditional system bus with a 
system crossbar constructetl from ASICs. Tightly 
coupled to the crossbar is the system memot-).. Three 
types of ASICs-SLICE, ADDR, and TC-form the 
crossbar. SLICE and t D D R  are cliscussetl next and TC 
is discussed in the I/O Subsystem Interface section. 

SWCE ASICs 
The four SLICE ASICs are used strictly for data path; 
together they form a 32-byte bus to main memory, a 
16-byte bus to the CPU and cache, and a 4-byte bus 
to  the TC ASIC. It is helpful to think of the SLICE 
ASICs as a train station for data with the data buses 
as train tracks. Data can come and go on  any track, 
different tracks have different speeds and widths, 
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and data can find temporary storage in the ASKS. 

The SLICE ASlCs provide the systems with a location 
to buffer D m ,  I/O read, I/O write, ant1 victim data 
while the data waits to trwel the next leg of its jour- 
ney The use of the SLICE ASICs also eliminates one 
to two levels of buffering between the dynamic ran- 
dom-access memories (DMMs) and the <:PLl, thus 
decreasing latency and improving bandwidth. 

A key design decision was determining the width 
of tlie memory data bus. A conventional design 
would have matched the width of the memory bus 
to the width of the cache bus (16 bytes). However, 
to reduce the memory latency of the second half of 
the cache block (cache line size is 32 bytes), the 
system reads the entire cache block from memory 
at once using a 32-byte memory bils. Tliis technique 
eliniinates the additional latency from ;I seconcl 
page-mode read. 

Tlie DEC 3000 AXP Model 500 returns the entire 
block to tlie cache ant1 CPlJ with an average latency 
of only 180 nanoseconds (ns) from the <;PU memory 
request. In contrast, a less aggressive prelimin;~ry 
design using a system bus ant1 16-byte-wide mem- 
ory bus yielded an average memory latency of 320 
ns. The 32-byte n1emoi-y bus costs little more tli;ln a 
16-byte bus-two low-cost ASlC:s, resistor p;~cks, 
and some address fan-out parts. 

ADDR ASIC 
The ADDR ASIC is a crossbar for addresses. AJ)I)R 

sends addresses from the CPU to memory (CI'II 
reads ant1 writes), from the c~rl  to I/O (I/<) reacls 
and writes), ant1 from the I/O to CPri and meniory 
( D I M  reads and writes). ADDR selects between <:1-'1J 

read, victim write, ant1 DivU atltlresses to send to 
memory. A counter that increments DLMA addresses 
on long TIRROchannel DMAs :llso resides in AIIDR. 

AI)I>R provides a home to the memory configura- 
tion registers. At power-on time, the boot firmware 
writes ant1 reacls memory space, determines tlie 
memory configuration, ant1 writes the configura- 
tion registers. At  run time, each memory address 
maps into a i~nique bank, regardless of the type and 
order of the single in-line memory modules (SIMMs) 
installed. 

AI)I>R also provides a home for niiscellaneous 
functions such as tag parity checking, refresh 
counter. ;~ncl the lockecl physical address register. It 
generates the c;lche probe intles to check the cache 
tags for ;I hit or a miss on .DMA probes. 

Memory Mother Board and S1MlV.s 
?'he memory system is composetl of memory 
mother bo;lrcls (MMRs) th:~t rise from the system 
card. and SIMMS. This arrangement is a good solu- 
tion to the problem of limited space on the system 
motlule. I t  ;~llows for a wide dicta bus and for good 
sign:~l integrity for short propagation times on  the 
memory data bus. 

As shown in Figure 5, an MMB module supports 
up to  eight SlMMs at a time (four SIMMs in Motlel400 
systems). A minimum of two SIMMs is required for 
each boarcl. A system always contains four MMUs. 
Tlie MMHs act as a carrier for the SIlLlMs ant1 also con- 
tain tlrive~-s for adclress and control signals. 

A total ofX, 16, 24, or 32 SlMPls (m;~xim~~rn  of I6 in 
Morlel400 systems) can be pluggcd into tlie system. 
Slhh~ls m;ly be single- or double-sitled with LO DRhikIs 

1 TO 8 DRAMS INSTALLED 

I I I I 
I I I I I 

MEMORY MOTHER BOARD 

I CACHE RAM I 
CACHE DATA BUS 

MEMORY DATA BUS 

I I 1 SLICE ASIC 1 I CPU I 
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per side. Each side of a SIMM constitutes one-eighth 
of a bank. Eight SlMMs must be plugged in to com- 
plete a bank; hence the 320-bit-wide data bus (4 bits 
per D W M  by 10 DRAivls per SIMM by 8 SIMMs). One 
megabit (Mb), 4Mb, and 1 6 ~ b  DRATMs are sup- 
ported, and users are allowed to populate banks in 
any order. In this way, the DEC 3000 AXP Model 500 
can support from 8MB to 1 gigabyte (GB) of mem- 
ory, and the DEC 3000 AXP Model 400 can support 
8MB to 512MB of memory. 

Main memory is protected by a single-bit-correct, 
tlouble-bit-detect error-correcting code ( E X ) .  In 
addition, the arrangement of data bits allows the 
detection of any number of errors restricted to a 
single DWM chip. ECC corrections for CPU trans- 
actions are performed by the CPU, and corrections 
for I/O transactions are done in the TC ASIC. 

Memory Transactions 
When data is stored in the B-cache by the CPU, it is 
not immediately sent to memory. Data is written to 
main memory only when a dirty block in the cache 
is replaced. Data tlestined for the cache is read from 
main memory only on cache misses Reads to main 
memory, whether from the CPU or from D I M ,  
always return 32 bytes. On CPU reads of main 
memory, data is returned to the cache and CPU in 
two halves by the SLICE ASICs. Likewise when the 
B-cache control writes victim data to main mem- 
ory, two reads are made of the cache, but only one 
write is made to main memory. 

On D h c ~  writes, 4 bytes of clata arrive from the 
TURBOchannel interface ASIC each cycle and are 
storetl in the SLICE ASICs. The SLICE ASICs can buffer 
up to 128 bytes of data prior to writing the data to 
main memory using page-mode writes, 32 bytes at a 
time. To maintain cache/memory coherence, data is 
also provided to the cache RAMS so that it may be 
written in the case of a cache hit. On DlMA reads, up 
to 128 bytes of data are read page mode out of main 
memory and buffered in the SLICE ASICs. Data flows 
out to the TC ASIC and the TURBOchannel bus at the 
rate of 4 bytes per cycle (100MB/s). In the event of a 
cache hit, data is taken preferentially from the 
cache. 

The crossbar employs a techniclue that permits 
simultaneous transactions from C1'U to main menl- 
ory and DMA. The TURBOchannel bus supports D m  
transactions of up to 512 bytes in length. Once the 
D I M  starts, the system must be able to provide or 
receive data without any gaps. However, while the 
D m  buffer in the SLICE ASICs is sufficiently fill1 (for 

DMA reads) or empty (for DMA writes), the CPU is 
allowed to use memory. When the I/O controller 
detects that the buffer is too full or too empty, it 
requests memory time to service the DMA buffer. 
At this time, further CPU requests are temporarily 
ignored. This technique prevents the CPU from 
being locked out of main memory, even cluri~~g long 
DMA transactions ant1 even though D M  has priority 
over CPU transactions. 

The crossbar also permits sirnultaneous write 
transactions from the CPU to main memory and 
from the CPU to an I/O device. SLICE and ADDR ASICs 
can buffer one I/O write transaction of up  to 32 
bytes in size. Once the ASICs have accepted the data 
and address, the cache and crossbar are free to pro- 
cess other CPU transactions, which can include 
cache and main memory reads and writes. If the 
CPU issues an I/O write while a previous write 
is still pending in the ASIcs, the cache controller 
simply stalls. 

I.0 Subsystem Interface/ 
TURBOchannel ASIC 
The I/O system is based on the TURBOchannel, a 32- 
bit high-performance, bidirectional, multiplexed 
address and data bus developed by Digital for work- 
stations."he DEC 3000 AXP supports up to six 
plug-in options, as well as the integral smart frame 
buffer (SFB) graphics ASIC, the I/O controller 
(IOCTL) ASIC, and the TURBOchannel dual SCSI 
(TCDS) ASIC. The TURBOchannel bus is synchronous 
and requires only five control signals in each direc- 
tion between the system and the option cards. 

The system interfaces to the TURsOchannel bus 
by a data-path Tc ASIC ancl control logic contained 
in a number of progra~nmable array logic devices 
(PALS). The TC ASIC: completes the system crossbar 
by passing addresses between the TURBOchannel 
bus and the address ASIC, and passing data between 
the TURROchannel bus and the SLICE ASICs. 
Furthermore, the TC ASIC checks and generates par- 
ity on the TURBOchannel, and checks, corrects, and 
generates ECC on the data bus to the SLICE ASICs. 
Parity checking of TURBOchannel data is optional 
and is enabled on a per-option basis through a con- 
figuration register in the TC ASIC. Finally, the TC 
ASIC contains a number of counters for tracking 
Divh progress, as well as configuration and error 
registers. All control logic was implemented in PALS 
to minimize the impact to the project schedule of 
any design changes. The TURBOchannel interface 
block diagram in shown in Figure 6. 
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Figure 6- TURBOcbaiznel Interface Block Diagram 

There are two types of TURI30channel opera- 
tions: the system initiates I/O reads and writes, and 
the options initiate D h f i  reads and writes. On an 
I /O  operation, the system sends the I/o address 
from the ADDR ASIC to the TC ASIC, ant1 from there 
to the TURBOchannel. For I/O reads, the option 
returns data on the TLJRBOchannel. This data passes 
through the "I'C ASIC ancl over the bus to the SLICE 

ASlCs. The system inclucles some special hardware 
for byte rnasking of [/O read data. This hardware is 
used to provide support for VIMEbus adapters. 

For 1/0 writes, the system sends data from 
the SLICE ASlCs across the data bus to the TC ASIC. 
The TC ASIC: then sends i t  to the option over the 
TIIRROchannel. The DEC 3000 AX-' workstation 
supports a block write extension to the original 
TURBOchannel protocol. In this mode, the system 
supplies a single address followed by multiple 
consecutive data transfers for improved I/O write 
performance. This extension is also config~~rable 
on a per-option basis through the TC configuration 
register. 

The TURBOchannel protocol specifies that before 
any option can use the bus for D&U, it must issue a 

recpest to the system. The DEC 3000 AXP architec- 
ture employs an arbitration scheme using rotating 
priority that prevents any option from being locked 
out. After being granted the bus, the option sup- 
plies a D M  address on the TURBOchannel bus. This 
address routes through the TC ASIC and onto the 
address ASIC. In the case of a DLMA write, data imme- 
diately follows the address on the r u ~ o c h a n n e l .  
This data passes through the T<: ASIC and onto the 
clata bus to the SLICE buffers. 

DMA reads are more complicated than writes 
because the TURROchannel bus does not transmit 
ahead of time the number of bytes of data to be read 
from memory. Instead, it continues to assert its 
read request signal for as long as it is requesting 
data. The SLICE buffers begin to fill up with D,W 
data, and only when they can guarantee that there 
will be no gaps in the DlMA will the data transfer 
start. The TC ASIC receives the read data from the 
SLICE ASlCs and sends it onto the TURBOchannel to 
the requesting option. 

Virtual D M  allows the system to map non- 
contiguous regions of physical address space into 
contiguous regions of virtual address space. This 
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method allows TURBOchannel options to transfer 
large blocks of DMA data without knowledge of how 
that data is mapped in the physical address space in 
main memory Virtual DIMA enhances operating 
system performance because the memory mapping 
is performed before the transfer of DMA data. 

The DEC 3000 AXP workstation supports virtual 
DMA through the use of a scatter/gather (SG) map, 
which acts as a translation buffer. SG mapping is 
enabled on a per-option basis through the configura- 
tion register in the TC ASIC. The SG map is organized 
as 32K 24-bit entries. Each entry contains a 17-bit 
physical page number (PPN), parity, and valid bit. 
Software sets up the map through 1/0 space reads 
and writes. DMA byte address bits [27:13] index the 
SG map, which produces a 17-bit PPN (bits [29:13]) to 
append to the virtual DMA byte address bits [12:0]. 
The resulting 30-bit physical DMA byte address can 
then address all IGB of the possible system address 
space. An SG map is shown in Figure 7 

I/O Subsystem 
Most of the I/O subsystem is implemented on 
its own module. This I/O module, shown in Figure 
8, contains the connectors for attachment unit 

interface (AUI) Ethernet, 10Base-T Ethernet, 
Integrated Services Digital Network (ISDN), alter- 
nate console/serial printer, mouse/keyboard, com- 
munications, internal and external SCSI, three 
TURBOchannel options, and audio module port. 
The various I/O controllers interface to the 
TURBOchannel through one of three ASICs. These 
ASICs are the smart frame buffer (SFB) on the CPU 
module and the TURBOchannel dual SCSl (TCDS) 
ASIC and the I/O controller (IOCTL) ASIC on the I/o 
module. 

VIRTUAL DMA BYTE ADDRESS FROM TURBOCHANNEL 

SG MAP 
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Figure 7 Scattec/Gather Mafifiing 
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Digital Technical Journal Vo1. 4 No. 4 Speciallss~te 1992 75 



Alpha AXP Architecture and Systems 

I/O Module-IOCTL ASIC 
A key I/O subsystem design tlecision was to reduce 
time-to-market by elinii~iating unnecessary new 
harclware and software development. I'o support 
most of the I/<) functionalit): the designers chose 
the lOCTL ASIC developed for the I>E<:st;~tion 5000 
Motlel 240. 

Tlie lO<:TL ASIC provides ; i n  interface to a 16-bit, 
general-purpose I/O bus, which supports the fol- 
lowing devices: two Zilog Z85C30 serial communi- 
cations controllers (S<;Cs), an &\.I[) 7990 Loc;~l ;tre;i 
netnlork controller for Ethernet (ILANCE), a I);~ll:is 
semicontluctor DS1287 real-time clock. an ~ , \ l l >  

79C30A ISDN data controller (IIIC), a S<:SI coo- 
troller. and an AVlD 27C020 2 5 6 ~ ~  er;ls:ible pro- 
grarnrn;ible re;~d-only memory (El)l<~)x~). 

The SCCs implement the keyboard, mouse, alter- 
nate console/printe~-. and cornmunic;itions ports. 
The mouse and keyboanl tlo not use I>Yl~lr\. The alter- 
nate console/printer and the communic;itions port 
do use Dkw. 

The 1.ANCE implements the Ethernet interface, 
wliich connects to the loc;il area network (LAN) 
tliroiigh either the Arrl (thickwire) or lOH;~se-~l 
(twisted-pair interconnect [I'I'IC]) connectors. Soft- 
ware controls which one of these interfaces is 
enabled. 

'The real-ti~iie clock provitles time-of-year (TOY') 

reference ant1 50 IsjTes o f  nonvol;~tile Iwhl. A 
lithium battery supplies power in the event of 
system power-off or failure. 

The IDC implelilents both an ISDN interk~ce ant1 
telepl~one-quality autlio. The autlio connects to the 
autlio interface module (AIM), which provides the 
audio I/O in the Model 500. Audio I/<> in the Model 
400 is on  its f/O motlule. 

Tlie i \ lV on the iModel 500 supports ;~uclio input 
through either a X-inch minijack for microphone 
input, a 4-pin modular jack (8lJ) connector for use 
of a telephone handset, or ;In RCA-style phonogr;lph 
jack used as a line-in i n p ~ ~ t  Output is provitletl by 
the i~lJ connector ;IS well as by a %inch stereo- 
pl~onic jack. The stereophonic jack accepts only a 
stereophonic plug. If monophonic headphones are 
usctl, ;I mono-to-stereopl~onic atl;ipter is requiretl. 
On the Nlotlel400, audio input ;lnd o i ~ t p l ~ t  is imple- 
mented using a 4-pin 8 1 ~  connector. 

Analysis of the complete audio system in a Motlel 
500 shows a frequency response of '145 I-Jz to 3,500 
Hz, with typical distortion in the 0.8 percent to 1.9 
percent range for the microphone ;ind 0.4 percent 
to 1.5 percent for the telephone handset. 'Che 

signal-to-noise ratio ranged from 24 decibels with a 
minim;~l signal input to 58 decibels with a high- 
level sign;ll inpiit. 

I/O Module-TCDS ASIC 
Although the IO<:TL ASIC contains an interface 
t o  a SC:SI controller, the DE<: 3000 A X P  s)Istems 
implement their SCSI interface using the TCDS 
ASIC:. This design has several advantages. First, the 
l'<:I>S ASIC: supports two SCSI ports rather than 
the one supportetl by the IOCTI.. ASIC, permitting 
separate internal and external SCSI chains. Second, 
this design eliminates contention between the 
Ethernet controller ant1 the SCSI controller for the 
10(:'1'1.. 1x1s. 'T'hird, tlie T<:l>S t\SIC supports much 
longer 'I'1JReoch;lnnel I>,W\ bursts (64-byte bursts 
rather than 16-byte bursts). Finally, tlie resulting 
ASIC: design is i~sed to implement a dual SCSl 

-l'lJi~l$OclianneI option module. 
The 'I3c:1)S i\Slc: inlplenients two separate SCSl 

ports using two NCK 5SC94 advanced SCSI con- 
trollers (A~<:S). The TcDs allows both controllers to 
h;lve I>lLli\ transfers in progress s i ~ ~ ~ i ~ l t a ~ ~ e o ~ ~ s l j ~ .  

'L'CIIS TIJRHOchan~iel DIMA transactions are 
aligned 64-byte blocks. Starting Dim addresses that 
:Ire not aligned to these bounclaries begin with a 
sm;rller IIMA tr;ins;rction. This technique aligns tlie 
atlclress so that succeeding transactions are aligned 
64-byte blocks. Large, alig~letl transactions increase 
both ~ l ~ ~ ~ o c h a n n e l  and memory access efficiency. 

The TCns ASIC: and the AS(;s provicle odd parity 
protection on major data paths. This protection 
inclutles 8-bit parity on the 16-bit bus between the 
TCOS and the AS<:s, 32-bit parity on TCDS DIMA buffer 
entries, and 32-bit parity on TIJRROchannel trans- 
:ictions, both I/O ;ind IIILIA. 

Grap bics 
The gr;rphics subsystem on the Model 500 sys- 
tem c:irtl provides integral 8-plane graphics with 
hardware enhancements for improved frame buf- 
fer performance. These enklncements increase 
the performance of stipple, line drawing, ant1 copy 
operations. The grapl~ics system consists of an SFB 

ASIC:, 2MH video l U M ,  ant1 the Brooktree Bt459 
IL4MI)A<: chip for sourcing the 8-plane RGB data. 
The user can select either a 66-Hz or a 72-Hz moni- 
tor refresh rate through a switch on the back of the 
workstation. The graphics subsystem can draw 
6I5K two-dimensional vectors per second and can 
perform copy operations at 31.8MH/s. 
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The graphics subsystem is available separately as 
the T ~ ~ s o c h a n n e l  HX graphics option card. In acldi- 
tion, high-performance two-dimensional and three- 
dimensional graphics accelerators are available 
through the TURBOchannel bus for all systems. 

Clock System 
The input clock circuitry to the DECchip 21064 CPU 
contains a differential 300-MHz oscillator (266 MHz 
for the Model 400), which drives an alternating cur- 
rent (AC) decoupling circuit and the CPU chip. The 
CPU chip divides down the input clock frequency 
by a factor of two ancl operates internally at 150 
MHz. The DEC 3000 AXP Model 500 is capable of sup- 
porting a 200-MHz CPU with a ~ ~ O - M H Z  oscillator. 

The entire system, with the exception of some 
I/O devices, runs synchronously. The master system 
clock is generated by the <:PU chip at a frequency of 
25 MHz (22 MHz for the Model 400), resillting in  
system clock cycles of 40-ns duration. This master 
system clock is duplicated and distributed with 
differential pseudo-emitter coupled logic (PECI.) 
to maintain minimum skew and to improve noise 

3.3-v rFd-T 25 MHz F G E L ,  DELAY 

SYSCLK 

300 MHZ 

margin. The PECL clocks are converted to transistor- 
transistor logic (nL)  in the last stage of the clock 
fan-out tree. 

Two stages of system clock fan-out are used as 
shown in Figure 9. Two MClOOEll l  ECL clock buffer 
chips (PECL input and output) provide 18 lorn.- 
skew differential copies of the clock. Seventeen 
@1~100~641 ECL-to-TTL converters (PECL input, T T L  
output) are distributed throughoi~t the system and 
I/O boards to provide more than 100 clock lines. All 
clock lines are length matched to reduce skew, and 
PECL wires are separated from TTL. Worst-case 
SPICE simulation indicates a skew between typical 
components such as PALS to be 1.5 11s. Actual skews 
measisurecl in the lab are approximately 0.5 ns. 

To give designers maximum flexibility, four 
phases of the system clock are generated, one every 
10 ns. Delay lines are used to generate an offset of 10 
ns. By swapping the 11igI1 and low differential inputs 
to selected ~ ~ 1 0 0 ~ 6 4 1  com7erters, the 20- and 30- 
ns delayed clocks are generated. The master system 
clock is delayed using delay lines so that the even- 
tual system clock is synchronous with the (:PrJ chip. 

TTL 

I ib 
Figure 9 Clock Distribution 
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The goal in choosing semiconductor devices was to 
select mature silicon technologies and then push 
those technologies to the limit. Module- and chip- 
level signal integrity was verified by correlating 
silicon bench characterization data to device simu- 
lation modules. CAD tools were used to perform 
worst-case module timing and signal integrity sim- 
ulation. This methodology minimized device costs, 
reduced risks, and shortened time-to-market. 

The nine ASICs in a DEC 3000 AXP workstation 
use six unique 1.0-micrometer complementary 
metal-oxide semiconductor (CMOS) designs. (See 
Table 2.) Plastic quad flat packs (PQFP) are used as 
the packaging technology to limit device cost. 
Because the ASICs are 1/0 limited and the PQFPs do 
not have ground planes, the effects of simultaneous 
switching outputs (SSOs) were a concern. The 
potential effects of ssos in CMOS output buffers 
include corrupted data and undesirable oscil- 
lations. Simulation and bench characterization 
were used to quant@ the SSO effects, and in some 
cases SSOs were reduced by staggering output 
driver timing. 

Although ASICS were chosen for the data path, 
PALS were used for control logic due to their greater 
flexibility and faster turnaround time. A total of 63 
20XX (5 ns) and 22V10 (10 ns) PALS with 57 different 
codes was used. Exhaustive system-level simula- 
tion and bench characterizations were performed 
to understand device behavior in the man)? differ- 
ent loading scenarios. 

The CPU board technology proved moderately 
difficult for system-level assembly due to the large 
distance between the fine-pitch (25 mil) compo- 
nents. There are 19 fine-pitch components on the 
14- by 16-inch CPU board, with a maxinlunl distance 
of 14 inches between any two devices. With this 
large distance, an aggressive, true positional diam- 
eter (TPD) tolerance requirement of 6 mils was 

implemented. TPD is defined as the total diameter 
of permissible movement from a theoretical exact 
location around the true position of the pads. This 
TPD requirement ensures proper positional accu- 
racy between the solder paste stencil apertures and 
the surface-mount features. In addition, solder 
mask between pads on the fine-pitch components 
is used to reduce manufacturing defects. 

To reduce power and cost, the slower DEC 3000 
AXP Model 400 design substitutes CMOS technology 
for the BiCMOS cache SRAMs and for many of the 
bipolar P U .  

Pawer and Packaging 
The following fixed disk drive options are currently 
available. 

RZ25 3.5-inch half-height 4 2 6 1 ~ ~  disk drive 

~ ~ 2 6  3.5-inch half-height 1050MB disk drive 

The following removable media options are also 
available. 

R R D ~ ~  5.25-inch half-height 6 0 0 ~ ~  CD-ROM drive 

~ X 2 6  3.5-inch half-height 2.8MB floppy disk drive 

TZKlO 5.25-inch half-height 525MB QIC tape 
drive 

T L Z O ~  5.25-inch half-height 4 0 0 0 ~ 0  DAT drive 

The Model 500 has a 480-watt output, off-line, 
switching regulated power supply, which includes 
a capacitor-input, automatic voltage-selecting cir- 
cuit to permit worldwide operation without a volt- 
age-select jumper for 120 or 240 volt (V) input. The 
power supply provides five outputs to the load: 
+3.3 V, +5.1 V-CPU, +5.1 V-turbo, +12.1 V, and - 12.1 't: 

The power supply also provides power for three 
external fans. Temperature-sensing fan speed con- 
trol is provided to reduce system noise. The power 

Table 2 ASlCs Used on the DEC 3000 AXP Workstations 

Total Number Number of Number of Used Available 
Chip of Pins Pins Used Signal Pins Gates Gates 

SFB 184 184 150 21.6K 54 K 

TC 1 84 182 144 12.1K 44K 

SLICE 184 184 153 11.2K 44 K 

ADDR 1 84 183 148 5.7K 44K 

TCDS 120 120 94 26.5K 68K 

IOCTL 160 160 126 11.2K 44K 
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supply senses tachometer outputs from the fans, 
and when a fan fails, it shuts down and illuminates 
an indicator. 

The designers provided several debugging features, 
including test points on the module, tristate out- 
puts on ASICS and PALS, an on-board diagnostic 
ROM, and programmable console ROkI. Since the 
module is composed almost exclusively of surface- 
mount devices, the designers specified as many vias 
as possible for use as test points. Consequently, all 
wires on the board have test points, which allows 
for 100 percent short-circuit coverage and 94 per- 
cent open-circuit coverage. 

The DEC 3000 AXP workstation takes full advan- 
tage of the serial ROM port on the DECchip 21064 
CPU. This port allows code to be directly loaded 
into the instruction cache. During prototype devel- 
opment, designers loaded special debug programs 
into the C:PU through this port. However, the real 
innovation is in also wiring this port to the output 
of a 64K by 8 EPROM on the module to provide 8 
programs that are individually selectable by moving 
a jumper on the module. On system reset, serial 
program data from the selected EPROM output is 

Table 3 System Performance 

loaded into the instruction cache. 'These programs 
include power-up code for loading the real console, 
a miniconsole, and five tliagnostic programs for 
testing memory and the graphics subsystem. Other 
tests are available by replacing the EPROM. These 
programs are of great value in the manufacturing 
debug environment. 

Two flash EPROMs contain the console code for 
the system. On power-up, code in the serial ROM 
loads the console code into memory and begins 
executing it. Users can easily update the console 
ROMs (for example, to provide PAL code enhatice- 
ments) through a special utility booted off a CD- 
RO&i connected to the system. Field service can 
update the console code in the system remotely 
through the Ethernet. 

Conclusions 
The primary goal of this project was to design a bal- 
anced system that exhibited low memory latencj: 
high memory bandwidth, and mini~nal <;pU-I/O 
memory contention in a cost-effective manner. 
Table 3 gives the measured peformancc numbers 
for these characteristics. Except where noted, all 
numbers are for sustained performance. Of particu- 
lar note are the numbers showing that the CPU 

DEC 3000 AXP 
Model 500 

- 

DEC 3000 AXP 
Model 400 

CPU speed 
B-cache size 
B-cache read bandwidth 
B-cache write bandwidth 
Maximum main memory 
CPU memory latency (average) 
CPU memory read bandwith 
CPU read with victim write 

memory bandwidth 
TURBOchannel peak bandwidth 
I10 read bandwidth 8 bytes 
I10 write bandwidth 8 bytes 
Block I/O write bandwidth 32 bytes 
Block I/O write bandwidth 32 bytes with CPU 

read and victim write memory bandwidth 
DMA read bandwidth 51 2 bytes 

64 bytes 
DMA write bandwidth 512 bytes 

64 bytes 
64-byte DMA write bandwith with 

CPU reads from memory 

150 MHz 
51 2KB 
480MB/s 
320MB/s 

1 GB 
32 bytes11 80 ns 
1 14MBIs 
16OMB/s 

133 MHz 
51 2KB 
426MBls 
284MB/s 

51 2MB 
32 bytes1203 ns 
101 MBIs 
141 MBls 

89MBIs 
12MBIs 
29MB/s 
59MB/s 
I/O=47MB/s 
MEM=95MB/s 

81 MBIs 
51 M B/s 
82MB/s 
52MBIs 
DMA=52MB/s 
CPU=27MB/s 
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receives significant memory bandwidth even in the 
presence of heavy block VO and DIMA traffic. 

Another goal of the project was to offer per- 
formance that is cotnpetitive with RISC worksta- 
tions available from other vendors. The benchmark 
performance of any system derives from the inter- 
dependent performance of the hardware, the oper- 
ating system, and the compilers that generate the 
application code. The benchmark perforn~ance 
should improve as each element matures. Table 4 
shows the performance of the DEC 3000 AXP sys- 
tems on a selected set of benchmarks as of the 
announcement dates of these products. Table 5 
compares the performance of the DEC 3000 AXP 
Model 500 to the published performance of several 
currently available competitive systems.-' 
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Table 4 Benchmark Performance 

those mrho contributed to the design of original 
hardware: Dave Archer, Mark Baxter, John DeRosa, 
Chris Gianos, Leon Hesch, Dave Laurello, Bob 
McNarnara, Dick Miller, Rick Ruclman, Dave 
Senerchia, Petr Spacek, Bob Stewart, Ned Utzig. 
Debbie Vogt, and John Zurawski. The tight schedule 
could not have been met without the special efforts 
of the Power and Packaging, Console, Qualifi- 
cation, Proto Management, and Technology and 
Operating Systems Groups. The design team for the 
DEC 3000 AXP Model 400 project is also recognized: 
John Da): Jamie Pierce, Dennis Rainville, and Ken 
Warcl. The thorough device evaluations by Rob 
Zahora contributed significantly to the success of 
the projects. We would also like to acknowleclge 
the contributions by FXO personnel. The Electronic 
Storage Development Group was responsible for 
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DEC 3000 AXP 
Model 400 

DEC 3000 AXP 
Model 500 

Clock (MHz) 
SPECmark89 
Dhrystones 
V1.l (Dhrystones per second) 
V2.1 (Dhrystones per second) 
LINPACK 64-bit double precision 
100 x 100 (MFLOPS)* 
1000 x 1000 (MFLOPS) 
Xl 1 PERF 

Two-dimensional vectors per second 
Two-dimensional pixels per second 

Note: *Million floating-point operations per second 

Table 5 Com~etitive Com~arison 

DEC 3000 IBM RS6000 HP9000 
Model 500 Model 580 Model 750 

SPECmark89 121.5 126.2 86.6 
Dhrystones 
V1.l (Dhrystones per second) 257.7K nla 133.7K 
V2.1 (Dhrystones per second) 281.2K nla 122.3K 
LINPACK 64-bit double precision 
100 x 100 (MFLOPS) 26.4 38.1 23.7 
1000 x 1000 (MFLOPS) 79.9 84.0 nla 
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during the development ancl production phases; a 
special thanks to Jirn Ersfelcl for his significant 
efforts in this regard. 
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Design and Performance of the 
DEC 4000 AXP Departmental 
Server Computing Systems 

DEC 4000 AXP systems demonstrate the highest performance and fu~zctionality 
for Digital's 4000 series of departmental server systems. DEC 4000 AXP sjatems 
are based on Digital's Alpha AXP architecttire and the IEEE's Futurebust profile B 
stczndard. They provide sy~nnzetric multiprocessing perforwza~zce for Open EVJSRYP 

and DEC OSF/I AXP operating systems in an office enz~ironment. The DEC 4000 
AXP systems were designed to optimize the cost-perforinance ratio and to irzclticle 
zqgmdability and expa~zdability. The systems combine the DECchip 21064 nzicro- 
processol; submicron CIMU sea-of-gates techrzolog7~ ClVIOS memory and I/Oper.~ph- 
erals technolog3,, a high-performance multiprocessing backplane interconnect, and 
modular system design to supply the most advanced functionality forperformance- 
driven applications. 

The goal of the departmental server project was to 
establish Digital's 4000 family as the inclustry's most 
cost-effective and highest-performance depart- 
mental server computing systems. To achieve this 
goal, two clesign objectives were proposed for the 
DEC 4000 AXP server. First, migration was necessary 
from the VAX architecture, which is based on a com- 
plex instruction set computer (CISC), to the Alpha 
AXP architecture, which is basecl on a reduced 
instruction set computer (RIsc). Second, for expan- 
sion I/o in an upgradable office environment enclo- 
sure, migration was necessary from the Q-bus 
to the Futurebus+ I/O bus.' In  addition, the new 
system had to provide balance between processor 
performance and I/O performance.  maintaining 
customer investments in VAX and MIPS app1ic;ltions 
through support of OpenvMS AXP and DEC OSF/1 
AXP operating systems was implicit in the archi- 
tecture migration objective. Migration, porting, 
and upgrade paths of various applications were 
defined. 

This paper focuses on the design of the DEC 4000 
AXP hardware and firmware. It begins with a discus- 
sion of the system architecture and the selection of 
the system technology. The paper then details the 
CPU, 1/0, memory and power subsystems. It con- 
cludes with a performance summary. 

System Overview 
The DEC 4000 AXP system provides supercomputer 
class performance at office system cost.? This com- 
bination was achieved through architecture and 
technology selections that provide optimized 
tuniprocessor performance, low additional cost 
symmetric multiprocessing (SMP), and balanced 
I/O throughput. High I/O throughput was accom- 
plished through a combination of integrated con- 
trollers and a bridge to Futurebus+ expansion I/(). 

The system uses a modular, expandable, and 
portable enclosure, as shown in Figure 1. With 
current technologies, the system supports up to 
2 gigabytes (GB) of dynamic random-access nlem- 
ory (DRAM), 24GB of fixed mass storage, and 1 6 ~ ~  
of removable mass storage. The DEC 4000 AXP 

system is partitioned into the following modular 
subsysten~s: 

Enclosure ( ~ ~ 6 4 0  box) 

CPU module (DECchip 21064 processor) 

110 module 

Memory modules 

Mass storage compartments and storage device 
assembly (brick) 
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increased processing power provided by the 
DECchip 21064 CI'11. Although processing power 
was taking a revolutionary jump in performance 
with no cost increase, disk and main memory tech- 

Figure I DEC 4000 AXP S~a tem  Enclos~tre 

Futurebus+ Expansion I/O, Futurebus+ con- 
troller module (FBE) 

Power supply modules - universal line front-encl 
unit (FEU) 

- Power system controller (PSC) 
- DC-DC converter unit 5.0 volt (V) (DC5) 

- DC-DC converter unit 2.1 V, 3.3 V, 12.0 V (DC3) 

Cooling subsystem 

Centerplane module 

Operator control panel (OCP) 

Digital storage systems interface (DSSl) and small 
computer systems interface (SCSI) termination 
voltage converter (VTERM) 

Figure 2 shows these subsystems in a functional 
diagram. The subsystems are interconnected by a 
serial control bus, which is based on Signetic's 12C 
bus.+ 

System Architecture 
From the beginning of the project, it was apparent 
that the I/O subsystem had to be equal to the 

nology were still o n  an evolutionary cost ancl per- 
formance curve. 'l'he nietrics that had been used 
for V A ~  systems were difficult, if not impossible, to 
meet through lineill- scaling within a fixed cost 
bracket. These metrics were based on VAX-11/780 
units of performance (VtlPs); they give main mem- 
ory capacity in megabytes (MR)/VLIP, clisk-queuecl 
I/O (($0) completions in QlOIs/\~lTP, and disk data 
rate in MB/s/VUP. As an example, Table 1 gives 
the metrics for ;I VAX 4000 ivlodel 300 scaled lin- 
early to 125 wl's i~nd then nonlinearly scaled 
for the DEC 4000 system implementation. 
Performance rnoc.leling of the DECchip 21064 <:PlJ 
suggested that 125 VllI's was a reasonable goal for 
the DEC 4000 AXP. 

Without an Alph;~ AXP architecture custo~ner 
base, we did not know if these metrics woulcl scale 
linearly with the processor performance. The 
DECchip 21064 processor technology has the poten- 
tial for attracting new classes of compute-intensive 
applications that may make these metrics obsolete. 
We therefore chose a nonlinear extrapolation of the 
metrics for our initial implementation. By trading 
off disk and memory capacity for I/O throughput 
performance, we kept within established cost ant1 
performance goals. The implementation metrics 
were not limited by the architecture; further scal- 
ing up of metrics was planned. Of the four metrics, 
the disk capacity metric has the most growth 
potential. 

To ensure conipliance with both the Alpha &?<I' 
architecture and the Futurebus+ specifications, the 
system was partitioned as shown in Figure 2. The 
bridge between tlie <:l'lJ subsystem ant1 the 
Futurebus+ subsystem afforcletl maximum design 
flexibility to accomrnotlate specification changes, 
modularit): ant1 i~pgr;~dability The I/O module was 
organized to balance the requirements between 
CPU performance and I/O throughput rates. The 
DEC 4000 AXP system implementation is based o n  
open standards, with a six-slot Futurebus+ serving 
as tlie expansion 1 / 0  bus ancl the system bus serving 
to interconnect memory (:PUS, ant1 the I/o module. 
The modularity of the system enables module swap 
upgrades and configurability of the I/O subsystem 
such that performance and f~unctionality may be 
tailored to user recluirements. The modularity 
aspects ofthe system design extend into the storage 
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Table 1 Extrapolated VAX Metrics 

VAX 4000 Scaled Scaled 
Model 300 Linearly Nonlinearly 
Metrics to 125 VUPs for DEC 4000 AXP 

Memory capacity 60 MBIVUP 7.5 GB 2 GB 

Disk capacity 1.65 GBIVUP 206 GB 100 GB 

Disk QIO rate 49 QlO/s/VUP 6,125 QlOIs >4,000 QlOls 

I10 data transfer rate 1.4 MBIslVUP 175 MBIs 210 MBIs 

compartment where each brick has a dedicated 
controller and power converter. Support for DSSI, 
SCSI, and high-speed 10MB/s SCSI provides maxi- 
mum flexibility in the storage compartment. The 
modular mass storage compartments enable user 
optimization for bulk storage, fast access, or both. 

The cost of SIMP was a key issue initially, since 
Digital's SMP systems were considerecl high-end sys- 
tems. Pulling high-end functionality into lower- 
cost systems through architecture and technology 
selection was managed by evaluation of perfor- 
mance and cost through trial designs and software 
breadboarding. Several tlesigns of a CPU module 
were proposed, including various organizations of 
one or two DECchip 21064 CPUs per module inter- 
faced to I/O and memory subsystems. Optimization 
of complexity, parts cost, performance, and power 
density resulted in a CPU module with one proces- 
sor that could operate in either of two CPU slots on 
the centerplane. Consequently, a system bus had to 
be developed that coulcl be interfaced by proces- 
sors, memory, ant1 I/O subsystems in support of the 
shared-memory architecture. 

As development of the DECchip 21064 processor 
progressed, hardware engineers and chip designers 
established a prioritized list of design goals for the 
system bus as follows: 

1. Provide ;I low-latency response to the CPLl's 
secontl-level cache-miss transactions and I/O 
moclule read transactions without pending 
transactions. 

2. Provide a low-cost shared-memory bus, based 
on the cache coherence protocol, that woulcl 
facilitate upgrades to faster CPU modules. This 
provision implied a simple protocol, synchro- 
nous timing, and the use of transistor-transistor 
logic OTL) levels rather than special electrical 
interfaces. 

3. Provide I/O bandwidth enabling local VO to 
operate at 25 megabytes per second (MB/s) and 
the Futurebus+ to operate at 100MB/s. 

4. Provide scalable memory banclwidth, based on 
protocol timing of 25 nanoseconds (ns) per 
cycle, which scales with improvements in DRAM 
and static memory ( S W ~ )  access times. 

5. Use module and connector technology consis- 
tent with Futurebus+ specifications. 

The cache coherence protocol of the system bus 
is designed to support the Alpha t\XP architecture 
and provide each CPU and the I/O bus with a consis- 
tent view of shared memory. To satisfy the band- 
width and latency requirements of the processor's 
instruction issue rate, the processor's second-level 
cache size, 128-bit access width, and 32-byte block 
size were optimized to avoid bandwidth limits to 
performance. The block size and access width were 
made consistent with the system bus, which satis- 
fied the VO throughpilt metrics. Consitleration was 
given to support of a 64-byte block on the 128-bit- 
wide bus. Such support would have resulted in a 17 
percent larger miss penalty ant1 higher average 
memory access time for the CPU and I/(), more stor- 
age and control complexity, and hence higher cost. 

Simplicity of the bus protocol was achieved by 
limiting the number and variations of transactions 
to four types-read, write, exchange, and null. The 
exchange transaction enables the second-level 
cache of the CPU to exchange data, that is, to per- 
form a victim write to memory at the same time as 
the replacement read transaction. This avoided the 
coherence complexity associated with a lingering 
victim block after the replacement read transaction 
completed. 

To address the issue of bandwidth requirements 
o17er time as faster processors become available, an 
estimate of 40 percent bus utilization for each pro- 
cessor with a l M B  second-level cache was obtained 
from trace-based performance models. The utiliza- 
tion was shown to be reduced by using a 4MB sec- 
ond-level cache or by using larger caches on the 
DECchip 21064 chip. This approach was reserved as 
a means to support future CPU upgrades. 

Digital Technical Journal Vol 4 iVo 4 S j ~ e c r ~ ~ l  Issue 1992 



Alpha AXP Architecture and Systems 

Figure 3 is a block diagram of the length-limited 
seven-slot synchronous system bus. To achieve 
tight motlule-to-modulc clock skew control for this 
single-phase clock scheme, clocks are radially dis- 
tributed from the CPU 1 module to the seven slots. 
This avoided the added cost of a separate module 
dedicated for radial clock clistribution, and enabled 
the bus arbitration circuitry to be integrated onto 
the CPlJ 1 module. 

Arbitration of the two CPU modules ancl the I/O 
module for the system bus is centralized on the (;ptJ 
1 motlule. To satisfy the I/O motlule's latency 
requirements, the arbitration priority allows the 
I/O nloclule to interleave with each CPU module. In 
the absence of other requests, a module may utilize 
the system bus continnously. Shared-memory state 
evaluations from the bus adclresses during continu- 
ous bus utilization causes CPU "starvation" from 
the seconcl-level cache. To avoid CPU starvation 
from the second-level cache, the arbitration con- 
troller creates one free cycle after three consecu- 
tive bus transactions. 

Technology Selection 
The primary force behind technology selection was 
to realize the f ~ ~ l l  performance potential of the 
DECchip 21064 microprocessor with a balanced I / O  
subsystem, weighted by cost minimization, sched- 
ule goals, and operation in an office environment. 
SPICE analysis was used to evaluate various module 
and semiconductor technologies. A technology 
tlemonstration module was designed ancl fabri- 
catecl to correlate the SPICE models and to validate 
possible technology. Basetl on clemonstrations, the 
project proceeded with analytical data supported 
by empirical data. 

The 25-watt DECchip 21064 c:PU was designed in 
a 3.3-V, 0.75-micrometer compleincntary metal- 
oxide semiconductor (CMOS) technology and was 
packaged in a 43-pin pin grid array (PGA). The CPU 
was the only given technology in the system. The 
power supply, air cooling, and logical and electrical 
CPU chip interfacing aspects of the CPU module and 
system bus designs evolved from the DECchip 21064 
specifications. System design attention focused on 
powering ancl cooling the Cr-'rJ chip. Compliance 
with power and cooling specifications was deter- 
mined to be achievable through conventional volt- 
age regulation and decoupling teclino1og)r and 
conventional fan technology. 

To adtlress system integrity and reliability 
requirements, all data transfer interconnects and 

storage devices had to be protected. Tlie DECchip 
21064 CPU's data bus and secontl-level cache are 
lo~lgword error detection and correction (EDC) pro- 
tected. The system bus is longword parity pro- 
tected. The memory subsystem has 280-bit-wide 
EDC-protected memory arrays. The Futurebus+ is 
longword parity protected. 

System Bus Clocking 
To establish the 25-11s bus cycle time, analog models 
of the interconnect were developed and analyzed 
for 5 0-V CMOS transceivers. Assuming an edge-to- 
edge data transfer scheme, the modelers evaluated 
the timing from a driver transition to its settled sig- 
nal, including clock input to driver delay, receiver 
setup time, and module-to-module clock skew. The 
cycle time and the data transfer width were com- 
bined to determine compliance with low latency 
and bandwidth. Further analysis revealed that the 
second-level cache access timing was critical for 
performing shared-memory state look~rps from the 
bus. One solution to this problem was to store 
duplicate tag values of the second-level cache. This 
was evaluated and found to be too expensive to 
implement. However, the stucly did show that a 
duplicate tag store of the CPU's primary data cache 
had a performance advantage and was affordable if 
implemented in the CPU module's bus interface unit 
(BIu) chips. 

To evaluate second-level cache access timing, 
a survey of SRAM access times, density, availabil- 
ity, and cost was taken. Results showed that a IMB 
cache using 12-11s access time S W s  was optimal. 
With a 12-11s access time SRAM, the critical timing 
could be managed through the design of the BlU 
chips. The SRAM survey also showed that a ~ M B  
second-level cache could be planned as a follow-on 
boost to performance, as SRAII,~ prices declined. 
Trace-based performance simulations proved that 
these cache sizes satisfied performance goals of 125 
WPs. This clock rate required a bus stall mecha- 
nism to accommodate current DRAII access times 
in the memory subsystem, which will enable future 
enhancements as access times are reduced. 

The system bus clocks are distributed as positive 
emitter-coupled level (PECL) differential signals; 
four single-phase clocks are available to each slot. 
Each module receives, terminates, and capacitively 
couples the clock signals into noninverting and 
inverting PECL-to-CMOS level converters to provide 
four edges per 25-ns clock cycle. System bus hand- 
shake and data transfers occur from clock edge to 

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journrrl 



Fi'qure 3 DEC 4000 AXP Sj~stenz Bus 



Alpha AXP Architecture and Systems 

clock edge ancl utilize one of two system bus 
clocks. A custom clock chip was implemented to 
provide process, voltage, temperature, and load 
(PVTL) reg~llation to the pair of application-specific 
integrated circuit (ASIC) chips that compose each 
BKl. The clock chip achieves module-to-module 
skews of less than 1 ns. 

Our search for a clock repeater chip that coulcl 
minimize module-to-module skew and chip-to- 
chip skew on a module, and yet directly drive high 
fan-out ASIC chips with CMOS-level clocks, led us 
to Digital's Semiconcluctor Operations Group. Such 
a chip was in design; however, it was tailored 
for use at the DEC 6000 system bus frequency. 
The Semiconductor Operations Group agreed to 
change the chip to accommoclate the DE(: 4000 MI' 
system bus frequency. 

I /O  Bus Technology 
Because of technology obsolescelice, 1 / 0  buses 
have a 21-year life cycle divideel into 3 phases. 
During the first 7 years of acceptance, peripherals 
and applications are developed anel supportecl. 
Sustained acceptance takes holcl in the next 7 years 
as peripherals and applications are enhanced. In 
the last 7 years, a phase out or rnigmtion of periph- 
erals ant1 applications occurs. For the DEC 4000 AXP 
systems, our first priority was selection of an open 
expansion I/O bus in the first third of its life cycle. 
In addition, we wanted to select an open IEEE stan- 
dard bus that woulcl attract third-party developers 
to provide I/<) solutions to customers. The follow- 
ing prioritized criteria were established for the 
selection of a new 1/0 bus: 

1. Open bus that is an accepted industry standard 
in the beginning third of its life cycle 

2. Compatibility with Alpha hXP architecture 

3. Minimum data rate of 100MB/s 

4. Scalable features that are perfor~nance-exten- 
bible through architecture (e.g., bus width), 
and/or t h r o ~ ~ g h  technology improvements 
(e.g., semiconductor device performance and 
integration) 

5. Nlinimum 64-bit data path 

6. Support of bridges to other I/O buses 

7. Minim;~l interoperability problenls between 
devices from different venclors 

After examination of several I/O buses that satis- 
fied these criteria, the Futi~rebus+ was selected. At 
the time of our investigation, however, the 
Futurebus+ specification was in development by 
the IEEE and a wide range of interest was evident 
throughout Lhe industry By providing the right sup- 
port to the Futurebus+ committee, Digital was in a 
position to help stabilize and bring the specifica- 
tion to con-2lctjon. 

A DigiLal team represented the project's interests 
on the IEEE P896.2 Spccification Committee and 
proposecl standards as the DEC 4000 AXP system 
design evolvecl. This team achiewd its goal by help- 
ing the IEEE Committee define a profile that 
enabled the Futurebus+ to operate as a high-perfor- 
mance I/O expansion bus. To mitigate schedule 
impact due to instability of the Futurebus+ specifi- 
cations, the I/O module's Futurebus+ interface was 
architected to accommodate changes through a 
more discrete, rather than a highly integrated 
implementation Compliance with thr I;uturebus+ 
specifications influenced most mechanical aspects 
of the module compartment design, as is eviclent 
from the centerplane, card cage, rnodu le construc- 
tion and size, and power supply voltage specifica- 
tions and implementations. 

Module Technology 
1Module technology was selected to maximize sig- 
lyal density w-ithin the fewest layers with minimal 
crosstalk and to provide a uniform signal distribu- 
tion impedance for any module layer. Physical-to- 
electrical modcling tools were used to create SPICE 
models of connectors, chip packages, power 
planes, signal lincs of various lengths and 
impedances (based 011 the nlodule construction 
technology), ant1 multiplc signal lines. Uecause the 
placement of components affects signal perfor- 
mance anel quality and system performance (e.g., in 
the sccond-lev(:' processor cache), moclule floor 
plans and trial layouts wcrr. cornpletecl. A moclule 
layout tool was used to ensure procli~cibility com- 
pliance wit11 manufacn~ring standarcls as well as sig- 
nal routing constraints. The moclule layout process 
was iterative. As sections of the module routing 
were completed. SPICE moctels of the etch were 
extracteel. These ext~-actecl moclcls were connectecl 
to S P I G  models of chip elrivers and run. Analysis 
was completed and reqi~irecl changes were imple- 
mented and a~lalyzed again. The process continuecl 
until the optimal specification conformance was 
achieved for all signals. 
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Motlule size was estimated basecl on system h~nc -  
tionnlity requirements and a stutly of tlie size and 
power recli~irements of that fi~nctionality. To simpli- 
fy the enclos~~re design, module size specifications 
are consistent with the Futurebus+ motlule specifi- 
cations. To achieve lower system costs, the proces- 
sor, memory, and I/o modules arc basecl on the 
same ten-layer controlled impedance construction. 

Chip engineers avoitled the specification of fine- 
pitch surface-mount chips when possible. Compo- 
nent choices and module layouts were completed 
with ;I view toward ma~iufactur;tbility. Cost 2111alysis 
showetl th:~t mixetl, tlouble-sitletl surface-mount 
components and through-hole components had 
insignificant aclded cost when fusecl tin-lead mod- 
ule technology ancl wet-film solder-mask technol- 
ogy were i~setl. The required layer constri~ction and 
impetlances of 45, 70, and 100 ohms coulcl easily be 
achieved within cost goals through this technology. 
Solder-mask over bare copper technology was also 
ev;~lu;~tetl to determine if fine-pitch surfi~ce-mount 
components achieved higher yield througli the sol- 
der reflow process. This evaluation showed fused 
tin-le;~tl technology was better suited, based on 
defect densities, for the manufacturing process. 
Consequently, all DEC 4000 U P  modules are imple- 
mented with fused tin-lead module technology ;~nd 
wet-film solder-mask technology 

Semiconductor Technology 
As ;I result of a performance, cost, power, ancl mod- 
ule real est;ite study, CMOS technology was used 
extensively. The custo~ii-tlesignecl I'VTI. clock chips 
were developed in 1.0-micrometer (:MOS technol- 
ogy to supply CMOS-level signals for driving directly 
into the HllJ chips. Each module's RIlJ used the same 
0.8-micrometer ASIC technology ant1 die size to 
closely manage clock skews. Each system bus mod- 
~ ~ l e ' s  1%11l is implemented by two iclentical chips 
operatetl in an even ant1 an odd slice rnotle. Chip 
clesignrrs invented a rnetliotl for accepting 5.0-V 
sign;ils to be driven into their 3.3-V biased IIECchip 
21064 (:1'IJ. Consequently, the selection ;~nd irnple- 
ment;~tion of 5.0-V ASIC: technology were easier. 
ASI(: vendor selection was based on (1) perfor- 
mance of trial tlesigns and timing analysis of parity 
and El)<: trees, (2) SPICE analysis of 1/0 drivers with 
direct-drive input clock cells, and (3) a layout abil- 
ity to si~pport wide clock trunks ant1 distributed 
clock buffering to effect low skews. 

All memory chips on the CPr! moclule, memory 
module, and I/() module were implemented in 

submicron CMOS or Hi(:i\.IOS technolog)! All the I/O 
and power subsystem controller chips such as the 
SCSI ancl DSSl controllers, Ethernet controllers, 
serial line interfaces, and analog-to-digital convert- 
ers were implemented in CMOS technology. 

Speed or high drive is critical in radial clock dis- 
tribution, Futurebus+ interfacing, or memory mod- 
ule address and control signal fan-out. In these 
special cases, lOOK ECL operated in positive motle 
(PECL) or BII'OLAR technology was ernployeel. 

S y s t ~ n .  Bus Protocol and Technology 
The cache coherence protocol for the shared-mem- 
ory system bus is based on a scheme in which each 
cache that has a copy of the data from memory also 
has a copy of the information about it. All cache 
controllers monitor or snoop on the bus to deter- 
mine whether or not they have a copy of tlie shared 
block. Hence tlie system bus protocol is referred to 
as a snooping protocol, and the system bus is 
referred to as a snooping bus:' 

The 128-bit-wide synchronous system bus pro- 
vides a write update 5-state snooping protocol for 
write-back cache-coherent 32-byte block read and 
write transactions to system memory address space. 
Each module uses a 192-pin signal connector-the 
same connector used by Futurebus+ modules. Each 
module interfaces between the system bus and its 
back port with two 299-pin PGA packages contain- 
ing CpIOS ASIC chips, which implement the bus pro- 
tocol. A total of 157 signals ant1 35 reference 
connections implement the system bus in the 192- 
pin connector (6 interrupt and error, 8 clock and 
initialization, 128 command and address or data, 4 
parity, 11 protocol). All control/status registers 
(CSRs) are visible from the bus to simplify the data 
paths as well as to support SNIP. 

To sinipldy the snooping protocol, only full 
block transactions are supported; masking or sub- 
block transactions occur in  each module's BIU. 
Transactions are described from the perspectives 
of a commandel; a responder, and a bystander. The 
address space is partitioned into CSR space that can- 
not be cached, memory space that can be cached, 
and secondary VO space for the Futurebus+ and I/O 
module devices. Seconclary 1/0 space is accessible 
through an 1/0 module mailbox transaction, which 
pends or retries the system bus when access to very 
slow I/O controller registers conflicts with direct 
memory access (Div1.A) traffic. 'This software- 
assistecl procedure also provides masked byte read 
and write access to VO devices as well as a standard 
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software interface. The use of 32-bit peripheral 
I > I & ~  devices :~voiclecl tlie need to imple~nent harcl- 
ware acltlress tr;insl;itors. Tlie software drivers pro- 
vide physical addresses; hence mapping registers 
are not necess:lr): 

The I/O mod~lle drives two device-related inter- 
rupt signals that are received by both CPI. modules 
clue to SMI' requirements. One interrupt is associ- 
;ited with tlie Fut~~rebus+, ;lnd the other is associated 
wit11 :ill tlie device control.lers local to the I/O mocl- 
ule. Tlie 1/0 niodule 1,rovicles a silo register of 
Futurebus+ interrupt pointers and a device request 
register of local clevice interrupt requests. CPU 1 or 
CPU 2 is the clesignated interrupt dispatcher mod- 
ule. I'rivileged architecture library software sub- 
routines, Icnown ;IS I'Al.cocle, run 01-1 the prin1a1-y 
CPIJ module ancl re;id tlie device interrupt register 
or Futurebus+ interrupt register to cletermine 
which local devices or which Futurebus+ device 
handlers are to be dispatched. 

The enclosure, power, and cooling subsystems 
;Ire capable of interrupting both processors when 
immecliate attention js required. A CP1J can obtain 
information fro111 s~~bsystenis sliow~i in Figure 2 
through tlie serial control bus. The serial control 
bus enables highly reli;~ble conirnunications 
between field replaceable subsystems. [luring 
power-up, it is used to obtain configuration infor- 
mation. It is also used as an errol--logging channel 
and as a me;lns to communicate between the CPlJ 

subsystem, power subsystem, and the OCP. Tlie 
nonvolatile RAhl (NVKAM) chip iniplementecl 011 

each module :lllovled the firni\vare to use software 
switches to configure the system. Tlie software 
switches avoidecl the need for hardware switches 
and jumpers, fielcl replaceable unit identification 
tags. and handwritten error logs. As ;i result, the 
h;irtlware system is fully configured tllrough 
firmw;lre, ;i t i t l  fault information travels with tlie 
fielcl repl:ice;lble unit. 

The five-state c;~clic coherence protocol assumes 
that tlie processor's primary write-through cache is 
maintained as ;I subset of the seconcl-levcl write- 
back cache. The slr: on the CPrI module enforces 
this subset policy to simplify the simulation verifi- 
cation process. Wjtl-~out it, tlie number of verifica- 
tion cases woulcl h;ivc been escessive, difficult 
to exlxess, :~ntl clifficult to simi~l:~te anel check for 
correctness. Tlie l/O module implements an invali- 
date-on-write policy, such that a block it has read 
from memory will be invalicl;lted and then re-read 
if  a <:PI1 writes to the block. The I/O module parti- 

cipates in the coherency policy by signs~ling slis~red 
status to a CPU reacl of :I block it lias bufksecl. The 
five states of the cache coherence protocol ;ire 
given in Table 2. 

