2000C HIGH SPEED
TIME SHARED BASIC
INTERNAL MAINTENANCE SPECIFICATIONS

BILL HACCOU
RICH PEARSON

August 10, 1972

Contents

INTRODUCTION ====mmmmmm-e --- e 1
TABLES-=-===mmmmacen N e e
D RE T ORY = = = = = o e e e e e 2
DIREC-===mmmmmccmmmcmeen P e e 4
ID TABLE === = = e e e e e e e e e 5
A DT = = = = o e e e e e e e e 6
D IS C ADT = = o oo e e e e e e e 7
LOCKED BLOCKS TABLE= === o o o e e e e 8
R 9
L 10
LOGGR==-==mwmmcmcne - e 1
TELETYPE TABLES == s m s e e e e e e 12
EQUIPMENT TABLE ~ == e e e e e e e e 15
SYSTEM SEGMENT TABLE= === mms o oo m e e e 18
DISC ALLOCATION TABLE====mme o oo m e e e e e 19
MOVING HEAD DISC TABLE=== === oo m mm oo e . 20
R 21
DRUM ORGAN | ZAT 10N == = e e e e e e e 22
DISC ORGAN I ZAT LON === == o e e e 24
DISC AND DRUM ERROR ROUTINES========mm oo e oo __ 26
S CHE DUL NG~ = == = = o o e e e e e 29
COMMUNICATION BETWEEN SYSTEM MODULES-======mmm o= oo e mmommmoioom o
DRUM DR VE R = == o mm e e e e e e e 32
L 34
170 PROCESSOR DRIVERS == mm oo m e o e e e e . 37
SYSTEM CONSOLE DRIVER= === o m o s o e e e e i 40
INPUT AND TERMINATION REQUESTS=======mmmmmm e b

SYSTEM LIBRARY ROUTINES---nm-mammanrmmnmmen=me--- I 68
ASSIGN=-mm=mmmmmmmemm e m ;oo e S S 71

SUPERSAVE-=mmmrmmmmmmane emmmemm e cecmee e mam——————— 76
BET=mmmemmrememm e m e e ———————————————————————————— 80
APPEND-=rmeeemmernmararmnemnmnnee——enenn———— cememmmmmmeneemmncmeneee=8]

BYE ——————— T R 0 L QL TR T R T TR YR R €0 R T O T R TR TR = R O T e o - R R T 0 T 0 G T T R R TR T TR O R R 83
KILL—————-—‘enenecun—@q—pg-n-un— —————————————————— L X P L - - - - - 84
RENUMBER=-=s=nenenamcararanaraan ————— mmmemmemmemme e m——mm e —————— 85
NAMEO-F‘F!@FQ‘F‘“--OOF9‘--—!.9 ———————————————————————— - .- e-————88

CATALOG--mmnemmermeammsmenamem————a———————- cmmmmemmee—memmemmcemnne 89
LIBRARY==n~~ AR R TR R ———————————————————————— 90
GROUP-=nemmmmmmmmemcmeeenmnmm——————————— mmeme e ———————————— 90
DIRECTORY - USER CONSOLE-remrenmmmnmmmmmenn- e mmem———————— 91
SDIRECTORY - USER CONSOLE-mmmenemnmmmmanen S —— S —— 92
REPORT = USER CONSOLE-smmemnmmammmmme S — ceneov03
STATUS - USER CONSOLE-+=~nenmnmmemmennnnmremenemaenmnnemneancenanennnnd

DELETE--——nn———ﬂn——n————Qn-« ——————————— - en - - e LR L LR Lt TR L) 95
TIME—-—-————qaen—uo————@pncnoc————ﬁupv ——————— ««a———————a————vvovan—a——96
PROTECT—cn—-————eevvﬁvﬂcvsnﬂov ————— LT L L L L Y T) a——-n—a——97

UNPROTECT--««-«-««——-v—---a—-«-----—--n-«—-------—--——--.---.--—---«----—-.——98

-
OPtN-—_O‘G—F%FF‘-%-—QG“F!FFFFFF—--G‘G-—-F-—-OQ ——————— —e----e—«—v«——v—gg
LENGTH’-'—"‘“‘_““‘“““‘“‘“"*"——Qﬂﬂ—«-“ﬂ—@vw—«-———q————qnqcuv!r—9]0]
ECHO—-_GF-GQP“QQ--"“F%FF-'——-‘.P-F ————— - . - a——@—va—n—vvvo-uloz
MESSAGE ————— vn—-«-—q_n—-n——cv-vﬂ-ﬂﬂﬁ—«-—OnvvpnO————u-——-————qﬂ—avﬂwﬂ«]03
] T B anmnAom
L ?RLNTERo-v«e«n—v—-«eapq—Q-n--——v——uocc—ﬂe—g---—-—--e——«-QGGQQ —————— |05-H

REPORT = SYSTEM CONSOLE-eeweremcmnmemamarranammnemenmamseecanensnenee] 04
DIRECTORY - SYSTEM CONSOLE-re-ssmrnmmmnmscsmscasennmsmremnmnenmanne=]05
SDIRECTORY - SYSTEM CONSOLE-=<=c-nremmmrmmccnaaneremmnremaensnccenees] 06
STATUS = SYSTEM CONSOLE=--sescesemmmemmrammmcnnnneeanme anmeennacanene] 07

ROSTER——-—Q————q-—n—n—-pam-—--—O-—a——‘——v—---e-—eeﬂneQeﬂ@vveovenv9—9&]08

ANNOUNCE“““““‘““'"'*'**“‘F‘““““!-ﬂ*"‘*‘*F!—eqn-ﬂﬂvﬂv—sﬁeveeoov]09
RESET——-a—nec—ne«—n-wh@v‘vtenn%@%n—««-—%v——QQQ%QFOGGGQQQ@Q—!GQFQGP«ne]]0
CHANGEID=«emrrercncnmcccnnrncnmcrnrarnananrenrnrerrmreneraneeeencenencne] |]

SLEEP—-———n—n—-n—————ﬁnp—-n--‘————-u--«———--_q——.——q-—nnnqumeya—e«eqnl]2

ii

W D= == e e e e e e e sl Ll 14
KlLLID--~---—-—---------—-—-—---—-—---~---—-—--—----—------—----—---====}}6
UL O K = === e e e e e e e e 117
L0 K o e e e e e 118
MUN L O K == = = = = o e o e e e e e e e 119
ML O K== = = e e e e e e e e 120
GOy = o e e e e e e 122
B S T QW = === == o o e e e e e 123
AN T LY = o e o o e e e e el 124
D S RATE = === o e e e e e e e e 125
PR GE = == oo e e e e 126
A G AP E = = = = = = = e o e e e e e e e 128
PHONE S = = = == e e e e e e e e L 129
PR N TR == = o e e e e e e e 130
S PR D= = o e e e e e e e 131
PR T == o o e e e e e e i 132
170 PROCESSOR PROGRAM= === s moe e oL sl Ll Lt 133
2100A Asynchronous Channel Multiplexor==m=mmm=-moomcom oo ococcceooeo 133
Send Channel Parameter=-===-==remocmocammcaao— e i aabalat bbbt KK
Receive Channel Parameter====m===mmmommm 133
MULTIPLEXER DI RVER= === == == m o e e o e e e e e 134
lnitialization--—————-—--—-—-—-—--——*—--—-------——-4----—--%:—:——---f-——l34
Receive Channel Processing------------—-------—--—-4-?4-?4f?§*%:---——-4-134' 7
Send Channel ProceSSing"’“'"'“"'“""‘"""'ff‘f"f‘f%’ffiif;""f"f"}34fA
Abort Processing-—*---*-—----—-*——-----———-—---—--—-~;—f---?¥?-----";?4;1344A'
Multiplexer End of Processing==r=========memmmmoomom i 134-A
LINE PRINTER DRIVER==n == oo o e el 135
2100 DATA SET CONTROL [NTERFACE-========mm oo d e 136
DATA SET CONTROL BOARD DRIVER===== === === e e oo 137
IN T AL ZAT 0N == === = o e e e e e e 138
POWER FAIR & RECOVERY == mm e e e e e e 139
TIME BASE GENERATOR === e m e o e e e 140
TELETYPE TABLEs--————-—---—————---———-———--——--———--————————-f—-v ——————— 141
SELECTRIC CONVERSION ROUTINES=-=m=rnm=-n-= el e 143
CONVERSION TABLES FOR THE IBM 2741 TERMINALS TRANSMITTING EBCD
& CALL/360 CODES=~wrcmzmrm—cmc]hs

HARDWARE CONF | GURAT | ON== -~ =n=n-~ R T T R C L TN 113

.i.

TWO PROCESSOR POWER FAIL CHARACTERISTICS=====m==mmmmmmm oo 150
CORE ALLOCATION IN 1/0 PROCESSOR PROGRAM===m== === === oo oo 153
BAS | €= === o = o e e e e e e
YN AX == = o = o e e e e e e e e e e 162
COMP I LAT | ON === == = = e e e e e e e e 162
VAL UE == = = o e e e e e e e e e 163
DECOMP ILATION-~=======n=-= et e LT 164
PR S T = = e e e e e 164
EXECUT 1 ON === = == == o e e e e e e e 164
FORMAT TER === = = == o = = o e e e e e e e e e 174
ERROR ROUT INES == == == == o e e e e o e e e e 177
CORE MAPS == = == == = = e e e e e e e 178
INTERNAL REPRESENTAT | ON== === o= oo o o mm o o o oo 181
VARIABLE STORAGE ALLOCATION==== === === oo o o e e 186
FILE TABLE ENTRY === m mom o oo e e e e e e e e 188
FILE CONTENT S === == == = e e e e e e e e o e e e 189
UPDATE LAST CHANGE DATE ROUTINE===========m s 190
RUN=TIME STACKS === === s = e oo o oo o e e e 191
LANGUAGE PROCESSOR TABLES===== === === = oo o e e e e e oo 193
BASIC FLOWCHARTS=====-=mmmnm- P e e e e 194
LA D E R = = = = = = = = e e e e e e 246
LOADER SUBROUT INES ===~~~ L LT A 250
LOADER FLOWCHARTS==rw=vrmmmmumenonmamnae et B 256
BOOTSTRAP PROCEDURE = === === e e e e e e e o e e e 320
SLEEP TAPE FORMAT == === mm e e e e e e e e e e e e e e e 321

INTRODUCTION

The 2000C (HIGH SPEED) TIME SHARED BASIC SYSTEM consists of three separate
programs which are run on two processors. The Communications processor
Program is responsible for handling all multiplexed I/0 from user
terminals. The System contains the BASIC interpreter, executive and
library routines and runs on the main processor. The Loader, which also
runs on the main processor, is responsible for generating initial systems,
backing up the system on mag tape, reloading the entire system and user

library, and selectively reloading or backing up users libraries.
HARDWARE CONFIGURATION

1) UP TO 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR
16 LINE PRINTER (OPTIONAL)

2) MORE THAN 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR
16 2nd MULTIPLEXOR

17 2nd MULTIPLEXOR .

20 DATA SET CONTROL FOR 2nd MULTIPLEXOR
21 LINE PRINTER (OPTIONAL)

2000C (HS) TIME SHARED BASIC TABLES

DIRECTORY

The directory is a table which contains all necessary infor-
mation about each program or file in the system library. It resides
on the drum and may occupy from 1 to 80 drum tracks, depending upon
how many discs there are on the system and how many directory tracks
per disc are specified by the operator at load time. A core resident
table called DIREC contains information on the directory itself.

A directory entry consists of 12 words and has the following format:
WORD 0 user id i

1 program or BIT 15 = 1 if protected, 0 if unprotected.
2 file BIT I15=1if file, 0 if program
3 name BIT 15 =1 if semi~compiled, O if

uncompi led

L start of pfogram pointer
for programs/record size
for files

5 last reference date
(year in bits 9 to 15
day in bits 0 to 8)

6 last change date
(hour of year)

7 drum address
(0 if not SANCTIFIED)

disc

address
10 used only by loader
11 length

(- words -for pfogram
~+ records for file)

The directory entries are kept sorted on words 0-3. BIT 15 of
words | and 2 and 3 are not considered in the sorting. Names of fewer
than 6 characters are filled out with spaces (hos).

The last r

rence date is the most recent date on which
the program or file was referred to, while the last change date

is the most recent date on which it was altered.

The directory contains 2 pseudo entries which are the first

and last entries in the table.. They have the following form:

FIRST ENTRY LAST ENTRY

© W 00~ O UV oW N
o O O O O o

[}

o —

—

o O O o
©o O O o

When the directory occupies more than one track, all the

directory tracks appended together form the directory.

LN

. DIREC

DIREC is a 560 word core resident table which contains

information about the directory. It has the following structure:

WORD 0 -length in words of first directory track
1-4 same as first 4 words of first directory track
5 Qnused ,
6 drum address of first directory track

7-13 same as 0-6 but applied to 2nd directory track

553-559 same as 0-6 but applied to 80th directory track

A drum address of 0 implies that there is no such directory

track. When word 0 is 0, words 1-4 are meaningless.

The drum address of a directory is always sector 0 of a track.
Each directory track may contain as many as 8184 words = 682

directory entries.

When loading the system from paper tape or mage tape, the
operatok'has the opportunity to specify the number of directory
tracks per disc, in the range of 1-10, which is saved in NDIRT.
The total number of directory tracks is this number times the
number of discs on the system.

TADI I
!D TABLE

The 1D table (IDT) is a drum resident table of from 1 to 3
tracks which contains one 8-word entry for each ID code on the system.
The entries are kept sorted according to the ID codes. An entry has

the following format:

WORD 0 user id
1-3 password (filled with 0's if fewer than 6 characters)
4 time allowed(in minutes)
5 time used (in minutes)
6 disc allowed(in blocks)
7 disc used (in blocks)
Words 4-7 are 16 bit quantities with values between 0 and 65535,

The 9-word IDEC portion of the EQT has the following format:

WORD 0 first id of first track
1 drum address of first track
2 length in -words of first track
3-5 same as 0-2 but applied to 2nd track
6-8 same as 0-2 but applied to 3rd track

When loading the system from pPaper tape or mag tape, the
operator has the opportunity to specify the number of id tracks,
in the range of 1-3, which is saved in NIDT. Each track may

contain as many as 8192 words = 102k id entries.

AVAILABLE DRUM TABLE

The available drum table (ADT) is a drum resident table which
contains one two-word entry for each area of the drum which is un-
allocated. An entry has the following form:

WORD 0 drum address |

] 'Iength of area in sectors

Entries are sorted according to word 0. Each entry may refer
to as much as one full track, and no two consecutive entries ever

refer to two adjacent drum areas (two tracks are not considered to
be adjacent).

At the end of the ADT is one additional entry having the form:

0 177777
] 0

The following two memory locations refer to the ADT:

ADLOC
ADLEN

drum address of ADT

length in-words of ADT

DISC ADT

The available disc table (Disc ADT) is a drum resident table
which contains one three-word entry for each area of the disc which

is unallocated. An entry has the following form:

WORD 0 disc
] address
2 length of area in blocks

There is one Disc ADT track for each disc on the system and
only entries for one particular disc appear on a track. The first
L blocks of each disc are used by the system and are therefore always
unavailable. Thus there are no contiguous areas which overlap discs.

The following words in the EQT refer to the Disc ADT:

DADLC BSS 8 drum addresses of Disc ADT tracks
DADLN BSS 8 lengths in -words of Disc ADT tracks

The first word of each BSS refers to logical disc 0, the second to

logical disc 1, etec.

Vi,

LOCKED BLOCKS TABLE

The Locked Blocks Table is a disc-resident table which
resides in the 256 words of block 3 of each disc. |t contains
one two-word entry for each area of the disc that has been MLOCKED.

An entry has the following format:

WORD 0 disc address relative to this disc

1 length of area in blocks
The rest of the table is zero filled.

The disc address is stored as if the disc were logical disc 0, so
that packs may be used as any logical disc. The1Locked Blocks
Table is cleared only when it is determined during the loading
procedure that the disc does not have a valid TSB label and the
operator requests that one be written. This means that the packs
""remember'' which blocks are unavailable even if different 2000C

systems are loaded.

Vii.

drum.

words

files

table.

15 of

The FUSS table is a 1024 word table which resides on the

I'ts drum address can be obtained by the instruction.
LDA FUSS,1

FUSS is divided into 32 sections of 32 words each. The 32

in each section are the 2-word disc addresses of the user

currently being accessed by the user corresponding to that
Addresses of 0 indicate no file. Disc addresses with bit

the first word = 1 indicate that the user has read only

access.

FILES

The purpose of maintaining this table is to:

1. Prevent simultaneous write access by two users to one file;

2. Prevent moving or removing a file in the routines KILL, LOCK,

MLOCK, SANCTIFY and DESECRATE when some user has access to it.

A user's FUSS (i.e. his area of the FUSS table) is set by the

routine, which is called from BASIC at the beginning of execution

of a program containing a FILES statement. Individual entries in a
user's FUSS are changed by the execution of ASSIGN statements. It is
cleared by BYE, HELLO, KILLID, and sometimes by KILL.

w

"~ COMTABLE

The COMTABLE is a list of all user and system commands con-
taining their ASCIl codings and drum locations or core addresses.
The structure of the COMTABLE is as follows:

COMI ‘codes for commands which are
executed immediately by the
system

COM2 codes for commands which are
executed by
BASIC

COM3 user commands which are
executed by drum resident

programs

COM4 system commands - - all are
executed by drum resident
programs

COM5 starting addresses for those
commands which are listed
under COM1 and COM2

COM6 drum addresses for those
commands which are listed (this section is filled
under COM3 and COMA4 by the loader)

Since each command is recognized only by its first 3 letters,
the scanner converts each letter into a number from 0 to 3]8, ahd
then packs the three codes into one word as three 5-bit bytes. In
addition, bit 15 is set for system commands. Codes of -1 in
sections 2, 3, and 4 do not correspond to. any possible 3-letter
code. Their purpose is to generate room in COM6 for disc addresses
of routines that are callied indirectly, or for tabies like FUSS. In
the case of CTAPR, the purpose is to generate a status type for
printing compiler tape errors without a direct command from the
uéer. Similarly, UCDAB génerates a status type for updating the

last change date for files after a program is aborted.

10

LOGGR

LOGGR is a 6l-word queue which contains codes for printing
LOGON/OFF messages. Entries are placed on the queue by HELLO, BYE,
and SLEEP. ' Each entry consists of 2 words, with the following format:

WORD @: user id (BIT 15=0 for ON, 1 for OFF)
1: bits 15-5 = 60 x hrs + mins
bits 4-0 = terminal number

The representation of a user id is as follows:

BITS 14-10 = letter (A=1,B=2, ..., Z = 32¢)
BITS 9-0 = number (0-999)

The following variables are rélevant:

LOGCT = # of unporcessed entries in LOGGR
LOGP1 = points to word 1 of last processed entry
LOGP2 = points to word | of last unprocessed entry

Note that LOGCT = 0 <=> LOGPI=LOGP2

11

TELETYPE TABLES

This set of 32 tables, one for each user, contains relevant
information about the various terminals. The structure of the

tables is as follows:

WORD 0 FLAG
1 TNUM
2 DISC
3 PROG
4 1D
5-7 NAME
8-9 TIME
10 cLoc
11 RSTR
12 STAT
13 LINK
14 PLEV
15 RTIM
16-20 TEMP
FLAG: bifs 0-8 contain information as follows:
BIT NAME MEANING IF = 1
0 TERR errors while reading program in tape mode
1 CFLAG program is compiled or semi-compiled
2 HFLAG $HELLO is running
3 TAPEF user in tape mode
4 UNABT unable to abort
5 OUTWT user suspended for output wait
6 COMI4 communication from 1/0 processor
7 ABTRY ‘abort attempted (while UNABT = 1)
8 CHNFG program was called from <CHAIN statement>
9 ENDST error on drum transfer
10 MBUST error on disc transfer
TNUM: teletype number in bits 12-8; used for sending information

to 1/0 processor. 12

DISC:
PROG:

1D:

NAME :

cLoC:

RSTR:

STAT:

drum address of user's swap area

when user is on the drum PROG points to the last core

=2 L~ So L Cwi o

location used by the program. When the user is loaded
into core, PROG is placed into PBPTR. When he is written
back to drum, PBPTR is copied into PROG. BASIC is
required to maintain PBPTR as a bound on the core it is
using.

user's id, 0 if none

a three word entry containing the user's program name.
It is set by the routine NAME & GET & CHAIN, and cleared
by HELLO. When fewer than 6 characters are in the name ,
blanks are appended.

this is the timeout clock used to determine the length
of a user's time siice. See the discussion on
scheduling for further information.

this is set, when a user is placed on the queue, to

his starting address in core. When the user is actually
initiated, RSTR is set to 0. Whenever RSTR = 0, the
transfer address of the user can be found in location PREG.

indicates user's status. The user's status is as fol lows:

-4 port unavilable

-3 enter timeout

-2 system disconnect
1 user abort request
0 idle

1 system abort

2 input wait

3 output wait

L syntax processing

>4 command processing

When a command is being processed, STAT indicates the command.
STAT values

RUN
LIST
PUNCH

L INK:

are assigned in order of entries in the COMTABLE, so that
=5 .

6

7, etc.

the LINK words in the tables are used to form a queue

of active users. All users whose status is >4 are in the queue.

See discussion on scheduling for further information.

13

PLEV: this word gives the priority level of the user when he is
on the queue. When the user's status is set to 2 or 3, the
previous value of STAT is copied into PLEV, and the user removed
from the queue. The possible values of PLEV are as follows:

0: highest priority, used for syntax, users returning from

1/0 suspend, and for disc resident routines once they begin.
This includes FILES, CHAIN, and ASSIGN.

1: used for commands RUN,LIST,PUNCH,XPUNCH.:

2: used for disc resident routines until they reach the top
of the queue.

4: wused for long running programs.

RTIM: the length of time in seconds that it took the user to

respond to an <ENTER statement>.

TEMP: used (along with RTIM) to save variables when OPEN, CATALOG,
GROUP, LIBRARY, STATUS, DIRECTORY, SDIRECTORY and REPORT are swapped

out.

Associated with each item in these tables is a symbol which is

EQUated to the corresponding number of the item. For example:

7FLAG EQU 0
7TNUM EQU |
ITEMP EQU 16

These symbols are primarily used for adjusting pointers to the
table. For example, if the B register contains a pointer to the

LINK entry of some user, the instruction

ADB .+7 ID - ? LINK
will point B to his ID entry.

is a symbol located in base page at the 0 entry of a table of con-
stants from -26 to +43. A word containing the value N, where -26<N<49

can be referenced by .+N.

14

X1.

EQUIPMENT TABLE

The equipment table is the area of core which describes the
resources available to the system. It resides in locations]00-
204, as follows:

100-110
111
112
113
114

115-124

125-134

135-140

141-150

151-170

1DEC
NIDT
ADLOC
ADLEN
NDIRT
DADLC
DADLN
7TBL

DKTBL

TRAX

iD table headers
number of ID Tracks

drum address of ADT (see !V)

(see !11)

length of ADT in -words

number of directory tracks per disc (see II)
Disc ADT drum addresses (see V)
Disc ADT lengths in -words

There is one word in this area for each of

the 4 drums. When the word is zero, the
particular drum does not exist. Otherwise,
bits 7:6 contain the drum prefix and bits

5:0 the high priority select code. The

prefix is used by the drum driver as the

high order 2 bits of the 8-bit track address.
There is one word in this area for each of the
8 discs. When the word is zero, the particular
disc does not exist.. Otherwise, bits 15:8
contain the high priority select code and 7:0
the unit number

This is a table of which drum tracks are
physically available to the system. Locations
151-154 correspond to drum 0, 155-160 to drum
1, etc. Track 0 of drum 0 is represented by
bit 0 of 151, track 1 of drum 0 is represented
by bit 1 of 151, etc. A bit is O when the

track is available, 1 when unavailable.

15

The TRAX table is changed only by the

following commands :

DRUM - causes all tracks of the specified

drum to be made available.

LOCK - all specified tracks are made
unavailable.
UNLOCK - all specified tracks are made

available.

171-175 - SYSID A ten character system identification. It is
set in response to the "'SYSTEM IDENTIFICATION?"
question on paper tape and mag tape loads. It
is used in the headers for STATUS, REPORT,
DIRECTORY and SDIRECTORY.

176 MAGSC High priority select code for mag tape; if
non-existent, MAGSC=0. If bit 15=1, the tape
unit Is a 7970. V

177 NPORT Two's complement of the number of ports on the
system. The ports available are numbers @ thru
~NPORT -1.

200 YEAR Year of the century.

201-202 DATIM Time of year. The first word is the hour of the
year, and the second is the number of 100 ms

units in the hour minus 36000.
203 HDATE Hour of year that the system was last hibernated.

204 SLEPT 0 says that the system has been slept, -1 that
it has not, This word is modified only by the
sleep and reload pfocedures and insures that
the system may not be reloaded from disc if it

has not been slept.

16

207

210
211

212
213
214
215

216

LDBSA

LSTDA
DATLN

MHAD
GMQBP

DISCA
piIsce
MBUSY
MWORD

DREDP

the equipment table, in locations 205-216 are

words which must correspond with the loader. They

Core address in the loader of the disc bootstrap.

Core address of the first loader segment in the
System Segment Table (SST).

Length of the Disc Allocation Table (DAT) in
-words.

Core address of the Moving Head Disc Table (MHTBL)
Core address of the routine toc get a buffer for
disc or drum error messages. ‘Two such routines

exist: one for the loader and one for the system.
Core address of disc driver entry point.

Core address of disc driver interrupt entry point.
Disc driver busy flag.

Word count for disc driver.

Core address of disc driver auto restart entry

point (used by powerfail/auto restart routine).

17

SYSTEM SEGMENT TABLE

The System Segment Table (SST) is 53-word table resident in
the loader. It is the first portion of the bootstrap and is pointed
to by LDBSA. The first word of the table contains - the number of
system segments. Each group of 4 words following the first word has

the following format:

WORD 1 length of segment in -words
2 absolute, beginning core address of the segment
3-4 disc address of the segment

There are 13 segments, ordered as follows:

SEGMENT

Interrupt locations (28 to 278)
System base page (end of EQT to 17778)
System linkage area (20028 to 20158)
‘System segment 1 (end of Direc to hl7778)
2 (420004 to 517774)
" " 3 (520004 to 61777g)
" " 4 (620008 to 7]7778)
" " 5 (720008 to 776778)
9 Equipment table (IOO8 to 2]68)
10 Direc table (300008 to 310578)
11 Loader segment 2 (160008 to 257778)
12 Loader Segment | (20008 to 146778)
13 Disc driver (260004 to 27777g)

X N OV W N

. Note that this includes all core resident portions of the loader
and system except for locations lk7008 to 15777g. The first 1000,
of these words comprise the disc bootstrap and are resident on
blocks 1 and 2 of each disc. Locations 157008 to 15777g may only

be used for temporaries.

18

X,

DISC ALLOCATION TABLE

The Disc Allocation Table (DAT) is a 276-word table resident
in the loader. It is the first portion of Loader Segment 2 and its
disc address is pointed to by MEM[LSTDA] + 2 when the SST is in
core. The DAT designates the areas allocated on the disc for storage
(during a SLEEP or HIBERNATE) of system library programs and system

tables normally resident on the drum.

There are 4 sections of the DAT. The first (DATSL) is a 3
word entry consisting of the length in blocks of the system library

and the 2-word disc address of the first system library program.

The other 3 sections (DATID, DATDA, and DATDI) contain one
3-word entry for each reserved area on the disc for the Id table,
Disc ADT, and Directory tracks respectively. The format of these
entries is the length in -words in the first word and the disc
address in the second 2 words. For these sections 32 blocks are
always reserved for each track, since the tables may grow to this

size while the system is running.

19

X1V, MOVING HEAD DISC TABLE

The Moving Head Disc Table (MHTBL) is a 48 word table
resident in the disc driver section of the loader and system.
It contains hardware information about the disc on the system

as follows:

WORD 0O-1 Two-word logical address of the first 128-word
hardware sector on logical disc O.

2 Points to select code/unit number in DKTBL for

logical disc 0

3 number of sectors/cylinder
number of sectors/track

5 Current cylinder position of heads for logical
disc 0 (not used for 2883 discs)

6-11 Same as 0-5 applied to logical disc 1

L2-47 Same as 0-5 applied to logical disc 7

Note that the address in the first two words of each section of the
table is a sector address and must be divided by 2 to obtain the

block address.

" The actual numbers for the 3 kinds of used on the 2000C are

as follows:

2883 - 2870 7900
WORDS 1-2 ¢ '} g
9338010 97#&10 i9h88|0

186760, 19488, 3897610
280140, 29232 58464 o
373520,, 38976, 77952,
1466900, 48720 97kk0, o
560280 58464 116928,
653660Io 68208Io 136&1610
Leo 48. 96io

10 10

4 23,, lzm 24

W

20

USER

LIBUS

LIBRA

OCTAL
LOCATION

0

100
217
1224

1230

26000
30000
31060
31701
60000
61124
62264
71624
72140

75000

77000
77700

CORE MAP

INTERRUPT LINKAGE AND UNINITIALIZED
SYSTEM VARIABLES

EQUIPMENT TABLE
CONSTANTS AND SYSTEM VARIABLES
REGISTERS SAVED BY CLOCK

USER SWAP AREA AND SYSTEM LIBRARY
WORK AREA (10240 WORDS)

DISC DRIVER

DIREC TABLE

DLOOK ROUTINES

BASIC

1/0 DRIVERS

TELETYPE TABLES

EXECUTIVE

COMMAND TABLE

SYSTEM LIBRARY SUBROUTINES

SYSTEM LIBRARY PROGRAMS SWAP
AREA (512 WORDS)

CORE DUMP

'PROTECTED LOADER

2]

DRUM ORGANIZATION

The drum space available to the system consists of from 64
to 256 tracks, depending upon how many drums exist. Each track
contains 128 sectors of 64 words each, for a total of 8192 words

per track. The loader assigns tracks as follows:

System library routines (3 tracks)

10T ' (1-3 tracks)

User swap tracks (1 1/4 - 40 tracks)
Directory (1-80 tracks)

Disc ADT : (1-8 tracks)

ADT (1 track)

All remaining tracks are available for storage of sanctified
user programs and files. The ADT contains an entry for each avail-

able area.

The drum addresses of the individual system library routines
are stored into the COMTABLE dﬁring loading. Although they are not
all the same length, they are limited to 512 words, and so the system
reads in exactly 512 words whenever it wants to ioad such a routine.
The loader never assigns a library rdutine within 7 sectors of the

end of a drum track, so that no errors can take place in doing this.

Each directory, iDT, ADT and DiSC ADT track is stored beginning

at sector 0.

Since the user area is 10240 words long, it cannot fit on a
single track. fhe loader must therefore find adjacent areas on the
drum which total | 1/4 tracks for each user swap area. This will
not cause any problems because all drums used on the 2000C have

automatic track switching.

22

During running, each user Swap area contains a copy of the
area from core lo n U

ocation USER through the core iocation specified
by its ?PROG entry. This includes all variable data which is

(]
e

relevant to that user's program, and his program itself. The

location of various sections in his program is discussed elsewhere.

Programs and files which are designated as SANCTIFIED by the
operator reside on the drum and thus have better access time. They

must be less than 8192 words long. The area on the disc where they

were originally resident is reserved so they may be copied back at
sieep time.

23

DISC ORGANIZATION

The disc space available to the system‘is determined by the
number and type of discs which exist on the system. The discs are
divided into 256 word blocks. There are 46690 such blocks on a
2883 disc, 9744 on a 7900 disc, and 4872 on a 2870 disc.

The first 4 blocks of each disc are reserved for use by the
system. Block 0 is a label, which looks like this:

WORD 0 "Ls"
] llTSll
2 logical disc number

3-7 system identification
8-30 ¢
31 checksum of words 0-30

Blocks.l and 2 contain the final disc bootstrap found in the loader,
and block 3 contains the locked blocks table for this disc, which is

discussed elsewhere.