The cache coherence protocol etisures that only 
one CPU rnoclule can return a dirty response. The 
dirty response obligates the responding <:I'li mod- 
ule to supply the read clata to the bus, since the 
memory copy is stale and the memory controller 
aborts the return of tlie re:icl data 1311s writes ;ilw;lys 
clear the dirty bit of the seferencecl c:~clie block in 
both the comrnantler niodule ;~ncl tlie module that 
takes the update. 

A CPlJ hiu two options when a bus transaction is 
a write and the block is found to be valid in its 
cache. A CPLJ either invalitlates tlie block or accepts 
the blocl< and upd:ites its copy, keeping tlie block 
valicl. This decision is basecl on the state o f  tlie pri- 
mary cache's duplicate tag slore iuid tlie state of the 
second-level cache tag store. Acceptance o C  the 
transactiol~ into the second-level cache on a tag 

Table 2 Five States of the Cache 
Coherence Protocol 

State 

1 NOT VALlD 
2 VALlD 

NOT SHARED 
NOT DIRTY 

3 VALlD 
NOT SHARED 
DIRTY 

4 VALlD 
SHARED 
NOT DIRTY 

5 VALlD 
SHARED 
Dl RTY 

Remarks 
- -  - 

Block is invalid. 
Valid for read or write, this 
cached block contains the only 
copy of the block; the copy is 
identical to the memory copy. 
Valid for read or write, this 
cached block contains the 
only cached copy of the block. 
Thecachedcopyhasbeen 
modified more recently than 
the memory copy. 
Block is valid for read or write, 
but a write must broadcast to 
the bus. This block may be in 
another cache, but the memory 
copy is identical. 
Block is valid for read or write, 
but a write must broadcast to 
the bus. This block may be in 
another cache, but the contents 
have been modified more 
recently than the memory copy. 
This is a transitional state that 
occurs when arbitrating for the 
bus to broadcast a write or 
when an unshared dirty block is 
returned to a bus read 
transaction. 
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m;ltcli is c;tlled conditional update. When the com- 
mander is the I/O module, the write is accepted by a 
CPtr only if the block is valid. Depending on the 
state of the primary data cache tluplicate tag store, 
two types of hit responses can be sent to an 1/0 

commander-I/O update always ancl VO conditional 
update. In the case of either I/O or CPU commander 
writes, if the valid block is in the primary data 
c:tclie, the block is invalidated. The two acceptance 
modes of I/() writes by a CPIi are programmable 
because ilccepting writes uses approximately 50 
percent more second-level cache bandwidth than 
invalidating writes. 

To implement the cache coherence protocol, the 
<:l'tJ motlulc's second-level cache stores informa- 
tion as shown in Figure 4 for each 32-byte cache 
block. 

Figure 5 shows the cycle timing and transaction 
sequences of the system bus. Write transactions 
occur in six clock cycles. Read, null, ant1 exch;u~ige 
transactions occur in seven clock cycles. A null 
tr;tnsaction enables a commander to nullify the 
active transaction request or to acquire the bus and 
avoid resource contention, without motltying 
memory. The arbitration controller monitors the 
bits transaction type and follows the transactions, 
cycle by cycle, to know when to rearbitr~te and sig- 
nal a new atltlress and command cycle. Atlditional 
cycles can be added by stalling in cycle 2 or cycle 4. 
Transactions begin when the arbitration controller 
grants the use of the CPrJ motlule's second-level 
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caches to a commander module. The controller 
then signals the start of the adclress and commantl 
cycle 0 (CA). The commander drives a valid address, 
command, and parity (CAI)) in cycle I .  A comman- 
der may stall in cycle 2 before supplying write data 
(W) in cycles 2 and 3. 

Read data (RD) is received in cycles 5 and 6. The 
addressed responder confirms the clata cycles by 
asserting the acknowledge signal two cycles later. 
The commancler checks for the acknowledgment 
and, regardless of the presence or absence, com- 
pletes the number of cycles specified for the trans- 
action. Snooping protocol results are made 
available half way through cycle 3. As shown in 
Figure 5, the protocol timing from valid address to 
response of two cyclcs is critical. A responder or 
bystander may stall any transaction in cycle 4 by 
asserting a stall signal in cycle 3. The bus stalls ;IS 

long as the stall signal is assertecl. Arbitration is 
overlappecl with the last cycle of a transaction, such 
that tristate conflict is avoiclcd. 

A 29-bit lock address register provides a lock 
mechanism per cache block to assist with software 
synchronization operations. The lock address regis- 
ter is managetl by each CP1J as it executes load from 
memory to register locket1 longword or quadwortl 
(LDx-L) and store register to memory conditional 
longword or quadwortl (STx-C)  instruction^.^ The 
lock adtlress register holds an  address and a valid 
bit, which are compared with all bus transaction 
addresses. The valid bit is cleared by bus writes to a 

TAG conslsts of 9 physical address blts with a 4MB second-level cache, or 11 physical 
address blts with a 1 MB second-level cache. 

TAG PARITY (TP) bit indicates even parity 

TAG 

VALID (V) b ~ t  lndlcates whether or not th~s block can be considered for a response lo the 
snoop transaction 

V Tp 

SHARED (S) b11 indicales whether or not this block may also be resident in another 
module's cache. 

DIRTY (D) bit indicates whether or not this block has been modified by thls processor 

S 
LW4 

CONTROL PARITY (CP) bit indicates even parity. 

CK5 

DATA (LW) b~ts organized as two 128-b~t-wide half blocks; each 128-bit block is composed 
of tour longwords. 

CK4 
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D 
LW5 LW6 

CHECK (CKO through CK7) bits detect errors for each longword. 

Cp  

Figur'e 4 Second-level Cache Structure 
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CK6 

CK1 CKO 
LW7 

LWI LW2 
CK7 

CK2 LW3 CK3 
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Figure 5 System Bus Tlwizs~ictio~z Sequetzces 

2 

WDI 

0 

C A 
CAD 

2 

WDl  

~llatcbing address or by CI-'lJ execution of STx-C 
instructions. The register is loaded and validated by 
a CPll's LDx-L instruction. This hardware and soft- 
ware construct, as ;i means of memory synchroniza- 
tion, statistically avoids the known problellls with 
exclusionary locking schemes. Exclusionar~7 lock- 
ing schemes create resource deatllocks, transaction 
ordering issues, and performance degraclation ;is 
side effects of the exclusion. This construct allows 
a processor to continue program execution while 
harclware provitles the branch conditions. The lock 
f;tils only when it loses the race on a write collision 
t o  the locked block. 

A bus transaction address that hits on a valid lock 
address register must return a snooping protocol 
shared response, even if the block is not valid in the 
primary anti seconcl-level caches. The shared 
response forces writes to the block to be broadc:tst, 
and STx-C instructions to function correctly. The 
NULL transaction is issued when a STx-C write is 
abortetl clue to the failure of the Jock to  avoici 
system memory modification. 

1 

CAD 

3 

CA 
CAD 
WD2 

4 

WD1 

CPU Module Sz~bsystems 
Each <:PU modiile consists of a number of subsys- 
telns as shown in Figure 3. The CPU module's sub- 
systems are 

3 

CA 
CAD 
WD2 

1. DE<:chip 21064 processor 

2. l M B  or 4bIB physically addressed write-back 
secontl-level cache 

4 

WDI 

0 

C A 

5 

WD2 

RDI 

3. BIlJ chips containing write merge buffers, a 
duplicate tag store of the processor's 8-kilobyte 
(KR) data cache for invalidate filtering and write 
update policy decisions, an arbitration con- 
troller, a system bus interface, an address lock 
register, and CsRs 

6 

GRANT 

RD2 

4. System bus and processor clock genera- 
tors, clock and voltage detectors, and clock 
tlistributors 

5 

GRANT 

WD2 

5. System bus reset control 

6 .  8 K R  serial KOkI for power-up software loading 
of the processor 

0 

C A 

7 Microcontroller (MC) with serial system bus 
interface allcl serial line unit for communication 
with the processor's serial line interface 

I 

8. i\WhM. chip on the serial control bus 

Sincc a (:PU nlodule bas to operate in either CPU 1 
or CPlJ 2 rnocle, the CPU 2 connector was designed 
to provide an identification code that enables or dis- 
ables the clock drivers and configures the CSRs' 
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atldress space and CPU identification code. As a 
result, arbitration and other slot-depentlent func- 
tions are enabled or disabled when power is applied. 

A re1i;ibility sti~dy of a parity-protected second- 
lcvel cache showed that the SWMs contributed 44.7 
percent of tlie failure rate. By implementing El)(: on 
the data S~W&I portion of the secontl-le\iel cache, a 
tenfold improvement in per processor me;ln time to 
failure was achieved. Consequently, six Slli\M chips 
per processor were implemented to ensure high 
reliabilit)! 

The niultiplcxecl interface to tlie second-level 
cache of the CPU module allows tlie processor chip 
ant1 tlie system bus equal ant1 sh;~retl access to the 
second-level cache. To achieve low-latency memory 
access, both the microprocessor and the system 
bus operate the second-level caclie ;is fast ;is pos- 
sible based on their clocks. Hence the seconcl- 
level cache is multiplexed, and ownership deh~ults 
to the microprocessor. When the system bus 
requires access, ownership is transferred cluickly 
with tlat;i Slii\l\l parallelism while the t;ig SlbiMs are 
monitored. 

Many of the CPLJ module subsyste~ns are found in 
the interkice gate array called tlie < ; A  chip. Two of 
these chips working in tandem implement the 
and tlie secontl-level caclie controller. Write merge 
buffers combine masked write data from the micro- 
processor with the cache block as p;irt of :11i allo- 
cate-on-write policy. Since the microprocessor has 
write buffers that perform packing, fill1 block write 
arouncl the second-level cache w;rs implementetl ;is 
an exception to the allocate-on-nrrite policy. To 
meet schedule atid cost goals with few personnel, 
one complex gate array was designecl r;ither t11;ln 
sever;~l lower-complexity gate arrays. Hence the 
data path and the control functions were parti- 
tioned such that the microprocessor could operate 
as an even or odtl member of ;I pair on the <:IJ[I 1 o r  
the <:lJU 2 niodule. 

Tlie system bus clock design is somewhat intle- 
pentlent of the processor clock, but the r;ilige is 
restricted clue to the implementation of the snoop- 
ing protocol timing, the multiplexed us;Ige o f  tlie 
secontl-level caclie, ant1 the CPrJ interk~ce Ii;~ntl- 
shake and data timing. Therefore, the system bus 
cycle time is optimized to provide the rn;~xin~um 
performance regardless of the processor speed. 
Likewise, tlie processor's cycle time is optimized to 
provide maximum performance reg;~rdless of the 
bus speed. Considerable eff'ort resultetl in a second- 
level caclic ;~cccss time that enablecl tlie (:IJ~I's reat1 

or write accesses to complete in four internal clock 
cycles, calletl the four-tick loop timing of the sec- 
ond-level cache. To realize hoth optimizations, tlie 
CPlJ's synchronous interface is supportecl by an 
asynchronous interkrce in tlie DllJ.  \fiarious timing 
relationships between tlie processor and the 
system bus are control lecl by programmable timing 
controls in the IlllJ chips. 

To achieve the tight, four-tick timing of the sec- 
ond-level cache, clouble-sided surface-nlount tech- 
nologjrm7as used to place the SIL4M chips physically 
close together. This minimized address wire length 
and the number of tiiodule vias; hence tlie driver 
was loaded effectively This c;~reful placement was 
combined with the tlesign of a custom CMOS 
address fan-out buffer ;Inel ~iii~ltiplexer chip (<;I\H) 
to achieve hst  propagation delays. The CAB chip 
was implementeel in the same <:MOS process ;IS tlie 
DECchip 21064 (:I)[! to obt;lin the desired through- 
put clelay. Combiliecl with 12-11s S W M  chips, tlie <:At% 

chip enabled optimiz;~tion ol'the (;rrl's second-level 
caclie timing 21s well as the system bus snooping 
protocol response timing. 

I/O Module, Mass Storage, and 
Expansion I/O Subsystems 
The I/O moclule co~isists of a local I/O subsystem 
that interfaces to the common I/() core ancl a bridge 
to the Futi~rebus+ for I / ( )  options. By incorporating 
modularity into the tlesign, a bro;itl range of appli- 
cations could be supported. To satisfy the tlisk per- 
formance and bulk storage ~iietrics given in Table 1, 
mass storage was configured based on applications 
requirements. Elst access times of 3.5-inch tlisks 
and multiple spindles were selectetl for applica- 
tions with results in QlO/s. Tlie density of 5.25-inch 
disks was selected for ;~pplications requiring more 
storage space. As intlic;~tetl in T~ble  1. the metrics of 
greater than 4,000 QlO/s tletermined the perfor- 
malice requirrrnents of tlie storage colilpartrnent. 
Each of the four disk storage com],artn~ents in the 
system enclosi~re can holcl a till I-size 5.25-inch tlisk 
i f  cost-effective bulk storage is needed. If the neetl 
is for the mnximuni numI>er of I/Os per secontl, 
each compartment can holtl 1113 to four 3.5-inch 
tlisks in a mini array. 

Co~ifigurations of 5.5-inch disks in a brick enable 
optimization of throughput tlirough parallelism 
techniques such ;IS stripe sets and redundant arr;q7 
of inexpensive tlisks (1b111)) sets. Tlie brick con- 
figuration also enables hult tolerance, at the 
expense of tIiroi~glil>i~t, 13)' 11si11g sliatlow sets. With 
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this technique, each storage compartment is inter- 
faced to the system through a separate built-in con- 
troller. The controller is capable of running in 
either DSSI mode for high availability storage in 
cluster connections with other OpenVMS U P  or 
VMS systems, or in SCSI mode for local disk storage 
available from many different vendors. For applica- 
tions in which a disk volume is striped across multi- 
ple drives that are in different storage cavities, the 
benefit from the parallel seek operations of the 
drives combines with the parallel data transfers 
provided by the multiple bus interfaces. The main 
memory capacity of the system allows for disk 
caching or RAM disks to be created, and the process- 
ing power of the system can be applied to managing 
the multiple disk drives as a RAID array. With cur- 
rent technology, maximum fixed storage is 8GB 
with 5.25-inch disks ancl 2 4 G ~  with 3.5-inch disks. If 
the built-in storage system is inadequate, connec- 
tion to an external solution can occur through the 
Futurebus+. 

Tlie BlU is implemented by two 299-pin ASIC 
chips. The bridge to the Futurebus+ and the inter- 
face to the IocaJ I/O devices are provided with sepa- 
rate interfaces to the system bus. Each interface 
contains two buffers that can each contain a hex- 
word of data. This allows for double buffering of I/O 
writes to memory for both interfaces and for the 
prefetching of read data by which the bridge 
improves throughput. These buffers also serve to 
merge byte and longword write transaction data 
into a fill1 block for transfer over the system bus. In 
this case, the write to main memory is preceded by 
a read operation to merge modified and unmodi- 
fied bytes within the block. 

The Ethernet controllers and SCSI and DSSI 
controllers can handle block transfers for most 
operations, thus avoiding unnecessary merge trans- 
actions. As shown in Figure 3, the I/O module inte- 
grates the following: 

1. Four storage controllers that support SCSI, 
high-speecl SCSI, or DSSI for fivecl disk drives 
and one SCSI controller for removable media 
elrives 

2. 128K.B of SRAM for disk-controller-loadable 
microcode scripts 

3. Two Ethernet controllers and their station 
address ROMs, with switch-selectable 
ThinWire or thick-wire interfaces 

4. 512KB flash erase programmable ROM 
(FEPROM) for console firmwdre 

5. Console serial line unit (SLIJ) interface 

6. Auxiliary SLU interface with modem control 
supp01-t 

7 Time-of-year (TOY) clock, with battery backup 

8. 8KB of electrically erasable memory (EEKOM) 
for console firmware support 

9. Serial control bus controller and 2 kilobits of 
m 1 1  

10. 64-bit-wide Futurebus+ bridge 

11. BIU, containing four hexwords of cache block 
buffering, two mailbox registers, and the 
system bus interface 

The instability of the Futurebus+ specifications 
and the use of new, poorly specified controller 
chips presented a high design risk for a highly inte- 
grated implementation. Therefore the Futurebus+ 
bridge and local VO control logic were imple- 
mented in programn~able logic to isolate the 
high risk design areas from the ASIC development 
process. 

Memory Subsystem 
As shown in Figure 3, up to four menlory modules 
can reside on the system bus. This modularity of 
the memory subsystem enabled maximum configu- 
ration flexibility. Based on tlle metrics listed in 
Table 1, 2GB of memory were expected to satisfy 
most applications requirements. Given this 2GB 
design goal, the available DRAM technology, and the 
module size, the total memory size was configured 
for various applications. 

The memory connectors provide a unique slot 
identification code to each BIU, which is used to 
configure the CSRs' address space based on the slot 
position. Memory modules are synchronous to the 
system bus and provide high-bantlwidth, low- 
latency dynamic storage. Each memory module 
uses 4-bit-wide, 1- and 4-megabit-deep DRAW tech- 
nology in various configurations to provide 6 4 ~ ~ ,  
128MB, 2 5 6 ~ 8 ,  or 512MB of storage on each module. 

To satisfy memory performance goals, each 
memory module is capable of operating alone or in 
one of numerous cache block interleaving configu- 
rations with other memory modules with a reacl- 
stream capability. A performance study of stream 
buffers revealed an increase in performance from 
memory-resident read-stream buffers. The strean1 
buffers allow each memory module to reduce the 
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average read latency of ;I <:I)( or I / O  module. 'Thus 
more banclwidth is us;lble on a congested bus 
because the anticipated read data in a detected 
access sequence is prefetched. The stream buffer 
orefetch activity is st;rtistically determined by bus 
;~ctivity. 

Overall memory bandwidth is also improveel 
through exchange trvis;lctions, which use victim 
writes with repl;~cernent reacl parallelism. Intel- 
ligent memory refresh is scheduled based o n  bus 
iictivity and anticipatecl opportunities. Write trans- 
actions are buffered from the bus before being writ- 
ten into the DbWs to ;~voicl stalling the bus. 

Data integrity, memory reliability, and system 
;~vailability are enh;lnced by the EDC circuitry Each 
memory niotlule consists of 2 or 4 banks with 70 
I)RrW chips each. This enables 256 data bits ant1 24 
El><: hits to be accessetl at once to provide low 
latency for the system bus. A cost-benefit ;inalysis 
sl?owetl a savings of IIRAM chips when ED<: is in~ple- 
nientcd on each memory module. The processor's 
32-bit EDC requires 7 check bits as opposed to the 
128-bit ED<:, which reqilires 12 check bits zinc1 uses 
['ewer chips per bank. 'T'lie selected EDC code also 
provides better error detection capabilit-y of 4-bit- 
wide chips than the processor's 32-bit EDC. 

To improve performance, separate EDC logic 
is implemented on tlie write path and read path 
of each memory nlodule's RIU. The EDC logic 
performs detection anel correction of all single- 
bit errors and most 2-bit, .)-bit, and 4-bit errors in 
tlie D&\1 array Tlie El>(:'s generate function can 
detect certain types of addressing failures associ- 
ated with the DRAM row and column address bits, 
along with the bank's select address bits. Failures 
associated with these ;~dtlressing fields can be 
detected, thus improving data integrity. Software 
errors can be scrubbed from liiemory by the <:PU 

when requested through use of PALcode subrou- 
tines, which use tlie LUX-L and STx-C synchroniza- 
tion construct without having to suspend system 
operations. 

Enclosure and Paver Subsystems 
The DEC 4000 AXP enclosure seen in Figure 1 is 
c;~lled the ~ ~ 6 4 0  box and is 88.0 centimeters (cm) 
high, 50.6 cm wide, and 76.2 cm deep. It weighs 118 
to 125 kilograms hl ly configured. The enclosure is 
designed to operate in an ol'fice environment from 
10 to 35 degrees Celsius. The power cord can con- 
nect to a conventional will1 outlet which supplies 
up to 20 amperes at either 120 V AC or 240 V AC. 

Tlie DE(: 4000 AXP system is a portable unit that 
provides rear access and simplified install;~tion and 
maintenance. Tlie systelii is mounted o n  casters 
and fits easily into an open office environnient. 
Modular design allowed con~pliance with stan- 
dards, ease of manufacturing, and easy fielcl servic- 
ing. Constructed of molded plastics, the chi~ssis 
is sectioned into a card cage, :I storage compart- 
ment, a base containing four 6-inch variable-speed 
D c  fans and casters, an air plenum ;uicl baffle assem- 
bly, front ant1 rear doors, ancl side panels. The 
mass storage compartment supports 111, to I6 
fixed-storage clevices and 4 removable storage 
devices. Expansion to storage enclosures is sup- 
ported for applications that recjuire speci;~lizecl 
storage subsystems. 

Feedback from fielcl service engineers proriiptecl 
11s to omit uselcss light-emitting devices (LEIIS) in 
each subsystem, since access to most electronics is 
from the rear. As a result, the OCP was m;~de coni- 
n~oli  to all sul>systems through the serial control 
bus and made visible inside the front door of the 
enclosure. It provides DC on/off, hz~lt. ;lncl restart 
switches, and eight LEDs, which inclic:~te faults of 
CPU, I/O, memory, and Futurebus+ nlodules. The 
fault lights are controlled either by a microcon- 
troller on either <:I'(J module or by ;In interhce on 
the 1/0 module. 

Futurebus+ slot spacing was provided by the lEEE 
specification. The system bus slot spacing for each 
module was cleterniined by h~nctional require- 
ments. For example, the CPU moclule requires 300 
linear feet of air flow across the DE<:chip 21064 
microprocessor's 3-inch square heat sink, as seen in 
Figure 1, to ensure the 25-watt chip could be 
cooletl reliably. Since 4000 systems provide this 
same air flow across modules, cooling was not a 
major design obst;~cle. The rnotlule compartment's 
Futurebus+, systerri bus, and power subsystems can 
be seen in the enclosure back view of Figure 6. 

All electronics in the enclosure, as shown in 
Figure 7, are air cooled by four 6-inch fans in the 
base. Air is drawn into the enclosure grill at the top 
front, guided along a pleni~m ancl baffle ;lssernbly 
and down through the module compartment and 
power supply comp;lrtrnent to the base. Air is also 
drawn tlirougli front door louvers and across the 
storage compartments and down to tlie base. 
Electro~iics connected to the power subsystem 
monitor ambient and  nodule compartment 
exhaust teniperatures. Thus the fan speed c;ln be 
regulated based on temperatllre measurements, 
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SYSTEM BUS are for fixecl storage bricks. A storage brick consists 

I 
of a base plate and mounting hardware, disk drives, 
local disk converter (LDC). front bezel assembly, 
anel wiring harnesses. The LDC converts ;I tlis- 
tributed 48.0 V to 12.0-V and 5.0-V supplies :lnd a 
5.0-V termination reference for the brick to ensure 
compliance with voltage regulation specific;~tlons 

POWER 

Figure 6 DEC 4000 AXP Enclosure Rear View 

reducing acou5tic noise in an air-conditioned office 
environment. 

The centerplane assembly consists of a storage 
backplane, a module backplane, and an electroniag- 
netic shielcl. This implementation avoids depen- 
clence on cable assemblies, which are unre1i;tble 
and d~fficult to install and repair. Defined connec- 
tors and module sizes allowed the enclosure devel- 
opment to proceecl unencumbered by moclule 
specification changes. The shielded module com- 
partment provides effective attenuation of signals 
UP to 5 gigahertz. There are six Futurebus+ slots, 
four memory slots, two CPU slots, one 1/0 slot, and 
four central power module slots, which include the 
FEU, PSC, DC5, and DC3 units 

The storage compartment contains six cavities, 
as seen in the enclosure front vlew of F~gure 8 
Two cavities are for removable media, and four 

and termir~ation voltage levels of current ;ul~cl fi~tilre 
disks. 

The 20-ampere power subsysteni can cleliver 
1,400 watts of DC power divided across 2.1 V, 3.3 V, 
5.0 V, 12.0 V, ant1 48.0 V. The enclosure can cool 
1,500 watts of power and can be configured as a 
master or a slave of AC power application. IJse of ;I 

universal FEU eliminates the neecl for selecting 
operating voltages of 120 V or 240 V A<;. The F H r  
converts the input AC into 385 V DC, which is clis- 
tributed to provide 48 V DC to two step-down I)(:- 
to-I)C converters. which work in parallel to share 
the lo;~d current. The combined 48 V I)(: outpi~t  
from these converters is deliverecl to the rest of the 
system. 

Control of tlistributed power electronics is diffi- 
cult anel expensive with dedicated electronics. A 
cost-effective alternative was use ol a one-chip 
<:l\lOS microcontroller, surrounded with a n  array of 
sensor inputs through CMOS analog-to-digital con- 
verters, to provide PSC intelligence. I>ecisiori-mak- 
ing ;ubility in the power subs!~stern enabled 
compliance witli voltage-sequencing specific;~tions 
anel fail-safe operation of the system. l'he micro- 
controller can control each LDC and communicate 
witli the C:Pl.I and OCP over the serial control bus. I t  
monitors over and under voltage, temperature, and 
energy storage conditions in tlie n~oditle and stor- 
age compartments. It also reports status ancl failure 
information either to the CPU or to a elisplay o n  the 
PS(: rnocl~~le, whicli is visible insicle the enclosure 
back door. 

Firmware 
The prim;lry goal of the console interface is to 
bootstrap the operating system tliro~lgh a process 
c;ulled boot-block booting. The console inter- 
face runs a nlinimal I/O device h;lncller routine 
(boot primitive) to read a boot block fro111 a device 
that has descriptors. The descriptors point to the 
logical block numbers where the prinlar); boot- 
strap program can be found, and the console 
interface loads it into system memory To accom- 
plish this task, t11e firmware must configure at~cl 
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Figure 7 DEC 4000 AXP Modular Electronics 

test the whole system to ensure the boot process 
can complcte without failures. To minimize the 
bootstrap time, a fast menlory test executes in the 
time necessary to test the largest memory module, 
regardless of the number of memory modules. If 
fa~lures are detected after configuration is com- 
pleted, the firmware must provide a means for diag- 
nosis, error isolation, and error logging to facilitate 
the repair process. The DEC 4000 AXP system pro- 
vides a new console command interface as well as 
integrated diagnostic exercisers in the loadable 
firmware. 

The firmware resides on two separate entities, a 
block of serial ROM on the CPU moclule and a block 
of FEPROM o n  the I/O module. The serial ROM con- 
tains software that is automatically loaded into the 
processor on power-up or reset. This software is 
responsible for initial configuration of the CpU 
module, testing minimal module h~nctionality, mi- 
tializing enough memory for the console, copying 
the contents of the FEPROM into this initialized 

console memory, and then transferring control to 
the console code. 

The FEPIiOM firmware consists of halt dispatch, 
entry/exit, diagnostics, system restart, system boot- 
strap, and console services functional blocks. 

PALcode subroutines prov~de a layer of software 
with common interfaces to upper levels of sofware. 
PALcode serves as a bridge between the hardware 
behavior and service requirements and the require- 
ments of the operating system. The system takes 
advantage of I'ALcode for hardware-level interrupt 
handling and return, security, implementation of 
special operating system kernel procedures such as 
queue management, dispatching to the operating 
system's special calls, exception handling, DECchip 
21064 virtual instruction cache management, 
virtual memory management, and secondary I/o 
operations. Through a combination of hardware- 
and software-dependent I'ALcode subroutines, 
OpenVMS AXP, DEC OSF/l AXP, and future operating 
systems can execute on this hardware arcliitecture 
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Refmence and Note 

Performance Summary 
The DEC 4000 AXP Model 610 system's performance 
numbers as of November 10, 1992 are given in Table 
3. Its performance will continue to improve. 

Summary 
r)EC 4000 IU(P systems demonstrate the highest 
performance and functionality for Digital's 4000 
series of departmental server systems. Based on  
Digital's Alpha i\xP architecture and the IEEE's 
Futurebus+ profile B standard, the systems provide 
symmetric multiprocessing performance for 
OpenVMS AXP and DEC OSF/l AXP operating systems 
in an office environment. The L)EC 4000 AXP systems 
were designed to  optimize the  cost-performance 
ratio ant1 t o  include upgradability and expanclabil- 
ity. The systems combine Digital's CMOS technol- 
ogy, I/O peripherals teclmology, ahigh-performance 
multiprocessing backplane interconnect, ant1 mod- 
ular system design to supply the most advanced 
filnctionality for performance-driven applications. 
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Table 3 CPU Performance Summary for the DEC 4000 AXP System 

Futurebus+ Performance 
Latency Bandwidth 

Peak 16 bytes/l 00 ns 16OMBls 
Read 16 bytedl 82 ns 88M B/s 
Write 16 bytes11 33 ns 1 20MB/s 

Local Bus Performance 

Peak 
Read 
Write 

Latency 
4 bytes180 ns 
4 bytes11 60 ns 
4 bytedl 60 ns 

Bandwidth 

50MBIs 
25MBIs 
25MB/s 

System Bus Performance 
Latency 

Peak 16 bytes125 ns 
Read 32 bytes/l 75 ns 
Write 32 bytedl 50 ns 
Exchange 64 bytedl 75 ns 

Internal Cache Miss, Second-level Cache Hit (Four-tick) Performance 

Latency 
Read 16 bytes/25 ns 
Write 16 bytes125 ns 

Bandwidth 

640MB/s 
182MB/s 
21 3MB/s 
365MBIs 

Bandwidth 

640MB/s 
640MBIs 

CPU Second-level Cache Miss Performance 

Read 
Write 
Exchange 

Latency 
32 bytes/275 ns 
32 bytes1200 ns 
64 bytes/275 ns 

Bandwidth 

1 1 6MB/s 
16OMBIs 
232MB/s 

- - -  

DEC 4000 Model 610 SPECmark89 and SPECthruput89* Estimated CPU Performance Summary 

Integer (INT) Benchmarks Ratio 
GCC 61.58 
ESPRESSO 82.91 
LI 93.05 
EQNTOTT 103.46 

Floating-point (FP) Benchmarks 
SPICE2G6 72.58 
DODUC 11 3.81 
NASA7 229.27 
MATRIX300 101 9.1 7 
FPPPP 180.32 
TOMCATV 128.70 

SPECmark > 136.23 
SPECint > 83.73 
SPECfp > 188.45 

Ratio 

1 @ 54.80 
I@ 81.76 
I@ 92.19 
1 @ 100.76 

I@ 68.19 
1 @ 11 3.53 
1 @ 221.56 
1 @ 963.81 
1 @ 177.89 
1 @ 123.25 

SPECthruput > I@ 131.18 
SPECintthruput > I@ 80.32 
SPECfpthruput > I@ 181.92 

Ratio 

2@ 50.78 
2 8  78.33 
2@ 92.18 
2@ 97.94 

LINPACK - double precision 100 X 100 36.8 MFLOPS 
LINPACK - double precision 1000 X 1000 78.4 MFLOPS 
Dhrystone 165.0 MIPS 

Note: 
'Version 1.0 OpenVMS AXP operating system, 160-MHz clocked DECchip 21064 microprocessor, 1 ME3 second-level cache. Notice the 1.9 
scaling of the second CPU. 
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Technical Description 
of the DEC 7000 and 
DEC 10000 AXP Fame@ 

The DEC 7000 ar7d DEC 100OOprod~rcts ~11.0 rizicl-lwrlye nlzd nzairIfrnlrze Alphcr A X P  

sjb-tei~z ($fk/'illgs ~ ; ' O I ? I  Digitcll E y ~ ~ i l ~ i l i e i ~ t  Corpoiriti011. These r?zucbir7es ~1le1.e 
designed to lneet the rieeds of large colnnzerrial al7d scientific c,yl,licutiolzs arzd 
ther.@re ore /?igl?$erfon.nc~i?ce, expattcl~rble sj~sterns that can be e~rs ib~  ~ ~ p g ~ w d e d .  
The DEC' 7000 ~17d 10000 ~j~ster'lzs zltilize t/7e IlI:Cc/?if) 21064 17zicroprocessoi operat- 
illg a t  speeds LIP to -300 MHz. The high-speed chips, large c~~cbes ,  ~~lultip~~oce.ssor 
sj~ste~iz ai.c/~itc~ctui.e, hiyl~$eifornza17c D L I C ~ ~ ~ L I I ~ C  ir?te~.cot~~~ect, a~?d  IGII;~C I I I P I I I O I : ~ ~  

cclprpacit~l colnbiile to create ~ ~ z n h ~ i z ~ ~ ~ ~ e - L k I s s p e r ~ f i , ~ ~ ~ i ~ a ~ ~ c e  zllith a cost ri17d sizej)i.e- 
zliousl)~ att~.iDuted to ~/zid-ralzge sjlsten~s. 

The tlesign of the DE<: 7000 and 10000 systems pro- 
vides a high-end pl ;~thrm nntl system environment 
for rn~~l.tiple generations of iilpha A X P  chips. This 
platform, combined with a multiprocessor archi- 
tecture, yields a multidimensional upgrade capabil- 
ity that will allow the s)rstem to meet users' needs 
Cor several years. System i~pgratle can take place by 
;ttlding processors, replacing existing processors 
with next-generation processors, or both. 'l'his 
upgrade capability ensures stability to the system 
in terms of the physical and fiscal ;tspects of the entl 
user's computing erivironment. 

The DEC 7000 and LIE<: 10000 systems are 
the logical follow-on products of the highly suc- 
cessf~~l  VAX 6000 himily 'The new systems are capa- 
ble of supporting either VAX processors or Alpli;~ 
A S P  processors. The c;tpabilit)- to upgrade from 
;I VAX processor to ;rn Alpha AXI' processor with- 
out ch;inges to the system is essential for niini- 
rnal disruption of large commercial applications. 
Most fe;~tures of the V A S  6000 systems have 
been carried forward to the 1)E(: 7000 and DE(: 

10000 proclucts, ant1 any tleficiencies have been 
corrected. 

The DEC 7000 :1nc1 I)E(: I0000 products :KC 

derived from the same system tlesign. The DE<: 
10000 is a more Si111y configured system and 
inclutles ;ln 1z+1 ~~~iinterruptible power system. 
atlditional 1 / 0  subsystems. ;mcl 1 / 0  expansion cabi- 
nets. 'l'he DEC 7000 uses n 182-megahertz (MHz)  

I)E<:chip 21064 whereas the I)E<: 10000 uses a 200- 
MHz I)E<:chip 21064. 

A \/er!, important goal h)r the project that encom- 
passed the clevclopment of the I>E<: 7000 and 10000 
systems was to provitle a si~llil:ir pair of systems 
b;isecl o n  a VAX microproccssoc A Vi\X niicroproces- 
sor, called hWAS+, W;IS designed to be pin com- 
patible with the DECchip 21064 (the Alpha AXP 
microprocess~r).~ + The S!~S~CIII '~V;IS designed to be 
somewhat microprocesso~- independent, and both 
VAX and Alpha AXP versions of the systems were 
i~iiplernentetl. The VAX prodr~cts (VAX 7000 ancl VAS 
10000) were introduced in July 1992 and can be 
upgraded to DEC 7000 ;uld I)E(: 10000 systems by a 
simple swap of C P r r  modules. 

System Architecture 
The 1>E<: 7000 system consists of <:PIl(s), memory 
an I/() port controller, ancl I/() ;td;~pters, as shown in 
1:igure 1. The system is configurecl in a variety of 
w:~ys, depending on the size and f~~nc t ion  of the 
system. A system backplane consists of nine slots 
and houses CPlJs, memory, and an I/(> port con- 
troller. The I/O port controller resides in a fixed 
slot, ;ind CPlrs and memories occupy the remaining 
eight slots. The initial system offerings allow up to 6 
(:r'rts. (Architecturally, the s!.steni may support i ~ p  
to 16 CPUs.) Up to I4 gig:tbytes ((;I3) of memory can 
bc supported if onlj. 1 ( ; I > [ :  niodule is present and 
;ill remaining slots contain memory. 
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ALPHA AXP OR VAX 
PROCESSOR(S) 64,128,256,512MB 

+ f 
SYSTEM BUS 640MBlS 

4 

I 110 PORT CONTROLLER I 

XMl ADAPTER I10 ADAPTER I10 ADAPTER  US+ k 'V '77  
XMI FUTUREBUS+ 

Note: All four I10 ports are ~dentical. Any combination of XMI, 
Futurebust, or "custom" inlerfaces may be configured. 

Figure 1 DEC 7000 nncl LIE(: 10000 
System Architecture 

The 1 /0  subsystem consists of ;In I/O port con- 
troller and four I/() ports which have been ;~d;~pted 
to the X1\41 or the Futurebus+. Tlie I/O ports are 
generic ;~ntl may be adapted to other forms of inter- 
connect in the fiuture. The system b;~ckplane. 
power system, and up to two 1/0 backplanes are 
housed in the system cabinet. Adtlitional 1/0 bi~ck- 
planes (up to ;I system total of h)ur) may be config- 
i~red in expansion cabinets. 

Technology 
The I)E<: 7000 system is built prim;lrily of C:MOS 

(coniple~nentary metal-oxide semiconductor) coni- 
ponents. The IIECchip 21064 microprocessor is 
built using Digital's 0.75-micrometer <:MOS-~ pro- 
cess. AJI modules utilize LSI I.ogic l.<:r\lOOK series 
gate arrays for tlie system bus interface and for 
on-bo;~rcl logic fi~nctions. Tlie LSl Logic LCA100K 
features up to 235K two-input NAN> gates. MI 
motlules use the same custom r / o  tlriver circuit 
within their respective gate ;Irr:.tys to drive ant1 
receive the system bus. A custo~ii 419-pin pin gritl 
array (P<;A) package was tleveloped to house all bus 
interface gAte arrays. Unlike the VAX 6000 series, a 
common bus driver part is not used in ortler to min- 
imize tlie nunlber of levels of buffering in the 
system. 

Moclule technology is standard 10-I,], ' ver construc- 
tion with 4 signal layers, 4 power I;lyers, and top 
;rncl I,ottom cap layers. Double-side, surfi~ce-mount 
construction is used extensively throughout the 

systeni. Etch width is 5 mils with 7.5-mil minimum 
spacing. Via sizes down to 15 mils are used. A t i i i s -  

ture of physical coniponent technologies is used 
with all large vl.sI (very large-scale integration) 
parts in 100-~iiil I'<;A packages. Most standard logic 
utilizes 50-mil surface-mount technology Moclule 
interconnect to the backplane is made through a 
340/420-connection, four- row, 100-mil-spaced pin 
and socket type connector. Forty-eight-volt power 
is distributed throughout the system; local regula- 
tion is provided on tlie niodule for specific voltages 
required. 

System Interconnect 
The heart of tlie I>E<: 7000 systeni is a high-perfor- 
mance system interconnect, called the LSR, which 
allows communications between multiple proces- 
sors, memory arrays, ant1 I/O subsystems. I t  pro- 
vides a low-latency, high-l~~ndwitlth data path 
among all components. A common shared view of 
menlory is maintained by means of the systeni intcr- 
connect and cache logic on processor modules. 

Three types of niodules ;Ire defined for the LSD. 

Processor modules, which contain the CPli chip, 
cache subsystem, ;~nd console functions. The ini- 
tial DEC 7000 design has the capacity for a maxi- 
mum of six processor modules. 

Memory moclules, wllicb contain dynamic raii- 
dorn-access memory (I)Ib\ii\iLI) chips and a mem- 
ory controller. A system can contain up to seven 
memory niotlules, e;~cli with a capacity of 64 
megabytes (MIj) to 2(;13. 

I/O interface motll~les, which provide access to 
I/O buses and I/O adapters. Only a single I/O port 
controller niotlule may reside in the system. Tlie 
1/0 port controller niotlule can arbitrate at a 
higher priorit! than <:l-'tJ nocles to improve I/O 

direct memory ;lccess (IIMA) latency and provide 
atomic DMA writes of tl;lt;~ less than ;I c;~che 
block in size. 

Tlie LSB is a liniitecl-length, non-pended, pipe- 
lined, synchrotious, 128-bit-wide bus with clistrib- 
i~ted arbitration. All  transactions occur in ;I set of 
fixed cycles rel;~tive to ;in ;isbitration cycle. Up to 
three transactions can be in the pipeline at a given 
time. enabling the fill1 capability of the bus to be 
realized. Arbitration occurs on a dedicated set of 
control signals :~ntl may he overl:~pped with tlata 
transfer. Data ;inti :~tldress are n~ultiplexed on tlie 
same set of signals. 'The bus protocol supports 
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write-back caches, ancl all memory transfers are 64 
I~j~tes  in length. The cycle time of the bus is 20 
nanoseconcls (ns), providing an overall clnta rate of 
8001MB per second ancl a utilized system bandwitlth 
of 6 4 0 ~ 1 ~  per second. 

The T.SR transmits 40-bit physical addresses, pro- 
viding a physical address space of 1 terabyte. Given 
the current rate of DRAM technology evolution, the 
LSIj will have a usef~il life of 8 to 10 years before 
physical atldress space is exhausted. A 40-bit physi- 
cal address was chosen to minimize the data path 
width in the processor bus control gate array 

A non-pencled pipelined bus was chosen instead 
of :I tr;iditional pended bus to allow for si~nple node 
interface clesigns. Transactions start ;cncl finish at 
precisely defined times. A "stall" function may be 
used if a given transaction cannot be completed 
within the system timing constraints. The "stall" 
function freezes the bus pipeline, maintaining the 
order of all transactions. Consequently, nodes can 
be clesignetl with no queuing between tlie bus 
interface and local storage ( D ~ i l s  for main mem- 
ory or static RANIS [SFGuVs] for cache memory). The 
maintenance of strict bus transaction ortlering also 
allevi;ites many potential lockout conclitions expe- 
rienced on petided buses. 

Digital's previous mainframe systems have usetl a 
switch-based system interconnect instead of a bus. 
This interconnect was typic;~lly requiretl because 
these systems were based on emitter coupled logic 
(E<:L) with only a small, single-level cache suh- 
system; therefore, high bandwitltli was required 
between main memory and the processor. The 
<;MOS clesign of the DEC 7000 allows a large (4MR) 
seconcl-level cache to complement the 16-kilobyte 
(KB) on-chip cache. Tlie large amount of c;iche 
minimizes the need for memory bandwidth. A 
bus-based design was chosen over a switch-based 
design to minimize memory latency minimize 
clesign complexit): and reduce system cost. 

All I 5 R  transactiotis consist of a single commantl 
cycle ant1 four dnt;~ cycles. These five cycles appear 
in fixed cycles relative to the arbitration c)lcles. Up 
to three transactions may be pipelined, as shown in 
Figure 2. 

The LSR uses a distributed arbitration scheme. 
Ten request wires are driven by the cpus or the I/o 
module that wishes to use the bus. Eight request 
lines are ;~lloc;itetl to tlie eight potential CPU ~iiocl- 
ules. The remaining two request lilies arc i~setl by 
the I/O controller moclule. All modules indepen- 
dently monitor the request wires to determine 
whether a transaction has been requested, and if so. 
which module wins tlie right to sentl a cornm;lncl 
cycle to start the transaction. 

The arbitration scheme employs a least-recently- 
used rotating priority algorithm for CplJ modules 
ancl a fixed high/low scheme for the I/O port con- 
troller. The I/() port controller arbitrates using the 
highest ant1 lowest priority levels, arbitrating high 
six times then low two times. This arrangement 
ensures that the 1/0 port controller can i~tilize 
greater than 50 percent of tlie available system bus 
bandwidth while still ensuring the CPUs some 
access to the system bus. The I/() port controller 
also uses its uniqi~e ;~rbitration scheme to ensure 
atomic reatl/modify/write sequences on the bus 
necessary for performing writes of less than a full 
naturally aligned 64-byte quantity. Tlie I/O port 
controller does the rend at its next scheduled prior- 
ity ant1 then imrnet1i:itely follows up with the write 
at highest priorit)! This scheme ensures that 110 

other node can access the data between tlie read 
and the write. 

A1 comm;incl/acldress anel control/status register 
(CSR) cycles are protected with parity Data cycles 
to and from niemory are protected with error cor- 
rection code (E(;(:). Transmit check is used by all 
modules to verifj that what a given module is 
asserting on the bus is ;~ctually being seen on the 

41 I+ BUS CYCLE TlME = 20 NS 

ARBITRATE 
COMMAND 
CONFIRMATION 
SHARElDlRTY 
DATA 

I+ BUS ACCESS TlME = 340 NS +I 
Bus Data Rate = 16 bytes per 20 ns = 800MBls 
Utilized Bus Bandwidth = 16 bytes per 20 ns x 4 data cycles per 5 bus cycles = 640MBIs 
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bus. Transmit check allows the detection of bus col- 
lisiolis and faulty bus drivers or receivers. 

The system interconnect is physically imple- 
mented as a centerplane which is 350 millimeters 
(rnrn) wick ancl 500 mm high. There are four mod- 
ule connections on one sicle, ancl five on the other. 
The centerplane-moclule connection is imple- 
mented using a four-row pin and socket connector 
with connections on a 100-mil grid. Modules are 
410 mm high and 340 mrn deep. This module size 
was chosen to allow the maximum module size 
within the constraints of an 865-mm-deep cabinet 
and of the centerplane technology. Moclules are 
spaced 011 65-mm centers ant1 are contained within 
a box that provides customized air flow for each dif- 
ferent module design. 

The DEC 7000 was tlcsigned with a centerplane 
interconnect to solve the problem of bus length 
and to meet the need for wide moclule spacing 
that allows for the anticipated heat-dissipation 
requirements of future processor chips. With a 
centerplane, the number of module slots available 
for a given length of bus increases by (72.2)-1 
where n is the number of slots available in a con- 
ventional backplane. t\ centerplane configuration 
leaves little space on the backplane for termination 

networks. Designers solvecl this problem by adopt- 
ing a distributed termination scheme with bus ter- 
minator networks present on all modules in the 
backplane. 

Processor Module 
The primary purpose of the processor module is to 
provide a large second-level cache to the processor 
chip and to act as an interface to the system bus and 
memory for missed cache references. The proces- 
sor module in the DEC 7000 system was designed to 
use either VAX or Alpha AXP chips. As noted above, 
a common design is used in the implementation of 
the VAX ant1 DEC 7000 and 10000 systems, with the 
only significant clifferences being the processor 
chip and the console/diagnostic cocle. Figure 3 is a 
block diagram of the processor module. 

The processor module provides ;I 4MB external 
cache, which is shared by the processor chip and 
the bus interface chips. The cache is organized as a 
single set (direct mapped), with a block ancl f i l l  size 
of 64 bytes. The external cache conforms to a write- 
back, conditional update, cache coherency proto- 
col. The processor on-chip clata cache is a proper 
subset of the external cache and uses a write- 
through protocol.*4 

BACKMAP 
D-CACHE 

- 
DECCHIP CONTROL + * BUS INTERFACE 
21 064 GATE ARRAYS 

PROCESSOR ADDRESS * 
LSB ADDRESS *- 

D-CACHE 

B-CACHE 0-CACHE TAG, VALID 

DATA TAG AND 
STATUS 

I-CACHE 
DATA, ECC BUFFER 

F646 DATA. ECC 

W-BUFFER 

TAG, VALID, SHARED, DIRTY 
VICTIM 

ROM 

ROM I WATCH rttH UART 

I I I 
A SYSTEM 

BUS 

Figz~re 3 Block Dicigram of the DEC 7000 Processor Module 
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The structure of the cache is shown in Figure 4. 
Each cache line consists of 512 bits of data (with 112 
bits of ECC), 12 bits of tag (with 1 parity bit), and 3 
status bits (with 1 parity bit). The 12 bits of tag data 
applied to a ~ M B  cache size sets a processor pliysi- 
cal address capability of 1 6 ~ ; ~ .  (This is a processor 
limitation, ant1 fi~ture processors will address larger 
memory sizes.) The control bits contain informa- 
tion that allows the c;~che and mernory systems to 
maintain coherency The control bits are tlefinetl :IS 

follows: 

A valitl bit, indicating whether or not this line 
contains valid data 

A shared bit, indicating whether or not this line 
niny also be resident in another procesbor's 
cache in the system 

A clirty bit, indicating whether or not this line 
has been written to by this processor 

Upon detection of a cache read miss in the pro- 
cessor on-chip cache, the processor accesses the 
extern;~l cache tag to see if the given block is resi- 
dent. The processor chip contains the tag compari- 
tor ancl status logic to cletcrrnitie ;I "hit." If the block 
is resident in the external cache, the processor then 
cycles the external cache d;tt;i store twice, each time 
reading in 128 bits of data and 28 bits of ECC for a 
total of 32 bytes (internal processor cache block 
size is 32 bytes). The external cache cycles at a rate 
five tjnles the processor chip clock period (and at 
two times the period for the VAX variant). Upon the 
detection of a "miss," the processor chip informs 
the bus interface chips by means of hanc1sh;lke sig- 
nals and waits until the miss is serviced on the I S H .  

IJpon a data write by the processor, the clata is 
written through to the external cache. If the data 
is already resident in the cache. it is updated and 
conditionally bro;tdcast onto the system bus if 
marked as sh;lred. If the selectecl cache line cont21ins 
a different valid tag, the current (old) cache line is 
written to memory and replaced by the new tag ancl 
data. To improve performance during this opera- 

tion, the current cache line is stored in a local victim 
buffer while the new data is read. After the new data 
has been placed in the cache, the oltl clata is written 
back to memory :IS ;I background operation. 

A cluplicate set of cache tags (backniaps) are kept 
by the bus interface logic for both the external 
cache and the internal processor chip Ikache .  
These backmaps are accessed by the bus interface 
logic 011 all bus references to determine the action 
necessary to maintain cache/memory coherency 

On bus read requests, the processor bus inter- 
face references its external cache backnlap and sup- 
plies data from the on-board cache if a "dirt)"' copy 
of the d;lt;l is present. On bus writes, a check is per- 
for~netl to see if the data is present in the processor 
on-chip D-c;tche. If the data line is present, the 
i~pdated data is ;~ccepted. If the data line is not pre- 
sent but is instead in the external cache, the line is 
inv;llitlated. This cache update policy is an attempt 
to minimize false sharing of tlata by only updating 
on references to a cache line in the processor on- 
chip cache, which is small 2nd should contain only 
freshly referenced data. 

False sharing of data is a problem common to 
multiprocessor systems running fully symmetric 
operating systems. When a process is migrated 
fi-on1 one processor to  nothe her, dirty data often 
remains in the cache of the previoi~s processor. 
When the new processor requests that data, it 
becomes "shared," resulting in the need to update 
all copies by means o f  bus transactions on all subse- 
quent modifications of the tl:it;~. Since the process 
has migrated, there is no need to maintain the state 
of the clat;~ it1 the cache of the previous processor; 
tloing so slows down execution of the process due 
to  the bus tr;~ns;~ctions recluired to update. The 
write-upd;tte policy described in the previous para- 
graph provides a means to estimate if "sl~ared" data 
is still in use by the previous processor and pro- 
vides ;I means to flush it from the previous cache if 
it  has not been recently referenced. 

The external cache is 128 bits wide with long- 
word E<:<: protection. The E<:<: scheme i~sed to 

X 64K CACHE ENTRIES 
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protect the external cache is identical to that used 
on the LSB, which allows flow-through ECC. The 
processor chip checks and corrects data for all pro- 
cessor refills. The bus interface chips perform 
lookaside ECC checking for fault isolation purposes 
but do not perform ECC correction. 

The processor module also provides system con- 
sole functions. The moclule includes universal 
asynchronous receiver/transrnitters (IJARTs) for 
communication with the console terminal and 
power subsystems, a time-of-year clock, and 8 9 6 ~ ~  
of flash read-only memories (]<OMS) for console and 
diagnostic code. Each processor contains a com- 
plete console subsystem, but only one motlule uses 
this function in a multiprocessor system. This 
approach allows static reconfiguration of the 
system in the event of a module failure. 

A 4Mu module-level cache was chosen because 
it was the largest natural implementation using 
256K X 4 S U M S  drivel1 by the 128-bit-wide cache 
data path defined by the DECchip 21064 micropro- 
cessor. Denser S W i s  were not available at the nec- 
essary speetl (10 to 12 ns), ant1 a multiway cache 
architecture is not easily implemented with the 
DECchip 21064. The fill size of 64 bytes was 
selected to efficiently use the 16-byte-wide system 
bus and provide 80 percent bus data efficiency. 

Figure 5 shows a photograph of side 1 of a pro- 
cessor module. Atltlitional cache m i s  and drivers 
reside on side 2. 

Memory Module 
The memory subsystem of the DEC 7000 cornpr~ses 
one to seven memory array modules with a single 
moclule capacity of 64 to 2 0 4 8 ~ ~ .  The primary 
functions of the memory array modules are to 
respond to bus read/write functions, refresh the 
memory &is, and maintain ECC data for the mem- 
ory. The design supports either ~ M R  or 1 6 ~ 1 ~  
DRkMs, on-board interleaving on modules with 
greater than 6 4 ~ ~ ,  and niultimodule interleav~ng 
under many cond~tions. 

The DEC 7000 memory modules run synchro- 
nous with the LSB Memory transactions occur in 
fixed cycles relative to the system bus. All memory 
space transfers consist of 64-byte blocks that are 
transferred 16 bytes at a time over four contiguous 
data cycles. Read and write data wrapping is done 
on 32-byte naturally aligned boundaries. The 
DRkMs are 4-bit-wide parts, and an entire 64-byte 
block is read or written in parallel and buffered for 
bus transmission. 

Data wrapping is a method used to provide a 
lower latency return of the data required by a read 
commantl. The bus contains an extra address bit 
that indicates in which half of a 64-byte block the 
requested data lies. The memory colitroller returns 
the half block containing the target clata first, allow- 
ing Faster resumption of processing. Data wrapping 
has no benefit on write transactions but is clone to 
sirnplrfy the design of the system. 

DEC 7000 memory modules are protected with a 
quadword ECC algorithm. The chosen ECC: imple- 
mentation allows detection and correction of sin- 
gle-bit failures, detection of all 2-bit failures, and 
detection and correction of any error wholly con- 
tained within a 4-bit-wide D M l .  Memory motlules 
convert LSB longword (32-bit) ECC into quadword 
(64-bit) E<:C; that is stored with LSB data on writes. 
During LSB reads, quadword ECC is converted to 
longword ECC. Quadword ECC allows for higlier 
packing densities on the memory module with 
fewer DRAM components. Longwortl ECC is used on 
the system bus because the DECchip 21064 micro- 
processor dictates the use of longworcl ECC in its 
external caches, and the timing of the external 
cache will not allow a conversion to a different ECC 

for bus transactions. 
The memory module contains a hardware-based 

self test that checks each bit on the module to be 
sure it can be set to either a 0 or a 1 state and initial- 
izes the memory to a known good E(:C state. All 
memory moclules execute self-test in parallel upon 
system initialization at a rate of approximately 
35MB per secontl. This approach results in substan- 
tial savings in boot time as compared to a system 
that tests memory with initialization code executed 
by the processor. Moreover, the self-test provides 
excellent error isolation in the event of a failure. 

DEC 7000 memory is designed in A ~ M B ,  128MB, 
2 5 6 ~ ~ ,  512MB, and 2GB modules. The 6 4 ~ ~ ,  128MR, 
and 256&1\1~ modules use ~ M R  DW~fls, double-side 
surface mounted. The 512MB modules use ~ M R  
DRAMS mounted on soldered-in single in-line mem- 
ory modules (SIMMs). (PC-style socketed SIMMs 
proved unreliable for large configurations.) The 
2GB modules use 1 6 ~ ~  DRAMS mounted on sol- 
dered-in SIMMs. 

I/O Subsystem 
The DEC 7000 1/0 subsystem consists of an l/O port 
controller and four high-speed parallel ports. The 
I/O controller provides an interface between 
the system bus and the parallel ports. Atlclitional 
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Figure -5 Processor Moduk Major CornJ~onents HigIdighted 

modules provide the interface between the high- 
speed parallel ports and specific standard 1/0 buses. 
To date, interfaces have been designed for the XMI, 
which is used as the I/O bus on the VAX 6000 and 
VAX 9000 systems, ancl for the Futurebus+, which is 
an IEEE standard high-performance bus definition. 

The I/O port controller and specific bus adapter 
architecture was adopted to allow a flexible bus 
strategy that can evolve over time, as well as to 
accommodate the pl~ysical separation of processor 
and I/o subsystems necessary in an expandable 
system with multiple I/O channels The 1/0 port 

controller cable(s) will function to a maximum 
cable length of 3 meters. T h ~ s  length allows 110 
expansion cabinets to be placed o n  e ~ t h e r  side of 
the main system cabinet. 

The aggregate bandwidth of the I/O port con- 
troller is 2 5 6 ~ ~  per second. Each parallel port 1s 
capable of operating at a maximum of 135MB per 
second for data flowing from the I/O subsystem to 
memory and at 8 8 M B  per second for data flowing 
from memoly to the 1/O subsystem. 

The I/O port controller module with its four 
parallel ports is a st;~ndard part of all DEC, 7000 
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systems and resides in a tletlicated system back- 
plane slot. Various systeni configurations are avail- 
able that contain between one ancl flour S M I  I/() 
buses. 'The Futurebus+ subsystems will be available 
when Futurebus+ components become :~v;tilable in 
the computer industry. 

The I/O port controller provides :I "mailbox'. 
interface between the processor ancl I/O tlevices. A 
processor instruction cannot tlirectly access a regis- 
ter in ;In I/(> tlevice, as was possible on previous Vt\X 

in~plementations. To use the "nlailbox" interface, a 
processor creates a work descriptor packet in meni- 
ory and then issues a conimantl to tlie I/() port con- 
troller to execute the cotiimancl. Comniand 
completion is asynchronous and the processor may 
choose to tlo otlier work while the conimancl is exe- 
cuted. The "mailbox" interface between proces- 
sors and I/() devices was createtl to allow relatively 
slow I/O devices to interface to ;I high-speed, non- 
pended systeni bus. I f  a processor were allowetl to 
access the I/() device tlirectly, the system bus u~oi~ld  
be stalletl for I;irge portions of time. 

Clearly the mailbox communic:~tions methotl is 
more con1plic;rted than traditiolyal direct access. 
Fortunately the mailbox is usetl only when a pro- 
cessor neecls to directly access an I/O device. The 
I/O device can clirectly access main memory (or 
possibly a Ct'U cache) with all necessary buffering 
done by tlie I/() port controller. Most modern higli- 
performance 1/0 adapters use high-level, packet- 
based protocols, which require very little direct 
access of the r/o adapter by the processor. 

A typical <:P1J-initiated I/<) trans;iction to an intel- 
ligent tlisk controller on an XNII bus to re;~tl from 
the disk would have the following steps. 

The CPU jAaces ;I disk controller conim;~nd 
packet requesting ;I disk read into system 
nlenior)r. 

The CHI sets up an I/(> mailbox structure with a 
conimantl to inform the disk controller that 
there is a command packet in memory, writes a 
register in the I/O port controller to inform it 
that there is a mailbox transaction to complete, 
and then spins on ;I clone bit in tlie mailbox 
structure. 

The I/O port controller fetches the mailbox 
strLlctilre from memory gener:!tes ;in S M I  write 
cornrn;~ncl to the disk controller, and sets the 
done bit in the mailbox structure. The CI'U sees 
the assertion of tlie done bit and goes on to other 
work, 

Tlie disk controller receives the m;iilbox data 
ant1 then generiites ;In request to reatl its 
command packet from niemor)I. 

'The r/o port controller re:~tls the specified corn- 
nivitl packet from Inenlory 64 bytes at a time 
and sends it back to the disk controller 32 bytes 
;it a time. 

Tlie disk controller decodes the command packet, 
reads the requested data from tlisk, and starts 
writing to system memory in 32-byte segments. 

The I/<) port controller buffers tlie 32-byte 
writes from tlie disk controller into 64-byte seg- 
ments ;rntl writes the data to system memory. 

'The tlisk controller sig11:ils a n  interrupt o ~ l  tlie 
>(IL~[ to indic;~te that tlie requested operation is 
complete, wliicli is received 1))' the 1 /0  port coli- 
troller. The I/()  port controller signals an inter- 
rupt to the <:PII. 

Console and Diagnostics 
Like m:lny previous VtiS systems, the DEC 7000 
systeni employs ;in enibedtletl console. The console 
function is performed by code run on the proces- 
sors within the system r:ither tli;~n bjr a dedicatecl, 
detached front-end processor. 

Unlike the strategy for previous VA); systems, a 
unifietl console and tliagnostic strategy w;is 
adopted for the DE(: 7000 and 10000, VAX 7000 ant1 
10000, ;mtl IIEC 4000 systems. A single code base 
not only provides tlie basic console functions but 
also extends diagnostic support for manufacturing 
and fieltl firmware upgrade support. This i~nifietl 
strategy has reduced the total development effort 
and promoted :I common "look and feel" across the 
different systems. 

The console development also differed from that 
of previous Vt\x systems. The priniary implemen- 
tation 1;lnguage was (1, \vith only various architec- 
ture-specific code in Alpha AXP (or VAX) assembly 
I:~nguage. Tlie console :~ntl processor cliagnostic 
code was simulated prior to the arrival of hardware. 
This simulation greatly simplifietl early hardware 
tlel~i~g; the console h;ld basic functio~lality after a 
single debi~g session. 

At power-up, each processor ~ c t s  independently 
to execute processor-specific diagnostics ;uitl con- 
sole initializ~tion. The processors then select a con- 
sole primary, which then proceetls to test and 
configure the memory atid I/O subsystems. Tlie 
console primary also retains control of tlie console 
terminal line; console second;lries communicate 
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with the primary through memory-resident mes- 
sages. After initialization, diagnostic or other con- 
sole tasks can be assigned to any processor in the 
configuration. One benefit of this arrangement is 
that system tliagnostics and exercisers can be run in 
parallel. 

Like previous DECsystem consoles (that is, sys- 
tems based on MIPS Co. chips). the DEC 7000 con- 
sole provides a set of services, or callbacks, to the 
operating system. These services can be used to 
control automatic bootstrapping across operating 
system crashes as well as primitive l/O servicvs 
used by the operating system during bootstrap ancl 
system crash. The latter simplifies the operating 
system device support by providing simple 
read/write functions common to all clevices. 

A feature of the power of the console is the field 
firmware update utility. Field upgrade of all system 
firmware (console and I/O adapters) is accorn- 
plished by the DEC 7000 firmware update i~tility 
(LVU). LFll is really a dedicated console image which 
is tlistributecl on CDROM. The system console is 
used to boot LFU, which is then usetl to update all 
system firnlware. 

System Packaging 
The DEC 7000 system cabinet is 1700 mm high 
by 800 mm wide by 865 nim deep. The cabinet 
houses the system backplane, up to two T/O subsys- 
tems, and disk arrays or batteries for the system bat- 
tery-bacicup function. Expansion is possible by 
using one or t w  I/<) expander cabinets, each of 

which houses up to two additional 1 /0  subsystems 
and additional disk arrdys. Further mass storage 
expansion is possible with Digital's standard line of 
mass storage cabinets connected by CI, DSSI, or S1 

iilterconnects. 
The DEC 7000 cabinetry has been designed for 

easy system upgrade and servicing. The system 
backplane assenlbly, power system, and 1/0 subsys- 
tems are modular and easily replaced by field per- 
sonnel. The process of future upgrades can be 
accomplished more quickly and reliably through 
the use of modular subassemblies. 

As shown in Figure 6, the DEC 7000 main system 
cabinet contains a central air mover with logic 
assemblies above and below it. The air mover is a 
single motor with a large molded vane assembly 
and can pull air througl~ both the upper and the 
lower logic assemblies. An air flow of approxi- 
mately 900 cubic feet per minute with velocities 
up to 1800 linear feet per minute is maintained 
through the upper logic assembly, which contains 
the processor ant1 memory subsystems. Although 
not necessary for the DECchip 21064, this large 
volume of air movement was designed into the 
machine to allow upgrades through several genera- 
tions of processor chips. Hy using standard air-cool- 
ing techniques and customized module "boxes" 
that optimize local air flow, it is possible to cool 
processor chips of up to 70 watts in the DEC 7000 
system cabinet. 

Above the air mover are the system backplane 
and the modular power subsystenl. Below the air 

REMOVABLE MEDIA 

CPU OR MEMORY 
MODULES 

N + 1 POWER 
SYSTEM 

110 PORT 
CONTROLLER 
MODULE 

COOLING SYSTEM 

110 SUBSYSTEM 
(XMI) 

MASS STORAGE 

Figure 6 DEC 7000 1Wui11 System Cuhitzet, hv~zl (Left) and Rear (Right) Vieztls 
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mover are four modular spaces for I/O bus back- 
planes, disk drives, or batteries. 

I/O, disk, ant1 battery subsystems occupy varying 
amounts of the four modular spaces. The XMI sub- 
system occupies two spaces and is oriented front to 
back because of its rear-exit cabling scheme. The 
Futurebus+ subsystem occupies a single rear space. 
Disk subsystems consisting of up to six 5.25-inch 
(DSSI or SCSl [small computer system interface]) or 
fourteen 3.5-inch (3.31 only) drives may occupy any 
of the modular spaces. Batteries for the uninter- 
ruptible power system occupy two modular 
spaces, which may be oriented either front to back 
(for SI\/lI-based systems) or side to side (for 
Futurebus+ systems). 

The expander cabinet is identical to the main 
system cabinet, with two exceptions: disks may be 
packaged in the area occupietl by the system back- 
plane, and there is no control panel. Up to two XMn 
or Futurebus+ subsystems may be placed in an 
expander cabinet. 

Power Subsystem 
The power subsystem of the DEC 7000 family has 
a highly modular, hierarchical design. The basic 
power system provides 48-volt direct current (VDC) 
to all subassemblies which in turn further regulate 
to necessary voltages. Each module in the system 
backplane contains on-board regu1;ltion. This fea- 
ture will allow the system to easily evolve wit11 
changing voltage requirements as <;MOS technology 
moves to lower voltages to reduce power consump- 
tion. Voltage toler;~nces can be tightly controllecl 
since transmission clrops are negated; a precise 
voltage level can be set at the time of module manu- 
facture. The voltage and tolerance to a high-per- 
formance CMOS processor must be very tightly 
controllecl in order to extract maximu~n perfor- 
mance. %MI, Puturebiis+, ant1 disk subsystems 
all regulate the 48 VDC to lower voltages at a subsys- 
tem-wide level, not at the module level. 

The 48-lTDC modular power system consists of 
one to three pasallel regulators, each of which pro- 
duces 2400 watts of power. A maximally config 
used cabinet needs 110 more than two power 
regulators. An additional regulator can be config- 
ured into the system to provide an ? z + l  capability 
for higher availabilitj~. 

The power system also includes a battery 
standby function that provides 48 VDC throughout 
the system in the event of an AC power failure. 
Unlike earlier VAX systems in which power was 

niaintainetl o d y  to systeln memory, the DEC 7000 
keeps the entire system powered, including in-cabi- 
net mass storage. Depending on the system config- 
uration, power is maintained for a minimum of 20 
minutes in an n+l  power configuration. N+l 
power with fill1 battery backup is standard on all 
DEC 10000 systems. 

The DEC 7000 system employs a highly intelligent 
power subsystem with microprocessors in all 48- 
volt regulators, which report status to processor 
modules by means of a serial interconnect. System 
software can therefore monitor a wide range of 
power system operating parameters, including 
voltage output, AC inpi~t,  efficient): and battery 
charge state. In a large configuration with optional 
expander cabinets, the expander cabinet power sys- 
tems also communicate with the systenl processors 
to provide system-wide power status. 

The UEC: 7000 and DEC 10000 systems are the fastest 
uniprocessor and multiprocessor, microprocessor- 
based computer systems in the worlcl as of their 
introduction date (10 November 1992) and as 
definecl by SPEC89 and SPEC92 benchmark data. For 
compute-intensive benchmarks, the I>EC 10000 is 
approximately 10 percent faster than the DEC 7000, 
basetl entirely on the difference in processor clock 
speed. 

The base performance of the DEC: 7000 ant1 DEC 
10000 systems is determined by the speed of the 
processor chip and is heavily influencetl by cache, 
memory, and 1/0 subsystems. The design goal for 
the DEC 7000 and DEC 10000 systems was to extract 
the maximum possible performance from the 
DECchip 21064 by providing an electrical and physi- 
cal environment capable of supporting 200-MHz 
processor operation as well as large c;tclies, a 
large and fast memory s~tbsystem, and m~~lt iyle  t/O 

subsystems. 
While h111 system-level performance data is still 

being collected, the very high speecl processor per- 
formance measurecl on the SPEC benchmarlcs com- 
bined with the very high performance cache, 
memory, and I/O subsystems of the DEC 7000 ant1 
DEC 10000 systems s h o ~ ~ l d  yield very im],ressive 
overall systenl performance. See Table 1. 

Design Process 
The DEC 7000 system was specified, designecl, ant1 
tested by a group of approximately 200 people in 
Boxboro, Massachusetts. The system design teani 
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Table 1 DEC 7000 and DEC 10000 System (primarily multiprocessor VAX 6000 Model 500 sys- 
Performance Measurements tems) and used over 325,000 hours of CPtJ time 

DEC 7000 DEC ,0000 for simulations. 
- - - -- 

SPECmark89 167.4 184.1 
SPECint89 95.1 104.5 
SPECfp89 244.2 268.6 
SPECint92 96.9 106.5 
SPECfp92 182.1 200.4 
SPECthroughput89 

(4 CPUs) 604.4 654.6 

LINPACK double-precision 
100x1 00 (MFLOPS) 38.6 42.5 
1000x1 000 (MFLOPS) 102.1 111.6 

was responsible for all aspects of the design except 
the DECchip 21064 microprocessor. 

Conceptual work on a system to follow the Vi\x 
6000 family was started in early 1989, although at 
that time design work was focused on iniplernenta- 
tions using VAX and MIPS R4000 processors. I11 the 
latter part of 1989, the tlecision was made to pursue 
the Alpha AXP strategy, and earlier concepts were 
reworked to incorporate much higher levels of per- 
formance to accommodate the proposed Alpha 
AXP chip. 

In October-December 1989, a core team of 
approximately 10 engineers was assembled to 
firmly define system architecture and to produce 
specifications for all subassemblies. By July 1990 all 
specifications were complete, and implementatjon 
was started. The first processor module was pow- 
ered up  in June 1991, followed by a full system 
power-up in September 1991. The VMS operating 
system was booted on a DEC 7000 system on 
September 9, 1991, ancl OSF was booted in 
November 1991. 

A minimal DEC 7000 system includes 430,000 
gates of logic contained in gate arrays, whereas a 
minimal VAX 6000 Motlel200 includes 94,000 gates. 
Despite more than four times the gate count, 
the clesign portion of the DEC 7000 program was 
completed in approximately 9 months as com- 
pared to 12 months for the VAX 6000 program. This 
reduction in design time was achievable in part 
because of the maturing of the engineering pop- 
ulation (many of the DEC 7000 engineers had 
worked on various VAX 6000 implementations), 
as well as advances in design tool technology alld 
the availability of significantly more powerh~l 
computers for design simulation. At its peak, the 
DEC 7000 program was consuming 1500 VAX units 
of performance, or WPs, of compute power 

Conclusion 
Tlle DEC 7000 and DEC 10000 systems are the sec- 
oncl generation of highly configurable and expand- 
able systems produced by Digital Equipment 
Corporation. These are the first systems expressly 
designed to accommodate multiple-processor archi- 
tecture types. As computer technology moves for- 
ward at an ever-increasing pace, this type of clesign 
will be cletnandetl by computer users and will be 
necessary to manage engineering costs. 

The DEC 7000 and DEC 10000 system platform 
will accommodate new VAX and Alpha AXP proces- 
sors for several years. Over that time, this platform 
will span a performance range of greater than 50:l. 
It will provide computer users with a stable system 
environment tl~at should help minimize the changes 
caused by the continued development of new pro- 
cessor chil?s. While this level of flexibility incurs 
additional initial engineering ant1 product costs, it 
does provide a very cost-effective way to cleal with 
the inexorable forward march of technology 
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Porting OpenVMS 
from VAX to Alpha AXP 

The Open ViVlS operating system, developed by Digital for the VAX famnilj~ of comnput- 
ers, zuas recently moved from the VAX to the Alpha AXP architecture. The Alpha AXP 
architect~lre is n new RISC architect~~re introduced In/ Digital in 1992. This paper 
describes solutions to severalproblerns in porting the operating systeml in addition 
to perjonnance benefits nzeaszlred on one of the systems that implements this new 
architecture. 

The VAX architecture is an example of complex 
instruction set coniputing (CISC), whereas the 
Alpha AXP architecture is basecl on reduced instruc- 
tion set conlputing (RISC). The two architectures 
are very different.' ClSC architectures have perfor- 
mance disadvantages as compared to RISC architec- 
t u r e ~ . ~  Digital ported the OpenVblS system to the 
Alpha architecture mainly to deliver tlie perfor- 
mance advantages of RISC to OpenVMS appli- 
cations. This paper focuses on how Digital's 
Open\lMS AXP operating system group dealt with 
the large volume of VAX assembly language and 
with system kernel modifications that had VAX 
architecture dependencies. 

The OpenVMS AXP group had two impor- 
tant requirements in addition to tlie primary goal 
of increasing performance: first, to make it easy 
to move existing users and applications from 
OpellVMs VAX to OpenVlMS U P  systems; second, to 
deliver a high-quality first version of the product 
as early as possible. These requirements led us to 
adopt a fairly straightforward porting strategy with 
minimal redesigns or rewrites. We view the first 
version of the OpenVMS i\XP product as a begin- 
ning, with other evolutiona1-y steps to follow. 

The Alpha ASP architecture was designed for 
high performance but also with software migration 
from the \AX to the Alpha t\Xp architecture in mind. 
Included in the Alpha AXP architecture are some 
\'/I>; features that ease the migration without com- 
promising hardware performance. VAX features 
in the Alpha IU(P architecture that are important 
to OpenVMS system software are: four protec- 
tion mocles, per-page protection, and 32 interrupt 

priority levels. The Alpha AXP architecture also 
defines a privileged architecture library (PAL) envi- 
ronment, which runs with interrupts disabled and 
in the most privileged of the four modes (kernel). 
PALcode is a set of Alpha ASP instructions that exe- 
cutes in the PAL environment, implementing such 
basic system software functions as translation 
buffer (TB) miss service. On OpenVMS AXP systems, 
PALcode also implements some OpenVMs VAX fea- 
tures such as software interrupts and asynchronous 
traps (ASTs). The combination of hardware archi- 
tecture assists and OpenVMS AXP PALcode made it 
easier to port the operating system to the Alpha 
AXP architecture. 

The VAX architectrlre is 32-bit; it has 32 bits 
of virtual address space, 16 32-bit registers, and a 
comprehensive set of byte, word (16-bit), and long- 
word (32-bit) instructions. The Alpha ASP archi- 
tecture is 64-bit, with 64 bits of virtual address 
space, 64-bit registers (32 integer and 32 floating- 
point), and instructions that load, store, and oper- 
ate on 64-bit quantities. There are also longword 
load, store, and operate instructions, and a canoni- 
cal sign-extended form for a longword in a 64-bit 
register. 

The OpenVMS AXP system has anticipated evolu- 
tion from 32-bit address space size to 64-bit address 
space by changing to a page table format that sup- 
ports large address space. However, the OpellVMS 
software assumes that an address is the same size as 
a longword integer. The same assumption can exist 
in applications. Therefore, the first version of the 
OpenVMS iUCP system supports %-bit address space 
only. 
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Most of the OpenV,\j1s kernel is in Vt\X assembly 
language (VAX MA<:It0-32). Instead of rewriting the 
VAX h,h\CR(>-32 code in  nothe her language, we devel- 
opecl a compiler. In adtlition, we requiretl inspec- 
tion and ~nanual ~nodification of the Vt\S MA(:KO-32 
code to deal with certain VAX' architecttlr;il tlepen- 
dencies. Parts of the ker~lel that dependetl heavily 
on the VAX ;~rcliitccture were rewritten, but this 
was a small percentage of the total volume of \lilX 
MACRO-32 source cocle. 

Compiling VAX MACRO-32 Code for the 
Alpha AXP Architecture 
Simply statetl, tlie VAX >IACI<O-32 compiler treilts 
VAX >lA<:llO-32 as a source language to be conlpiled 
;ant1 creates native OpenVMS AXP object files just ;is 
;I FORTRAN compiler might. This task is f;lr more 
cornplex than a simple ins t ruct ion-by- ins t r~~ct io~~ 
translation because of fi~ndamental differences in 
the architectures, :~ncl because source cocle fre- 
cluently contains assuml,tions about the \/AX archi- 
tecture ancl the OpenV>lS Calling Stantlartl o n  VAX 

systen1s.5.~ The compiler must either transp;u-ently 
convert these Vr\X depcntlencies to rlieir OpenVMS 
AXP counterpans or inform the user that the source 
cvtle has to be cli;~~igetl. 

Source Code Annotation 
We extentled the Vt\X MACRO-32 source I;~ngu;ige to 
inclucle entr!.-point tleclarations and other tlirec- 
rives for the compiler's use, which provjcle more 
information about the intentled behavior of the pro- 
gram. Entry-point decl;~rations were introtlucecl to 
allow declaration o f :  (1)  tlie register semantics for 
;I routine when the tlel;~ults are not approlxi;~te ;lnd 
(2) the speci;~lized semantics of frameless subrou- 
tines and exception routines to be dec1;irecl. 

The differing register size between the VAX and 
the Alpha ,\XP arcliitect~~res influencetl tlie clesign 
of tlie compiler. On tlie VAX, BWCRO-32 operates on 
32-bit registers, :mtl in general, the compiletl code 
~iiaintains 32-bit sign-estendetl values in Alpha AXP 

64-bit registers. However, this code is now part 
of a system th;~t uses true 64-bit values. As a result, 
we designed the compiler to generate 64-bit regis- 
ter saves of ;illy registers modified in a routine, 
:IS part of the "routine prologue cotle." Autoni;~tic 
register preservation 11;s proven to be the safest 
default but must be overriclden for routines that 
return valires in registel-s, using appropri;~te entry- 
point dec1ar:itions. 

Other directives allow the user to provide addi- 
tional information about register state and code 
flow to improve generated code. Another class of 
directives instructs the compiler to preserve the 
VAX behavior with respect to gran11l;lrity of mem- 
ory writes or atomicity of memory updates. The 
Alpha t \XP architecture makes atomic updates and 
gu;~ranteed write granularity sufficie~ltly costly to 
performance that they shou Id be enabled only 
when required. These concepts are discusset1 in 
the section Major Architecti~r:il Differences in the 
OpenV31S Kernel. 

As mentioned earlier, the compiler must either 
transparently support VAX architecture-tlepe~itlent 
constructs or infor111 the user that ;I source change 
is necess;rrv. A good example of the latter case is 
reliance on VAS )SH/RS13 (jump to subroutine and 
return) instruction return atltlress semantics. On 
VAX systems, :I JSB instruction leaves the return 
acldress on top o f  the stack, which is used by the 
HS13 instruction to r e t u r ~ i . ~  System subroutines 
often take ;~tlvant;~ge of this semantic in order to 
change the rettrrn adtlress. This level of stack con- 
trol is not ;~v;rilable in a compiletl language. In 
porting the OpenVMS system to the Alpha L Y P  
architecture, we developed altern;~tive cotling prac- 
tices for this and many other notltr;rnsportal~le 
itlioms. 

The co~npiler must also account for the dif- 
ferences in tlie Openvh4S Calling St:~ndartl on the 
VAS and Alpha AX]' architectures. Although trans- 
parent to high-level language progr;lniniers, these 
differences are very significant in assembly lan- 
guage p rog ra~ i~n~ ing .~  To operate correctly in a 
mixed language environment, the code generated 
by the \(AX hlA<:RO-32 co~iipiler must conform to 
the <)penVMS (blling Standard on the Alpha LYP 
architecture. 

On WX systems, a routine refers to its argurnents 
by means of a11 argument pointer (AP) register, 
which points to an argument list that was built in 
nien1or)l by tlie soutitie's caller. 011 Alpha AXP sys- 
tems, up to six routine arguments are passed to the 
c;~lletl routine in registers: any ;~dtlitional argii- 
ments ;ire p;~ssetl in stack locatiorls. Normally, the 
VAS Mt\(;RO-32 co~iipiler transparentl). converts 
M-basecl references to their correct Alph:~ AXP loca- 
tions ant1 converts the cotle that builtis the list to 
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initialize the arguments correctly. In some cases, 
the compiler cannot convert all references to their 
new locations, so an emulated VAX argument list 
must be constructed from the arguments received 
in the registers. This so-calletl "homing" of the argu- 
ment list is required if the routine contains indexed 
references into the argument list or stores or p?. , sses . 
the address of an argument list element to another 
routine. 

The compiler identifies these coding practices 
during its process of flow analysis, wliich is similar 
to the analysis done by a standard high-level lan- 
guage optimizing compiler. The compiler builds a 
flow graph for each routine and tracks stack depth, 
register use, condition code use, and loop depth 
through all paths in the routine flow. This same 
information is requiretl for generating correct and 
efficient code. 

Access to Alpha AXP 
Instructions and Registers 
In addition to providing migration of existing VA>; 

cocle. the VAX ,MACRO-32 compiler includes support 
for a subset of Alpha AXP instructions and PALcotle 
calls and access to the 16 integer registers beyond 
those that map to the VAX register set. The instruc- 
tions supported either have no direct counterpart 
in the VAX architecture or are required for efficient 
operation on a full 64-bit register value. These 
"built-ins" were required because the OpenviMs 
AXP system uses full 64-bit values for some opera- 
tions, such as manipul;~tion of 64-bit page table 
entries (PTEs). 

Optimization 
The compiler includes certain optimizations that 
are particularly important for the Alpha AXP archi- 
tecture. For example, on a VAX system, a reference 
to an external symbol would not be considered 
expensive. On an Npha AX'P system, however, such 
a reference requlres a load from the linkage section 
to obtain the address of the symbol prior to loading 
the symbol's value (The linkage section is a data 
region used for resolving external references ') 
Multiple loads of this address from the linkage 
section may be reduced to a single load, or the 
load may be moved out of a loop to reduce memory 
references. 

Other optimizations include the elimination 
of memory reads on multiple safe references, regis- 
ter state tracking for optimal register-based mem- 
ory references, redun~lant register save/restore 

removal, and many local code generation optimiza- 
tions for particular operand types. Peephole opti- 
mization of local code sequences and low-level 
instruction scheduling are performed by the back 
end of the compiler. 

In some instances, the programmer has knowl- 
edge of register state or other code behavior that 
cannot be inferred from the source code alone. 
Compiler directives are provided for specifying reg- 
ister alignment state, structure base address align- 
ment, and likely flow paths at branch points. 

Certain types of optimization typically per- 
formed by a high-level language compiler cannot be 
performed by the VAX W R O - 3 2  compiler, because 
assumptions made by the MACRO-32 programmer 
cannot be broken. For example, the order of mem- 
ory reads may not be changed. 

Major Architectural DtHerences 
in the OpenVMS Kernel 
This section concentrates on architectural changes 
that affect synchronization, memory management, 
and I/O. These are not the only architectural differ- 
ences that cause significant changes in the kernel. 
However, they are the major differences and are 
representative of the effort involved in porting the 
OpenVMS system to the Alpha AXP architecture. 

For the most part, it was possible to isolate archi- 
tecture-dependent changes to a few major sub- 
systems. However, differences in the memory 
reference architecture had a pervasive impact on 
users of shared data and many common synchro- 
nization techniques. Other differences such as 
those related to memory management, context 
switching, or access to I/O devices were confined 
mostly to the relevant subsystems. 

Effects of Architectural Dzffeel-ences 
in Memory Subsystems 
The following differences between the VAX ancl 
Alpha AXP memory reference architectures affected 
synchronization:',3 

Load/store architecture rather than atomic mod- 
Ify instructions 

Longword and quadword writes with no byte 
write instructions 

Read/write ordering not guaranteed 

Load/store memory reference instructions are 
characteristic of most RlSC designs. However, the 
other differences are less typical. The reasons for all 
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three rlifferences were hiirdware simplification and 
opportilnities for increased hardware perfor- 
mance.' These differences result in significant 
changes in system software ant1 in many opportitni- 
ties for subtle errors, which can be detected only 
under heavy loacl. Adapting to these architecti~ral 
changes without greatly inilxrcting performance 
was one of the major c11;tllenges that faced the 
group in porting the OpenVMS system to the Alpha 
AXP architecture. 

A load/store architecture s i~ch as Alpha I-IS~' can- 
not provide the atomic read-motlify-write instruc- 
tions present in the vt\X architecture. Tllus, 
instruction sequences are necessary for many oper- 
ations performed by a single, atomic VAX instruc- 
tion, such as incrementing a memory location. The 
consequence is 21 need for increased awareness of 
synchronization. Insteatl of depending on hartl- 
ware to prevent interference between multiple 
threads of execution on a single processor, explicit 
softw;u-e synchronization may be reqi~iretl. 
Without this synchronization, the interleaving of 
indepentlent load-modify-store sequences to a sin- 
gle tnemory location may result in overwritten 
stores and other incorrect results. 

The lack of byte writes i~iiposes addition;ll syn- 
chronization burdens on software. Unlike VAX and 
most lus(: systems, an Alph;~ t\Sp syster-il has instruc- 
tions to write only longwords and 64-bit quad- 
words, not bytes or words. 'l'hus to write bytes, the 
software must include a sequence of instructions 
that reads the encompassing longword, merges in 
the byte, and writes the longword to memory. As 
a conseqitence, software must be concernetl not 
only with shared access to the same memory cell by 
multiple threads, but also with access to indepen- 
dent but adjacent variables. Synchronization aware- 
ness is now extencled from sharetl data to tlata 
items that are merely near each other. 

The OpenVMS tV(P operating system group 
avoided the above-mentionetl problems introduced 
by the ;~rchitectural changes in one of three ways: 

Explicit software synchronization was added 
between threads. 

Data items were relocated to aligned Longwords 
or quadw~ortls. 

= Alph;~ ,\XP load locked and store conditional 
instructions were used. 

The obvious solution ofatlding explicit synchro- 
nization in the form of a software lock is not always 

appropriate for several reasons. First, the problem 
may be independent data items that happen to 
share a longword. Synchronizing this sort of access 
in unrelated code paths is prone to error. Explicit 
syncl1roniz;ition ma)! also have an unaccept;~ble 
performance impact. Finally, deadlocks are a possi- 
bility if one thread interri~pts  nothe her. 

Ensuring that data items are in aligned long\vords 
or qu;itlwords both improves performance ant1 
eliminates interactions between unrelated data. 
This technique is used wherever possible but can- 
not be used in two major cases. One case occurs 
when the replication fictor is too l;irge. Exp;incling 
an array of thousantls of bytes to longwortls may 
simply not be acceptable. The other major problem 
case is data structures that cannot be changed 
because of external constr;lints. For example, tliita 
may represent a protocol message or a structure 
primarily resitlent on disk. Separate internnl and 
extem;il fonlis of such data strilctilres could exist, 
but the performance cost of continuous conver- 
sions may not be acceptable. 

Often the easiest and highest-performance WAY 
to solve synchronization problems is to use 
sequences of load locked and store conditional 
instructions. 'The load locl<ed instruction loads ;in 
aligned longword or quaclwortl while setting a 
hart1w;tre flag that indicates the physical atltlress 
that was loadecl. The h;~rtlware flag is cleared if any 
other tlire:id, processor, or I/() device writes t o  the 
locked memory location. The store conditional 
instruction stores an aligner1 longworcl or cluacl- 
word if and only if the hardware lock flag is still set. 
Otherwise, the store returns ;in error i~ldic;itiot~ 
without modifying the storage location. These 
instructions ;~llow the construction of atomic rcad- 
modify-write sequences to update any datum th;rt is 
contained within a single aligned quadword. Thcse 
sequences of instructions are significantly slower 
than normal loads and stores due to the necessity o f  
waiting for the write to reach a point in the meni- 
ory hierarchy where consistency can be girar;tn- 
teed. In atltlition, their use i?lay inhibit 111any 
compiler optimizations because of restrictions on 
the instructions between the load and store. 
Although faster than most other synchronization 
methods, this mechanism shoi~ld be used sparingly 

The lack of guaranteed read/write ordering 
between multiple processors is another complic;i- 
tion for the programmer trying to achieve proper 
s)~nchronization. Although not visible 011 a single 
processor, this lack of ordering means that one 
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processor will not necessarily observe memory 
operations in the ordcr in which they were issuecl 
by another processor. Thus, many obvious synchro- 
nization protocols will not work when writes to 
the synchronization variable and to the data being 
protected are observed to occur out of order. 
A memory barrier instruction is provided in the 
architecture to ensure ordering. However, the nega- 
tive impact of this instruction on system perfor- 
mance requires that it be used only when 
necessary. 

As described in the previous section, we used 
various mechanisms to solve the synchronization 
problems. Having multiple solutions allowecl us to 
choose the one with the least performance impact 
for each case. In some cases, explicit synchroniza- 
tion was already in place due to multiprocessor syn- 
chronization requirements. In other cases, we 
expancled dat;~ structures at a cost of modest 
amounts of memory to avoid expensive synchro- 
nization when referencing clata. 

Privileged Arcbitectzlre Changes 
Unlike tlie pervasive architectural changes 
describecl in the previous section, the privileged 
architecture clifferences had a more limited impact. 
'The primary remaining areas of change are the 
new page table formats and the details of process 
contest switching. This section describes mem- 
ory managenlent as a representative example. 
However, many limited changes still amount to 
modifying virtually every source niodule in the 
OpenVMs kernel, even if only to add compiler 
directives. 

Melnory Management Not surprisingly the mem- 
ory man;igement subsystem required the most 
change when moving from tlie VAX to the Alpha 
A S P  architecture. Aside from the obvious 64-bit 
addressing capability, two significant differences 
exist between the page table structures on the VAX 

and the Alpha AXP architectures. First, Alpha A S P  
does not have an architectural division between 
shared ancl process private address space. Seconcl, 
the Alpha AXP three-level page table structure 
shown in Figure 1 allows the sharing of arbitrary 
subtrees of the page table structure and the effi- 
cient creation of large, sparse address spaces. In 
ziddition, future Alpha AXP processors may have 
larger page sizes. 

To meet our schedule goals, we decided initially 
to emulate the VAX architecture's 32-bit address 

space as closely ;IS possible. This decision recjuirecl 
creating a 2-gigtbyte (GU) process private address 
region (i.e., VAX PO and PI) ant1 a 2(;B shared 
acldress region (i.e., VAX SO and S 1 )  for each pro- 
cess. This is easily accomplished by giving each 
process a private level 1 page table (Ll  m) that con- 
tains two entries for level 2 page tables (L2t'Ts). 
One of these L2Ws is shared and implements tlie 
sharecl system region, whereas the other is private 
and implements tlie process private address 
regions. Although the smallest allowed page size of 
8 kilobytes (KB) results in an 8GR region for each 
level 2 page table, we use only 2GB of each region 
to keep within our ~ G B  32-bit limit. As shown 
in Figure 1, the L2PTs are chosen to place the 
base address of the shared system region at 
F F F F F F F F 8 0 0 0 0 0 0 0  (hexadecimal), the same as the 
sign-extencled address of the top half of the \'AS 
arcliitecture's 32-bit address space. 

Although changes were extensive in the memory 
management subsystem, many were not conceptii- 
ally difficult. Once we dealt with tlie new page 
table structure, most changes were merely for alter- 
native page sizes, new page table entry formats, and 
changes to associated data structures. We tlitl 

clecide to keep the OpenVMS VAX concept of map- 
ping process page tables as a single array in shared 
system space for our initial implementation. 
Although not viable in the long term due to the 
potentially huge size of sparse process page tables, 
this decision minimized changes to code that refer- 
ences process page tables. Having process page 
tables visible in shared system space turned out to 
be a significant complication in paging and in 
address space creation, but the schedule benefits 
derived from avoiding changes to other subs)~stcms 
were considered worthwhile. We expect to ch~nge  
to :I more general mechanism of self-mapping pro- 
cess page tables in process space for a subsequent 
OpenVMS AXP release. 

Retaining the VAX appearance of process page 
tables allowed us to meet our goals of minimum 
change outside of tlie memory management subs)ls- 
tenl. Unprivileged code is unaffected by the niem- 
ory management changes unless it is sensitive to the 
new page size. Even privileged code is generally 
unaffected unless it has knowledge of the length or 
format of PTEs. 

Opl.i?r?ixcd T~*acllzslatio~z Buffer Use Thus fiir, we 
may have given the impression that architectural 
changes always create problems for software. This 
was not universally true; some changes offered us 
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opportunities for significant gains. One such 
change was an Alpha AXP translation buffer feature 
called granularity hints. TBs are key to performance 
on any virtual memory system. Without them, it 
would be necessary to reference main memory 
page tables to translate every virtual address to 
a physical address. However, there never seems to 
be enough TB entries. The Alpha AXP architecture 
allows a single TB entry to optionally map a virtu- 
ally and physically contiguous block of properly 
aligned pages, all with identical protection 
attributes. These pages are marked for the hard- 
ware by a flag in the PTE. 

Given granularity hints, near-zero TB miss rates 
for the kernel became attainable. To this end, we 
e~~hanced  the kernel loading mechanisms to create 
and use granularity hint regions. 

The OpenVMS AXP kernel is made up of many 
separate images, each of which contains several 
regions of memory with varying protections. For 

--n 
example, there is read-only code, read-only data, 
and read-write data. Normally, a kernel image is 
loaded virtually contiguously and relocated so that 
it can execute at any address. To take advantage of 
granularity hints, kernel code and data are loaded in 
pieces and relocated to execute from discontigu- 
ous regions of memory. Only a very few TB entries 
are actually used to map the entire nonpaged ker- 
nel, and the goal of near-zero TB misses was 
reached. 

The benefits of granularity hints became immedi- 
ately obvious, and the mechanism has since been 
expanded. Now, the OpenVMS AXP system also uses 
the code region for user images and libraries. This 
feature extends the benefits not only to images sup- 
plied by the OpenVMs system, but to customer 
applications and layered products as well. Of 
course, usage of this feature is only reasonable for 
images and libraries used so frequently that the 
permanent allocation of physical memory is 

'0 
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warranted. However, most applications are likely to 
have such images, and the performance advantage 
can be impressive. 

I/O 
Unlike the architectural changes, the new I/O archi- 
tecture structures an area that previously was 
rather uncontrolled. The project goal was to allow 
more flexibility in defining hardware 1/0 systems 
while presenting software with a consistent inter- 
face. These seem like contradictory aims, but both 
must be met to build a range of competitive, high- 
performance hardware that can be supported with 
a reasonable software effort. 

The Alpha AXP architecture presents a number of 
differences and challenges that impacted the 
OpenVMS AXP I/O system. These changes spanned 
areas from longword granularity to device control 
and status register (CSR) access to how adapters 
may be built. 

CSR Access A fundamental element of I/O is the 
access of CSRs. On VAX systems, CSR access is 
accomplished as simply another memory reference 
that is subject to a few restrictions. Alpha AXP sys- 
tems present a variety of CSR access models. 

Early in the project, the concept of I/O mailboxes 
was developed as an alternative CSR access model. 
The I/O mailbox is basically an aligned piece of 
memory that describes the intended CSR access. 
Instead of referencing CSRs by means of instruc- 
tions, an I/O mailbox is constructed and used as 
a command packet to an 1/0 processor. The mail- 
box solves three problems: the mailbox allows 
access to an I/O address space larger than the 
address space of the system; byte and word refer- 
ences may be specified; and the system bus is sirn- 
plified by not having to accommodate CSR 
references that may stall the bus. As systems get 
faster, these bus stal Is are increasingly larger imped- 
iments to performance. 

Mailboxes are the I/O access mechanism on 
some, but not all, systems. To preserve investment 
in driver software, the OpenVMS U P  operating 
system implemented a number of routines that 
allow all drivers to be coded as if CsRs were 
accessed by a mailbox. Systems that do not support 
mailbox I/O have routines that emulate the access. 
These routines provide insulation from hardware 
implementation details at the cost of a slight perfor- 
mance impact. Drivers may be written once and 
used on a number of differing systems. 

Red/Write  Ordering An I/O device is simply 
another processor, and the sharing of data is a 
multiprocessing issue. Since the Alpha AXP archi- 
tecture does not provide strict read/write ordering, 
a number of rules must be followed to prevent 
incorrect behavior. One of the easiest changes is to 
use the memory barrier instructions to force order- 
ing. Driver code was modified to insert memory 
barriers where appropriate. 

The devices and adapters must also follow these 
rules and enforce proper ordering in their interac- 
tions with the host. An example is the requirement 
that an interrupt also act like a memory barrier in 
providing ordering. In addition, the device must 
ensure proper ordering for access to shared data 
and direct memory access. 

Kernel Processes Another important way in 
which the Alpha AXP architecture differs from the 
VAX architecture is the lack of an interrupt stack. 
On VAX systems, the interrupt stack is a separate 
stack for system context. With the new Alpha AXP 
design, any system code must use the kernel stack 
of the current process. Therefore, a process kernel 
stack must be large enough for the process and for 
any nested system activity. This burden is unreason- 
able. A second problem is that the VAX V 0  sub- 
system depends on absolute stack control to 
implement threads. As a result, most of the I/O code 
is in MACRO-32, which is a compiled language on the 
OpenvMS AXP system that does not provide abso- 
lute stack control. 

These facts resulted in the creation of a kernel 
threading package for system code at elevated inter- 
rupt priority levels. This package, called kernel pro- 
cesses, provides a set of routines that support a 
private stack for any given thread of execution. The 
routines include support for starting, terminating, 
suspending, and resuming a thread of execution. 

The private stack is managed and preserved 
across the suspension with no special measures on 
the part of the execution thread. Removing require- 
ments for absolute stack control will facilitate the 
introduction of high-level languages into the I/O 
system. 

Performance 
As stated earlier, the main purpose of the project 
was to deliver the performance advantages of RISC 
to OpenVMS applications. We adopted several 
methods, including simulation, trace analysis, and a 
variety of measurements, to track and improve 

Digital Technical Jorrrrrnl Vol. 4 No. 4 Special ISSLL~ 1992 117 



Alpha AXP Architecture and Systems 

operating system and application performance. 35 

This section presents data on the performance of 
OpenVMS services and on the SPEC Release 1 bench- 30 

mark suite.5 Note that all Alpha LYP results are 
preliminar)! m25 + 

(I) 

Performance of OpenVMS Services 20 
0 

To evaluate the performance of the OpenvlLls l 5  
system, we used a set of tests that measure the CPU 5 
processing time of a range of OpenVMS services. 10 

These tests are neither exhaustive nor representa- 
tive of any particular workload. We w e  relative CPU 5 

speed ( i t . ,  VAX CPU time divided by Alpha U P  CPU 

time) as a metric to truly conlpare CPU perfor- ~ 
~p - 

O 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0>2.0 
mance. For I/O-related services, a RAM disk was RELATIVE CPU SPEED 

used to eliminate I/O latencies. Notes: 

The tests were run on a Vi\X system and an Alpha 
LYP system that are the same except for the CPrJ 
Table 1 shows the configuration details of the two 
systems. Figure 2 shows the distribution of the rela- 
tive CPU speed for the OpenVMS services measured. 
Most tests ran between 0.9 and 1.7 times faster on 
the Alpha AXP system than on the VAX system. Table 
2 contains the results for a representative subset of 
the measured OpenvlLls services. 

Application Performance 
Applications vary in their use of operating system 
services. Most applications spend the ~najority of 

1. The relative CPU speed equals the CPU time on a VAX system 
divided by the CPU time on an Alpha AXP system. 

2. A relative CPU speed greater than 1.0 implies that the Alpha AXP 
system is faster. 

3. The total number of tests is 198. 

Figure 2 Distribution of Relative CPUSpeed 
for OpenVMS Services 

their time performing application-specific work 
and a small fraction of their time using operating 
system services. For these applications, perfor- 
mance tlepends mainly on the performance of 
hardware, compilers, and run-time libraries. We 

Table 1 Configuration Details for OpenVMS Services Test Environment 

VAX System Alpha AXP System 

Model number 

Clock rate 

VAX 7000 Model 61 0 

91 MHz 

DEC 7000 Model 61 0 
182 MHz 

Memory size 
On-chip cache size 

Backup cache size 
Translation buffer 

Page size 

Number of registers 

OpenVMS version 

1 KB virtual I-cache 
8KB physical I- and 
D-caches 
4MB I- and D-caches 
96 entries 

51 2 bytes 
16 32-bit GPRs 

8KB physical I-cache 
8KB physical D-cache 

4MB I- and D-caches 
12 ITB entries 
32 DTB entries 

32 64-bit integer 
32 64-bit floating-point 

Key: 
I Instruction 
D Data 
ITB Instruction translation buffer 
DTB Data translation buffer 
GPR General-purpose register 
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Table 2 Relative CPU Speed for a Subse t  
of OpenVMS System Services 
and  Primitives 

OpenVMS System Service Relative 
or Primitive CPU Speed 

Memory Management Services 
Create virtual address space 
Delete virtual address space 
Expand address region 
Page fault without I10 

(soft page fault) 
Logical Name Services 

Translate a logical name 
Event Flag Services 

Set an event flag 
Clear an event flag 

Process Control Services 
Create a process and 

activate an image 
File System Services 
(File on a RAM Disk) 

File open 
File close 
File create 
File delete 

Record Management System (RMS) 
Services (File on a RAM Disk) 

Get record from a sequential file 
Put record into a sequential file 

Note that the relative CPU speed equals the CPU time on a VAX 
system divided by the CPU time on an Alpha AXP system. A 
relative CPU speed greater than 1.0 implies that the Alpha AXP 
system is faster. 

used the SI'E(: Release 1 benchm;~rks as representa- 
tive of such applications. Table 3 shows the details 
of the VAX ;llid Alpha A S P  systems on which the 
SPEC Release I suite was run, ;inti Table 4 contains 
the results. "l'he Sl-'E(:rnark89 comparison shows 
that the OpenV1US AXI' system outperforms the 
OpenViLIs M\X system by ;I blctor of 3.59. 

The perform;~nce of OpenVNlS services and the 
SPECmark results ;Ire consistent with other stiidies 
of how operating system primitives and SPECmark 
results scale between ClSC and RISC6 Overall, the 
results are very encour;~ging for a first-version 
product in which redesigns were purposely limited 
to meet an  aggressive sclietli~le. 

Conclusions 
Some OpenVMS VtlX features such as symmetric 
multiprocessing and VMScluster support were 

deferred from the first version of the OpenVMS AX]' 
system. Beyond this, we anticipate taking signifi- 
cant steps to better exploit the hardware architec- 
ture, including evolving to a true 64-bit operating 
system in a staged fashion. Also, detailed ;~n;~lysis of 
performance results shows the ~ieecl to alter inter- 
nal designs to better match KISC architecture. 
Finally, a graclual replacement of Vr\S NLlCRO-32 
source with a high-level 1;ingu;lge is essential to sup- 
port a 64-bit virtual address space and is an impor- 
tant element for increasing performance. 

The OpenVMS AXP system clearly tlemonstrates 
the viability of making dramatic changes in tlic 
fundamental assumptions of a m;lture opernt- 
ing system while preserving the investment 
in software Iayeretl on the system. Thc future 
challenge is to continue operating system evolu- 
tion in order to provide more capabilities to appli- 
cations while maintaining that essential level of 
compatibility. 
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The GEM Optimizing 
Compiler System 

The GEIVI colnpiler systenz is the technology Digital is using to bziild state-of-the-art 
conzpiler prod~lcts for a uc11~iet31 of langz~clges and ha?.d~~~are/softzilare platforms. 
Portc~ble, modt~lar soJltuare colnponemzts with carefttllly specifiecl intevaces simplify 
the engineering of diverse compilers. A single optimizer; independent of the kcin- 
gtiage and the targetplntfonn, transjomns the intermediate lnmzgzlage gene~uted @ J  

the front end into a semantic all]^ equiu~rlent fornz that execzltes faster on the target 
machine. The GLibl system supports a range of languages and has been s~lccessfL11ly 
retargeted and rehosted for the Alpba AXP G I I Z ~  ,VlIPS architectures and for several 
operating environl?zents. 

I11 the past, Digital has made major investments 
in optimizing compilers that were specifically 
directed at one hartlware platform, namely \',AX 

computers. When Digital began broadening its 
hardware offerings to include reduced instruction 
set computer (MSC) architectures, it became clear 
that new optimization technology was needed, as 
well as a new strategy for leveraging investments in 
compiler techno log)^ across an increasing rllrmber 
of I~ardware platforms. 

This paper presents a technical description of 
the GEM compiler technology that Digital uses to 
generate compiler products for a wide range of 
hartlware and software combinations. We begin 
with an explanation of the GEM strategy of leverag- 
ing investmellts by using portable, modular soft- 
ware components to build compiler products. The 
bulk of the paper describes the GEM optimizer and 
cotle generator technologies, with a focus on how 
they adclress challenges posed by the Alplla AXP 
architect~1re.l W then move to a discussion of com- 
piler engineering and conclutle with an overview 
of some planned enhancements to the software. 

GEM Compiler Architecture 
Because of the many hardware platforms available, 
often with multiple operating systems and a v;~riety 
of languages offered on those platforms, builtling a 
compiler from scratch for each combination is no 
longer feasible. To simplify the engineering of 

diverse compilers, GEM compiler products share a 
basic architecture. The compiler is divided into sev- 
eral major components, in effect, the fi~ntlamental 
building blocks from which a compiler is con- 
structed. The interfaces among these components 
are carefully specified. The major components of a 
GEM compiler are the front end, the optimizer, the 
code generator, and the compiler shell. The logical 
clivision of GEM colltponents and the range of GEM 
support is shown in Figure I. Note that the host is 
the computer on which the conlpiler runs, and the 
target is the computer on which the generated 
object runs. 

The front end performs lexical analysis anel pars- 
ing of the source program. The primary outputs are 
interme~liate bng~ iage  (IL) graphs and symbol 
tables, which are both standardized. In an IL  graph, 
each node, referred to as a tctple, represents a n  
operation. Front ends for a11 source languages 
translate to the single standard IL. All Ianguage-spe- 
cific code is encapsulated in the front end. All 
knowledge of the source language is cornmuni- 
cated in the IL or through callbacks to the front end. 
Knowledge of the target liarclware is represented in 
tables and in a minimal amount of conditional cocle. 

The optimizer transforms the IL generateel by the 
front end into a semantically equivalent form that 
will execute faster on the target machine. A signifi- 
cant technical achievement is that a single opti- 
mizer is used for all languages and target platforms. 
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FRONT END SHELL CODE GENERATOR 

LANGUAGES OPERATING SYSTEM HOST CPU OPERATING SYSTEM TARGET CPU 

Alpha AXP OpenVMS 
BLISS 

ULTRIX ULTRIX Olhers 
Windows NT Windows NT 

COBOL 
Fortran 
Pascal OPTIMIZER 

Opal 

Figzlre I GEIM Corlzponents and Supported CPUs, Operatiizg Syste~ns, cind Lcrngz~~zglges 

The codegc.rzerc~r"or translates the 11. into ;I list ot 
code cells, each of which represents one machine 
instruction for the target hardware. Virtually all the 
target machine instruction-specific code is encap- 
sulated in the cotle generator. 

The shell is a collection of common compiler 
functions such as listing generators, object file 
emitters, and command line processors. Basically, 
the shell is a portable interface to the external envi- 
ronnient in which the compiler is used. 7'liis inter- 
face allows the other components to remain 
independent of the operating system. 

There are numerous benefits to this modu1;ir 
approacli: 

Adding a new feature to a common component 
enhances many products. 

Source language compatibility is ensr~red ;itnong 
all cornl~ilers that use the same front entl. 

Standardizetl interfaces enable us to plug in ;I 

new front end to build a conlpiler for a new [;in- 
guage, or a new shell to allow the compiler to 
run on a new host. 

Wlien ;I new language is added, it can be offered 
quickly on rnany platforms. 

When a new target Cpu or operating system is 
supported, many 1;lnguages are i~nmediately 
;ivailable to that target. 

Order of Processing 
When compiling a program, the overall order of pro- 
cessing must be carefully arranged so that each com- 
ponent of the compiler can see a large portion of the 
program at one time. When processing one portion 

of ;I program, certain information about other rele- 
vant piu-ts of the source program can be useful. 

Figure 2 illustrates the overall process of compil- 
ing a program. Since <;EM compilers include inter- 
procedural optimizations, as much of the program 
as possible shoultl be presentetl to the optimizer at 
the same time. For this reason. <;EM co~i~pilers 
allow the user to process multiple source files in a 
single compil;~tion. The front end parses these 
source files ;ind constructs the symbol t;ible ant1 a 
compact form of 1L in memory before invoking tlie 
<;EM back end. The portion of tlie user's program 
thus compiletl is called a con~pil;~tion unit. 

The GEM back-end interprocedural optimization 
phase is the first to operate on tlie program. This 
phase analy~cs the routines within a compilation 
unit to tlevelop a call graph that shows which 
routines might call which other routines. 
Interpsocedural optimizations :ire applietl to the 
routines ;a ;I group. 

Next, the global optimizer and the cotle genera- 
tor process each routine in a bottom-up order, 
resulting in :I tr;inslation of the program to cotle 
cells th;~t represent oper;~tions at niacliine level. 
This bottom-up order is convenient li)r certain opti- 
mizations, as discussed in the Optimization section. 
The first action of the global optimizer is to trans- 
late the roiltine's IT. from the compact form pro- 
videcl by tlie front entl to ;in exp;intlecl form i~secl by 
the optimizer and the cotle generator. Since only 
one routine at ;I time is storetl in expanded form, a 
much 1;lrger tlat:~ structilre c;111 be used to store the 
results o f  the optimizer ;~nalysis. The expansion 
from comp;1ct form illso expands certain shorthand 
forms, which are convenient for a front end, into 
explicit oper;itions in the expanded 11.. much like a 
ni;lcro expansion facility in a source language. 
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Figure 2 GEM Compiler Order of Processing 

Once all the routines have been processed by mizations and instruction scheduling, are per- 
the global optimizer and the code generator, a formed on this program description. Finally, the 
complete description of the program is available at optimized machine instructions are converted to 
the machine instruction level. Certain machine- the appropriate object language for the target oper- 
specific optimizations, such as peephole opti- atingsystem. 
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Optimization 
The GEM compiler system's optimizer is state-of- 
the-art ant1 independent of the language ancl the tar- 
get platform. The input to the optimizer is the 1L 
and symbol table for multiple routines; the output 
is the semantically eq~~ivalent IL and symbol table, 
both modified to run faster on the target platform. 

GEM optimizations include interprocedural opti- 
mizations, modern optimizations for superscalar 
IUSC architectures such as the Alpha U P  archi- 
tecture, plus a robust implementation of the classi- 
cal global optimizations. In addition, (;EM'S code 
generator includes a number of optimization fea- 
tures that help it produce extremely high Local code 
quality. 

Design Principles 
Certain general design approaches or principles 
were applied throughout the optimizer. For 
instance, choices had to be made in the design of 
the IL; the front end could either provide a higher- 
level description of program features or rely on the 
back end to derive the higher-level description 
frorn an analysis of a lower-level description. In 
cases where accurate, well-defined algorithms for 
deriving those higher-level features exist, GEM 

chooses to derive the descriptions. 
Describing source code loops is a key example of 

the implementation of this design principle. Most 
source languages have explicit syntax for writing 
loops, and the front end could translate these lan- 
guages into a higher-level I L  that designates those 
loops. Instead, GEM uses a lower-level I L  with primi- 
tives such as conditional branch and label opera- 
tors. The advantage of this approach is that GEM 
recognizes all loops, even those constructetl with 
GOT0 statements. 

A general design approach that emerged from 
experience gained during the GEM project is the 
use of cnahling or expanding transformations to 
support fundamental optimizations. Often, repre- 
senting operations in the IL in a way that hides cer- 
tain implicit operations is a compact ancl efficient 
approach. However at times, making these implicit 
operations explicit allows a particular optimization 
routine to operate on them. Agood solution to this 
problem is to initially represent the operations in 
the 1L in the compact form. Then, before applying 
optimizations that could benefit from seeing the 
ituplicit operations, apply expanding transforma- 
tions to convert the IL into a longer form in which 
all operations are explicit. 

Out of concern for the time required to compile 
large programs, GEM also established the design 
principle that the order of complexity as a function 
of the number of IL operations should be as close to 
linear as possible. 

Data Access Model and 
Side Effects Interface 
Since GEM compilers translate all source languages 
to a common IL and symbol table format, the 
semantics of these languages must be specified 
precisely. Many optimizations require an exact 
understanding of which symbols are being written 
or read by operations in the IL, and which opera- 
tions might affect the results computed by other 
operations. 

The GEM team developed a detailed specification 
known as the data access model, which defines 
those operations that can write to memory and 
those that can read from memoq7. Each of these 
memory-accessing operations can explicitly desig- 
nate the syn~bol being accessed when it is known. 
The model also requires the front end to speclfy 
when symbols may be aliased with parameters and 
when they may be pointer aliased A pointer- 
aliased symbol may be accessed through pointers 
or other operations that do not spec@ the symbol 
that they access. 

The model can indicate that the pointer-aliased 
property is derivable, i.e., a symbol is pointer 
aliasecl only if an operation that stores its address is 
present in the IL. A special IL operator marks such 
operations. When the derivation of this property is 
deferred, the optimizer can avoid marking symbols 
pointer aliased. 

The data access model provides a standard way 
for a front encl to indicate how IL operations affect 
or depend upon synlbols. However, some front 
ends can provide additional language-specific dis- 
crimination of operations that cannot be allowed to 
interfere with one another. For example, a strongly 
typed language like Pascal may stipulate that an 
assignment to a floating-point target must refer to 
different storage than an integer read, even when 
the assignment target is accessed indirectly through 
a pointer. 

To represent language-specific rules while adher- 
ing to the philosophy that the back end should have 
no knowledge of the source language, GEM compil- 
ers employ a unique interface with the front end, 
calletl the side effects interface. The front end pro- 
vides a set of procedures that GEM can call during 
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optimization to ask which IL operations have side 
effects and which IL operations depend upon those 
side effects. 

Interprocedural Optimization 
GEM's interprocedural optimization phase starts 
by walking over the 1L for all routines to build 
the call graph. The call graph is a directed multi- 
graph in which the nodes are routines, and the 
edges are calls from one routine to another. The 
graph is not a tree because recursion is allowed. 
A special virtual routine node represents all 
unknown routines that might call or be called by 
a routine in this compilation. 