Disc space for system usage is assigned as follows:

‘Resident system 130 blocks
System library 126 blocks
AIDT 32 blocks/track
Disc ADT 32 blocks/track
Directory 32 blocks/track

All remaining blocks are available for storage of user programs and
files. Programs and files are each required to be stored as contig-
uous blocks of disc. Since the disc is allocated by blocks, each
program may cause part of its last block to be wasted. When a pro-
gram is stored (by the SAVE routine), it is first decompiled and is
stored in that form. Only the encoded text is stored, so that a
program may require as- little as 3 words of diéc space. When é
program is stored (by the CSAVE routine) it is saved in a semi-éompiled
form, i.e. the form it is in after the symbol table is built. Both the

encoded text and the symbol table are stored, plus 7 words of necessary
information. 24

Files always occupy an integral number of records (1-32767),
occupying a contiguous area on the disc. BASIC does not
treat the individual records in the same logical sequence as the

physical sequence, but rather interleaves the records, as follows:

even # of records

Physical sequence: 1 2 3 4 ... 2n-2 2n-1 2n
Logical sequence 1 nsl 2 n+2 cen Zn-1 n 2n

odd # of records

Physical sequence: 1 2 3 4 ... 2n-2 2n-1

Logical sequence: I n+l 2 n+2 ees 2n-1 n

This format tends to decrease disc seek time when records are

accessed in a logically ascending order.

25

DISC AND DRUM ERROR ROUTINES

Disc and drum errors do not cause immediate halts in their respective
drivers. Instead, the drivers indicate failures td their calling routines,
which take appropriate action. In many cases (particularly most disc
errors), the action is merely to inform the affected party and continue
normal systemvoperation. Such is the case for all user access to programs

and files on the disc or drum.

In certain cases, however, system operation is more significantly
affected. The following routines are called after these disc and drum

failures:

JETPT

This routine is called when a drum transfer to or from a user's swap

area has failed. It proceeds as follows:

1. Remove the user from the queue.

2. Set the port's status to unavailable and clear its ID and
flags words.

3. Clear this user's area of the FUSS table.
L. Call TCRIR to inform the user that his port is being zapped.

5. Insert an informative message into the system console
message queue and return.

SALVG

This routine is called when a system track with vital information (such
as a directory or IDT track) cannot be written back to its assigned drum
address, but when recovery might be possible if the information can be saved.
It is entered with A containing the address of the word in core which contains
the drum address of the track in question. B contains the negative length of
the table, which must be in core starting at LIBUS. The operation is as

follows:

1. Read the drum ADT, in several portions if necessary, into the
upper 2K of user area. Search each piece for an entry large
enough to accommodate the table in core. |If none is found, go
to step 4. '

26

2. Attempt to write the table to the newly found area on the drum. If
the write is unsuccessful, go to'step 4,

3. If the table s successfuliy written to the drum, update the drum
address in core associated with it, call CLNOT to finish printing
any messages in the system Message queue as well as a message of
success, and halt.

4. Call CLNOT to clean out the message queue and to print a message of
SALVG's failure, and then halt.

SICK

—

This routine is called when the System cannot continue operating (because,
for example, it cannot read a library routine or system table), but may be
able to be recovered. The routine merely calls CLNOT to finish printing any

messages in the queue and a message of hope, and then halts.

DEAD

This routine is called when the system cannot continue operating and has
altered its tables in such a way that they contain conflicting information,
and recovery is, therefore, impossible. DEAD calls CLNOT to dump the message
queue and output a ''no recovery' message, and then halts.

MDEAD

This routine is called in situations like those which call DEAD, but
which specifically involve possible destruction of a disc's locked blocks
table. The procedure is the same as that in DEAD, except that the final
message refers to the locked blocks table.

CLNOT

This routine is called when a hardware error has caused a system shut
down to be initiated and it is desired to inform the operator and users of

what is happening. The procedure js:

1. Call TCRIR to inform all users that the system is going down.

2. If the system teletype driver was outputting, complete the line
it was printing.

27

3. |If there are messages in the queue, output them on the system
console.

L. 1f the routine was entered with B nonzero, print the message
whose length and text are pointed to by it.

5. Output three X-OFF CR LF's, and return.

TCRIR

This routine is called to inform one or all users of a hardware
failure which is fatal to him/them. The procedure is:
1. Set up port counts and message pointer for the appropriate
message.

2. Output the message, one character at a time, to each port to
receive it.

3. Output three linefeeds and return.

SYCON

This routine is the non-interrupt output-only teletype driver used by
CLNOT to print on the system console. Upon entry, A holds the number of
characters to be output. Bit 15 of A =@ for X-OFF CR LF to be output
after the line. B points to the first word of the buffer to be output.

28

SCHEDUL ING

The basic philosophy of the TSB scheduling algorithm is to provide
short response times for short, interactive jobs at the possible cost of
delays in longer running jobs. The implementation of this involves a
queue of jobs to run which is ordered according to a priority scheme.
The queue is a linked list of from 1 to 34 entries, each entry pointing
to the next entry, and the last entry pointing back to the first. The
34 possible entries in the qdeue are the 32 user LINK entries, a LINK
word in a truncated TELETYPE table reserved for the system console, and
a queue head. The queue head consists of the locations MLINK (0:2), and
is always in the queue. The queue head has a priority of 777778, which
is stored in location MLINK+2, and so it is always the last entry in the
queue. As an example of how this works, assume thatiusers 1, 3 and 6 are
on the queue in that order and so is the system console, in a position

between users 3 and 6. Then the queue will have the following appearance:

_ ‘v
TTYGI+ILINK | o
PLEV | o |
' . &
TIVE3+LINK |~ 7t
wev | 2|
: T
T35LK e e
O A
TTY@6+7LINK ! | —
PLEV l_ﬁ,_J__-_,‘.. l
ML INK ! -
SR

29

Since the MLINK entry is always the last entry on the queue,
MLINK+] is a pointer to the first entry, which in this case is TTYg@l.
In the case of an empty queue, MLINK+1 will point to itself, i.e.,
CONTENTS(MLINK+1) = CONTENTS(MLINK). Each entry on the queue has a
priority no greater in numerical value than that of the one it points
to. When an entry is added to the queue, this ordéring‘is always
preserved by piacing the new entry just ahead of the first entry
with a larger priority number. Note that when the first entry in
the queue has priority 0, it will remain at the head of the queue

until it is removed from the queue entirely.
The following rules are used to assign (and reassign) priorities:

1. Upon first entering the queue, jobs are assigned priorities

as follows:

SYNTAX lines and jobs returning from 1/0 suspend: 0
BASIC commands (RUN, LIST, PUNCH, XPUNCH) : 1
Commands for drum-resident routines (GET,BYE,etc): 2

2. Priorities of jobs are reassigned in the following way:
Jobs of priority 2, when they reach the top of the queue,

are reassigned priority 0.

RUN jobs, when they exceed their time slice, are re-
assigned priority 4, and repositioned in the queue
according to that priority. Each RUN job is assigned
avffme slice of two seconds, and if it exhausts that

it is assigned another. When executing a <CHAIN statement>,
a <FILES statement>, or an <ASSIGN statement>, a RUN. job

is reassigned a priority of @.

The OPEN command is reassigned a priority of 4 when it is

suspended after writing file marks in 400 blocks.

30

After an abort during program execution a user is re-assigned

a priority of 0 to run the routine which updates the last change
date for files.

LIB points to the location in the COMTABLE of the drum address

of the library routine in core. LIB = 0 when none is present.

The following conditions must exi t for the scheduler to permit

w

execution:

A) for Syntax and BASIC commands :

MAIN set to point to correct user table

B) for drum resident commands :
MAIN = 0

LIB set to correct drum resident routine
The scheduler routine SWAPR is responsible for creating these

conditions, and makes its decisions according to the values of MAIN,

LIB, and the entry on top of the queue.

31

COMMUNICATION BETWEEN SYSTEM MODULES

There are seven system modules that communicate with each
other in various ways: the drum driver, the disc driver, 1/0
Processor driver, system console driver, scheduler, BASIC, and

system library routines (HELLO, BYE, KILLID, etc.).

l._ Drum Driver.

Any section of the system may call the drum driver to perform

a drum transfer. Three parameters are passed:

A = drum address (bits (15:14) = drum number
bits (13:8) = track number
bit 7 =0
, bits (6:0) = sector number)
B = core address (bits (14:0) = core address
bit 15 =] for drum input
0 for drum output)
WORD = -# of words to be transferred (may be 0, in which case

no actual transfer is performed).
Called by JSB DRUM,I

it is the responsibility of the caller to insure that the drum
is not busy when the call takes place. This is no hardship since
while BASIC or a system library routine is running, no other module
even initiates drum transfers. As a result, the drum will appear to

be busy only if the module itself has initiated the transfer.
Upon initiation of a drum transfer, the variable ENDRM is set

to -1, and it is cleared upon completion. A complete transfer can
be performed by:

32

JSB DRUM, 1

LDA ENDRM

SSA

JMP %-2

SZA

JMP <error location>

<process successful transfer>

The system never suspends a program for a drum transfer

because the high speed of the drum does not cause any great overhead.

The value of WORD is not modified by the driver.

33

Disc Driver

Any section of the system may call the disc driver to perform
a (moving-head) disc transfer. Three parameters are passed to

the driver:

A = pointer to | (the core address of a two word
disc address v logical disc block number at
which the transfer is to begin)
B = core address (bits 14-0 = core address at

which transfer is to begin;
bit 15 = 1 for read from disc
to core;

bit 15 = @ for write from

core to disc)

The variable MWORD = the negative of the number of words to
be transferred. |If MWORD2#, the driver will cause no transfer,

but will position the appropriate disc unit at the specified
block.

The disc driver is called by JSB DISCA,I.

The driver determines the logical disc on which the specified
block lties, and, if that logical disc is present on the system,
processes the requested transfer. While a request is being
processed and transfer taking place, the driver busy flag,
MBUSY, .is set to -1. |If the driver is called while MBUSY is
so set, it will return without doing anything.. If the disc

block number passed to the driver does not lie on one of the

‘discs present on the system, the driver will increment the

-return address by one and return without doing anything. If

the driver accepts the request, it will increment the return

address by two and return after processing of the request has
been initiated.

34

A moving head disc transfer involves two steps: positioning
the heads to the correct area of the disc and performing the
actual data transfer. The disc driver returns to its caller
while each of these is going on. Command channel interrupts
return control to the driver when the operations are complete;
the driver checks for successful completion of the operations

before proceeding.

The driver for the 2878 (I10MEC) disc keeps track of the cylinder
position of the heads on each of the discs on the system, |f

a requested transfer is to or from the current cylinder of a
disc, the driver does not issue a seek command and suspend
pending its completion before starting the read or write. It
merely issues an "address record" command to set the disc
controller's record address register for the transfer. The
2883-2884 (1SS) disc driver always issues a seek command, since

a seek to the current cylinder consumes virtually no time.

A single data transfer on a disc cannot automatically continue
from one cylinder to the next. The 287¢ disc has the further
restriction that a transfer cannot cross the "mid-cylinder"
boundary (between track 1 and track 2). When a data transfer
is requested which crosses one or more of these boundaries,
the disc driver breaks up the transfer to conform with the

restrictions.

When the driver completes handling a request and returns to the

caller, MBUSY is set to indicate the outcome of the transfer

as follows:
g: the requested transfer has been successfully
completed.
1: the transfer has failed; the seek (position)

operation could not be completed.

35

2: the transfer has failed; tHe data transfer

~ was unsuccessful.

3: the transfer has failed; part of the data
lies on, or would be written to, a disc

which is not present on the system.

A complete disc transfer can be performed by the following

sequence:

JSB DISCA,I
<return for driver busy>
<return for disc not present>
LDA MBUSY
SSA
JMP *-2
SZA
~ <process disc error>

<process successful transfer>

The disc driver does not modify the contents of MWORD and the
A and B registers. The system never suspends a program for a

disc transfer.

(73]
(o)}

III.

I1/0 PROCESSOR DRIVERS

There are two drivers used for communication between the main
processor and the I/0 processor, one for each direction of communication.
Each communication consists of one 16 bit word which looks like this:

15 13 12 8 7 4 0
OPCODE TTY # DATA OREOPCODE

The TTY # is the user's port number as found in the ?TNUM word of
his teletype table.

The opcode uses bits 15-13, unless they are all 1l's, in which case

it also uses bits 4-0.

Opcodes which have values of bits 15-13«<4g use bits 7-0 for data,
e.g. al ASCII character.

The main processor sends communications on I/O channel 11 and
receives them on I/0 channel 10. An exception is a communication
sent by the main processor which requires a response, which will be
received on 11. Communications are initiated by JSB S14SC, I with the
communication in the A register.

The following is a list of communications sent by the main processor:

NAME OPCODE (OCTAL) FUNCTION

OCR 000000 Output a character

STE 020000 Start timing ¢ ENTER statement>
GTC 040000 Get a character (response required)
PHO 060000 Allowed phones time

SPE 100000 Baud rate information

SBP 120000 Save teletype buffer pointer
RBP 140000 Restore teletype buffer pointer
INI 160000 Initialize system

UIR 160001 User is running

UNR 160002 User no longer running

IWT 160003 User in input wait

HUU 160004 Disconnect user ,

ULO 160005 User logged on successfully

ECO 160006 Echo-on

ECF 160007 Echo-off

37

NAME OPCODE (OCTAL) 'FUNCTION

TPO 160010 . User in tape mode

ILI 160011 Illegal input? (requires response)

NUC 160012 New user logged on

KAO 160013 Kill-all output

ALI 160014 Allow input

OWT 160015 . User in output wait

IBF 160016 Is buffer full (requires response)

PSC 160017 Line printer select code

LPR 160020 Line printer request (requires response)
LPD 160021 Line printer disconnect

LPS 160022 _ Line Printer status (requires response)
BKS 160023 Backspace in teletype buffer

CHS 160024 Character size information (requires response)
STP 160025 Subtype information

WSP 160026 What baud rate (requires response)

WCS 160027 What character size (requires response)
WTP 160030 What terminal type (requires response)
TKO 160031 Telekludge line printer output

Communications initiated by the I/0 processor are detailed else-
where. It should be noted that the main processor ignores communications
if they are not consistent, e.g. it will only accept a line of input
when the user's status is idle or input wait. The receive driver commun-
icates with the scheduler by setting the COMI4 bit in the ?FLAG word of
the user's teletype table and setting the appropriate status.

The I/0 processor program is reéponsible for all multiplexor 1/0.
Output to the multiplexor is performed on a character by character basis
via the routine OUTCH. The calling sequence is as follows:

A = character to be output in bits (6:0), bits (15:7) ignored.

B = address of WORD 0 of users teletype table

~ (JSB OUTCH,I).

The OQTCH routine places characters into the user's buffer until
it is filled CZSO characters), at which point the user is suspended by
OUTCH. This is no pfoblem for BASIC, but due to re-entrancy problems
must not be allowed by other modules. The buffer is élways empty when
a library routine isfinitiated, so they normally do not have to worry
about it. Routines which may fill the buffer, like CATALOG and DIRECTORY,

get around the problem by suspending themselves at an appropriate time.

38

The I/0 processor program recognizes aborts and sends them to the

main processor. If the user is running a library program (except CATALOG,

ignored, since the routine may be in the process of updating system
tables. At other times when aborting could cause trouble, the UNABT
bit in the ?FLAG word of the TTY table is set. When the abort is seen,
the ABTRY bit is set. Routines which set UNABT have the responsibility
of calling ABCHK when aborts will no longer cause harm. ABCHK aborts
the user if ABTRY was set.

Input from a user teletype is buffered by lines. When the I/0
processor sees a carriage return, it informs the main processor.
BASIC, or the command processor, or the library routine, etc. processes

the input on a character by character basis.

39

1v. SYSTEM CONSOLE DRIVER

The system console driver maintains three flags, T35F1, T35F2,
and T35F3, which determine its_status. The meaning of these flags

are as follows:

T35F1: = -1 during output, 0 otherwise

T35F2: Normally 0, it is set to -1 by the driver at the conclusion
of input, and cleared to 0 externally. V

T35F3: Normally 0, it is set to -1 by the driver at the conclusion
of input, and cleared to 0 by the driver after output has

been initiated.
The combined values of these flags are more significant:

F1 F2 F3
0 O .Driver is accepting input
0 -1 -1 Input command received and is being processed, but output
has not been initiated. '
0 -1 0 Output terminated from a system command which is to be
| reinitiated. |
-1 0 0 Outputting
-1 0 Outputting, at the end of which the current system command

will be reinitiated.

When F2 = -1, the driver will not accept any input. This guarantees
system library programs that they will not be interfered with. These
routines are responsible for clearing F2 when they call the driver for
the last time. FZ and the console status (T35ST) are also cleared if
a key is struck on the console during output. This will effectively

terminate such things as DIRectories, REPorts and STAtuses. .

When F3 = -1, log-on and log-off reports as well as the message’
queue are held off. This guarantees that these messages will not be

interfered with by system library program output.

40

The calling sequence is:

A: bit 15
bit 15
bits (14:0) = core address of output buffer.
JSB TTY35,1

0 if CRLF is to be appended, bits (14:0) = # of chars.

1 if punching is to take place in addition to printing,

The driver uses the 36 word buffer T35BF as an input buffer. Most of
the library routines use it for output, and occasionally for temporary

storage between lines of output.

INPUT AND TERMINATION REQUESTS
- BASIC may obtain input from a user console by performing the

instruction
JSB SCHIN, 1
Either BASIC or a system library routine terminates by:
JSB SCHEN, 1

It is possible for BASIC to call a system library routine directly

by executing:

JSB SCHLB, 1
DEF <location in COMTABLE of drum address of program?

This is done with the FILES, CHAIN and ASSIGN routines. It is
necessary that the library routine cooperate with BASIC, i.e., not any

program can be so called.

41

I System Tavddle
| enter on) ;
v Ariver Fov

2 1»“"0”)‘A-‘”f a ,q)

From e,
carsole - . Tt

ov+,u“

S Y S ~
1se% <o reiwi dleese
105 & &

ENARBLE IMTERR.
EXTT

Sraav
T3LFY ant
TICST

COUSOC%A MI'UG'R . ry 4 o 3

v wd y
covgafe Ar.ver
4o hsadie

™

TCUT € T3SF1 e !
TBITS € fsooe |

i

TOG &
TCnTe TemT-1 | reor L osen

ranR ool
TADR FTs
" O TP ™ >

TYY g='ect coe

'/

TRITs € 12000 S RESTmRE Fiil]

TETS & 130095

I gwAlLs Dévree, .
\ Erm3e

LT)
. s,'

Cownsore . DRIVER r2

soc +iom of

Av. iPv

Cossole

iuput.

cer
CHACrCTER

Teur & tEoR&~ I
YTerYs & 22310
ourfvr TO pEVJSLE H

!

T

GET U\ "

TISFL « -1 !

TCAY & 1CaT =
fmrfrc‘v‘ T l]'lﬂ”"'c‘

o ser? foe 0, Har
AorE Yep y-2 .

216

POLIER

[power Fadl

FAsL S pe 1

ff’,”t?”'f 4

S p ar

power Aown

SAVE
REGISTERS

U copy saved
registers ‘o
Socovd csve

I .

Save f?_q"
of the [/O

e’u\nd‘ .

F &%

HALT

. .. clexr £ 0w

,Te FOUTIMC

P 2 F/&y
HALT

2lle

POwER

FArL

RESYo A TES
AND TTY
STATRS, |
INITIRLLIRE
Loor

CLEAR FLAs
on THIS Devied

‘APMeE TO
NEXT DEVICE

2116

Power

for this deviea 3

FAre

imsfeervpt

-} set c;ufnd;on
{this deviee and

allow am
intecnpt Po cccor,
this ot clnr

F 2 £,

clear cowmtrel
om Fhis Avice

i

,p,d"vsf the
poiviers Far ghy
mavt eheck,

ry

e e a ea

216 Power gar. ps 4 of S

RESTART THE
PR.LESSOR
; PITER Lom T

do v opEmAL
Premp or TeE
7EcE Yok

\
|
Lt
1
i
I AN Y o ASE ’ o 1
CTng Deu wed : .
WL WEenN e ; $ET PIwRF
: Ft4s
t
! .

5 To TV, CAwLeR

|
/RE EME € PRup
Daweg precTy

| RESTART
Lou T eE

RESTHRY grrrec
YRy L NS FER

[Twe o5 DRIvER
EYVS 1o \TS

CALLER \F TWE
Poweg EAL 1O

RESTORE . i
REs ISTEKSANY {‘35'5‘ °‘§ €
INTERRYPT | co::‘l’g;'\

SYSTEMm

e

. ‘E"‘é‘"s

ot e

f

UG Pouer Fail | S of §

T e e

DREDY

SAve ecemieds,

UWSABLE 1MER-
Q\)ﬁﬁ-} ¢ fod
YSe o

\WAH Fok
D1Sc QEADY

NOwE o
NEwT O15¢

m——— e L

S
’ Reg1oRE

| .E'\\JQN‘ T?
| peerTess AvTO- €ESTAKRT
! f NI AT

SET Tor gewen| [oe oot
b teee; SeT Duney

For DRweg | | TRMNIFERR
SET of
QHQ AMGT EQS
Foll pRIvER
RE-ENTER DR
DIRECTLY 1O

COMMUN TCATEION DRIVERS =~ = SEND

Sewd JIrivesr
of ‘7 3 fase

proc8 st ov,

A(Wed beje,
bevt (s saved
Sart Gommubicat jom For poer Fuil
woed amat I .U Frace ,
B -,
necessary fo black ‘
clock becone
cmoterropt are
toved o, savd stafry of
- w o Clock a~d
b'“. P,
f'\(;ohv‘r«"‘
Sys Fou Avug
; 3¢ o JSo That
phe Tlo srec.
,'n.iqut . jeam le Sevrv icad,
Sysfem om o =

COMRMUPICATIONS DRIVERS = — RECETIVE

»ade L o
ewfer Aere
U‘m L =)
o’—*epa.,’l oct s
on Fhe veervg

GL‘QQQI.

o _ -
common s eufrong
aaovd,

j"" Id fedle
decode ofF
the opcore.

¢¢1-W,¢ !
roceipt fo IA
Processor.

','.v

7

b

oF S

Commuma O - L,
CATIoNS DRIVERS - — RECEIVE ,,5 2. 45 <

viev has
Yyped o
C"'t’q"

refors.

fat g vearvs
cosmiy bit

1

Save’ fots ¢
bl v RTIM
Fv caSe TeSpesmn

Ko EPTER,

CoOMMuric AT IONS

BRIVERS = = RECEIvE s

the /o
prosctsor hag
rca,m‘;-d a,
tiwg beeak
condflow.

Set the
CABTRY B

se¥ Comiy 4;r,
sef stahs 4o
#RARTINe

COMMUNICATIONS

DRIVERS -~ REcEIVE

This wsers
ovt pot Lot
is ol

set +his uo;n
OUTIT AP,

8FL ~as SevT
for this [N, T4
&\-J :'* arie s heg
o ? 1 O tha-s

Pera o g,

ouUrwT
'Y

CLERR Tiers uscls

PR

<
<

COMMUNTCATTOLS

set HQDIS
C flag

KRRt

1 sab fthic waerg

Phe

ewicr

- Qomry st
stnfug. d»

s

shTO ,

Udeit has bass

eosiraned Vine

wveeled with
mo K Rovthcomiag

this vser

kas howe
up h ‘s k’(/w
cownectiom,

Set

Ce
+o

comiy k.4,

This sees

Srtatus
Irsc,

/’7 5 = {s

SCHEDU L ER

CLOCK [r77e awu R

TIME ofF

-k P ')

ri

CLfé Quack

privedy s
Lerovg ra?cwq

o

"2

SC"r’EDC(tew

77N\

SCHY

sk Fhe vstr
20 Phe Pueve

e priendy

} o
ADUAREE Po.rreg
™ ngsT oy

Clere THE
Corsys 1C & =LONS

LY.

T

jvnp Yatle
6“¢I

calf
ow

Currow®

L8eryg
r‘;l’".

Sc HeEDL kg h 3 o "

ST PwneER
Back 1o Fiest
TV TAME

MO Messace
duErer Powr

4

ovTPUT A

VPO e CNNT
M0 8o 1Ld
Los MESsAee

:cm'»u-aﬂy | - N g voor

rarnr " ??? "

@ Prepare v
""t g a.vn’c

o tre. Quece,

[FeF peichm
For @ueve

Frgced 7oy,

SCHEDUER

—, = ~——
ey €A I1C)
rROg .,

Exgevrinmy I

TIMED

(-

INPERRYST 3rp

!

ynBLeCK TME Ciecx

Lréefsr s rvrs
rROCRAMS ~rg
L 7 st
2EFonneé pric
A rrd ouT,

l
i
—

| S

PLES & ARzrne

T o= T
———

set she Jirier
ievd o= Clock

-~ . o

cg? 4 v';‘f’ [4l
STRYS & muw

¥

R€Srane
e ISTenS

ﬁ L) Wo“ 6%\(
FLALS

EVARLE mTEQﬂOT
AnD - EX
YiA- PREe

SCHEDULER

py € oF

Ars TMELT NAS

Begmwr Trrzlh R
Arr [~17h e A0
HAS P ST

CrmpPie ™ L2,

ScHSH

THE
STATUY

dad
-

RESTOR

ACTUAL

(Sﬁ ved
APLEV)

\

T PLEv e P ‘

PCIyTIR

haavd

ADTvST

Faar's ~aG

'\ 2

¢ oDE
AAVDLE

REMZ: LK
Sram Qutul
ReticvE ouTw AT

R!T I~ FlAcS |

L

Se1 vé fFod
wisine (R E

Wy RESIDENT ABVCLD
QoviwnE
~

SET STAT™YS

1o 2ekolw
(PEMNT “sto0"

Biestv

———

61

KILL oq?u‘\"ﬂ

SCHEDYLER

l Skxp kt‘::h;w.nr
rneErrvs EnTrg

!
i T"ec> our
i
L

SCHg - - -~

cope Fox 7

T NRIED
DrscomwmeEeT

(usem =g i) ’

Ré€moue 2eere
FrRor QUsy--

!

CLame Agoar
fFLacsg

SRP—

20

AN ExTIR
ETW L WY L%

LIRNEFS B

T)

RSP & <R v

CHst

Q_

62

2

A LLry HAS
&cEv EXTIRED
FoR am
IDe& ise e

SCHG Joo o= -

N / v
Corin 4B / Y
- ‘ ERRoR
Scom PRINT 177" }
-

priori ~" - ﬁ

£

set RSTR o
sy~etar

;

S €= Soptay ‘
$et 3 Fv Lesia

privt Liwe Teeod I

scv]

f2l! commusi -« f"'a-m;
proceccor +hat

av~Tlay [ine 1

cellowabls

SCHEDL: | "
C z"“ék, P9 77

P MHERE CHtEpr
4 vALID

COMumALVD MAS
gerw Frowd,

\/
hag
06 ivp?t \
yss
("”r_:./) b .
tepe.

erorg o S ceian]

LBt To R VPSR

‘ PRZeT |

|
|
|

clear foge ereor
Flag

I3
A Crman
dig allowed 2'

~ (sewe, Csay,
.,l'fl rvu)

yee 'F'—':M-—.—..._

2
£ ey,

——
- ——

/ CRw TH:

N

>

SCHED uLER ps 1O o 12

(SCHrz

Sef procrac stahsg

Comtard Ir

TYPE

ret :4.-1.4,,., ' ’ et Somet “7
Mt LrBus. @ dJd rous

Set 8
For IM3EQ

SLHF,DULG& | ?‘) i o'e i

1
Y Roing
PREPAKES W€

VEOGRAM DN INE

Tof of 1uE
[1o @und

[3ePT N\
/ KiLL 1Me ‘
PoeT

. SwAFK LOING
& 1€ANSELE)?

!3&\!& Dise And
fheum Busy
CFLARS N My

!
|
. !
e

S
- s g

. Y l/\
) o e
\//

led

- AT g
BT\ MY YW 4
on U N
1 ~

A 4
.’/\v
(AN TME -
Qoviing BE
peovedy -

N

//
P .
7 ANY
Roe A 1p)LQP.;
\

ceOE?

Y

{"\Jlﬂt oVt ‘\

RO GRAM 'N
(oKL Y, MANGo

Roviing
rdom Rat gk

st

ScMEDuLER

,/ ~
T 1 L1 DY
- N N ~
ofen >——'
A .

Y

S€ET Lener

FLAG

J

Kb« WS

< Peogaman N

Pj ' of

N\
SWAP"

coONE?

|SMAIN ¢ -1%
T NYVIA T
[KERYING L
" Plo el AM

A

)

67

SET mAaN=O

e
F eiTATe E;g-%
10 DRum
TRANSFEQ
SCH | \
4

SYSTEM LIBRARY ROUTINES

FILES

The FILES routine is used by BASIC to process FILES statements in a
user's program. The function of the FILES routine is to translate
the filé names in the user's program into a table for use during
execution. This table contains a 15-word entry for each file. Its

format is:
1 file length in records (@ for none) i bit 15=1 if read only
~ i
. ! bit 15=1 if "dirty" record
2 logical record size in words i bit Vh=1 if "dirty" file
3 disc or drum address of file's f*
L i
y last logical record
: . drum addresses in
; rds 4, 6, and 8
5 disc or drum address of record words an
-) for sanctified
6 currently in core (word 5 = « e) X
: ; s; for t y
! 199999, if none) | es3 Tor these
; -4 ! words 3, 5, and
7 é disc or drum address of : 7= 177777
8 file's first record -
i
9 pointer to first word beyond core buffer
io - pointer to current word in buffer
1 EOF/EOR exit address (@ for none)
12 :
— file
13 |
name
14
15 L protect mask

68

During operation of the FILES routine, a temporary buffer is used
as a table to store intermediate data. Eight words of the buffer

are used for each file. The operation is as follows:

1. Translate characters in FILES statements into the buffer
table. FILES staiements are pointed to by a four word table
in the user swap area which is pointed to by DFILT.
FILCT = -5+ # of FILES statements. There may be up to 4 such
statements. Filepames are extended to six characters, if
necessary, and those which are specified to be public files are
marked by setting Bit 15 of their first word to 1. Those which
are specified to be group library files are marked by setting
bit 7 of their first word to 1. A "% alone as a file name is
a place holder. The buffer table for the entry is zeroed.

Possible errors found in this step are:

a. File name of 0 or > 6 characters

b. More than 16 files requested

2. Perform directory search for each specified file. DIRWD is set
to thé drum address of the directory track in core so that DLOOK
doesn't have to read and write the directory for each file. Save
the file's drum address (@ if not sanctified), disc address, file
length, and logical record size in its portion of the buffer
table. The record size for "*' entries was set to 256 in the
previous step. The read-only bit is set if the file is a library
file and the user is not the owner. An error occurs if the file is
nonexistent or protected. Update the last reference date word

in the directory entry for this file.

3. Test to make sure that there is sufficient room in the user

area for the file table.

L, Scan the FUSS table to see if any other user has write
capability on the files requested. Mark any such files as
read-only. This test is skipped if the user's |D has a
letter prefix 'A'. Copy the disc addresses of the requested
files into the user's portion of FUSS. Indicate read-only

files by setting bit 15 of the upper disc address word.

69

5. Build the table specified above. FILTB is a pointer to the

beginning of the table. Upon exit, VALTB and PBPTR both point
to the first word following the table.

70

ASS|GN

The ASSIGN routine is used by BASIC to process an ASSIGN statement in

a user's program. The function of the routine is to replace the

information currently in the file table referenced by a specified file

number with informatipn about a new (usually different) file being

assigned to that number. The operation is as follows:

1.

If the previous file was written on, update the last changed date

word in its directory entry.

Search the directory for the new file. |If it is not found, is a
program, or is protected, exit to non-existent file return. If it
has records larger than those of the previous file, exit to that
return location. Otherwise save the file's drum address, disc
address, length, and record size. Set bit 15 of the length word
(read-only) if this is a user accessing a system or group library
file not his own. Update the last reference date word in the

directory entry for the file.

Scan the FUSS table to see if any other user has write capability
on the file. |If so, set bit 15 of the file's length word unless
this is an "A'" user. Move the disc address of the file into the
appropriate two words of the user's portion of the FUSS table,
setting bit 15 of the upper word if the file is read only for this

user.

Construct the file table entry specified in the description of the
FILES routine. Exit to one of three locations, depending on
whether the file is: 1) available for reading and writing; 2) read-
only (except users Axxx) because of another terminal's read-write

access; or 3) read-only because it is a system or group library file.

CHAIN

The CHAIN routine is used by BASIC to process a CHAIN statement

in a user's program. The function of the CHAIN routine is to.find

. the program named in the- CHAIN statement, retrieve it from the disc,
and begin execution. It operates as follows:

2.

Z

Dump file buffers. "

Update the last changed date entry in the directory for each
file which was written on.

Translate name of program from CHAIN statement. Invalid names
exit to error. |f preceded by a ''$", set up Adgg search; if
preceded by '"*'', set up group library search; otherwise set for
searching on user's ID. Save the line number if any is specified.

Perform directory search. Exit to error if not found.

Check to make sure that the entry is a program, that it is not ill-
stored, and that it will fit. |If any of these are not true, exit
to the appropriate error.

For programs on the disc (not sanctified), initiate a seek by

calling the disc driver to perform a zero length transfer.

Update date entry in directory and write directory track back to
drum.

Read in the basic portion of the previous program, including

the common area and then append the new program. |f the read

is unsuccessful, read in the previous program again and exit to
error. if successful, move the new program name into the user's
table, and if this is a run only program, set the run-only bit,
unless the program is in this user's own'library. Call SEMIC,
which sets up pointers for the language processor, dependent upon
whether the program is uncompiled or semi-compi led.

Check if an abort was attempted during the previous steps, and
if so, abort the user.

72

CHAIN (cont.)

10. If a line number was specified, search the program for the
statement and, if found, put its absolute address into PRGCT.
If no line number was specified, set PRGCT equal to SPROG.
if the program is nuii, or if the line number cannot be found,
clear the chain bit in the flags word. In any case, exit to
SCHBL.

73

SAVE

The SAVE routine is called by a user to save a program in the
library. |Its operation is as follows:

1. Test for the existence of a program name and a non-null
program. ’

2. If the user's program is in compiled form (CFLAG bit = 1),
call DCMPL to put it into the form in which we will save it.

3. Check if the common area has been allocated. |If not, call
ALCOM, which computes the amount of space required for
common. This is used to determine the start-of-program
pointer which is saved in word 4 of the directory entry, a
device which keeps the common area from being overwritten
on GET's and CHAIN's.

L., Test to see that the user has sufficient disc space allocated
to save the program. The test to be satisfied is:
(disc currently in use) + (length of program in records)

2 (disc allowed).

5. Search the next disc ADT for the first entry large enough to
hold the program. Remember the address of the entry in SAVC.

6. Initiate a seek to the disc address at which program will be

written.

/. Perform a directory search on the program to be saved. Fail
if such an entry already exists.

8. If the directory track is full, call the SUPERSAVE routine to
attempt to reallocate the directory. SUPERSAVE will perform
step 9 itself and proceed to step 10.

9. Insert a new directory entry into the directory.
10. Update the IDT and disc ADT.

11. Copy the user's program to its library area. |If the write is
t

bit in the directory and fail.

74

CSAVE

The CSAVE routine is called by a user to save a pr

: ;
program in semi-

compiled form. This is the form it has after the symbol table is
built. CSAVE operates like SAVE with the following exceptions:

2. and 3. If the user's program is in compiled fo}m, call RSTPT,
which restores the symbol table to it's appearance just after

it was built, and before variable storage has been allocated.

If the program is in uncompiled form, call ALCOM and then jump

into\the compiler, returning after the symbol table is built.

9. Insert a new entry into the directory, setting bit 15 of word
3 to indicate a semi-compiled program.

11. Read the program and symbol table back from the drum. Prior

to writing it to disc, append 7 words which are:

1) SYMTB - symbol table lpointer

2) FILCT - -5 + # of FILES statements
3-6) FLSTS - pointers to FILES statements

7) USESN - "USING SEEN" flag

75

SUPERSAVE

The SUPERSAVE routine is called by the SAVE, CSAVE, COPY, BESTOW
and OPEN routines when they want to make a directory entry on a track
that is already full. SUPERSAVE assumes that the following words are
set properly: ‘

(LTEMP:LTEMP+3) = first 4 words of entry.

(LTEMP+4) = pointer to DIREC entry for appropriate directory track

(LTEMP+5) = core address of entry which is to precede the new entry

(LTEMP+6:LTEMP+7) = disc address of entry

(LTEMP+8) = length of entry

(LTEMP+10)

(LTEMP+13) = drum address of entry

Note that (LTEMP+4) and (LTEMP+5) are set correctly by DLOOK.

start of program pointer/record size

SUPERSAVE attempts to redistribute the directory tracks so that they
will be as equal in length as possible. This will generally prevent it

from being called very frequently. The operation is as follows:

1. Scan through DIREC and determine the total length of all directory
tracks, and add 12 for the new entry. If all directory tracks are full,
exit through failure location.

2. Divide total directory length by number of available disc tracks
to determine their new individual lengths. Insert these in the table at
(DEFNN+1:DEFNN+80) as negative.

.3. Now squeeze all the directory entries to the lastmost of the
available tracks. This is done by reading the tracks in reverse order and
writing 8184 words on each track until we run out of directory entries.
The following variables are used in.this section:

(SUP) KI points to the DIREC entry for track being read (initially

DIREL)

L1 points to the DIREC entry for track being written (initially
DIREL)

K2 = -# of words in core

76

L, 1f (# of words on track Kl - K2) > 8184, go to 5. Otherwise
update K2 and read this track to the core buffer at location LULEN + K2
(K2 being negative). If K2 # -8184, go to 8. Otherwise set the length
into the L1 DIREC entry and write the 8184 word buffer to track L1. Set
K2=0 and go to 7.
5. Set ES=(# of words on track K1-K2-8184) /64. That is the number
of extra sectors on the track to be read. Set EX = ES * 64. This is the
number of extra words. Then read the last (# of words on track K1-EX)
words from track K1 to location (LULEN + K2 - # of words on track Kl + EX)
and update K2.
6. Write 8184 words to track L1 from location LULEN-818L and set the
length in the L1 DIREC entry. Move the leftover -8184-K2 words to the end
of the buffer, resetting K2. Then read the EX words left on track Kl to
location LULEN+K2-EX. Set K2=K2-EX.
7. Update L1 to point to the next track to write.
8. Update Kl to point to the next track to read. |If we've finished
all tracks, go to 9. Otherwise go to 4.
9. If K2 =0, go to 10. Otherwise write out the -K2 words to track LI
and set the length in the L1 DIREC entry.
10. Zero-out the lengths in the DIREC table of all those tracks that
no longer have anything written on them.
11. Now redistribute the directory tracks. The basic idea of the
algorithm is to fill the swap area with as much of the directory information
as we can, reading from the beginning, and then to write out as much as we
can, always making sure than when writing we don't overlay any portion that
hasn't been read yet. The following variables are used:
(SUP) K1 points to the DIREC entry for track being read
(initially DIRECH)

L1 points to the DIREC entry for track being written
(initially DIREC@)

K2 = # of words read so far from track Kl
(initially 0)

77

= # of words written so far on track L]
(initially 0)
= # of words in core
(initially 0) -
PP points to DEFNN entry, telling how many are to'be written

on LI, v
TG = 1 if we have already inserted the new entry.
12, If L2 = -(PP), we have completely written track L1 so check for

L1 = DIREL. If it is, we've written all the tracks, so go to step 18.
0therw1$e, advance L1 to the next directory track advance PP, set L2 = 0,
and repeat this step. If L2 -(PP), go to step 13.

13. If P > 10232, we have read as much as we can, so go to step 15,
If KI = DIREU, there is nothing left to read, so go to step 15. If K2 = #
of words on track Kl, we've read the entire track, so advance Kl to the next
track, set K2 = 0, and repeat this step. Otherwise, compute the number of
words we can read. If there is room to read the balance of the track, we

will, otherwise we will read the maximum number of full sectors possible.

I'f this is zero, go to step 15. If it is not zero, read from sector K2/64
into core location LIBUS +P. Add the number of words read to P and to K2.
14, If TG = 0, determine if we can insert the new entry. To do this

.we first determine where the even entry boundary occurs in the core buffer,
since we may have read only part of an entry (12 does not divide 64 evenly).
If the last entry in the buffer is greater than the entry we are inserting,
the entry goes on this track. If this is not the case, go back to step 13.
Otherwise, set TG to 1, make a 12-word hole, insert the new entry, set
P =P + 12, and go back to step 13.

15. Write section. Set S = 0. This is the number of words written.

16. Compute number of words we can write on track L1. First set
A = - number of words left to write on the track. If L1 = KI,
haven't finishing reading everything from track L1, so if L2-A > K2 change
A to L2-K2, which is the number of words we can write without destroying
any unread directory information. |f P- S<=A, we don't have as much in core

as we are capabie of writing so set A = -(((S-P):64) x 64), an exact number
of sectors.

78

17. 1f A =0, we can't write anything, so if S#D slide the remaining
P-S words in core up to location LIBUS, set S =0 and P = P-S. Then go
back to step 12,
If A#0, write -A words to sector L2:64 of track LI1. If L2 =0,
set the first 4 words of the L1 DIREC entry to the first 4 words written.
Set L2 to L2-A, S to S-A, and go back to step 16.

18. Set the new directory lengths into DIREC and go back to the calling
program,

GET

The GET routine is called by a user to load a program from the
library. The operation is as follows:

].

Translate name of program from user's input. |If preceded by
a‘”$", set up for AOOO search; if preceded by a "', set up
for group library search; otherwise set for searching on
user's id.

Perform directory search. Print error if not found.

Fail if entry is a file (Bit 15 of word 2 of entry is 1).
Fail if entry is ill-stored (Bit 15 of word 4 of entry is 1).

I f the program is on the disc, initiate a seek by calling the

disc driver to perform a zero length transfer.

Check that the program will fit into the user area. This is
necessary in case a program which was saved under an old
version of the system can no longer fit with the current

version.

Set the date into word 5 of the directory entry and write it
back.

Read in the basic portion of the user area and the common
area. Append the library program, reading it in starting

with the word specified by the start of program pointer

(word 4 of the directory entry). |If the read is unsuccessful,
read in the previous program again and fail. |If successful,
move the new program name into the user'’s table, and if this
is a run only program, set the run-only bit unless the program
is in this user's own library.

Call SEMIC, which sets up pointers as follows: For uncompi led
programs, clear CFLAG bit and set SYMTB = 0. For semicompiled
programs, set CFLAG bit, move 4 pointers to FILES statements
into FLSTS, set FILCT, set SYMTB to point to the first word of
the symbol table and set SPTR = 0. For both types of programs
set MAIN to point to this user, set SPROG to the start of
prdgram pointer and set PBPTR to point past the last word used
by the program.

80

APPEND

The APPEND routine is called by a user to append a library program
onto his current program. The operation is the same as GET for
steps 1-4, and then continues as follows:

4,

Check that the program to be appended is not semicompiled and
has no common area. Set the date into word 5 of the directory
entry and write it back.

Load user's current program and call DCMPL. Check that the
program to be appended will fit, and if so, read it in at the
end of the current program. If the read is unsuccessful, fail.

If the current program is not null, search it for the sequence
number of the last statement, and insist that it be smaller
than the sequence number of the first statement of the appended
program. |f okay, update PBPTR and if the appended program is

run-only, set the run-only bit unless the program was retrieved
from the user's own library.

81

HELLO

The HELLO command is used to log a user on to the system. Its

operation is as follows:

If the current ID is 0, there is no user to log off, so

go to Step 2. _

Otherwise, clear the user's section of FLISS, and tell the
I/0 processor (service routine NUC) that a new user called.
This will force the user to be disconnected if he does not
successfullyvlog on.

Read the IDT. If there is no user to be logged off, go to
Step 4. Check if user has control over the line printer. If
not, go to Step 3. Otherwise tell the I/0 processor to dis-
connect the line printer from user (service routine LPD).
Find the old user's IﬁT ehtry and update his total time used.
Add an entry to LOGGR to be printed on the system console.
Set the user's ID word to 0.

Translate the new ID code and search for it in the IDT. If
not found, print an error message and terminate. Compare the
password typed to the correct one, and fail if they disagree.
Check if a terminal type was input. If not, assume terminal
type #1 and go to Step 6. Otherwise check if terminal type
is in the Range 1 through 6. If not, print an error message.
Tell I/0 processor (service routine STP) which terminal is v
connected to the port. Check that the time used to date is
less than the time allowed.

Add a LOGON entry to LOGGR and set the starting time into

the user's table. Also insert the ID code, clear the name,
clear the program and tell the I/0 processor of successful
Logon (service routine ULO).

Search the directory for a program named HELLO in the library
of user Zggg. If not found, or if it is a file, or if it will
not fit in core, or if it is ill-stored, or if it can not be

read from drum or disc, print READY and terminate.

82

9. Read in the fixed user area and append HELLO. Call SEMIC,
which sets pointers as in SAVE. Change the user's status to
RUN, set TIMEF, and transfer to BASIC.

82-A

BYE
This command is used to log a user off. It operates as follows:

1. If user does not have control of the line printer, go to
Step 2. Otherwise tell the I/0 processor to disconnect
the line printer from user. (system calls service routine
"LPD" which sets the line printer disconnect flag LPDIS)

2. If user ID is 0, go to Step 3. Otherwise clear the user's
FUSS table and read in the IDT. Compute the time used and
update his IDT entry. Create a LOGOFF entry in LOGGR. Clear
the user's ID entry and output a message.

3. Get ?TYPE from the I/0 processor with service routine WTP.

If ?TYPE = 0 (ASCII terminal connected to the port), tell
1/0 processor to restore this port to full duplex. Otherwise
tell I/0 processor to restore this port to half duplex.

4. Tell I/0 processor to disconnect the user (sérvice routine

HUU) and then terminate.

83

KILL

The KILL rbutine is called by a user to delete a program or a file
from the library. Files which are being accessed by another user
are not allowed to be killed. The operation is as follows:

1. ‘TranSIate the program or file name and perform a directory
search. Fail if illegal name or the search fails.

2. If the entry is a file, search the FUSS table to see if
any other user has access to the file. If so, print a
message and terminate. If not, clear the user's section
of FUSS. :

3. Delete the entry from the directory and adjust DIREC.
Subtract the program length from the user's IDT entry, and
restore the space to the ADT (drum) if the entry was sancti-
fied. Restore the space to the appropriate disc ADT.

4. If a file was killed, read the user's program in and decom-
pile it. This guarantees that any old references to the
file will disappear.

84

RENUMBER

The function of RENUMBER is to assign a new set of sequence numbers ’
to a user program. The user may specify the sequence number of the first
statement and the increment between statements. |If unspecified, these are
set to i10. He may also specify the first statement to be renumbered and the
last statement to be renumbered. |If unspecified these are set to the first

statement of the program and the last statement of the program respectively.

There are actually two sets of numbers that must be modified. One set
is the sequence numbers themselves, each of which occupies the first word
of its statement. The other is the set of references, which are labels in
GO TO, GOSUB, RESTORE, PRINT USING, MAT PRINT USING, and IF statements.
Each of these also occupies one word. For programs in compiled mode, they
are pointers to the statement they reference; in decompiled mode they are

the actual statement number.

The primary technique used is to change all the references to absolute
pointers (if in decompiled mode), then to change all the sequence numbers,
and then (if in decompiled mode) to change the references to the new statement

numbers. References to nonexistent labels are left unchanged.

Because the process of changing all the references to absolute pointers
can become quite time consuming (due to the search that must be performed
for each reference), a table is built in advance éssentially dividing the
program into 32 parts, each containing the same number of statements. For
large programs with many references, this effectively cuts the time down

by a factor of close to 32.

The subroutine RENSK is used to scan for references. It maintains two
pointers, P and Q. Whenever it is called, it moves P to the next reference,
and sets Q to point at the statement following the one that P is pointing at.
It takes advantage of the fact that any references within a statement are
always the last word or words of the statement, except in the case of PRINT

USING and MAT PRINT USING, in which case it takes advantage of the fact

85

that there is only one statement number reference. Before calling RENSK

for the first time, Q is set to point at the first statement to be
renumbered. P is set to Q-1.

The operation of RENUMBER is as follows:

1. If null program, terminate immediately, Otherwise, read in
user program,

2. Translate and check parameters M end N.

3. Translate parameters P and Q. Set RENBA = first statement to be
renumbered, RENLA to last statement to be renumbered.

k. Set RENLA to point to the last sequence # < RENLA. Also set RENBA
to point to tﬁe first sequence # > RENBA.

5. Insure that there will be no sequence number overlap at either end
of the portion of the program to be renumbered and that the new sequence
numbers will not exceed 9999.

6. |If program is in compiled mode, go to step 9. Otherwise, set up a
table in ERSEC which divides the program into 32 parts. The result is that for
each I from 0 to 31

ERSEC [I] = sequence number of first statement in part 1,

ERSEC [I+32] = absolute address of that statement
If there are 32K + L statements (0 < L < 31) in the program, ERSEC [I] is
the sequence number of statements

. i . . "fu»-x u(
(K+ 1) T+ 1, if I<L Tiase e Deant -
;)"'LJ" Vo~ t‘ #‘L d‘_wé & (‘er\—-«. lf
KE+L+1, ifI>L, K>0 e beed (2. 7@7
L if 1 Z_L, K=0 w""—f'((/ b,k P2 (,(_“ ("Lzl‘f,,u_-f M;wb»-\ A
Set Q = SPROG, P # Q-1. (SPROG points to the first statement) .
7. Cail RENSK to find the next statement reference. If there are

none left, go to step 9. Find the largest T for which ERSEC [1] < (RENP).

If there is none, the statement referenced does not exist, so go to step 8.
Otherwise, test all statements from(ERSEC [T + 32]) to either (ERSEC

[T + 33]) or PBPTR, depending upon whether I < 31 or T = 31. If found, set’
(RENP) to the location of the statement referred to, and repeat this step.
Otherwise, go to step 8.

8. Set (RENP) = (RENP) + 100000g and go back to step 7.

86

9. Change the sequence numbers of all statements to be changed,
"ng to the M, N, BA and LA parameters. Iif compiled mode, terminate.
Otherwise, set Q = SPROG, P = Q-1, and go to step 10.

10. Call RENSK to find the next statement reference. |f none left,
terminate. 1f (RENP)<0, the reference was undefined, so set (RENP) =

(RENP)-100000,, and repeat this step. Otherwise, set RENP = ((RENP))
8
and repeat this step.

N = 42
[{c 1
S A ‘ s >
L Z«Iki (TCICJ l,3; Y ;d6
o 3 = 33,39,
bfﬁjsfcgr] . e (2 70c)
E Z¢lsSE C L+

87

NAME

The NAME routine is called by a user when he wants to assign a

name to his program. The program name is placed in his teletype
table. The operation is as follows:

1. Get an input character. If a carriage return change it to
a blank. If a control character, ignore it and repeat this
step. If a "$" or "*, and this is the first character, print
an error message and terminate. If a “," print an error mes-
sage and terminate.

2. Add the character to the user's name area. If <6 characters,
go back to step 1. Otherwise, restore the RUN-ONLY bit, and

get one more character. If not a blank, print an error message.
Then terminate. '

88

CATALOG

The CATALOG routine prints a list of all programs and files in the

user library. The operation is as follows:

1. Output heading line.

2, Perform directory search on the program with all nulls. Get
first directory entry foiiowing the one sought.

3. If the entry does not belong to this user, output a CRLF and
terminate. Otherwise, output the 6 characters of the name
one at a time, then a blank, then a 'C' if a semi-compiled
program or an 'F' if a file (or a blank if neither), then a
‘P! if the entry is protected (otherwise, a blank), then a
'S' if the entry is sanctified (otherwise a blank), then the
5-digit program or file length with leading zeroes suppressed,
then 3 blanks. Program length is printed in words (stored as
negative number) and file length in records.

L. If <4 names have been printed on the line, advance to the next

"~ directory entry and return to step 3. Otherwise, copy the name

of the last one output into the user's teletype table, output a
carriage return and suspend until the buffer is almost empty.

5. Read the name of the last program printed from the teletype table
and perform a directory search. The reason for doing this in
this way rather than saving a pointer to the directory is that
during the time CATALOG was suspended, the directory may have
been changed in any way. Get the first directory entry following

and go back to step 3.

LIBRARY

The LIBRARY,rdutine prints a Tist of all programs and files in the
public library. Its operation is identical to that of CATALOG ex-
cept that AB@P is used for directory searches instead of the user's
id, and i11-stored programs are not listed.

GROUP

The GROUP routine prints a list of all programs and files in the user’'s
group library (the library of the idcode ending in PP which has the
same letter and first number as the user). Its operation is identical
to that of LIBRARY except that the group librarian's idcode is used
for directory searches instead of ApPp.

90

DIRECTORY - USER CONSOLE

The DIRECTORY routine prints a list of all directory entries on
the user console. The entries are printed one per line, and consist
of id, name, last reference date, length, disc address and drum

address, if any. The operation is as follows:

1. Check that the user's id is A000. |If not, fail.

2. Check to see if an idcode was specified. |If so, we will start

printing the directory with this idcode.

3. Print the heading consisting of system id, date and time and

suspend.
L. Print the directory heading and suspend.

5. Set up parameters for directory search for null program name

and idcode previously determined (or null ‘idcode if none specified).
6. Perform directory search.

7. Get first directory entry following the one sought. |If

pseudo-entry, terminate.

8. If id of entry is different from that of the preceding entry,
output the ASCII representation of the idcode. Otherwise output four
blanks. Save the idcode in the RTIM word of the user's TTY table.

9. Output the six character program name and save it in the TEMP
words of the user's TTY table.

10. Output the last reference date.

1. Output a 'C' for semi-compiled programs, an 'F' for files,

and/or a 'P' for protected programs or files.

12. Output the length, the disc address, and the drum address,
if there is one.

13.- Output X-OFF, CR, LF and suspend.

14. Retrieve the parameters for the directory search from the user's
TTY table and go to step 6.

91

SDIRECTORY - USER CONSOLE

~The SDIRECTORY routine Prints a list of all sanctified programs and
files_on.the user console. The printout is in the same format as a
DIRECTORY printout. The routine functions the same as DIRECTORY, except
that in step 7 a check is made to see if ihe entry is sanctified. If it
is, the processing continues as in DIRECTORY. Otherwise, the pointer is
moved tovthe next entry and step 7 ié repeated.

92

REPORT - USER CONSOLE

The REPORT command prints IDT information on the user console. For
each IDT entry, the user ID, time consumed, and disc consumed are
printed. The entries are printed three per line. Note that the time
printed on the console does not include any time for currehtly active
users, since these are not added to to the IDT until the user logs off.
The operation of REPORT is as follows:

1. Check that the user's id is A000. |f not, fail.

2. Check to see if an idcode was specified. If so, save it, as we
will start printing the report with this idcode. Otherwise save a null

idcode.

3. Print the heading consisting of system id, date and time and

suspend.
L. Print the report heading and suspend.

5. Retrieve the idcode and find what track its on. Read that track
and locate the idcode.

6. Output the id, time and disc of the next three entries. |If

necessary, read the next id track.

7. If no entries left, print XOFF,CR,LF,LF and terminate. Otherwise
save the present idcode + 1, print XOFF ,CR,LF and suspend. Go to step 5.

a3

STATUS - USER CONSOLE

The STATUS routine prints a summary of the various system resources

and the extent of their utilization on the user console. It operates as

follows:

10.
11.

12.

13.

Check that the user's id is A000. If not, fail.

Print the heading consisting of system id, date and time and

suspend.

Print MAGSC and a '*' if the mag tape unit is a 7970 (bit 15
of MAGSC=1). Print the select codes of the 4 drums.

‘Print the logical unit, select code, unit number, first block

and last block of the discs on the system.
Print a list of those tracks which are locked on each drum.
Print a list of those disc blocks which have been MLOCKED.

Set the ?STAT word in the user's TTY table to the status overlay

and suspend so that when we come back the overlay will be read in.

Get the line printer select code and type from the I/0O processor
and print them ('*' if the printer is a 2610A, '**' if the printer

is a 2767A). Then print the port number of the current user.

Print the drum addresses and lengths of the IDT, ADT, Disc ADT

and Directory tracks.

Print the drum addresses of the system library tracks and user

swap tracks.

Print the disc addresses of the 32-block areas reserved for the
IDT, Disc ADT and Directory.

Print the disc addresses and lengths of the system segments.

Terminate.

94

DELETE

The DELETE command allows a user to delete a section of his program.
He can specify two parameters, M and N. M refers to the first line
to be deleted, N to the last. If N is not specified, the entire pro-

gram is deleted, starting at line M. The operation is as follows:

Transiate and check parameters. If N is not specified, set

it to 9999.

2. Decompile program.

—
.

3. Locate range of statements to be deleted.
Move portion of program following deleted area up against
portion preceding.

5. Reset PBPTR and exit.

95

TIME

The TIME command prints the user's console time and total time. The
operation is as follows:

1. Print ""CONSOLE TIME ="

2. Read IDT.

3. Compute console time and print it.

L. Print "TOTAL TIME ="

5. Find user's IDT entry. Add the time in there to the console
time and print it.

6. Exit.

96

PROTECT

The PROTECT command allows user A000 or any group librarian to protect

a program or file. Program protection means that no other user may

list or save the program. File protection means that no other user may
access the file. Files are always protected against other users writing
on them. The operation is as follows: '

1. Check for privileged user.

2. Translate and check the program or file name.

3. Perform a directory search on the specified program. Fail if
not found.

L. Set the protect bit (BIT 15 of word 1 of the directory entry),

write the directory back to the disc, and terminate.

97

UNPROTECT

This is identical to PROTECT except that it clears the protect bit.

98

OPEN

The OPEN command is used to create data files. The user must specify
the file name and file length in records. He may also specify a logical

record size. The operation of OPEN is as follows:

1. Translate and check the file name and length and record size.
File names are subject to the same restrictions as program names.
File length must be between 1 and 32767 records, inclusive. Record
size, if specified, must be between &4 and 256, inclusive. (The
default record size is 256 words.)

2. Check the IDT and disc ADT's to see if a) the user has enough
disc space allocated to him to satisfy the command; and b) there
is an area on the disc which is large enough to accomodate the file.
Save the location of the disc ADT entry and its information, but

don't update it until we know there is room in the directory.

3. Perform a directory search on the file name. |If found, this is
a duplicate entry, so terminate. Otherwise, if the directory track
is not full, insert the new entry. If it is full, call in SUPERSAVE

to restructure the directory and insert the entry.
L. Update the IDT and disc ADT appropriately.

5. Fill the user area with end-of-file marks (a -1.in the first word
of each of 40 256-word blocks). Write this area to the location on
the disc reserved For‘the file. Increment the disc address by 40
blocks and write another 40 records up to 10 times (total) or until

the file is full. The last write may be from 1 to 40 blocks in length.

6. If the file has been filled, terminate. If not, save the low word
of the disc a-dress immediately beyond the last write in the user's
teletype table, along with the file name. Move the user to the
bottom of the queue and suspend.,

99

Retrieve the file name and partial disc address from the
teletype table. Ascertain that the file exists (is in the
directory) and that the reconstructed disc address falls with-

in the file. If not, terminate. Otherwise, return to step 5.

100

LENGTH

The LENGTH command prints the length of the user's program, as it
would be if saved. This is only the length of the source area of
the program, and includes neither the fixed portion nor any of the
tables used at run time. The length is determined in one of two

ways:

1. If the user is in decompiled mode, length = PROG-SPROG.
PROG is just a copy of PBPTR, which points to the last
word +1 of the program. PBUFF points to the first word.

2. If the user is in compiled mode, length = SYMTB-SPROG.

101

ECHO

The ECHO command is used to control the computer echo of telétype
input. Echoing is determined by the user's bit in the word PLEX
or PLEX] in the 1/0 processor. Bit = 0 implies no echo, 1 implies
echo. The user will want echoing if any only if his teletype is
full duplex. The command format is:

ECHO-ON for full duplex.
ECHO-OFF for half duplex.

102

MESSAGE

The MESSAGE command is used to send a message from a user console
to the system console. The message is placed in a queue and is ulti-

mately output to the system console by the scheduler. The routine oper-
ates as follows:

1. Check if message queue is full. |If so, fall.

2. Put a CR-LF and the ASCI| representation of the user's port
number in the message buffer.

3. Move the message from the user's teletype buffer in the 1/0
processor to the message buffer.

k. Increment message counter and set pointer to next message
buffer.

5. Terminate.

103

L PRINTER

The LPRINTER command is used to obtain the line printer as the output

device. The routine operates as follows:

1. Check to see if the line printer is currently being used. If so
print "LP BUSY",

2. Ask the I/0 processor to check on the availability of the line
printer. The I/0 processor will return the following status in the A

register:

A# 0 Line printer available and on-line. The line printer is assigned
to the user and the character string following the command word
(if present) will be printed.

A =0 Line printer is not available or not on line. Print "LP NOT AVAILABLE".

A<0 Line printer available but character string is too long. Print
"ILLEGAL FORMAT".

3. Set the LPRINTER command flag, LFLAG, and place the address of the
user's port number in the LP user indicator PRIST. Upon completion of the
user's next command, PRIST will be cleared, the line printer will be released,
and a completion message will be sent to the user. LFLAG is used to indicate
that command being terminated is LPRINTER and therefore the line printer is
not to be released.

4. Terminate. LFLAG is cleared in the termination routine.

103-A

REPORT - SYSTEM CONSOLE

The REPORT command prints IDT information on the system console.
From each IDT entry, the user id, time consumed, and disc consumed are
printed. The entries are printed three per line. Note that the time
printed on the console does not include any time for currently active
users, since these are not added to the IDT until the user logs off.
The operation of REPORT is as follows:

I. Check to see if an idcode was specified. If so, save it, as
we will start printing the report with this idcode. Otherwise save a
null idcode.

2. Print the heading consisting of system id, date and time and
suspend.

3. Print the report heading and suspend.

4. Retrieve the idcode and find what track it's on. Read that
track and locate the idcode. '

5. Output the id, time and disc of the next three entrles to the
buffer. If necessary, read the next id track.

6. If no entries left, print the buffer and terminate. Otherwise

save the present idcode +1, print the buffer and suspend. Go to step 4.

104

DIRECTORY - SYSTEM CONSOLE

The DIRECTORY routine prints a list of all directory entries on
the system console. The entries are printed one per line, and consist
of id, name, last reference date, length, disc address and drum address,
if any. The operation is as follows: l

l. Check to see if an idcode was specified. If so, we will start
printing the directory with this idcode.

2. Print the heading consisting of system id, date and time and

3. Print the directory ﬁeading and suspend.

L. set up parameters for directory search for nuli program name
and idcode previously determined (or nul] idcode if none specified).

5. Perform directory search.

6. Get first directory entry following the one sought. If pseudo
entry, terminate.

7. If id of entry is different from that of the preceding entry,
place the ASCI| representation of the idcode in the output buffer. Other-
wise, place blanks in the buffer. Save the idcode in location 35 of
the buffer.

8. Move the 6-character program name to the buffer.

9. Convert the last reference date and put it in the buffer.

10. Convert the drum address and put it in the buffer, unless it
is zero.
11. Convert the disc address and length and put them in the buffer.
12. Put a 'C' for semi-tompiled programs, an 'F' for files,
and/or a 'P' for protected programs or files in the buffer.
13. Print the line and suspend.
4. Set up parameters for directory search. These can be gotten
from locations 35, 3, b, and 5 of the buffer. Go to step 5.