GEM walks the graph to determine which local 
symbols that are potential targets of up-level access 
are actually referenced in a called routine. When 
up-level references do occur, GEM can also deter- 
mine the most efficient way to pass that context 
from the routine that declares the variable to the 
routine that references it. 

On the same walk, GEM analyzes the use of sym- 
bols whose pointer-aliased property is derivable. If 
operations that store the address of such a symbol 
are present, then the symbol is marked as pointer 
aliased. The front end's indication is also retained 
so that this analysis can be repeated after address 
storing operations are eliminated. 

The most significant interprocedural optimiza- 
tion that GEM performs is procedure inlining. 
Inlining is a well-known method for reducing 
procedure call overhead and for increasing the 
effectiveness of global optimizations by enlarging 
the scope of the operations seen at one time. 
Inlining has additional benefits on superscalar 
FUSC architectures, like the Alpha AXP system, 
because the optimization allows the compiler to 
schedule the instructions of the two routines 
together. 

GEM's inliner reviews all calls in the call graph 
and uses heuristic algorithms to determine which 
calls should be inlined for maximum speed without 
unreasonable increases in code size or compilation 
time. The heuristics consider the number and kind 
of IL operations, the number of symbols referenced, 
and the kinds of optimization that would likely be 
enabled or disabled by inlining. 

When callers pass constants as actual parame- 
ters, better optimization is likely to result from 
inlining because the corresponding formal parame- 
ter will have a known constant value. On the other 
hand, when two sections of the same array are 

passed as arguments, and the corresponding for- 
mals are described as not aliased with one another, 
eliminating the formal parameters through inlining 
discards valuable alias information."5 

Also, the order in which inlining clecisions are 
made can be important. In a chain of calls in w.hich 
A calls B and B calls C, the call from A to B might be 
the most desirable inlining candidate. However, if 
the call from B to C is inlined first, the size of B may 
increase, making it a less attractive candidate for 
inlining into A. Consequently, GEM uses its heuris- 
tics to preevaluate all calls and then orders the calls 
by desirability. GEM inlines the most desirable can- 
didate first, and then reevaluates the caller's prop- 
erties, possibly acijusting its position in the ordered 
list. 

In many C programs, the acldress of a variable 
(especially a struct) is passecl to a called routine 
that refers to the variable through a pointer for- 
mal parameter. After inlining, a symbol's address 
is stored in a pointer and indirect references are 
made through the pointer. Later, while optimizing 
the routine, GEM's value propagation often elimi- 
nates the pointer variable. Finally, whet1 one or 
more pointer-storing operations have been elimi- 
nated, GEM reevaluates the pointer-aliased prop- 
erty of derivable local symbols, ant1 the variable that 
was once passed by address is no longer pointer 
aliased. 

After interprocedural analysis, the routines of the 
user's program pass through the optimizer and 
code generator one at a time. GEM'S interprocedural 
phase chooses a bottom-up routine order in the call 
graph. Except for recursive cycles, this order causes 
GEM to generate the code for a called routine before 
generating the caller's code. GEM takes advantage of 
this property by recording the scratch registers that 
were actually used in a called routine ant1 adjusting 
register usage at its call sites.' GEM also determines 
whether or not the called routine requires an argu- 
ment count. 

Intermediate Lnlzguage Peepholes 
GEM uses a peephole optinlizer to improve the 1L. In 
addition to performing the many obvious simplifi- 
cations such as n~ultiplying by one or adding zero, 
the optimizer performs other transformations. 
Integer division by a constant is expanded into a 
multiply by a reciprocal operation, which can be 
efficiently inlplemented with a UMULH instruction. 
String operations on short fixed-length strings are 
converted into integer operations, to benefit from 
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various optimizations performed only on scalars. 
Also, integer multiply operations by a constant are 
converted into an equivalent set of shift and add or 
subtract operations. 

IL peepholes sometimes expose new optimiza- 
tion opportunities by expanding complex opera- 
tions into more explicit components. Also, other 
optimizations such as value propagation may create 
new opportunities to apply peepholes. To take 
advantage of these opportunities, GEM compilers 
apply these IL peepholes n~ultiple times during the 
optimization of a routine. 

Data-flow Analysis 
In previous Digital compilers, the use of data-flow 
analysis was limited largely to the elimination of 
common subexpressions (CSEs), value propaga- 
tions, and code motions. We generalized the data- 
flow analysis technique to perform a wider variety 
of optimizations including field merging, induction 
variable detection, dead store elimination, base 
binding, and strength recluction. 

The process of detecting <:SEs is divided into the 
tasks of 

Knowing when two expressions would com- 
pute the same results given identical inputs. 
Within GEM compilers, such expressions are said 
to be fomnlly eqttirmlent. 

Verifying that the inputs to formally equivalent 
subexpressions are always identical. Such 
expressions are said to be value eyuiunlent. This 
verification is accomplishetl by using the side 
effects mechanism. 

Determining when an expression dominates a 
value eqi~ivalent expression.5 This information 
guarantees that GEM will have computed the 
dominating expression whenever the dorniilated 
expression is needed. 

Code motions introduce the additional task of 
finding those places in the flow graph to which an 
expression could be legally moved such that 

The moved expression would be value equiva- 
lent to the original expression, ant1 

The moved expression would execute less often 
than the original expression. 

The following sections describe how GEM 
detects base-binding and strength-reduction candi- 
dates by substituting slightly different equivalence 
functions. 

Base Binding 
On RISC machines, a variable in memory is refer- 
enced by loading the address into a base register and 
then using indirect addressing through the base reg- 
ister. To reduce the number of address loads, sets of 
variables that are closely allocated share base regis- 
ters. GEM considers two address expressio~ls for- 
mally ecli1i\7alent ifthey differ by an amount less than 
the range of the hardware instruction offset field. 
The CSE detection algorithm determines which 
adtlress expressions are formally ecluivalent and 
thus can share a base register, and the code motion 
algorithm moves the base register loads out of loops. 

Induction Variables 
Some of GEM'S most valuable optimizations require 
the identification of inductive expressions and 
induction variables, which is done during data-flow 
analysis. An expression in a loop is inductive if its 
value on a particular iteration is a linear function of 
the trip count. The simplest forms of inductive 
expressions are the control variables of counted 
loops. Expressions that are linear functions of 
induction variables are also inductive. 

GEM'S implementation of data-flow analysis uses 
a technique for determining what variables are 
modified between basic blocks in the flow graph.6' 
The variables modified between a basic block ant1 
its dominator are represented as a set called the 
IDEF set. The mapping from variables to set ele- 
ments is clone using the side effects interface. 

The algorithm for detecting induction variables 
starts by presuming that all variables modified in 
the loop are induction variable candidates. It then 
tlisqualifies variables not redefined as a linear func- 
tion of themselves with a coefficient equal to one. 
The loops that GEM chooses to analyze have a loop 
top that dominates all nodes within the loop. The 
IDEF set for a loop top is exactly those variables that 
are modified within the loop and thus serves as the 
starting value for the induction variable candidate 
set, again using the side effects mapping of vari- 
ables to set elements. During the walk of the loop, 
whenever a disqualifying store is encountered, the 
contents of the candidate set are updated. Thus, at 
the end of the walk, the remaining variables it1 the 
set are known to be true induction variables. 

Strength Reduction of Induction Variables 
Strength reductiol~ is the process of replacing an 
expensive operation with a less expensive opera- 
tion. The most basic example of strength reduction 
on induction is as follows: 
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If the original source prowam was 

D O  20 I = 1,10 
2 0 P R I N T  1*4 

strength reduction would reduce the multiply to an 
acld as follows: 

I '  = 4  
D O  20 I = 1,10 
P R I N T  I' 20 
I' = I '  + 4 

Note that the most common array references are 
of the forin A(I), which implies a multiplication of 
I by the stride of the array. Thus, strength reduction 
yields a significant performance improvement in 
array-intensive conlputations. 

To detect strength-reduction candidates, we 
redefine formal and value equivalence as follows: 

Two inductive expressions are formally equiva- 
lent if, given identical inputs, they differ only by 
a constant. 

Two formally equivalent inductive expressions 
are value equivalent if their inpiits are value 
equivalent or are direct references to induction 
variables. 

Thus, strength-reduction candidates appear 
loop invariant, and two expressions that are value 
equivalent can share a single strength reduction. 
Code motion yields the initial value of the strength 
reduction. 

Split Lijetime Analysis 
The GEM optimizer analyzes the usage of certain 
variables to determine if the stores and fetches of a 
variable can be partitioned, i.e., split, into disjoint 
variables or lifelinzes. 

For example, consider the following program 
segment. 

The references to V can be divided into two dis- 
joint lifetimes V' and V" without changing the 
semantics of the program as in: 

V' and V" can be treated as two completely 
independent variables. This has several useful 
applications. 

V' and V" can be assigned to different registers, 
each with shorter lifetimes than the original vari- 
able V 'The allocator can thus pack registers and 
memory more tightly. 

V' and V" can be scheduled indepentlently. For 
example, the computation of Z in line 2 could be 
scheduled after the redefinition of V in line 3. 

A lifetime that begins with a fetch is an uninitial- 
ized variable. GEM issues a diagnostic in such cases. 

Any lifetime with only stores is effectively 
"dead," and thus, the stores can be eliminated. 

When a lifetime of an incluction variable con- 
tains an equal number of stores and fetches, the 
variable is used only to compute itself. Thus, the 
whole lifetime can be eliminated. This is called 
induction variable elimination. 

GEM uses split lifetime information to optimize 
the flushing and reloading of register variables 
around routine calls. 

GEM uses split lifetime information to determine 
what variables are potentially refcrenced by 
exception handlers. 

Lifetimes often need to be extended around loop 
tops and loop bottoms. Split lifetime analysis has 
fill1 information in many cases in which the code 
generator's lifetime computation must make 
pessimistic assumptions. Thus, analyzed vari- 
ables are allocated more efficiently inside loops. 

The technique GEM uses for split lifetime analysis 
is based on the VAX Fortran SPLIT phase.# The tech- 
nique includes several extensioils in the areas of 
induction variables, unselected variables (the origi- 
nal algorithm analyzed only a fixed number of vari- 
ables), and exception handling. 

Code Generation 
The GEM code generator matches code templates to 
sections of IL trees.9 The code generator has a set of 
approximately 600 code patterns and uses dynamic 
programming to guide the selection of a least-cost 
covering for each statement tree in the IL graph pro- 
duced by the global optimizer. 

Each code pattern specifies a set of interpretive 
code-generation actions to be applied if the tem- 
plate is selected. The code-generation actions cre- 
ate temporaries, determine their lifetimes, allocate 
registers and stack locations, and actually emit 
sequences of instructions. These actions are 
applied during the following four separate code- 
generation passes over the IL graph for a procedure: 
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Context. During the context pass, the code gen- 
erator crcates tlat;~ structures t11;lt describe eiich 
temporary variable. The information computerl 
includes the lifetime, usage counts, and ;I \wiglit 
scaled by loop depth. 

Register history. 1)liring the register history p;iss, 
the code generator eloes a rlominator-order 
walk of the flow graph to identify pote11ti;il 
redundant loads of values t1i:lt could be ;ivail;tble 
in registers. 

Temp name. During the temp name pass. the 
code generator performs register allocation 
using the lifetime ;inel weigllt inform;ition coni- 
piited tluring the context pass. The code genera- 
tor also ilses register I i i~tor)~ to ;llloc:ite 
temporaries that holtl the same vi~lue in the same 
register. I f  successfi11, this ;lction eliminates lo:~tl 
ancl move instr~ctions. 

<:otle. I>uring tlie cotle pass, the code generiitor 
emits instructions ;~ncl cotle labels. 'The resulting 
code cells are an internal representation : ~ t  the 
assembly code level. Each cotlc cell conL;~ins ;I 

single target mirchine instruction. The cotle cells 
have specific registers ;rncl boiincl offsets from 
base registers. References to Iiibels in the cotle 
stream are in a symbolic form, pentling further 
optilnization and final offset ;lssignmcnt after 
instruction peephole optimiz;ition and instruc- 
tion schecluling. 

Code tenlpli~te enumeration and selection occurs 
during tlie context pass. The enumeration pllase 
scans IL notles in execution ortler (11otto111-tip) ;ind 
labels each node with alterni~tive patterns ant1 
costs. When ;I root notle such ;IS n store or br;inch 
ti~ple is reached, the lowest-cost ternpl;~te h)r that 
node is selectetl. l'he selection process is then 
applietl recursively to  the leavcs for the entire 
tree. l o  

The IL tree pattern oPa cocle-generi~tion tenipl;~te 
consists of four pieces of inform;rtion: 

A pattern tree that clescribes thc rirr;1ngemcnt of 
11. nodes that can be cotled by this template. The 
interior nodes of  the pattern tree are I f .  operit- 
tors; the It.dves are either result rnocle sets or 11, 

operxtors with no operantls. 

A predicate on the tree notles of the pattern. The 
pretlic:ite milst be true in orcler for the piittern to 
be i~pplicable. 

A result mode that encodes the representation 
 of;^ value computed by the template's generated 
code. 

An intcger that represents the cost of the code 
generated by this template. 

The result modes :ire an enurner;ttion of the tlif- 
ferent ways the compiler can represent a value in 
the m ; ~ c h i n e . ~ ~  <;EM conipjlers llse the following 
result modes: 

Sc;iL;ir, for ii value, negated value. and comple- 
mented value 

Hoolean, for low-bit, high-bit, and nonzero values 

Flow, for ;I Boole;ln represented ;IS control flow 

Result motles for different sizes of integer literals 

Result  nodes for clelayetl generation of adclress- 
ing calculations 

Result modes indicating that only a part of a 
v;ilue has been materialized, i.e., the low byte, or 
that the n1ateri;ilizecl \;;ilue has usetl :i lower-cost 
solution 

As templates are m;~tchetl to portions of the 1L 

tree, c:ich node is 1;tbeled with ii vector of possible 
solutionb. The vector is inclexed by result mode, 
ancl the lowest-cost solution for each result mode is 
recortletl on the forw;lrd bottom-up walk. When a 
root nocle is encountered, the lowest-cost template 
in its vector of solutjons is chosen. 'This choice then 
tietcrmines the required result mode and solution 
for e;1c11 leaf of the pattern, recursivel!~. 

GEM Code Generator Action Language 
Tllc (;I;&] cocle generittor uses and extends methods 
clcvelopccl in the 131,lsS compilers, the Ci~megie- 
Mellon llniversity 1)rocliiction-Quality Compiler- 
Compiler Project, ancl Digital's VAX Pascal 
cornpiler.1i.13 One key <;EM innovation is the use of 
:I formalizctl action Language to give a ~~nif ied 
description of all actions performecl in the four 
cotle-generation passes. The same formal action 
descriptions ;ire interpretetl by four different inter- 
preters. For example, the Allocate-TN action is 
ilscd to iilloc;~te long-lived temporaries that may be 
in a register or in memory. This action creates a data 
structiire describing tlie temporary in the context 
pass, ailocates a register tluring the temp name 
pass, and provides the actual temporary location 
h)r  code emission. 
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Tree-matching code generators were originally 
developed for complex instruction set computer 
(CISC) machines, like the PDP-11 and VAX comput- 
ers. The technique is also an effective way to build 
a retargetable compiler system for current NSC 
architectures. The overall code-generation struc- 
ture and many of the actions are target indepen- 
dent. Some IL trees use simple, general code 
patterns, whereas special cases use more elaborate 
patterns and result modes. 

Register Allocation 
GEM compilers use a simple linear model to charac- 
terize register lifetimes. The context, temp name, 
and code passes process the basic blocks and the IL 
nodes of each block in execution order. Each code 
pattern has a certain number of lifetime ticks to 
represent points at which a temporary value is cre- 
ated or used. The lifetime of a temporary is then the 
interval defined by its starting lifetime tick and end- 
ing lifetime tick. 

Simple expression temporaries have a linear life- 
time contained within a basic block. User variables 
and CSEs may require that lifetimes be extended to 
cover loop tops and loop bottoms. The optimizer 
inserts special begin and end markers to delimit the 
precise lifetimes of variables created by the split 
lifetime phase. 

The code generator uses a number of heuristics 
to allocate registers to avoid copying. If a new 
lifetime begins at exactly the same tick as another 
lifetime ends, this may indicate that they should 
share a register. Otherwise, the allocator uses a 
round-robin allocation to avoid packing registers 
too tightly, which would inhibit scheduling. The 
Move-Value action is used to copy one register to 
another and provides a hint that the source and des- 
tination should be allocated to the same register. 

Actual allocation of registers and stack tempo- 
raries occurs in the temp name pass. The allocator 
uses a bin-packing technique to allocate each com- 
piler and user variable to a register or to memory.'* 
The allocator first attempts to assign variables to 
registers; lifetimes that conflict cannot be assigned 
to the same register. The allocator uses a density 
fi~nction to control the process. A new candidate 
can displace a previous variable that has a conflict- 
ing lifetime if this action increases the density mea- 
sure. After the allocation of temporaries to registers 
is completed, any unallocated or spilled tempo- 
raries are allocated to stack locations. 

Scheduling 
To take advantage of high instruction-issue rates in 
Alpha AXP systems, compilers must carefully sched- 
ule the object code, interleaving instructions from 
several parts of the program being compiled. 
Performing instruction scheduling only once after 
registers have been allocated places artificial con- 
straints on the ordering, as illustrated in the follow- 
ing code example: 

rO, a ( s p )  ; Copy  a t o  b 
rO, b ( s p )  
rO, c ( s p )  ; Copy  c t o  d 
rO, d ( s p )  

If the load of c and store of d were to use some 
other register, the code could be rescheduled to 
save three cycles on the DECchip 21064 processor, 
as shown in the following code: 

rO, a ( s p )  ; Copy  a  t o  b 
r l ,  c ( s p )  ; Copy  c  t o  d  
rO, b ( s p )  
r l ,  d ( s p )  

On the other hand, scheduling only before regis- 
ter allocation does not incorporate decisions made 
by the code generator. Therefore, instruction 
scheduling in GEM compilers occurs twice, before 
and after registers are allocated. This practice is 
fairly common in contemporary RISC compiler sys- 
tems. In most other systems, scheduling is per- 
formed only on machine code. GEM has two 
different schedulers-one that schedules machine 
code and one that schedules IL. 

Intermediate Language Scbedziling 
IL scheduling is performed one basic block at a 
time. First, a forward pass over the block gathers 
information needed to control the scheduling, and 
then a backward pass builds the new ordered list of 
tuples. During the forward pass, the con~piler 
builds dependence edges to represent the neces- 
sary ordering relationships between pairs of tuples. 
Tuples that would require an excessive number of 
edges, such as CALL tuples, are considered markers. 
No tuples can be reordered across a marker. 

The compiler uses the data access model to 
determine whether two memory-access tuples con- 
flict. Also, if two tuples have address operands with 
the same value (using data-flow information) but 
different offset attributes, the tuples must access 
different memory. Thus, no dependence edge is 
needed, and more rescheduling is possible. 
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The general code for an expression tuple places 
the result into a compiler-generated temporar): 
and the general code for a store into a register vari- 
able moves the value from a temporary into the 
variable. Many GEM code patterns for expression 
tuples allow targeting, where the expression is 
computed directly into the variable instead of into 
a temporary. These cocle patterns are valid only if 
there are no fetches of the variable between the 
expression tuple and the store operation. Similarly, 
a fetch tuple need not generate any code (called 
virtual), if no stores exist between the fetch and its 
consumer. For example, 

T = A - I ;  A  = B+1; C = T; 

might generate the GEM IL 

In this example, SUB operates directly on the reg- 
ister allocated for A, and ADD targets its result to the 
register allocated for A. The obvious dependence 
edge is from FETCH(A) to STORE(A,. . .). However, I L  
scheduling must be careful not to invalidate the 
code patterns, which would happen if it moved 
FETCH(A) between ADD and STORE(A) or STORE(A) 
between FETCH(A) and SUB. To ensure valid code 
patterns, the first pass moves the head of clepen- 
dence edges backward from targeted stores to the 
expression tuple that does the targeting Sinlilarly, 
the first pass moves the tail of dependence edges 
forward from virtual fetches to their consumers. In 
this example, the edge runs from 2$ to 4$ and pre- 
vents either of the illegal reorderings. 

In addition to building dependelice edges, the 
first pass computes heuristics for each tuple, to be 
used by the second, i.e., scheduling, pass. One 
heuristic, the anticipated execution time (AET), 
estimates the earliest time at which the tuple could 
execute. The AET for tuple T is either the maximum 
AET of any tuple that must precede T, or the 
maximum AET plus the latency of T's operands. If 
some of the tuples that must precede T require the 
same hardware resources, the AET may be opti- 
mistic Nevertheless, the AET is a usefill guide to the 
scheduling pass. 

The first pass also computes the minimum 
number of registers (separately for integer and 
floating-point registers) needed to evaluate the 
subexpression rooted at a particular tuple. The 

value of this heuristic is the Sethi-Ullman number, 
i.e., the number of registers needed to evaluate the 
subexpressions in tlie optimal order, keeping their 
intermediate values, plus the additional registers to 
evaluate the tuple itself.Ii If the second pass sched- 
ules tuples with a lower count later in the program, 
the register usage will be kept low. Without such a 
mechanism, scheduling before register allocation 
tends to cause excessive register pressure. 

CSEs can be treated similarly to subexpressions in 
this computation, but with two complications. The 
first pass cannot predict the last use of the CSE and 
therefore treats each use as the last one. The sched- 
uler ignores any register usage associated with CSEs 
that are not both created and used within the block 
being scheduled. This action allows the register 
allocator to place the CSEs in memory, if the sched- 
uled code has better uses for registers. 

The second pass of the IL scheduler works back- 
ward over the basic block. The scheduler removes 
all tlie tuples up to the last marker and makes avail- 
able those that have no clependence edges to tuples 
that must follow. The scheduler then selects an 
available tuple and places it in the scheduled out- 
put, updates the state of each modeled f~~nctional 
unit, and makes available new tuples whose depen- 
dences are now satisfied. When the marker is 
scheduled, the scheduler continues to remove the 
preceding group of tuples from the block until the 
entire block has been scheduled. 

The scheduler keeps track of the number of 
scheduled cycles and the estimated number of live 
registers. When choosing among tuples, the schetl- 
uler prefers one whose subtree can be evaluatetl 
within the available registers, or, failing that, one 
whose subtree can be evaluated with the fewest 
registers. When several tuples qualify, the sched- 
uler chooses the one with the greatest AET. 

Limiting register pressure, while not important 
for all programs, is important in blocks with a lot of 
available parallelism. With this feature, IL schedul- 
ing is a significant contributor to the high perfor- 
mance of GEM-compiled programs. 

Instruction Peepholing 
After cocle has been generated or code cells have 
been created directl-): the instruction processing 
phases are run as a group. Instruction peepholing 
performs a variety of localized transformations, typ- 
ically by matching patterns of adjacent instructions 
and replacing them with better patterns. From the 
perspective of instruction scheduling, the most 
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interesting function of the instruction peepholer 
is to perform a set of branch reductions. The peep- 
holer also replicates short sequences of code to 
facilitate instruction scheduling and to eliminate 
the instruction pipeline effects of branches. 

A control flow processing phase follows the 
instruction peepholing phase. Currently, this phase 
determines labels that are backward branch targets 
for alignment purposes. This action occurs before 
instruction scheduling, because instruction align- 
ment is important for the DECchip 21064 Alpha AXP 
processor, in which instructions must be aligned 
on qiiadword boundaries to exploit dual instruc- 
tion issue. In the near future, the control flow pro- 
cessing phase will collect register information for 
each basic block to allow additional scheduling 
transformations. 

Instruction Scheduling 
The instruction scheduler is the next phase. At this 
point, all register binding ancl code modifications 
other than branch/jump resolution have occurred. 
The scheduler docs a forward walk over the basic 
blocks in each code section to determine the align- 
ment of the first instruction in each block. 

For each basic block, the instruction scheduler 
does two passes that are effectively the inverse of 
the passes that the IL  scheduler performs, namely a 
backward walk to determine instruction-ortlering 
requirements and path length to the entl of the 
block, and a forward pass that actually schedules 
the cotle. 

The backward ordering pass uses an AET compu- 
tation similar to the one usecl by the 1L scheduler. 
The instruction scheduler knows the actual instruc- 
tions to be scheduled and has a more detailed 
machine model. For the DECchip 21064 processor, 
for example, the instruction scheduler has tletailed 
asymmetric bypassing information ant1 information 
about multiple issue. For architectures that have 
branch delay slots, the AET computation is biasetl 
so that instructions Likely to be able to fill branch 
delay slots will occur immediately before branch 
operations. 

The forwarcl scheduling pass does a cycle-by- 
cycle model of the machine, inclutling modeling 
multiple issue. The reasons for choosing this 
approach rather than an approach that just selects 
an ordering of the instructions are ;IS follows: 

For machines with significant issue limitations, 
e.g., nonpipelined functional units or multiple 
issue pairing rules, packing the limiting resource 

well is often preferable to obtaining a good sched- 
ule. A cycle model allows other instructions to 
"float" into the no-issue slots, while allowing the 
critical resource to be scheduled well. 

~Mocleling the machine allows easy determination 
of where stalls are occurring, which in turn allows 
instructions from the current block or from suc- 
cessor blocks to be moved into no-issue slots. 

Modeling the machine in a forward direction 
captures the fact that processors are typically 
"greedy" and issue all the instructions that they 
can issue at a given time. 

The cycle model allows a variety of dumps, 
which can be useful both to users of the com- 
piler system and to developers who are trying to 
improve the performance of generated code. 

The forward pass does a topological sort of the 
instructions. The scheduler moves instructions that 
have either a direct dependence or an antidepen- 
dence (e.g., register reuse) to a data structure 
called the issuing ring for fiiture issue. 

The scheduler represents the instructions avail- 
able for issuing ;IS ;I list of data structures known as 
heaps, which are priority clueues. Each heap on the 
list contains instructions with a similar "signature." 
For example, a heap might contain all store instruc- 
tions. When looking for the next instruction to 
issue, the scheduler examines the top instruction in 
each heap. Within each heap, instructions are typi- 
cally ordered by their AET values, with occasional 
small biases for different instruction properties, 
such as loads that may have a variable execution 
time longer than the projected time. 

The heaps are, in turn, orcleretl in the list accord- 
ing to how desirable it is that a particular heap's top 
instruction be issued. All nonpipelined instruction 
heaps are first on the list, followed by all semi- 
pipelineil heaps and, last, all fully pipelinecl ones. 
A semipipelined resource may prevent particular 
instructions from issuing in certain fiiture cycles 
but can issue every cycle. For example, stores on 
somc machines interact with later loads. 

Instructions that use multiple resources are rep- 
resented in the heap ordering. For example, float- 
ing-point multiplies on the MIPS R3000 machine 
use both the multiplier ancl some of the same 
resources as additions. As a result, the heap that 
holcls multiplies is always kept ahead of the heap 
that holds adds. This ordering scheme works well 
for both machines with a significant number of 
nonpipelined units, such as the MIPS processors, 
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and machines that have largely pipelined fi~nctional 
units with only particular combinations of multiple 
issue allowed, like the DECchip 21064 processors. 

Note that, other than the architecture-specific 
computation for AET and per-processor imple- 
mentation data tables, the scheduler is completely 
target independent. For example, currently, proces- 
sor implementation tables exist for the MIPS R3000 
and R4000 processors, the DECchip 21064 pro- 
cessor, and Alpha AXP processors that are under 
development. 

Field Merging Example 
Generating efficient code for the extraction and 
insertion of fields within records is particularly 
challenging on RlSC architectures, like Alpha AXP, 
that provide only 32-bit (longword) or 64-bit (quad- 
word) memory operations. 

Often, a program will fetch or store several fields 
that are contained in the same longword. Without 
optimization, each fetch would load the longnlord 
from memory, and each store would both load and 
store the longword. However, it is possible to per- 
form a collection of field fetches and stores with a 
single load ant1 store to memory. As another exam- 
ple, two bit tests within the same longword could 
be done in parallel as  a mask operation. 

In the IL generated by the front end, each field 
operation is generated as a separate IL operation. 
Thus, the real task of optimizing field accesses is to 
identify IL operations that can be combined. 

In the initial IL, a field fetch or store is repre- 
sented as an IL operator. The underlying problem is 
that the redundant loads and stores are not visible 
in this representation. The first part of the solution 
involves expanding the field fetch or store into 

lower-level operators. The I L  generated by the front 
end for two field extractions as shown in (a) of 
Figure 3 is expanded into the IL shown in (b) 
of Figure 3. With the loads exposed as fetches, data- 
flow analysis is now capable of finding the common 
subexpressions of 1 $ and 3$. 

Similarly, each field store expands into a fetch of 
the background longword, an insertion of the new 
data into the proper position, and a store back. 
Given two field stores, value propagation can elimi- 
nate the second fetch, and then dead-store elimina- 
tion can eliminate the first store. 

In some cases, a program operates on the field 
and thus eliminates the extract and insert opera- 
tions. For example, the following example gener- 
ates the machine code shown in Figure 4. 

t y p e d e f  s t r u c t  n o d e  C 
c h a r  n - k i n d ;  
c h a r  n-f L a g s ;  
s t r u c t  n o d e  * x l - c a r ;  
s t r u c t  n o d e  * x l - c d r ;  

1 NODE; 

# d e f i n e  MARK 1  
# d e f i n e  L E F T  2  

v o i d  d e m o ( p t r 1  
NODE * p t r ;  

w h i l e  ( p t r )  C 
i f  ( p t r - > n - k i n d  == 0 )  C 

p t r - > n - f l a g s  I =  MARK; 
p t r - > n - f l a g s  & =  - L E F T ;  

1 
p t r  = p t r - > x l - c d r ;  

1 

The unoptimized code would contain a load and 
an extract for each reference to n-kind or n-flags, 
plus an insert and a store for the latter two 
references. The optimizer has eliminated two of the 

I $ :  FETCHX(RECORD, C O I ,  [ I ] )  ; F e t c h  t h e  #I ( l o w - o r d e r )  b i t  
; f r o m  m e m o r y  

2s: FETCHX(RECORD,  C I I ,  [ I ] )  ; F e t c h  t h e  # 2  b i t  f r o m  m e m o r y  

(a) Pre-field merging 1L 

1  $ : F E T C H ( R E C 0 R D )  
2 s :  E X T V ( l $ ,  LO],  C I I ) ;  

3s: FETCH(RECORD1 
4 s :  E X T V ( I $ ,  [I], [ I ] );  

(b) Post-field merging I L  

; F e t c h  t h e  l o n g w o r d  
; E x t r a c t  t h e  # I  f r o m  t h e  l o n g w o r d  

; F e t c h  t h e  l o n g w o r d  
; E x t r a c t  t h e  # 2  f r o m  t h e  L o n g w o r d  

Figure 3 Field Merging Example 
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d e m o :  : 
BEQ 
NOP 

L S 7 :  
L D L  
AND 
BNE 
MOV 
B I S  
M  0  V 
AND 
S T L  

L S 9 :  
LDL 
BNE 

L S 5  : 
RE T  

p t r ,  L S 5  

RO, ( R 1 6 )  ; L o a d  n - k i n d  a n d  n - f l a g s  
RO, 2 5 5 ,  R1 ; E x t r a c t  n - k i n d  
R1,  L S 9  
2 5 6 ,  R 1 7  
RO, R 1 7 ,  R 1 7  ; S e t  MARK ( i n  p l a c e )  
- 5 1 3 ,  R1 
R 1 7 ,  R1,  R 1 7  ; C l e a r  L E F T  ( i n  p l a c e )  
R 1 7 ,  ( R 1 6 )  ; S t o r e  b a c k  

p t r ,  8 ( R 1 6 )  
p t r ,  L $ 7  

Figure 4 Machine Code w i t h  Field Merging 

three loads, two of the three extracts, both inserts, 
and one of the two stores. 

Brancb Optimization Examples 
Branch instructions can hurt the performance 
of high-performance systems in several ways. In 
addition to consuming space and causing time to be 
expended while issuing the instruction, branches 
can disrupt the hardware pipeline. Also, branches 
can inhibit optimizations such as code scheduling. 
Therefore, the GEM compiler system uses several 
strategies to avoid branches in the I L  and generated 
code or to eliminate some bad effects of branch 
instructions. 

Some branches appear as part of a we1 I-defined 
pattern that need not inhibit optimizations. GEM 

uses special operators for these cases. A simple 
example is the MAX function. For Alpha AXP sys- 
tems, IMAX can be implemented using the CMOVxx 
instructions, avoiding branch instructions entirely. 
For other architectures, the main benefit is that the 
branch does not appear in the IL. A more compli- 
cated example involves the so-called "flow- 
Boolean" operators. Consider the C code example, 

which generates the following GEM JL:  

The ANDSKlP and WNDC tuples implement the 
conditional-AND operator. If tuple 2$ is false, tuples 
4$ and 5$ are skipped, and the result of the LANDC 

is false. Otherwise, the LANDC uses the result of 
tuple 5$. 

Similarly, the SELTHEN, SELELSE, and SELC tuples 
implement the select operator. If tuple 6$ is true, 
then tuples 8$ and 9$ compute the result, and 
tuples 11$ and 12$ are skipped. If tuple 6$ is false, 
then tuples 8$ and 9$ are skipped, and tuples 11$ 
and 12$ compute the result. 

These operators allow programs to represent 
branching code within the standard basic-block 
framework but require branches in the generated 
code, to avoid undesired side effects of the skipped 
tuples. In some cases, though, GEM can determine 
that the skipped tuples have no side effects and then 
converts the operators to an unconditional form, 
allowing the generated code to be free of branches. 

GEM ~e r fo rms  other transformations on the IL to 
eliminate branches and thus enable further opti- 
mizations. For example, GEM transforms 

i f  ( e x p r )  v a r  = 1 ;  e l s e  v a r  = 0; 

into 

v a r  = ( ( e x p r )  ! =  0 )  

Alpha AXP implementations typically include a 
branch prediction mechanism. Correctly predicted 
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branches take several cycles less time than mispre- 
dictecl branches. The fastest conditional branch is 
one that is correctly predicted not to be taken. GEM 
uses several strategies to arrange branches for best 
performance. 

GEM selects an order for the basic blocks of a pro- 
gram that may differ from the order in the source 
program. For each basic block that ends with an 
unconditional branch, GEM places the target block 
next, unless that block has already been placed. 
Similarly, ifa basic block within a loop ends with an 
ilnconditional branch, a target block within that 
loop is placed next, if possible. For example, 

w h i l e  (--i > 0 )  C 
i f  ( a C i 1  ! =  b C i 1 )  r e t u r n  a C i 1 - b C i 3 ;  
a C i 1  = 0; 

1 

To eliminate the unco~~ditional branch when the 
loop iterates, GEM transforms the pretested loop 
into a posttested loop. Since the return statement is 
outsidc the loop, the generated code looks like 

i f  (--i > 0 )  
d o  ( 

i f  ( a C i l  ! =  b C i l )  g o t o  L a b e l ;  
a C i 1  = 0; 

) w h i l e  (--i > 0 ) ;  
. . .  

l a b e l :  r e t u r n  a C i l - b C i l ;  

(;Eht can also ilnroll loops and thus reduce the 
number of times the branch back must be exe- 
cutecl.  more important. GEM often allows opera- 
tions from different iterations to be scheduled 
together. Unrolling by four transforms the above 
loop into a cleanup loop and the main loop into 
code that resembles 

d o  c 
i f  ( a C i 1  ! =  b C i 1 )  g o t o  L a b e l ;  
a C i 1  = 0; 
i f  ( a C i - 1 1  ! =  b C i - 1 1 )  g o t o  L a b e l ;  
a C i - 1 1  = 0; 
i f  ( a C i - 2 1  ! =  b C i - 2 1 )  g o t o  L a b e l ;  
a C i - 2 1  = 0; 
i f  ( a C i - 3 1  ! =  b C i - 3 1 )  g o t o  l a b e l ;  
a C i - 3 1  = 0; 

1 w h i l e  (i -= 4 ) ;  

This code executes four fall-through branches 
and one taken branch, whereas the original code 
executed four fall-through branches and four taken 
branches. 

Certain code patterns generate code that is likely 
not to be executed. For example, when the com- 
piler believes th;it ;I 16-bit value in memory is apt to 
be naturally aligned, but may be unaligned, it gen- 
erates the instructions shown jn Figure 5 to load 
the value, given the address in 10. The code runs 
quickly for the aligned case, bec;~use the branch is 
correctly predictetl to fall through, but gets the cor- 
rect value for unalignetl data, as well. A similar code 
pattern hantlles stores. 

Compiler Engineering 
Engineering compilers for a large combination of 
languages and platforms required a considerable 
number of innovations in the area of project engi- 
neering. In this section we describe some of the 
project methods and tools GEM uses. 

Opal Intermediate Language Compiler 
The task of a <;EM compiler is to translate a pro- 
gram presented by the front end in the form of an 
IL graph and symbol table into machine code. In 
the early stages of GEM tlevelopment. no front 

: 3 - i n s t r u c t i o n  i n l i n e  s e q u e n c e  i f  a l i g n e d  

Ldq-u r l ,  (1-0) 
e x t w l  r l ,  r0 ,  r l  
b l b s  r O ,  1 0 8  

2 0 8 :  

; o u t - o f - l i n e  s e q u e n c e  t o  L o a d  a n d  m e r g e  
, 

1 0 s :  Ldq-u r 2 8 ,  l ( r 0 )  
e x t w h  r 2 8 ,  r O ,  r 2 8  
o r  r l ,  r 2 8 ,  r l  
b  r r 3 1 ,  2 0 8  



ends existetl to generate I L  graphs ant1 symbol 
tables. To f i l l  this recluirement, a synt;~ctic speci- 
fication of the 1L and symbol table was designed 
and an  1L assembler called Opal was built to com- 
pile this syntax. Opal uses GEM components such 
as tlie slicll and thus supports a robust set of fea- 
tures including listing generation, object files, 
inclutle files, clebug support, and language editor 
diagnostics. 

Even with the availability of front ends, Opal 
rem;iins a vital project tool: it allows GEM develop- 
el-s to exercise new features before front-entl sup- 
port is available; front-end developers use Opal to 
experiment wit11 different 1L alternatives; ant1 the 
Opal syntax serves as the output form;~t of the J L  

d ~ ~ ~ i p e r .  

Attrib.~lte and Operator Signature Tables 
<;EM tables give a complete description of all <;EM 
data structures, including IL operators and symbol 
t;tble nodes. The operator sign;tture table contains 
the operator type, result type, ntlmber of operantls, 
and leg;~l operand types for I L  operators. The 
;~ttribute t;tbles describe each component in a notle 
including loci~tion, abstract GEM data type, legal val- 
ues, node type for pointers, and special print for- 
mats. 1Vhen a new attribute is added to the <;EM 

specification, the attribute is described once in the 
tables and automatically the Opal compiler 11ndel.- 
stands the syntax and semantics, the <;EM dump 
utility is able to clump the attribute, and tlie <;EM 
integrity checker is able to verify tlie structure. 

Automatic KFOLD Builder 
The <;EM compiler needs to evaluate constant 
expressions at compile tinie, which is referred to as 
constant folding. GEM'S intermediate language has 
many IL operators ant1 data types. A constant folder 
is ~ I I L I S  ;I complic;ited routine with many cases, and 
the compile-time and run-time results must be 
itlentical. 

After writing our first, incomplete, hantlcraftecl 
const;lnt folder, we searched for a methocl to ;~uto- 
marc the process. No source language supported all 
the operators and data types of the GEM IL. The key 
insight was that there is one language in which IL 

progr;lrns can be written precisely ;~nd tersely: the 
G E M  JJ.. itself. Since GEM already embodies knowl- 
edge of the code sequences to evaluate every IL 
operator, no other encoding is needed. 

The automatic KFOLD builder is a speci;llized 
(;EM compiler that uses the standard (;EM b ~ c k  end 

but has a front entl that compiles only one program. 
The KFOLD builder scans the G E M  operator signa- 
ture table ant1 constructs a procedure that contains 
a many-way conditional branch to select a case 
based on the I[* operator specified in the argument 
list. Each case fetches operand values from the 
argument list, applies the oper;itor, and returns the 
result. Since most GEM 11. tuples operate on several 
data types, additional subcases rnay be based on tlie 
operator type or result type. We have already recov- 
ered the investment in developing the automatic 
KFOLD builder, and it significantly eases the task of 
retargeting GEM. 

Conclusion 
This paper describes the current GEM compiler 
system. However, a portable, optimizing compiler 
provides many opportunities that we have not yet 
exploited. Some enhancements planned for future 
versions are: 

Additional 1L operators ant1 data types, to sup- 
port more langliages 

Support for xtltlitional architect~lre and operat- 
ing system combinations 

Dependence analysis, to enable some of the 
following enhancements 

Loop transformations, to improve the use of the 
memory hierarchy 

Software pipelining, to increase parallelism in 
vectorizable loops 

Better reordering of memory references during 
instruction scheduling 

The schecluling of instructions into different 
basic blocks 

The relaxing of tlie linear restriction on the 
lifetime model, i.c., ;~llomling holes in register 
lifetimes 

The GEM compiler system has met demanding 
technical and time-to-niarl<et goals. The system has 
been successfi~lly retargeted and rehosted for tlie 
Alpha AXP and MIPS ;ircliitectures and several oper- 
ating en\~ironnients. G E M  supports a wide range of 
la~igi~ages and provides high levels of optimization 
for each. The current version of GEM generates effi- 
cient code for Alpha A X P  systems, and the imple- 
mentation is robust and flexible enough to support 
filture iniprovernents. 
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Binary Translation 

Binary translatio~z is a technique used to change an exect~table progmnz for one 
computer architect~ire and operating system into an e x e c ~ ~ t a b l e p ~ ~ o g m ~ ~ o r  a d q  
&rent comnptiter architecture and opemtirzg system. Two binmy tra~zslators are 
6imong the nzigmtion tools available for Alpha AXP computers: E S T  translates 
Open VIMS VAX binary images to Open KVIS AXP images; ~ n x  translates ULTRIX I\IIP~P 
images to DEC OSF/I AXP images. In both cases, translated code zisually runs 011 

Alpha AXP computers as fast or faster than the original code runs oiz the origilzal ?. 
nrchitectz~re. In contrast to other migration eflorts in the industry, the VAX transla- 
tor reprod~ices subtle CISC behauior on a RISC machine, and both open-ended trans- 
lators provide good performance on ~Lynai~zically modified programs. Alpha A X P  
Di~zary translators are importalzt migration tools-hundreds of translated 
Open VbfS MX and ULTRIXIIIIPS images currently run on Alpha AXP systems. 

When Digital started to design the Alpha A?(P archi- 
tecture in the fall of 1988, the Alpha jLYP team was 
concerned about how to run existing VAX code and 
soon-to-exist MIPS code on the new Alpha N(P coni- 
puters.l.2 To take fill1 advantage of the performance 
capability of a new compilter architecture, an appli- 
cation must be ported by rebuilding, using native 
compilers. For a single program written in a stan- 
dard programming language, this is a matter of 
recompile and run. A complex softmiare application, 
however, can be built from hundreds of source 
pieces using dozens of tools. A native port of such 
an application is possible only when all parts of the 
build path are running on the new architecture. 

Therefore, devising a way to run an existing (old 
architecture) binary version of a complex applica- 
tion on a new architecture is an important interim 
measure. Such a technique allows a user to get 
applications up and running immediately, with 
minimal porting effort. Once a user's everyclay envi- 
ronment is established, applications can be rebuilt 
over time, using handwritten native code or par- 
tially native and partially old code. 

Background 
Several techniques are used in the industry to run 
the binary code of an old architecture on a new 
architecture. Figure 1 shows four conimon tech- 
niques, from slowest to fastest: 

Software interpreter (e.g., Insignla Soluttons' 
SoftPC) 

Microcodeti emulator (e.g., PD1'-11 compatibility 
mode in early VAX computers) 

Binary translator (e.g., Hunter System's XDOS) 

Native compiler 

A software interpreter is a program that reads 
instructions of the old architecture one at a time, 
performing each operation in turn on a soft- 
ware-maintained version of the olcl architecture's 
state. Interpreters are not very fast, but they run 
on a wide variety of machines and can faithfully 

FASTER 

TRANSLATOR 

SOFTWARE 
INTERPRETER 

Figcli"e1 Co1n1nonTecl~1ziyuesforRu1zni1zg01d 
Code on Nezu Conz)ctter.s 
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reproduce the behavior of self-modifying pro- 
grams, programs that branch to clata, programs that 
branch to a checksum of themselves, etc. Caching 
interpreters gain speed by retaining pretlecocled 
forms of previously interpreted instructions. 

A microcociecl emulator operates similarly to a 
software interpreter but usually with some key 
hardware assists to decode the old instructions 
quickly and to hold hardware state information in 
registers of the micromachine. An emulator is typi- 
cally faster than an interpreter but can run only on 
a specific microcoded new macl~jne. This technique 
cannot be used to run existing code on a recluced 
instruction set computer (RISC) machine, since RlSC 

:trchitectures do not have a microcoded hardware 
layer unclerlyjng the visible machine architecture. 

A translated binary program is a sequence of 
new-architecture instructions that reproduce the 
behavior of an old-architecture program. Typically, 
much of the state information of the old machine is 
kept in registers in the new machine. Translated 
cocle hithfillly reproduces the calling stantlard, 
implicit state, instruction side effects, branching 
flow, and other artifacts of the old machine. 
Translated programs can be much faster than 
interpreters or emulators, but slower than native- 
compiled programs. 

'Translators can be classified as either (1) 
bounded translation systems, in which all the 
instructions of the old program must exist at trans- 
late time ant1 must be found and translated to new 
instru~tions,3-~.~ or (2) open-ended translation sys- 
tems, in which code may also be discovered, cre- 
ated, or moclifiecl at execution time. Bounded 
s)rstems usually require manual intervention to find 
100 percent of the code; open-ended systems can 
be fi~lly automatic. 

To run existing VAX and MIPS programs, an open- 
ended system is absolutely necessary. For example, 
some customer programs write license-check code 
(VAX instructions) to memory, ant1 branch to that 
code. A bounclecl system fails on such programs. 

A native-compiled program is a sequence of new- 
architecture instructions produced by recompiling 
the program. Native-compiled programs usually 
use newer, faster calling co~lventions than old pro- 
grams. With a well-tuned optimizing compiler, 
native-compiled programs can be substantially 
faster than any of the other choices. 

Most large programs are not self-contained; they 
call library routines, winclowing services, data- 
bases, and toolkits, for example. These programs 

also directly or indirectly invoke operating system 
services. In simple environments with a single dom- 
inant library, it can be sufficient to rewrite that 
library in native code and to interpret user pro- 
grams, particularly user programs that actually 
spend   no st of their time in the librar),. This strategy 
is conllnonly used to run Witldows and Macintosh 
programs ilncler the UNIX operating system. 

In more robust environments, it is not practical 
to rewrite all the sharecl libraries by hand; collec- 
tions of dozens or even hundreds of images (such as 
typical VAX ALL-IN-I systems) must be run in the old 
environment, with an occasional excursion into the 
native operating system. Over time, it is desirable to 
rebuilt1 some images using a native compiler while 
retaining other images as translatecl code, and to 
achieve interoperability between these old and 
new images. The interface between an old environ- 
ment and a new one typically consists of "jacket" 
routines that receive a call using old conventions 
and data structures, reformat the parameters, per- 
form a native call using new conventions anel data 
structures, reformat the result, and return. 

The Alpha ILYP Migration Tools team considerecl 
runnjng olcl VAX binary programs on Alpha AXP 
compilters using a simple software interpreter, but 
rejected this method because the performance 
would be too slow to be useful. We also rejected 
the idea of using some form of microcoded emula- 
tor. This technique would compromise the perfor- 
Jnance of a native Alpha AXP implementation, and 
VA)r' compatibility woultl be nearly impossible to 
achieve without microcode, which is inconsistent 
with a high-speecl NS(: design. 

We therefore tilriied to open-ended binary trans 
lation. We were aware of the earlier Hewlett- 
Packartl binary translator, but its single-image HP 
3000 input code looked much simpler to translate 
than large collections of hancl-coded VAX assembly 
language programs.' One member of the team 
(R. Sites) wrote a V~x-to-vAX binary translator in 
October 1988 as proof-of-concept. The concept 
looked feasible, so we set the following ambitious 
protluct goals: 

1. Ope1-1-ended (completely automatic) translation 
of almost all user-mode applications from the 
OpenVMS VkY system to the OpenVMS AXP 
system 

2. Open-ended translation of almost all user-mode 
applications from the 'lJT.TRIX system to the DEC 
O S W ~  system 
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3. Run-time performance of translated code on 
Alpha .UP computers that meets or exceeds the 
performance of tlie original code on the original 
architecture 

4. Optional reproduction of subtle old-architecture 
details, at the cost of run-time performance, e.g., 
complex instruction set computer (CISC) 
instruction atomicity for multithreaded applica- 
tions and exact arithmetic traps for sophisti- 
cated error handlers 

To achieve these goals, the Alpha AXP Migration 
Tools team created two binary translators: VEST, 
which translates OpenViMS VN( binary images to 
OpenVMS t\)(P images, and mx, which translates 
ULTRlX MlPS images to DEC OSWl AXP images. 
However, binary translation is only half the migra- 
tion process. As shown it1 Figure 2, the other half is 
to build a run-time environment in which to exe- 
cute the translated code. This second half of tlie 
process must bridge any differences between old 
and new operating systems, calling standards, 
exception handling, etc. For open-ended transla- 

5. If translation is not possible, generation of 
tion, this part of the process must also include a 

explicit messages that give reasons and speclCy 
way to run old code that was not discovered (or did 

what source changes are necessary 
not exist) at translate time. The translated image 

While we were creating the VLY translator, we 
discovered that the process of building flow graphs 
of the cocle and tracking data clepenclencies yielded 
information about source code bugs, performance 
bottlenecks, and dependencies on features not avail- 
able in all Alpha AXP operating systems. This analy- 
sis information could be valuable to a source code 
maintainer. Thus, we aclded one more product goal: 

6. Optional source analysis information 

environment (TIE) and mxr run-time environment 
support the VEST and mx translators, respectively, 
by reproducing the old operating environments. 
Each environment supports open-encled transla- 
tion by including a fallback interpreter of old code, 
and extensive run-time feedback to avoid using the 
interpreter except for dyt~atnically created code. 
Our design philosophy is to do everything feasible 
to stay out of the interpreter, rather than to increase 
the speed of the interpreter. This approach gives 

OLD BINARY 

TRANSLATOR 
(VESTIMX) 

I ::? IMAGE I I I I OPTIONAL I I ZFi'AL I OLD CODE AND ERROR 
NEW CODE MESSAGES GRAPHS 

RUN-TIME OTHER OTHER 
SUPPORT TRANSLATED NATIVE 
(TIEJMX) IMAGES IMAGES 

Figure 2 Binary Translation and Execution Process 
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better performance over :I wicler range of progranis 
than using pure interpreters o r  bounded transla- 
tion systems. 

The remainder of this paper tliscusses the two 
binary translator/run-time environment pairs ;~v;iil- 
able for Alph;~ icvP computers: VEST/'T'IE and 
mx/mxr. ?b establish a basis for the discussion, the 
reader must ilnderstarid the following terms: 
datum, alignment, instruction atomicity granular- 
ity interlocked uptlate, :ind word tearing. 
Definitions of these terms appear in the References 
and Note section.- 

VEST: Translating a VAX Image 
Translating a V.kX image involves two main steps: 
analyzing VkY cock and generating Alpha AXP code. 
The translated images produced are OpenVMS i\XP 
images and may he run just like native i~i iages .~ 
Translateel images run with the ;issistance of the 
translated image environment, wliich is discussed 
later in this paper. The VEST binary translator is 
written in C++ and runs on V f i ,  MIPS, ancl Alpha 
MI' machines. The TIE is written in the Open\lbls 
system programming langu;lges, BLISS ;Inti A.lpha 
assembler. 

To locate VAX code, \ fESI '  starts disassembling code 
at known entry points ant1 recursively traces the 
progr:~m's flow of control. Entry points come from 
main and global routines, debug symbol table 
entries, and optional information files (including 
run-time feedback from the TIE). 

As VEST traces the program, i t  builcls ;I flow graph 
that consists of basic blocks ( i t . ,  htr;iight-line code 
sequenccs) annotateel with information clerivetl 
from parsing instructions. VEST then performs sev- 
eral ;in;ilyses on the flow graph to propagate con- 
text information to each basic block and eliminate 
unnecessary operations. Context information 
includes contlition code us;ige, register contents, 
stack depth, ancl ;I variety of other information that 
allows VEST to generate optimized code. 

Analysis is important for achieving good perfor- 
mance. For exanlple, no condition codes exist in 
the Alpha LYP architecti~re. Without analysis it 
woultl be necessary to conlpute condition codes 
for each VAX instruction even if the codes were not 
used. Furthermore, several forms of ;lnalysis were 
invented to ;~llow correct tr;~nslation. For example, 
VEST automatically determines if a subroutine does 
a normal return. 

Cotle analysis can detect many problems, includ- 
ing some that indicate latent bugs in the source 
image. VEST can detect, for example, uninitialized 
variables, improperly formed VAX CASE instruc- 
tions, stack depth mismatches along two different 
paths to tlie s;lme code (the program expects data 
to be at a certain stack depth), improperly formed 
returns from subroutines, and modifications to a 
VAX call frame. A latent bug in the source image 
should be fixed, since the translated image may 
demonstrate incorrect behavior due to that bug. 

Aniilysis also detects the use of unsupported 
OlxnVMS features inclutling unsupported system 
services. The source image must be modified to 
eliminate the use of these features. 

Some problems reported by VEST result from 
code that is hackish in nature. For example, we 
foi~nd code that expects a call mask at an entry 
point to be executed as a no-op instruction so that 
the code preceding the subroutine can simply exe- 
cute the call mask, rather than go through the over- 
head of a \%X jump (JMP) instruction. VEST 
reproduces the behavior of the VAX program, even 
if this beh:~vior is a result of luck. 

A VEST-generated flow graph is displayed in 
Figure 3. Dashed lines represent code paths fol- 
lowed if a conditional branch is taken. Solid lines 
indicate fall-through paths. A problem is high- 
lighted by a wide, dashed pointer whose bottom 
entl inclicates tlie basic block in which the problem 
was uncovered. Full blocks show the path that 
reveals the error; empty blocks show basic blocks 
that are not in the error path. In Figure 3, a path 
exists by which register 3 (R3) may be used without 
being set if the VtLK BNEQ (branch if tlie register 
tloes not equal zero) instruction in the second basic 
block is true the first time through the code 
sequence. 

Code Generation 
The VEST tr;inslator generates code by converting 
each VA>< instruction into zero o r  more Alpha .GYP 
instructions. The ;irchitecture mapping is straight- 
forward because there are more Alpha AXP registers 
than VAx registers. The VAX architecture has only 15 
registers, which ;ire used for both floating-point 
and integer operations. The Alpha AXP architecture 
h;~s separate integer and floating-point registers. 
VAX RO through R14 are mapped to Alpha AXP RO 
through R14 for all operations except floating 
point. R12, RJ3, and R14 retain their V .  desig- 
nations ;is argument pointer, frame pointer, and 
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stack pointer, and R15 is used to resolve PC-relative 
references. Floating-point operations are mappecl 
to FO through F14. 

The VAX architecture has condition codes that 
may be referenced explicitly. In translated images, 
condition codes are mapped into R22 and R23. 
Similar to the HP 3000 translator, R23 is used as a 
fast condition code register for positive/negative/ 
zero results." R22 contains all four condition code 
bits and is calculated only when necessary. All 

remaining Alpha AXP registers are used as scratch 
registers or  for OpenvMS MI' standard calls. 

VEST connects simple branches directly to their 
translated targets. VEST performs backward sym- 
bolic execution of VAX instructions to resolve as 
many computed branch targets as feasible. If more 
than one  possible computed target exists, a run- 
time lookup is done on  the V k d  target adclress. If the 
lookup fails to find a translated target, a fallback 
V M  interpreter is used, as described in the TIE sec- 
tion Failure to Find All Code during Translation. 
Unlike boundetl translation systenls, which must 
achieve 100 percent resolution of computed tar- 
gets, the VEST and mx binary translators require no 
manual intervention. 

Translated Images 
A translated image has the same format ;IS an 
OpenVMS AXP image and contains the original 
OpenVMS VAX image as well as the Alpha AXP 
instructions that were generated for the VAX coclc. 
The run-time VAX interpreter TIE needs the original 

instructions as a fallback. (Also, some error 
handlers look u p  the call stack for pointers to  spe- 
cific V M  instructions.) The addresses of statically 
allocated data in the translated image are identical 
to their V.&X addresses. The image contains a VM-to- 
Alpha AXP address m:~pping table for use during 
lookups and may contain an instruction atomicity 
table, described in the VAX Instruction Guarantees 
section. 

Translated images use the OpenVMS VAX calling 
standard. Native images use different conventions, 
but translated images interoperate with native o r  
translated shareable images. Automatic jacketing 
services are providetl in the TIE to convert calls 
using one  set of conventions into the other. In 
many cases, jacketing services permit substitution 
of a native shareable image for a translated share- 
able image without modification. However, a jacket 
routine is sometimes required. For example, o n  
OpenVhlS U P  systems, the translated FORTRAN 
run-time library, FORRTL-TV, invokes the native 
Alpha IU(P library DEC$FORRTL for I/O-related sub- 
routine calls. DEC$FORRTL has a different interface 
than FORRTL has on  an  OpenVMS VAX system. For 
these calls, FORRTL-TV contains handwritten jacket 
routines. 