105

SDIRECTORY - SYSTEM CONSOLE

The SDIRECTORY routine prints a list of all sanctified programs and
files on the system console. The printout is in the same format as a
DIRECTORY printout. The routine functions the same as DIRECTORY, except
that in step 6 a check is made to see if the entry is sanctified. If it
is, the processihg continues as in DIRECTORY. Otherwise, the pointer is

moved to the next entry and step 6 is repeated.

106

STATUS - SYSTEM CONSOLE

The STATUS routine prints a summary of the various system resources
and the extent of their utilization on the system console. It operates

as follows:

1. Print the heading consisting of system id, date and time and
suspend.

2. Print MAGSC and a '*' if the mag tape unit is a 7970 (bit 15
of MAGSC=1). Print the select codes of the 4 drums.

3. Print the logical unit, select code, unit number, first block
and last block of the discs on the system.

4. Print a list of those tracks which are locked on each drum.

5. Print a list of those disc blocks which have been MLOCKED.

6. Get the line printer select code and type from the I/0 processor
and print them ('*' if the printer is a 2610A, '**' if the printer is a
2767A). Then print the port number of the current user,

7. Set the console status to the status overlay and suspend so
that when we come back the overlay will read in.

8. Print the drum addresses and lengths of the IDT, ADT, Disc ADT
and Directory tracks.

9. Print the drum addresses of the system library tracks and user
swap tracks.

10. Print the disc addresses of the 32-block areas reserved for the
IDT, Disc ADT and Directory.

11. Print the disc addresses and lengths of the system segments.

12. Terminate.

107

ROSTER

The ROSTER routine prints a listing of the Id codes of all active
users. These are obtained from the ID word in the 32 TTYTABLES. The
absence of a user is indicated by the word being zero.

108

ANNOUNCE

The ANNOUNCE command is used to send a message from the system

console to any or all of the user consoles. It operates as follows:

1. Get the port number to send the message to. If 'ALL' specified,

set up for sending message to all ports.

2. Output CR-LF-LF, followed by the message, followed by CR-LF-LF
to a port. This output is done a character a time, after insuring that

the I/0 processor can take the character without overflowing the buffer.

3. Move to the next port, and if there are any more ports to do,

go to step 2. Otherwise terminate.
NOTE: If a user has the line printer as his output device, the announce

message is not sent to him. The flag PRIST indicates the address
of the TTY# of the current user.

109

RESET

The RESET command modifies the time to date of a user's IDT entry.
It operates as follows:

. Set ID=T =0,

2. If the idcode = "“ALL" go to 3, otherwise set ID = the specified
ID code. | |

3. If no time specified, go to 4. Otherwise set T = specified time.

4. Read the IDT track for ID. If Ip = 0, go to 5. Otherwise search
for the specified idcode. Fail if not found. If found, set its time
entry to T, write the IDT track back and terminate. '

5. Set the time entry for all the idcodes on this track to T and
write it back to drum.

6. Move to the next IDT track. If all are finished, terminéte.

Otherwise read the IDT track and go to 5,

110

CHANGE I D

The CHANGEID command is used to modify any or all of the parameters
in an IDT entry. The parameters that can be specified are: password,

time allowed, disc allowed. The operation is as follows:

1. Translate id specified. Read IDT track for this id and locate
the specified id. Fail is not found. | |

2. If password specified, insert into 10T entry. [If followed
by comma, go to step 3, otherwise to step 5.

3. If time specified, insert into entry. |If followed by comma,
go to step 4, otherwise to step 5.

L. Insert new disc value.

5. Write IDT track back to drum and terminate.

111

SLEEP

The SLEEP command is used for system shutdown. It operates as
fol lows: | |

1. Remove all users from the queue and make sure they can't
get back by: v ‘ -
a) clearing each user's ?FLAG word in his TTY table.
b) setting all status words to -2.
c) setting T35LK to point to MLINK+1.
2. Output the sleep message to all active users, preceded and
followed by a CRLF.

3. Tell the 1/0 processor to disconnect the telephones.
b, call LCD to update the last change date for files for each
port that has a program that is still active.

5. Update the IDT entry for each active user and create a logoff
entry in LOGGR.

6. Wait for the console to finish outputting.

7. Read in the loader, turn off all the 1/0 and the interrupt
system, set power fail to halt.

8. SetA=0 (sleep) and jump to the dump.

112

HIBERNATE

The HIBERNATE command is identical to the SLEEP command except for
the following additions/changes: '

0. |If MAGSC = 0, fail. Otherwise set the current time into HDATE.
8. Set A = -1 (hibernate) and jump to the dump.

113

NEWID

The NEWID routine adds on entry to the IDT. The operation is as
follows:

1. Translate the idcode.

2. Determine what IDT track the idcode is on and read it in.

3. Translate the other parameters.

4. Search the IDT for the specified id. Fall if found. If the
track is full go to 5. therwise insert the new entry in its appropriate
position, update the track length, write the IDT track back to drum and
termlnate. .

5. Scan through IDEC, determine the total length of all IDT tracks,
and add 8 for the new entry. If all tracks are full, fail.

6. Divide the total IDT length by the number of IDT tracks to
determine their new individual lengths. Insert these in the table at
(NNSNN+1:NWSNN+3) as negative. .

7. Now redistribute the IDT tracks. The basic idea of the algorithm
is to fill the swap area with as much of the IDT lnformatlon as we can,
reading from the beglnnlng, and then to write out as much as we can,
always maklng sure that when writing we don't overlay any portion that
hasn't been read yet. The following variables are used:

K1 points to the IDEC entry for track being read

L1 points to the IDEC entry for track being written -
= # of words read so far from track Kl (initially 0)

L2 = # of words written so far on track LI (initially 0)

S = # of words in core (initialiy 0) o

SP points to NWSNN entry, telling how many are to be written
on LI,

TG = 1 if we have already inserted the new entry. ;

8. If L2 = (SP), we have completely written track L1 so check for
L1 = NIDC2. If it is, we've written ail'the tracks, so go to step 14.
Otherwise, advance L] to the next directory track, advance SP, set L2 = 0,
and repeat this step. If L2 - (SP), go to step 9.

114

9. If S > 10232, we have read as much as we can, so go to step lj.
If KI = NIDC3, there is nothing left to read, so go to step 11. If K2 = #
of words on track K1, we've read the entire track, so advance Ki to the
next track, set K2 = 0, and repeat this step. Otherwise, compute the
number of words we can read. |f there is room to read the balance of the

track, we will, otherwise, we will read the maximum number of full sectors

possible. If this is zero, go to step 1. If it is not zero, read from
section K2/64 into core location LIBUS + S. Add the number of words read
to S and to K2. =

10. If TG = 0, determine if we can insert the new entry. This will

be so if KI = IDLNP and V - LIBD < K2. If this is not the case, go back to
step 9. Otherwise, set TG to | and insert the new entry in core. Set
S to S + 8 and go back to step 9.

11. Write Section. Set SS = 0. This is theﬁnumber of words written.

12. Compute number of words we can write onQErack L. First set
A = - number of words left to write on the track. If L1 = K1, we haven't
finished reading everything from track LI, so if L2-A > K2 change A to
L2-K2, which is the number of words we can write without destroying any
unread IDT information. I1f $-5S5<-A, we don't have as much in core as we
are capable of writing, so set A = -(((55-5):64) x 64), an exact number of
sectors. ‘

13. If A =0, we can't write anything, so if SS # D slide the
remaining $-SS words in core up to location LIBUS, set SS=0 and $=SS-S.
Then go back to step 8. |f A#0, write -A words to sector L2:64 of track LI.
If L2 = 0, set the first word of the L1 IDEC entry to the first word
written. Set L2 to L2-A, SS to SS-A, and go back to step 12.

14. Set the new IDT lengths into IDEC and terminate.

115

KILLID

The KILLID routine removes a specified id from the system. The
operation .is as follows:

1. Get the id. If'the‘id is A000, or if it ends in '00' and any
members of that group are logged on, fail. This is because the files
belonging to A000 and group librarians may be accessed by other users,
and removing them would be almost impossible. _

2. Read the IDT track for the specified id and search it for the

id. Fail if not found. Otherwise, delete the entry from the IDT and write
| it back to the drum. _

3. If any user with the specified id is currently on the system, set
the id item of this TTY table to 0, set his status to -2, set his COMI4
bit to force him to be disconnected, and remove him from the queue if
he is on it. Also, zero out his section of the Fyss table.

4. Remove all directory entries belonging to this user and build a
table which will be used to pétch the ADT and Disc ADT. For each directory
entry, four words are placed in the table: drum address, length, and disc
address,

5. Write the directory back to disc. Read thebADT, call RSFS to
return the space released from sanctified programs and files, and write
the ADT to drum.

6. Call TBDAD to return released Space to the Disc ADT.

7. Terminate.

116

UNLOCK

The UNLOCK command is used to restore drum tracks to the system.

The operation is as follows:

1. Interpret parameters, setting F and L to the first and last
tracks to be unlocked.

2. Scan the TRAX table to determine the number of tracks to be
unlocked. Set CN to this number.

3. Set CN = min{CN, (8192 + ADLEN)/2}. The parenthesized expression
is the number of words that can be added to the ADT.

4. Read the ADT into core location LIBUS + 2 CN.

5. Set MOVED = LIBD, MOVES = LIBD + 2CN.

6. If track F is unlocked go to step 8. Otherwise, unlock it by
clearing its bit in TRAX. |f MOVED = MOVES, we can't insert an ADT
entry, so go to step 8.

7. If MEM [MOVES] <F, move 2 words and repeat this step. Set
MEM [MOVED] = F, MEM [MOVED + 1] = 128 unless F = 0, in which case we set
MEM [MOVED] = 3, MEM [MOVED + 1] 125. Also set MOVED = MOVED + 2.

8. IfF#L, set F=F+ 1 and go to step 6. Set ADLEN = ADLEN -
2CN. Write the ADT back to drum and terminate.

117

LOCK

The LOCK routine is used to tell the system that certain drum
tracks are not to be used. Only tracks which are part of the program
library are lockable, but tracks which contain active files are not.

Any programs or files on tracks being locked are removed from the system.
" The operation is as follows:

1. Interpret the parameters and set F and L to the first and last _
tracks to be locked. Check that none of these tracks is used for swapping,
directory, Disc ADT, IDT, ADT, or system. Fail if they are.

2. Search the directory for sanctified entries on the specified
tracks. For each such entry, add a 4-word entry to the patch table
consisting of a pointer to the Direc entry, a pointer to the entry in
the buffer, and the two-word disc address. There is room for 512 entries
in this table. Fail if it overflows.

3. Compare the patch table to the FUSS table. Fail if any of the
entries in the patch table are active files.

L. Read the ADT, delete from it all entries for the tracks to be
unlocked, and write it back.

5. For each track to be locked, set its TRAX bit to 1.

6. Update the directory using the patch table. For programs, set
the drum address in the directory entry to 0. Also set the second word
of the patch table entry to 0. For files, remove the entry from the
directory. Set the first 2 words of the patch table entry to the id and
length of the file.

7. Call TBDAD to return disc space formerly used by removed files
to the Disc ADT.

- 8. Call TBIDT to update the space used for userS whose files have
been removed due to the locking. '

9. Terminate.

118

MUNLOCK

The MUNLOCK command is used to restore to the system any disc
blocks which have previously been MLOCKed. It operates as follows:

1. Interpret the parameters. Fail if the last block is less
than the first block, or cne of the blocks specified is one of the
first 4 blocks of a disc, or the first and last blocks are not on

the same disc, or the blocks are on a non-existent disc.
2. Read the Bad Blocks Table and Disc ADT for-the disc specified.

3. Search the Bad Blocks Table for the first entry greater than
or equal to the first block to be unlocked. If an equal entry is
found check to see if the locked block is completely enclosed. |If not,:
update the address and length of the locked block entry, return the
unlocked space to the Disc ADT and go to 6. |f so, eliminate the

completely enclosed entry, return its space to the Disc ADT, and go to 5.

h. If a greater entry was found or if the end of the table was
reached, check the preceeding block to see if a portion of it is to be
unlocked. If so, modify the entry. |If the unlocked portion is in the
middle of the block, it will be necessary to make a new entry in the table
in addition to modifying the entry. After so doing, return the freed
space to the Disc ADT. |If the end of the table was reached in step 3,
go to 6.

5. Check the next block to see if any portion of it is to be un-
locked. If not, go to 6. If it is completely enclosed, eliminate it,
return the space to the Disc ADT, and repeat step 5. |If only part of

it is to be unlocked, return this space to the Disc ADT and modify the
address and length.

6. Write the Bad Blocks Table back to the disc and the Disc ADT
back to the drum.

7. Terminate.

119

MLOCK

~ The MLOCK command is used to make certain disc blocks unavailable
to the system because they are faulty or for some other reason. It
operates as follows:

I. Interpret the parameters. Fail if the last block is less than
the first block, or one of the blocks specified is one of the first 4
blocks of a disc, or the first and last blocks are not on the same disc,
or the blocks are on a non-existent disc.

2. Read this System Segment Table. Fail if any'of the specified

blocks are reserved for system segments.

3. Read the Disc Allocation Table. Fail if any of the specified
blocks are reserved for System usage as specified in the DAT.

L. Ssearch the directory for programs or files whose disc address
lie in the range of the blocks to be locked. For each such entry found,
add a 4-word entry to a table consisting of a pointer to the Direc entry
for this track, a pointer to this entry position in the directory buffer,
and the two-word disc address. If an entry is found which is partially
contained in the area to be locked, put its disc address and length in a
special table. There may be 2 such entries. There is room for 512

entries in the main table. |f it overflows, fail.

5. Read the FUSS table. Compare the table just built with the FUSS
~ to determine if any of the blocks to be locked contain active files. |If
so, fail,

6. Read the MLOCK overlay.

7. Read the Bad Blocks Table. Then search it for the first entry
greater than or equal to the first block to be locked. If an equal
entry is found, and the new block is longer, reset the length and go to
8. If it is not longer, terminate. If an equal entry was not found,
check the preceeding entry and if the blocks to be locked will make it
longer, update its length, If the table was full and the entries were

120

not- combined, fail: If they were combined, go to 9. If the entry was
to go at the end of the table and they were not combined, insert the
new entry. Then éo to 9. |If a greater entry was found and the entries
were combined, go to 8. |If they were not, insert the new entry (unless

the table was full, in which case we fail).

8. Check the next entry to see if it is ovér!apped by the one we
just made. If not, go to 9. If so, eliminate the overlapped entry,
and change the length of the new entry if it is longer. Repeat step 8.

9. Write out Bad Blocks Table.

10. If there were no entries in the table of directory entries to
be removed, go to 13. Otherwise set TP to point to the first entry in
this table. Read the directory and set MOVES=MOVED=L|8D.

11. MEM[TP + 1] = > the disc address of the directory entry.

Replace MEM[TP] with the id of the entry, MEM[TP + 1] with the length

in blocks, MEM[TP + 2] with the drum address, and, if the drum address
is not 0, MEM[TP + 3] with the length in sectors. Call the move

routine. Set MOVES=MOVES +12. This eliminates the directory entry

we were pointing to. Set TP=TP + 4, Bump CT. |If CT=0, go to 12. |If
MEM[TP]=DI, the next entry is on the same track, so go repeat 11. Other-
wise move the end of the directory, write out this directory track, read
the new directory track, set MOVES=MOVED=LIBD and repeat 11.

12. Read the ADT, call RSFS for each non-zero drum address entry in
the table to return space to the ADT, and write the ADT.

13. Read the Disc ADT for this disc. For each of the two special
table entries, if they exist call RADT to return their space. This is
done because a locked block may remove only part of a program or file,

and it is necessary to put the rest of the space back in the Disc ADT.

14, Remove from the Disc ADT any blocks which lie in the range of
the blocks we are locking. Then write the Disc ADT back to drum.

15. If there are no entries in the main table, go to 16. Otherwise
call TBIDT, which returns space to the IDT based on the first two words
of each 4-word entry in the table we built.

16. Terminate.
121

COPY

The COPY command is used to copy a program or file from one user's
library to the library of another user. It operates as follows:

1. Interpret the parameters.

2. Search the directory for the old entry. Fail if not found.

3. Save the file flag, semi-compiled flag, word L, drum address,
disc address and length.

L. Find out which IDT track the new idcode is on, read it, and
search for the new idcode. Fail if not found. Also fail if there is
not enough space in the user's library.

5. Search thé Disc ADT's for enough disc space to put the new
program. Fail if not enough space left.

6. Search the'difectOry for the new entry. Fail if found. If
the track is full, call SUPERSAVE and go to 8. ‘

7. Add the new entry to the directory and write the directory
track back.

8. Read the IDT, update the space used, and write it back.

9. Read the Disc ADT, update the space used, and write it back.

10. If the old program or file is on the drum, read it from the
drum, write it to the new entry's place on the disc and terminate.
Otherwise, read it from the disc and write it to the new entry's place
on the disc 40 blocks at a time until it is completely copied. Then

terminate.

122

BESTOW

The BESTOW command is used to transfer programs or files from one

— [(])

8
user's library to another user's library. It operates as follows:

1. Interpret the parameters. !f no name is given, set name to nuli
and go to 3.

» 2. Search the directory for the named entry in the old user's
library. Fail if not found. Otherwise go to 4.

3. Search the directory for an entry in the old user's library.

If one found, go to 4. If none found and this is the first time thru
this step, fail. Otherwise print a message if there were any duplicate
entries and terﬁinate..

4, Save pointers to the diretory entry and position in the directory
buffers of this entry and also save its length.

5. Search the directory for an entry in the new user's library
with this name. If found, bump the duplicate entry counter and go to 11,

6. Read the IDT track for the new user and insure that there is
enough space in his library for this entry. If not, fail. Otherwise,
update his disc space used and write out the IDT.

7. Read the IDT track for the old user, reduce his disc space used
and write out the |DT.

8. Read the directory track for the old entry again. Save pertinent
information, eliminate that entry from the directory, and write out the
directory track.

9. Search the directory for a place to put the new entry.

If the track is full, call SUPERSAVE and go to 11,
10. Insert the new entry in the directory and write the directdry
track back to drum. '

11. Increment the name so we won't find the same entry again. |If

we were only transferring one entry, terminate. Otherwise, go to 3.

It
N
(2]

SANCTIFY

The SANCTIFY command is used to copy a program or file from the disc
to the drum. The space on the disc is reserved so that it may be copled
back at sleep time. The routine operates as follows:

l. Interpret the parameters.

2. Search the directory for the named entry. Fail if not found.
Also fail if the entry is longer than 32 blocks or if the entry is already
sanctified.

3. If the entry is a program, go to 4. Otherwise read the FUSS table
and search it for this entry. Fail if found.

L. Read the ADT. Search it for an area large enough to put this
entry. Fail if not found. Otherwise, update the ADT and write it back.

. 5. Read the directory track for this entry again, update the drum

address for this entry, and write the directory track back.

6. Read the program or file from disc and write it to the drum.

7. Terminate.

124

DESECRATE

The DESECRATE command is used to return a santified program or
file to it's area on the disc. Programs are not copied back because
there is an identical version already on the disc. The routine operates

as follows:

1. Interpret the parameters.

2. Search the directory for the named entry. Fail if not found.
Also fail if the entry is not sanctified.

3. If the entry is a program, zero its drum address, write the
directory track back, ‘and go to 6. Otherwise read the FUSS table and
search it for this entry. Fail if found.

4. Zero the drum address of the file and write the directory track
back.

5. Read the file from drum and write it to the disc.

6. Read the ADT, call RSFS to return the drum space to it, and
write the ADT back.

7. Terminate.

125

PURGE

The PURGE routine is used to delete from the library all programs
or files which have not been referenced since a certain date. The

operation is as follows:

1. If HELLO program exists, assign it today's date. This is
because the HELLO routine does not perform this function.

2. Interpret parameters and set DT to the purge date. Make sure
that DT < today's date.

3. Make sure that FUSS is empty. This is to avoid killing any
active files. -

4. Read a directory track. Set P = MOVED = MOVES = LIBD. Set
ND to point to the end of the directory. _

5. Test the entry pointed to by P to see if it should be deleted.
If not, go to 7. Otherwise add a 5-word entry to the patch table consustlng
of id, length, disc address and drum address. Call the move routine and
set MOVES = MOVES + 12. ,

6. If the patch table is full, write out the interim directory, call
PURFX, and.read back the directory.

7. Set P =P + 12. If P = ND, we are finished with this directory
track, so go to 8. Otherwise to to §5.

8. Call the move routine to move the end of the directory track.
Write out the track and move to the next track. If allitracks have been
read, call PURFX and terminate. Otherwise go to 4. -

126

The PURFX routine uses the patch table to update the ADT Disc ADT
and IDT as follows:

1. Read the ADT. Set MOVES = MOVED = L8192, Examine each entry
for a non-zero drum address, and if one is found call RSFS.to return
space to the ADT. in any case call the move routine after examining
the entry to delete the drum address (i.e., make it into a 4-word entry
table). After returning all drum space write the ADT back.

2. Call TBDAD to return disc space to the Disc ADT.

3. Call TBIDT to adjust the disc space used in the IDT for each user
who has lost programs or files.

127

MAGTAPE

The MAGTAPE routine is used to set a select code into the location

MAGSC. Typing a '*' after the select code indicates that the tape unit

Is a 7970 and will force bit 15 of MAGSC to be set.

128

PHONES

The PHONES comanﬁ is used to tell the /0 processor how long to
allow the user to try to successfully log on before disconnecting him.
I't is originally assumed to be 120 seconds. It can be reset to from
1 to 255 seconds by the PHONES command.

129

PRINTER

The PRINTER command is used to tell the I/0 processor the select
code of the line printer and the line printer type. '*' after the
SC indicates a 2610A and '**' indicates a 2767A. '

130

SPEED

The SPEED routine is used to configure the specified port(s) at the
specified baud rate and character size. The baud rate to be input is

computed with the formula:

14,400
Bit Rate

Where bit rate = # of Chars. per second X # of bits per character including

the start and stop bit(s).

Note: If 14,400 is not a whole number, it must be rounded off to
Bit Rate

the nearest integer.

The baud rate range is from 5 to 191.

The character size to be input is the least significant octal digit of
the total number of data bits and stop bit(s) in a character and is either

1 or 2 depending on whether the character contains 1 or 2 stop bits.
For the IBM 2741 Terminal an "*'" must be input for character size.

Error Conditions:

The message "ILLEGAL FORMAT'" is output if
1. A baud rate €5 or 2191 is input.
2. A character size other than 1, 2, or '"*'" is input.

3. A port number outside the range 0 through 31 is specified.

The message "NO CONF. DONE" is output if the port (configuration of a
single port) or at least one port (configuration of more than one port)

is logged on.
In each of the above error conditions no configuration will take place.

For each port to be configured the system first initiate service routine
"CHS" in the I/0 processor. '"CHS" sets the character size (0 if an "*"

was input!) into the receive and send parometer (?RPRM resp. ?SPRM) kept

in the teletype table. If the character size = 0, the echo bit in ?RPRM

is set to 0, otherwise it is set to 1. If the character size = 0, ?TYPE is
set to 1 (iﬂdicating that an IBM 2741 terminal is connected to the port.

Otherwise it is set to 0, indicating that an ASCII terminal is connected.

131

Then the system initiates service routine '"SPE". This routine sets the
new baud rate in ?SPRM and ?RPRM and sets the parity bit in ?SPRM to 1
("EVEN" parity will be generated on output) if ?TYPE = 0. Otherwisé the
parity bit in ?SPRM is set to 0. Finally "SPE" retrieves ''?SPRM and ?RPRM
and output these parameters to the multiplexer board.

131-A

PORT

This routine is used to print out the baud rate and character size for

which the port(s) is (are) configured.
The system processor obtains the information from the I/0 processor.

If an IBM 2741 is connected to a port, an "*" will be printed for the

character size.

Error Conditions:

The message "ILLEGAL FORMAT" will be given, if an illegal port number

is specified. No information is given.

This command is available to the system operator and the system master.

If this command is given by a user other than the system master, the error

message ''priveleged command" is output and no information will be given.
p p g

For each port the system uses service routines WSP and WCS to obtain the

baud rate resp. character size for which the port is configured.

132

1/0 PROCESSOR

7 N

-

The second computer in the 2000C high speed is used for all of the
terminal input and output operations for the system. In addition, it
takes care of all of the phones logic (answering and hanging up the
telephones) and the timing for the ENTER STATEMENT.

2100A Asynchronous channel Multiplexor

To put the Multiplexor into operation, each port on the interface must be.
primed with two parameters. The parameters are necessary for transmission
and reception of data to/from that port. One parameter is used for the
send channel and one parameter for the receive channel of that port. Once
primed, those parameters will remain in the channel's memory until the

power goes down or a '"master clear' is executed.
The parameters consist of 16 bits which have the following functions:

Send Channel Parameter

Bits 0-7 Indicates the rate at which the data bits will be transmitted.
Bits 8-10 Indicates the least significant bits of the number of b1ts,

indlucing stop bits, in a character.

Bit 11 Not used by the system.

Bit 12 If set, ASCII parity will be generated.

Bit 13 If set, interrupt on completion of transmission of data
will be enabled.

Bit 14 Must be set.

Bit 15 Must be set.

Receive Channel Parameter

Bits 0-7 Indicates the rate at which the data bits will be received.
Bits 8-10 Indicates the least significant bits of the number of bits,

including stop bits, in a character.

Bit 11 Not used by the system.

Bit 12 ' If set, all received data will be echo'd back to the terminal.
Bit 13 If set, interrupt on reception of data will be enabled.

Bit 14 Must be=0;

Bit 15 Must be set.

133

The Multiplexor consists of two boards, a 'data" board and a '"status' board.
They must be located in '"two consecutive 1/0 slots; the ''data" board in the
higher priority slot (lower numbered select code) and the '"status'" board
in the lower priority slot (higher numbered select code). Output of data

to a send channel (to be transmitted to the terminal) must be in the format.

Bits 0-10 Data*

Bit 11 Must be set, if a "synchronizing' character must be transmitted.**
Otherwise, must be = 0. ' v

Bits 12-13 Immaterial.

Bit 14 Mﬁst be set.

Bit 15 Must be = 0.

* The ASCII character must be contained in Bits D-6. Bit 7 must be = 0
since even ASCII parity must be generated. Bits 8-10 must be = 1. The
selectric character (6 bits/char.) must be contained in bits 0-5. Bit
6 must be set or reset according to the odd parity of Bits 0-5. Bit 7
must be = 0 and Bits 8-10 must be = 1. ” |

** A "synchronizing' character is issued by the I/O processor to pro-
vide one character time delay. It is used to delay output until the
terminal has completed a carriage return or line feed. The number

of "synchronizing" characters is dependent on the terminal. The format

of the "synchronizing' character is as follows:

Bits 0-6 Must be = 1.

Bit 7 Must be = 1 if terminal is a selectric.
Must be = 0 for all other terminals.

Bits 8-10 Must be = 1.

Bit 11 =~ Must be = 1.
Bits 12-13 Immaterial.
Bit 14 Must be = 1.
Bit 15 =~ Must be = 0.

. . % .
The "synchronizing'" character is a non-printable character. Besides,
providing a means of time delay, it is used to synchronize the terminal

at the beginning of every transmission.

133-A

Input of data is done with a "LIA" or "LIB" to the ''data" board. Its format

is:

Bits 0-6 Data bits.

Bits 7-9 Immaterial.

Bits 10-14 Number of the channel on which the data was received.
Bit 15 Not used by the system.

An "LIA" or "LIB'" to the '"status" board gives information in the following

format:

Bit 0 If=1, the interrupt came from the complefion of a character
transmission (send channel).
If=0, the interrupt came from the completion of a character
reception (receive channel).

Bit 1 Not used by the system.

Bit 2 If=1, a "break" signal was received.

Bit 3 Not used by the system.

Bits 4-9 Immaterial.

Bits 10-14 Number of the channel on which an interrupt occurred.

Bit 15 "Seeking" bit. This bit indicates that a "seek" operation is

taking place in the circulating memory of the interface. If=1,

no data or parameters should be output to the interface.

Method of outputting the "send" and '"'receive' parameters to the interface:
P p

1. "LIA upper select code"
2. Check seeking bit. If=1, the previous operation was not yet com-
pleted. Go back to 1. If=0, proceed to 3.

3. "OTA lower select code" (the parameter is assumed to be in the "A"
register).
4. "OTB upper select code (the channel number is assumed to be in bits

10-14 of the '"B" register).

5. "STC lower select code'.

Output of data is done in the same way.

133-B

MULTIPLEXER DRIVER

The multiplexer driver is used by both multiplexer boards. The driver

is divided into five sections:

I. Initialization - One routine for each board
II. Receive channel processing
III. Send channel processing

IV. Abort processing

V. Multiplexer end of processing

I. Initialization-

The initialization section has two interrupt entry points, MPXIO for
the first board, and MPYIO for the second board. If entry to the driver
is made at MPXIO, the registers are saved and then both MUX channels are
read and saved. YFLAG is now checked to see if the lower priority board
is currently using the driver. If the driver is busy, XFLAG is set, the
registers are restored, and the program is exited. If the driver is not
busy, no flag is set as the lower priority board cannot intérrupt. A
check of the multiplexer status determines which processing section (input,

output, or abort) is needed to service the interrupt.

If entry is made at MPYIO, the registers are saved; the MUX channels
are read and saved; and YFLAG is set.” The multiplexer status determines

the processing section.

II. Receive Channel Processing

The multiplexer Supplies whole characters, each.of which are
‘examined on reception and echoed back to the terminal. If the user's
terminal is an IBM Selectric (?TYPE # 0), the character is first trans-
lated into ASCII. Certain characters (rubouts, feed frams, line feeds,
and X-OFF) are ignored. 'Control X' signals that the current line is to
be deleted. If the character is a '¢', the buffer pointer is backed up
one position. If the ‘user has the line printer as his output device:
'Control Q' causes suspension of output to the line printer; 'Control W'

results in resumption of output to the line printer.-

134

II.

I11.

Iv.

Receive Channel Processing, Continued

All other characters are appended to the user's buffer.

Upon reception of a carriage return, the system processor is noti-
fied that the user has entered a complete line and further character
input is blocked. If the line was entered in response to an ENTER

statement, the user's response time is also sent to the system.

Send Channel Processing

If there are characters left in the user's buffer, a test is made
to see if there is line feed or carriage return delay pending. If so,
a synchronizing character is output and the delay counter is bumped.
If not, the usér's next character is plucked from his buffer, translated
to IBM code if warranted, and sent to his port. If the character was a
line feed or a carriage return, the appropriate delay is set up. If
exactly ten characters remain in the user's buffer and if his status is

output wait, the system is notified that his buffer is almost empty.

If no characters remain in the user's buffer: He is placed in an

idle mode if his program is still running; or he is placed in input mode.

Abort Processing

Unless the aborted occurred on the receive channel with the user in
output mode, it is ignored. For a valid abort, the abort request is sent
to the system and the user's buffer pointers are reset to the beginning
of his buffer.

Multiplexer End of Processing

Four interrupt combinations can occur. This logic determines which
flags to clear, which multiplexer board to enable, and where to transfer

program control.

134-A

LINE PRINTER DRIVER

This driver is used for the 2767A, 2778A, and 2610A line printers.
Normal entry is from the idle loop and once entered, the driver replaces the
idle loop until output is completed. The flag, LPTYP, indicates which

line printer is on the system:

2767A = -1 2778A = 0 2610A =1

Characters are obtained from the user's buffer
being sent to the line printer. If the character is a carriage return or
a line feed, a print control chéracter is output. If the character is an

X-OFF and the next character is an X-OFF, line printer output is temporarily

suspended. In addition, control characters and rubouts are ignored and lower

case characters are converted to upper case.

If the line printer goes out of READY status, the user's buffer pointers
are saved and new pointers are set to an error message buffer. Output to
the user's teletype is then initialized and when the transmission has completed,

the buffer pointers are reset and the driver waits for READY status.

135

2100 DATA SET CONTROL INTERFACE

The data set control board is used in the "SCAN" mode so that an
interrupt.will only occur if a change in either of the two signals ("carrier"
and '"Data set ready') has been detected. To prime the board for an interrupt

is is necessary to output a parameter with the following format:

Bit 0 - "Data set ready" bit. If = 0, an interrupt will occur
when '"Data set ready' comes up. If = 1, an interrupt

will occur when "Data set ready" drops.

Bit 1 "Carrier detect'" bit. If = 0, an interrupt will occur
when '"carrier" comes up. If = 1, an interrupt will occur

when "carrier" drops.

Bit 2 Enable bit for comparison Logic. If = 1 and if the com-
parison Logic detects a change in ''Data set ready', the

flag will be set and scannihg is stopped.

Bit 3~ Enable bit for comparison Logic. Same as Bit 2, but applies

to '"'carrier detect'.

Bit 4 = 1 for "Data terminal ready" on.
= 0 for "Data terminal ready" off.

Bit 5 _ Must be = 1.

Bit 6 Enable bit for ''Data terminal ready'". 1If = 1 and Bit 4
is = 1, "Data terminal ready" will be transferred to
the interface.

Bit 7 Must be = 1.

Bits 8-9 Immaterial.

Bits 10-13 Channel Number.

Bit 14 If = 1, Bits 0-3 will be transferred to the interface.

Bit 15 Must be = 1 for operation in "scan' mode.

136

On an interrupt because of a change of '"Data set ready" or '"carrier' the

obtained status has the format:

Bit 0 If = 0, "Data set ready" has dropped.
If = 1, "Data set ready" has come up.

Bit 1 If = 0, "Carrier" has dropped.

If = 1, "Carrier" has come up.

-

Bit 2 Has the same value as Bit 2 in the parameter, output

to the interface.

Bit 3 Has the same value as bit 3 in the parameter, output
to the interface.

Bits 4-7 = 0.

Bits 8-9 Not used by the system.

Bits 10-13 Number of the channel on which the interrupt occurred.
Bits 14-15 =1.

After exémining the status and taking the steps necessary to connect, dis-
connect, set up log-on timing, etc., the interface has to be primed for the
next interrupt, based on new cond1t1ons of change in '"Data set ready" and
"carrier'". This can be simply accomplished by outputting the obtained status
to the board.

136-A

DATA SET CONTROL BOARD DRIVER

The driver for this board is used in the "scan'" mode so that an interrupt
only occurs when a change in the signals 'Data set ready" (=CC) and "Carrier
detect" (=CF) is detected by the board. As soon as ah interrupt occurs, the
new status of the channel is compared with the previous status which was saved
in ?PPRM teletype table entry. Depending on that comparison one of the fol-

lowing will be executed:

1. The phone is answered, "LTBT" bit in ?STAT is set and log on timing
of 120 seconds (subject to change by the system operator with PHOnes
command) is stored in ?PHON.

2. "LDBT" bit is set in ?STAT and dropout timing of 2 seconds is stored
in ?PHON. '

3. VLDBT" bit is reset in ?STAT to signal that connection was restored

within the 2 seconds dropout timing.
On exit the new channel status is saved in ?PPRM and output to the board.

NOTE: The "LTBT'" or "LDBT" bit will cause the time base generator

routine to start timing using the value of ?PHON as a counter.

137

INITIALIZATION

I.

II.

When the I/0 processor program is started at 'INI" (initiated from

location 2), the following is done:

1.
2.
3.

0 N O N

Do a "master clear'.

-Set '"CKFLG" to 0 (flag to be used by the power fail routine).

In1t1a11ze all 32 teletype tables:

A. Set ?TYPE = 0 (to terminal type #1).

Set CR-DELAY.and LF-DELAY for terminal type #1 in ?CDLY resp. ?LDLY
Set ?RPRM to 110 baud, char. size = 2 and echo bit on.

Set ?SPRM to 110 baud, char. size = 2 and "even" parity.

m O O w

Set "Data term. ready'" on, "req. to send" on, ''carrier detect"
off and 'data set ready" on.

Set phones timing to 120 seconds.

Set "NPORT" = 32

Initialize processor interconnect board.

. Initialize power fail board.

Go to idle loop.

When the I/0 processor is updated at the system update entry "INIF",

the following is done:

1.

Do a "master clear".

Get number of available ports and save it in "NNPRT".

If "NNPRT" is larger than "NPORT", initialize the ports with port
numbers between NPORT and NNPRT (see I, Sub 3). for ports with port
numbers above ''NNPRT'' set the enable bit (Bit #13) in ?RPRM teletype
table entry to 0 and set "Data term ready" off in ?PPRM teletype
table entry. If "NNPRT" is less than "NPORT", set the enable bit

in "Data term. ready" off in ?PPRM for all ports with port numbers
above "NNPRT". If "NNPRT" is equal to "NPORT", go to 4.

Set in all teletype tables:

A. ?CCNT = 0

B. ?BPNT = ?BGIN

C. ?BSTR = ?BGIN

D. ?BHED = ?BGIN

E. "IDBT" bit (Bit #3) = 0 in ?STAT
F. ?DCNT = 0 |

G. 7?SCNT = 0 138

o

10.

Output ?RPRM §

?SPRM to the multiplexor board(s) and ?PPRM to the

data set control board(s) for each port up to the port with port
number = "NNPRT".
Set "CKFLG" =1

Store contents
current number
Initialize the
Initialize the
Go to I, Sub 6.

of "NNPRT" into "NPORT". ('NPORT" indicates now the
of available ports).
v board for 100 MS time interval.

o
multiplexor board(s) and the data set control baord(s).

138-A

POWER FAIL AND RECOVERY

If the computer is running when a power failure occurs, the current
machine and I/0 status is saved. A flag is set to indicate that this status

has actually been saved and the program halts.

If the computer is halted when a power failure occurs, the power down

interrupt does not occur.

When power is restored, the flag is checked to determine whether or
not the power down interrupt was processed. If hot, the initialization section
(entry point "INI") is called. If so, the program restarts using the saved
status and all of the ports buffers and status are retained. The parameters
on the multiplexor board(s) and data set control board(s) are re-instated as
~ before power failure. When power is restored, the line printer will be dis-

connected from a user who had control over it at the time of power failure.

139

TIME BASE GENERATOR

_ The time base generator driver is entered every 100 MS. For every
available port the driver will scan for "LTBT', "LDBT", "HUBT", "ENBT" and
"PDBT" bit in the ?STAT teletype table entry. If one of these bits is set,
the following actions will be takén:

A. "LTBT" bit set.

1. Update timing counter in ?PHON for log on timing (Sée write up of
data set control board).

2. If counter becomes zero, reset "LTBT", "LDBT" and "HUBT" bits

~in ?STAT. Then set "PDBT" bit and output '"Data term. ready'" off
to the appropriate data set control board fofcing the phone
connecfion to be broken.

3. Also the "IOBT" bit in ?STAT will be set, ?TYPE will be set to 1
if type #2 terminal is connected; CCNT, ?DCNT and ?SCNT will be
sef to zero.

B. "LDBT" bit set.

1. Update timing counter in ?PHON for line dropout timing (See write
up of data set control board).
2. If counter becomes zero, tell system processor that user has hung
up (communication code "UHU").
3. Reset "LDBT", "ENBT" and "ICBT" bits in ?STAT.
4. Execute A, Sub 3.
C. '"HUBT" Bit set.

1. Check ?CCNT indicating the number of characters to be output. If
?CCNT not = 0, check if "LTBT" or "LDBT" bits are set. If ?CCNT
= 0, execute A, Sub 2 and A, Sub 3.
D. "ENBT" Bit set.
1. Check ?CCNT. If ?CCNT not = O, check if "LTBT", "DBT" or "HUBT"
bit is set. If ?CCNT = 0, update enter timing counter in ?TIMO.

2. If counter becomes zero, remove "ENBT" bit and set "NIBT" bit in ~
?STAT. If type #2 terminal is connected, set Bits 8 through 12 in
?TYPE. This will force the selectric into receive mode. Fetch ?RPRM

from teletype table, set echo bit (Bit #12) to zero and output it

to the multiplexor beoard.

140

[w]

2. (Continued)
Tell system processor that user was timed out (communication
code "ETO").

"PDBT" set.

1 Reset "PDBT Bit in ?STAT

2. Tell the data set control board to stop scanning.

3. Take status on the data set control board for the appropriate

channel. Output to the data set control board the phones
parameter with 'Data term. ready" on, "Req. to send" on, ''carrier
detect" = 0 (if status indicates that it is = 1) and '"Data set
ready" = 0 (if status indicates that it is = 0) or = 1 (if status

indicates that it is = 1).

140-A

. TELETYPE TABLES

The teletype tables are located in base page and contain information
about the system users. Each of the 32 users has one table containing the

following entries:

?TNUM Port -number in Bits 8-12
?CCNT Used by MPX for counting output characters. It equals
v -# of characters, including current one.
?BPNT On input - Points to the character location into which
the next character will be deposited.
On output- Points to the last character transmitted.
?BSTR On input - Points to the first character of the most
recent buffer.
On output- Points to the location into which the next

character will be placed by the outcr routine.

?BHED On input - Points to the next character to be fetched.
?BSAV Saved buffer pickup poiﬁter.

?BGIN . Points to beginning of physical buffer.

?BEND Points to first character following physical buffer.
?STAT

TPBT EQU BITY@ User is in tape mode

TPNBT EQU NBTY

STBT EQU BIT1 User was turned off

STNBT EQU NBT1

CXBT EQU BIT2 'Control X' was hit

IOBT EQU BIT3 User is in input mode

IONBT EQU NBT3

LDBT EQU BIT4 ' Line dropout occurred

LDNBT EQU NBT4

LTBT EQU BITS Wait for log timing

LTNBT EQU NBT5

ENBT EQU BIT6 Timing for <ENTER»

ENNBT EQU NBT6

RNBT EQU BIT7 User is running

RNNBT EQU NBT7

141

TELETYPE TABLES, Continued

PDBT EQU BITS8 Phone disconnected

NIBT EQU BIT9 No input allowed

NINBT EQU NBT9

HUBT = EQU BIT1¢ Hang user up

XOBT EQU BIT11 X-OFF was read from terminal
STYP2 EQU BIT12 * |

STYP3 EQU BIT13 * -
STYP4 EQU B1213 ** Teletype subtypes

STYPS EQU BIT14 *

STYP6 EQU B1214 *

ICBT EQU BIT1S Input configuration needed

ICNBT EQU NBT15

?ATIM ' Contains allowed time for <£Enter Statement>
| | execution.
?TIMO Timeout value for user exeéuting <Enter
Statement>.
?PHON Used as time counter for phones logic.
?TYPE . Terminal Type: ASCII =@
EBCD Bit # =1
Bit 15 = ¢

Call/368 Bit @ =1

FOR EBCD & CALL/36@¢ TERMINAL:

CDBT EQU BIT1 Code determined

UCBI EQU BIT2 Upper case mode

UCNBT EQU NBT2

CNBT EQU BIT3 "Cent" character

CNNBT EQU NBT3 .

CCBT EQU BIT4 "CentC'" character

CRBT EQU BITS "CR" Bit (Output only!)
- CRNBT EQU NBTS

XBIT EQU BIT6 "Control X" was input

XNBIT EQU NBT6

141-A

CBBT EQU BIT7 "Circle C" was sent
CBNBT EQU NBT7

BIT8 Circle D *
BIT9 SYNC * Transmit
BIT19 Space ** Interrupt
BIT11 Space * Bits
BIT12 Space *
?CDLY Carriage return delay (negative).
?LDLY Line feed delay (Negative).
?DCNT CR and LF delay counter.
?SCNT Character counter used for determining
carriage return delays.
?RPRM Receive channel parameters.
?SPRM Send channel parameters.
?PPRM Phone parameter.

Associated with each item in these tables is a symbol which is equated to

the corresponding number of the item. For example:

?INUM EQU 9
?CCNT EQU 1

?PPRM EQU 23

These symbols are primarily used for adjusting pointers to the table. For
example, if the B register contains a pointer to the STAT entry of some user,
the instruction ADB .+ ?PHON-?STAT will point B to his PHON entry.

. is a symbol in base page at the @ entry of a table of constants from -2§
to +2f. A word containing the value N, where -20<N €2p can be referenced
by .+N.

142

SELECTRIC CONVERSION ROUTINES

There are two conversion routines in the I/O processor, both of which are
entered from the multiplexor driver. The input conversion routine handles
Call/360 or EBCD-to-ASCII conversion. The output:conversion routine handles
ASCII-TO-Call/360 or EBCD conversion.

The conversion routines use a set of bits which are stored in ?TYPE (See

teletype tables).

Input Conversion

On entry a check of the "CDBT" bit is made. If it is not set, the code
determination section is entered. In this section (if it is the 1st input
character in the buffer) the input character is comparéd with the char-
acter "H" (in the "HELLO" command) in EBCD and Call/360 code. If it is
the "H" in EBCD code, Bit #@ and Bit #15 are set to f resp. indicating
that input came from an EBCD terminal. If it is not the "H" in EBCD code,
Bit #@ and Bit #15 are set to 1 resp. @ indicating that input came from

a Call/360 terminal. Consequently if a user logs on with a 1lst character
other than an "H" from an EBCD terminal, his input will be treated as
coming from a Call/360 terminal. The user's log on command will naturally
not be recognized by the system so that the system will output "???"

which will appear as "LLL" on the user's terminal. After exit out of the
code determination section, the actual conversion routine is entered. If
the user logé on correctly, the system will tell the I/0 prdéessor that

user is logged on and in the "ULO" service routine the "CDBT" will be set.

If, on entry to the input conversion, the "CDBT" is set, the code deter-
mination section will be bypassed and the actual conversion routine will

be entered.

Output Conversion

On entry a check is made if a "transmit interrupt" (See write up of
Selectric terminal) has to be generated. If not, the actual conversion

routine will be entered.

143

Both reoutines use the "CNBT" and "CCBT" bits if a character is input or must

be output which requires a two or three character sequence (See manual).

If the selectric character "¢ is being input, the "CNBT" bit wili be set.

If the "¢" is immediately followed by a ‘character as required by a two

character wequence, the "CNBT™ bit will be reset and the ASCII-equivalent in-
serted in the buffer. If not, the "CNBT" will be reset but nothing will be
inserted in the buffer. If the "¢" on input is immediately followed by a "C",
the "CCBT" bit will be set. (The "CNBT" bit was already set when '"¢" was input)..
If the sequence "¢C" is followed by a character out of the Range A through Z,
the "CNBT" § "CCBT" bits are cleared and the equivalent ASCII control character

inserted in the buffer.

On output only the two character sequence is involved. If the "¢" is output,
the "CNBT" will be set. If the "upper case code" (next character is in upper
case and terminal is in lower case mode) or the "lower case code'" (next char-
acter is in lower case and terminal is in upper case mode) is output,

the "CCBT'" bit is set. After output of the two character sequence, both bits

are cleared.

The "UCBT" bit is set if an "upper case code' is input from the terminal or
output to the terminal. If the "UCBT" bit is not set either a "lower case code"

was input or output.

The "CRBT" bit is only used on output. The purpose of this bit is to prevent
a line feed to be sent to the terminal if preceded by a carriage return. The
reason for this being that the selectric is a "new line code" terminal. It will

perform a carriage return + line feed on receipt of a carriage return.

The "XBIT" bit is used when the three character sequence "¢CX" (="X®" in ASCII)
q

=t

is received from the terminal. The purpose of this bit is to let the I/0
processor output '"¢/" (="/'" in ASCII) if the "¢CX" is immediately followed by
-a carriage return, the "XBIT" is also cleared but no action will be taken by the

I.0 processor.
The "CBBT" bit is set on output of the "Circle C" code to the terminal.

Bits #8 through #12 are used in the '"transmit interrupt" operation.

144

CONVERSION TABLES FOR THE IBM 2741 TERMINALS TRANSMITTING EBCD & CALL/360
CODES

There are two conversion tabies; one table for the EBCD-ASCIIF(and ASCII-EBCD)
conversion and one table for the Call/360 - ASCII (and ASCII-Call/360)
conversion. Each table consists of 177 locations, starting at a location
pointed to 8by "CTBPI" (for call/360-ASCII Conversion) resp. .”CTBP2" (for'

EBCD-ASCII conversion). The organization of each table is as follows:

The upper part of each location is used for conversion on input, the lower
part for conversion on output. The upper part of each location contains the
ASCII-equivalent of the input character and the lower part the EBCD or Call/360

_equivalent of the output'character.

Method of Fetching the Character Equivalent

A. INPUT

Get the pointer to the appropriate conversion table and add to it the octal
code of tye input character (if the input character is in upper case, set
Bit #6 of the sum just acquired). "The sum is the address of the location
in the conversion table where the character equivalent (ASCII) is stored.
Fetch- the contents of this cell, mask off the lower part; the remainder is

the ASCII-equivalent of the input character.
B. OUTPUT

Get the pointer to the appropriate conversion table and add to it the octal
code of the output character (ASCII). -This sum is the address of the
location in the conversion table where the character equivalent (EBCD

or Call/360) is stored. Fetch the contents of this cell and mask off the
upper part. The remainder is the Call/360 of EBCD equivalent of the output

character.
If Bit #7 of the Call/360 or EBCD equivalent is set, that character is

in upper case. Bit #6 is the parity bit (odd parity).

NOTE: The way to determine which conversion table to use, is to examine
the ?TYPE entry of the teletype table. Bit #@=1 and Bit #15=§ for a

Call/360 terminal. Bit #@=@ and Bit #15=1 for an EBCD terminal.

145

1/0 PROCESSOR

10
11
12
13
14
15

HARDWARE CONFIGURATION

PROCESSOR INTERCONNECT

'PROCESSOR INTERCONNECT

TIME BASE GENERATOR
1 ST MULTIPLEXOR
1 ST MULTIPLEXOR

DATA SET CONTROL FOR 1 ST MULTIPLEXOR

UP TO 16 TERMINALS

16

LINE PRINTER

(optional)

MORE THAN 16 TERMINALS

16
17

20

-

21

s
o

2 ND MULTIPLEXOR

2 ND MULTIPLEXOR

DATA SET CONTROL FOR 2 ND MULTIPLEXOR
LINE PRINTER (optional)

JA4!

Cl

2
(SEND CARD)

1/0 PROCESSOR

OUTPUT REGISTER

INPUT REGISTER

ENCODE

Device Flag

PROCESSOR INTERCOMNNECT

SYSTEM PROCESSOR

OUTPUT REGISTER
INPUT REGISTER ’ CHI

(RECEIVE CARD)
ENCODE

Device Flag

CH2

A
1
- !4
o R it
3 If a
/
v o]
; | |
g]
i Y
—— e s e s et = e m e s b t i
| {
- - - -"',: ‘
‘) . |
I)
NOTE: CABLE IS NOT SHOWN FOR CH2 - Cl CHANNEL.

IT IS IDENTICAL TO THAT FOR C2 - CHI

In the Idle State, the Pl cards are set up as follows:

C1(cH1) CONTROL & ENCODE: SET
FLAG & IRQ : CLEAR

c2(CH2) - CONTROL & ENCODE: CLEAR
FLAG ¢ SET
IRQ : CLEAR

A data transmission eration occurs thusly:

1)

2)

3)

5)

Sending machine waits for flag to be set on
C2(CH2) indicating that the previous trans-
mission has been processed.

Sending machine places data word in output
register of C2(CH2) thereby placing it on

the input register of CHI(C1). (0TA/B c2(CH2))
Sending machine issues STC, CLF to C2(CH2) making
the ENCODE LINE go high, setting FLAG ON (CHI (C1),
clearing ENCODE on CHI(C1), and strobing data word
into CHI(C1).

Sending‘machine issues CLC to C2(CH2) to prevent
an interrupt from that card. The’sending machine
is now free to return to other tasks.

In the receiving maﬁhine, T5 will set the IRQ on
CHI (C1). If the interrupt systeh is enabled and

the priority line is high, the IRQ will cause an

148

6)

7)

8)

Interrupt to a service routine.

The service routine does an LIA/B from CHI(C1) and
decodes the 16 Bit data word.

ff a response is called for, the receiving machine can
load the qutput register with a data word (OTA/B CHI(c1)).
whgn the'recéiving machine has completed its processing,
it issues an STC,C(CLF) to CHI(C1) which restores the

cards to the idle state.

- The following is the resultant statuses of the two

computers after a command has been sent, received, and

acknowledged :

a) The flag is set on C2(CH2) of the sending computer
indicating that another transfer is now allowed.
This occurred when the receiving computer issued an
STC,C to CHI(C1) after it had decoded and executed

the command. The STC,C is the acknowledgement to
the SEND computer that the RECEIVE computer did
receive the transmission. |

b) The control on C2(CH2) is cleared by the CLC to
C2(CH2). This was done to inhibit the interrupt
that normally would occur after the SEND computer
outputted the command.

c) The control is set and the flag is cleared on
CHI(C1) (from the STC, ¢ acknow!edgement)indicating

readiness to receive another transmission.

149

TWO PROCESSOR POWER FAIL CHARACTE#ISTICS

The two processors in the 20008 system have independent

power supplies and consequently, power failure interrupts in
either machine may occur at different times.

A problem arises If one compufér is powered down, and the
other machine attempts to send a2 transmission. Data will be
lost as well as possible subsequent data fransmlsstons. This

is apparently caused by stray encode and data levels while power
Is coming up.

Ty

The internal consequences of a los+ data transmission are
these:

I+ A line (Syntax, command, or input) being processed
will be garbled.

2. Output characters will be Ios+.. This problem will
be hidden by the fact that the current output
character is garbled (mux quits sending during
character).

3. Ungér rare circumstances, such commdnfcafions as echo-

' oﬁ, echo-off, phones-xx will be lost.

4. Terminals on which a carriage return has come in
may never have that line processed by the leé. The
terminal will not accept Input and the "Break Key"
must be used to re-establish communications when-
power Is returned.

150

Page two

5. The 2116 may loose the signal that indicates that the
' buffer for this user is almost empty. The terminal

will stop typing and the program will remain in 1/0
suspend. The "Break Key" must be used to re-establish
communications when power Is returned.

6. The 2116 may loose the signal that indicates that the
buffer for this user Is full. The circular nature
of the buffer wilil cause characters to be typed out
of order. The probability of this error is almost
zero.

7. |If several users are typing on the 2114 and the 2116 is
not running, all riltiplexor activity may cease
(2114 wal+ing’for fransmission to be acknowledged).
This leads to the classlic symptoms, i.e., no response
to any struck key (even break), and termination
of all ou+pq+ operations, perhaps with a space on
the line (teletype chattering).

If the primary power source fails, the two machines will go down
within milliseconds of one another and it is not so Ilikely that

any transmission will be in progress thereby being lost. | f
however, an individual processor's power Is lost via a depression
of the processor's power switch of a malfunction' in its power supply
one of the above Eympfoms Is sure to occur if there is'significant
activity on the system.

151

Page three

If the 2116 is powered down first, the 4th, 5th, and 7th
cases listed are probable. |f the 2114 i5 powered down
first, the 2nd case listed is probable. In other words,
turn off the 2114 first if the sysfeh must be powered down.

The two machines should not be turned off together.

df it is necessary to power down the system, and a common
power switch does not exist, it is necessary to power down
the 2114 prior to the 2116. Restart procedure dictates that

the 2114 is powered up .last.

152

CORE ALLOCATION IN I/0 PROCESSOR PROGRAM

0000
interrupt locations,
variables, § constants
0350 '
TELETYPE TABLES
1550
SYSTEM PROCESSOR
DRIVERS
1700
multiplexor
driver routines
3000
LINE PRINTER
DRIVER ROUTINES
3350
SYSTEM PROCESSOR
4600 SERVICE ROUTINES
5000 PHONES LOGIC
SELECTRIC CONVERSION
6200 ROUTINES
TIME BASE GENERATOR
6500 ROUTINES
7000 INITIALIZATION
2700 POWER FAIL
TELETYPE BUFFERS
250 CHAR. EACH
17700
BBL
17777

153

ImiTiALIZATION SECTION

L MPXIO) (mPyIO)

SAVE: SAVE:
REAISTERS : REGISTERS
MUX STATUS ’ MUX STATUS

XFLAG=» 1
RESTORE
 REGISTERS

{ mPx1o,1)

£ !
INITIALIZE Receive CHANNEL

FoinTEERS PRo cEsw v

o)

ICNVR

CobE
CONVERSION

XCHEN =

CRANACTER

XOBT =+ 0O
OR
CXBT —+ O

S7BETR =
ORRED

PEPNT =
PEPNT -1

154B

SUBTYPE
3 oR Y4

XOBT =+ 1
XCHAR = CR
RESET '
BUFFER FULL /R-H\ BUFFER

N\ POINTERS

N
ADD CHAR
To EUFFER '
BUFFER = \
CXBT =~ 1 PCCMNT —» -3

A = SYAL CHAR

MEXEZP

15T

COMPLETED
BUFFEX

ENBT - O
Rz TME 350

APD HVL -t

Aanp TTY®

R3 154C

oUTPUT TO
SYSTER

LPTTY-»TNUM

P a6

Y
TLPR= LTNYM . s
LPTTY -» O LPTTY{TNUH
TLSUP- O TLFR = ©
MPXEP MPXEP

154D

PRNP—— _.._,‘.,“;;_,.

e ‘ -

BITE~> 1

OTPUT, L

",

Borrp 1

Qurre™:
bATH
UNIT E

Borrd 2

OCuTPUT:
bATR
uNIT &

154E

MuLTIPLEXER QuTPuT RouTinE

CLEAR
Lwve PRITER

FLEGS

ABORT

LFERF == O

| REETORE
BOFEER

FOINTERS

MPXEP

155

[] . .
PROC i

MPXOP

INITIALIZE
POINTERS

XTPNT =
PosiTioN CF
NEXT CHAR.

A= SYNC CHAR

RB= ONMIT #

KCHAR =

et

Senpo CHewwe:r

BUFAD

FrocEss

A= CKHAER,

B= pmr =

MUXOR

MPXEFP

PSCHNT-+SCNT*+]
PEFNT=XTPNT

A = BFE+TTY

QUTPUT T2
SYsTEM

MFXEP

156B

(MPXEO)

LPERF=
XT NUM

RESET BUFFER
POIMTERS

IOET > 1

LEDRF = XTHUH

CE88T "-O,-:. :

A

NIBT O
A= PRPRM
T = UNITH

(MUX OR

: pre o m
:-E’Li .,.'.

DCBT —~> O

156C

MUXOR

!—-—A——-—-.«--.‘..f

156D

TN\
mpyYIO, I

A ar 5 DS7T P2 snd

Al EFEs,

Fo® THE 2ZND DWIA SE7 Conrold Bo#ed
‘II k4
Ds 24, .

S S DENTIERL.
Ao s
Loty rrovs

THE DEryEr
THeE En7ey
T vaf?ﬂ;,f

NOFTE >

Ds7rs.2,

DR74_SE7 CoNTRel BosRD (s 2r3/

SAVE
2,B L E
Zs;z:s TERS

GET NEW

STA7US AND

SHyL IV
PH7AL/

ger 2PPeq

& > /.
SAVE 1N
DS 7,

ZSolAre Brr |

gEr NEW
STA7LS o L3O~
LAres BSr /
gor A o
Dsrsy.

PERFAP]
Yxo®" orsn-
TN ON
DS7TPs and
DS7S/

’ "

CRE#/£2
(»

| pasr AAVE
CHING £D

afr(/

7
Dsrfiary,
AND Cneep”
APGST A/VE

CNAING LD

ontly 25"
A uST HOVE

FET NEWV
SIRTGS, STREE
”wy PPPRN 4D
OerrRer O

Bon kD

N
P

2esrore 4,8

/ E REg)srars

CLEAR DEY o=
FLrg

‘ ExXrr >

clesr

| L DB7r

A%

Y

157B

978 _SES conIRod Boakd /3 or 3/
A\

SE> '
LTB7

SET 2Ptoy
7o V#LuE
o "Pwe’

157¢C

TIHE BASE

GENERIroR)7 o &/

,’&E;/sr&es

|ser cocnrer

7‘8; o =
|\ we. pvaiinclE
FPo €75
Qar PoinreR E7 PornrEe
70 7 7NuM 7o JrwaH
OF NEx7T por Por7
P

SAVE POINTER
yo 2TNYA
anp AS7A7

No
s

BortP P2¥ow
(2787 oR

LDB7T My
Be ser/

YES

CLESR

LDE7, £EMAB7
7 TeE7
B7s

SUBepyIrVE

4 ”
78g 7

RESTORE A,

| B g £ Regs-
7ERS.

CLEAR DEYrer

FLAG

Bar1?P

AGgnny
7BgcN

®

ZINE SHSE CeneRnroR [2 oF é]

LLEAR
RDB7

“Dara ser wcwoy’s f

CDsSR)

“crerice = 4

S70P SN~
/V/W; AT DE
OF DA
SEF covrol
Boh D
GE) S7Hrees
OF D74 SE7
o7l
Bo D
5&57 Brsic DRTA TERHNAL iﬁmua/:.l
PHONKES I——— CD7TR)
ALEF7E,
R RArE2E8 ’?5‘?- 7O SEND = 1
_ (RPS)
NO
YES
Ser B/7 4 Ser B/7 v
W Busse > N Bas/C
PHoN~ES PHon £S
PARAAETER PR A ME 7 LR

S70RF

PrHoVES

\' 4

158B

PR R AT £
v P 2ReAs

ey Py T
PRRCRMETER

70 DA SEr
Convr®old BavR)

X

TIHE BHASE SENERZ72 3 oF §7

CLERAR
L7B7, LDB7|
7 HeB7

SET
7287

OUYrPar PHOVES
zuzwﬁavﬂui
Wrr "Drm= f
AND "/ans i ¢

SUB RoyrIiNE

iy #”
78 -4

J

158C

TIHE BRSE Qe ERgroR [&f OF 5/
" v

Bunmt?P '
2 riro

No

JES

AR
ENB7,
Sar MIB7

SE7 &P roR
Y IRAINS AT S
sy reRRuPr"

ourPys 7 ppp
ArTH ECHO
OFF Fo Adyx |

Borkd

SEMD CadE
“Fro” o
AHrx Boskd

c
: : » 158D

TIHE BasE geyspsroRr (5 oF s/

SUB Lo« >/ E ”7'.5 g ’

SEr Br g
AND CLEAR
ALL o7HER
Birs /iw T7yPE

Y

SEr

lecwr= g
2Dew7 = £
257 #

158E

N

PLEAR 3;74

AND SE7T

B/ /5 sy
2 ryPE

Selegrrie JNPur coNveRsioy [/ oF %/

MASK oFF
Br7 ‘ /:P”l-
ry &:7. -,
SIVE /-
XCHAR

cDa7
v Pryre

Mo

Y

s£r B g

AND CLFAR

Brrrs NV
e ad

= 7

Yes

3w
Perr L. .7

YES

S APy
CHAR. »

JEs

7
672’ z
' NO

NPy r
CHIR. =

YESs

37 2
%,

w~o

AR =
?

Y

GNPy
P)/gf'

NO

CHRC. 2
7

159A

e 8
7o

erx Dorvee

SEr
B sy
77 yAE

DELECTRIC NP7 Con YERS/ O 2 or z/
Z/

CLERR
| /B Sy
2ryPE

| B cvss

CLEq R

B
v 2 ryPE

SELECTRIC NP7 CoMVERS/o0 /3 oF g/
. ‘ K

Rl

7DD /’%/W}ze
7o £8&)

NO

yk&S
gy \%
Br7 é
v S
P
| GEr WoRD
Flory 7RBLE
HNirt Sa As
ARDZESS
Ro7A7€ &Prey Resutr
o> sH 7O s THE
Lo ERL AND [~ corns/ R~
TED
ZS0LATE Oy
Lower . e,

INPur CHARL.

ADD PoiniER
7o cnli/364
b 2 V7 Y 4
SWPLT OHAL.