Files Used 
Translating an image requires only one  file-a VAX 
executable image. Several optional files make t rans  
lation more effective. 
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1 .  1ni;lge information Files (IIFs). VEST automati- 
c:llly creates IIFs to provide information ;ibout 
shareable image interfaces. The inform:ition 
inclucles the adtlresses o f e n t ~ ~ ~  points, n;lnies of 
routines, and resource utilization. 

2. Symbol information files (SIN). VEST automati- 
cally generates sIFs to control the global syrubol 
table in a translated shared library, facilitating 
interoperation between translated ant1 n;~tive 
image>. 

3. Hand-edited information files (HIFs). The TIE 
a~~tomatically generates I-IIFs, which m;ly be 
hand-edited to supply information that VEST can- 
not cleduce. HIFs cont:~in directives to tell VEST 
about i~ndetected entry points, to force it to 
ch;lnge specific assumptions ;ibout an image tliir- 
ing translation, ant1 to provide known interpice 
properties to be prop;~g;~ted into an [IF. 

VEST Per$ormance Considerations 
I n  evr~lu;~ting translated cotle performance, we rec- 
ognized that there was a significant trade-off 
between performance ant1 the accuracy of emulat- 
ing the VAX architecture. VEST perlnits i~sers to 
select several architectural assumptions and opti- 
miz;ltions, including: 

D-float precision. The Alpha U P  architecti~re 
jxovitles hardware support for D-float with only 
53-bit mantissas, whereas the vhx architecture 
provitles 56-bit mantissiis. Tile user may select 
translation with either 53-bit hardware support 
(f~ster) or 56-bit software support (slower). 

Alignment. Alpha AXP instructions slipport Only 
nati~rally aligned longword (32-hit) ant1 quatl- 
wortl (Whit)  memos). operations. LJnalignetl 
memory operations cause alignment fi~ults, 
wliicli :Ire handled tr:unsp;rrently by softw;~re at 
signitlcant run-time expense. The user may 
direct VEST to assume th;it data references are 
~~n:~lignetl whenever ;rlignment information is 
~~n;~v;iil:~ble, 

Instruction aton1icit)l. Multitasking and multi- 
processing programs may depend on jnstri~ction 
atomicity and memory operation cllaracteristics 
simil;~r- to those of the VAS architecture. VEST 
uses special code sequences to produce exact 
\/AX memory characteristics. VEST and the TIE 
cooperate to ensure VAX instruction atomicity 
wlien instructed to d o  so. This mecliaoisni is 

describcd in detail in the section Special 
Considerations for Instruction Atomicity. 

Untranslatable Images 
Some characteristics make OpenVMS VAX images 
untranslatable, including: 

Exception handler issues. Images that tlepend 
on ex;~mini~ig the V s  processor status longword 
(~'sL) (luring exception Iianclling must be niodi- 
fiecl, because the VAX PSL is not available within 
exception handlers. 

Direct reference to undoci~nlented system ser- 
vices. Some software contains references to 
unsuj>l'orted and undocumented system ser- 
vices, such as an intern2il-to-\/MS service, which 
parses image symbol tables. VEST highlights 
these references. 

Exact VAX memory management requirements. 
Images that tlepend on exact VtU( memory man- 
agement behavior clo not function properly and 
must be modified. These images inclucle those 
that tlepentl on VN( page size or that cxpect 
certain objects to be m;ippetl to particular 
addresses. 

1m;ige format. Programs that use images as data 
are not able to read Open\OtS S P  images with- 
out modifications, because the image formats 
are different. 

TIE Design Overuiew 
The run-time translatetl image environment TIE 
assists 111 executing translated OpenVMS VrU( images 
under the OpenmSA)(P operating sptem. Figure 4 
and Table 1 show the contents of the TIC 

Problems Solved at Run Time 
Complici~tions may occur when translated 
OpenVMS \ I U  images arc run under the OpenVMS 
AXP operating system. This section tliscusses the 
following related topics: the failure to find a11 code 
during translation, \'AX instruction guarantees, 
instruction atomicity, memory update, and preserv- 
ing VtLY exceptions. 

Failure to Find All Code dt~ring TI-c~nslation 
When the \/EST binary translator encounters ;i 

brancli or subroutine c;ill to an unknown destina- 
tion, VEST generates code to call one of the TIE 
lookup ro~~tines.  The lookup soutilies niap a V a  
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instruction address to a translated Alpha tLYP code If the target of the flo-w change is translated cotle, 
address. If an address mapping exists, then a trans- the interpreter exits to this code. Otherwise, the 
fer to the translatetl code is performed. Otherwise, interpreter continues to interpret the target. 
the VAX interpreter executes the destination code. Lookup operations that transfer control to the 
When the VAX interpreter encounters a flow of con- interpreter also record the starting V k u  code 
trol change, it checks for returns to translated code, address in an HIF file. The ViU( image can then be 

retranslatecl with the HIF information, resulting in 
an image that runs faster. 

Lookup routines are also usecl to call native 
Alpha AXP (nontranslated) routines. The TIE sup- 
plies the required special autojacketing processing 
that allows interoperation between translated and 
native routines with no manual intervention. At 
load time, each translated image identifies itself to 
the TIE anti supplies a mapping table ilsetl by the 
lookup routines. The TIE maintains a cache of trans- 
lations to speed LIP the actual lookup processing. 

Every translated image contains both the original 
VAX code and the corresponding Alpha U P  code. 
When a translated image identifies itself, tlie TIE 
marks its original VtU( addresses with the page pro- 
tection called fault on execute (FOE). An Alpha AXP 
processor that attempts to execute an instruction 
on one of these pages generates an access violation 
fault. This fault is processed by a TIE condition Iian- 
dler to convert the FOE page protection into an 
appropriate destination address lookup operation. 
For example, the FOE might occur when a trans- 
lated routine returns to its caller. If the caller was 
interpreted, then its return address is a Vtm code 
address insteatl of a translated VAx (Alpha Axp 

Figztrc? 4 VEST Run-time Eizzlirontnent code) address. The Alpha AXP processor attempts 

MAIN AND 
SHAREABLE 
IMAGES 

Table 1 TIE Contents 

NATIVE 
IMAGES 

VAX-to-Alpha AXP Address Mapping 
(VAX State Manager) 

OPENVMS AXP 

CALLBACKS 

4 4 4 

MANAGER 

INTERPRETER 

VAX Instruction Atomicity Controller 
(VAX State Manager) 

VAX Instruction Interpreter 
VAX Complex Instructions 

OpenVMS VAX Exception Processing 

Routines for Differences between OpenVMS 
VAX and OpenVMS AXP System Services 

Used to find computed destinations and other cases 
where VEST did not find the original VAX code. Each 
translated image has a mapping table included. 
Achieves VAX instruction atomicity for asynchronous 
events. This allows data sharing between the single 
asynchronous execution context (AST) provided by 
OpenVMS and non-AST level routines. 
Executes VAX instructions not found by VEST. 
Some VAX instructions do not have code generated in-line 
by VEST. Those instructions are processed in the TIE. 
Examples are MOVC3 and MOVC5 that move byte strings. 
Certain aspects of OpenVMS AXP exception processing 
are necessarily different from OpenVMS VAX. For 
example, the VAX computers have two scratch registers, 
but Alpha AXP computers have 15. Translated condition 
handlers are passed the VAX equivalents. 
Some operating system interfaces were rearchitected. 
The TIE intervenes to make the differences transwarent. 
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to exccute the VXZ code ant1 generates a FOE condi- 
tion. The T I E  condition h;~ndler converts this into a 
,1J41' lookt~p operation. 

VAX I~zstt~zrctio~z Gunr~rritees Instruction guaran- 
tees :ire characteristics of a computer architecture 
th:~t are inhercnt to instructions executecl on that 
architecl~rre. For example, o n  ;I VLG computer, if 
instruction 1 writes data to  memory ancl then 
instruction 2 writes data to memory, a second pro- 
cessor must not see the write from jnstruction 2 
before thc write from instruction I.. This property 
i s  called strict read-write ordering. 

The VES'IYTIE pair can provide the illusion that a 
single (:IS<: instruction is executed in its entirety, 
even thougli the underlying translation is :I series 
of RlX:  instructions. VEST/?'IE can also provide the 
illusion o f  two processors updating adjacent mem- 
ory l3yte.s without interference, even thoirgh the 

unclerlying IUSC instructions manipulate four o r  
eight bytes at a time. Finally, VEST/TIE can provide 
exact memory read-write ordering and arithmetic 
exceptions, e . g . ,  overflom~. All these provisjons are 
option;~l and require extra execution time. 

Tables 2 and 3 show the visibility differences 
between various guarantees on  VAX and Alpha AXP 

systems as well as for translated VhX programs. 

Special Considerations for- Instrzrction Atoi?licity 
The VAX' ;lrchitecture requires that interrupted 
instructions complete o r  appear never to have 
started. Since translation is ;I process of converting 
one  VAX instruction to  potentially many Alpha AXP 
instructions. run-time processing must achieve this 
gu;lr;lntee of instruction atomicity Hence, a \'AX 
instruction atomicity controller (MC) was created 
to manipulate Alpha AXP state to  an equivalent 
VAX state. When a translated asynchronous event 

Table 2 Single  P r o c e s s o r  G u a r a n t e e s  

Single Processor Guarantees Characterized by What an Observer Sees  
on t h e  Same  Processor That Executes t h e  Data Change 

Topic VAX Translated VAX Native Alpha AXP 

Instruction An entire An entire translated A single Alpha AXP 
Atomicity VAX instruction VAX instruction with instruction 

/PRESERVE=INSTRUCTION 
-ATOMICITY and TIE'S 
instruction atomicity 
controller, else a single 
Alpha AXP instruction 

Table 3 M u l t i ~ l e  P r o c e s s o r  G u a r a n t e e s  

Multiple Processor Guarantees Characterized by What a n  Observer 
on a Different Processor S e e s  versus the  One Executing the  Data Change 

Topic VAX Translated VAX Native Alpha AXP 

Byte Granularity Yes, hardware 
ensures this 

Interlocked Update 

Word Tearing 

Yes, for aligned 
datum using interlock 
instructions 
Aligned longword 
writes change all 
bytes at once 

Other writes are 
allowed to change 
one byte a t  a time 

Yes, with 
/PRESERVE=MEMORY 
- ATOMICITY 
Yes, for aligned datum 
using VAX interlock 
instructions 
Aligned longword or 
quadword writes 
change all bytes 
at  once 

Yes, via LDx-L, 
merge, STx-C 
sequence 
Yes, via LDx-L, 
modify, STx-C 
sequence 
Aligned longword or 
quadword writes 
change all bytes 
at  once 
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processing routine is called, the L4C is invoked. The 
LAC examines the Alpha ASP instruction stream and 
either backs up the interrupted program counter to 
restart at the equivalent v a  instruction boundary 
or executes the remaining instructions to the next 
boundary. Many V !  programs do not require this 
guarantee to operate correctly, so VEST emits code 
that is VAX instruction atomic only if the qualifier 
/PRESERVE=INSTRUCTION-ATOMICITY is specified 
when translating an image. 

VEST-generated code consists of four sections 
that are detected by the L4C. These sections have 
the following functions: 

Get operands to temporary registers 

Operate on these temporary registers 

Atomically update VAX results that could gener- 
ate side effects (i.e., an exception or interlocked 
access) 

Perform any updates that cannot generate side 
effects (e.g., register updates) 

The \TAX interpreter achieves VAX instruction 
atomicity by using the atomic move, register to 
memory (AMOVRM) instruction. The AIIOVRM 
instruction is implemented in privileged archi- 
tecture library (PAL) subroutines and updates a 
contiguous region of memory containing \TAX 

state without being interrupted. At the begin- 
ning of each interpreted vAx instruction, a read and 
set flag (RS) instruction sets a flag that is cleared 
when an interrupt occurs on the processor. 
AMOVRM tests the flag, and if set, performs the 
update ant1 returns a success indication. If the flag 
is clear, the h10VRhl instruction indicates failure, 
and the interpreter reprocesses the interrupted 
instruction. 

Isszles with Changing Memory VAX instruction 
atomicity ensures that an arithmetic instruction 
does not have any partially updated memory loca- 
tions, as viewed from the processor on which that 
instruction is executed. In a multiprocessing envi- 
ronment, inspection from another processor could 
result in a perception of partial results. 

Since an Alpha M P  processor accesses mem- 
ory only in aligned longwords or quadwords, it 
is therefore not byte granular. To achieve byte 
granularity, VEST generates a load-locked/store- 
conditional code sequence, which ensures that a 
memory location is updated as if it were byte granu- 
lar. This sequence is also used to ensure interlocked 
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access to shared memory. Longword-size updates 
to aligned locations are performed using nor- 
mal load/store instructions to ensure longword 
granularity. 

Many multiprocessing vAX programs depend 
on byte granularity for memory update. VEST 
generates byte-granular code if the condition 
/PRESEU\~E=MEMOU\'-ATOMICln is specified when 
translating an image. In addition, VEST generates 
strict read-write ordering code if the qualifier 
/PRESERVE=RUD-WRITE-ORDERING is specified 
when translating an image. 

Preserving VAX Exceptions Alpha AXP instruc- 
tions do not have the same exception characteris- 
tics as VA); instructions. For instance, an arithmetic 
fault is imprecise, i.e., not synchronous with the 
instruction that caused it. The Alpha kXP hardware 
generates an arithmetic fault that gets mapped 
into an OpenvMS AXP high-performance arith 
metic (HPARITH) exception. To retain compati- 
bility with VkY condition handlers, the TIE maps 
HPrUiITH into a corresponding VA?< exception when 
calling a translated condition handler. Most VAX 
languages do not require precise exceptions. 
For those that do, like BASIC, VEST generates 
the necessary trap barrier (TRAPB) instructions 
if  /PRESERVE=FLOATING-LYCEPTIONS is specified 
when translating an image. 

OpenVMS AXP and 
OpenVfWS VAX DzIfferences 
Functional Differences Most OpenVMS AXP 
system services are identical to their OpenVMS VAx 
counterparts. Services that depend on a \TAX-spe- 
cific mechanism are changed for the Alpha AXP 
architecture. The TIE intervenes in such system ser- 
vices to ensure the translated code sees the old 
interface. 

For example, the declare change mode handler 
($DCLCMH) system service establishes a handler for 
VAX change mode to user (CHMU) instructions. The 
handler is invoked as if it were an interrupt service 
routine required to use the V .  return from inter- 
rupt or exception (REI) instruction to return to the 
invoker's context. On OpenVMS AXP systems, the 
handler is called as a normal procedure. To ensure 
compatibility, the TIE inserts its own handler when 
calling OpenVMS iiXP $DCLCMH. When a CHMU is 
invoked on Alpha t U P  computers, the TIE handler 
calls the handler of the translated image, using the 
same VAX-specific mechanisms that the handler 
expects. 
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Exceptio?z Handlirg OpenVMS AXP exception 
processing is alrnost identical to that performed in 
the OpenVMS VAX system. The niiijor tlitference is 
that the VA)C. mechanism array neetls to hold the 
value of only two temporary registers, RO and R1, 
whereas the Alpli~ LYP mechanism array neetls to 
holcl the value of 15 temporary registers, RO, R1, ant1 
R16 through R28. 

Co~nl~ lex  Instrz~ctions Translating some VAS 

instri~ctions woulcl require many Alpha AXI-' 
instructions. Instead, VEST generates code that calls 
a TIE subroutine. Subroutines are implemcntetl in 
two ways: (1) handwritten native enlulation rou- 
tines, e.g., MOVC5, ancl (2) VEST-translatecl VAX emu- 
lation routines, e.g., POLYH. 

Together, VEST ant1 TIE can translate ant1 run most 
existing user-mode VAX bin;irlr inxlges. As shown in 
Table 4, performance of translated VAX programs 
slightly exceeds the original goal. Performance 
depends heavily on tlie frequency of use of  VAX fea- 
tures that are not present in Alpli;l AM-' machines. 

ULTRYX MIPS Translation 
mx is the translator that converts IJ1:SRIX >lIl'S pro- 
grams to DEC OSF/l AXP programs. The rnx project 

started after VEST was filnctional, and we took 
advantage of the VEST common code base for much 
of tlie analysis nnd Alpha AXP code assembly phases 
of the translator. In hc t ,  about h;ilf of the cotle in 
mx is compilecl from the same source files as those 
usetl for VEST, with some architectural specifics 
suppljecl by differing inclutle files. The cocle-shar- 
ing aspects of  C++ have proven quite valuable in 
this regard. 

mxr is the run-time support system for translated 
programs. It provicles services simil;~r to TIE, emu- 
lating the ULTRIX MIPS environment on a DE<: OSUl 
AXP system. mxr is written in C++, C ,  and Alpha 
;~ssenibler. 

Challenges 
Creating a translator for the MIPS R2000/R3000 
architecture presented us with a Iiost of new oppor 
tunities, along with some significant challenges. 
The basic structure of the mx triinslator is much 
simpler than that of VEST. Both the source and 
the target architectures are IIISC: niachines; there- 
fore, the two instruction sets have a consideriible 
similaritj~. Many instructions translate one for one. 
The MIPS architecture has very few instruction sick 
effects or subtle architect~~ral ciet;lils, although 

Table 4 Translated VAX Performance, Normalized to Native-compiled OpenVMS AXP Code 

VEST 
VAX Time Translated Time Native Time 
on VAX 6610 on DEC 7000 AXP on DEC 7000 AXP 

Program (83.3 MHz) (167 MHz)* (1 67 MHz) 

gee 
express0 
spice2g6 
doduc 
nasa7 
l i  
eqntott 
matrix300 
~PPPP 
tomcatv 

Geometric Mean 
(without gcc) 

Notes: 
The larger the number, the slower the performance. These performance numbers were measured on derated field test hardware and 
software at various times during 1992; production results will vary somewhat. The SPEC benchmarks are written in FORTRAN and C; 
no conclusions should be drawn about other classes of programs wr~tten in other languages. 

'The DEC 7000 system was running at a derated speed compared to product~on DEC 7000 systems. 

t~ iming information for this run is not available. 



those that are present are particularly tricky. 
Furthermore, the format of an executable program 
i~ncler the IJLTRIX system collects all code in a single 
contiguous segment and makes it easy for rnx to 
reliably find close to 100 percent of the code in the 
MIPS application. The system interfaces to the 
rJLTRIX and DEC OSF/1 systems are similar enough 
that most ULTRlX system calls have functionally 
identical counterparts under the DEC OSF/l system. 

The challenges in mx stem from the fact that the 
source architecture is a RlSC machine. For example, 
DEC OSF/l L K P  is a 64-bit computing environment, 
i.e., all pointers used to communicate with the 
operating system are 64 bits witle. This environ- 
ment does not present a problem when the pointer 
is passed in a register. However, when a pointer (or 
a long data item, such as a file size) is passed in 
memory, it must be converted between the 32-bit 
representation, used by the LILTRIX system, and the 
64-bit mP representation, even when the seman- 
tics of the operating system call are the same on 
both systems. 

A significant challenge is the fact that our users' 
expectations for performance of translated pro- 
grams are much higher than for VEST. Reasoning 
that the source and target machines are similar, 
users also expect mx to achieve a translated pro- 
gram perfornlance better than that of the source 
program, since Alpha U P  processors are faster. 
Thus, as our performance goal, we set out to pro- 
duce a translated program that runs at about the 
same speed as the original program would run on a 
MIPS R4000 machine with a 100-megahertz (MHz) 
internal clock rate. 

Mapping the Architectures 
At first glance, it appears that we could simply 
assign each MITJS register to a corresponding Alpha 
iu;P register, because each machine has 32 general- 
purpose registers. The translated code would then 
have two scratch registers, since the MIPS architec- 
ture does not allow user-level programs to use reg- 
isters KO and K1, which are reserved for the 
operating system kernel. 

Unfortunately, translation requires more than 
two scratch registers The Alpha I\XP arch~tecture 
does not have byte or halfword (16-bit) loads or 
stores, and the code sequences for perform- 
lng these operations require four or five scratch 
registers. Furthermore, rnx reclulres a base register 
to locate mxr without having to load a 64-bit 
address constant at each call. Finally, the ivlIPs 

architecture has more than 32 registers, including 
the HI and LO registers used by the multiply and 
divide instructions, and a floating-point condition 
register, whose layout and contents do not corre- 
spond to the Alpha &YP floating-point condition 
register. 

In mx, we assign registers using standard conl- 
piler techniques. To assign registers to 33 MII-'S 
resources (the 32 general registers plus one 64-bit 
register to Iiold both HI and LO), certain registers 
are permanently mapped, and other M[PS registers 
are kept in either AXP registers or memory. The 
MIPS argument-passing registers A0 through A3 are 
permanently assigned to Alpha AXP registers R16 
through R19, mihicll are the argument registers in 
the DEC OSF/l AXP calling standard. This correspon- 
dence simplifies the work needed when mxr must 
take arguments for an UUrlUX system call and pass 
them to a DEC OSF/1 system call. Similarly, the argu- 
ment return registers VO and V1 are mapped to the 
Alpha &XI3 argument return registers RO and R1. The 
return address registers and stack pointer registers 
of the two machines are also mapped. MIPS RO is 
mapped to Alpha AXP R31, where both registers 
contain the same hard-wired zero value. We reserve 
Alpha AXP registers R22 through R24 as scratch reg- 
isters and also use them when interfacing to mxr. 
We reserve Alpha L K P  R14 as a pointer to an mxr 
communication area. Finally, we reserve three 
more registers as scratch registers for use by the 
code generator. 

The remaining 16 Alpha AXP registers are avail- 
able to be assigned to the remaining 23 MIPS 
resources. After the code is analyzed and we have 
register usage information, the 16 most freqi~ently 
used MIPS registers get mapped to the remaining 16 
Alpha AXP registers, and the remaining registers are 
assigned to memory slots in the mur cornmunica- 
tion area. When a MIPS basic block uses one of the 
slotted registers, rnx assigns it to one of the scratch 
registers. If the first reference reads the old con- 
tents of the register, mx generates a load instruc- 
tion from the communications area. If the value of 
the MIPS resource changes in the basic block, the 
scratch register is stored in the communication 
area before the end of the block. As in most compil- 
ers, if we run out of registers, a spill algorithm 
chooses a value to save in the communication area 
and frees up a register. 

Alpha AYI-' integer registers are 64 bits witle, 
whereas MlPS registers are only 32 bits wide. We 
chose to keep all 32-bit values in Alpha U P  integer 

Digital Trchtrical Jourtcal Val. 4 No. 4 Special Issue 1992 147 



Alpha AXP Architecture and Systems 

registers as sign-extended values, with the high 32 
bits equal to bit 31. This approach occasionally 
requires mx to generate additional code to create 
canonical 32-bit integer results, but the &-bit com- 
pare operations do not need to change the values 
that they are comparing. 

The floating-point architecture is more complex. 
Each of the 32 MIPS floating-point registers is 32 bits 
wide. Only the even registers are used for single 
precision, and a double-precision number is kept 
in an even-odd register pair. We map each pair of 
MIPS floating-point registers onto a single 64-bit 
Alpha AXP floating-point register. Also, one Alpha 
AXP floating-point register represents the condition 
code bit of the MIPS floating-point control register. 
Thus, the mx code generator can use 14 scratch 
registers. nLu goes to considerable effort to find 
paired loads and stores in the MIPS code stream, and 
to merge them into one Alpha AXP floating-point 
operation. 

MII'S single-precision operations cause problems 
with floating-point corresponclence. Since on MIPS 
machines, the single-precision number is kept in 
only the even register of the register pair, the even 
and odd registers in a pair are independent when 
single-precision (or integer) operations are done in 
the floating-point unit. On Alpha AXP machines, 
computation must be done on a value extended to 
double format in the whole 64-bit register. We 
defined two forms for values in Alpha AXP floating- 
point registers: computational form, in which com- 
putation is done, and canonical form, which 
mimics the MIPS even and odd registers. If a MlPS 
program loads an even register and uses this regis- 
ter as a single-precision value, mx loads the value 
from memory to be used computationally. Lf a MlPS 
program loads only an even register but does not 
use this register in the basic block, mx puts the 32- 
bit value into half of the Alpha AXP floating-point 
register. This permits correct behavior in the patho- 
logical case where half of a floating-point number is 
lo:~ded in one place, and the other half is loaded in 
some other basic block. If a register is used as a sin- 
gle-precision number in a basic block without first 
being loaded, the code generator inserts code to 
convert it from canonical to computational float- 
ing-point form. If a single-precision value has been 
computed in a block and is live at the end of the 
block, it is converted to canonical form. 

mx inserts a register mapping table into the 
translated program that indicates which MIPS 
resources are statically mapped to which Alpha 

AXP registers, ancl which MIPS resources are nor- 
mally kept in memory. This table allows mxr to find 
the MIPS resources at run time. 

Finding Code 
As with the VEST translator, mx finds code by 
starting at entry points and recursively tracing 
down the flow of control. mx finds entry points 
using the executable file header, the symbol table 
(if present), and feedback from mxr (if present). 
Finally, mx performs a linear scan of the entire 
text section for unexaminetl words. mx analyzes 
any data that looks like plausible code but does not 
connect this data into the main flow graph. 
Plausible code consists of a series of valid MIPS 
instructions terminated by an unconditional trans- 
fer of control. 

While finding code and connecting the basic 
blocks into a flow graph, mx looks for the code 
sequence that indicates ;I switch statement, i.e., a 
multi-way branch, usually through an element of a 
table. mx finds the branch table and connects each 
of the possible targets as successors of the branch. 

Code Analysis 
Our static analysis of hundreds of NlIPS programs 
indicates that only 10 instructions account for 
about 85 percent of all code. These instructions are 
LW, ADDIU, SW, NOP, ADDIJ, BEQ, JAL, BNE, Lt J I ,  and 
SLL. The corresponding sequences of Alpha AXP 
code range from zero operation codes, or opcodes, 
(for NOP, since the Alpha AXP architecture does not 
require NOPs anywhere in the code stream) to two 
opcodes (for SLL). 

Code analysis for source programs is much more 
important in mx than in VEST, because the coding 
idioms for many common operations dlffer 
between the Alpha AXP and MlPS processors. The 
simple technique of mapping each MIPS instruction 
to a sequence of one or more Alpha AXP instruc- 
tions loses much of the context information in the 
original program. 

For example, the idiom used to load a 32-bit 
constant into a register on M[PS machines is to gen- 
erate a load upper immediate (LUI) opcode, placing 
a 16-bit constant in the high-order 16 bits of a 
register. This operation is followecl by an OR imme- 
diate (OM) opcode, logically ORing a 16-bit 
zero-extended value into the register. The LUI 
corresponds exactly to the Alpha i \xP load address 
high (LDAH) opcode. However, the Alpha AXP 
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architecture has no way of directly ORing a 16-bit 
value into a register and cannot even load a zero- 
extended 16-bit constant into a register. When the 
high-order bit of the 16-bit constant is 1, the short- 
est translation for the ORI is three instructions. The 
mx translator scans the code looking for such 
idioms, and generates the optimal two-instruction 
sequence of Alpha AXP code that performs the 32- 
bit load. No opcode exists that corresponds to the 
ON, but the results in the registers are correct. 

When we started writing the mx translator, 
we listed a number of code possibilities that we 
thought we would never see. In retrospect, this was 
a misguided assumption. For example, we have 
seen programs that branch into the delay slot of 
other instructions, requiring us to indicate that the 
delay slot instruction is a member of two different 
basic blocks-the block it ends, and the one it 
starts. We have observed programs that put soft- 
ware breakpoint (BREAK) instructions in the branch 
delay slot, and thus BREAK ends a basic block with- 
out being the last instruction. Some compilers 
schedule code so that half of a floating-point regis- 
ter is stored and then reused before the other half is 
stored. The general principle that we intuit from 
these observations is "if a code sequence is not 
expressly prohibited by the architecture, some pro- 
gram somewhere will use it." 

Code Generation 
After the program is parsed and analyzed and the 
flow graph is built, the code generator is called. It 
builds the register mapping table and then, in turn, 
processes each basic block, generating Alpha AXP 
code that performs the same functions as the MIPS 
code. 

At each subroutine entry, mx scans the code 
stream with a pattern-matching algorithm to see if 
the code corresponds to any of a number of stan- 
dard MlPS library routines, such as strcpy. (Note that 
the ULTRlX operating system has no shared 
libraries, so library routines are bound into each 
binary image.) If a correspondence exists, the 
entire subroutine is recursively deleted from the 
flow graph and replaced with a canned routine to 
perform the subroutine's work on Alpha AXP pro- 
cessors. This technique contributes significantly to 
the performance of translated programs. 

For each remaining basic block, the instructions 
are converted to a linked list of intermediate 
opcodes. At first, each opcode corresponds exactly 
to a MIPS opcode. Tlie list is then scanned by an 

optimization phase, which looks for MlPS coding 
idioms and replaces them with abstract machine 
instructions that better reflect the idiom. For exam- 
ple, mx changes loads of immediate values to a non- 
MlPS hardware load immediate (LI) instruction; shift 
and add sequences to abstract operations that 
reflect the Alpha AXP scaled add and subtract 
sequences; and sequences that change the floating- 
point rounding mode (used to truncate a floating- 
point number to an integer) to a single opcode that 
represents the Alpha &V convert operation with 
the chopped mode ( /C)  modifier. 

MlPS code contains a number of common code 
sequences that cross basic block boundaries, 
but which can be compressed into a single basic 
block in Alpha AXP code. Examples of these are 
the min and max functions, which map neatly 
onto a single conditional move (CMOVxx) instruc- 
tion in Alpha AXP code. The code generator looks 
for these sequences, merges the basic blocks, 
and creates an extended basic block, which 
includes pseudo-opcodes that indicate the MIPS 
code idiom. 

After the optimizer completes the list of instruc- 
tions, it translates each abstract opcode to zero or 
more Alpha AXP opcodes, again building a linked 
list of instructions. This process may permit further 
improvements, so the optimizer makes a second 
pass over the Alpha AXP code. 

When processing a basic block, the code genera- 
tor assumes that it has an unlimited number of tem- 
porary resources. Since this is not actually true, the 
code generator then calls a register assigner to allo- 
cate the real Alpha AXP temporary resources to the 
intermediate temporary registers. Tlie register 
assigner will load and spill MIPS resources and gen- 
erated temporary registers as needed. 

Finally, the list of Alpha AXP instructions is assem- 
bled into a binary stream, and the instruction 
scheduler rearranges them to remove resource 
latencies and use the chip's multiple issue capability. 

Image Formats 
The file format for input is the standard ULTRIX 
extended common object file format (COFF). In 
most ULTRIX MlPS programs, the text section starts 
at 00400000 (hexadecimal) and the data at 
10000000 (hexadecimal). In virtually all programs, 
a large gap exists between the virtual address for 
the end of text and the start of the data section. 
When mx creates the output image, it places the 
generated Alpha AXP code after the MIPS code and 

Digital Technical Joztrnal Vol. 4 No. 4 Speciallssue 1992 



Alpha AXP Architecture and Systems 

before the MIPS data. This allows the program to 
have one large text section. The Alpha AXP code 
begins at an Alpha AYP page boundary, so that we 
can set the memory protection on the IMII'S code 
separately from the Alpha t\XP code. 

The translatecl image is not in LIE<: OSF/l tU1' exe- 
cutable format. Instead, i t  looks like a Mil's (:OFF 
file, but with tlie first few bytes changetl to the 
string "*!/usr/bin/mxr". 

Execw ting n Translated Program 
When a translated image is run on I)E(: OSWl x x ~ .  
its ~i~otlifiecl header invokes mxr first. mxr uses tlie 
nienior!r map (mrnap) system call to loacl the trans- 
lated program at the same virtual atltlress th;lt it 

would have liad under tlie LlL'I"I1LX operating 
system. rnxr resets the protection of the MIi-'S code 
to read/no-write/no-execute, the Alpha ASP code 
to read/no-write/esecute, and the c1;1t;1 to read/ 
write/no-execute. 

mxr allocates a communication area ancl ini- 
tializes Alpha &YP R14 to point to this are;). The 
colnmi~nication area contains save areas for 
>,IIPS resources, iliitialized pointers to nlxr ser- 
vice routines, ancl other scr:~tcli space. mxr then 
constructs new conimantl argument (nrgv) and 
environment vectors as 32-bit wicle pointers (as the 
MII-'S program expects). arranges to intercept cer- 
tain signals from the I>EC OSF/l U P  system. and 
transfers control. to the translated start acldress of 
the program. 

When a system signal is tleliveretl to the program, 
control goes to the signal intercept code in mxr. 
This cocle transforms the signal context structure 
from the DEC OSF/l ILYP system and constructs a n  
LIL'TRIX PIIPS style context, which it tllen passes to 
the translated signal h:lncller. 

Certain signals are processed specially. For 
instance, a program that attempts to transfer con- 
trol to a location containing MIPS code rather than 
translated code gets a segmentation violation, since 
the MIPS code is not executable. This situation 
can occur if a routine modifies its return adclress 
to be a MIPS address constant, mxr will examine 
the target address antl, if it correspontls to the start 
of ;I pretranslated MIPS basic block, divert the flow 
of control to the translatetl cocle for that block. 
If not, mxr enters the MII-'S interpreter. The 
interpreter proceeds to emulate the MIPS code 
until a translated point is reached. mxr then 
resynchronizes its machine state and reenters the 
translated code. 

Translation Goals and Classes 
of Programs Not Supported 
011s goill was to translate most user-mode MIPS pro- 
grams compiled for a MIPS R2000 or R3000 machine 
running III*TRIX Release 4.0 (or later) to run iclenti- 
cally on the I>EC OSF/l AYP system with acceptable 
1xrh)rrn;lnce. As shown in Table 5, performance of 
translatetl MIPS programs meets or exceeds the 
origin;~l goal. 

Table 5 Translated MlPS 
Relative Performance 

MlPS Time on Translated Time 
DECstation on DEC 3000 
5000 Model 240 AXP Model 500 

Program (40 MHz) (1 50 MHz) 

SPECint92 
espresso 2.4 1.1 (1 .O)* 
l i  1.6 1.2 (1 .O) 
eqntott 1.6 2.1 (1 .O) 
compress 2.7 1.0 (1.0) 
SC -t - 
gee 2.1 1.2 (1 .O) 

Geometric Mean 2.0 1.3 (1.0) 
(without sc) 

SPECfp92 
spice2g6 - 
doduc 1.7 
mdljdp2 2.7 
wave5 1.1 
tomcatv 3.0 
o ra 1.5 
alvinn 1.6 
ear 1.7 
mdljsp2 1.4 
swm256 2.3 
su2cor 2.7 
hydro2d 2.9 
nasa7 2.6 

~ P P P P  2.2 
Geometric Mean 2.0 
(without 
spice2g6) 

Notes: 
The larger the number, the slower the performance. These 
performance numbers were measured on derated field test 
hardware and software at various times during 1992; production 
results will vary somewhat. The SPEC benchmarks are written 
in FORTRAN and C; no conclus~ons should be drawn about other 
classes of programs wr~tten In other languages. 

'The values in parentheses are from running once, then 
retranslating with the run-time feedback from the f~rst  run; 
this gave a significant performance difference only for the 
programs shown. 

t ~ i m i n a  information for this run is not available. 
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Due to extreme technical obstacles, some classes 
of programs will never be supported by mx. U'c 
decidecl not to translate programs that use privi- 
leged opcodes or  system calls o r  that neetl to run 
with superuser privileges. In cases where the file 
system hierarchy differs between the LJLTRIX and 
I>E<:    SF/^ at' systems, programs that expect files 
to be in particular places o r  in a particular format 
m;ry fail. Similarly, programs that read /dev/kmem 
and expect to see an LJLTRIX MIPS memory layout 
f ~ i l .  

Certain other classes of programs are not cur- 
rently supported, but are technically feasible. 
These include big entlian MIPS programs from non- 
L)igit;~l >Ill'!, environments, programs that use 
1c4000 or  116000 instructions that are not present 
011 tlie R3000 motlel, programs that need to be 
~nu l t i~ rocesso r  safe, and programs that require cer- 
tain categories of precise exception heh;~vior. 

Szcmmary 
Builtling successful turnkey binary translators 
reqi~ires hartl work but not magic. We built two dif 
ferent translators; VEST and mx. In both c;rses, the 
oltl and new environments are, by design, quite 
similar in fundamental data types, memory atltlress 
ing, register ;rnd stack usage, and operating system 
services. Translators between dissiniil;~r ;rrchitec- 
tures or  operating systems are :I different matter. 
Translating tlie code might be a reason;lbly straight- 
h~rward  task. However, emulating a run-time envi- 
ronment in which to execute the code might 
,?resent insurmountable technical ;rntl business 
01~st:icles. Without capturing the environment, an 
instruction translator would be of no use. 

The ide;~ of binary translation is becoming more 
common in the conlputer industry, as v;~rious other 
co11ip;lnies start on  their transitions to 64-bit 
;~rchitectures. 
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Porting Digital's Database 
Management Products to the 
Alpha AXP Platform 

The cornerstowe softulare conzpolzent of higb-end production sjatevns is a database 
rnancrgenzent y~stetn Digital has successfklly ported the DEC Rd6 for Open Kt/.$ rela- 
tiolzal dc~t~~buse ~narzage1tze1zt s.yste~?z and the DEC DB,IlS for OpenKrrs nettilor15 
d~lt~dxrse nzanagen~erzt systelrz to the Alpha AXPplatforln Rd6 nrzd Dfi1ll5 z1ler.e per- 
haps the most co~~zplex h~)e~eclproducts to be ported The tzght couplii~g o j  these two 
products to the Open KVS VAX system made theport a challetzgi~zg tcuk. To avoid the 
fz~tz~re problem of integrati~zg tu~o source code bases, the porting teailz decrded to 
cise a common code base and to overlap current VAX development with the Alpha 
AXP port. The goal ZLIC~S to l~ronide cln easy ~nigmtion pclth for softzvnre products to 
the Alpha AXPplc~~orm 

Digital is one  of a small number of ventlors conipet- 
ing in the high-end, complex production systems 
market. Applications for this market support i n t l ~ ~ s -  
tries such as banking, stock exchanges, telecomrnu- 
nications, ant1 information services. The Alpha AXI' 

platform is ideally suited to  meet the response 
time, throughput, and availability requirements of 
these applic;ttions, since it offers increasetl perfor- 
mance while maintaining the superb :~vailability 
characteristics of VMScluster systems. 

Although high-end production systems involve a 
collection of software packages, the cornerstone 
software component is a database management 
system. Digital offers two database management 
systems for high-end commercial systems: I)E<: ILIb 
for OpenVMs, a relational database n1;lnagement 
system, ;lnd DEC DBMS for OpenVMS, a network 
(<:OI)ASYL) database management system. Digital 
had to port the DEC Rdb for OpenVMS VAX and DE<: 
DHMS for OpenVMS VAX database systems to the 
Alph;~ i \XI j  pl;~tforni as early as possible to continue 
to compete in this commercial arena. The resulting 
products are the DEC Rdb for OpellViMS A X P  and 
DE<: DBMS for OpenVivIS AXP systems. (Since these 
two products for tlie Alpha AXP system are the 
same as those for the VAX system, hereafter, w e  
will refer to the protlucts as Rclb and III3MS.) 
Atldition;illy, both software protlucts clrive many 
sales of Digital's OpenVMS operating system ant1 

transaction processing and information manage- 
ment products such as <:I)I>. A<;MS, and DEC RALLY, 
which integsatc with the Rclb and DBMS systems. 

Database management systems are anlong the 
most conlplex of all software protlucts. Applica- 
tions expect these systems to have 7 by 24 availabil- 
ity, sophisticated concurrency capabilities, fast data 
access, high-speecl backup and restore mecha- 
nisms, and largc buffer pools. 17) provide such hlnc- 
tionality, the Rtlb and 1>13>IS products make 
extensive w e  of the OpenV~\4S \!AX system, the VAX 

run-time libraries, and the HLISS and VAX MACRO-32 
programming languages. The current release of the 
product set uses more than 100 system services o r  
run-time library c;~lls. The two  protlucts utilize 
almost every RI.lSS D1IILTIN function, i t . ,  a machine- 
specific function c:ill tli;it generates in-line code. 
Combined, Rtlb and 1)HMS comprise more than 30 
different images. The products run in elevated pro- 
cessing modes, both executive and kernel, and 
inclucle user-written system services. 

Further compounding tlie coniplexit)~ of porting 
tlie Rclb ant1 DBMS software to tlie Alpha AXI' plat- 
form is the fact that they are niatilre products; DHMS 
was released in 1981, ltclb in 1984. Because varioi~s 
system capabilities did not exist in the  early 1980s, 
the two  database n1an:igement systems include 
code that is no  longer required. For example, both 
prorlucts have code to move bytes from one data 
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type to another. Also, during image runclown, the 
products rely on undocumented, operating system 
behavioral patterns such as the ;~synclironous 
system trap (AST) delivery protocols. In ;tddition, 
the lidb software contains a niotlifiecl version of the 
Ope11\~1\4s SORT routine. 

Rdb and DBMS were initially clesignetl to run 
only on the OpenVMS VAX operating system. 
Consequently, both products heavily utilize VAX- 

specific features for performance gains.' For exam- 
ple, Rdb generates VAX machine code routines as 
part of query execution plans; the machine cocle is 
carefully generateel for maximum execution effi- 
ciency. This tight coupling of Rdb ancl DBMS to the 
OpenvMs vAX system made the port a challenging 
task. 

Since the OpenVNJS ant1 BLISS groups were busy 
with their own porting projects, m e  in the Database 
Systems Group had to ;iccomplish our port with lit- 
tle outside help. The task was noteworthy because, 
by necessity, the team had to port its procluct set to 
the Alpha AXP platform earlier than most of the 
other porting groups. At the same time, Rdb and 
I>IlkfS were perhaps the most complex layered 
proclucts that \voulcl be ported. Our goal was to 
port these two proclucts in a timely fiisliion, so that 
lligital woulcl truly succeetl in providing an easy 
migration path for software products to the Alpha 
AXP platform. 

In this paper, we first present a brief description 
of the architecti~re of the two database manage- 
ment system products. We nest clescribe tlie guitl- 
ing policies we formulatecl to allow the port to 
proceed as efficiently as possible. Then, we docu- 
ment porting issues that we resolved for the two 
products. Finally, we summarize our experiences 
related to this effort. 

The DBMS procluct also provides language pre- 
processors, an interactive query front encl. ;uncl 
other software necessary to define, create, ancl 
manage data in simple or complex databases. In 
contrast to Rtlb, I>IlMS provides a CODASYL inter- 
face to the d;it;ib;~se. 

Fjgure 1 shows tlie relationship of the Rtlb anti 
L)BMS software products to the KODA d;~tab:ise 
kernel. 

Porting Policies 
Initially, we cle\~elopecl policies to guide our port to 
the Alpha ,\S1' platform. These policies, which 
applied to the KOl>r\, Rtlb, anel I>RklS teams. mere 
clesigned to simplify the port ;ind to ease long-term 
maintenance requirements. 

Common Source Code Base 
Our most important clecisiorl was to have a com- 
mon source code base. 'That is, mie wantetl to 1i;ive 
one set of source code that could be compiletl a~?d 
run on either a VAX or an Alpha AXP system. At the 
time we began our port, the OpenVMS group was 
the only other software group that had started their 
port, anel they had chosen to have two distinct cock 
bases. (The OpenVMS AXP porting schedule dic- 
tated the choice.) S o  with respect to code base, the 
path we chose was untested. \Ve also decidecl to 
maintain common command procedures to con1- 
pile, builcl, and link, and common regression tests 
between the VAX and Alpha IGYP systems. 

A primary season for our code base decision w;ls 
that we did n o t  11;ive the resources to manage two 
different code b:ises. Also, :~lthougli two divergent 
code sources woulcl have ;illowetl for a stable cocle 

Product Architecture 
lligital is unique in tlie tlatahase industry in that we 
provitle two different types of clatahise manage- 
ment systems that layer on top of the same database 
kernel, which is called KOIIA. The KOIIA kernel 
provicles journaling and recovery, locking, access 
nietliods (e.g., B-tree, hashing), recorcl ancl page 
nianagenient, and buffer pool m:in:igement. 

The Rtlb software provides 1:ingu;ige preproces- 
sors, an interactive query front end, a ca1l;tble inter- 
face, catalogue management, query optimization, 
and relational operations such as join, select, ancl 
project. Rtlb supplies a relational interface to tlie 
cl;it;ibase. 

RDB DBMS 

KODA DATABASE KERNEI 

OPENVMS OPERATING SYSTEM 

Figure I Rel~~tionship of Rdb n77d DB1Lf.S 
to the KODA Dat~d>nse Ker~~el  
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base witli wliicll to begin the Alpha AXP port, the 
group strongly wantetl to avoid having to merge the 
two code bases at a future date. Consequentl}: 
since our prelirnin;lry investigation indicated that a 
single code base was feasible and that we could 
hick most of the platform dependencies through 
the superb macro capability of the BLISS language, 
we proceecletl with tlie common source cotle 
implementation. The single code base allowed us to 
built1 and release Alpha A X P  ant1 VAX versions of our 
products at the same time. 

Concurrent Releases 
Our release scheclule complicated the process of 
adhering to the single code base policy. To meet the 
schedule, we hat1 to overlap some of the Alpha A X P  
port with our current VAX releases. That is, the sce- 
nario we followed was Nm': work on a VAX release; 
complete all necessary code changes; stabilize the 
release; ant1 then create ;I newer set of sources for 
the Alpha )jXI-' port. Rather, for the beginning por- 
tion of the Alpha AXP port, we also had to change 
source code destinetl for a \'AX release. Tlius, if a 
module had to be changed for the earlier VAX 
release and the same module bacl already been 
ported h)r tlie Alph;~ AXP release, the engineer had 
to propagate the code change to the Alpha AXP 
source cotle. 

To minimize the effect of double cocle changes, 
we first worked on those modules for the Alpha 
A X P  release that were reasonably stable in the cur- 
rent VAX code stream. For example, the BLISS 

REQUIRE files that we use for data definitions were 
reasonably stable for the VAX release by the time the 
Alpli;~ AXI-' port began. The modules that did not 
change for the vt\X release were also good cancli- 
dates for helping us to avoid making double code 
changes. When we finally began to port the bulk of 
the motlules, they were mostly stable and, as a 
result, only bug fixes for the VAX release required 
that we manually modiQ the same module for the 
Alpha AXl' release. 

F~rrtherrnore, once we began work on the Alplia 
AXI' release, we neetled the capability of being able 
to compile, link, ;mtl test on both the Alpha AXP 
ant1 VAX platforms. So  m7e had to modify our devel- 
opment environment to allow us to identify the 
code change session as either an Alpha ,UP or a VAX 
session. 

Ab New Functionality 
The Alpha AXI' release of the database management 
system PI-oduct set contains no new fi~nctionality. 

On the first pass, we decidecl to port the \'AX cocle 
wjthout designing any new algorithms. We tlitl 
clean up some code for style, conventioti, and per- 
formance, but basically, the Alpha ,+XI-' relei~se 
remains functionally equivalent to the latest \'AX 
release. 

Correct and Fast Code Execution 
We clitl not prioritize our effort to first, be correct, 
anti second, be kist. We clecided that we must be 
correct a~zd  fast on certain key issues. For ex;rmplc, 
011 VAX systems, our argument-passing mechanism 
i~tilizetl the argumetit pointer (AP). To minimize 
code chatlges, we could have used the AR<;I'?'II con- 
struct it1 the BLISS cross compiler. However, ARGITR 

is inefficient aml, therefore, not appropriate for our 
needs. Consequently! we ensured that our new 
argument-passing design was efficient, even 
thougli cloi~ig so was time-consuming. 

Minimizing Platform -specific Modz~les 
Cotle contlitionalizatio11, i.e., producing sep;lr;lte 
code for tlie VAX and the Alpha AXP platforms, 
requires various levels of code duplication. For 
example, the process may require the duplication 
of an entire module, routines within a tnodule, or 
certain lines of code within a routine. To rnini~iiize 
the amount of cotle duplicatecl, we condition;~lizetl 
on the srnallest code segment possible, using a sen- 
sible approach. For example, when forced into 
using conditional code, we avoidetl duplicating 
motlules by choosing to keep within a single mod- 
ule. Ideally, we conditionalized just a few lines. 
Wherever possible. BLISS macros were motlifiecl to 
hide tlie code conditionalization. 

Rd6 Is Rdb 
\Ve wanted our database management protlucts to 
"look and feel" the same on an Alplia I\XP system as 
they did on a VAX system. So, to paraphrase from the 
OlxnVMS operating system maxim, we wantetl Rdb 
to be Rdb! That is, the ported Rdb should have tlie 
same utilities, the same data structures, tlie s l m e  
data tlefinitjon c;~pabilities, tlie same tlata manipu- 
lation constructs, etc., as the DEC Rdb for 0penV~MS 
Vhx'  j>rotluct. Incorporated in this tlesire h)r s;lme- 
ness was the fi~ndamental point t l~at we were not 
going to change the on-disk structures. IIRMS was 
ported witli the same goal in mind. 

No Changes to On-disk St?~zrctures 
The KODA kernel stores recortls on database pages 
Unfortunatelj: the database page is not nat11r;llly 
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aligned; page heatler fields and fields within the 
reconls are not aligned. Although aligni~ig these 
fields \vo~ilcl boost performance, to realign all the 
structures 011 the d;ltabase page woulti r eq~~ i r e  tlie 
tlat:ib;we to be unloatled and then reloaded. Current 
customers c:innot afford the downtime needecl to 
perh)rm the conversion, so we decided to maint;~in 
the sztrne p;tge/recortl structure. Furthermore, by 
m;~int;iining the same on-disk structure for the VAX 

zinc1 Alpha .\>(I' tlatabases, we tlo not preclude 
f~t i tse  concurrent access to the database in a 
mixed-architecture \'MScluster. Thus, our present 
clesign tloes not require an unload/reloatl opera- 
tion, since performing that action woultl be too 
1i1~1cli o l  an impeclime~lt to migrating to the Alplia 
AXI' p1;ttforrn. However, we do plan to investig;~te 
the potential performance boost from aligned 
p;tges/reco~-cls ;inti, if the gain is substantial, to offer 
some alignment solution. Note that tliis section 
refers only to data structures tied to on-disk struc- 
tures. We did align all in-memory structures. ant1 
we cl;~bos;itc on  this topic in the next section. 

Porting Details 
In this section we describe a general set of issues 
;1nd solutions that ;~pplietl to all the groups involved 
in porting the tlat;tb;tse management system soft- 
ware to the Alpha AXP platform. We then explain 
sorlie of the more interesting issues and solutions 
pcrt;iining to each group. 

(;i)??znzoiz Issues 
t\ collection ot'genes:~l posting issues applietl to tlie 
Rtlb. I)lnls, :lncl KOIIA groups. For ex;trnple, all 
groups needed the cap;tbility to contlitionalize 
code jn ;I motlule. so that the compiler on an Alplia 
/\XI' s!.atc.~n \vould procluce one set of object cocle. 
;~nd the compiler on a \%X sj~stern woultl produce 
;tnothcr set. <:on~rnon issues were: 

Varianted code 

Data alignment and field resizing 

Argument-  as sing mechanism 

BUILTIN functions 

VAX testing 

The CALI.('; mechanism and AP references 

VAX MACRO-32 modules 

Message file support 

Vurbnted Code To simplify conditional code, we 
added a set of literals, for example KOD$K-VAX or 
KOI)$K-ALPHA, that can be usetl in all our BLISS 
modules. We could then use these literals to concli- 
tionalize code. The code example shown in Figure 
2 illustrates the conditionalizing of the PROBE 
instr~~ction. The I'liOBE instruction checks the 
re;~d/write access of a memory location. On Alpha 
ASP systems, the instruction is quite different from 
the corresponding instruction on VAX systems. 
However, BLISS easily handles tliis difference in :I 

macro, which allows us to change the name and the 
order of the arguments, pass arguments by value 
instead of reference, and use an offset instead of a 
length. By developing such a macro, the actual 
source code tlitl not have to change. 

Ll~itct Aligtztnent and Field Resizing On the first 
pass, we it~imecliately modified all in-memory data 
strilctilres so that they were naturally aligned. 'This 
step avoided incurring a significant performance 
penalty on the Alpha AXP platform. In atldition, 
since no single Alpha AXP instructions exist that 
could be i~setl to easily manipulate bytc5 or wortls, 
111:11iy o f  our in-memory byte (8-bit) and word 
(16-bit) fieltls were changed to longwords (32 bits) 
to reduce the object code size and i~nprove 
performance. 

$ P R O B E R  ( B A S E ,  L E N  = 4, MODE = 0) = 
% I F  KOD$K-ALPHA 
% T H E N  ( B U I L T I N  PAL-PROBER; 

PAL-PROBER ( B A S E ,  L E N  - 1, M A X  (MODE, $ P R E V - M O D E ) ) )  
% E L S E  ( B U I L T I N  PROBER; 

PROBER ( % R E F  ( M O D E ) ,  % R E F  ( L E N ) ,  B A S E ) )  
% F I  %, I 

Figzire 2 Conditiorzalized PROBE Itzsh'uction 
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Once w e  aligned tlie in-memory data strilctilres, 
two  groups of data structures remained unaligned: 
those tied to the database root file, which records 
database parameters such as associated files and 
database settings, and the database pages that actu- 
ally contain the data records. Since the database 
root file is relatively small (i.e., less than 100 blocks 
in size), it was aligned also. Thus, the root file is 
automatically re-created in a conversion that 
occurs when upgracling a database product to  sup- 
port both the t\lplia AXP and VAX architectures. 
Since this conversion invariably takes place when 
converting to a newer version of either the Rdb o r  
the DBMS product, the additional realignment of 
the root is a minor additional expense. 

Thus far, w e  have not pursued any potential mod- 
ifications of the page data structures, s~icli  as align- 
ing them once they are fetched into memory. Note 
that these structures d o  not generate un:~lignetl 
faults. Insteacl, they force the compiler to generate 
a few aclditional instructions to hanclle the odd 
alignment. 

Argurne~zt-J~clssing Mechanism The VAX ;Inel 
Alpha AXP argument-passing mechanisms are 
entirely different. Rather than using the st;lntlarcl 
BLISS mechanism, the existing code clepended 
strongly on the VAX argument-passing mech;~nisms 
by using BLISS macros to reference arguments from 
the AP.  This approach was not possible on Alplia 
A X P  systems due to  the  lack of an A P  register. (You 
coulcl force the AP to be generated, but that process 
would be slow and would waste memory.) 
Therefore, w e  changed our  procedure headings to  
declare a generic formal parameter list (e.g., 1'1 
through PN) for both the Alpha tLYP and the VAX 
systems and then developed another set of BLISS 
macros that allowed us to bind to the arguments 
based on  the generated formal parameter list. Since 
this process involved changing every routine decla- 
ration, we developed a text-processing tool tIi;lt 
would autoniatically change the routine headings 
and thereby avoid the expensive ant1 error-prone 
taslz of nianually changing each routine. 

BlJILTIN Fzinctions Together, the KODA, Rdb, ;u~itl 
DBMS code uses most of the BLISS BlJlLTlN hlnc- 
tions. This fact presented a problem for the team 
porting the software to tlie Alpha AXP platform. 
Some VAX BUlLTlNs were not supported,  some 
behaved differently, and some were eliminated as 
BUILTIN5 but emulated by Starlet, an OpenVMS 

support library. Again, w e  used BLISS macros to 
solve the problem. Essentially. ou r  macros catego- 
rized the RLJlLTINs ant1 then performed the appro- 
priate expansion, basecl o n  the category. For 
example, the PROHE IlIllLTlN differed markedly 
between the \AX ant1 Alpha A S P  implementatioiis, 
as indicated by Figure 2. 

VXX Testing Another general problem that we 
had to guard against was the possibility that tlie 
Alpha &\'IJ cocle changes wo~tlcl introduce bugs into 
the VAX versions of the products. Consequently, w e  
adopted a policy whereby all Alplia AXP changes 
had to be testeel o n  :I VAX system. Tliis policy 
ensured that w e  maintained a stcady pattern of cor- 
rect VAX behavior. Also, since tlie VAX environment 
was more stable than tlie i\lp11;1 )\XI' environment, 
testing on  a \%X system helped tremendously in 
identtfying and fixing bugs rel:~tecl to  the port. 

The CALLG ~ l f c c h a r ~ i s ~ ~ i  a~zd AP Refcreizces The 
Alpha iD(P platform does not tlirectly support 
CALLG, a VAX procedure calling mechanism, and 
references to the AP. The <:.-\l.I.<; ~ilechanisni ancl A P  

references are slow since they :Ire sin1ul:ited iintl 
automatically allocate st;lck space to accommotlate 
the largest possible argument list (i.e., 255). In sitil- 
ations where perforin;~nce was not critical, for 
example, in an  error hancl Ier, w e  replaced CALLG by 
a standard routine call o n  both the VAX ant1 the 
Alpha software versions. When performance 
was an issue, w e  usetl conclition;~l code to retain the 
CALLG mechanism for the VAX code and to use ;I 

standard routine call in the Alpha AXP code. 111 
instances where the (:t\LL<; mechanism is used to 
pass the argument list to the next routine, we con- 
structed an arguiuent vector ;~ntl  replaced CALLG by 
a special call linkage. The new mechanism passed 
the pointer to the argument vector b!, means of a 
single parameter o r  a global register. This solution 
guaranteed good performxnce o n  both VAX :lntl 
Alpha A X P  systems yet avoided any conclitionalizing 
of the code. 