N

cnBr g
EeBr ;N
I ryms

Y

159C

SELECTrE S NPo7 QONLERS DY / < oF 7 /
L

SEgT
,”4'-.’- Co V.
CAHAR-)
&
SET
n I N
A=ry >
%
\\4
SE7r
2% /33 >
g
\\4
SEr
2% /35 >
b4
4
SeEr CLEAR
2% /3 7 > N B
/A)V -77775
N
SEeEr
','4 '=' 7, >
7%
N
SEr
922323 >
¥
A
SEr (
w N
=773 re
/X

SELECTON NPr Con vl s oy S or 7/
v 2L

~
7
A4
N
AV
CLEAR
> > CNBT
o ZryPE
N
N
-~
N

159E

SELECT/C [/ P ConVERS/ON ﬂ o 7/
. v

N\ N
” . N
OLEAR SET
B é BT
- w2
éo,vz/, OHRAE. v CTYFE

ser .l
:4: cony. ;
CHAZ.

&

oL ERR XBiT
AND SE7

B/ 8 sy
2ryre

Ser B,

/v 2S7AT

SE£ 7

s

159F

SELIEC 77C s NAwTr ConbERS O / 7 o< 7/
LA

SEe7r
| oV B N
. / -~
N P ryPE
clesre
87 >
sy Zryre
cz.emk
enBr &
BT S A\
2 ryPE
N
P

159G

SELE Cr e SN Py CONLERZSs oW ,/Er OF 45/
fr\:/——

S
A4

B
v Zryps

pPLEAR
CNBr f

cCEr sy
il

159H

SElecrre NPy ConVERs/oy /P o 7/
T ¥ L4

1591

SELECTRIC 07747 Lon YiERSION / /s oF 4/

— QyrPe 7 So 70
LER, : ” , 4
“e 'i ~ | YePrce | #PxEP
. BT/ » —> o - Arx > :/Vﬁlf//{;f:/?
low ? 3 D OF -
rw LT Bo#RD ressins)
N
CLE#R
Brr s ~
oy 2r)PE -
'S OPERS- N
ON S5 owiles
CANS A T A
rreela?r”
CLER B
B ro
sy ZT)PE
7% sewn
~ , ' /W RONIZ/HG
8/ 777 e/{me. ro >
sy IrprE Mux BoARD
AN
Brr g sy SEND & ;
2rype Nosrm | =
E.Z SE7. / @/ 7o
L B7g Hearx BorsRd

160A

s,gz;,;;/e Oy CoNWERSI Sy /.? aﬁl/ '
~

S€r OB
v 2ryrEe

160B

SELLEETEIE Otr7 s CONGEASI O O T S

SET
ee 87
oy »7’/’25

\'%

sSEr
WlZ-Ta
v JTyPE

160C

Sklecric owrrvr convewsiow [of oF &)

CLERR
e B

v 7 Vo 3

Y

Y

B=0o - \\%

Ser
y

S&r
e converrey

CHAL.

e Brr
SET BTy

o A

160D

SELECTOIE O Pur CPONVEELS DN / 5 oF & /

cRB8r
N 3
sSer?

No

c'z.eﬂk
eXB7”
s 7 PE

| SE7 a7 Puyr
CHRR. 7O

Walld”

160E

DELECTRI CUTIC) CONbcrh ey (&

14

) I/ o
SUB RowriNeE SLowV

ADD Po/NER
o LY 34

OtrrPur CHREL.

\'%

TR BLE ND
O/ rPYyr EH AL

\'4

GET WokD
FRor 7ABLE
HeTH Sa
AS RARDEESS

N

o - —

75

RESqlr /s 746
CoN YERIED
OUr Pur

A AIRRETER «

160F

PoweR F5/4 //(/70 CEs7727

\7#4’1&‘ / oF 3

I/4 ” '
Do #
Sre 4 ¢ go CoprPLe7£

CESsr a7

\l/
\l/

yES

SHVE . : ?

A, B and £ SEr

ZEP/STELS ’” ”
TEL IR ALY POWFr = ¢

2

ST
FONFF=—t

Y

SAVE 4B
AND £ 2Eg)S-
TERS * PPlmp '

e RErwey .

ADDRESS \\Z

A4

SET CoRRES ~
Mz)l? B/
N CPRAL
15 DEYres
OF A DEY12£
MHS SE

o

SrorE

"srrg v

LocArroV
I[? ﬁ ’l‘/ ,y .a ”

Y

” P ” ”
CLE ¢ || M7y

STORE
“sror” /v
Lolrrion
“Pokinp

Y

FEPR Fokrs
CLF se”
O DEVICE

INTERRYPT
WAs me;_

D0 /Varl/h?_,’

PERL oA
A D rtH?)/

INTECRUPT

hee 2 oF3

START 4y~
REece,vE
CHANNEL »
O 77U LAST
DATA WokD 7D

CND Errnmed

' N
> v
l Z ,
v o\
| =l
AL 5
}bers‘ “4
CHELED
7 N
A
A ABorr
Y
] £Ss
SEND 4 A
Sywe ! NO SO,
' W LINE
CHREALCTER PRINTER ?
LE - /NSTH7E e
/37 Dse DI, 3
Boreds 7
PN
B <

161B

PceE 3 oF 3

l
Srner P \\)
/737t x / 5
/2 Dse
BoAkDS
V7
STALT &7
2 i/:b Ay / I‘>
2 N2 Dsc
Borkds
.iksnaaf
- swsraze 4,3 ngF
NO .
:zz;b z:/; /?f;/‘srf,as
BoARDS |
\ ' \V/
D | EXEC s 277 4P
/] "
S7F ,d o
“wor”
Y Locnrron "
“ Pokvn'D”)
EXST

161C

SUPPLEMENTARY NOTES ON BASIC

SYNTAX

The general process of analyzing an input to the Ianguage processor
is displayed in the section on flow charts. The annotations in the listing
explain the actions of the subroutines, while the cofe map and section on
internal Fepresentation describe the objects/structures being created or
manipulated. The BASIC syntax, in conjunction with the listing, explains
the method of identification and recognition of legitimate BASIC statements
from the input string.

Phase 2
A. Compilation

The preliminary section of CMPLE prepares for execution of the program
following a successful compilation. Null programs require no processing.
If a sequence number follows the RUN (e.g., RUN - 22¢) the interpreter's
program counter is set to the first statement whose sequence number equals
or exceeds the reference, otherwise it is set to the first statement of the
user program. |f the common area has not been allocated, ALCOM is called
to compute the space needed and move the program accordingly. |If the pro-
gram is already compiled (SYMTB=SPTR#0) PBPTR is set back to the first
word following the format stack (FCORE) and phase 2 simply reinitializes
all of the variables to undefined. If the program Iis semi-compiled
(SPTR=0, SYMTB#0) we may skip building the symboi table. Otherwise FILTB
is set to @ so PRNST wiii not terminate compilation by mistaking it for
decompilation.

" The symbol table is thenm buiit as expiained in the listing {Refer to the

flow chart for generai logic flow and to BASIC Variable Storage Allocation for

a visual example). Also, at this time statement number references are replaced
by absolute addresses._ This is facilitated by divnding the brogram into 32
parts and building an 64 word table in ERSEC containing the first statement
number and address of each part. During compilation SPTR points to the
program word being_processed. Pointers to <FILES statéhénts> are stored in

162

$ and a count of them is kept in FILCT. An error in compilation will
cause a call to DCMPL to restore the source form of the program followed
by a call to the error routine. If after a successful compilation at
least one <FILES statement> has been found, BASIC calls the system, whlch
analyzes the <FILES statements> and bullds the file table, filling all
but the fifth, sixth, ninth, tenth, eleventh and fifteenth words of each
entry.

The symbol routine has two entry points: SSYMT is ﬁsed for functions
and simple variables and ASYMT is used for array and string variables. Because
. the dimensionality of an array variable may not be known locally (e.g., MAT A=B)
some symbols may have two entries. If this is the case, the ''don't know' entry
will always be father down in the table (i.e., have a higher core address)
than its dimensioned counterpart.

B. Value

VALUE is responsible for detecting deficiencies in the symbol table,
allocating storage for the values of symbols (i.e.,'building the value table
and common area), and initializing the values of all variables exéept those
in common. Only the last of these functions is performed if a program is
already compiled when a RUN command is received. The process of building ‘
the value table is described in the listing. Note that for arrays in common,
the declared dimensions in the <COM statement> are checked against those in
the common area. |If they'match and the dynamic dimensions are consistent
(i.e., less than or equal to the declared ones) then the values are left
alone. Otherwise they are set to undefined and both sets of dimensions are
set equal to those in the <COM statement>. For strings, the physical length
is checked against the declared length and the logical length tested to be
less than or equal to the physical length. |If these tests fail the physical
length is set to the declared length and the logical length is set to zero.
Simple variables in common are left untouched.

Several errors may be encountered while bui lding the value table. The
occurrence of a null symbol (bit pattern of #) in the symbol table means
that an array symbol is used in the program, but never in such a way that its
dimensionality can be determined. If the second word of a function entry is

zero, no <DEF statement> for that function appears in the program. Arrays

163

of more than 5000 elements are not allowed. For all errors the program is
decompi led before the call to the error routine.

C. Decompilation

Programs are decompiled when any error occuts during compilation,
building of the file table, building of the value table, or when the program
is to be modified or saved in the user library. Since in the first of these
only a portion of the program is compiled, the pointer SPTR is used to determine
how much to be decompiféd (A fully compiled program always has SPTR pointing
to the first word following the program). The program is moved so that
SPROG=PBUFF (no common area). The process is explafned in the listing.

D. The Routine PRNST

PRNST is used by both CMPLE and DCMPL to scan the program and skip over
those portions not affected by compiling. PRNST assumes responsibility for
recognizing extra <FILES statements> and <COM statements> that are out of
order. |If such an error condition is encountered, SPTR is set to point
before the statement which caused the error (it hasn't been compiled). Then
PRNST calls DCMPL, which calls PRNST. The statement causing the error is
not seen this time, so PRNST and DCMPL can exit correctly.

EXECUTION
A. Main Loop

Upon complietion of the value assignment in phase 2, controi transfers to
XEC. FCORE saves a pointer to the first word following the format stack (used
in repeated RUNS of a program). After printing the program name (unless the
program was CHAINED to) XEC proceeds to initialize the file table. A buffer
the size of 2 logicai record is silocated for each file and pointers to the
word following it are placed in words 9 and 10 of the file table. The first
word of the disc address of the record in the buffer (word 5) is set to IOOOOO8
to indicate that no record is present. Word 11 is set to #, indicating that
no end-of-record/end-of-file exit has been specified. Word 15 is set to 0 as
a null protectmask; If the file is read-only a message to this effect is
printed, following the prcgram name, unless the program was CHAINED to.

164 -

~ o mwama
ig tne pirepa

-
——
)

[o .2 |
Fo i t“e } nnnnn nt!l\n o b

.
11 -3
P9

e V-3 4
Vil JLaLud -

I3
CAN X

The initial execution stacks are claimed from free user space and pointers
are set to the first constant of the first <DATA statement>, if such exists.
The internal print position counter (CHRCT) is set to zero by outputting a
carriage return. Phase 2 has already set the BASIC program pointer (PRGCT)
to the first statement to be executed.

Execution of a statement simulates the execution of an instruction on
a 'BASIC machine'. The sequence number of the statement referenced by PRGCT
is saved for possible use by the error routine. PRGCT is advanced to
reference the following statement. The type of the current statement is
used to branch to the appropriate routine via a jump table. Individual
statement routines return to the top of the loop.

B. Statement execution

<LET statement> execution consists simply of evaluating the formula,
which is known to contain at least one assignment operator and to have type
compatibility (numeric vs. string) by its acceptance by phase 1.

<IF statement> execution forks on the symbol following the IF. The
construction 'IF END' causes the following: the file reference is evaluated
and tested for existence as one of the program's requested files; if a
legitimate,referencé, the statement reference following the THEN is placed
in the end-of-file word of the file's table entry. |If not 'IF END', the
decision formula is evaluated and if true the statement reference replaces

the value of the interpreter's program counter, PRGCT, via the GOTO mechanism.

<GOTO statement> execution consists of choosing a statement reference
to replace the.program counter. For simple GOTO's this is done trivially;
for multi-branch GOTO's this is done by evaluating.the index formula and
choosing the statement reference in the corresponding list position. If the

index value lies outside the list of statement references, the program counter
remains unchanged.

165

- <GOSUB statement> execution follows the pattern for the GOTO except
that after choosing the new value for the program counter, the old value
is saved on the return stack (stack overflow generating an error condition).

<FOR statement> execution opens an active program loop. The for-stack
is searched for an entry with the same for-variable‘ if found, the entry is
elimlnated (i.e., the previous <FOR statement> with this for variable is
closed). A new entry is set on top of the for-stack (extending the for-stack
by six words if no entry was eliminated) and a pointer to the for-variable's
value entry is put»into<w°rd 1. Since the first formula in the FOR contains
an assignment operator, the formula evaluator, FORMX, initializes the for-
variable when it determines the initial value. A reference to the statement
following the <FOR statement> is put into word 6 of the for-stack entry (the
start-of-loop address). Words 2 and 3 save the result of evaluating the
limit value formula. If a step size formula appears explicitly it is evalu-
ated, otherwise 1.f is taken as the step size. In either case the value of
the step size is left in words 4 and 5 of the for-stack entry. The program
counter is set to the statement following the associated <NEXT statement>
and control transfers to the <NEXT statement> execution code to compare the
initial and limit values (see flow chart).

<NEXT statement> execution decides whether to iterate a loop or close it.
The for-stack is searched for an entry with the same for-variable. |f none
is found the statement Is ignored and control passes to the following statement.
If the entry is found, any'entries'above it (more recent entries) are eiiminated;
i.e., they are assumed to belong to nested loops which were not closed by
exceeding their limit value but exited otherwise. The value of the for-variable
is then incremented by the step size and the new value tested by subtracting
the timit value and using the sign of the step size to determine whether a
non-negative or non-positive result indicates ‘success'. If the result is
'success', the program counter is loaded from word 6 or the for-stack entry
(the reference to the statement following the <FOR STATEMENT>) If the result
is not 'success', the for-stack entry is eliminated. At this point the program
counter already points to the statement following the <NEXT statement> so exit
is simply to the main execution loop.

166

<RETURN statement> execution merely loads the program counter from the
top entry of the return stack. An error condition is generated if the return
stack is empty.

<INPUT statement> execution assigns values to the ihput list fbr both
INPUT and MAT INPUT. INITF = @ and MCNT is meaningless when executing an
<INPUT statement>; For MAT INPUT, INITF = -1 and MCNT holds the number
(in 2's complement) of elements of the current array as yet unassigned values.
IFCNT holds the ordinal number of the current item in the current record
(Note that !FCNT Is not cumulative over the entire execution of a statement
requesting input unless the request is met entirely by one line from the .
teletype).

The general approach in execution is to determine the address and type
of a variable in the input list and then atfempt to satisfy it from the
input record. When an error occurs in the above process, it Is explained
along with any necessary corrective action and the Qalue‘assignment is attempted
again, so that errors in the input record will not terminate program execution.
For simple fnput if the next variable in the list Is of numeric type its value
table address is placed into SBPTR; for érray input the base address of the
array is put‘lnto SBPTR. After.filling a simple variable the next variable
from the list is taken and a new address generated; after filling an array
element SBPTR has been advanced to the next element by the numeric input
routine so' ro new address need be calculated. When MCNT rolls over to zero
(an array has been filled) control exits to the MAT INPUT code, which may
return with another array's base address in SBPTR and MCNT reset appropriately.
If the input record is empty but the variable list is not yet exhausted a
request for additional input is made (signified by '??' rather than the
initial '?'). SERR is needed as a flag to indicate if under/overflow occurred
while converting the latest numeric input, since the error message will have
destroyed any additional information in-the input record._'When looking for a
number, the input record is scanned for the first sign (+ or =), digit, or
decimal pbint,rwhich'begins the number. Any other characters will be ignored
except the ', which will generate a recoverable error. |

167

String input requires fairly complicated analysis of the data transfer.
If the String variable does not specify the transfer length (does not have a
double subscript), then the next string in the input record is transferred in
its entirety and the logical length of the variable set appropriately. |[f the'
next string does not fit, a message is printed and a new string value requested.
If the string variable specifies the tranéfef length then exactly that much
of the next string in the input record will be transferred, either truncated or
extended by blanks as necessary to achieve the specified length. The 'next
string' in the input record begins with the next non-blank character or, if it
is a', the following character, blanks included. The string ends with the
first " (which is not part of the string) encountered or with the carriage
return (also not part of the string) if no ' appears.

Every data item in the input record must be followed by a comma or
carriage return and a comma must be followed by another data item. Failure
to observe the above will generate recoverable errors. INTMP holds the
type of data being sought, INTMP = § for a number or INTMP # 0 for a string,
and is used by the error recovery code to prepare for the entry.

<ENTER statement> execution assigns a value to a string variable or a
simple variable. 1f a '#' follows the ENTER, the user's port number (0-31)
is assigned to the first variable. The <ENTER statement> is timed and the
length of time it took to respond (in seconds) is assigned to another variable.
The input analysis proceeds much like an input statement with one variable,
with the notable exception that no error messages are printed. Instead, the
response time variable is negated if an error occurs. If the user does not
respond within the alloted time, the response time variable is set to -256.
This is non-ambiguous since response times are between | and 255 seconds
Inclusive. Alsc, for string Input feéd!ng bianks are non stripped off and
quote marks are allowed as characters.

<READ statement> execution assigns values to variables in the list.
FDATA is primed to obtaln values from either a file of the <DATA statement>s,
depending on the presence or lack of a file reference following the READ.
A mismatch in type between the variable and the next data ftem, or a string
too long to fit Into its designated destination, will generate an error
and terminate executlon. '

168

<PR(NT statement> execution consists of identifying items in the print
ist and sending the appropriate media equivaient to the teietype or disc
file. An initia
and turns off the end-qf-line mode; its absence ldentiflés and teletype write

1 file reference identifies the statement as a file write

and turns on the end-of-line mode. A comma or semicolon turns off the
end-of-line mode and generates enough blanks to advance to the next field

of 15 characters, if a teletype write. A literal string is written as a string
of characters, less quotes, and turns on the end-of-line mode if a teletype
write. An END writes an end-of-file mark on the file; it cannot occur in a
teletype write. Formulas in the print string are evaluated and the results
examined. Formulas which are string variables evaluate to their contents,
which is then treated as a literal string. |f not a string variable but
within a file write statement, the floating point value of the formula is
written on the file in its two-word binary representation. If a teletype
write, floating point values are converted to an ASCI! character string of the
decimal equivalent. TAB can only occur in a teletype wfite; the evaluation

of the TAB itself produces the desired action, so the value returned is

thrown away, along with a following comma If one exits. For a teletype write
~all formulas turn on the end-of-line mode. If the end-of-1ine mode is on
after processing the last print item, a carriage return-line feed is printed

(This can only occur in a teletype write).

Before writing a quantity BASIC insures that sufficient space is
available to accommodate it. CHRCT keeps_track of the current print position
on the teletype line (@-71). |If the character string sent to the teletype
would require non-blank characters to be printed past position 71, a
carriage return-line feed is output first and CHRCT set to #. If an item
sent to a file requires more words than remain in the current record, BASIC
automatically advances to the next record if in serial mode or exits to the

end-of-record code if In record mode.

<PRINT USING statement> execution sends formatted output to the teletype.
TEMP] is set to point to the first operand, NCH is set to the number of
characters in the format string for a partial string or 0 for a full string,
B = > the first word of the format sfring and A = character of the string

to start with. Then the formatter is caiied, and it takes care of

169

retrieving the operands, formatting their values, and outputting them.

See description of formatter elsewhere.

<RESTORE statement> execution resets the pointers to the DATA block.
Beginning at the statement specified, or at the first statement in the program
if none is specified, the pointers are set to the first <DATA statement>

found, or to the out-of-data condition if none is found.

<END statement> and <STOP statement> execution terminates the program
run. Since each requested file has a one record buffer in core, the last
record written on a file does not exist on the disc in its updated form.
Thus END and STOP must force the buffer of each read/write file onto its
proper disc block. Also, the last change date for each file must be updated
if any records have been changed. Following this, the word DONE is sent to

the teletype and control exits to the scheduler.

<CHAIN statement> execution consists of calling the CHAIN library

routine to get the named program from the disc and start execution of it.

<ASSIGN statement> execution changes the file referred to by a
specified file number. After interpreting the file name and file
number and dumping the last record of the previous file, it calls the
ASSIGN library routine to update the last change date for the previous
file and put information for the new file in the file table. Control is
transferred back to BASIC to set the return code in the variable specified

for it and set the protectmask in the file table if one is specified.

<MAT statement> execution involves many disparate tasks. The forms
of the <MAT statement> may be classified as array 1/0, array assignment,
array initialization, and the array functions TRN and INV. For conciseness

in coding, all forms other than array 1/0 use some common program segments,
Array 1/0 prepares each array in the list in the same fashion. SBPTR is

set to the dynamic dimensions of the array (base address -2) and the operator

following the array identifier is picked up for examination. At this point

170

MAT
E

[2Y
eV

PRINT USING calls the formatter just as PRINT USING does. The
P th

4-3-‘.& HIS

lv\ e

rout

in the Tormatter takes care of picking up the eiements

of the array one by one, in rows. MAT PRINT follows a separate path
than MAT READ and MAT INPUT. The following operator is noted as
spacing the elements (comma or end-of-statement) or packing them
(semicolon). VCHK examines the array and generates an error if any

of its elements have value 'undefined'. The dynamic row and column
blengths are saved in 2's complement. |f the MAT PRINT references a
file, the array elements are written one by one in rows, each element
in its two-word binary form. If the MAT PRINT references the teletype,
rows are double spaced and the elements within a row are spaced or
packed as noted above, each element in its ASCI| decimal form. Both
MAT READ and MAT INPUT redimension the array if the following operator
is a left bracket (i.e., begins a matrix subscript). MCNT is set to
the number of elements in the array, in 2's complement. MAT READ calls
FDATA for element values while MAT INPUT transfers to the <INPUT STATEMENT>
execution to obtain element values. MT@ acts as a flag for MAT INPUT,
differentiating the first call for input from subsequeht calls and
saving the input character following the last element value used from
the input record. After completing 1/0 on an array, a common section
of code prepares the next array in the list or, if no more remain,
terminates the statement execution. MAT INPUT returns to the input code
to clean up there, MAT PRINT and MAT READ return directly to the main

execution loop.

Array assignment consists of preparing the destination and source arrays
and executing a loop which assigns the destination array elements one by one.
The general procedure is to assign a jump to the element computation code to |
MOP, an exit address to MEXIT to use after completing the destination array,
and a count of the elements to MCNT, in 2's complement. The code to compute an
element returns to MLOP1, MLOP2, or MLOP3 depending on the number of arrays
involved which require updating of the element address. Each operation checks
the dimensions of the arfays involved to insure that the operation is well-
defined; and all elements of the source matrices are checked to make sure none

have value 'undefined'. Matrix multiplication does not use the element

171

computation loop, instead it uses row and colum counters to tell when
it is done and computes destination array elements by innter products
of the rows and columns of its source matrices.

Array initialization also uses the element computation loop. The
initialization program first redimensions the destination array (if a
‘matrix subscript I's given) and then chooses the épproprlate‘cdnStant for the
element values. |IDN acts like ZER except that it Insists that the destination
array be 'square' and sets a special counter to choose 1.4 for the value of
main diagonal elements. |

TRN and INV are handled apart from the other matrix functions. For
both of these, the elements of the source matrix are checked against the
'undefined value'. The source and destination matrices are then checked for
transpositional compatibility. If TRN, tﬁen proceed tb transfer the columns
of the source matrix to the rows of the destination matrix.. }

 INV uses the Gauss-Jordan algorithm with row pivoting. This procedure
converts'a copy of the source matrix into the identity matrixrand converts
an identity matrix into the inverse by applying the same setrof operations
to both. Since the source matrix is destroyed in the process, it is first
copied into free user space and the copy treated thereafter as the source. A
side effect of the copying produces the element of largest absolute value, which
is used to compute a lower bound on the allowable magnitude of pivot elements.
INV then calls iDN to set the destination matrix to an identity matrix, having
the side effect of checking that the matrix is square.

Diagonalization of the source matrix and production of the inverse
now proceeds on & row-by-row basis. The next unreduced column of the source
is searched for the pivot element (the largest in magnitude). If necessary,
rows are swapped to put the pivot element on the main diagonal (the correspond-
ing rows of the destination matrix must also be swapped). |If the pivot
element is smaller in magnitude than the previously computed lower bound, the
matrix is too nearly singular to invert and execution is terminated. Other-
wise, the pivot rows of both matrices are divided through by the pivot element.

172

Now all other elements in the pivot column are elimlnated'b9 subtracting the
appropriate muitipie of the pivot row from each of the other rows. Advantage
is taken of those pivot column elements which are already zero and of the
fact that elements of the plvot row to the left of the pivot column have

been set to zero by preyious steps. After diagohalizatlon of the source

matrix and consequent creation of the inverse, the user space occupied by
the source copy is released.

The other statement types are declarative in nature. Execution of them
consists solely of skipping over to the statement following.

173

FORMATTER

Upon enfry, B contains the address of the format string and A
contains an index describing which character of the string the formatter
should begin with. (This is for substring expresSionsJ The variable
NCH will be zero if the entire string from character (A) on is to be

considered. Otherwise it will contain a character count.

The routine grabs off the carriage control character, if any, and
saves it. It then searches for a delimiting character (5/', ', ' or
end of string) and processes the specification up to that delimiter. The
characters of the specification are examined and stored 1 character/word
on a stack. Replicators are converted to binary and negated. Flags are
set to indicate string, integer, fixed or floating point specifications.
Literal strings are outputted directly from the stack and absence of any
flag being set indicates a blank specification. The stack is then processed
from top to bottom and each character or binary replicator and character
causes approprlate output.

Strings are handled in a straight forward manner and may be output
only if the string flag is set. Numbers are converted from binary to
decimal and are stored 1 decimal digit/word in a number holding buffer.
For integer or fixed specifications, the numbers are stored with decimal
exponent of § and output directly according to the specification. For a
floating specification, the number is stored with a maximum of 7 digits
to the left of the decimal point and the decimal exponent is set accord-
ingly. The number is then output in a straight forward manner.

When the stack has been exhausted, the de11m1ter(s) are processed.
If the end of the string has been reached, and there remain expre551ons
to output, the string is reprocessed from the beginning. If the end has
not been reached, the next delimiter is found and the specification is
processed as above. If there were no more éxpreésions to output the
carriage control character is processed and execution terminates.

174-

Grouped specifications are handled by saving pointers to the
beginning of the group and upon notice of the end, returning and
reprocessing the entire group.

Formatter Utility Routines:

MTL1 expects an unpacked floating point number in MANT1, MANTZ
and EXP and returns ‘a number there which has been made greater than 1.
EXPON holds the count of multiplicationsnecessary to make the number
greater than 1.

DTL1 expects an unpacked floating point number in MANT1, MANT2
and EXP and returns a number there on return. The A register contains

a count of the number of divides necessary to make the mumber less than
1. "

ROUND expects an unpacked floating point number in MANT1, MANT2
or EXP and rounds the number in the number holding buffer.

OUTBE and OUTCL are self explanatory.

DSRCH searches the format string starting at character pointed to
by DP for a delimiter. If one is found, it is returned in the A register,
and DP points to its location in the string. If the end of the string is
reached and no delimiter is found, DP points one character past the end
of the string.

MCHAR expects the address of a character in the A registér. It
returns that character in the A register. If the 0-Bit is set, blanks
are ignored and the first non-blank character after that address is
returned. In this case, if a delimiter is reached, the address of this

delimiter (i.e., DP) is returned in the A register.

175

" EVEXP is responsibje for extracting the next variable to be output
by the formatter. FFLG determines whether this Is a MAT PRINT USING or
a PRINT USING statement. For matrices, the first time EVEXP is called
it verifies that all array elements are valid and returns the first
element. Subsequant calls to EVEXP return afray elements one at a time
on a row by row basis. Numerical values are returned in the A and B
registers and strings are returned with a pointer in the A register and
the number of characters in the B register. EVEXP also evaluates the
functions TAB, LIN and SPA and then goes to the next operand.

176

NOTES ON THE ERROR ROUTINES

Errors are handled routine SERR, reached by a jump through the base
page table beginning at SERRS. A JSB SERRS + i,] signifies detection of
error i. The alternative bases RERRS, FERRS and WERRS are conveniences to
denote subsections of the table used for run-time errors, format errors
and warning-only errors. After printing a format error message, the
offending format string is also printed. The actions taken by SERR are
explained in the stting; but notice that the 'BAD INPUT' error is
singled out, its processing is completed by the.input execution routine
upon return from SERR.

Syntéx errors detected while in tape mode are handled by accepting
error psuedo-statements in place of the erroneous statements. Since these
psuedo-statements will be replaced by any subsequently rece!ved statements
with the same line number, provision is made In FNDPS, which returns the
locatcon of a statement when given its sequence number, to decrement the
error counter (ERRCT) whenever the statement found is an error psuedo-
statement (an error psuedo-statement will only be found by FNDPS when
another statement with the same sequence number is ready to rep]éce it).
Over/underflows detected during number conversions in syntax mode cause
warning messages to be issued only after accepting the statement, if it
is otherwise correct. Since no printing can be done while In tape mode,
the routine CHOUF suppresses setting of the flag and these potential
errors are not reported when in tape mode.

177

SYNTAX (Phase 1)

g

USE+>

System Base Page

SPROG=PBUFF-

Subroutine_Entry v
Points and User Variable

Previously - entered
Program Statements

PBPTR=SBUFA-

SBPTR+ | -

Current Statement

Buffer (185 Words)

SYNTQ»

SSTAK» ¢ -

LWAUS~+

Syntax Stack

Available User Space

77777

BASIC and System

 BASIC Core Maps

User Swap Area
(102540 Words)

178

Pointers

USE Fixed, first word of
user swap area.

PBUFF Fixed, first word of

program space.

SPROG Fixed, first word of
‘ program.

SBUFA Variable, first word o
Statement being syntax

PBPTR Variable, first word ol
program space not used
previously accepted
program statements.

SBPTR Variable, first word
not used by statement
being syntaxed.

SYNTQ Variable, first word
of syntax stack.

SSTAK Variable, last word of
syntax stack.

LWAUS Fixed, first word not
'in user swap area.

COMPILATION (Phase I1)

Compilation

Value Storage Allocation

g 4
System Base Page SystembBase Page
USE> USE> '
Subroutine Entry Subroufiﬂe Entry
Points & User Points & User
Variables Variables
PBUFF+ |Common Area PBUFF+| Common Area
SPROG> [BASIC SPROG+| BASIC
SPTR+ |Program { Program
+SYMTB SPTR=SYMTB>
Symbol Symbol
Table _ _ _ _ _ | Table ,
+PBPTR +FILTB
File Table ,
Available »
{User Space «VALTE
- Yalue Table _ _ |
[BASIC and Available
system User Space
37777 LWAUS+>
BASIC and
System
37777
SPROG - Variable, first word of program
SYMTB - Variable, first word of symbol table.
SPTR - Variable, word of program being processed.
FILTB - Variable, first word of file table. g
VALTB - Variable, first word of symbol value table
(FILTB = VALTB if no <FILES statement> is in program) "
PBPTR - Variable, first word available of user space.
SYMTB and SPTR are not changed after compilation.
FILTB and VALTB are not changed after allocating value storage.

EXECUTION (Phase I}1)

IFSS - Variable, first word of format

. -~ stack.
g ' FCORE - Variable, first word not USed’by
System Base Page| Ph"‘_"
. RTRNQ - Variable, bottom of return stack
USE~+ - (first word preceding return stack)
Subroutine Entry - RTNST « Varisble, top of return stack
Points § User - FORQ - Varfable, bottom of for-stack
Variables ' (sixth word preceding for-stack)
PBUFF; Common Area 5 : FORST - Variable, top of for-stack

(points to latest 6-word entry)

SPROG? BAS|C_ THPST - Variable, top of temporary stack

, Program ‘ ") » ~ (points to latest 2-word entry)
SYMTBH ' _ - OPTRQ - Variable, bottom of operator stack.
Symbol Table - OPDST - Variable, top of operand stack.
FILTBA o PBPTR - Variable, top of operator stack.
File Table .