VAXMACRO--32 Mo~lzilcs For ;I variety of reasons, 
we used VAX LMACRO-s2 to code some rot~tines in 
the Rdb, DBMS, and KOl>A softw;~re. For example, 
basic operations such ;IS record compression, record 
expansion, ant1 buffer initii~lization are performed 
through calls to VAX MA<:RO-32 routines that are 
heavily optirnizetl for efficient operation. Some 
routilies are cocted in \ii\X MACRO-32 for ease 
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of character manipulation. Also. we used u\X 
,\.W<:RO-32 to code machine instructions that were 
not avai1;tble tl~rough a Ul.1Ss BIJIL1'IN function. 

We adopted various solutions for these VAS 
MA<:110-32 routines. For those routines where per- 
formance was not an issue and BLISS generated 
acceptable code, we converted to t3I.ISS cotle. For 
routines where performance wns absolutely criti- 
cal, we rewrote the routine in Alpha AXP m c : ~ O - 6 4  
to utilize the additional registers. Fin;illy, in some 
c;lses where we could not rewrite the routine in 
13LJSS code and did not have tlie resources to con- 
vert t o  X I A < : I < O - ~ ~  code, we employetl the Alpha 
MA<:RO cross compiler. 

il.lc.ssc~gc File 5~1'por.l Due to the structure of the 
clatabasc products, as shown in Figure 1, each com- 
ponent has separate message files. Both Rtlb and 
1)1%&tS have a message file that is separate From the 
KODA message file. Furthermore, the Rdb and DBMS 
software share the KODA message file. 

The message files are merged during the build 
cycle, so that customers are not required to be 
;iw;lre of the modular layout of the cotle. As a result, 
KODA messages, when appentletl to Rclb's message 
file, print as Rdb messages (e.g., Rl),VIS-F-msgcode, 
message text). However, the Rdb source code still 
references the KODA message codes with the 
liOl)$- message prefix. 

Prior to the introduction of the Alpha ASP archi- 
tecture, the KODA messages were defined with 
.I.ITERAL declarations in the message files. Since we 
occasionally link images with multiple message 
files, we wrote a program that woiild read an .Ow 

file and write a new .OBJ file without writing the 
KOl>i\ literal declarations. This process woultl no 
longer work since Alpha AXP object files have a clif- 
ferent format than \IAX object files. As a result, we 

changed the mechanism to define the KOD$- sym- 
bolic values to be compatible with both the VAx 
and Alpha t1)cl' architectures. 

First, we removed all .LITERAL declarations from 
the KODA message file. As a result, all KODA mes- 
sages were defined strictly as RDMS or DBMS 
messages. Then, after passing the message source 
file tlirough the 111ess;lge c o ~ i ~ ~ i l e r  to get tlie mes- 
sage object file, we invoked tlie ANALYZWORJECT 
facility to get 3 listing of the message symbol codes 
ant1 values for each message. Finally, we wrote a 
small utility to reatl the ANALYZWOBJECT output 
ant1 generate a I3I..ISS .B32 file, which is shown in 
Figure 3. 

This BLISS program, when compiled and included 
in an execut;rble image, defines the appropriate 
KODS- message cocles ant1 their associated values. 
This proceclure is used on both the OpenVMS V I G  
and the OpenVMS ASP operating systems to gener- 
ate the message files. Furthermore, since this group 
no longer writes programs that read object code, 
the resulting methotl is easier to maintain. 

l'he following three sections discuss some proh- 
lems encounteretl by each of the porting teams. 

Porting the KODA Database Kernel 
Among the issues that the KODA group dealt with 
were those related to calling mechanisms, kernel- 
motle rundown I~andlers, ant1 a bugcheck dump 
mechanism. 

Stc~ck-su~itchirzg/.Stall rl.lecl~a~zism The KODA data- 
base kernel performs its own multithreacling activi- 
ties. A single process can be actively attached to 
multiple databases in the context of a single install- 
tiation of the software. For example, in the D B M S  

interactive query (DHQ) facility, the user can per- 
form the following operzition: 

M O D U L E  D B M K O D M S G  = 
B E G I N  

G L O B A L  L I T E R A L  K O D $ - A B O R T - W A I T  
G L O B A L  L I T E R A L  K O D $ - A C C V I O  
G L O B A L  L I T E R A L  K O D $ - A I J A C T I V E  
G L O B A L  L I T E R A L  K O D $ - A I J A L L D O N E  
. . . 

E N D  
E L U D O M  

Figure .3 BLISS Cocle to Gerzelz~te KOD ~%Iessage Dclfinitiorzs 

158 VoI. 4 So. 4 .S/)c2ciol lssrrc 1992 Digital Techrricnl Jorrrtral 



iWol?nge~?zrnt Prod~~cls  to the Alpha AXP l'/~~@r.rn 

d b q >  ! A t t a c h  t o  f i r s t  d a t a b a s e  a s  u s e r l .  
d b q >  B I N D  D B I  O N  S T R E A M  1 
d b q >  
d b q >  ! A t t a c h  t o  s e c o n d  d a t a b a s e  a s  u s e r 2 .  
d b q >  B I N D  D B 2  O N  S T R E A M  2  
d b q >  
d b q >  ! E s t a b l i s h  u s e r l  c o n t e x t .  
d b q >  S E T  S T R E A M  1 

This example has tlie user ;~ttachecl to two differ- 
enr databases, DH1 ancl 1>132. To issue queries against 
either elatabase, the user enters the SET STRM,tl 
command. 111 response, KOIIA establishes the cor- 
rect data structures :~nd stream context for this 
database session. This process involves switching 
dxta structures and stack context. Consequentlj: 
KOIIA manages its own stack for its executive rnode 
code ant1 data structures. This stack-switching 
mechanism is con~plex, and this code is intin1:ltely 
tied to tlie VAX procetlure calling mechanism. For 
cxa~iiple, whenever a (1ilel-y must stall (e.g., while 
waiting for a lock request), KOIIA saves the current 
executive mode context and then switches back 
throi~gh the stream cocle o i ~ t  to user mode. This 
iiction allows the process to receive user-mode 
ASTs. This mech:anism essentially saves a call fsame 
so that after the user-niocle stall has con~pletetl, 
KOIIA can set up the appropri;~te stack and return to 
the calling routine by me;ins of the saved call frame. 

The calling/retum mechanism is entirely differ- 
ent for tlie VAX anel Alpha AXP architectures. On 
Alpha AXI-' systems, for each routine, the compiler 
generates prologi~e code and epilogue code to man- 
age the routine calling nlechanism. Accortlingly, 
the KODA stack mech:inism had to rely on this new 
mechanism. In adclition, for this level of support, 
tlie routine that was coclcd in BLISS for the \iAX plat- 
form had to be cotled in N M < : R O - ~ ~  on the Alpha 
AX1' platform. 

Kc.1.r7e/-1node R L I I Z L / O ~ . ~ J I Z  fI~1nd1ers Another esanl- 
ple of KODA's close tie to OpenVMS behavior 
involved the use of KOfIt\'s kernel-mode rundown 
hancllec On \RX systems, in the event of an abnor- 
m;ll failure, we must cle;ln up certain data struc- 
tures and release resources such as locks or 
ch;~nnels. Furthermore, elatabase recovery must 
start before the image sunclown is completed, so 
that surviving processes cannot acquire locks on 
resources before the databases are recoverecl. 

We accomplish tliis image cleanup through the 
use of a user-definecl system service (i.e., a system 
service not defined by the OpenViLlS system), 
which acts as a kernel-mocle rundown handler. 
111 atldition to releasing tlatabase resources, the 

handler also cleaned up OpenVMS clata structilres 
such as the pending AST queue. These OpenVMS 
data structures changed significantly for the Alpha 
AXP architecture. For example, an Alpli;~ AXI-' 
system has five pending AST queues instead of one. 
In addition, this Iiancller routine would acquire the 
OpenVMS scheduler spinlock and perform ,'poor 
man's locktlown," wliicli effectively pages the entire 
routine into memory (since the code cannot incur a 
page fault at elevated interrupt priority level, IPL). 
For Alpha AXP, code and data cannot be 1oc;lted in 
the same PSECT, so this trick was not possible. 
Instead, we used the $LK\vsET macro to lock pages 
in memory and then to clean up the Opcn\'h,lS data 
structures. 

After we completetl and tested the code, the 
database and OpenVMS engineering teams clecidecl 
that such intricacy was needlessly con~plex, and 
that the OpenVMS AXl' software could clean up 
the data structures based on its image control 
block and related structures. This example shows 
how the OpenVMS AXP system offers clifferent func- 
tionality than the OpenvMS M X  system, i.e., the 
port offered the opportunit)r to clean up existing 
mechanisms. 

Bc~gcheck Drr~~z/) Mechanism Complex, sophisti- 
cated software products are by nature clifficult to 
tlebug, Most of these products utilize ;I data struc- 
ture dumping mechanism whenever an internal 
software or hardware error is encountered. KODA 

has a mechanism called a bugcheck (lump that per- 
forms tliis service. Wlien an unexpected exception 
is generated, the bugcheck dump code prints all rel- 
evant data structures into a file. In addition, the 
dump includes a stack dump. On VAX systems, the 
bugcheck clump traces back clown the st;lck using 
the saved call frames and prints out all the fielcis in 
each call frame, the routine name, and tlie argu- 
ments passecl. 

In particular, the method for printing the syni- 
bolic name of the routines is especially clever. After 
linking an image, we utilize a program that scans 
the symbol table (.STR file) produceel by the linker. 
Then the program creates its own object file, which 
inclucles a relative offset of all the routines ancl their 
symbolic names. Finally, the image is relinkecl, and 
this new object file is included into tlie image in a 
particular PSE<:I'. When tracing back clown the call 
frames, the bugcheck tlump also checks the special 
PSECT to locate ;~ntl print the correct routine name. 
This dump is an invaluable tool in determining tlie 
causes of unexpected errors. Figi~re 4 includes two 
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S a v e d  PC = 0 0 0 4 0 8 A F  : DIOSFETCH-DBKEY + 0 0 0 0 0 0 4 F  
ARG# A r g u m e n t  [ d a t a . . . ]  ..................................................... 

1 0 0 2 0 6 4 8 4 :  OOOIFCFC 0 0 2 0 6 4 F 4  0 0 2 0 6 5 0 C  207COOOO 0 0 0 2 7 7 C 7  0 0 0 1 0 0 0 0  0 0 0 2 0 0 0 1  
2  0 0 0 0 0 0 0 1  

H a n d l e r  = 0 0 0 0 0 0 0 0 ,  PSW = 0000,  CALLS = 1, STACKOFFS = 0  
S a v e d  AP = 0020644C,  S a v e d  FP = 0 0 2 0 6 4 3 0 ,  PC O p c o d e  = EO 

SR2 = 002646DO:  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 6 9 1 8  FFDAA3E8 F F F 6 3 7 7 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
SR3 = 0 0 0 0 B C 4 1 :  0 1 3 A 2 0 4 8  CZFFFFFF FFFFF85E EOO09507 D512A4EO 4 0 0 0 0 0 0 0  1 8 C 0 0 0 4 0  
SR4 = 0 0 2 6 4 6 0 0 :  0 0 0 0 0 0 0 8  0 0 2 0 6 4 5 C  002646AO 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

2 0  b y t e s  o f  s t a c k  d a t a  f r o m  0 0 2 0 6 4 1 C  t o  0 0 2 0 6 4 3 0 :  
0 0 2 6 4 6 B 0 0 0 0 0 0 0 0 1 0 0 2 0 6 4 B 4 0 0 0 0 0 0 0 2  0 0 0 0  ' . . . .  4 d  . . . . .  O F & . '  

0 0 1  C7D08 0 0 1  0  ' . I . . '  

S a v e d  PC = 0 0 0 5 5 2 4 1  : PSI$MODIFY-STITM + 0 0 0 0 0 0 3 3  
ARG# A r g u m e n t  [ d a t a . . . ]  ..................................................... 

I 0 0 2 0 6 4 B 4 :  OOOIFCFC 0 0 2 0 6 4 F 4  0 0 2 0 6 5 0 C  2 0 7 C 0 0 0 0  0 0 0 2 7 7 C 7  0 0 0 1 0 0 0 0  0 0 0 2 0 0 0 1  
2 0 0 0 0 0 0 9 6  
3  002646DO:  0 0 0 0 0 0 0 0  O O O O O O O O  0 0 0 0 6 9 1 8  FFDAA3E8 F F F 6 3 7 7 0  0 0 0 0 0 0 0 0  OOOOOOOO 

H a n d l e r  = 0 0 0 0 0 0 0 0 ,  PSW = 0000 ,  CALLS = 1, STACKOFFS = 0  
S a v e d  AP = 0 0 2 0 6 4 9 0 ,  S a v e d  FP = 0 0 2 0 6 4 6 4 ,  PC O p c o d e  = D D  

SR2 = 0 0 2 5 6 0 4 2 :  0 0 0 2 0 0 9 6  0 0 0 0 0 0 5 F  0 0 0 0 0 0 5 7  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 2  OOOIOOOO 0 0 2 E 2 A 1 3  
SR3 = 0 0 2 6 4 6 8 0 :  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 8  0 0 2 6 4 6 A 0  0 0 2 6 4 6 7 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

2 4  b y t e s  o f  s t a c k  d a t a  f r o m  0 0 2 0 6 4 4 C  t o  0 0 2 0 6 4 6 4 :  
0 0 2 6 4 6 D 0 0 0 0 0 0 0 9 6 0 0 2 0 6 4 0 4 0 0 0 0 0 0 0 3  0 0 0 0  ' . . . .  4 d  . . . . .  P F & . '  

OOlC7CF8002646CO 0 0 1 0  ' @ F & . x ( . . '  

Figure 4 R~~gcbeck  D I I I I Z ~ )  

routine calls from a stack trace, intlicatetl by the 
lines of code thi~t begin with "S;~vecl PC." 

Alpha ASI' systems have tio equi\alent to the \:iX 
c ~ l l  frames, so it is impossible to use the call frii~iie 
mechanism to trace down through the stack. As 
meiitionetl previously, Alph;~ AXP routines i~tilize 
prologue ant1 epilogue code for returning from rou- 
tine calls. I-'rocetlure clescriptors contain informa- 
tion such as entry address :mcl register s;nre 
inforn1;ition. 

On Alpha AXP systems, another Digital group 
supplietl ;I set of routines that allows tracing tlie 
call sequence. This set provitled the basic calxibil- 
ity to print the routine calling sequence tIi;it lecl to 
an ;tbnormal exception. In ;iclclition. the Alpha AXI' 
linker ~)rocluced a symbol t:tble file. However, we 
decided to simplify our bugcheck mecIi;~nism. 
Although we still search thc symbol table file for all 
routine addresses, rather t l i ; ~ ~  create an Alpha AXI' 
object file, we create a W\X JLIACRO-.~~ file th;lt 
inclutles the routine name and address/offset. 
Then, \vr simply use the Alpli:~ hlt\(:RO cross co~ii- 
piler to generate the Alph;~ AXI' object, which gets 
linked into the image on the second p;lss. In fact, 
we changed our VAX bugclieck routine to produce a 
>WCR0-.52 file with routine n;ime and offsets. ?'his 

process is simpler than directly creating an object 
file, as we tlicl previously. 

E\len though tlie routines provitled this call trace- 
back capabilit~ we were missing the arguments 
passed to the routines, perhaps the most important 
part of the s t ~ k  trace. The VtlX mechanism cap- 
tured this tlata, because very often a bugcheck 
results fro111 one ro~itine passing an improper ; I ~ ~ L I -  

tnent to another routine. The Alpha A X P  system 
does not provicle a way to capture this information, 
because the routine calling sequence reuses regis- 
ters R16 through R21 for passing arguments. 

Porting Rdb 
Some issues handled by the Rrlb porting group 
were :~ssoci:~ted with the clisp;rtch code, Alpha I\XP 
code generation, Rdb precompilers, and Rdb 
system relations. 

Disl~crtch Code The tlispatcli cocle is the topmost 
layer of the Rdb software ant1 is called tlirectly by 
the user ;ipplication by means of relational call 
interface ( K I )  calls.? The main h~nction of dispatch 
cotle is to direct the user request to tlie correct tar- 
get Rdb executive (local o r  remote) for processing. 
On VAX systems, tlie dispatch code passes the user 
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arguments to the Rdb software using the <:hl.LC; 

linkage.', On Alpha AX'P systems, <:AI.I.<; linki~ge is 
very inefficient. Therefore, the dispatch code was 
ch;lngetl to build a user argument vector in the 
same style ;IS the VAX argument list, :rnd the pointer 
to the argument vector was passed as a single 
par;inieter. The cocle in Rdb was cli;~ngetl to bintl to 
tlie user arguments using the offset fro111 the 
pointer to the argument vector. 

Using two clifferent calling niecli;~nisrns in the 
tlispatch to pass user arguments WAS a c;~reful 
design. On VAX systems, the existing <:AI.I.<; mecha- 
nism was ret;~inetl to ensure backward compatibil- 
ity between different versions of the Rclb clispatch, 
Rdb layered protlucts, ant1 gateways. A new calling 
mechanism was used on Alpha ASl '  sysl.enis t o  
ensure gootl performance, since every user request 
to tlie Rdb executive goes through the tlispatch. 

Cock lcCelz~.mto~* Rrlb uses compilecl BLISS cocle 
ant1 generated machine code to execute user 
recluests. I l ~ ~ r i n g  request compilation, Rclb gener- 
ates highly efficient routines using the target 
m;tchine instructions. These routines perform 
basic data operations inclucling d ; ~ t ; ~  con\iersion, 
data movement between buffers, aggregirtion. ;rncl 
expression evaluation. 

'The design of the Rdb code generator to protluce 
Alpha ASP machine code was i~ncloubtedly the 
most complex porting task. Iisc of a niechnnism 
other than code generation woulcl h;~ve retli~cecl 
the porting effort. However, at the time we beg;~n 
porting Rdb, it was not clear if an alternate mecIi;~- 
nism woulcl gu;~rantee an accept;lble level of perfor- 
mance. Good performance was consitleretl critical 
to tlie success of Iitlb on Alpliil ?\XIJ systems. 
TI~ereh)re, we decided to add f~rnction;llity to the 
Rclb code generator to produce Alpli;~ A S P  cocle. To 
generate efficient Alpha AXI-' cotle sequences, we 
obsrrvetl specific gi1ide1ines.l 

On Alpha ASP systems, cocle that references data 
itenis with incre;rsing memory atltlresses executes 
more efficiently. Therefore, the ;ilgorithrn was 
changed to first order tlie data items by increasing 
memory ;rtldresses and then generate code to pro- 
cess tlie dnt:~. 

In Rdb, e;~ch data item has ;I null bit that indicates 
whether or not the value of the dat;~ item is known. 
As shown in Figure 5, to conserve space, the nirll 
bits of clifferent data items arc stored together like 
21 bit vector within a record. Loading/storing ;I 

null bit is ;In expensive operation 011 Alph;~ ASP 

DATA  ITEM^ I DATA ITEMZ I . . . NULL BIT VECTOR 

systems.? Therefore, the algorithm was motlifiecl to 
fetch a batcli of null bits into a register. \When all 
null bits in the register are processed, the batcli is 
written and the next l>atcli of null bits is fetched. 
This approach reducetl the number of load and 
store instructions and niacle the code sequence 
nli~ch more efficient. 

On A p h : ~  A S P  systems. the machine code rou- 
tines generatetl by Rtlb use four different aclclress- 
ing modes to access clata items: absolute atldress, 
base register pills offset, integer register content, 
and floating-point register content. Each of the 
Alpha ASt' registers 1112 through R15 is used as a 
base register. Thus, any data stored within 256K 
(4 X 6 4 K )  of memory space can be accessed effi- 
ciently. To maximize tlata access efficiency and 
caching, changes were rnacle in the code generator 
to allocate data densely. To improve performance 
hlrtlier, data items were allocatecl at quatlword or 
longwortl aligned addresses. 

An Alpha A S P  code sequence executes more 
efficiently when instructions cxn be multi-issuetl 
and executed in p;~rallel. 'This can be achieved 
by reordering the sequence of instructions 
while maintaining any chronological depenclency 
between instructions. 1-0 take advantage of this 
Alpha AXP feature, I%I..ISS n1;rcros were developetl 
to reorder and interleave tlie instrirctio~is in a gen- 
erated cocle sequence. 

On Alpha i\SP systems, backward branches in tlie 
code slow clown the exec~~tion because of instruc- 
tion stream invali~lation.~ Changes were made in 
the Rdb code generator to minimize bachw;rrtl 
branches. This cli;~nge at times increased the size of 
the generatecl code but improvetl the code execu- 
tion efficiency Further, Boolean code generation 
algorithnis were modified to incorporate branch 
prediction logic; code sequences with a smaller 
probability of execution were branched out of tlie 
main cotle stream. 'T'his technique maximized tlie 
effect of instruction stream caching. 

KLID P~~ecoi~zl,ilc.r=s An Rclb precompiler prepro- 
cesses a user app1ic;rtion program that includes 
Rdb statements ant1 repl:lces these statements by 
standard R<:I c;rlls to rlie Rdb software.' The Rtlb 
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statements ernbedcled in the applications can be 
one of three types: structured query 1;lnguage 
(SQL), Rdb preprocessors language (Kdbl'KE). or 
re1ation;ll data manipulation language (f<I)ML). 
There are three different Kdb precompilers to sup- 
port these languages. 

The SQL precompiler, an industry-stanclard lan- 
guage interface to Rdb, is a strategic Rdb compo- 
nent. A long-term goal of this precompiler is 
flexibility in fi~ture developments and ease of main- 
tenance. To meet this goal, the SQLprecompiler was 
reclesignetl to use tlie GEM compiler on Alpha AXI-' 
systems to preprocess SQL application programs 
and produce Alph;~ t\SP object code. 

The RclbPRE precon~piler is a proprietary lan- 
guage interfice to Rclb. The long-term goal is no 
new functionality and minimal maintenance. So 
the main objective was to recluce the effort 
required to port this compiler. This was achieved by 
retaining the existing tlesign and using the Alpha 
MACRO cross compiler to produce Alpha AXP 

objects froni VAX NlA<:R0-:$2 files. 
The RD>IL precompiler is also a proprietilry Ian- 

gilage interface to Rclb. I;nlike the Rclbr~1: precom- 
piler, this compiler does not produce MX AWCRO-52 
files. So porting it was an e~ts )~  ancl straightforw;~rd 
task. 

Rd6 Sj~sten? Relutions Rdb uses system relations 
to record infornlation  bout the user relations and 
the database. Tlie system relations are storetl on 
disk and loadetl into memory on deni;~nd. Since 
they are frequently referenced during user request 
processing, efficient access to data in system rela- 
tions is critical for performance. On Alpha A X P  
systems, accessing data froni memory is efficient if 
it is located on either a longword or a quadword 
address boundary Therefore, changes were niatle 
to the in-memory system data structures to align 
each dat;~ fielcl to at least ;I longword address bound- 
ary. Further, data fields that were a byte or ;I word 
were espancled to ;I longwortl. 

The data in system relations was accessed by 
using RdbPRE st;iternents embedded in Rdb source 
modules. Porting such Rdb modules posed a 
dilemma. To compile these mocli~les, first the 
RtlbPRE compiler had to be ported to the Alpha t\XP 
platform. Vice versa, to port and test the Rdbl'RE 
precompiler, Rtlb hatl to be portetl ant1 running on 
the Alpha AX[' platform. Moreover, Rdbl'RE was no 
longer a strategic language interface. Therefore, 
new BLISS macros were clesigned that replacecl the 
embeddecl RdbPRE st:ltements. 

Porting DBMS 
This section tliscusses some experiences of the 
DBMS porting group, namely those related to the 
Database Control System (I)I3CS) interfiice, tlie 
H-FLOAT data type support, ancl the use of the 
Alpha IJser-niotle Debugging Environment (t\llD). 

DBiLI$.32. the Pril?mt-JJ 1nte1$1ce to the 1lHrlllS The 
DBCS for the OHMS software uses a single subrou- 
tine (DBMS32) ;IS its primary entry point. This entr-y 
point is used by the DBMS precompilers (FDML, 
for Fortran, ;lntl DML, for other I;ingu;~ges except 
COBOL), as well as other layeretl proclucts, such as 
COBOL and I>tvI;i71'RIEVE. 

After receiving control, DBMS32 performs some 
processing and then, using the <:~1.1.(; mechanism, 
passes the entire argument list to lower-level rou- 
tines for furtl~er processing. These lower-level rou- 
tines, in turn, often pass on the argument list, 
sometimes :IS tleep as five or six levels. 

Because we founcl CALLG to be inefficient, we 
tlecidccl to ch:~nge the primary entry point into the 
DBCS. Rather than passing up to 26 separate argu- 
ments, DDMS creates a vector of longwords; each 
longword contains an argument that would have 
been passed using a p;lrametel: Once this vector is 
created (often during the compilation phase for the 
precompilers), l>UM$J2-\IEC (the \fE<:'I30II version 
of D B M $ ~ ~ )  is called with a single parameter: the 
atlclress of the argument list. An ex;tniple is show1i 
in Figure 6. 

Layereel products using DBMS were ;idvised of the 
new interface and were requested to use it  as soon 
as possible. I-Iowever, since the cli;~nged interface 
was incomjx~tible with some existing proclucts, the 
old interface was retained. DB~$32-\/1l<: uses the 
new interface, ;~nd D B M $ ~ ~  homes the ;Irgument list 
(thus creating the above vector) ;md then passes 
that, by reference, to DBM$~Z-VE<:. 

Sllyyorl o$ H-FLOAT Data o p e s  Tlie H-FLOAT 
data type is fully supportecl on tlie vi\X processor, 
but the Alpha AXl' processor has no  high-precision 
floating-point formats. Although Eicilities esist on 
Alpha A X P  processors to read an H-ITLOAT data 
type, no such Pdcility exists to write :in H-FLOAT 
data type. 

As a result, I)HMS customers arc atlvised to elimi- 
nate any H-FI.OAT data in tlatabases beh)re moving 
them to an Alpha AXP system. Tlie 1)1%,\4S Ilatabase 
Restructure IJtility (DR'II) can be llsetl to change all 
H-FLOAT data to ;unother common floating-point 
form:~t. 



Po~-tit~'y Di~,ilal'.s JlatuDase Manag,oone?zt PI-ocllrcts to the Alpha AXP Platforr~ 

DBM$32 INTERFACE 

ARGl = FIRST PARAMETER 
ARGP = SECOND PARAMETER 

ARGN = NTH PARAMETER 

DBM$32_VEC INTERFACE 

ARGl -t 

FIRST PARAMETER 

NTH PARAMETER H 
Figure 6 DBCS Routine-calli~zg Interface 

In preparation for mixed VAX and Alpl~a A X P  

VMScluster systems, DBMS was modified such that 
tlatabases with H-FLOAT data can still be accessed. 
However, a rim-time co~iversion error occurs if 
H-FLOA'I' data is accessed from an Alpha AXP 
system. 

Use of AfJl) The Alpha User-mode Ilebugging 
Environment is a set  of facilities that aids testing 
atit1 tlebugging of native Alpha AXI' code  on  any 
OpenVMS Vt\X system. AUD allowetl as much Alpha 
AXP user-niode code as possible to be  ported imme- 
diately to the Alpha AXP system and to be substan- 
tially debugged before Alpha A X P  hardware was 
avail;tble. Early in the DBMS porting effort, we used 
A[~I>  t o  verify our  por t  and to ensure that our  code 
was working correctly. 

However, several issues hampered the success of 
using AlJl) in porting the DBMS software: 

I .  I)RMS makes frequent use of signaled excep- 
tions. AlJl) hat1 difficulty in handling exceptions 
that cross the boundary between the Alpha AX]) 
and VAX systems. 

2 1113MS uses special stack m;~nipulation code 
(stream code) to perform n~ultithreading h ~ n c -  
tions. MID woultl become confusetl if the stack 
were to change unexpectedly 

3. At the time w e  were using AUD, the l>BCS hat1 
been ported, but  KODA (i.e., the low-level ser- 
vices used by the DRCS) had not. As 21 result, 
many variables needed to be defined as crossing 
the boundary between the Alpha AXP and VAX 
systems. The setup time to define this informa- 
tion was significant. 

4. Since the code was still running on a VAX proces- 
sor, many VAX dependencies were not c;~ught by 

In p;~rticulal; system services that ch;inged 
in subtle ways would work as before because the 
operating system was still the OpenVMs system. 

5 .  Most of the changes that we made in DRMS were 
not conditional, that is. tlie changes would affect 
both VAX and Alpha AX]' systems. As a result, we 
were able to test our code on vh\; aystems with a 
fairly I ~ i g l ~  degree of cert i~inty that our code was 
correct, barring any operating system o r  com- 
piler bugs. 

We did eventually get an  AIID version of DBMS 
working. However, since w e  spent a considerable 
amount of time ;~ccomplishing this, and w e  did not 
actually find any bugs in our code by using AlJD, w e  
decided not to use MJI) in further areas of DBMS. 

Shortly after using AUI>, w e  received our  Alpha 
Demonstration Unit (t\1)11) and coultl test our cock 
on  actual Alpha AXP hardware. The only problems 
w e  found, which were missed tluring our  initial 
port, were VtlX-style argument list assumptions. 
Some of our code assunietl that routine arguments 
were contiguo~is in virtual memory; on  Alpha AXP 
systems, this is not the case. 

Conclusion 
To conclude tlie paper, w e  discuss our  plans for per- 
formance testing ant1 our reflectiolis on  the porting 
process. 

Performance 
We have only begun our  performance tests. Cur- 
rently, w e  are running the 'TPC-B performance 
benchmark. We also plan to test against all TPC 

benchmarks (A, B, and C) and other benchmarks 
such as the Wisconsin benchmark. We are trying to 
minimize the amount o f  time spent in PALcotle, 
decreasing the code path length, reducing the cycles 
pe r  instruction, and optimizing internal algorithms. 

Planned testing will also evaluate the effect of 
additional data alignment. As mentioned earlier, the 
ease-of-migration issue is par;lmount for our current 
customers. Consequently, w e  have not realigned 
the database pages because that action would 
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require too much clowntime. Nevertheless, we do 
not want to preclude new customers, or current 
customers who need the performance boost, from 
utilizing a properly aligned database page. To test 
the potential performance improvement, we plat1 
to create ;I test database that is completely aligned, 
in memory 21nd on disk, and compare tlie 'TPC per- 
formance against the standard database. 

Reflections 
A t  the beginning of the paper, we stated that oilr 
goi11 Mias for Digital to provide an easy migration 
path to tlie Alpha AXIJ platform for software prod- 
ucts. Although we encountered some difficulties, 
we believe our Rtlb and DBMS porting efforts attest 
to Iligital's success in this endeavor. 

As one example of how the experience influ- 
enced our ;~ppro:~ch to porting, we had to 1e;lt-n 
new methodologies, practices, and system behavior 
on the Alpha A S P  machines. For instance, when 
stepping through a particular code sequence n~itli 
the debugger, we would entl up in an infinite loop; 
if we just rrrn the cotle, the sequence would work. 
Althoi~gh this behavior was documented, we 
encountered the problem several times before we 
fully untlerstood the ramifications ant1 appropri- 
ately changed our development methods. 

Overall, the porting effort had the following pos- 
itive results: 

The port allowed us to clean up our cocle. even 
though we tried to avoid algorithm changes. 
Ijcc;iuse we had to port ancl review ever). line of 
cotle. we managed to moire the code to ;I more 
consistent cotling convention. 

The port :~cteri as a learning experience for nlost 
of the engineers. Most niature products contain 
home code that has not been modified in years. 
The port forced us to review ancl understand 
such code becluences As a result, we ended up 
with more knowletlgeable engineers. 

Thc port allowetl us to transform the code into 
a more portable state. As we moved away from 
tight ties to \/AX behavior, we simplified future 
tasks such ;IS moving to the OSF/l alitl Wi~itlows 
NT oper:lting systems. 

Although overlapping current VAX development 
with the Alpha A X P  port slowecl dow~l  tlie port- 
ing process, the tlecisiorl to use a common code 
base elimin;~ted the future need to integrate two 
divergent source codes. 

Surprisingly the code dicl not grow appreciably 
in size or complexity. One strength of the Kdb 
and IlUMS softnrare has been the ability to easily 
modify the code and to add new functionality 
Even after the port, m7e fincl that the products 
;ire as malleable ant1 as easy to modify as before. 

We h,und i~nreported bugs in our \ h X  products. 

Virtually all the groups involved did a masterfill 
job. 'The program team and various Alpha )\XI' com- 
mittees anticipated potential issues and ensured 
thi~t the program proceeded smoothly and pre- 
clict:ibly. The cross compilers from the language 
groups worked superblj~. The OpenVMS AX[' and 
hardware groups delivered their products on time, 
;~ncl when a user logs in to an Alpha to(P system, the 
OpenVA4S AXP system is not only familiar but faster. 
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DECnet for OpenVMS AXP: 
A Case History 

The DECnet for OpenVlMS AXP networking software facilitates the itztegration of 
Open R?fS AXP systems into existing DECnet computing environments. This new soft- 
ware product supports application migration by prouidiizg the follozui~zg net- 
working capabilities: support of compatible libraries, consistent application 
programming intetfaces, and the assurance of a common semantic operation with 
the OpenE\fS VAX system. The tecim implemented a phasedporti~zg process and e e -  
cuted the project coopemtiue& The eflort resulted in a solid knowledge Ocise with 
~uhich to approach filtureporting u~zdertakings Using comnzon code wwherepossi- 
61e and avoiding architectz~re-specific code were lessons learned during the project. 

The DECnet for OpenVMS IU(P networking software 
product plays an important role in the integration 
of OpenVMS AXP systems into existing DECnet com- 
puting environments. The availability of DECnet 
software on the Alpha A?(P hardware platform facil- 
itates application migration. The networking capa- 
bilities needed to support this migration activity 
include support of compatible libraries, consistent 
application programming interfaces (APIs), ant1 the 
assurance of a common semantic operation with 
the OpenViMS VAX system. The network features 
such as network file transfer, remote file access, 
remote login, downline load, and local and remote 
network management allow the OpenVMS M P  
system to participate fully in a DECnet network. 

The purpose of this paper is to describe the pro- 
cess of porting the DECnet-\AX product to the 
OpenVMS AXP operating system. The DECnet-VAX 
product consists of networking software written in 
the MACRO-32 and BLISS-32 programming languages. 
The software contains privileged system code, 
device drivers, and user-mode utilities. 

This paper is divided into two major sections. 
The first section presents an overview of the proj- 
ect, including discussions about the DECnet fea- 
tures supported in the OpenVMS AXP operating 
system, the project schedule, and the major DECnet 
for OpenvMS AXP components. The second major 
section details the process of porting DECnet-VAX 
software to the OpenvMS AXP operating system, 
including testing and clebugging. This section pro- 
vides information on nonportable coding practices 

and identifies specific problem areas. It concludes 
with a summary of the lessons learned during the 
course of the project. 

Project Overview 
In addition to presenting the DECnet for OpenvMs 
AXP features, this section details how we derived a 
project schedule and gives an overview of the soft- 
ware components. 

Software Code Base 
Prior to the formation of a team to port a DECnet 
product from VAX: to the Alpha AXP architecture, 
the DECnet-VAX development group completed 
a feasibility study of porting DECnet-VAX Phase IV 

to the Alpha AXP architecture. This effort was nec- 
essary because the DECnet-VAX software was not 
designed with porting in mind. The study con- 
clutled that it woultl take four engineers twelve 
months (i.e., 48 person-months) to port DE<:net- 
VAX to the OpenVMS AXP operating system. After 
examining the proposal and investigating the alter- 
natives, we decided that the best approach would 
be to start by porting DECnet-VAX V5-4.3, a Digital 
Network Architecture (DNA) Phase IV implementa- 
tion.' One of the n~os t  important factors in making 
this decision was that this software version was 
in external field test and was nearly ready for 
shipment to customers. Another consideration was 
that some very important fixes had been made in 
that release, and we wanted to offer our customers 
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the highest quality possible in the first version of 
DECnet for OpenVMS AXIJ software. Since that time, 
we have continued to improve our DECnet software 
for the OpenWS AXP operating system ancl have 
recently incorporated some fixes from DECnet for 
OpenVMS VAX V5.5-2. 

DECnet for OpenVMSAXP Features 
The first release of the DECnet for OpenVNIS ASP 

networking product is packaged with the OpenVMs 
ASP operating system. The initial offering includes 
the support of DECnet Phase IV protocols running 
over Ethernet or fiber clistributecl data interface 
(FDDI) local area networks. This release supports 
distributed task-to-task communications using the 
same set of documentecl programming interfaces 
supported in the DECnet-VAX environment. At this 
time, DECnet for OpenVMS AXP software does not 
support wide area communications devices and 
host-based routing. Future releases of DECnet for 
OpenVMS AXP may include symmetric multi- 
processor (SMP) and cluster alias support. 

Project Schedule 
The DECnet for Open\lMS iD(P project scheclule was 
primarily driven by the overall OpenVMS i \ x l l  oper- 
ating system product schedule, with the DECnet com- 
ponent scheduled for clelivery in November 1991. 
The DECnet-\RX porting project officially began in 
early January 1991, after the code base was selected. 

Porting Estimates After analyzing the work 
required to achieve the port, we developed general 
porting guidelines and estimates based on a num- 
ber of factors, including the language the software 
was written in, the amount of software to port, and 
the number of software component modules. We 
then combined these estimates to determine an 
overall project schedule. Table 1 presents the 
guidelines we used for the porting estimates. 

We used two methods to estimate the amount of 
work required to complete the port. The Module 
Size i~lethod taltes into account the number of lines 

Table 1 Guidelines for Porting Estimates 

Lines of Code Module Count 
Language (Per week) (Per week) 

BLISS 10,000 10 
MACRO 3,000 5 

of code per software module. The Motlule Count 
Method uses the number of moclules per software 
component to determine the workload. Both meth- 
ods talze into consideration the programming lan- 
guage used in each module. Table 2 presents details 
of the component module count and sizes. Me fur- 
ther categorized the software being ported into 
three groups: privileged code, device driver, and 
user-mode utility The software type was used to 
estimate tlie amount of time needed for linking. In 
general, we allocated more time for privileged code 
ant1 device drivers. 

The estimates were used to derive a first-pass 
scliedule ancl to determine resource allocation. A 
number of other factors affected the final schedule. 
A major factor that we could not quickly estimate 
was the portability of the software. The software 
techniques encountered and described in this 
paper such a s  coroutines, up-level stack references, 
and condition code usage had a direct impact on 
the schedule. Also, during tlie first three months of 
the project, significant time was spent learning 
how to port code. During this learning period, we 
developed the skills, knowledge, and techniclues 
used throughout the remainder of our porting 
work. 

Once we established the estimation metrics, the 
data was compiled ancl time estimates calculated 
for each component. Tables 3 and 4 show the aver- 
age amount of time required to port each DECnet 
for OpenVMS AXP component. 

Based on these calculations, we estimated that it 
would take 13 person-months just to port the 
 net-VAX software. We then used project man- 
agement software to plan the scheclule. The schecl- 
ule shown it1 Table 5 indicated that it would take 48 
person-months to meet the OpenVkiS AXP sched- 
uled completion date of November 22, 1991. We 
made our first network connection on July 25, 1991, 
20 person-months into the project. Although much 
work remained, we were well ahead of the 
November target date. 

Since we were ahead of schedule, we assisted in 
the porting of other components, including RTPrU), 
CTDRIVER, RTTDRNER, ancl REMACP, all cliscussed 
later in the paper. In addition, we were able to add 
support for FDDI. 

Milestones The OpenVMS AXP project schedule 
consisted of a series of functional internal base 
levels numbered one to five. In terms of the whole 
OpenVMS AXP project scliedule, DECnet for 
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Table 2 Component Module Count and Sizes 

Average 
Software Module Number Number 

Component TY pe Language Count of Lines of Lines 

DTRIDTS User 
EVL Privileged 
HLD Privileged 
MIRROR Privileged 

MOM Privileged 

Subtotal 

NCP 

Subtotal 

NETACP 
NETDRIVER* 
NlCONFlG 

NMLt 

Subtotal 

NETSERVER 

User 

Privileged 
Driver 
User 

Privileged 

Privileged 

Notes: 
* Includes estimates for NDDRIVER 

Includes estlmates for NMLSHR 

MACRO 
BLlSS 
MACRO 
MACRO 

BLlSS 
MACRO 

BLlSS 
MACRO 

MACRO 
MACRO 
BLISS 

BLlSS 
MACRO 

BLlSS 

Table 3 Module Size Method 

Component 

DTRIDTS 
EVL 
HLD 
MIRROR 
MOM 
NCP 
N ETAC P 
NETDRIVER* 
NlCONFlG 
NMLt 
NETSERVER 

TOTAL 
Weeks 
Months 
Years 

BLlSS MACRO Link 
Total Time 
per Component 

Notes: 
' Includes estlmates for NDDRIVER 

Includes estlmates for NMLSHR 

Note that the data presented IS in weeks, unless otherw~se specified. A week equals five working days, a month equals 4.33 weeks, and 
a year equals 12 months or 52 weeks. 
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Table 4 Modu le  Count  M e t h o d  

Total Time 
Component BLISS MACRO Link per Component 

DT WDTS 0.00 2.80 2.00 4.80 
EVL 1 .OO 0.00 2.00 3.00 
HLD 0.00 1.80 2.00 3.80 
MIRROR 0.00 0.20 2.00 2.20 
MOM 1.50 1.40 4.00 6.90 
NCP 3.50 0.40 4.00 7.90 
NETACP 0.00 4.80 6.00 10.80 
NETDRIVER* 0.00 0.80 6.00 6.80 
NlCONFlG 0.70 0.00 2.00 2.70 
NMLt 3.1 0 1.40 4.00 8.50 
NETSERVER 0.30 0.00 2.00 2.30 
TOTALS 
Weeks 10.1 0 13.60 36.00 59.70 
Months 2.33 3.1 4 8.31 13.78 
Years 0.1 9 0.26 0.69 1.15 

Notes: 
* lncludes estimates for NDDRIVER 

lncludes estimates for NMLSHR 

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and 
a year equals 1 2  months or 52 weeks. 

Table 5 Planned Pro ject  Schedule 

Code Total Time 
Component Port Debug Review Test per Component 

DTWDTS 
EVL 
HLD 
MIRROR 
MOM 
NCP 
NETACP 
NETDRIVER" 
NlCONFlG 
NMLt 
NETSERVER 
TOTALS 
Weeks 
Months 
Years 

Notes: 
* lncludes estimates for NDDRIVER 

Includes estimates for NMLSHR 

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and 
a vear eauals 12 months or 52 weeks. 
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OpenVMS AXP was targeted for base level five. 
However, it was highly desirable to provide file 
transfer and remote login capability over DECnet as 
early as possible. The project team worked closely 
with the OpenVMs AXP group to deliver this sup- 
port prior to b;~se level four. 

Common Code 
One of the most important decisions that helped us 
deliver our software ahead of schedt~le was build- 
ing common code for the VAX and Alpha AXP 
systems. During the course of porting code, we dis- 
covered two advantages to building common code. 
The first was having the ability to generate Vi\X and 
Alpha AXI' images from a single set of source code. 
The second was being able to debug our ported 
changes in a stable OpenV&fS VAX environment. We 
accomplished this by rewriting code that required 
change so that it worked on both platforms. We 

made arcl~itecture-specific code conditional on the 
platform on which it would execute. Our long-term 
goal is to incorporate common code into future 
DECnet for OpenVMS products. 

DECnet for OpenWS AXP Components 
This section describes the major DECnet for 
OpenVMS AXP components and lists the porting 
issues relevant to each.* Figure 1 shows the inter- 
connection of the various components of the 
DECnet for OpenVMS LYP software. Detailed infor- 
mation for each porting issue is fi~rther discussed in 
this paper under the Porting Issues heading. 

IVETDRWER NETDRIVER is a pseudo device 
driver, i.e., a device driver that does not directly 
control any hardware devices. It implements the 
routing, end communication, and session control 
layers of the Phase rV version of DNA.' 

APPLICATION 7'7 
I NICE MESSAGES I 

LOCAL 1 1 REMOTE 

I DATA LINK DRIVER I 

$QIO 

Figure I DECnet for OpenVMS AXP Components 
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'I'lle queue 1/0 request ( $ ~ l 0 )  s)lstenl service is 
the interface into the session control layer. The 
NETL)IWER routing layer communicates with other 
device drivers that implement the clata link layer of 
DNA. NETDRlVER communicates with NETACP 
(another component discussetl later in this section) 
to perform network management functions, to 
report state and network topology changes, and to 
perform operations that require process context. 

NETDRIVER is written in NMCItO-32 code and pre- 
sented us with many porting issues, includ- 
ing device driver changes, coroutines, memory 
management changes, page size clependencies, 
atomicity ancl granularity problems, OpenVMS ASP 

operating system data structure changes, unaligned 
references, and up-level stack references. 

IMO~W The mainte~~ance operations module 
( M O M )  image processes service operations defined 
by the maintenance operation protocol (MOP). One 
such service operation is downline loading remote 
systems. MOM uses NDDRWER (described in the 
next subsection) to communicate with the remote 
system over a DECnet circuit. MOM comnlunicates 
with NETACP to gather information about nodes 
req~~esting to be downline loadetl. NETACP creates a 
process running the MOM image when a request for 
a service operation is receivecl on a circuit enabled 
to perform service operations. 

MOM is written pri~narily in BLISS-32 code. Porting 
issues inclucled removing dependencies on the for- 
mat of a VAX argument list, condition handling 
changes, and Alpha tLYP image Ileacler changes. 

NlmR/VER The pseudo clevice driver NDDNVER 
implements an interface that allows MOM to use a 
DECnet circuit to perform service operations using 
DNA MOP. The &IOM image uses the $QIO system 
service interface to send MOP messages to and 
receive klOP messages from NDL)KNER, which then 
communicates with the data link device clrivers to 
transmit and receive these messages. NDDNVER 
communicates with NETACP to perform tasks 
that require process context and to receive notifica- 
tion of state changes to circuits enabled for service 
operations. 

NDDlUVER is written in MACRO32 code. Porting 
issues includecl changes to device clrivers, memory 
management, and OpenViMS U P  operating system 
data structures, as well as page size dependencies. 

CmRfVER, RTTDRIVER, anlzd REMACP CTDWER 

is a pseudo device driver for remote terminals using 

the DNA command terminal (CTEIbVl) protocol. 
CTDRIVER and RTTDIUVEII perform similar func- 
tions with the exception t l~at  RIIDRIVER is used for 
interoperability with older implementations of 
remote terminal support. REMACP is an ancillary 
control process (AW) that receives incoming 
requests for remote terminal support. After REMACP 
establishes ;I connection with the remote nocle, 
either CTDRIVER or RTTDRIVER communicates 
directly with NETDRIVER to send and receive 
remote terminal protocol messages. 

CTDRIVEI1, KTTDRNER, and RE;LWCP are written in 
MACRO-32 code and presented the following port- 
jng issues: device clriver changes, unaligned refer- 
ences, OpenVMS AXP operating system data 
structure changes, and for KEMI\CP, changes in the 
interface with CTDRIVER. 

NETACP NETACP runs as an ACP that assists 
NE'['[)RTVER in performing network operations that 
require process context. Examples include creating 
processes for incoming logical links and assigning 
channels to data link clevices. NEI'DRNER ancl 
NE'TACP also work together to maintain information 
about the state of the network. Another major firnc- 
tion performed by NETKP is the management of 
the network configuration parameters residing in 
virti~al memory. 

NETACP is written in MACRO-32 code. Porting 
issues included coroutines, usage of processor 
status longword (PSL) condition cocles, memory 
management changes, page size dependencies, 
atomicity and granularity problems, O p e n m s  AXP 
operating system data structure changes, and 
unaligned references. It1 addition, tlie use of "poor 
programmer's lockdown," a method of locking 
pages into a working set, required moclification. 

NETSERVER The NETSERVER image is run by 
server processes created to handle incoming logi- 
cal link requests. NBTSERVER invokes the image or 
command procetlure associated with the network 
object specified by the incoming logical link. To 
avoid the overhead of process creation, a server 
process can be reused after the logical link it was 
servicing is terminated. Iclle server processes regis- 
ter the~nselves wit11 NETACP so that they map be 
reused for another logical link. 

NETSERVER is written in RLISS-32 code. The 
only porting change necessary was the addition 
of the BLISS VOLATILE attribute to several clata 
declarations. 
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NCP The network control program (NCP) is tlie 
user interface for network m;in;Igement. NCP com- 
municates with other network management com- 
ponents using the network information and 
control exchange (NICE) protocol. NCP can be usetl 
to manage thc 1oc;ll node ;15 well as I-emote nodes. 
When managing the local node, NCP exchanges 
NICE protocol messages with the NMLSHR shareable 
image. For remote management, NCI' creates a logi- 
cal link to the network rnzlnagement listener (NMI.) 
object o n  the remote node ancl exchanges NICE pro- 
tocol messages over this logical link. 

N<:l' consists primarily of HI..ISS-32 moclules. The 
major porting issue ;~ssociatecl with NCP was chang- 
ing the code to  use I,IB$TAHI.E-PARSE rather than 
LIB$TPARSE. 

1VMLSHK NMLSHR is ;z shareable image that pro- 
cesses NICE protocol nctwork management mes- 
sages on  an Open\/MS system. NMLSHR decodes 
NICE messages received as input alld performs the 
requested n1an;lgernent operation. NMLSHR builcls 
NICE protocol messages as a response to requests 
asking for network n1an:lgement information to be 
returned. NCP and NML both link with tlie NMISHR 
image to call the routines th ;~t  process tlie NICE pro- 
tocol messages. 

NiMLSHR is written in BLISS-32 and MACRO-32. 
Porting issues inclutletl dependencies on the for- 
mat of a VAX ;Irgument list and ch;inges required to 
link shareable images. 

IV,~!IL The network rn;~nagement listener (NML) 
image is run when a remote node requests a con- 
nection to the NML object to perform remote 
network management operations. NML sentls NICE 

protocol messages to and receives them from the 
remote node. NML passes NICE protocol messages 
receivetl from the remote 11otle to NMLSHR for 
tlecoding and receives messages from NMISHR to 
send to the remote notle. 

N M L  is written in I3LISS-32 code. The only porting 
change made to N M L  code was to atlcl the BLlSS 
VOLATILE attribute to one  data declaration. 

EVL 'I'he event logger (EVL) receives event mes- 
sages from the various DNA layers. EVL can also act 
as an event sink for messages generated at a remote 
node. EVL is started by NETACI1 ant1 declares itself 
*as a network object s o  that remote nodes can con- 
nect to the EVL object ant1 send event messages. EVL 

can log events to a file in binary form or  format the 

messages into something readable by a network 
manager. 

EVL is written in BLISS-32 code.  Porting ibsues 
included adding the BLISS VOLriTILE attribute to 
some data structure definitions and aligning data 
structure fields on natural bountlaries. 

DT5 and DTR The DECnet test sender (DTS) and 
the DECnet test receiver (DTR) are cooperating pro- 
grams that can be used to test the network connec- 
tion between two nodes. DTS runs o n  the local node 
and commuiiicates with DTR o n  the remote nocle. 
DTS and DTR can be used to test the througliput and 
reliability of a line over which IIECnet is running. 

DTS and DTR are writ ten primarily in MACRO-32 
cocle. The two major porting issues associated with 
DTS and DTR were changing the code to use 
LIB$TABLE-PARSE rather than LIR$TI'ARSE ; ~ n d  add- 
ing some BLISS-32 code to support flo;~ting-point 
operations. 

RTPAD RTPAD provides the connection between 
a local terminal and the remote terminal services of 
a remote node. RTPAD is invoked as the result of 
executing the SET HOST cornm;lntl of the Digit;~l 
Command Language (DCL). RT13b\l) comniunic;~tes 
with REXIACP and CTDRIVEK o r  Rl-TI>RIVER on  the 
remote system to provide remote terminal support. 
RTPm accepts input from the local terminal (whicli 
could be  another remote terminal) and sentls this 
data over the network to the remote node. Output 
from the remote nocle is receivetl by R'r'r'iil) ;incl tlis- 
played on  the local terminal. 

RTPm is written in MACRO-32 code. Porting 
issues inclucled unaligned references ;~ntl ;~ligning 
data structure fields on natural boiind;~ries. 

NICONFIG NICONFIG is tlie Ethernet configurator 
that listens to  the M<)P system itlentification mes- 
sages broadcast on  Ethernet circuits and maintains 
a database of configi~ration information for all sys- 
tems heard. NCP is used to manage ;inel tlispl;~y the 
information maintained by NICONFIG. NI(:ONFI<; 
runs as a process created by NMLSHR and comniuni- 
cates with NMLSHR over a I>ECnet logical link using 
the NICE protocol. 

NICONFIG is written in BLISS-32 code. The only 
porting change was to remove the module switch 
LANGUAGE. 

HLD The host loader (HLD) communicates with 
the DECnet-RSX satellite loader to tlownline loacl 
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tasks to ;In RSX-11s node. H1.D is wri t~en in ~i\(:tiO- 
32 code. The only porting change was to upd;ite the 
structure definition language used to create one 
cI;tt;l s t ruct~~re.  

MfRROR The loopback mirror p;u-ticipates ill 
networlc services protocol and routing 1;lyer loop- 
back testing. MIRROR is written in MM;l<O-32 cocle. 
N o  porti~ig changes were recluiretl though changes 
were made to the link procetli~re. 

DECnet-VAXPort to the OpenVMS 
AXP Operating System 
This section discusses the development environ- 
ment, process, ancl issues related to portlng the 
I>E<:net-VAX product to the OpenVlLlS operating 
system. 

DECnet jor OpenWS M Y  
Dezielopment Environ~nent 
I>E(:net for OpenVMS AXP is built with ant1 inte- 
grated into the Openv~Ms AXl) operating system. 
Many cl1;inges were being ni;~cle to system d;tta 
structures that directly affected the I>EC:net soft- 
nr;tre. These changes required the l>EC~iet for 
OpenVMS AXP software to be built with ;~ntl tested 
011 mnny interim operating system base levels 
Ixfore the combinetl OpenV&!s ,\XI-' oper:~ting 
system and OECnet for OpenVlLlS AX1' kit was 
shipped for layered product development. 

Bec;~use the development tools ch;ingetl t I i ro~~g[~-  
out the project, we used the same tools to port the 
I)l:(;net-\3X software as were usecl to develop the 
opcr;tting system base levels. When we copied pol-- 
tions of an OpenvMS ASP base level, we also copied 
the tool directories associated with the system 
build. We used cross compilers for hlA(:RO-32 ;tncl 
I%l.ISS-.32. which allowed us to tlevelop Alpha A S P  
software on an Open\ra,Is \RS s!,stem.5 In ;tclrlition, 
we i~setl the OpenVMS AX]-' linker, 1ibr;trian. ;lncl 
system dump ;unalyzer (SDA) cross tools on the VAS 

system. \Ye also used the Open\l,\IS r\Xl' debug- 
ging tools Delta and XDelta o n  the Alpha .\XI' proto- 
type l~ardware.~ 

1niti;ll J)E(:net for Open\/i\lS AX1) testing was 
accomplished on a VAX system. Such testing was 
j7ossible because we designed ;i m:~jority of the 
I>L<;nct for OpenVMS AXP cock to run o n  bofh VblS 

:111d Alpha AXP hardware plath)rms. 
The Alph;~ I.W' prototype system i~secl for testing 

utilizecl a sharetl disk that cont:iinetl the OpenVMS 
,4XP operating system images. The imitges nnd test 

procetlures were copied onto the disk from a U P  

system. Each time new DECnet for OpenVMS AXP 

images or test procedures hat1 to be adtletl to the 
sharetl disk during a test or debug session, the Alpha 
A)(P test system hat1 to be stopped, the disk 
mounted on the VAX system, images copied, the disk 
tlismounted, ancl the Alpha AXP system rebooted. 
Providing file transfer support by means of the 
DECnet for OpenVMS AXP software early in the 
tllplia A S P  project provicled increased prodi~ctivity 
for anyone testing on Alpha U P  prototype systems. 

The process of- porting tlie DECliet software from 
the Vt\S 11rirtlw;tre platform to the Alpha A X P  
platforni consisted o f  the following steps: code 
preparation, compilation, linking, code review, 
debug, and testing. We tlid not start the task of port- 
ing DECnet-VAX with a completely clear vision of 
the tot:~l process. As we progressed and learned 
more about tlie tools ant1 porting process, we 
improvecl our porting techniques and, as a result, 
our protlucti\lit): 

Our stratcg) was to begill by porting the drivers 
and pri\rileged code. These components were the 
most complex: thejr were written completely in 
MACRO-32 cotle ;i~itl Iiad the greatest potential for 
change. \Ve started with NETDRTVEK and NETACI', 
assigning one engineer to work on each compo- 
nent. As our porting group grew in numbel; we 
began to port, in parallel, the BLISS modules that 
comprise NU', NMI., NILII.SI-IR, EVL, ant1 i\lOkl. 

The following is an overview of the process we 
used to port the I>E<:net-VAX software to the Alphi1 
A S P  pl:~tform. L:~ter sections contain tletails of cotl- 
ing practices that had to change. 

Code PI .C/ )NIYI~~OI I  Our first task was to create 
procedures that we coulcl use early in the porting 
process to compile single ~ l l o d u l e ~  of a DECnet for 
OpenV,\IS A>\']' component. We also ported the com- 
ponent's bi~ild procedure to use the new Alpha AXP 

cross tools. 
Nest, we began to prepare the code for initial 

cornpilntion. &1.\(:1{(>-.32 code must have each entry 
point itlentit'iecl prior to the initial compile. Entry 
points itre identified by a compiler directive such as 
.ISB-ENI'RY iind .(:ALI.-ENTIIY. Each directive 
accepts optional p;cl.;tmeters that identify register 
usage. Howc\,er, this information is not required 
at this point in the porting process. The Alpha 
AXP ,\IA<:ItO-32 compiler will provide register 
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usage hints during the compilation, if so directed. 
As the team became familiar with tlie porting 
process, we were able to combine these steps 
ancl include the register usage information when 
declaring entry points. Also, as our experience 
increased, we were able to make changes to non- 
portable coding practices prior to the initial com- 
pile of a module. 

Our experience proved, as we expected, that 
BLISS code is far easier to port than MACRO-32 code. 
For the DBCnet-VAX components containing BLlSS 
modules, we began the port by running the compo- 
nent's build procedure. BLISS routines do not 
require that entry points be identified. The com- 
piler can process each module, identtfy errors, and 
provide warning and informational messages. 

Conzpile Process After we completed the initial 
code preparation ant1 created c~~stomized build 
procedures, the real iterative process of porting 
began. At this point we compiled one or more 
moclules, made additional modifications based on 
the compilation results, and recompiled until we 
were reasonably satisfied that all the errors were 
fiiecl. 

The Alpha AXI' cross compilers, the I\WCKO-32 
compiler in particular, have the capability of pro- 
viding a vast array of inforniational and warning 
messages. When compiling a module, we always 
requested all informational messages. The infor- 
mation assisted us in identifying the input and out- 
put registers as well as the registers that the 
compiler automatically preserved. Using this infor- 
mation, we verified tlie register usage in each rou- 
tine and added the information to the entry-point 
directives. Other informatiotsal and warning mes- 
sages directed us to cotling techniques that 
required change. By working wit11 one module at a 
time, we avoidecl making repetitive porting errors 
in multiple modules prior to our complete under- 
standing of bow to soLve the more complex porting 
problems. 

Some informational messages caution that cer- 
tain coding techniques such as data alignment 
should be moclified. We observed that attempting 
to make changes to align all data structure ele- 
ments prior to completing preliminary debug and 
testing caused many debug problems. Therefore, 
we decicled to establish a porting policy to change 
only as much code ,as was absolutely necessary 
prior to the initial debug ant1 test of a DECnet for 
OpenVMS AXP software component. Adhering to 
this policy required careful consideration, since 

some atomicity and granularity problems that are 
not resolved/atldressed might cause code failures 
during debug.' 

NETLIIWER ancl NETACP cotitained architecture- 
specific code, including memory management, 
driver tables, and structure definitions, which had 
to be made conditional for the OpenVMS AXP and 
OpenVMS \'AX systems A prefix file was added to 
each hUCKO-32 module during the Alpha AXP com- 
pilation step. This file containetl an Alpha AXP dec- 
laration that allowed us to include the directives 
required for conditional compilation. To comp~le 
the portecl code on a VAX system, it was necessary 
to provide a VAX declaration and macros for the 
various entry-point directives that when espanded 
contained no instructions. These were placed in a 
common library file ant1 conditionally compiled. 
The library file is inclutled in each module. Figure 2 
is an exanlple of a library file that contains a VAX 

declaration and macros. 
BLISS architecture-specific code was made 

conditional using the %if %bliss(bliss32v) or %if 
%bliss(bliss32e) constructs for OpeaVklS VAX and 
OpenVMS AXP, respectively. 

After porting a11 the ~ i i o d ~ ~ l e s  within a compo- 
nent, the component's build procedure was run to 
ensure that each module hat1 been ported without 
error. This was typically the first attempt to link the 
component. We also ran the Openv&b v!X proce- 
dure to ensure that the code would continue to 
compile ancl link on tlie OpenVMS VAX operating 
system. 

Linking The process of linking was difficult at 
times. The DECnet for OpenVMS AXP software con- 
tains drivers, system images, and shareable images. 
Each component required changes to the link pro- 
cedures. We made these proced~~res conditional for 
both the OpenVklS VAX and the OpenVMS AXP oper- 
ating systems. 

The process of linking the portecl modules 
brought to light many unresolved references. In 
general, these references were to external routines 
that had changed for the OpenVMS AXP operating 
system. One of the most difficult aspects of the 
porting project was determining which changes 
to the OpenVMS operating system had an impact 
on our project. Determining these changes was 
difficult because DECnet for OpenVMS AXP is 
tightly integrated into the OpenVMS AXP operating 
system. The process of pprting applications to 
the OpenVMs ASP environment should not be as 
difficult. 
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. S U B T I T L E  SDECNETDEF 

D e f i n e  a l l  t h o s e  s y m b o l s  t h a t  s h o u l d  p r e c e d e  a l l  D E C n e t  
I m a c r o  m o d u l e s .  

.MACRO SDECNETDEF 
. I F  NOT-DEFINED A l p h a - A X P  

T h e s e  make  A l p h a  A X P  c o d e  c o m p i l e  o n  VAX b u i l d s  b y  d o i n g  
I n o t h i n g  w h e n  e n c o u n t e r e d  

V A X = l  
; .JSB-ENTRY 

. m a c r o  . j s b - e n t r y ,  i n p u t ,  o u t p u t ,  s c r a t c h ,  p r e s e r v e  

. endm 
.JSB32_ENTRY 

. m a c r o  . j s b 3 2 _ e n t r y ,  s c r a t c h ,  p r e s e r v e  

. endm 
; . CALL-ENTRY 

. m a c r o  . c a l l - e n t r y ,  p r e s e r v e ,  max-args=O,-  
h o m e - a r g s = f a L s e ,  i n p u t ,  o u t p u t ,  s c r a t c h  

. endm 
. ENDC 
. ENDM 
/ 

Cor4e l<el~icul When ; \ I 1  tlie known porting prob- 
lems fount1 during tlie compile ant1 link phases had 
been corrected, we began our code review process. 
The original Vi\X cotle, the ported code, ;~ntl a dif- 
ference listing were avai1:tble to the porting team. 
One or more members of tlie team reviewed the 
ch:~nges matle ant1 pointecl o i ~ t  ;In!' problems tliat 
were identified to the person responsible for tlie 
module being reviewetl. We ;ill had previously 
;!greed that the reviews would be friendly ancl that 
egos wo~lld be left out oftlie process. We found that 
our successfill code reviews were well worth the 
effort. 

Initial reviews turnetl 1113 differing pliilos- 
ophies I-egarding the porting process. We discussed 
these difl'c.1.encc.s and rr;iched a consensus. The 
reviews uncovered errors in the porting process, 
ant1 correcting these problems r ed~~ced  the amount 
of delx~gging req~~ired. The review process also 
;rllowed us to agree on and maintain coding stall- 
dartls. 

U r b ~ ~ g g i i z ~  0i1r ; ~ p y ~ ) ; ~ c h  to tlehiigging the 
DEClieC h r  OpenV>IS AXl' softw;~re \vas to build the 
common portetl cocle for a \hX system and to 
replitce tlie OpenVMS \)AX images with our portetl 
version on one of oilr wol-kst;~tions. We began by 

loading the portetl NETI>RIVER ancl NEl'I\(:I' conipo- 
nents. Since many of the required chilnges were 
common to both OpenVhlS A X P  ;~tld OprnVICIS VAX 

systems, we were able to debug much of this code 
before we had access to Alpha IIXP liartlware. We 
foillid and fixed a number of problems using this 
technique. 

W/lien we were re;ison;lbly confitlent t l i ; ~ t  the 
ported code was working on the Open\l$ls \%X 

operating system, we began testing on Alpha A S P  

prototype hardrn;lre, which fort~~nately ti:icl just 
become available. We completecl the driver 1o:id 
and K P  initialization testing. The initial test uncov- 
ered some problems tliat required special 
workarountls to allow debug to continue. Fl'liese 
problems were corrected in 1;lter versions o f  tlie 
tools. Since the user interk~ce hacl not yet been 
ported, test code was written to start 1)EC:net for 
OpenViMS AXP and begin debugging the $QIO inter- 
face to tlie tlriver. 

Eventually NCP, NMl,. ;lntl NMI.StIII were ported, 
and more comprehensive clebugging begctn. We 
used the OpenVMS AXl' XDelta ;~nd  Delta tools to 
debug the .DECnet for OpenVMS AX]' cotle on our 
Alpha AXI' prototype h;~rdw;~re. System failures 
were tlebi~ggecl using the sDii cross tool on a Vt\X 

system. We learned how to trace c;ill chiiins b), 



studying the OpenVMs calling stantl:-~rtl.- 
1  ide erst an cling the format of linliage pairs, proce- 
dure descriptors, ;~nd  register save areas m;~tle 
tlebugging niuch easier prior to the avail;lbility of 
these features in SDA. 1)ebugging on ;in Alpha A S P  

system is more tliffici~lt than on a VAS system since 
most VAX instructions generate multiple Alpha ASr'  

instructions whose positions ;Ire optirilized by the 
conipiler to take ;idvantage of Alpha A X P  architec- 
t~lre  fe;~tures. "T'lil~s, it is not ;~l\vays easy to follow 
tlie AIphhiiXI' cock line by line bec;iuse the gener- 
ated Alpha AXP code from one language statement 
is interspersecl with Alpha AXl' code generatetl 
from aoother language statement. 

Testiug M'ter solving the ol?\/io~~s problems clur- 
ing the tlebi~g process, we began to test the DE(:net 
for OpenVk1S ASP code. Elrly versions of the 
Openvprs ~ixl-' file system, record nianagement ser- 
vices (RILIS), ;inti the file access listener (FA13 were 
made av;rilable to us. We in turn provided tlie 
1)EC:net for OpenVMS A S P  cock to  the group porting 
Open\'&lS R>lS ;tnd FAL for their use in debugging. 
We were then ;tble to run test scripts that used ;I 

variety of I)(:[ .  con~m:inds to perform loops of 
remote copies, differences, and clirectosy listings of 
I-emote files. I>E(:net networl< n1;In;igement scripts 
tested the network n1;lnagement interface. DTS ant1 
I)TR were i~sed to perform tl:~t:~ transfer testing. 
Since the I)E(:net for OpenV,LlS t\XI1 softmiare was 
;~vailable early, i t  w:is used by other Alpha IU(P port- 
ing groups on Alpha AXP prototype llardware in 
various 1oc;ltions. As the code stabilized, a timeslur- 
ing system was set LIP, which provitlecl the opportu- 
nity for more testing. 

Portitzg Issues 
When we beg;~n porting the I)E(:net-VAX softw;ire 
to the Alph;~ )\XI-' 11ardw:lre platf-i)rm, we fount1 
many coding conventions coultl not be used.  most 
of these coding p~lctices are called out by the cross 
compilers, which signific;~ntly helped the porting 
effort.3 

The following is a discussion o f  some problems 
we enco~~nteretl  while porting ;~nd  how we solvetl 
them. 

Eiityy Poilils Approximately four months into the 
project, the porting team cletermined that usi~ig the 
.,\SI3_ENl'llY clirective in NE'T'1)RIVER was going to 
make porting clilficult. The tlifficulty was clue to 
the complexity of the code ancl the fact that some 
code paths contained more than ;I clozen layers of 

subroutine c;ills. We conclutletl tlir~t tlie code, 
which had existed for a long time, :ilreatly savetl ;~nd 
restored the correct registers. We decided tli;~t tr!.- 
ing to con~mi~nic;~te the correct list of input, out- 
put, pass-through, and preserve registers to the 
compiler could be an impossible task, esl>eci;illy 
given our scl~etlule. We investig;~tetl the possibility 
of using the .JSH32_ENTRY directive. This directive 
allows the specification of registers that must be 
preserved but tloes not take any input, output, or 
scratcl? parameters. The OpenVMS hXP ~lh<;UO-32 
cross compiler will not automatic;~lly preserve ;in!. 
registers when this directive is usecl. A great cle;ll o f  
care must be taken when L I S ~ I I ~  this entry-point 
tlirective. 

Our tlecision to use . JSB32-EN'I'RY to declare entr!- 
points lecl to an interesting proble~n wit11 :IS!'II- 

chronously executing code t l i ;~ t  could jnterri~pt 
other threads o f  execution. The 1)E(:net-\'AX code 
that we ported i~sed I'IJSHR anel IIOI'R instructions 
to save and restore registers th;it were ~nodificcl 
by DECbet-\'AX cock jnterrupting another thread of 
execution. When adding the . J S I ~ ~ ) ~ _ I N T R Y  direc- 
tives, we specified a register preserve par:lrneLer 
only on external entry points, assuming that the 
remailider o f  the original UE(:net-ViIX code was s ~ v -  
ing the proper registers. The preserve parameter 
ensures that all 64 bits of the registers specified ;Ire 
saved at routine entry ant1 restoretl at routine exit. 
The PUSl3R and L'OL'R instructions preserve only 
tlie low-ortler 32 bits of the specified registers. 
However, if I)G<;net-VAX code in ;I routine wi t l~oi~t  
the .JSB32_ENTRY preserve p;~rameter interrupts 
another threacl of execution th;~t makes use of tlie 
ul>per 32 bits of a register, these upper 32 bits 
would not be properly restorecl when contl-ol 
returned to the interruptecl thresd. The solutjon 
was to specify the register preserve parameter o n  
the .JSB32_ENTR\i directives used to declare the 
entry points o f  routines in I>E(:Jiet I'or OpenVhdS 
ASP that are c;ipable of inte~-r~~l>tjng other thre:itls 
of execution. 

Whenever we changed tlie i n p ~ ~ t  or outl?t~t 
p;lrameters to ;In internal subroutine, we ;llso 
changed tlie name of that subroutine. This effoi-1 
11elped identify all the internal calls lllade t o  sub- 
routines whose interface had c11;inged. 

C O ~ O L L ~ ~ ~ L ' S  A feature of the Vt \ s  ;rrchitectt~re usccl 
throughout the NETACP and NFI'I>RniER con>- 
ponents is called a coroutine. Coroutines usetl 
in >h\CRO-D a1 low a subroutine t o  call cotle friig- 
ments in other subroutines. This technique uses the 
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jump-to-subroutine construct JSB @(SP)+ to jump 
between coroutines. The code example shown in 
Figure 3 denlonstrates the use of the JSB construct. 

The general flow of the example is for ~ ~ A I N  to 
call (:OKOUTINE with RO equal to 0 and R1 equal 
to 1. Usually, COROUTINE changes the value of R1  to 
2 and calls back i W N  at address SAVE. If COROUTINE 
is entered with R1 not eclu:~l to 1, then RO is set to 1 
and the coroutine dialogue terminates. MAIN at 
address SAVE then tests R O  and exits. Under normal 
circumstances, MAIN a t  atlclress St\VE continues, 
storing the returned value of R1 in DATA and calling 
back the coroutine at adtlress FINAL. COROIJTINE at 
adilress FINAL then changes the value of R1 to 3, sets 
the return status in RO to 1, ant1 returns to 1ktA1N at 
address TERMINATE. TEliMlNATE then exits MAIN via 
the RSB instruction. 

All entry points in MACRO-32 code on an 
OperlvMs AXP operating system must have an entry 
directive. Thus, i t  is not possible to use tlie]SB con- 
struct to jump to any random line of code, as the 
previous example clenionstrates. To tlo so, the code 
shown in Figure 3 would have to be split into sub- 
routines, each with a .JSH-ENTRY or .jSB32_ENTRY 
entry directive. Also, we hail to change the irnple- 
mentation of coroutines. Rather than use the stack 
to pass return addresses, we passed each return 
address in a register. 

Since some coroutines ported were more com- 
plex than the example shown in Figure 3, we clevel- 
oped a technique to port VAX coroutines to the 

Alpha AXP architecture. When a coroutine is split 
into multiple routines, some cocle, such as that test- 
ing returned values. 11i;~y change relative loc;~tion. 
In our example, the error processing at SAYE is no 
longer necessary Insteatl. <:OIK>C)In'INE returns to 
MMN if it detects an error, and ,WN siti~l>ly returns 
to its caller with the status in RO. The V A ~  code 
exaniple in Figure 3 was converted to Alpli;~ AXI' 
code using our technique. The resulting code is 
shown jn Figure 4. 

The use of coroutines o n  Alpha ,\XI' s),stenis 
should be discouragetl because of the o\,erl~ead 
associated with storing the return adtlress in regis- 
ters and the ailditional consumption of stack space. 
Rather than a simple return ;iddress on the st;tck, 
there will be ;I register save arc.;( o n  the stack for 
each subro~rtine that makes up the corol~tinc. 
Recursive coroutines can consume large qilantities 
of stack space. We have since converted coroutines 
usetl in main code paths to straight in-line s u b r o ~ ~ -  
tine calls. 

S t ~ ~ c k .  Uscf,~e MA(:IIO-32 coclc ilseb :I number o f  
common coding techniques t1i;it reqiiire knowl- 
edge of the state of the stack ; ~ n d  th;~t must be 
changed for the OpenV,\IS ,.\XI' operating system. 
One such technique, referred to as ;in up-level st;ick 
reference, occurs nrhenever ;I subroutine ;Ittempts 
to access information (;lddrc.ss or rl;~ta) stored on 
the stack by its caller. Parameter passing sonietimes 
uses this technique. If :I routine pushes ;Irjiurnents 

MAIN: 

SAVE: 

MOVL #O, R O  
MOVL # I ,  R1 
JSB COROUTINE 

; Assume f a i l u r e  
; S e t  i n i t i a l  v a l u e  
; Open a  c o r o u t i n e  d i a l o g u e  

BLBS RO, TERMINATE ; No c h a n g e  i n  v a l u e  
MOVL R1, DATA ; Save t h e  c h a n g e d  v a l u e  
JSB @ ( S P ) +  ; C o n t i n u e  c o r o u t i n e  d i a l o g u e  

TERMINATE: RSB 

COROUTINE: CMPL R 1 ,  # I  
BNEQ E X I T  
MOVL #2, R1 
JSB @ ( S P ) +  

F INAL:  MOVL #3, R1 

; E x i t  w i t h  s t a t u s  i n  R O  

; S h o u l d  we c h a n g e  t h e  v a l u e ' !  
; I f  n o t ,  e x i t  r o u t i n e  
; Change t h e  v a l u e  
; C a l l  b a c k  t o  c o r o u t i n ~  

; F i n a l  v a l u e  

E X I T :  MOVL # I ,  R O  ; S i g n a l  s u c c e s s  
R S B  ; R e t u r n  

Figure 3 VAX Code Example Shoulitzg the Use of the Construct JSB @ (SPj+ h. / l f  rrll., Oetlireer~ Chr'olr tirzcs 
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M A I N :  .JSB-ENTRY OUTPUT=<RO,Rl>,- 
SCRATCH=<RZ> 

MOVL #O, R O  ; Assume f a i l u r e  
MOVL # I ,  R1 ; S e t  i n i t i a l  v a l u e  
NOVAB S A V E , R Z  ; N e x t  c o r o u t i n e  a d d r e s s  
BSBW COROUTINE ; Open a  c o r o u t i n e  d i a l o g u e  
R S B  ; R e t u r n  t o  c a l l e r  

COROUTINE: .JSB-ENTRY INPUT=<Rl,RZ>,- 
OUTPUT=<RO,Rl,RZ> 

C M P  L R1, # I  ; S h o u l d  we c h a n g e  t h e  v a l u e ?  
BNEQ E X I T  ; I f  n o t ,  e x i t  r o u t i n e  
PUSHL R2 ; Save n e x t  c o r o u t i n e  a d d r e s s  
MOVL #2, R1 ; Change t h e  v a l u e  
MOVAB FINAL,RZ ; C o r o u t i n e  a d d r e s s  f o r  SAVE t o  u s e  
J SB @ ( S P ) +  ; C o n t i n u e  a t  SAVE 

E X I T :  MOVL # I ,  R O  ; S e t  s t a t u s  
RSB ; R e t u r n  t o  MAIN 

S A V E :  .JSB-ENTRY INPUT=<RI,R2>,- 
OUTPUT=<RO, R1> 

PUSHL R2 ; S a v e  n e x t  c o r o u t i n e  a d d r e s s  - F INAL 
MOVL R1, DATA ; S a v e  t h e  c h a n g e d  v a l u e  
J SB @ ( S P ) +  ; C o n t i n u e  c o r o u t i n e  d i a l o g u e  a t  F INAL 
RSB ; To COROUTINE 

F INAL:  .JSB-ENTRY OUTPUT=<RO,RI> 
MOVL #3, R1 ; F i n a l  v a l u e  
R S B  ; To SAVE 

F ~ L L I - e  4 Alpha AXP Code Exu~)zple Sl~oiuirzg the Use of the Constr~tct 
JSB Q(SP)+ to J~tnzp Deliueen Coro~~trnes  

onto the stack prior to jumping to a subroutine, the 
called subroutine does up-level stack references to 
retrieve the arguments. Other techniques include 
using the stack as ;I common data are;) or attempt- 
ing to manipulate the caller's return address in 
order to alter the progr;im flow. 

MI these techniques require re-cotling. When we 
encountered code that passed parameters on the 
stack, we rnoclifiecl the code to pass parameters in 
registers. If a structure was being passed, separate 
memory was allocated and the adclress of the struc- 
ture p;lssetl in ;I register. In one case, NETACP used 
coroutines to perform specific functions to update 
a common data area allocated on the stack. This 
cotle w;is redesigned to eliminate the coroutines 
and LIP-level stack references. Another alternative 
woultl have been to pass the arldress of the data area 
on the sc;~ck to the c;~lled routine. 

Altering the program flow when error condi- 
tions were encountered was also a common tech- 
nique i~sed in the Dl:<:net-VAX 1blCIK)-32 code. 

Subroutilles removecl the return address from the 
stack and returned to the caller's caller. We modi- 
fied the cotle to remove the up-level stack refer- 
ence (the caller's return address) ant1 return a flag 
in a register to signal the caller that a change in the 
program flow was desirecl. 

Condition Codes The Alpha A?<P ;~rcliitecture 
does not support global condition codes in the pro- 
cessor status word. Some routines set condition 
codes and reti~rned to the caller, which proceeded 
to perform a conditional br;lnch on the results of 
the called routine. All occurrences o f  this tech- 
nique were changed; routines now p;~ss the result 
of any conditional test to the caller in a register. 

G m n ~ / l ~ l I - i t j ~  arzcl Ator?ticil IssuesX The NLTACP 
and NETDRIVER components access shared data 
structures. Since NETDIUVER can interrupt NETtKP, 
the DECnet-VAX code relies on the atomicity of VAX 
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Conclusion 
This porting effort not only provitled a solid base of 
k~iowledge with which to begin the port of the 
DECnet/OSI for OpenVMS VAS softwilre anc1 the 
;lssociated protlucts, but also gave us an apprecia- 
tion of common code and the avoitlnnce of archi- 
tecture-specific code. 

More and more software is being ported to new 
hardware pl;~th)rms. The porting process is often 
carried out by individu;ils who did not develop 
the original software and who may not even be 
familiar with it. Our experience porting the 
I)ECnet-VtlX cotle leads us to believe that new soft- 
ware development should take into account the 
possibility that the code will be ported to new 
hardware platforms at some filrilre date. As we con- 
tinue to port the I)ECnet/OSI for OpenVMS VAX soft- 
ware, it is becoming increasingly obvious that 
certain coding practices are difficult to port. As a 
general suggestion, if the code has knowletlge of 
the architecture but can be written using system 
routines, system ser\lices, or run-time library func- 
tions, write the code in that manner. These system 
routines will be ported with the operating system, 
and in a majority of the cases, the application code 
will not require modification. 

Also, if architecture-specific functions are 
req~liretl, provide only a minimunl amount of cocle 
to perform these required functions and segregate 
the code. Document how the code works, why it  
had to be clone that way, what the alternatives were, 
;inti why they were not taken. 111 ;~ddition to helping 
maintain the cocle, this information may provide 
valuable assistance to a person porting tlie code in 
the future. 

If a routine is written in assembly language for 
the sole purpose of performance improvement. 
consider rewriting i t  in a high-lr\fel language. I t  is 
possible that tlie assembly language coding conven- 
tions that may 1i;lve been optimal for one harclware 
platform will be slower on ;I clifferent 1iartlw;ire 
platform. Ilsing high-level langu:~ge compilers. 
which generate optimizeel hardware-specific code, 
will eliniinnte additional porting effort and m;~y 
very likely I)e the best performance solution. 

As we tliscoverecl tluring the process of porting 
the DECnet-VAX software, iLLZ<:R<)-32 code is signifi- 
cantly more clifficlllt to port than code written in 
Iiiglier-level languages. However, certain ;~rchitec- 
ture-specific functions may have to be written in 
assembly 1;lnguage. Wk recommend that these func- 
tions be isol;~ted. In addition, we recommend that 

any other code written in &bi(\<:l<o-32 be rewritten, 
over time, in :I higher-level language. 

\Ve determined that the fastest approach to port- 
ing was to make the minimum number of changes 
required to get the DECnet for OpellVMS p u t '  soft- 
ware running. The porting process was accom- 
plished in phases. The first phase inclucled the 
initial port :untl addressed any errors that occurrccl 
until we successft~lly completecl linking the image. 
This phase also included the initiiil clebug, which 
was first performed on VAX systems because of o l ~ r  
common code approach and, subsequently, clone 
on Alpha 11x1' prototype liartlm~are. Wl?en the procl- 
uct was st;~ble, we proceedecl to tlie secontl plinse 
in which we began to methodically align data struc- 
tures and fix gr:~ni~larity and ;rtoniicity problenls. 
Small changcs coulcl then be ni;~cle and tested, ant1 
any new p r o b l e ~ ~ ~ s  were generall~. easy to idenritj! 

Our team approach to the project worketl 
extremely well. Each team member was initially 
responsible for porting specific portions of tlie 
code. As the project progresseel, intli\iiduals workeel 
on any part of the product that needed attention. 
This flexibilit)l was also used when we began to 
clebug the portetl code and again when we began 
to respond to lx-oblem reports. Priorities were ilsetl 
to assign resources in orcler to solve problems ;IS 

quickly as possible. Throughout the project, team 
members worketl together to share knowledge ancl 
to solve problems efficiently. This effective teani- 
work allowecl us to deliver the L)E<;net for OpenVLIS 
&KP product ahead of schedule. 
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Using Simulation to Develop 
and Port Software 

Anio~zg the tools deueloped to silpport Digitc~l's Alpha AXPprogrnl?~ zilere jolir soft- 
zuare sirnulc~tors. The iMa~inequi~z and I.SP instruction set si~)zulators were used to 
port the Open VIN and OSF/l operating systems to the AQha AXP platform. The 
Alpha User-nzode Debugging Eizt~ironment (AUD) allozi~ed Alpha A X P  user-/node 
code to be debugged iilzth s~q~port  fi'o~rz the Ope~zviVS VAX rz~rz-tune enz)iron~~ient 
on VAX hc~rclwc~re. AUD 1 1 ~ s  b ~ i l t  from a conzbinatzo~z of new and existing Digital 
softlvare conzponents. The Alpha User-mode Debugging Enz~ironnzent for 
Translated I~nages (AUDI) allouted translated images to be debugged 012 a sinzulator 
rz~rzizi~zg on a K4X conzputer With these clebz~gginzg enuiro~z~nents, user-mode 
cQplications G L I Z ~  code comn1)oizents coz~ld be tested before Alpha AXP hardware crnd 
operating systnn softzuare were availc~ble. 

Digital developed several software simulators to 
support its Alpha AXP program.' These tools 
enabled engineers to develop rind port software for 
the 64-bit RISC Alpha AXP ;irchitecture concur- 
rently with harclware development. The simulators 
were used for a variety of purposes inclutling port- 
ing, testing, verification, ancl performance analysis. 
This paper discusses four Alplia iu rP  software simu- 
lators: Nlannecluin, ISP, AUD, and AUDI. 

The Mannequin a n d  ISP Simulators 
Two tUpha iD(P instruction set simulators, 
Mannequin and ISP, were used to port operating 
systems to the Alpha AXP platform. Tlie OpenVMS 
group used the Mannequin si~nulator to port the 
Openv>ls v,\X system to the AJplia ASP platform. 
Likewise, the OSF/l group used the ISP simulator in 
their port of tlie ULTRlX ant1 OSF/l operating sys- 
tems to the Alpha AXP platform. Both sinlulators 
were also usetl for architectural and design verifica- 
tion, and for performance modeling. 

l'he Nlannequin simulator grew out of a simula- 
tor developed for ;111 earlier RlSC project at Digital. 
The IsP simulator was written anew by engineers 
closely associated with the Alpha tLYP architecture. 

The two tleveloprnent g r o ~ ~ p s  were recluested to 
boot their respective operating systems on the sim- 
ul:itors before attempting to boot on the Alpha 
Demonstration Unit (ADIJ), the Alpha ASP proto- 
type hardware.' The simulators were so successfi~l 

in tracking the Alpha I\XP architecture and in root- 
ing out software bugs that the OSF/1 group was able 
to boot the ULTRlX operating system on the hard- 
ware on the first attempt. The OpenvMS group hat1 
similar success and booted the OpenVMS AXP oper- 
ating system in a few hours. 

Note that the Alpha Demonstration Unit (ADU) is 
an Alpha AXP prototype hardware system and 
should not be confused with the Alpha User-mode 
Debugging Environment (AUD) or the Alpha User- 
mode Debugging Environment for Tr;inslated 
Images (AULII), two software simulator facilities dis- 
cussed later in the paper. 

OpenVMS AXP Porting 
The OpenvMS group usetl NIannequin as their Alpha 
AXP instruction simulator in porting the OpenVMS 
VAX operating system to the Alpha AXP hardw;~re. 
Never before had an OpenVMS porting effort been 
able to debug as much operating system code 
in advance of hartlware. Prior porting efforts 
debuggetl only up to VMB, a priniary boot stage in 
the OpenVMS operating system. IJsing Mannequin, 
operating system developers were able to boot the 
entire operating system on tlie simulator ant1 actu- 
ally log in and debug utilities. 

Some developers used Mannequin's own win- 
dows interface and debugging facilities to debug 
their code. Others ran the XDelta utility on top of 
 mannequin? XDelta is a low-level system debugger 
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used to debug the OpenvYlS ViX kernel :~nd tlrivers. 
However, the Ma~inequin interface was useful in ini- 
tially clebugging XlleJta, since the Alpha AXP con- 
sole allows neither breakpoints nor single stepping. 

To debug their code before the fill1 OpenVMS A S P  
operating system was avail;lble, other clevelopers 
used Mannequin in conjunction with tlie Npha 
prim;~rjr boot (A13R) cotle and a test h:~rness. 
Wlannequin was especially usef~il in finding align- 
mcnt hults in the boot sequence. since the align- 
nielit tools are not operational until the OpenVMS 
AXP system is completely booted. Alignment faults 
occur when :in ;lttenlpt is rn;icle to access ;I unit of 
dat ;~ locatetl ;it ;in atldress that is not a multil>le of 
the size of the data. 

Microcode L'@eedzip 
One mail1 reason the OpenVMS team was :ible to 
debug 21 large part of the operating system in real 
time was tlie use of specially written microcode to 
speetl LIP the siniul;ltor. Mannecluin is c;ip:~ble of 
running with speci;il user-written microcotle on 
thc VAX 8800 fi~mily of machines. This microcode 
is :ln addition to the normal VAX micrococle for 
[lie 8800 machines; the VAX microcotle remains 
unchangecl. With micrococle support, a large subset 
of Alpha A S P  instructions is executed in microcode 
;ind attains performance comparable to native VAX 

instructions. The Mannequin microcode occupies 
9:) percent of tlie total 1,024 worcls of thc user- 
writ:ible control store. 

Using microcotle assistance greatly speetls up 
M;~n~ieql~in execution, yielding from 350 thousand 
Alpli;~ AXP instructions per ClYJ secontf (KII'S) to a 
peak perforniance of 1 million Alpha AXI' instruc- 
tions per CPli secontl (IMII'S) on ;I VAX 8800. 
lVitliout microcode assistance. iVIannequin perfor- 
mance is on the order of 1 0  KII'S. (For conlparison, 
the ISP siniul:~tor operates at approxim;~tely 30 
KIl'S.) Code streams that execute completely in 
Mannequin microcode show much better perfor- 
mance than those that switch back ;inti forth 
between micrococle ancl the software simulator. 
With microcotlc ;tssistance on an unloadetl V I ~ X  

8800, it takes from 20 to 30 minutes to boot the 
OpenVMS ASI' system and reach the Digital 
Command Language (DCL) prompt ;iftcr login. 
Becai~se of this microcode speedup, softwzire engi- 
ncers were able to simulate and debug a much 
larger part of the operating system and utilities than 
ever before. 

OSF/l AXP Porting 
The OSF/l operi~ting system group usetl the ISP sim- 
ul;~tor as an Alpha AX'P instruction compute engine. 
The strategy was to connect the ISP simulator to 
dhx, a st:~ntl;ird UNIX source-level debugger, via 
cll?x's remote interface. hi interface \v;ls added to 
tlie ISP to support the following low-level debugger 
commands: 

Instruction stream exiirnine and deposit . Data stream examine ant1 deposit 

Register exmnine ant1 deposit . Single step 

'She dbx tlebugger was motlified to work with the 
64-bit Alpha architecture. 'That is, atltlresses in 
the debugger were extentlecl to 64 bits, and an 
Alpha ,%XIJ clisassembler was providetl. The ISp 

simulator ant1 tlbx debugger operated as separate 
processes communicating on the same ni;~cliine 
by means of a socket. A socket is a protocol- 
independent connection point for interprocess 
communic;~tions. 

Hjstoric;rll): the OSF/l group used the ISP-dl~ 
combination to port the I.I:rlu>; oper:iting system 
to the Alpha AXP platform as ;In advanced develop- 
ment effort. When the group began to port the 
OsW1 system, Alpha AM' prototype hardware 
(141)Us) and fieltl-test coml,ilers were av;~ilable. 
Thus, the OSI:/l group iisetl tlie ISP in its hl)Ii niocle. 
where the ISP simulator operated as a console to 
the ADU hardw;tre system. Tlie ADU consists of an 
All~ha AXI' 1)ECchip 21064 processor, memory, 
disks, Ethernet, ant1 a I>E<:station 5000 wwrksti~tion, 
which acted ;a the console interface. Instrilctions 
that norm;~lly execute on the simulator were trans- 
ferrccl to the A O U  for execution. However, the 
entire symbolic debugging environment remained 
iinchanged. 

Si~nulntor Specifics 
Tlie ISP simul;~tor was written entirely in portable 
<;. The Manneqi~in simulator was a hybrid of the 
<:++ ant1 C languages IsI' consisted of approxi- 
m;~tely 27,000 lines of code, Mannequin 31,800 
lines. The two simulators shared common cotle: 
the ISP simulator provided Mannequin with float- 
ing-point routines ant1 a comprehensive instruction 
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test program; Mannequin provided ISP with I/O 
device routines. Thus, the simulators verified the 
Alpha AXP architecti~re as well as each other. 

The Mannequin and ISP simulators tracked ancl 
supported changes in the evolving Alpha AXP arclii- 
tectilre ant1 in PALcode. IIALcode is special machine- 
depetitlent software that provides support for 
many low-level operating system services such as 
faults ant1 exceptions. PALcode ;~lso provides 
instructions not in tlie base Alpha ~ x l '  h;~rdware. 

The two simulators 1i;lve features comnion to 
many simul;~tors, i~ l c l~~ t l i~ ig  support for loading 
and running progr;ims, setting breakpoints and 
watchpoints, accessing memory, and saving and 
restoring machine state. Also supportetl are many 
machine-specific features, such as I/() devices, 
interval timers, and configurable translation look- 
aside buffers. Besides a commantl line interface, 
the Mannequin simulator has a graphical windows 
interface that allowed users to see most machine 
resources in a windows-hased format, as shown in 
Figi~re I .  

'The N1;innequin :~ncl [SP simulators support three 
basic devices: 

A console device ~ ~ s e t l  for terminal I/() 

A disk device used to boot the operating system 

An interval timer used for interrupts 

The disk device on the simulators can be either 
a file or a physicill disk device. The OpenVMS 
group usetl a shared disk so that developers could 
boot from a comnion disk while running on tlie 
simul:~toc 

The simulators provide 16 megabytes (MB) of 
physical memory with ;I tlefault page size of 8 kilo- 
bytes (kH). The physical memory of the simulators 
may be increased to tlie practical limit of available 
virtual memory on ;I VAX system (minus a small 
amount for the actu;il simulator code). 

Both simulators have configur:tble instruction 
stream (I-stream) ant1 data stream (D-stream) trans- 
lation lookaside buffers (TLBs). A TLR is a s~ilall 
cache that holds recent virtual-to-physical address 
translation and protection information. The sirnula- 
tor TLIb can have a variable number of entries i l l  

each of tlie four gr;lnularity hint block sizes. 
Granu.l;~rity hints inclic;~te to tlie tr;~nslation buffer 
implementations that a block of pages can be 
treated as :I single, larger page. In essence, there are 
four minitr;~nslation buffers. The ISP simulator sup- 
ports selectable 'rL15 replacement algorithms, 

whereas Mannequin supports only the not-last- 
used (NLII) algorithm. The configurable TLBs 
allowed the operating system and chip design 
groups to analyze and finely tune the tr;~nslation 
lookaside buffers for optimum performance. 

Tlie Mannequin and ISI' simulators also support 
execution o f  user-mode, st;~nd-alone programs, i.e., 
those with little or no operating system ri~n-time 
support, by providing program loaders for several 
formats. These formats include two UNlX object for- 
mats ((;OFF and a.out), an OpenVMS AXP image for- 
mat, and a system (raw tlata) image format. 

Programs were compiled with early field-test 
Alpha AXP compilers. Program execution was espe- 
cially useful for hardware tlesigners ant1 conipilcr 
writers for performance :lnalysis and benclimark- 
ing purposes. Note that applications rccluiritig fill1 
operating system support usecl the AUI> facility, 
described in a later section. 

The simulators can ge1ier;lte trace files in a stan- 
dard trace file format. This common;~lity enabled 
the two facilities to share the same trace analysis 
tools. The trace files generated by Mannequin 
and ISP were also used ;IS input to the Alpha 
Performance Model, another simulator that gener- 
ated detailetl performance data. 

EVILIST ant1 ALPHA$REPORT were two tools fre- 
quently used to analyze trace files and generate 
statistics concerning ni:icliine resources used dur- 
ing program execution. Tlie types of data generated 
by A L P H ~ I \ $ R E P O R T ' ~ ~ ~ ~ L I ~ ~  the following: 

Instruction distribution by opcode, class, and 
format 

Instruction and floating-point register utiliza- 
tion summary 

Distribution of code block run lengtlls 

Opcode pair distribution by class 

Control/branch instruction flow suniliiary 

At1 acti~al trace analysis report generated by 
ALPHA$REI'OHT' is shown in Figure 2. This example 
conies from a scaled version of FPPPP (one of the 14 
benchm:~rl<s in tlie ~PE<:fp92 floating-point test 
suite), with the constant NA'TOMS set eqi~al to 2. 
Figure 2 clisplays a report listing instruction distri- 
bution by opcode. 

Alpha AXP operating system developers and com- 
piler writers relied heavily on the trace reports for 
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A L P H A  I n s t r u c t i o n  S t a t i s t i c s  R e p o r t  6-MAY-1992 
FPPPP -- Q u a n t u m  c h e m i s t r y  c a l c u l a t i o n  o f  a  t w o - e l e c t r o n  i n t e g r a l  
d e r i v a t i v e  

I n s t r u c t i o n  D i s t r i b u t i o n  b y  Opcode  
( R a n k e d  f r o m  h i g h e s t  t o  l o w e s t )  

I n s t r u c t i o n  
C l a s s  Mnemon ic  O c c u r r e n c e  P e r c e n t  
6  L  D T  2321 155  2 5 . 4 1  
8  MULT 1 7 3 2 9 2 8  1 8 . 9 7  
8  ADDT 1 4 3 3 7 9 8  1 5 . 7 0  
6  STT 9 9 8 4 4 6  1 0 . 9 3  
1  L D Q 544385  5 . 9 6  
1  LDL 241 142  2 . 6 4  
1  STL 178828  1  . 9 6  
4  B I S  1 5 1 1 2 0  1 . 6 5  
3 ADDL 1 2 6 3 2 1  1  . 3 8  
8  SUBT 95045  1 . 0 4  

C u m u l a t i v e  
P e r c e n t  

2  0 
4  0  
6 0 
7 0 

help in designing critical sections of cotle. For 
example, the register usage distribution report 
helped determine how many registers shoultl be 
preservetl by a call ancl Ilow many shoultl be 
scratcli (usable by a c;~lletl routine without being 
preserved). 

The AUD Facility 
Whereas the Mannequin and ISP sin1ul;itors were 
suitable for initial debugging of low-level software 
such as operating systems, direct use of these tools 
for user-motle ;~pplications, i t . ,  1;lyeretl products, is 
a different mzltter. Porting ;inti tlebugging Alpha 
AXP user-mode code is at best tlifficult without the 
full run-time support of an operating system. User- 
r~iocle :~pplications typically take advantage of a 
wide v;~riety of run-time libraries, including coni- 
piled cocle support (such ;IS the Fortran run-time 
library), mathematical routines, graphics I/() ser- 
vices, ;lntl database software (such as Rdb for 
0pe11\/hIS). Even if all this software were i~nmedi- 
ately available for Alph;~ !\XI' systems, running it 

under simulation would be proliibiti\~ely slow. 
Therefore, Digital developed a mixed-execution 

tlebugging environment. This Alpha User-mode 
Debugging Environment (All[)) was built from a 
con~bination of new ant1 existing Digitcll software 
components. In the AIJD environment, user-mode 
code being tleveloped for or ported to the Alpha 
AXI-' pli~tforrn coulcl be compiled ;~ntl executecl as 

Alph;~ t\XP code using simulation o n  VAX hardwiire. 
At the same time, OpenVMS VAX run-time services 
calletl by the cocle could be executed ;is native VI\X 
instructions. Thus, modules could be ported and 
tlebugged one at ;I time, until almost the entire 
;ipplication consisted of bug-free Alph;~ AXP code. 

During the design o f  the AUD environment, two 
key technical issues were 

How to efficiently tletect calls nintle by execut- 
ing VAX code to a routine in Alpha A S P  code tliat 
could be "executetl" only by simulation, ant1 
conversely, how to tletect calls made by Alpha 
t\Sf'cotle being simulatecl to native \/i\X code. 

How to effect the tr;~nsformation of parameters, 
both location and representation, from that pro- 
vided by the caller in one dom;~in into the loca- 
tions and represent;~tions expected by the callecl 
routine in the other domain. Altliongl-r there 
existed well-defined and widely followed calling 
stantlards for both tlomains. a variety of special- 
purpose, 11igh-performancc c;~lling conventions 
were i~secl in many situations. 

This mixed-execution environment was expected 
to have a relatively short lifetime, because it would 
become obsolete 21s soon as significant nu~nbers of 
real Alpha iLYP h;~rtlw;lre systems bec;uiie avai1;tble. 
Conseq~rently, AlJl) itself had to be simple and inex- 
pensive enough to be created quickly and put into 
use. 'l'he clevelopment effort met this requirement. 
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The elapsed time from initial concept to first use 
was about eiglit months; tlie total tlevelopment 
effort for AIJD over its lifetime was between three 
and four man-years. 

AUD Components 
Despite the desire for simplicity, AUD consists of a 
n~~ tnbe r  of cooperating components: 

(21llable Mannequin Alpha Simulator 

~ l r l )  tlebugger 

~ l j l )  linker 

Alpha ASP native services 

vAX jacketing services 

AIII) 1.inkage Analyzer (t\LA) 

Selected V A ~  jackets 

Callable Mcrn~zeyzii~t Alpha S i~nul~~tor .  Callable 
Nl;innec[uin, the Alpha AX]' instrt~ction set siniula- 
tor, is essentially a subset of tlie  mannequin simu- 
lator described earlier. In particul;rr, Callable 
Mannequin omits the user interfdce and Alpha AXP 
machine state. Insteatl, tlie A~JD debugger supplies 
the user interface. Also, storage for the Alpha U P  
machine state is separately linkecl into the AUD 
environment to make this information globally 
accessible. Callable Mannequin does retain tlie 
microcotle-assist feature. 

AUU Ilr11~rgge-r- The ALID tlebugger is a niotlified 
version of DEBUG-32, the user-mode tlebug utility 
on the OpenVMS VAX operating system. The AUD 
del>ugger provides most of the same fea t~~res  of 
DEBUG-32. A configuration option allows the 
DERII(;-9 utility to use an internal. low-level 
remote debugger interface to interface with a for- 
eign target. (This capability was origin;~lly devel- 
oped for use in other protlucts such ;IS VAXELN 

Atla.) We developed new cotle to join DEH1J(;-32 ant1 
Mannequin using this interface. As a result, the AIrD 
debugger 'cvorks directly with VAX cotle, in the 
LISLI;I[ Inannet-, ant1 works with Alplia A ~ I '  cotle by 
passing commands to the Callable Mannequin simu- 
lator to set breakpoints, examine instructions, exe- 
cute cotle, etc. 

AUD J.i~zker The Alll) linker is a vari;mt of the 
Alpha AX]' cross linker tliat reads Alpha AXP object 
modules as input ant1 produces an OpenVMS VAX 

h)rmat image as output. The stantlard VAX linker 
can therefore reference locations in the Alph;t AX[' 

image in the normal way, :tnd the stantl;trd 
OpcnVMS image activator can be ~ ~ s e d  to load the 
Alplia AXP image for execution. However, to mini- 
mize complexity, we did constrain the Alpha A>(I' 

image to be linketl as an absolute image (i.e.. a 
basetl image, in OpenVMS jargon). This restriction 
eliminated the problem of how to relocate Alpl1;r 
AXI' instructions using the OpenvMS image activa- 
tor. As mentioned previously, the Alpha AXP image 
also includes a global storage area to hold the sirnu- 
Ir~ted Alpha /\XI' n1;lchine state. 

All~ha AXP Natirle Ser-vices Alpha AX]-' native ser- 
vices is a special oper;~ting system shell, part of 
which executes as Alpha AXP code (i~ntler sirnul;~- 
tion) ancl part of which is includecl in the AUD jack- 
eting services. ?'he native services provide the 
lowest-level support for hardware esception han- 
dling and the OpenVMS co~lditio~i-handling facility. 
Wlljle iUiD ultini:~tely supportecl frame-based con- 
dition handling within the Alphit t\XI' image, inter- 
operation of applic:~tion exceptions between the 
Alpha AXP and VAX domains was not supported. 

VAX jacketi~lg Scrrlices VAX jacketing services is 
VAX code tliat supports the ability to write jackets 
that pass control back and forth between VAX and 
Alpha AXP code. The mechanics h)r ;~ccotnplishing 
this ;are discussed in the Jacketing section. 

Linkage A~za@zer The A1.A is ;I specialized 
compiler that reads a specializetl jacket description 
I;~nguage. This langi~age describes how calls in 
one tlomain ;ire to bc transforrnetl into calls in the 
other domain on  a routine-b!,-routine, parameter- 
by-parameter basis. The output from tlie AM is 
an Alpha AXP object module and a linker options 
control file, both used to link the Alpha U P  image, 
;inti a VAX object module. The Alpha i\XP object 
module provides a transfer veclor into tlie Alplla 
ASP procedures. The linker options control file 
provitles symbol definitions in an encoded form to 
manage calls from tlie Npha 14x1' image to the main 
VAX image, which is linked later. The VI~X object 
motlule contains a table that encodes the jacketing 
tlescription. 

Selected VAX J~icket.s Selected \'AX jackets are A[.A 

jacketing files (in both source and compiled forms) 
for calling common VAX facilities from Alpba AX[' 
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code. J:~ckets are provided for OpenVMS system ser- 
vices, the C run-time library and some parts of the 
general-purpose, run-time library (LIBRTL). The 
DECwindows group also supplietl jacket definition 
files for use by other groups. AUD users are able to 
supplen~ent these files as neetletl by creating and 
cornpiling their own jacketing descriptions for 
other VAX facilities. 

Figure 3 shows the main steps in building an AUD 
environment. The uppermost sequence shows the 
cornpililtion ancl linking of the iUpI7i1  AX^' conipo- 
nents, which results in the creation of the Alpha 
AXP image. The central sequence shows the compi- 
lation of the jacket descriptions, which results in 
the creation of components that are included in 
both the Alpha AXP and the VAX images. The lower 
rows o f  Figure 3 show the compil;~tior~ o f  the VAX 

ALPHAAXP 1 n 
ALPHA AXP ALPHA AXP 

PROGRAM 

part of an application and its linking with the AUD 
manager to create the \It\>; main image. When the 
mixed VtiS and Alpha AXP application is executed, 
these images are combined in memory with 
Callable Mannequin, the A1:D debugger, and other 
shareable images. This relationship is illustrated in 
Figure 4. 

Jacketing 
Jacketing is the key feature that allows VAX and 
Alpha AXP interoperability i.e., gives a processor 
the appearance of  being able to execute both \/AS 

and Alpha iLYP instructions. Mthough the details of 
jacketing are intricate, the result is simple and ele- 
gant. Calls can be made freely back and forth 
between VAX compiletl code and Alpha AXP com- 
piled code, without any special compilation motles 
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ALPHA AXP 
JACKET 
OBJECTS 
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Fig"'-e -3 Crenting an AUD Application 
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ALPHA AXP 
LlNK - 

VAX 
LlNK - AUD AND JACKETING 

TABLES AUD DEBUGGER 

+ r 
- I  VAX COMPONENTS 

CALLABLE MANNEQUIN 

I I 

MAIN IMAGE SHAREABLE LIBRARIES 

on either sicle. 'The A ~ J D  support is fi11Iy rec~trsive 
~ I I C I  reentrim. 

Static c;~lls from VAX to Alpha AXI' cocle are 
clirected to cl~rmrny entry points in thc object motl- 
~rle protlucecl by the AW compiler. E;ich entry point 
is simply :in instruction that loads a pointer to the 
jacketing clescription table for the t:lrget t\lpha ,-\>;1' 

procedure, h)llowetl by a transfer into common 
jacket interpretation cotle. 

Calls from Alpha AXP cocle to VAX code use 
the fact that the <:allable Mannequin component 
stops anti returns c01itr01 to the i\lll) environment 
when it detects :in instruction that trilnsfers control 
out of the Alpliii ASP image. In this case, the appar- 
ent address is an encoded integer (created by the 
)\LA), whose high four bits make it look like an ille- 
gal address (in the VAX reservecl S l  space) and 
whose remaining bits ;Ire a two-level index (i.e., 12 
bits of facility cotle and 16 bits o f  ofhet) into the 
jacket description table for the target \'A>; proce- 
dure. This two-level scheme wits chosen to allow 
jacket descriptions for different sharetl library facil- 
ities to be preparecl ant1 compiled inclepentlently. 
Tlie facility cock is :i niimber norm;illy ;ilready asso- 
ciated wit11 t1i:tt facility by software convention for 
other purposes. 

When ;I routine is calleel  sing ;I dynamically 
tleterminetl atltlress, such as ;in ;~clclrc.ss gi\.en in ;i 

function \~;iri:~ble, a property of the VAS ;ind Alpha 
AXP architectures is exploitetl to determine dynam- 
ically whether the target routine is ;I VAX routine or 

an Alpha AXP routine. According to the VAX archi- 
tecture, the first 16 bits of a routine comprise a 
mask that encodes the registers to be preserved as 
part of the call. Bits 12 ;~nd 13 of this nxuk are 
~lnused and recli~iretl to be 0; if one of these bits is 
set n t  the time of a call, then a hardware exception 
results. According to the OpenVMS AX]' softwnre 
;~rchitecture, an Alpha A X P  procedure address is 
;lctu;rlly the atldress of a procedure descriptor, 
which is a data structure ancl not the actu;~l Alpha 
A S P  cotle. By design, bits 12 and 13 of this data 
structure must be set to 1. 

VAX execution of a VAX CALL instruction that 
;Ittempts to transfer to ;In Alpha A X P  17rocetlure 
results i l l  an exception. A special AUD exception 
Ii;~ndlt.r intercepts the exception, determines if the 
illeg;~l entry mask is caused by ;I reference into an 
Alpha AXP image, ant1 if so, calls into the All[> jacket- 
ing routines to reform;tt the call frame. This mecha- 
nism also works for handling asynchronous system 
tl.:11x(ASTs) from the Open\JMS MIX operating 
syste11-1 to Alpha A X P  cocle. 

For computed calls from Alpha AXP code, com- 
piletl code calls an Alpha A X P  run-time library rou- 
tine te) perform the comparable bit 13 test (untler 
simulation). If bit 13 of the target location is set to I, 
then simulated execution continues ant1 ;In Alpha- 
to-Alpha call is carried out. Otfierwise, control 
tr;~nsfers to a speciiil V\X code entry point in A1113, 

which terminates simulation and performs jacket- 
ing back to the Vt\X target procedtrre. 
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Basic Operation 
To start executing a mixed application, the AUD 

environment first performs several initializ;~tion 
steps. 111 particular, AlJD scans all tlie images loaded 
in process memory to identfy tlie Alpha AXl' image 
(only one wirs allowed and supportecl). 

Some ALJI) options are set through the use of 
OpenVMS logical names, which are interrogated 
during image initialization. These options include 

Selecting Alpha t\XP stack size 

Enabling tlelivery of ASTs to alp hi^ AXP routines 

Disabling the normal Alpha ~ i x P  stack consis- 
tency checks 

Disabling i~naligned memory reference messages 

Enabling AIJD initialization tracing 

Disabling integer overflow checking 

Debugging combined VAX and Alpha AXP code 
under the ACID e~ivironment is similar to debugging 
normal VAX code untler the DEIKIG-32 OpenVMS 
debugger. Basically, if the address involved in a 
debug command is within an Alpha Ml' image, 
then the debugger calls tlie Mannequin simulator to 
perform the commantl for the Alpha AXl' cotle. 
Otherwise, the DEBU(;-32 debugger itself performs 
the command for the VAX code, as usual. Alph;~ ASP 
machine state is kept in static global storage by 
Mannecluin and thus is visible to the AUD debugger. 

In the DERIK; symbol table (DST) representiltion. 
variables that ;Ire allocatecl in the Alpha AXI-' regis- 
ters are clescribed as being allocated in the corre- 
sponding global state locations. This "trick" 
allowed t\UD to handle the 64 Alpha registers 
using the Vt\X DST representation, which can 
encode only the 16 V A ~  registers. 

Once simulation begins, Mannequin continues to 
simulate Alph;~ &YP instructions untjl it either 
detects an instruction that would transfer control 
outside of the Alpha AXP image, completes a single- 
step request, or detects an error condition. lJpon 
returning to the AUD environment, 34annequin sup- 
plies status information that indicates the reason 
sinlulation entled. 

For a transfer of control from Alpha to Vi\X 

cotle, AUD must first cletermine whether the trans- 
fer is a return from Alpha t\XP cotle ;IS a result of a 
prior VAS call or a new call from A.lp11a AXP code to 
VAX code. All0 is fully reentrant, so AUD cannot 
make this determination from global state. If tlie 
target address is a distingilished ;~ddress that AUD 

supplies when it sets up a VAX-to-Alpha call (i.e., an 
address in the reserved S1 part of the VAX address 
space), the address is interpreted as a retilrn trans- 
fer. Otherwise, t\LJl> initiates a new Alph;~-to-VAX 
call. 

For a return operation, the AllD code copies the 
return \ ~ ~ l u e  or values from the Alpha AXP registers 
and passes them back to the VAX code. A VAX return 
instruction is then executed to resume execution 
of the calling \ h X  cotle. 

For a call operation. the VAS code fetches the 
Alpha AXl' parameters and builds a VAX argument 
list, whicli is then i~sed to call the target vi\S rou- 
tine. When the VAX routine returns, the contents of 
the result registers are copied to the corresponding 
Alpha AXl' machine state loc;~tions, atid Mannequin 
is restarted to resume executing Alpha ASP code. 

Despite some limitations (e.g., only one Alph;~ 
image and no exception handling across the VAX to 
Alpha AXI1 clomains), ALJD greatly aided the 
OpenV,MS hXP porting effort. The simulator pro- 
vided software g r o ~ 1 1 ~  with 3 pseuclo-Alpha AXI' 
environment in which to debug their Alpha AX[' 

code, well before either Alpha t\SP harclw;ire or the 
OpenvMs rU(P operating system was available. 
Many  OpenVMS AXI' groups successfi~lly used MID 
to facilitate their porting. inclucling the Record 
 management Services (ltblS), I>ECwindows, Forms 
Managenlent System (FMS), various OpenVklS com- 
mand utilities, text processing utility (TPI!), IXBUC;, 
;~nd GEM compiler b;~cl<-end groups. 

The AUDI Facility 
The \'AX Environment Software Translator (VEST) is 
an important part of the initial OpenVMS A X P  offer- 
ing.5 VES'I' translates an OpenVMS VAX executable or 
shareable jniage into an  Openv~MS ASI' image that 
can then be executed with s ~ ~ p p o r t  on ;in OpenVMS 
AX11 system. As for other user-mode layer softn7are 
components, it was desirable to test VEST and 
images tr~nslated by VEST as e;irly as possible in a 
simulation environment such as AlJl). However. 
AUD coultl not be used directly to test tr;~nslated 
images for two reasons: 

VEST directly creates an Alpha AXP image. In 
effect. VEST is a combinecl compiler 2nd linker. 
Thus. the symbol mapping protocols ilsed by 
AUD were extraneous, ant1 the linking protocols 
had to be completely replaced. 