VALTBY . Value Table

IFSS % - Vermst Stjek

+FCORE

File Buffers SRTRNG
' . +RTNST
9 wor.s Ra;urn,Stagk <FORQ
For-Stack. *FORﬁTT
Temporary Stack {«TMPST
. Operator/Operand *OPTRQ ‘
; Stack +0PDST
‘ ' +~PBPTR
Available :
User Space
LWAUSH
: BASIC and
! System v
7777 | - L o .

FCORE, RTknq; and FORQ ére not changed after ihftlittng execution,

Entries on the operator and operandjstaqk are one word each and interleave

(i.e., alternate words belong to one stack). All stacks beyond the return stack
grow and shrink as nééﬂpd_sb !omgjgs user space t;fivallahle.“

—

I,

T

BASIC Tnveinal Ecwuuﬂis‘tin

BASIC statements are represented internally by the sequence number followed

by the length in words (

ome

ncluding th

[
L]

equence number and length words) foliowed

by the statement body. The statement body is composed almost entirely of operator-
operand pairs which occupy from one to three words each. Null operands and
operators are used when necessary to maintain the operatof-oPerand correspondence.
The operator resides in bits 14~9 of a word; the operand uses bit 15, bits 8-9,

and sometimes whole additional words immediately following.

'Variable' Operands

g | operator g Null Operand Bits 8-0 are generally divided
' into two fields as follows:

@ | Operator | Name! @ String Variable a name field (bits 8-4) and
a type field (bits 3-@#). The

g | Operator | Name!l-3 Array Variable name field holds a value
between 1 and 328 corresponding

? | Operator | Name|4-18g Simple Variable to A-Z (for functions,

— corresponding to FNA through
@ T Operator [Name] 174 Function Variable FNZ). A type of § identifies
! y

a string variable (e.g. 3,0
represents C$). Types 1 and 2
identify array variables of dimensionality one and two respectively (e.g. 4,2
represents D[*,*]) while type 3 identifies an array variable whose dimensionality
cannot be determined by its immediate context. Type L identifies a simple variable
with no digit (e.g. 1,4 represents A) while types 5-168 identify simple variables
whose names include the digit ¢~910 respectively (e.g. 6,7 represents F2). Type
178 identifies a programmer-defined function (e.g. 328, 178 represents FNZ),

T*ﬁl‘!’r‘f

'Constant' Operands

1 | Operator : Name h-le' Parameter

1 { Operator

Name ._l78

Pre-defined Function

1 | Operator

. , Formal Dimension/

Binary Integer

Branch Address

List

Binary Integer

I

Numerical Constant

String Constant

Character

] I Operator g
High Mantissa
Low Mant Exponent
" -
g1 g-724
Cha}acter,

‘program are so represented).
start of a string constant.

indicating the number of characters In the constant. The

per word, and the closing

" is not explicitly represented

182

A parameter (which can

only appear inside a

<DEF statement>) differs
from a simple variable
only in that bit 15 is

set. The name of a pre-
defined function may range,
in the standard systenm,
from 1 to 2)8 or 248 to
305 (TAB to COS or ZER to
TRN). A flagged (bit 15
set) operand of 3 identifies
either a formal dimension

in a <DIM statement> or <COM
statement> (value in following
word) or a branch address 1ist
(one or more statement sequence
numbers in the following words
A flagged operand of @ indicates
that the following two words hold
a floating-point constant (all
numerical constants within a

The operator with Internal code 1 is "', which signals the
The operand portion of the word has a value from & to 721¢,

string follows, two characters
internally.

The table below gives the internal representation of the BASIC operators.,
Those operators which manipuiate the formula evaluation stack during execution

have associated priorities. All numbers are in octal notation.

BASICVOperators

CODE PRIORITY ASCII CODE PRIORITY ASCII GODE ASC!|
']] (end-of- _

formula) 26 5 < 54 FOR
p " 27 5 # 55 NEXT
2 , | 30 5 =(equal)| 56 GOSUB
3 3 31 = " (unused)| 57 RETURN
B #(fFile) LR B UMD ced) 68 END
5 (unused) 33 3 LLEN N STOP
6 (unused)_?ﬁ’ § BN - 162 DATA
7 (unused) 85 6 MAX 63 INPUT
19 1) % 5 o 64 READ
i 1 1 37 5 >= 65 PRINT
12 13(1) [. i <= 66 RESTORE
13 13(1) (bi 13 NoT 67 MAT
14 1 +(unary) 42 u ASSIGN {28 FiEs
15 n - (unary} 43 v N\;"A;d X 71 CHAIN
16 2 , (subscript) 44 s 72 ENTER
17 2 =(assignment} 45 : COM 73 VIMPLIED' LET
20 7 + b LET 74 OF
21 7 - 47 DIM 75 THEN
22 19 * 59 DEF 76 70
23 19 / 5] | REM 77 STEP
24 12 4 52 GOTO
25 5 > 53 IF

183

Some examples of BASIC statements in their internal form are given below. Note
that actual function parameter formulas, <DEF statements> formulas, and subscript
formulas appearing In <MAT st&tﬁentv- ,roqdlte ead-of -formula operétors to signal
their end whereas most formulas end elther with the first operator which does not
manipulate the formula evl_lua_tlﬁns_tack or with the end of the statement. Note
also that constants are cm%du“i%dxslgned ‘only within & <DATA statement>. ASCHi
numbers are decimal, internal mabcrs are octal in the presentatlbn below.

19 me-v-(s-nfganmI

12 sequence number 28 DIM A5], cl6,12]
21 length . ' : o
o8 2716 Lerw S R .
g 1703 b = oy - e
gi13: z; 4 (8 S ek (5 ¢ :;K,
9136, 3 4 - ¢ 5]
alw :G) gn:‘r ' g J _
1124 | 9 + . | P z_k 3 ,
J30009 3.0 ' | e 3
g9daaL | o
#l2z 112 *A o 1161 [3
gi12 (11 |4 [. "
g6 12 1 4 »J P ”’ ”
gi26 (13 |4 +K 4
6.6 . |o (end-of-formula)
gl] 1

30 DEF FNC (X) = X + Ag

g REM ARK
36] 4w
’ ,, 5
(5013 |i7 vET - 8|51 |ug a0
1113130 | & LA gugs22 bR
g|1g g) pLskog K ©
117138 | & =, X
w15 7L f
¢ a a Lot
56 GOTO A OF 1g, 20, 34 64 DATA -1, "‘ABC"
62 50 74 uj
7 7 n i
52! Ilh S ﬁ; |62 |o o
13 ‘ \oguds
187
2 L)
24 g2 g ’
36) l] 3
pLgsga A B
78 MAT READ #K;AlI] gLiigg
|ﬂ6 /f.‘
" '
g(67| |o .
g |64))
gl 4013 |4 # K
P A7
gl 3{1[1 LAY
@121 |4 v
g g J‘&-g
gin) 1y
185

" PROGRAM FRAGMENT

DEF FNC

__§__m«mm_ |

X
g
- X
A
C

*

+
L

- BADEL yarlaulc;Stpgggn-A}tncatfaa '

.

SYMBOL TABLE FRAGMENT

Al*] dimensional ity p

Al1]

A[2]

i A[] dimensionality A[3]
: -1locally unknown

value of
simple variable
declared
dimensions
dynamic

dimensions

active

elements

inactive
element

physical length/ -
logical length

character

string

The symbol table consists of two-word entries, one for each unique symbol occurring
in the user's program. The first word of an entry is the lnternal representation of
the symbol as previously described. The second word of the entry is a pointer to the
value of the symbol. For a programmer-defined function the value is the defining
formula in the <DEF statement>. The value &f a simple variable is a two-word
floating paint number. The value polnter of an array is its base address (i.e. the
address of its first e!enew.,, when an array |§ dynamicaliy redimensioned to occupy
‘less than its physically allocated storage, it occupnes a contiguous block justified
to the low core portion of its element space. Since array symbols may not have
dimensionality locally defined (e.g. MAT A=B), array symbols may have a ''don't know'"
entry in the symbol table in addition to the dimensioned entry. Both entries have
the same value pointer. The declared and dynamic dimensions occupy the four words
preceding the element space in the value table. The value of a string is also its
base address. A string is a character array‘(packed two elements per word in contrast
to the two words per element for numerical arrays). Its physical (declared) length
and logical (dynamic) length occupy the word immediately preceding its value space.

The value table and common area are slmply the concatenation of the values for
the symbols in the program, excepting programmer-defined functions.

read-only bit—
dirty record bit__[J

~dirty file bit

FILE TABLE ENTRY

number of records In file

logical record size

“disc or drum address
of last logicpl record

disc or drum address

of record in file buffer .

- file base disc
~or drum address

[

o
J

EOF/EOR -exit address

file

name

protect mask

FILE BUFFER

| 4

ltength
specified
by second -

-word in

file table

-1 -
E Eal i

r-

The file table consists of one fifteen-word entry for each file or
place-holder ("*'') in the FjLES statements. Bit 15 of the first word Is
set if another user had read/write access to the file when It was reques ted
(except for Axxx users) or if the file is a library file not being accessed
by its owner. Bft 15 of the.second word is set when an item is stored in
the buffer, so t5at only records which are‘ehaﬁéed will be written back to
the disc or drum. Bit 14 of the second word is set when a record is written
to disc or drum and is used during program termination as a basis for up-

dating the last changed date word in the file's directory entry.

A logical record-sized buffer is assoclated with eachlfile table entry,
and is accessed through pointers in the entry. An intra-buffer pointer
designétes the next portion of the record to be written or read. A fixed
pointer to the first word not in the buffer acts as a bound on the intra-

buffer pointer.

FILE CONTENTS

There are 4 data types possible in a file. A string has bit 9=1 and the
length in characters in the lowest 7 bits of the first word, followed by the
string packed 2 characters per word. A two-word floating point number has the
upper two bits of the first word different, except for a zero, which has both
words zero. An end-of-file is a -1, and an end-of-record is a -2, in the first

word.

Data written to or read from a file is first exclusively ORed with the
fifteenth word of the file table entry. This has no effect, of course, unless
that .word is nonzero. It will be nonzero only if an ASSIGN statement has been
used to specify the file, and the statement included a protect mask pafameter.
End-of-file marks, end-of-record marks, and the fifst word of strings are not
masked. Floating point numbers are masked when they are written to or read
from the file buffer. Strings are masked when the buffer is read from or

written to the disc or drum.

189

B upmfc' Last chqnge Date Rout!ne

Each file and program entry in the dlrectary has a word contalning the
hour of the year whcn the entry was last changad. It Is necessary to update
this word for files when a program Is terminated for any of the following
reasons: normal termination, CHAINIng to a new:program, error termination,
abort and when a SLEEP Qr'HlBEﬂﬂATf'cqmmand is issued.

The DFCHK'bit;iu‘thg,user'é ?FLAG«word in his TTY table is set to 1 if
‘there were any filés statements'In the program. This determines whether the
LCD routine will be called. M\en it is, each file table entry is examined.
If bit 14 of word 2=1, the file has been written on, so the last change date
must be updated. This bit Is set by the WRBUF routine.

The only abnormality In calling LCD occurs following an abort. The user
is taken off the queue and re-inserted with priority 0 to run a core resident
routine called ABUCD which wrltes the user to the swap track calls LCD, and
returns to the scheduler to fhﬁsh aborting the user.

BASIC Run-Time Stacks

Return Stack

/\g_g

_return address

RTRNQ>

RTNST-> 9 words

For-Stack Entry

,/r- S

.
. -
i

pointer to valueé
of for-variable °

limit two-word

value -] flosting point

step 1 numbers

size

b ——

¢

\-__/'\

Program Fragment

F—\—g/\

<FOR statement>

succeeding
statement

_S/"‘\

The return stack is of fixed
length, holding from # to 9
one-word entries at any time.

An entry is the absolute address
of the statement following the
GOSUB which placed the entry on
the stack. '

The for-stack is of variable
length, containing one six-word
entry for each for-loop which

is currently active. Since the
limit value and step size are
kept in the entry, they may not
be changed within the for-loop.
The value of the for-variable is
the one kept in the value table,
so this may be altered by
statements within the for-loop.

OPERATOR/OPERAND STACK FRAGMENTS

LET A = B+C*D T~ l
—— T T~ TMPST* Floating point FT
f § number ~ ' .) TEMPORARY
S S |+ 4 STACK
Temporary :
Stack p A
J A (OPTRQ- (unused) 5
‘ A T
OPTRQ> (unused) ; ~ OPDST+; Y BackD :
y B start-of- . !
> formula operatori
start-of ‘ 7 |
formula operator, (unused) |
- TPEraten _ |
/e ; PBPTR>: =
b e e
f i available user
; f LWAUS~ | ~)
0PDST» ‘ L
| !
! D ;
R
; + ;
- (unused) ‘ — '
e , TEMPORARY
PBPTR» * - i {:::::::i}iiiii:i::f STACK
available user | - OPDST- -
space
LWAUS» ~ - i"'—'*} (unused)
. -
" e \\\\\‘J 0PTRQ+] (unused) +PBPTR

All operands (checked words) are addresses (i.e., C represents a pointer to
the value of the simple variable C). Bits 7 - @ of an operator entry contain the
operatofs identifying code (See 'Basic Operators' Table) while bits 15-8 contain
the operator's priority. Note the é!teraate-wsrd structure of the stacks. The
temporary stack holds intermediate values during the formula evaluation.

BASIC Language Processor Tables

The two areas of core labelled SBJTB and USER contain the mechanlsm allownng
different users to exercise different portions of the language processor without
interference. The language processor makes its subroutine calls to the labels in
the area beginning with USER. The word following a subroutine entry point is an
indirect jump through the appropriate address in the area following SBJTB. When
a user is displaced by the system, his reglsters are saved at USER and the area of
core from USER to PBPTR,! inclusive is dumped onto his track of the disc. Thus,

a complete record of the language processor's status with respect to him is
preserved. The only thing particular to a user which remains when he is swapped
out is his own teletype table.

The tables headed by POFTB (uhich must be in base page), SYNTB, XECTB, and
FOJT are jump tables. The method in the last three cases is to compute a decision
number, add the base address of the table, and transfer through the entry thus
designated. The pre-defined function table Is used by the formula evaluator to
enter the code for evaluating pre-defined functions.

The tables headed by‘QUOTE and MCBQS have sewaral uses. Their entries are
explained in the listing and thelr use will be explained in thos routines which

access them. The Error Jump Table (at SERRS) is explained along with the error
routines.

183

icuku uv
.lLf.‘Q NE W

‘?&abkk«\

- N
- : ‘”‘ \\. N
< emfeloeh
€ €2o€s? A

s AboR1tl
EKCOR CcLEANLP

(ypeem@at €
. TRoCuAM

‘UU\EQLOMN € i
SERVENCE ’

NuMmEER

veLee
STIACMENT v
P KEFEKEQT?{"

1
(E" \1)
N

SYNTAX

. ————— L A EAGEEn b %A e g o 541
.

e cwme @ rwan cemcmecwns -

..

“perekmine

TR SAlemeny \
! Vo oxyee

-

“AMALYRE
STATLMENT

Q&smnrm L

!
| AYSuME

'Let’

Ay siement]

Yo TROGLAM

— e ———————

"eMbED EKKrOg
L .} A PROGEAM -

Compl LAT 1o - (' ok q)

. _
\[(merLe)

Pi

/Nvu, ; o
euT 10
Po 3 >-— .
N °““" ("o !)
‘ :M:E SlNL'mx,

l SHRie Rt
b NImBER

— i
L

- MSALVLeyw
A&of{ls !

,A'\

J10RAGC
Acw;mw

m—— e

. DE T eMINE
CoMMO N
.‘Aﬂ'tpt LiLE

FINo SIAETING
Aopvels of :
(& ZYFTN' E ’

/)\\ feeT crtae |
< vmmf’uebv \._..’ B =V 1IN P_
\/ g ,7F e ,

e

[

T A

Se l\'l .

SymBoL 1ARE
PoinTERS

CoHPILAT 10N (L of)

A
!Couu't ;l-.w;;u{
;oF LA TR T AT B
i:u PROGEAM

I

SuiLd 1ABLE &
HATEment noS.
ARG STRETI NG
1ADLRES L2

1

\ j e .
\Vtfaduidl (e VORT
T IS RE-CNWEREDL
== = = ===~ ORecY 3T
1wy Ne@iAwy

ey _evvt_ MEWE

}io(ﬁﬂ"\\ . ”r-;)-i'-.’
~ :J""EGEQ,./) J/

N

\\/

- — s - v—— _.-V."‘

N

- “'5

MovE 90 NE'I

_1

| WoRD oF ' s e ’PZ 3
l. STATERENT STAEmenT | /
L :
L : e ittt I
) .selmn for TN uhvw.e ‘
’ ~

| REFERENCE wnN,
L%sow.e AL icss,

s-m'ir.u(-.m' REFELENCED ' Fouwd?
\ F ‘"\S“ED H ; t ,51”‘““‘ ’ .)

[P |

:D: w.éauPaLe

PRo6eAm

S S

£ELOR EXIT)
"

Comnanon (3 of 4)

PR —— ———

P [pove wheT |
e) N i puNLYID i
T FuNCTIgn ? S ' !
\ Fustuinm 2 - CefunTion i PeFiINTTION |
S N\ rARIRBE ‘ ' ‘
N N e e et e s
A ?
/ Ny / tomrue [?7;
S TAT I, \\ ¢iR1NG N

VALIALLE

A

R AEYRT

- , N 4 f'A ColariLe f C i
N ARRRY kY \/'

N T/ VARWELE
N .

iSE toND worD B

N IN symdoL -] P !
MéLe enikt —\
€ -l :

. = _
. Avp .10 e
NN FoR Aveve __1??’

!

A
ST FoR

[Qmwe VARIAGLE]
| HROM Fok. queug
TAd BUSEl AS

P SiMPLE vARIABLE

T

\v;)

COMPiLATION

©

‘oM

/\\ r
oQ bm? 2

DEAVITXLIY / Dkt‘;&iﬁut
\\’Jiub”jy PROGUAM
. [eeeoe eni1)

| NEGATE PoNTEe !

i
ho oM I
S TN{RTIAN, f :

1
o |
)
1
’

| vowvER PAST
AMENSIoNS

P>

(4 of 4)

@ CTolien PRMST

. . ENGLUNLKS TMe
T T T END of AAtmewnt

(eNDITHO N 27 EYS
0 HeKE

~ ToMPL
RO — e
PeEComr ILE
1€ M _
S‘lﬁ‘Nb’N‘r M\ PeoGeAM ERKOR ENTT
Y 4

e P

K RAY

| FILTD S enp
‘e Symlar

! TAbLe

AEL S
“2E LombPiLiNg

,-/,’N'\, varb _]

Enes eND bF |

S‘imwems/)"" SYMBOL TABLE |

/

Y ']
reide

‘comPILE

FiLtec

SIATEMENTS
”———F—J

T T

\-

It o
VALVE 4L

DecomPiLATION

v — . i RePLACE %sma&'
4 ’ fa > 10 SYmbeL
'\\DCM?‘L /) ‘ .D " | TAE wak |

" /[“’” S L VARIRLLE MAKe,
" I

P _ 'rvame Poasit)\
g Ny Y A
e d? . P L & . er\\ 1
h | . 0

| . :
j FrocRAm e omr >P2)

N e ! ‘

FSt‘\ CFLAG] 2 XMTE € o PRI

| X ' ! MONE 10

i BN 2o AW | (PRoGEAM , L Ne Weld |

TIRAE worD L uncontILED) ! or <)
! ‘ (o) 2 «‘K“’.“E“T

L

I
L.

A

oLl T Y
YRo6RAM

- ENO '
"\w Peealam >— D3
N

—— e e s

r “medE PE o
SPIR € FILTRS Mo ?:“ﬂ L
Podrated 10 . Ohce oV } i

SIM f> Y T
VAR AL \P 9

~peRsE R, |
L RRST Ceex FoR N\ | [T
JANmiALizE \ ABRTS i MONE PAST

L PROCETS NEXT “_ ;
 IAERenT /st e ; DIMENS (OnS

-~/ negE whed] - ;

be — = - =ReewIEKED B - -
A DIRECTLY RETURN Y

IABLE? e ey

X

. . v .
ookAm ™ N _ , '
INEGeE S

. e

Faove 7o Myt - REPLACE | .
MOVE 1n NEvT) F :N.); NN AHGDLLE ADDRESS © UsSiNG >
JF SN Tk siemen T \STRIERenT?
\(NOMC ER]
Y

T WORL of
i PL
B \$

1 ST eMLnT

(Pen s;'_\

.T_,/

(SeT envT
Foe END-OF-
$‘ﬁ1Eﬂ€NT

|

FUL T & -
COMSN & YSeiN&o

FWPte vRLT

Be speoe

@

[.Lmn € SWEMENT #

INSPIR =D NexT
STRTEMENT

A< oPeemiog

’COMSN g o To
| SAY NoW-Com
SIRTEME SEEN

l

REM, DA
OR ZMAGE?

Ger NERT
OPERATIR

FRNST

PRNST BYIS IO
RERE on jHE

- = — = <{END.0F STATEMENT

LOND IO VIR iING
Otmen,

DecomPILE

(I ot 'I.)

SAYE PowteR SKIP ovER
T Fwes L} pect oF
STIATENENT STATEMENT
INFSTE |
Wowé SR
USESN & =t

WSING SEN)

&

<l

P2

PRNST (1 of :)

MOVE O
NEXT weed
OF GIMTeMenT

S

eND-0F
STAEmeENT ey

GET
OVERATOR

LPRCE ONER

STR We @
CONSIANT

SET E=|
Folk Now-
VAR 1ABLE
oPeRAND
.. SPRLE Onveg ;
e Y \“.
NOMBER? | PLoki NG { p-,/

CoINT Lonst N

ReTURN

201

. SS\;MT

< SOACL Feg
eny

N

;ﬂMﬂIAUiG

| & Yo voiNT

To Svyméoy
1AlLe

“APREND new
. ENIRY Vo

- SYmeoL g
{ . .]

‘Refae Stmbow

1N PEogRAMN

Wi RELAY IVE
AbDuELS

202

HSY T

I —— S
< ASYMT) 4~ *

— S T~
I - ' 6&»51'&»5“;17)‘1-'\5\%
W NS

SET kervkn i
ALVLE TS LS : ~
ST maeH N - ')
fiac’ PRt | g [pempr
, L S PO Duonm.\. .
(—U—F N Dot K!bvv/ I PROG 1 :
~ 2 \ !
INSKE HE ~. \ ;
\ ST AL foe ! “ L 1
7803 R Ter T e e
\ Y _ TSAVE ToINER | /7 N
- o sanry (EREoR oXIT
% (MATLH FLAG T
“aAICH Y TROE)
A"S‘it L TR I t I
hgay? '
\ Lol ? // I
\/./
W
LA

8g et NI

\\ .
. KMX
Sy
N

NOvL. 1o
Nert symgoy |

b
|
L

:
y @
L cymporn

) "/’15 . r-—-—- . '
SR v‘o»w\ L Sl '
Koemgs 7 7 N .
~
~

¥o I '.‘DMT“!:—*;
TTIMpmtiene (Y Kvow ™ ENTRY

EQuyaLENTY 10 M -
\me’/ ;mem msm:eui

]

M < e e m—— ._ et e —d

:.{,!.'é.‘\‘.s soly

t ENTRY ABovE

" New onE

e ——
2 203

N

%ﬁ%’? T

pormarttnae .

wel Yoneri(i
(RS PT) _ ‘
. ——3 " Resinsuk
. A-_,_l . | oF SYheol
e ronln,g ; TLQLE
T: g%m“‘"ké ' X ' "”‘F_":_..". e
o] ?k%t }'-‘A ; ‘ G-ND ot i ‘Jb;"(‘bQ Fe) /.-.... [
S SYmeer Ta— o eh .
— TaBle ? (¢Teebor NeT RETOEN
’ N ' N S ! gq‘g-uou.uu) =
o BOMSHEDN v i T, LSET _Po
' PROGKAM — i
LAN?
R N LT 61 'N"\ R
~ = CTTNOR ARRAY? &
 levveaer . .
| oftlpree h) T
' Y
oo e Secomt vk | |
P STATERTNT ' we * ~
L il | £ <viton DEVANT
PIRGLE ENIKYE S VIRENS(ons? >
l?mm L Vo ~No o
o 1y ST | N
SgEcond wold ,
oF SYMboe
~ 2 tTaeLe VIR
i ?‘ITRACT & o Y '
! ’ UYM&D‘ ‘20* — . * e 3
e e ove
| . nevY stmboc !
K e -) |
: o 'se1 tormug | e ewtey |
Lo o SN0 Dmensians | S———
- VAR IABLE I SemgeL
l TRELE
T T i
./J\(o
!SELONG WQED : . NEG*T{']
oF SFindaL .
9 v .
!1"\€LE eIy G| ((en o PoVNTEK |
j : e | :
! - i
SO — ” ' SN Ammumnd -..-..J
- e S A
[| “move b pext meve Phoy
'] ctméoL an - DIMENSIO NS
. STALmENT
N ISR
i -
cHD oF
(’1&1’);”&“ .
< s *
i Y
/—"! —_— .

,"_‘—"—-"_“\\
ALCoM)

! furn Crmpnw

; ALLeocAYED

i CIPTE = FiesT
T SVAM Ve et

A —

‘ EXTEreT

OPL MK -

-y

|
|

P
</ com?
_»\ .

" /”
; A—-»‘_._. _i/v

~

AN

e

CCMPUTE AmounST
' || OF S1IDRAGE
REauiRen ®oR

;| veRindLe

L e

| Vs A\

by iuvsvRe .

| Q

'

|

P lupeaie Masnt) |

L 0% commay |

’ || S0eace :

o e

b1
! [Move 10 next :

YRQRGLE 10 |
SIATenenet !
]

END o
STR1ement?

P ANY \Y' RESET sPeoe {Movg pg%m‘;\"‘
. ouneh T AND PBPTR | ™ MAKE goom | T e
o o." . oo N
\A'fw;;‘k?f»~’ i ' . FoR common - ReEToRn
e —_— . Alen N— S
/ ’" e PN e o
~
{ ReTurnN)

“VALUE

-

‘Move 1o NEYT
SYmbon TABLE
ENIRY-

(of s)

TOPIR & FrokE
(RESET PROGRAM
PN 1o €MD oF
FILED TALLES oN
, RERVNY) K
l i

ContT€ PLUFER
(commwn AECA

- Pownter) ; B
F1ReT SXmBaL

. VABLE ENTRY

LoAD symbol

“ Mutle
Symbar?

e
e

Hﬁ‘ho‘f

" ALLOC KTE

T wokbs For
FORMAT

~

 LoTolAeE
l«s.LocATeb)
FORE & PRpTR

EX\T Jo
XELC

DecoméiLe
PROGRAM

/E-Qtoa ®BUT)

- VALUE (2 of.S)

~.Sh YALUE
w u»bt'Fl'N%!
R

P T s N
\ Attacagn? N
) 1

i o
%

[.r,usv

4

N} / :

f/(olmauv N/ ALLoLATE 2
. wolls FoR

_ VALLE
SET POINTER 10 SET PsiNteQ
Common AKEA 3N | T6 VALVUE 1IN
svinbay 1h6LE Mo :
AND YPOATE oY "“,&'E
LoemNeN YO INTER

———

297 s

i

<

EORAGE \ y

\Au.ocm:, > : , e

- o~ : N (R

can s U ’sme\' E-Qesc’l LOG ICAL
commm FUMLM;\.&” \ L@LoR oy (T | LENGTR e
— ’ 134]

Peave pornttx { Fse1 romveic

i'"’ (efmon W C1RING 1N

AgeA AW -
| S(utor 'iNbLEJ SymeEoL TALLE

b o .

save PHTSICAL

vi

| ENSTR AN
| Lo&ICAL LENGIR
OF 2¢eko
ToG 1AL
~LENGTH &= AlLiocAle
PHESICAL NoLAREE For
1ALy
1 . STEwG

[sk\lE PN '(s'la\—L-

L LeMeTR AND ' \W/

| LCGILAL LeNoW

" of 2&éle

k-

L uPDMIE T

' Comren
Poeree

- "‘%r

)

SOERGE _

VONT KNOwW*- N

? ALLOCALL?
AKERY? \\
\\
V|
N
. e IR
STORAGE
Atrecared ?

\~

Y an

_Lommon ?)

~,
~
wn/

I Cuse
ALLockrE o

~ LIoRLS FoR
bm(—.NSmns

NS
/

‘
/

/

P SeT humcﬂ
To AKRAY 2¥
SYMéoL TABLE

P vt/mk

O 1aE NG ora.';

PR ———

] Lo)h 0(
- (0, 19)

e — 3 —————

I L
LOAQ vkCLAKE D

| OIMENSIDNS

A PEOGKAMM o
- ;

T e

Pt PHYLUCAL

Dirterrzions

Inte VALLE

{

——

o e ———+

LOAQ NM&W-’J;]

r:.ﬂbﬂ!- Gonﬁ;kk
‘10 VALVE A6y

I Symfol Vi

LoAD PHYSICA
D,l»MENSpNS
FRom VALUE
- TABLE

—3

PuT DYNAMIC |
DIMEN SIOMS 2N |
P VALUE TABLE

N

L

g

ALLOCNE
“ehte
ol
Areny

:.mxnuzc
f\lﬂk‘_f 16

1]
‘UNLEF e |

r

\VI/ :

adeA ‘ -

Y

V;Awe (s of 5)

B P —

) _ 'AMD DYNARC
,\ 'I'q ’ "i TAMEMZONS =
N ©] vELLAKRD
' L Simensions
[—————————— . .
" SET Powetg@ i -
1 cowpapn i Wwmrot
ARLA TN | A | vonsee o+
TXrEOL VAGBLE i P ELEMENS (N
———)x\ ! KRAY
FaN § T
- PHYSICAL™. ; A

L~ Bour Cimensiey N
> DECLager
T PWENSIen)

B Rk R S

ERQROR &X\T

N -
K | —
/m -.-L ;
¢
“Rimenson i hReAY 16
[| vsePmcy
; e | | — ,
gtonl’u'!e “I2E o _.L_,____,,_,_,_‘
' OF DRCLARED : 'U!-bm -
I AkENY ‘ ! Conpan
1! ; Poinveg
-

¢GF

. N
'meux? S51LE
LAY CPLCIFIL D
i BY DYNAMIC

DIMENS 10MS

i
+ uPoar €

Conop)
Pountik

RS ES—

i
!

A. Main LOo‘:

T -
XecC J !_ _
5 o:&ia
REI'F_L—:‘A P N enamer 102
cHeed FoR | \\ .
\ Aawels ‘ : : S
\ / | r-se'l “ACK

- S | Powtees Anp !

LLEAN P

$

eveeen s e / SE Fom’\eﬁ '
L B Ts FRET

" (Le A !
AR AN | bk

- e nn -..._J‘
/ PRINT ‘ - 1] SAvE cuRRENT
. ROGRAM T STATEMENT'S

~~whd

~ YROGRA. N
lHAmen‘iO i FLUAG

v NANE ScQuence #
\“-‘ —po
& |
, |
| FintRe RINST Q Aﬁvﬁmf
! enoo\:eksmﬁ ’ PLoGRATA
&0 CountER 10
NEy1 STAILMENT]

- ANY FIND CURRENT

. \‘..u “

‘ moei " ' SIATEMENT'S TYPE
; Frest AnD ADvArcE

i To - Mwormmc

g
“omn Fvr

. ' ; .
oy A oY LEAD-ONLY
_ AlNeg o . MESSAGE
? . :

- \._j..-......—.-

o |
i |

| ALLOCAIE BICRER
PAND CTHLNIALLRE
FILE TARLE

| ENTKY
Sy

MOYE 10 wenT
i e

|
|

— 211~

[

B. Selecked Stabewme .t Types

[tvaliate vereremee

BYraneh within
“wndew tebe ' It r

A 17 Xe$

@ lead brereh .