Actual execution of a translated image on 
an Oper~\~klS AXP system makes llse of the 

Digital Technical Journal 1/01, 4 ~\b. 4 Special Issue I992 



Alpha AXP Architecture and Systems 

Trans1;cted In1;cge Environment (TIE).; The TIE 
is a shareable library that contains support rou- 
tines for translated images. In particular, TIE 
provicles support for VAX complex instruction 
procebsing, Vi\S-to-Alpha atldress tnapping, and 
Open\lMS VAX exception handling. Creating a 
VAX version of the TIE to use with AUl) required 
intimate interfaces with the OpenVMs VAX oper- 
ating system as well as comp;~tibility with AUD. 

Thus, the need to debug translated images led to 
the creation of the Alpha User-mode Debugging 
Environme~lt for Translatetl Images (Ar1l)I). Just as 
Callable Nl:innequit~ provided a key building block 
for AIJI), ACID in turn provitled a key building block 
for 1\111)1. Alpha 14>il' softmlare teams ant1 porting 
centers used ALJIII to port both Digital alicl third- 
party translatecl applications prior to the arrival 
o f  Alpha AXP hardware. The porting process was 
;IS follows: a VAX application was translated to 
Alpha AXP code by means of the VEST translator; 
this code was then run on ;I \'AX system using the 
ALJDI simulator. 

The Atll>l process components shown in Figure 5 
incli~cle the 

Callable Mannecluin Alpha simulator 

AUD debugger 

VAX version of the TIE 

Translated ViiX cotle (Alpha AXP code) 

AUDI E~zuironment 
Emulated VAX state in ALJDI is mai~ltainecl in a global 
context block. Emulated VAX registers RO through 
R14 are used ex;ictly as their Vt\X counterparts 
The corresponclence between a translated and 

ORIGINAL VAX CODE 

TRANSLATED VAX CODE 
(ALPHA AXP CODE) 

TRANSLATED IMAGE I 

equivalent VAX program counter (PC) is not tlirectly 
available during execution, since translatetl code 
occupies different address space than the original 
VAX code. Thus, register R15 is used instead as an 
in-image index register. 

The user-mode \'AX stack is split into a VAx stack 
ant1 :In A!pha and emularetl VAX stack. The VAX 

stack services both the A1Il)l environn~ent 2nd any 
VAX system services or run-time library routines 
that the translated image may c;~ll. The Alpha ;cncl 
ernulatetl VAX stack services Alpha A S P  and trans- 
lated code. 

Tr;cnslated imxges contain calls to the TIE as nec- 
essary to simul;rte VAX complex instructions and 
procedure calls. Complex instruction routines are 
usetl to simulate VAX instructions that would othel-- 
wise expand into excessive Alpha AXP code. 
However, since tILln1 is running on \4\X hardw;lre, 
complex instructions can be executed native on the 
VAY, 1'1:rrclware. 

To initialize the AUDI environment, the translntetl 
image calls a n  initialization routine in the TIE by 
means of an initialization program section (I'SECT). 
This routine determines the address range of the 
Alpha A S P  code and the location of the WX-to- 
Alpha atlclress mapping structure, saves tlie current 
Alpha A X P  register state, and calls Manneclui~i to 
begin executing translated code at the appropriate 
entry point Tr;~nslated code uses tlie ;~dclress map- 
ping structure to find computed branch destina- 
tions on the fly. Callable WIannequi~i then executes 
translated code until it encounters some instruc- 
tion that woultl transfer control out of translated 
cotle. The cause of this transfer woi~ld be either a 
T[E-b;csetl procedure or complex instruction call! or 
calls to native VAX routines. 

1 CALLABLE MANNEQUIN I 
-1 

AUDl ENVIRONMENT I 

OTHER IMAGES 

Figure -5 AUDI Pt40cess Conzpone~zts 

AUD DEBUGGER 

I 
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Like AUD, AIII)l allows interoperation between 
translated VAX cotle (Alpha A X P  cotle) and VAX 
code. Translated cotle can use existing VAX system 
services and run-time libr;~ries. AUDI does not use 
the jacketing language described in the section The 
ALJI) Facility. Instead, ALJnl automatically jackets 
procedure calls between the translated VAX code 
and the native VAX code. Autojacketing includes 
builtling proper parameter lists and call frames for 
the destination calling standnrtl. 

The fact th;tt Alil>l does not use a jacketing lan- 
guage leads to some proceclure call 1,imitations. 
However, note that these limitations d o  not appear 
when running translated cocle on  actual Alpha 
AXI' hardware. For incoming calls (VAX code to 
translatetl VAS code), all AST delivery and condition 
handlers execute as VAX code rather tli;tn as trans- 
lated VtiS code.  Thus, translilted programs may 

not function properly. For outgoing calls (trans- 
lated VAX code to  VAX code), routines in which 
a callee modifies its caller's stack f a m e  argument 
list o r  return address may produce 11npredict;tble 
results. since the a11toj;icketing may be altered o r  
clisconnected. 

AUDI Example 
Figure 6 shows the execution o f  a translated image 
under AULII. Note that both the BASIC image 
(HELLO-WORLD) and the BASIC run-time lil~rary 
(BASRTL) are translatetl. Run-time libraries that are 
used by the AUDI environment cannot be translated 
under ALJIII. Translating run-time libraries that AIll>l 
itself uses causes a "circularity in activation" ;untl 
incorrect o r  no execution. 

In the HELLO-WORLD esample, there are 28 c;~lls  
to VAX routines, most likely those to LIBRTL and 

$ RUN HELLO-WORLD-TV 
H e l l o  W o r l d  f r o m  V A X  BASIC 

AUDI V 3 . 0  R u n t i m e  S t a t i s t i c s :  

8 0 8 5  A l p h a  AXP i n s t r u c t i o n s  w e r e  e x e c u t e d .  

T I E  L o o k u p s :  CALLx J SB JMP 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
S t a y e d  i n  ALpha AXP r o u t i n e s :  4 5 0  

Went t o  V A X  r o u t i n e s :  2  8  0  0  
........................................................ 

T o t a l :  3 2  5  0  

28  V A X  r e t u r n s  u s e d  ( 2 8  RET, 0  RSB) t o  r e s u m e  A l p h a  AXP c o d e .  
T h e r e  w e r e  n o  F a u l t - O n - E x e c u t e  c o n d i t i o n s  c o n v e r t e d  t o  L o o k u p s .  
21  CALLx C o n t e x t  B l o c k s  w e r e  a l l o c a t e d  - w h i c h  w e r e  r e u s e d  7  times^ 

T h e r e  w e r e  1 9  T I E - b a s e d  ' c o m p l e x  i n s t r u c t i o n s '  e x e c u t e d .  
I n s t r u c t i o n  INSQUE (OE) : 2  
I n s t r u c t i o n  MOVC3 ( 2 8 )  : 8  
I n s t r u c t i o n  MOVC5 ( 2 C )  : 8  
I n s t r u c t i o n  MOVTUC ( 2 F )  : 1  

T h e r e  was 1  V A X  r o u t i n e  c a l l  t o  A l p h a  AXP c o d e .  

T h e r e  w e r e  2 i m a g e s  c o n t a i n i n g  A l p h a  AXP c o d e :  
HELLO-WORLD-TV XO.0 f r o m  B L 3 . 3  VEST o f  Mar 3 0  1 9 9 2  0 9 : 2 7 : 0 2  
BASRTL-TV XO.0 f r o m  B L 3 . 3  VEST o f  Mar 3 0  1 9 9 2  0 9 : 1 4 : 1 0  

E x e c u t i o n  d e p e n d e d  o n  t h e s e  i m a g e s :  
LIBRTL-TV DECWSXLIBSHR L l B R T L 2  
MTHRTL-TV DECWSTRANSPORT-COMMON L I B R T L  
TIESSHARE VAXCRTL DBGSSISHR 
MQNSSHARE MTHRTL 
DECWSDWTLIBSHR CONVSHR 
LBRSHR SORTSHR 

Figure 6 AUDI Evamnple- Twnslated Hello World l~?zcrge 
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OpenVMS system services. Therc are 21 unique 
<:ALLx contexts and 7 reused ones. In acldition, the 
example uses four different complex instructions. 

The softw;lre simulators Mannequin, ISP,  ill). ;~ncl 
AIJDI grei~tly aided Alpha AX[-' software porting 
and development efforts. Subst;inti;~l parts of both 
system ant1 application software were sirnul;ited 
and verified concurrently with hardware develop- 
ment. When Alpha A S P  liartlware becalne ;l\l;~ilable, 
most software coultl bc plugged in simply ant1 Kin 
exactly ;is expected. The use of these simulation 
tools saved a year o r  more from the over;~ll Alpha 
A S P  schetlule. 
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Peter E Conklin I 

Enrollment Managemenl; 
Managing the 
Alpha AXP Program 

Digital's ~nultjjecrr Alpha AXP program has involved more than ~ Z L J O  thousand 
engi~zeers across lizalzjl disciplitzes. I1znot1atiz~e mnnagenzent stjdes arlcl techniques 
were required to delizler this high-quality program on an aggressiue scheclule. 
The Alpha A X P  Program Oflice used a four-point methodology for nzanagemelzt: 
( I )  establislj a17 appropriately large shared vision, (2) delegate co~rzl~letely and 
elicit specific co~nrrzitments; (3) inspect rigorozis(~; proz~icling supportive feed- 
Back; (4) ack~zou~lerige erJer- rldzmnce, learning ns the progmlrz progresses, 
We cor-zsciocrsly used each project ezient to propelp/.ogress crtzd gall? ~nonzentt~nz. 
Digital deliuered the Alpha A X P  progmnz on sched~ile with industq~-Leadership 
c~pa6ilities. 

Introduction 
The program to develop the Alpha AXP systems 
has been the largest in Digital's history and one 
of the largest in the compilter intlustr): During 
the course of the program, the Alpha iLVP Pro- 
gram Office developetl ;I moclel that provided the 
tools necessary to manage the program. At times, 
this paper may seem to imply that the program 
team cleveloped the tools and then used them in 
a pure form. In practice, the team developed these 
approaches basetl on many years of experience antl 
on the management tl~eories of experts; we also 
learned and applied these lessons as we managed 
the program. 

Although the positive effects of timely delivery 
and high quality are particularly noticeable results 
of sucli a large program, Digital has also used the 
tools to goocl effect on smaller projects. Moreover, 
teams within the Alpha AXP program usetl the tools 
recursively, project by project. The author's experi- 
cnce is that this management model is applicable to 
projects of ne;~rly any size. 

The discussion t h ~ t  h)llows briefly ilcfines the 
scope of the program and explains why traditional 
methods were inappropriate for managing the 
development of such a complex product set in a 
short time period. The Enrollment Management 
Model and the concept of cusps-a key element of 
the moilel-are then clefinetl and clarifiecl through 

tliscussion of the model's evolution tluring the 
Alpha AXP Program. 

Size of the Alpha AXP Program 
Digital's Alpha A X P  program encompassed the 
design of a world-leadership microprocessor chip, 
a new 64-bit system architecture, multiple h;~rtl- 
ware systems (from personal computers to main- 
frames), multiple operating systems, and huntlreds 
of softw;lre products layered on these systems. The 
development of the first-generation products 
extencled over several years ant1 involved more than 
two thousantl hardware, softw;~re, and systems 
engineers at its peak. Digital managed the overall 
development program from ;i Program Office 
staffed by eight professionals. 

Across Digital worldwide, the Alpha AXP pro- 
gram development spanned more than 22 software 
engineering groups and 10 hardware engineering 
groups. The hardware effort included the semicon- 
tluctor design group ant1 groups for each of the 
bardw;rre systems platforms. The software efforts 
encompassed four opt-rating systems groups, and 
groups clesigning migration tools, network sys- 
tems, compilers, databases, integration frame- 
works, and applications. Some groups peaked at 
more than 150 development engineers plus sup- 
porting staff. Many also co~ltracteil with suppliers 
both within and outsitle Digital. 
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Inappropriate Organizational Approclcbes PERSONAL 
PUBLIC 

Implementing such a broitd, complex program pre- 
sented not only technological challenges but a man- 
agement challenge as well. The Program Office 
therefore consiclered ant1 rejected a nirmber of tra- 
ditional organizational approaches. 

In the classic organizational model, a hierarchi- 
cal, or line, organiz:~tion is brnlecl, containing all 
the primary implenienters. The problem with this 
aplxoacch to large programs is that it takes too long 
to form the organization. Staffing the tealus and 
establishing operational procedures take longer 
tti;rn the market wintlow and avail;~ble technology 
allow. Tlie result is grant1 visions ancl projects deliv- 
ered ye:rrs behind schetlule. Further. "temporary" 
organizations must be folcled back into the niain- 
stream at the encl of the progratn. Tlie management 
goal of the tUpha AX11 program was to keep esper- 
tise concentratetl to achieve synergy across many 
projects within a particular tliscipli~ie.~ 

An  alternative approach is to form small 
entrepreneurial teams ant1 challenge them to work 
long hours to achieve the goals. This works well in 
s~iiall projects suititble for "skunk works." The origi- 
nal design work was concluctecl in this fashion. 
However, when this approach is applied to large 
programs, the result is that team members burn out 
without ;tchieving the aggressive schetlules 
demancled. Management then becomes frustratetl 
and tries again with different teams, but the results 
are no better. 

The Program Office est:tblishetl tlie Alpha AX]-' 
program as an integration of project teams that 
woi~ld remain within the existing line organiza- 
tions. Thus, for exitmple. each hardware ant1 soft- 
ware project resitled within its functional group 
(semicolitluctors, servers. Openv~MS, IJNIX, compil- 
ers, database, CPLl development, networks, etc.). 
The Program Office integr;rted the work of the intli- 
vitlual project te;tms, which provided the atltli- 
tional atlv;intage of program resilience in tlie face of 
functional group reorganiz;rtions. 

The  Enrollment Managemerct Model 
Tlle Enroll~~ient Management Model (Figure 1) for 
the Alpha AXP program conlprises four stages. 

Commitment-Delegation 

Inspection-Suppost 

BUSINESS GOALS 
PROJECT OBJECTIVES 

ENROLLMENT 

COMMITMENT 
DELEGATION 

TRUST 
ACCOUNTABILITY 
(TASK-OWNER-DATE) 

Figure I Bzr-olkrnent Ic.I~~~zage~~ze~?t~LIode/ 

The model in this form was developed by 
the ~uthor .  Some elements are derived from man- 
agement seminars ;tnd fro111 consultants' rccom- 
mendations. 'The particular forms used for vision. 
coriimitment, and acknowledgment emergetl dur- 
ing tlie AJpha t\Xll program. The insgection- 
support stage was developed by the author tluring 
many years of project management and reviews. 

Two concepts are key to implementing this 
model for large programs. First, the Program Office, 
which has ;rlreacly bcen ~i~e~it ionet l ,  provides the 
necessary cohesion, program vision, and inspec- 
tion structures, while allowing the skills and 
resources to remain within their ~lat i~ral  organiza- 
tions. Moreover, the office lends consistency across 
the progr;Im and encourages each contributing 
group to holcl to its commitments. The small Alpha 
AXP Program Office, made up of a diverse group of 
product and operations rn:inngers. Ii;tcl no formal 
authority (not even budget autliority); so it exerted 
influence only through rigorous enrollment and 
delegation outlined by the ni;lnagerilent model. 

The second key concept is the project "cusp," 
which is a critical event that propels chaligc. < : I I S ~ S  

at-e further definetl in the sections Inspection- 
Supl>ort ant1 Using Project Cusps l>elow. 

Vision -Enrollment 
The Program Office uses vision to enroll the related 
groups in tlie goals of the program. For example, 
the vision can be tlie top-level business goals and 
customer needs. For subordinate projects, the 
vision can be the objectives of the larger project. In 
all cases, the enrollment happens only when the 
goals are set in the contest- of the ;~i~dience (the 
project team). In particular, the Program Office is 
most effective when it expresses tlie program3 
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vision in the terms and language of the group being 
enrolled. The vision has to be Large enough to 
encompass all the recluirerl commitments and the 
ultini;~te results. 

Commitment-Delegation 
As the manager of a project develops plans, he or 
she delegates the tasks to sub-groups ancl solicits 
specific commitments to content ant1 schetlule.3 
Since these commitments are made within the con- 
text of the larger vision, the subortlinate commit- 
ments become qiiite strong for sub-project 
members. A key element of the delegation process 
is the explicit specification of the results such that 
they ;ire measurable ant1 identified with an intlivid- 
ual owner. The owner is a single indivitlual empow- 
ered by the committing group and held 
accountable for the deliverable:' An important 
point here is that the term "owner" does not neces- 
sarily refer to the person who actually cloes the 
work. The owner is responsible ancl therefore 
accountable for getting the work done on time. In 
our particular program, the Program Office hat1 to 
clarify ant1 reinforce this distinction carefully as 
part of thc enrollment stage. 

Inspection-Support 
The project manager trusts in the comnlitments 
made and continually inspects the project to ensure 
delivery on schedule. This inspection strictly takes 
the form of supportive feedb;ick, thereby encourag- 
ing people to disclose risks before they become 
problems. Whenever the projected results are ;it 
risk of falling short of the commitment, the project 
manager declares a project "cusp." 

The term "cusp" is adapted here from Gleick to 
clescribe the potential turning points, or critical 
events, in a project.5 (Other terms in conventional 
parlance include "gotchas:' setbacks, crises, turning 
points, project breakdowns, and "calls to action." 
The ni;inagers i~sed these terms during the propam. 
For our purposes, we adopt the term cusp as an 
emotionally neutral term. It is importz~nt that at any 
point it1 the project the term used be one that gives 
an opening for the possibility of making a difference 
and for moving the project forward.) At the point of 
a C L I S ~ ,  everyone is ready to embrace change 
because it furthers the overall program objectives. 

The management team col1abor;itecl to take 
advantage of cusps to propel project momentum 
toward the established goal. Examples of cusps in 
the Alpha t\XP program are presented throughout 
this paper to demonstrate their integral value in the 

application of the Enrollment Management Model 
anel the role they played in the creation of the 
model itself. 

Acknowledgment-Learning 
At each step of the project, the Program Office 
acknowledges progress both personally and pub- 
licly. For each event, the management team repeat- 
edly asks what was learnetl and how managers ant1 
the team can do even better nest time. Teams are 
frequently coached to improve their methods for 
better results. 

Using the Model 
111 principle, the Program Office used the Enroll- 
ment Management Model in each conlponent proj- 
ect. Of course in practice, not all groups used this 
methodology. Early in the program, only a few 
groups signet! up. As the Alpha AXP Program Office 
began organizing the overall program, we started 
formalizing the methoclology. As noted above, we 
learned extensively as events progressed. We found 
few useful manuals applicable to running such a 
large program effectivel}~. Insteael, the Program 
Office developetl many of the tools "on the job," 
learning as the project ~~nfoltlecl.~~ This paper exag- 
gerates a pure model rather than presenting its 
incremental development. To balance the picture, 
we show some of the pitfalls and side paths. 

Most project managers followed the Enrollment 
Managemellt Motlel either by instinct (experience) 
or by example. In several instances, they formally 
reached outside for training in running projects 
of this complexity. Depending on the size of the 
project or sub-project, m;lnagers used the model 
with varying tlegrecs of rigor. For example, the 
larger projects anel the program overall used formal 
inspection meetings and reviews. Subordinnte 
projects were free to use formal or informal inspec- 
tion processes. The program team inspected 
each group's inspection processes to ensure that 
there would not be any utlfortunate management 
surprises. 

Using Project Cusps 
As described earliel; cusps are critical project 
events, or crises. Conve~itional project manage- 
ment concentrates on rigorous planning to avoid 
such crises. The Program Office took the opposite 
approach: We strove to iintlerstand the critical 
events and nlilestones and used these cusps to 
increase project momentum, as Figure 2 illustrates. 
As the project approached each cusp, the Program 
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CUSP 

Figure 2 Cusps as n Way to Change Directions 

Office dealt with the event promptly to ensure that 
the project continued to move toward the overarch- 
ing goal. In other words, the managers did not 
develop a plan just to follow the plan. Instead, they 
cleveloped a plan to understand the overall project 
flow and used the milestones and other events as 
opportunities to adjust the project velocity to keep 
moving toward the goal.' In many cases, we gener- 
ated a cusp to propel the necessary change (for 
example, by creating a schedule crisis). In other 
cases, we took advantage of a cusp to make a neces- 
sary change. 

As the management team became comfortable 
with using project cusps constructively, the 
Program Office actively solicited more of them. 
These increased the velocity and resulting momen- 
tum of the program, thereby achieving a "slingshot" 
effect. The Program Office used each cusp to 
acknowletlge progress. As the team acknowledged 
more and more progress, the program's niomentutn 
moved from very low to break-even, and finally into 
high gear. 

Vision-Enrollment Stage: 
Magnitude of the Program's Vision 
The vision for a program or project becomes the 
ultimate goal or deliverable. Thus, the Alpha AXP 

Program Manager's first task was to establish a 
vision shared by all groups that would contribute to 
the program. This vision had to be large enough to 
encompass all the work. 

Alpha AXP Systems as 
Fzyth-generation Computing 
The Alpha AXP family is at the confluence of five 
major trends in computing. 

1. Nineteen ninety-two is the first year in which 
it is feasible to achieve 64-bit computing on a 
single microprocessor. 

2. Nineteen ninety-two is the first year in which 
microprocessors have achieved over 100 MIPS 
(million instructions per second) of computing. 

3. It is now cost-effective to place more than 4 giga- 
bytes of main menlory on a system; hence 32-bit 
addressing is insufficient. 

4. Networking technology now allows the con- 
struction of networks with over 100-megabit 
throughput. 

5. Cost-effective storage systems now exceed 
the many-gigabyte range and are approaching 
terabytes. 

These computing systems will inclucle large 
amounts of parallelism as compared with classical 
designs. The levels of performance and connec- 
tivity finally allow computing to realize greater 
human productivity: mobile, highly inteructiue 
computing that supports group work with algo- 
rithms that intelligently analyze, simulate, and 
synthesize in szlpport of u zuide variety of human 
endeavors. The application of this technology clual- 
ifies as the fifth generation of computing."9 

The program vision for Alpha AXP systems, as 
shown in Figure 3, is to be the first family of systems 
to implement the technology and applications for 
the fifth generation of computing. This family is 
fiilly compatible across all members now and will 
be into future generations, ensuring that applica- 
tion binary programs will run unchanged. With no 
compromise to hlture performance, the initial fam- 
ily members also maintain a high degree of com- 
patibility with current systems to allow easy 
migration for customers as they begin to require 
this technology. Delivering a family of high-quality 
systems in a timely fashion reestablishes Digital's 
reputation for technology and systems leadership. 

SAME ARCHITECTURE. 
COMPATIBLE SYSTEMS 

5L! 

I 
1992 

TIME 

64-BIT MEMORY 
TERABYTES STORAGE 

Figure 3 Alpha AXP Vision 
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Getting Started 
The Alpha A X P  program grew out of research 
on computing, specifically the teclinology and 
benefits of different RlSC (reclucetl instruction set 
computing) architectures, ancl from advanced 
developmetit in compiler designs, VLSI (very large- 
scale integration) design, and senliconductor fab- 
rication. In 1988, Digital's Executive Committee 
challenged Engineering to tlevelop a system that 
would meet the customers' needs for competitive 
performance in all of Digital's computing envi- 
ronments. Engineering formed ;I cross-disciplinary 
task force that developed the requisite systems 
architecture :lnd designs a~itl procluced the above 
vision and hence the Alpha AXP program. Digital's 
Executive Committee approved the Alpha AXP pro- 
gram in October 1989.1° 

First Cusp: Executive Challenge 
to Accelerate Schedule 
By the end of 1989, Digital had completed the 
advanced developments and signed off on the archi- 
tecture and primary design documents. In a major 
review during January 1990, upper management 
challenged the program to improve the schedules 
to capture the market window for this new tech- 
nology. The project managers understood the 
rationale for this demand but could see no way to 
meet the aggressive schedule. The result was a loss 
of rapport between management ant1 the technical 
staff, with coninieots such as "Don't talk to me 
about crazy schedules" and "This is just going to be 
a lot of hard work.'' 

The Progr;lm Office viewed this cusp as an 
opportunity rather than the crisis tlut it appeared 
to be. The office enrollecl key project managers in 
the overall vision, i.e., in the business value of a 
timely execution. For some projects, it was suffi- 
cient to focus 011 the classic "time-to-market." 
However, for many, the ship date proved an insuffi- 
cient motivator. Therefore the Program Office 
frariied the vision clifferently, as follows. A program 
becomes profitable when it reacl~es break-even 
( i t . ,  cumul;~tivc revenues meet ant1 then exceed 
cumulative expenses). 

The time taken to achieve this point is known as 
the 'ctime-to-profit."'l The Program Office estitliatecl 
tliat the program's schetlule would affect Digital's 
revenue at the rate of $1 million per hour. That is, 
for each hour tliat the project could improve 
(lower) the time-to-profit, Digital would achieve an 
additional $1 million of revenue. 'The Program 

Office pointed out to the project managers that tliis 
revenue could translate to approximately $0.01 on 
the stock price for eacli hour of schedule improve- 
ment. With this concrete business metric in mind, 
the key project managers were willing to consider 
new ways to tackle the program's challenge. 

Once tlie Alpha AXP program was approved, the 
I'rogram Office began holding Alpha AXP quarterly 
review meetings. At these forums, groups reported 
plans and progress to a wide, cross-disciplinary 
audience. Initially, the audience was composed of 
engineering, manufacturing, and service groups. As 
the program gained momentum, other disciplines 
such as marketing and sales joined and began to 
report on their own progress. These forums helped 
generate belief and solidify enrollment. They also 
helped tlie Program Office identify problem areas 
before they became crises. 

First Cusp Result 
We established a program-wide understanding of 
tlie importance of volume deliveries in 1992. 

Commitment-Delegation Stage: 
Delegating and Eliciting Commitment 
With the key project managers sharing a common 
vision, the next step was to establish a work plan 
and to ensure that eacli group committed to deliver 
on its parts. 

It had been 15 years since Digital attempted to 
change siniultaneously its architecture, hardware, 
operating systems, compilers, and other layered 
products. Since the introduction of the VA;Y systems 
in tlie fall of 1077, each component had progressed 
relatively intleyendent of the development sched- 
ules of tlie others. Fewer than half a dozen project 
team members had participated in the VA)( design. 
For most participants, the system had always been 
in existence, and hence the developer of each sub- 
system could invoke and depend on tlie existence 
of all tlie othcr s~~bsystems. 

The need for tlie sirnult;~neous development o f  
multiple hardware and software systems cornpli- 
catecl the coordination task. The Program Office 
addressed this complex coortlination in two climen- 
sions: technical and project management. In  the 
teclmical dimension, the office formed a team of 
technical leaders from the core engineering groups, 
known as the EJST, shown in Figure 4. (EJST is an  
acronym for EVA)( Joint Systems Team. E V X i  was an 
early name for the Alpha AXP program. An earlier 
forum, the EVAX Technical Team, merged into tlie 
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E,ISI' process over time.) This group met weelily to 
set tlirections for important cross-group technical 

- - 
I 1L 

I PROJECT I 
I MANAGERS I 
I - - - -  - - A  11 

clesign ant1 strategy issues. Since the group's ch;lrter 
nias to resolve problems and ensurc that solutions 
"sti~ck," the EJST became a group to which others 
brought technical problems for resolution. 

In the project management dimension, the pro- 
gram manager formed a team of project managers. 
~Menibers of this team were e~npoweretl by their 
contril>uting engineering tlevelopment groups to 
11i;llte commitments and to be account;tble for 
cleliverables. This team mlas known as the ASl'M 

(Alph;~ t\XP System Project M;~n;tgers). Given tlie 
magnitude of the overall task ant1 the complexity of 
full!. untlel-standing the interdepentlencies, tlie 
project m;rn;lgers tended to view tlie l>roject :IS 

i~n~x~ssibl!~ complex. At the progr;lni level, the clial- 
lenge then became to establish the Alpha A X P  mas- 
ter 1>1;11i. A master plan, however. evolvetl mi~ch 
more slowly than expectetl. 

- 

Second Cusp: Cannot Choose 
the Order of the Work 

- 

I\l;~n;~genient's inability to provide an overall 
plan induced a crisis of disbelief. Tlie project 
ni;lnagers threatened to revolt (or move to other 
projects). The technical leatlers were generating 
ever-larger design documents. The engineering 
development group managers tleclaretl that tlie 
I'rogram Office had a crisis on its Iiantls: \Ye h:lcl to 

ALPHA PROGRAM 
OFFICE 

establisl~ a program-wide m~orl< plan that showecl 
the order in which e;tch sub-project must deliver its 
contribution. 

How does one coordin;~te without a plan:' Tlie 
Alpha r\X1-' progr;lni rn;ln;lger kept asking the indi- 
vidual groups for their pl;lns. What do you depend 
on? How long will it t:tke? What resources do you 
neecl? Wilnat are your milestones or nietrics of 
progress? Tlie repeated answer was "I don't know 
because I don't know what everyone else is doing 
and m~lien they will I>e clone with their piece." At 
this time, we hat1 already established the cross- 
functional hSl'k1 team of experiencetl project man- 
agers representing most o f  tlie development 
groups. This team was unable to develop the com- 
ponent plans bec;~i~se they 1;lcked a master plan. 

Choosi~zg the Strategy 
The engineering tlevelop~nent group lnanagers 
met in a full-clay meeting to establish the over- 
all paranietersof the Alpha A X P  program's plan. 
First, they est;tblished the business goals and exam- 
ined the various technical constraints. The group 
tested the inclusion of each component with 
the question "Is this coml>onent critical to the over- 
all business success o f  the Alpha A)(P program?" 
This process established solid reasons for the 
contents of tlie mastcr pl;~n and kept the respon- 
sibility for the inclusion or exclusion of a compo- 
nent with the responsible clevelopment group. The 
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group then tleterminetl the org;~nizational impli- 
cations of such a work plan. Members of the group 
balanced the climensions of bus~ness, technolog): 
and organization to establish the priorities and 
work order. We institutionalized this group into the 
Alpha AXP System Board of Directors (ASBOD). 

Representing the Plan 
\With the major program priorities and constraints 
established, the Alpha U P  program manager then 
set off to establish the master plan. For all groups to 
see their contributions, he held the master plan to a 
single page. He established the content during an 
intense periotl in which lie asked contributors to 
describe their assumptions :ind tasks and to show 
where on the overall plan their pieces would fall. 
The single-page format forcetl the management 
team to keep the plan to a high-level view ant1 
allowecl contributors to see their pieces without 
aclding the complexity of their own group's tletajls. 
Furthcr, in review meetings it w:rs easy for everyone 
in the room to view the same picture so that the 
results coultl be seen, debated, ;ind agreed upon. 

Once the n1;lnagement team h;~tl outlinetl the 
plan, it was recommentled by tlie project managers 
(ASPM) and ;~pproved by the engineering clevelop- 
ment group n1;inagers (ASROI)). Tlii~s team mern- 
bers knew their goals woultl not change without 
clearly statetl reasons. Further, others could start 
building their pl;ins based on ;I consistent set o f  
;issuniptions. The resulting single page also becanie 
a reference, which we called the "straw Iiorse," to 
establish ancl reinforce constancy of purpose. 
Figure 5 is an example of the Straw Horse Plan. (We 
later i~pgraded the name to be the "tin horse" to 
connote the increasing degree of solidity of the 
underlying plans ancl commitments.) 

Second Cusp Result 
We agreed on the overall single-page plan upon 
which teams coi~ld build their own plans. 

Enroll~nent and Delegation: 
Value of Each Contribution 
With the master plan outlined (the straw horse 
reviewed ancl approved), the next step was to 
obtain the commitment of each contributing 
group. To :iclclress continuing skepticism about tlie 
necessity of e;~cIi component and its schedule, the 
program manager walked each group through the 
overall program and the economic value of its 
urgency. The group was then askecl to contribute to 

the overall system's value. A key prerequisite to this 
conversation was to establish a fi~ll-time project 
manager for each component group. who became 
the coordination point and who was held account- 
able for each tleliver~ble. 

Decide What to Do before How to Do It 
The Program Office found that each group went 
through a disbelief process similar to the one seen 
earlier for tlie program. The program manager 
urged each group to first focus on the "what" of 
their de.liverable, before trying to decide the "how." 
The program manager ensured that tlie group 
groundecl its overall estimates in reaJity For exam- 
ple, a software group might count the number o f  
modules to port and estimate tlie person-days per 
module. This kind of high-level, clil;intifiable esti- 
mate allowetl the project manager to make an over- 
all estimate without needing to understand the 
order of the specific tasks. 

Third Cusp: Need for Project 
Mnnngenzent Expertise 
Members of several of the larger projects deter- 
mined that they tlid not have sufficient project man- 
agement experience. Previously, this realization 
woultl have resulted in replanning to move out 
the target schedule, perhaps repeatedly. Instead, 
given the group's commitment to the larger result, 
we founcl ;I much more aggressive behavior. For 
example, the OpenVMS AXI' group publicly com- 
mitted to their target schetlule and stated, "We 
tlon't know how to achieve this, but we commit to 
finding a way." The next day they went to a project 
management consultant for training on how to 
build an aggressive, attainable schedule. This con- 
sultant conducted the seminar nuny times through- 
out the project for various groups.I2 

Third Cusp Result 
Groups introtluced education ant1 rigor into project 
management. 

Inspection-Support Stage: 
Inspection with Supportive Feedbncb 
One of our vice presidents in the e;lrly 1980s hat1 ;In 
aphorism: M)u get what you inspect, not what you 
expect. I11 other words, a conillion failing is that 
managers obtain someone's promise and expect 
that the results will be what they expectecl. 
Unfortunately, tlespite everyone's best intentions, 
circumstances and unexpected requests can easily 
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Stmw Horse Plan 
AUg 1990 

stasxe 1: Zgchnical DeveZopWst system 
PO- & c perEamsmce systmt Siwle hm%am platfon 
W l i s h  oaly 

Forbwn. C, BUes, Assembler, Debng, License %ant Facilb, 
CasE tools {TPUt COde aagnt WS't%rB. %St=, 
PesPa- Cbde Aoal?@er, laagmge Sensitive -tar, 
Digital Test Mgr) , kqpmnd b m m m L  Archit%cture, 
m e t  M e  Iv task-to-task. DEWincWws client iTiq tAT 
S o m e  

Stage 2 : -ial De~e1qarent System 
setcod hardwan? platfonnt 
f n I : ~ f ~ t i c K l a ; i  wrsians follow 3 m3nths later 

-, P-, C++r m, CRDIRetjository, m, 
threads-rtl, RFC, m, ImC' s .  Perma System, DBCforms, 
File cad#, vhxset, Diatr semm (am=, tbz r  file, queuing), 
mate System kr@ager, -u - IN-1  base, CWt mite, 

fV end rmde and ~ i x ? m s ,  
m/IP. PATmmw, t81Ptnaster, ABSS Bxrmsims 

S b g e  3 :  Tscbniebl %ka%t Sptatcem 
open & H C ~ ;  -ic Multi-&-ins 

WSP, &/I, user-qrf ttsn &rivers, K1SW, disk shadming. 
neais, ABk4S, DAS or e(iuivalent, fu l l  NAS, aaQlet V end node, 
x.25 access, ALLIM-I fully supported 

Stage c :  Camercid *stem 
A&h C l r t s t e f s r  Btematiwal mmsiorus r e l e d  
5imuJtanesusLy 

New &ttch?Print, $11 Bystem Integrated Prcducts, 
DECnef V rwtfng node, SWb access 

stage 5: 'lmnwetim Wtem 

Trmsuction Mbnitctr, thr@d% 

Fig~ire 5 Tbe Sirigle#uge Pl~lrz: All Extr~~ct  fr-onz the Straz~f Horse Ylun 

divert the promiser away from fulfilling the 
promise. Thus, managers learn to inspect regul;~rly 
the progress of groups on whose commitments 
they depencl. 

The rnoclel, therefore, incorporates this tr:~di- 
tional, essential project management practice. Its 
inclusion was prompted by another project crisis, 
described below. 

Fourth Cusp: Project Slips Motiuate 
Fornzal Opet-ational Inspection 
The Program Office knew that it was working with 
highly motivated teams. On the basis of the earlier 
planning work, we assumed that they were ;ill 
tightly focr~sed on the objectives of the Alpha AXl' 

program ant1 shared our sense o f  scheclule urgency. 
Suddenly, we were shocl<ecl by a memo stating 
that a critical project's scheclule hat1 slipped sev- 
eral months. Since virtually every other project 
depended upon it, this schedule slip could easily 
have led to a program disaster. Instead, we used the 
event to institute a regular operational inspection. 
Often, instituting such regular reviews is difficult 
and generally resisted by the reviewees. In this 
case, every group coulcl see the danger of continu- 
ing without regul:i~- inspections and reatlillr agreed 
to this new process. 

The Program Office ;~clol,tecl the term "inspec- 
tion," rather than "reviemi," brc:~use m7e ]rave found 
this term to be neutral or positive. In the past, 
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reviews had been imposetl by line management ancl 
tended to encourage the reviewees to cover up 
issues until it was too late to recover. In contrast, 
the program manager, operating under the Program 
Office model, had no line authority ant1 set up the 
monthly operational inspections in an open and 
supportive environment. The presenters were the 
designated project managers from each develop- 
ment group. The Program Office encouraged all 
presenters to bring in their risks and problems 
before it was too late to address them effectively. 
We used the single-page format again, as shown in 
Figure 6. Note that the simple, visual history of all 

milesto~ies is at the top, so one can readily see any 
repetitive slips. The emphasis is on critical path 
events completed last month and those coming up 
next montll. At the bottom are listed those issues 
that have been resolved and issues being opened, 
with clearly inclicated ownership and due dates. 

Operational Excellence 
To ensure that every project implemented the 
strategies, the Program Office established the prin- 
ciple of operational excellence across tlle Alpha 
AXP program. The office consistently recognized 
teams that accomplished their results on time and 

e m :  ALPnh/W 
DATE: April 8 ,  1992 

SCHEDULE: 
1 Qd 1991 1 Q1 1992 1 42 1992 1 Q3 1992 1 Q4 1992 
l O c t  Nov =!Jan Feb MarlApr M y  JunlJul Aug SeplOct N w  Dec 
[---[---[---[---[---[---[---[---[---[---(---[---[---[---[--- 

8 4 5  1 E I Sep 91 
B 4 5  6 I E 1Nav 91 
B 4 5  6 I E l Jan 92 
B 4 5  6 1  U E IWr 92 
B 4 5  6 1  U E l Apr 92 

Milestones 
B -- Base Level 38 (Editor, debugger, TIE, base DECnet) -- mNE 
4 -- B a s e L e v e l  4 (More DECnet, utilities, andiMclients) -- DIXSE: 
5 -- Base L e v e l  5 (EV4 support, TFF, performance) -- EONE 
6 -- 5ase We1 6 (Performance & Tapes) -- DQNE 
I -- Internal field test & Pilot Porting Activity - FiT 
U -- Internal field test update - FT2 
E - External field test & Early Support Program - FT3 
S -- V 1 . 0  suhnit to SSB 

CRITICAL PATH EVENTS PAST MCNI'H: 
Shipped BL6 on March 12 - stable on ADU, Ruby, Cobra, Flamingo 
Shipped BL6 AEa7 porting tmlkit 
Achieved FT1 (PPA) rode freeze 
Received 2 Flamingo systems in Varese, Italy, for W S I X  development 
With SPE (CSSE), delivered worldwide field test support training 
FT1 stabilization continuing 

ACTIVITIES ALONG TKE CRITICAL PATH (NEXT W3QE-I) : 
Ship FT1; revised target is Ppr 10 
Ship ET1 AM2 porting toolkit 
Complete PPA R-diness Rwiew 
Begin FI2 stabilization 

ISSUES / DEPENDENCIES RESOLED: 
Flamingo SFB graphics support formally accelerated into Vl. 0 

ISSUES / DEPENDENCIES WT RESOLVED: 
GDI BL24 compilers needed for ESP integration: D.L., May 15 
Rollout support staffing is not XI anyone's plan: J.S., May 29 

Figure 6 The Single-Page Rev im  
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predictably. We ;~lso used the monthly program- 
wide inspections to maintain a published record of 
progress. Thus. each project was encouraged to 
excel operationally ant1 to learn froni the esj~eri- 
ences ancl presentations of the others. 

Fo ~ w t b  Cusp Result 
Tlie Progr:t~ii Office established monthly inspec- 
tions using a consistent single-page document to 
record pertinent information. 

Acknowledgment-Learning Stage: 
Building Momentum 
Developing tlie vision ancl pli111 resul~ecl in :I Ken- 
era1 sense of eupliori;~. SliortljJ ;~t'ter\vards, the real- 
it!. of the work ahead clescentled like a cloutl 
of despair. At this point, the primary challenge 
was to start bi~iltling momentum in the program. 
In the Enrollment Management Nloclel, building 
momentum-the ackno\vleclg~i~ent-Imi~ig stage- 
is tigl~tl!~ intertniinecl with the inspection st;~gc.; 
that is, events reportecl during inspections wcrc 
i~secl to built1 momentum, The Program Office rein- 
forcctl the vision 21ncl usecl niomentiim b~~iltling to 
mini~llize tlie time period during which tlie team 
felt despair about the work a h c ~ d .  

Fzytb C L L S ~ :  Despair 
Since tlie overall progr;1m h;itl such 21 formicl;~ble 
goal, man!, of' the contributing teams 11ec:lnie 
stalled with tlie m;~gnitucle of the task aheacl of 
tlieni. 'This manifested itself in tlie form of com- 
ments about the large amount of work. tlie result- 
ing potenti;il h)r scheclule delays, :~nd a fe:~r of 
overtime clemands. This syndrome is common in 
any large project, especi;illy when commitments 
;Ire matte that involve taking large risks. The 
appro;lch the program team took \V;IS to start recog- 
nizing ei~cli element of progress. As we elistributeel 
;Innouncements of progress widely (using I>igit;~l's 
worltlwicle electronic 11i;lil network), we beg;~n to 
I)i~iltI momentum around the Alpha AXP progralii. 
Other groups picket1 up o n  this momentum and 
contributed to it themselves. 'Tl~is effect cascaded 
throughout the entire program-more groups per- 
ceived their tasks alie:~d as achievable; r;~pitlly e;~cli 
group wanted its own progress acknowledgetl; :~nd 
momentum increasetl. 

The I'rogra~ii Office founcl tli;~t the members of 
a project. :~ppreciatecl ancl were niotivated by tlie 
simple " t l i ; ~ ~ i k  ~ O L I "  rel~resentetl by tlie pi~blic 

acknowletlgment of their work. This contrasts with 
the conventional management wisdom that it is 
necessiiry to give Ereqi~ent monetary rewarcls to 
motiv;~te lxo],le. Although everyone appreciates 
tlie fin;lncial rewi~rds, tlie biggest motivator is tlie 
professional recognition that the contributor tlid a 
good and necessary job! 

The second benefit of the acknowledgment was 
its effect in creating a sense of momentum throitgll- 
out all the project teams. Repeateclly, peer man- 
agers would comment that the Alpha ASP team was 
ni:~king significant progress. This in turn gave us a 
sense of ;~ccornplishnient ;IS well. S o  the program 
re;~lized ;I double benefit from the original :rckno\vl- 
etlg~nent and ;I h~rtlier slingshot effect with recog- 
nition coming back to the Program Office. 

Fzytk! Cusp Result 
Program-wicle. managers establishetl the norm of 
fretli~ent acknowletlgment of progress. 

As tlie Alpha A S P  progr;1m made further prog- 
ress, the 1'rogr;ini Office ;~ctively solicited third- 
p;1rtjr ;~nd c ~ ~ s t o ~ i i e r  invol\iement. 'T'his invol'clenient 
pro\.icletl good feedback o n  progress and liatl the 
effect of reinforcing the fact that the program was 
011 track to meet customer neetls. 111 some cases, the 
project teams :rltered the Alpha A S P  pl:fns to better 
help our customers atlclress their business needs. 
This further contributed to the credibility ;inel 
monientuni of tlie progr;irn as well as the sense of 
acconiplishment. 

Sixth CZLS~!: Broken Debe~zde~zcies 
and Replanrzi~~g 
Like :~ny project, not every ;wsumption ant1 tlepen- 
tlency proves to be correct or totally accurate. At 
one point, one of the major Alpha A S P  hardwcire 
systems slipped its scheclule for delivery of proto- 
types to softw:~re. After considering a number of 
altern;itives, the oper;~ting system group proposed 
;in ;iltern;~te pl:in using ii different hardware system 
:~ncl a cIi;~iiged order of events. They s:iitl in their 
management presentation at the time. "The ques- 
tion is not one of blame. Insteatl our goal is to pre- 
serve the ultimate schedule goal of the program, 
specific;~lly its volume availability date." 

Sixth Cusp Result 
Program-wide, teani tnembers established the prin- 
ciple of focusing on tlie desiretl state of time-to- 
profit rather than on bl:~niing others for hili~res. 
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At another point, one group was at risk because it 
neetled a critical skill Ibr ;I week. A (historically) 
competing hardware group responded by asking 
what sort of resource, and then freely supplied the 
resource despite its own very tight schetlule. In the 
past, these groups woi~ltl compete for the same 
resource without coll;iborating for the common 
good. 

Seventh Cusp: Incomplete Asst~~nptions 
and the Need for the Performance Team 
Less than half way through the Alpha AXP prowam, 
the program team realizetl that some projects' 
assumptions were incomplete. RISC systems are 
notorious for recluiring careful design and tuning to 
meet aggressive performance goals. Evidence from 
a related program at Digital suggested that some 
of our system performance homework was weak. 
Tlie Program Office quietly asked the appropriate 
teams to assign some resources to measure key 
components ant1 subsystetns of the design. This 
confirmetl the program team's concerns that the 
curretit plans were incomplete. Quickly, we pulled 
together ;I cross-disciplinary task force to analyze 
the infortnation rigorously and to liiake recomnien- 
dations. These analyses resultecl in changes in the 
architecturc, the chip design, tlie systems designs, 
ancl the softw;lre. 'The changes liave proved to 
increase performance substanti;~ll)l. 

Seventh Cusp Result 
The program e\t;~blialied n performance team to 
change tllc de51gn and pl'ins ~s necded 

Eighth Cz~sp: Prototype Allocation Process 
As manufilcturing st;irted to  deliver prototypes, tlie 
Program Office fount1 that the early manufiicturing 
built1 rate was lower tIi;in planned. This was the 
result of normal st;lrt-up problems. At the same 
time, initial demand had increased substantially. 
Nevertheless, the project ;~clministrators continued 
to ship the systems to engineering and ;ipplications 
groups in the original orcler. If this had continued, 
dependent software woultl have been delivered 
progressively later because of  inadequate testing 
cyclcs. Our impact analysis indicated that the Alpha 
ASI '  volume ;~v;~ilability would slip by three 
months. 

The review team highlighted this problem in an 
early program readiness review. Traditionally, 
Digital uses readiness reviews to establish manufac- 

turing's readiness to build systems. The Alph;~ A S P  

Program Office broadeneel this process and asked 
for a program-wide readiness review to identify 
the "showstopper" risks. As a result, the Program 
Office celitralized tlie allocation process so that we 
could maintain tlie prototype alloc;itions in real 
time. The result was to reestablish sufficient soft- 
ware test time and maintain momentum with mini- 
mal program impact. 

Eighth Cusp Resz~lt 
The program teams decided that prototypes would 
be delivered based on program priorities. not solely 
on existing plans. 

Ninth Cusp: Need for Quality Metric.$ 
Each g o u p  in the Alpha program adopted very 
high standards for the cluality of its work. The ni;ln- 
agelnent team repeatedly found reinforcement 
of Phil Crosby's tlictum: "Quality is free."'{ Ilesults 
in group after group showed that early ;~ncl con- 
tinuous attention to quality resulted in held or 
improved schetlules. 

However, the program team noticecl t I i ; ~ t  we 
were not inspecting and rnei~suring progress in 
quality at the total systems level; customers care 
about only the quality of the tot;~l result. As tlie 
projects started integrating into ;I tot;~l s),stelii, the 
Program Office establishetl ; ~ n  indepentlent group 
to measure overall quality levels. 'fhe classic reac- 
tion to such independently derived quality metrics 
is that they are meaningless. Instead, since the 
program established tlie metrics ;it tlie niollielit 
when everyone saw the need, the re;iction h;~s 
been to focus on the total system's cluality without 
dropping attention on tlie individu;~l component 
metrics. 

Ninth Cusp Result 
The program formalized system-wide qu;rlity 
metrics. 

Results and Lessons Learned 
Digital met exactly tlie program's overall schedule 
to the month (i.e., date for high-volume shipments), 
despite numerous setbacks ;ilong the W ; I ~  Tlie 
Alpha AXP systeni is meeting the original per- 
formance goals, and quality is excellent. Digital's 
Board of Directors has approved the fill1 Alpha AXP 

program business plan and the investments neces- 
sary to capitalize on the Alpha AXI' family's e:lrly 
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successes. Initial reactions from customers have 
been favorable. Third parties have committetl 
Alpha AXP support for their products in record 
numbers. 

What Worked Well 
The Program Office in conjunction with the 
Enrollment Management Model has worked well. If 
the management team had followed traditional 
approaches, we would still be getting organized. 
Using the model, each group has been able to bring 
its fill( capabilities to bear as problems have arisen. 
?'he project teams have accepted the introcluction 
of multiple levels of inspection, ancl other programs 
within Digital are copying this aspect of the model. 
Further, the notion of ~ising project cusps creatively 
has been an effective tool to huiltl momentum. 
Finally, a common schedule and inspection disci- 
pline allowecl the schedule to become an opportu- 
nitjr to reinforce ;I shared vision. This positive view 
contrasts with the conventional interpretation of 
a schetlule as a burden. 

As a result, most groups met very aggressive goals 
on schedule. Several groups accelerated their cleliv- 

erables despite having the most complex tasks. For 
example, the OpenVMS AXP system group not only 
met its original schedule but also accelerated num- 
erous tieliverables into earlier base levels or releases. 
Figure 7 shows the OpenVMS schetlule and actual 
tlates of availability; footnotes indicate functional 
;~ccelerations. The networks group tlelivered DECnet 
on the AXP system an entire base level early. The 
clatabase systems group accelerated its schedule by 
several months and tlemonstrated products four 
months early at Digital's DECWRLD '92 trade show. 

Clearly one of the major lessons was to establish 
a constancy of purpose and holcl to it while contin- 
iially learning and updating the detailed plans. The 
single-page representation of the goals and master 
plan is a key element in maintaining this constancy. 

What We Would Do Differently 
Loolting back, we would have approached the 
program differently in two areas. First, project 
teams would have benefited from broader early 
education on project methodology. Several projects 
had significant slips, causing undue hardship on 
other groups. The Program Office should have 

ALPHA/VMS SCHEDULE RESULTS 

MILESTONE 

Phase 0 closure 
Alpha VMS minimal lagin 
BL1 ship - minimal login 
BL2 ship - RTLS, DW (1 ) & LAT 
BL3A ship - ISAM, linker 
BL3B ship - prog devel L T I E  (2) , DECnet (3) 
EL4 ship 
BL5 ship - functionally complete(4) 
BL6 ship - Ruby complete(5) 

FTIJPPA 
Phase 1 
FT2/PPA 
FT3/ESP ( 6 )  
FT4/ESP 
V1.0 SSB submission (LRS) 

ORIGINAL 

Rug 30, 1990 
Jun 17, 1991 
J u l  15,  1991 
Aug 26, 1991 
n/a 
Oct 7, 1991 
Nov 18, 1991 
Dec 30, 1991 
Feb 21, 1992 

ACTUAL 

Aug 30 
Mar 20 
May 31 
Jul 12 
Aug 23 
Oct 10 
Nov 15 
J a n  10 
Mar 6 

A p r  3, 1992 A p r  10 
May 1992 May 20 
n/a 1992 May 22 
J u l  2 ,  1992 Jul 8 
n/a 1992 Aug 14 
Oct 2, 1992 O c t  26 

Notes: 

(1) DECwindaws 
(2) Translated Image Environment (RTL far translated images) 
( 3 )  DECnet accelerated from BL4 to BL3B 
( 4 )  Full graphics support accelerated from next version to V1.0 
(5) Support for multiple h a r d w a r e  platforms a c c e l e r a t e d  f r o m  next 

v e r s i o n  to  V1.O 
( 6 )  FDDI support accelerated from next version to V1.O 

Figure 7 Original 0penVM.S  wiles stone and Deliuery Dates 
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introduced Ron LaFleur's project methodology 
sooner and pervasively. Instead, we waited until 
each group saw the need and then tried to intro- 
duce it. For groups such as the OpenVMS AXP 
system group, the methodology was introduced 
early. However, other groups needed (and still 
need) this discipline. 

Second, the office would have conducted more 
pervasive project inspections. Several groups were 
very late in protlucing schedules and plans that the 
Program Office could understand. The office was 
unable to obtain their cooperation to hold detailed 
and frequent inspections. Eventually, the Program 
Office was invited to set u p  and participate in 
appropriate inspections of schedule, process, etc. 
However, we should have insistetl on these much 
sooner. 

The Alpha AXP program is the most con~plex pro- 
gram in Digital's history and h;w been delivered on 
schetlulc with high quality. The Alpha AXI' Program 
Office used a rigorous management me tho do log)^ 
to build the program-level teamwork necessary to 
accomplish this breakthrough. The office proved 
the effectiveness of the Enrollment Management 
Model: vision-enrollment, commitment-delega- 
tion, inspection-support, and acknowledgnlent- 
learning. Integral to this motlel and empowering to 
the team is to take each cusp head-on and to use 
them to increase momentum. The management 
team has been learning as the program progressed 
and has identified areas needing strengthening for 
future programs. 
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D327,477 K. L. Korellis Front Panel for an Integrated Storage Assembly for Computer 
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S. Kundu, and D. E Wall Circuit Designs 

5,095,471 M. D. Siclman 

5,095,613 K. R. Hussinger and 
M. L. Mall;~ry 

5,097,370 Y. Hsia 

5,037,387 J. L. Griffith 

Rotating Priority Encoder Operating by Selectively Masking 
Inp i~ t  Signals to a Fixecl Priority Encoder 

Velocity Estimator in a Disk Drive Positioning Sysretn 

Thin Film Head Slider Fabrication Process 

Subambient Pressure Air Bearing Slicler for Disk Drive 

Circuit Chip Package Employing Low Melting Point Solder for 
Heat Transfer 

5,007,411 I? L. Doyle, J. I? Ellenberger, Graphics Workstation for Creating Graphics Data Structure 
E. 0. Jones, D. C. Carver, Which Are Stored Retrieved and Displayed by a Graphics 
S. D. Dipirro, B. J. Gerovac, Subsystem for Competing Programs 
W l? Armstrong, E. S. Gibson, 
R .  E. Shapiro, K. C. Ri~shforth; 
and Vi! C. Ro;lch 

5,097,436 1. H. Zurawski 

5.097,468 E. Earlie 

5,099,367 M. D. Sidman 

High Performance Atlder IJsing Carry Prediction 

Testing Asynclironous Processes 

Methocl of Autorn;itic Gain Control Basis Selection and Methocl 
of Half-Track Servoing 

 multiple Bit Error Detection and Correction System Employing 
a Modifietl Reed-Solomon Code 1ncorpor:lting Adclress I-';lrit!z 
and Cat;~strophic Failure Detection 

5,099,485 W F. 13ruckert, T. D. Bissett, Fault Tolerant Computer Systems with Rii~lt  Isolation 
D. Mazur, J. Munzer, F. Bernaby, and Repair 
ant1 J. I-I. Bhatia 

5,099,517 A.  Gupta, W R. Hawe, Frame Status Encoding for Comrnunic;~tion Networks 
IM. E Kempf, ant1 C .  S. Lee 

O O  E. E. Cox, Jr. and M. I? Rolla Resonant Technique and Apparatus for TIierrn;~l Cap;icitor 
Screening 

5,101,362 E. Sirnouclis Modul;~r Blackboartl-Based Expert System 

5.101.402 D. Chiu and R. Sudama Apparati~s and Method for Realtime Monitoring of Network 
Sessions in a Loci11 Area Network 

5,101,485 F. I... Pe~azzoli, Jr. Virtual k1emo1-y Page Table Paging Appar;~tus and Method 

5,101,493 R. L. Travis and W R. Laurune Digital Computer Using Data Structure Including External 
Reference Arrangement 

5,103,352 W Y. Moon and R. Y. Noguclii Phased Series Tunecl Equalizer 
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J .  I! Harris. I>. 1-eibholz, 
;ind B. Miller 

Methocl of I>ynamically Allocating Processors in a Massi\rely 
Processing System 

Rletliod of Making a M;~gtietic Recording IJead 

Tunnelled Millticonductor Systeni ancl ~Metliocl 

M. M;lllary 

W C .  Moone): J. R. Santantlreu, 
ancl K. Kshonze 

K. 0. Reck~iian System for Displ;~ying Vitleo from a Plurality of Sources or, 
a l>isplay 

Transverse Positioner for ILadfiVrite Head 

Optical Heat1 with Flying Lens 

E. I,. Steltzer 

N. K. S. Lee, J. W Howard. 
I? K. Tan, ant1 W Hsjrtsay 

D. A.  Bailey 

W R. Grundmann, V K. Ha): 
1.. 0. Herman, ;inel 
1). &I.  Litwi~ietz 

Cooling System for Computers 

Self Tiniecl llegister File Having Bit Storage Cells with 
Emitter-Coul>led Output Selectors for Common Bits Sharing 
:I Common Pull-Up Resistor ; ~ n d  a Common Current Sink 
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