6 ddvess

¥/ casun? PVE rrayram —@
. TS csvrtery on
: sabvra stack

Simgpl2

brawed.?

vdu.t"r'} ’ foreqtack add in\r‘vrto
&lr-‘v.ﬂh'bk- ‘.:rt.:‘ f; ‘ Q. P g_&q‘.k
) \ U'-;:;lm /. L '

e

dass neat

vt Gsrcamriapid
valvd address

In entyy,

Soveaavieble
oy F»
yo ¥l arad o2

Qn‘-y l—l\'gh’ y
for-varehh;

v

~e

3

meve gremmber Mmave ¢ld - ' l erker addvess
—1pest erbry tnbey Fo bop [

) 'sh.cl'-

2y Yo liowv:

¥a ."c. mint

’ Sav? jinart
'tonruf" skep "'2" L afalye 1n
step si3e ° Yrven | erby,

- &

4

. . ‘ »
get :o brevch save gbof load
Past astect - Q.!;t (13 . | -]
¢ sbed MIXT | entry -

‘ eheingks e walva step s17e
2)"v’k&ll‘- e * GJJ‘J 20
t:\ by srcaeded T Yor-varia ble

r
$'t Ee. dpare h
l‘a Skekir e r
Sollow e 4 [E07 8

ehminete ati
‘lu’ her erbries

Sev-sksele
ey tyiey be
om»\-a-nl.‘.

meae peinker

N L3 b L) "h,
I

‘IJFNE‘S')

v “vAvie Lle,

‘,-‘g‘lzrﬂ"ﬁ
FRLE VN 4

covrrkev

o

sgt ‘9'0& %’-“7
AT or INFJIT

(19

! ffmt o

nermey ?

15 an
1eevT
sabesy.ed ?

n"d'*‘r calt §yom o Sst varieble
lnpvt '“”T? eddress
' Yes
L' 4
regvest o ._‘Z‘ﬁ/r}
nomber \ veriahle?
dYEs
.
" or sgn \rO
Sourd T
Yes|
]
ve 2
fnn't + V"ucst ';.'f:;f‘“
vare g inpvt trans$e J
vequest tyarcker
prrt impvt Sor 9 strimg Sram
eryov \ 7R 14 wpvt ‘hoYier
o

wa S,h"’ th
o Ytramyar

yis /oM requicked
ck-rnt("‘éi" ?
t"“.\qfnvt.‘l,‘

S

T

9ol hgrcall

YIS sSpee v’ruJ ,
viiE
< ‘r
sCan Yo
vt & \ (D
“.'“",V 1 K14 7 £
S‘“ 'tlb¥ "s‘
" Skring with
’yl&ﬂy‘l -
———————

214

leng¥l (e
ackyal l"'\lh‘

turn on

for $lag |

statemernt
erhavete}’

[SZt h!’t N ‘ t\lr'\ :5?
. of!.r,ma . ' oL 3,1,7, l '

| A _ ves
@ [4] '“’" '? move to h".‘xt,l §v’!.
. Yés prnt S04 MO \PEzNT]
- ’ wsl Yiis
Pt next | 5 ? . ?
opevetoy ' AL) >
-

st .
carvinge ve.burg write 1tkem |, .
= lire Gee d oh Sile B 20)

L 4

Ye;:

ﬂa/:‘::n‘
A
1

tvalvate ‘ < "l"""z' \ ws Prepare
‘ Soemul o warralbla ?./ t st
. . vt 5Tyvin
_ e , ’
tvrr on o ﬁl'(\ m VES ‘nlv-‘
CotL 9'0’ Pﬁtﬂ‘\'? ¥is '@_0/‘ pred t v

b . ' » >
ovt ol .‘__w_c(.;::vt \ m ovtpur turn on
romber « TAB " /YEs 21 Sbrina Cor ¢
1 T — oL Siny |
e

| 215

GeT AvDRESS
OF CTAIEMENT |
AND PR AYeQ

WS 5] e S e
oPEZAND) B :

OFEEANG Y B =)
Sewe; ke 'sieiNe)Aq-
NeH& o ; NCA € c;
TEOPMY_ / AT \ _FENAT
/Fete - /
| SemNe FogmaTree FokuaTiER

STRING?

GET LeNe K

AML ¥ IRST
SNpscePT I
//\
e .
NCH & NIRBER Aetorod T~ p———
56LOND‘ | o CRARACTEES ~75u8se@0T N
QEUE;CL\PT. o o€ VALID?

| Newe o @
i
- Ae F lﬁsp‘_I,’_
F\ SufsSce
Svesce Pt B SIRING ToRMATTER
N
Y"""”‘""w-“(
ERQOR evIT

216

Jood neat

ofaveter

redimengion

Savt covnl

Arye ,

o ‘gi.e mapnts |

Se Ve
vpera ber

LI TR | B
o7rav. ¢lemarls

ove Be "we d

§

 write element
te GVle

read
clement

. Y53

was 1k o
MAT LNPUT)

1

ovt put

c.lu-.-ﬂ’

——__J siﬂ(ﬁ &S'

l apprepy inke

1

Yis

mare -
skakemn, t?

set 1D av 3.8
s EFe G010
constart

4

ge bt ldt‘P
erti‘.f“h +o
etk o.*'uw

squave

makvioge 7

.

: ¢ prep-re
.an-_-u\sN'\ St gﬂ]t destirabion
\@akmﬂ teo @ matv;

Sumctren ®

S(,t '-:-’r
ef2r~dion b
re p'».vsmarrt

evalvpke

p

heeigld oy

Coa-ps(:-luht,,

$e0)¢v
s“’“v'“
*
Compwta an sttt loep se.X up fivgt
¥elimert 57 te “"“"l_ Y1gewree raty'y
M‘!N\'\cu muttiplicat:on
, —
foest source ’ vis / move oF

* .

cec om) govrLe
chec e d Sor
Compabiyihiky

i et ivep to v
‘M\Haq + .w.'.

YES

rabrid set v Seeord
v—altngi‘yb-—— Soures oty

statement 7

- e comivte an
At done ? e boment U:’ an
; wrney pradue b

nvo

checle is-o'r

d-nvﬂﬁlu"l ‘

(of-“ﬂ"l '.Q'nt'\($

r

3

{n.na'w\ htl-
(Ob.ﬁ;f R XAILS

Srae cove to
Co(; kv iy L/

YeEs

T8¢t ‘qof L N

0Py Goure T

vt prvot

seb vt b @)

campute
minhinym

pl"'f welye

b

SC* ‘.a'} ko
TO the dest

ver o ¥ top N 4
QvL" H(\,tV'gt__g

4

seb oyt to@

219

Scola r|v~.t
Yewrs 3% deste
snd Sauvel

h 4

PLY farm

] d\mwchoqg

on ‘vn(.-r <l pm

Seaveh syl .

atrix Yoy | ve [ol row;.
1St o : dena 7

€ -

A 4

relaase capy |
PARYr Core |

comaTE |
MPHTLESS of t
STAKTIN (s !

QHR[ZRCT eQ '

E\l ALU@'I-’F l
~num BED

VAL ACTE RS
w Whot E

~RZwmAT STR

wEAL AL

To F ey Q€

FLAGS Grogac ‘
{
Ot A s«uusl

e XG~ofti

I Quasks H
LoALu Ve tR T

Fasr tunzacTeR-

b

M 2
./M“G&K ot

NE YT
LhecaaeR /

SET ©O-81 ‘l

FORMATTER (L of 26)

) |TnegemenT
sraxrné
PowTER
S5erT TG~ E
o BT

[

of detu ..:l'er\

R

e

L INeCE mEr T
i P€umTen

P.NTG_L [=YXTY

| CN\AQACYE @
COVYnINC QA

FOEMRTTER L2 0¥ 35)

e

“Eop ol

STiNG IRCACHED,

Yslo

 Dseen \
[Frep A

NE T

\ peELm TER /

T

INETTALT 2€
FLAGS (OoLAw

O FuRwan

SeC e fcaripn

v

T e T 100 1 2F

Fol aAT . gTVCK

Ponyea QN 9
Lihs A UDRE S
of NELT Cna .

¥

/f;;—tﬂga—-\\

(mﬁsu ovv
PR ¢

£ NORACTR

gree
N e
AN ¥ Wt}

ERRo £ :'f'\

TN REmET
raracTen
CoVNITE R Aug
Lran Townmgac
LAk CuAG

“Loa t\mn

- ONTO FoRmAT

[S™TALE Anp
! TLILMNEME Y

NQ(FmE@T |

SYQrw o
1 VunveER Ao

CAAZACTE (¢

Gwnree |

—

‘REs e
i OELim TR

Ravwten 2

TNCERE MENT
STeraG

oINTE@

Fimp
NENT

[» TN, ¥

—

T

vy

+oEmATTEE L3 ot 257)

6 .
THeCE memy |
r S SGeree o
| SET ICenaE Fuae
| UNek FLog
| o

-.mme}nc-nrr
— S AREr D
FLAG

~Nd

Any *s
3 . cmﬂt"ﬂ—
Ds Foumwn P
YES - (MY

-
-~

(Freeon
€L T

ND

,-/IS T
(8 N TEGrT < —— \
[
[wocrzong]
VREVINVS TRETT
Wy 0¥ Aaod
ADD T) Oveg
LI6 T T l L)
- N
S T
RePe™ fwp
T Qemen T
sy g SET
PoinTER A :‘:CNBBQEK
| (AN
FLAG
A\Q\&MZ
mAsk ovT
NEWT
e — * “NhepcTee
SeT "I,
TGy i ST
BUArlrg I

FLAaG

———

1 222

et

d

NEGATE. RePT
i TO 1rodea e
e Aeig
SMMRE .y
ol CTVLic

P

UrCREpn EVT

|
-

ST ek
WDINTER

TRMYTER LY oF 25)

)

S ‘_1
A ges
Ng
SET
\ Srereé
A A
AdD CEPeT
TO PPF D€t iwn
ﬂ)n,.n— b
Cove: 7o
y
Y
A
Yy
v "
d CEWTIALIIE : Jl
REECT
N
! 3
LoAaw
CHARae e G
ONTO Sreeic
A N2
THNWReme T
SYATWE rwy
~ Sne g
Poirngey
A
SET
T6wmoty
J R
L AG
Merpe
MASK ouT
- SET
€xp of
223 _
sSTRCK
maey

CEIwWmIALIgE
S ue
[YA R

v

BE winy.QULIZE

STRI 06
PoITE @

r~
e

I
{ENALA
SN T

Exoness,

/K
e

N

AN e
LND

SOVE WTeER
MA T sS D

rov (hic@ use
(AT R PN - 4

R Qs PouivE

i

UFLL 5'0“"_i
\me tie \

Nowmac R /

AN

Foemparree (S o 25)

£ >

£ ~ '
SRE A ‘et | NP
TN STew .
' ' 7YES

SToRE o 'a
m ST6nN

R T

WMALE me NT

h\ ‘ T™HE

Y A NTISSA

Y | save NEw
) Hxg M
laglad awily-]

12

SAE

o
EZPoNE Wt
1

4 , R S
SET FrERession
FToump FCAG

AND Terd 16

MU B8 G Rolong
Bueber PoimTes

X Powenrt
FLAL SET

VL GHT O
lr 5 dory

Low é——-——-"
MAWTISSH

/ Te)
[} C@mﬂ?‘:'L o

MOk e T A

thenipngF
e

LCTee \

OITPUT
AQOVE

"EHARATER

ton o A
2u@ouT

OUT te
(OUTPUT
o f-\\ 40 _‘\
v Coweaae
Ak
TrEAC ENT
STA Lic

o1 TE

h V2

mRke T

A
LiECEED

HemArTER. (b dY 25

v

SYE v QrpeT
A xneeewe T
ST PoicyTe

225

Rilnmq_;:gg
f REOCT
//
ND b
L S <

.

FoEmaTrEL L7 # 25)

| 3
R LN AR
\ NE XT
__ S XPRESS 9

Sore lr‘QFﬁ_fT ‘\

PrD Trecement
Foltvwmyy Smh

Pore e’

N } N
/FscH \

FETer s e6

Cviar €

KWQ

A ¢ Waraere @

LOAD A

topn A

N

LA

. g e

LinEFreeD

"——-’ ——

-&me,_m- e gy e s

s

St W ke

;’l QUTGJ-‘- \x‘]/
I] AGove
{ Too - 1
e Roi IY A . N
N ExrT 0 A TN EmEST
I':m vepeT |
v T it]
MUATARCYE mEnT P
COTVY Eged STk
AAHS @ -
\ !'!f’iﬁ't-n.// “W'”—‘eel NO
>

TE o N
; >@
Ttk

-

Foemarree (8 +#25)

x4

Tritvvas 2 €
“DTEG T

eou . TPQ

[PPSR ER——

LeAD Aan
NSCIE D 1o
Bller

e

\\\‘%?w'-ue ol
..v\,' Aol |}
v

. K DTL ‘ %.‘.‘
[TALE mumBeq \

SAYE numBge
of Sravis
SREETe o

BRI e——
Compute 2 o

\e s& Mq NM&,

7, 3

By subTrech Ny

theTs From
___w et u?l‘a__J

el Sp

Louerdi Anygwitrd

LEE Rodow l
for St BY
Printirg ame less

17

Ravk Anp SET
! Flab TroigTek

|
CE B
\—’ K

Y

A
>

227

GETDE \

-\
GeT LCaninG >('

T QAn?
SoaYGn et -

=1

L rovwmioer”
I Wot e e
RAler

TNCE & T |
Bolev Dosuter
And :

XET cowveR |
SR

FokmarTeR (q & 28)

/’Numem
<G
NN ena vk

>

ouw’ -
//\?’- PRIY teee

S NEXT
‘\ PO TY /

—

L€ s&T |

FARY i
gr ~Ter ‘\

i o e |

TNERE mENT |
S TR
TR
X

-

S d\ffo&\‘
{ecoqmep

e
SET ST FLAL i
show S !
fecdqrmized ‘
oo LledT

28

228

SYoff "
REEST Had
TreRemeST
ST K .
Pa TR

FoemavTeER (\p o 25)

O | f

N

mombe s A Fs

\‘16\.4!‘, Z.O/
~. 7

I‘HO

L }
['U" 0CC i T ;

| £
S & =PRATE
CouyyT
— e —— - .- [— /\
i
S Theut L YES d
Qr: oy (o1 ,J\/:/——"‘—"‘—'v-, C“ﬁ“ﬁd‘?& %
e Ly, 0.7 .
\< {u"j‘ - - l
: 4\
v SET <Zow
Reas o Pl
,4!0“‘-0
ET6m Wae QOiwryy N0 -
“a ot ““ w./ L4
\‘\r‘:q.‘f 4
5 1CLEaR !
‘€ A\ VE sl Y
€ xpons £a5T ! :
/ouree \
oNgy=¥an N
aQové ,
CHRAER.
INZEMERT
Boller
YPoiwter
N
=

229

N A

PFipY anle
VRP et

InclEménT i

STACk
D'J /N’TFQ

Foemarrex U o 25)

 UUSELNEDYRVE. .

TNCREMENT

LAt Yo
S ROwW DEtwraL
Ponut ot mel

/WL Y
BDNRovk

e ﬂt_‘!&&/

—=<
/
=Y

3

£
e
|1
B

230

Yy

3

TNEAEmeST

SThek
Poivree

LOAD
A

C;.

ouvy PO
(LR Ne N~

LHAG Y TR

| G

FoemaTTen (1 o 25)

-

AN\
29
é/N.D a?\\\ VES {lodan TRE |
N > 7\ S™Mick " o —— “Sx.afa? of
c
£ ®%n “.rr
j. . — -
et M WP{T | YES e /
B0 Teor me o T ‘i_,/swﬂu A oot e
: < SAK . NUMG“Q SO E ’
L e ¢ heoscee /
! R B _ 4 pat !
y
7 COMOUT € THE
e to] ™ ro
-"" i g d% ~ // ASCJI D@i Ou,'\"
| LTREE Ard X‘Kfe@e ExiT o Tug
5 . o ExPornenT
1 yES
—_— —\
; / ouLUTRL \
' lovrogr ‘lrpn')
\;J AeilS Aud
A RE pmEnT
\STat Do g_/
h

LR 2‘;:.'€sﬂu3£“
VEeeT

\Aoove
naraler

.
Cefav &0y inur
Aons> AFSCQ I

BFC raAy canveit |
m-.‘i ‘IW#M&JSJ

/r‘jp')fd‘ t’“ Y?S
£ 0

_‘?_T.L' \
{ eer memee)
VoE T

. ﬂr’f v/

SONE - numaee |

of v i

wTEYCEO :

-

|

SOCE 1N rwmBner }
Guller owdD

T M0 mENT

vt AR €0 Too Ver,
TTGH fouwle,

/ﬂ;»'w Ora e
tefrro

Fomerre

.

e P e et ——at—— s —

FAU; ¢ {t
2E0ofc s fvep

&1 L s
Po: ,.,‘F ,"."

Lo ©
A

R ERQRD)

SR SERPEY

R

QD?\NE«:V To |

Bsew =D |
Stare N
Beiler

R

DECREw ENT
D‘&tfp u. "(_‘o.s,.,‘kf

ANp Tnedeme T
Lifer Porate,

l STh PorniTEE

D —

Loav Numgen-
UNVSE D
D‘S Y om0 ’?fpfj

OUTOyT NFoCT
B¢fArks AnDd
\TAE g 0T
__mz_ PnTE

YEmihALIZE
RE T AND
CORRELT

K'Y

Yo .

FoemATTER

[oumbes of kading '
blanke = Aumbecr f
o% unused Ds i

ln Aint e Jrcmm.J

B Lo S

' de teemenT
| Leoding BLArIX
[onT anp &7

5w {tAG “To So
{ avienTE

-\)DUN.‘D N \ey
™ Eu{&(

. Ny "
‘ /{Do“‘ for
‘ L aarev +

. needed

yrs

RESET]

) Nurn Qe @
V————ﬁ At er

Pornlck

8

233

Gu & 25)

Y

S

. Nmag g NES
NE (e Ve~
//
~ND

LoD ~‘(),.)
lcery @

1T Numecs
Bldley

T IO E mE T [
1 B3leys Tonais
D DECaemEn |
e ot

L&vﬂg AgLe Ds I

FoemaATTER (IS5 & 287)

f > "

!
iSr’ pFEemal |

. Erdopve 1T ‘ . yd
el Y
b R .

) ’ SET STa. TLAG
O T e VY

SLém RBTEIE
fisd BzerT

“(:)f tecwmERS

//
IR
FPInET

¢

/:\T« i
!/’ VitG L X /T”\
V" MY E ey R i
\\Bcﬁ ST : ;
S Voo jJ i !
N T ¥
4 |
g
\ i
MABKE NV E
BEeywEFw
A Nwaer o | \ :
[o j i BLAWYS 1 | Rh reT
\? RYARL N VYR 17 ! i COVMTRR YO
e TOML D |
ey UICans - ,7 TOTRL NumGE g
i : o ! !
| svsiaey : Y ;
. t H
e i ; .
{/ , o g 0‘1\'
i T ? ! v BAKS brgme
| Qemest . xINL k ! EES fomes
} (3]
‘ PANnG s @ ot Y
| Dxpmis j :
sy D | §
A K -~ |
y
. NES : / 1/
W ERE AN
c/ wh ~ -3 BH])
DNERRL | Y
- - . 4 PTO6TT COV~TER
*“No A = Nuwage ot
Y O's over
e e \;E's E QAL Pos 7T
s O A N IS, s
AR \ AT
_ FOSTVWE L DI6TT CouwTEQ | um 3 =
. T o0 BE€LHmEL Numara| o DU~k
: —? i
; I of pP's o3 Ter - O
' . [Decqe m mEnT ponT | S i
~NunRe o . 1 T
AVATIAGLE ’Ds {-‘"“"‘"'4"']
To LEAVE 00m Num8E€.2 :‘\
‘oo Spew bl s = MUMate
of D b('?on
> — . 234 PowT - |
- 23

YJO pJ-_‘.;'T

)

("{,‘V'JT(Q
)‘*ﬂ:/
\L/qes
[4?’?‘ T?FQc'T' 1
l‘!‘O DTG T foun!

L - e

~,
.

S AU

SO BF T
BLAamie AaD
TrterméEnT
\ Sm' X P;)uf}s

sev onr |

CouniEe ™ ¥4 AND
LORRE ¢ T STALK
201 1+7F il J

I

("2 PN RLCIRY ¥~
REeeT

PR e n e e

/ Gév‘os \

ﬁ-———->/ GE~ FLT

CT6E T
| SURR—. I._-A-
Coriye @7 TTO
S IT A D

c, jve ool

avnmBF (@ &H’*‘ 's

| I

TN WENT

M(('D\n ates
Aro LTI
¢ O STC QR

L 5 -
,J\
- ~ .
e

ML P ereiTs

G ov
~ d
\//

RN

FormATTEC (lb o 25)

()
Y

LLEAR
ST IS
FLAG

frlo 7N\
ek forwal b (9
““”‘./;>ﬂ\~/)
/

YES

Nb-///éﬁlﬁmxfn
haerTiEsIS

AN Y
ExPRESS: oS

vo
DT ug NG
sSMmie m(/u‘r‘

\\\ s
{No
CLGR“

ExP0E s S o
lovwrnTEL

(LR »
CHAQRAITS &
CoOwnaTeEq.

Reses svazoe

PoinTEe Yo
1QeGinwan G N

SIRT NG

35

235

Foemarrer (1N of 25)

Loag AODAES
of TELim. Por
awp CLlEAR-
0-31

/ .

/ ThemMAR \

/T‘r\ﬂSJL oy’
NexT
_tneeaae

' STe T
i 47 M QxenT
‘ g RCF THES

\i‘NO
A —

savf
LRHeATER

o Furvte

P€Pevernt e

Feeoa €11

OvT ¢ L
<Duwc>~rv el)“@
hY Q% ’LF
A

T NCRE mENT
tyaraTt R
LovNTER

e

\\

VA
CHAQATTFOS -
~useb

YES

©

)

TNCAEmenT
Peum TR Q
FointTER

/[DS@eH \

/FDND NEXT
OEL M . TEQR

' Temone
i BANIcs

|
!

..l
loAd AonQEegs
of CeumTER
APND Dow?

TGwr e |
L SBChNE

————

236

IONREME W T
STRE NG

FPornTEQ

ComPore
CHARA LB CounT)
UP TS AwD TritLvorny

LEET™ PAced.
o sqve iT

b

Soae tanten)

EeomiTH
(X NONY o

INCREMEN T
3 A

Pos wTEQ

]

ComRre

GheaTee const
UP 0 9 Tntwyorng
LEFT Panew

Mbi%ﬂ"

SAIE PR

fEPeT iMoo
covnT

=)
237!

FOP—MM‘TEC (19 O‘F ;s)

':
MASK oyt
NG T
(HAeH TER
A

/ DsRkcy /l

Cifan secomp

LENEL STRNG Find NEYT

PonTER D OELImTER
(A2 XY v - = |

i

I NCREMmENT
CHARACTE R

décuweL

T L€ BT f\
‘DF\‘ N\YEQ
Porn T

/—"; SRLH \

Frvy NExT
DELI W TICL

A RESET STRI6
SET PornTER AeD
IO OQE o aee
Be COUNTER
FLRG

l . / Ds@en \
= Ko FiND
NEXT
LEun TER

c..l

[

Folm aTTeR. (20 o 25)

(u3)
7

. S
CLEAQ F3Q@sT
LEvEL Vonten

A ST G
LACG

!

_ Vo
T AEmE NT
LHBeACTER
tovmtreER

N STL W et
220 uTER

-

< eHpaTEes
Nuseo s

(Fuod peyT >
Oftimage /

‘l/‘ v
]’Ase_’_ . i
T6 oo !
i QAN i
' XY J

S nenpe

[enbisie 65T
ey /

VoinT To A
kS Wlarr-”(‘; :
P

\No

’.,f\u,
& PRARATERS

~ usey L7
\ S

\>¢

D
I

[LoAD
SAvE o

NUMGB€ .

'

|CLEAR
DEenAL

BETWEF M ! SHJC‘: -
.1 gy L v

GQ ~LF /’I

RESET ~NYmGre
SulCer 'Da‘.p:“v(‘
AD SE€T Drgit
Covertee T [A

. Gere

&G er :
NERT /

O\ PxeET
ConverT™ |

: TO ARSI

AD <Mfe
t“ BvNer

)

NO
. VX6 >———ﬂ7
GoT
239 :

——

e o

l

.

SE€T NumGre
ol ALenks
OUT o+ w Y

/ 12ouwD \
<D,ou SN ‘)

\orur BF@

AN

oo™]

TGO

/ DuverR \

ALV L S IVY o
haoye
¢ Héwtvared

26CET Bulfe.

Po. oley 5 e

Ay Lo AD
“LE6T

/ DuTeE \
<Ou‘r9¢r *fﬂj
\1' (<2 lE
A HARATE
A S iy il Al
A

o]

FARLEMENT
Seete ver |
DD LOAD A

IR ImAL PomT

¥

/OUTeR

OUTee T
aE™NEG
_'QMQM

Eoremerree (21

w29

240

]

LoA D
(-8

vI&vT

/ ovTeR \
,OUTQV'T'
\ ¢ HACnRTE

—

IM?FMFUJ\— !
Bulfer YVondie e t

Beo o3 i
COUWTYE (L ‘i

ExConenT
sT6n |

/euTCR \

o euT
ERARACTER

o

toAaD
THE €xPmewn
ITELF

(i

Yoemarren (22 ~F 25)

/‘ N
) @

T ¥
FemPeIr s Lton D

DT AND Cowmr@ot

,; AP Y PR T

LRI

L.

/’L—“
OuTeR \)

(CALLT
.\\C,H)Q?/'.}(?:gv'

N

pmAuiE 1

E6TT AoV
fCOMIVELT TO |
SES S
L OUTeR
(v v
NIRRT ,
Lﬁmne_u toAa v A todn A
. . tAQa nbe
1N €
€eD QE‘I’\)EN
OUTVIT <Ov‘°‘“‘ >

CRARATER/ %\ eweencey /

REYue n)

Ot GyT
\ f“ﬂ?ff o4

fvEnn i
LRaeATEL

¢ ouesT
Rervgs)

241

rvesmmi e G

. MT G
x'ij

AV o \'x,\’l
Num@BCE R

2N e

EXNPORE T

e elen€rlv
IR e o
LT SN

“‘Jnr:! (s

- Jk_ L

——

i
L EoaeiNe -j'

Q'h) Ke I

S -__._ - —— e o

DLelr e o1
RiCr 1Tise? RECES- 1 v10 2
AoViT = & ConiT .

242

(S

otV “’

DEQQ!‘. mfn t
CyePan €™

touwte

s_B____.._ I S

ouT PuT ‘}
-

EAQRCIAGE i

{LErvtm

k

ouYCVY-
A

L.

CImE FEED

——

SET
eLnARALTE L

(4> X e
B -

Y
(RQ“MHZ N)

RETUE)

(precw)

SAvE
YomiTea 1o
Luee gt

an a_:.:er'ﬁzJ

ol

LUfFae 0-aT

So iarks

12 e T |
ouT

A N
16 v \.Yes //
~ R -
C;.’Fl).G ‘_.r‘T_/'/-— 26)'\, Pf\)
Ly !V,':p!‘.- L \\
N vs T

NOS
TP en v
POl TR
QO/NJ}{_“ ﬁr‘-D
b ‘:F\("fuﬁf"c I

Co)envi v |

1

SN

- ~

"o v ~N
TN [ﬂ\’,
. ,

L

ttmgrree (27 W 398)

243

rém vE€ev SyIE

ADDRess YO k—

o Actn=c-
Cv DCPREsSS

A~Dd LA D tiogp

Swae
BIGH And
Low

LhACacreeg f

e oo Cm——

mMASK
ouT Low

¢ “Aracre

P

\L_-_*

ITNEC € e JT

SYQET LG

VrinER

CanivE T <
\
UQQEQ QQ&E Cnpoey ©n 0/

Deus m e

DECF £ T

NumQen.
BUFF{ ¢

=201 Y @ |

o

Lony amy
TRURE pr a1
NET DRt

LRI CAP I

e eCEmenT
Nimeee of
A Anrg

Y2 evven

Dé QQ-G mE ey

NV e, e

e 4

[y X019 :{'r
‘?v 1w € @

e e et

b

veywyaw)
RSP o ¥ SR

244

X

(.

P
/ ERROR RETURY
To P

FOUMATTER (35 o «<37)

T OCRE i
TRaimmal

Croone

$
(RETUR))

e wsm”]
i

)
i

) ; \
SWEVNG .‘QQ

L
[
N ‘4/’ - S
L EYUT 10 (9*\.)
FonNcTwon? >
s
-
N _— ,
. 1
A . DSTA <€ o]
vhEIAGLL i
\// |
~. ‘
' N | S [|
. S A,
LLTIA £ o

4;_____ S

en |

oA Nomfen
NGO Ane ()

t
]

CEXT Yo

A (94_52‘__7___‘__ .

245

FoumaHer (Le of 28)
Lyex P)
MAT v
~ o Pranr — -
OUSINGY S
N
o _;‘(N
. //\\ \
ENL y e e
NOF STReNT > EXIT 10 (P4) AR AUDY
[N}
_tokMy L PSTR P | [wﬁwl\’nt
tvALUVAlE 3 - YREPALL T TRONCTION Yl
FCRMULA ; "’\ PR T » e FUNCT 10N
’ ’ \ S1IK ING / i ll
5 o g L e
\ . r__ I .._‘-‘. _..: ;

\

vALIDATE
ARKAY

\\.ﬂ ELEMENS, |

fS PIR = ¥ LST
LEMENT
ELINT & -3

i
I
| ot iemems
t

,__P.. JER
o

~

LasT v CENO o

ELLMENT? D-Y cmemem’ L
R ,
\ .

~

N N

eDSTA ¢ o ‘
|

- |
SBPIR 2NeVT f
GL@”ENT) LOAD !
NumBek (N ,
(%) AND(8) ;

I

’61 IT 1o (943)

N

tvSTIA e o

2000C Loader

The 2000C TSB Loader is a separate program which runs on the

system computer. It is explicitly loaded by the operator to perform
the following functions:

1)
2)
3)
4)
5)

Generate a new systeh from paper tapes.

Update an existing disc resident system using new paper tapes.
Reload a system from magnetic tape.

Restore the drum resident bootstrap routines.

Resuscitate a system that has crashed because of certain hardware
or software failures.

The loader is implicitly loaded when the operator requests any of

the following functions:

6)
7)
8)
9)

A normal load from disc of a slept system.
A selective load.
A selective dump.

A sleep or hibernate.

In addition, the loader contains the moving head disc driver for

the system, which remains in core at all times.

The operation of the loader for each of these uses may be under-

stood by using the following brief descriptions, the following flow-
charts, and the listing.

1)

The loader geﬁerates the system tables by asking the configuration
option questions. Discs are checked for labels and the drum

resident tables are written out. The first system record is read,
and, using it, enough disc space is reserved for the system. The

remainder of the system is read from paper tape and written to disc.

286

The system library routines are handled by the SYSLB routine,
which puts them on the disc. The remainder of the system is written
out afterwords. The user swap areas are initialized and the DATE-TIME

sequence is entered.

2) Paper tape update uses only the paper tape load section of the
load sequence. |t does not change any disc area other than the

system code.

3) Magnetnc tape load is similar to paper tape load except that
certain tables are read from tape rather than being initialized.
Also, after the system has been written to disc, the mag tape

loading section is entered to load the users library.

4) The loader may be entered at 140008 to restore the bootstrap
loaders to the drum. The bootstrap sequence is entered after

they have been written.

5) When the system tables are intact (both in core and on the drum)
but the system cannot be slept normally, the loader may be loaded

and started at 3000B to force the sleep procedure to occur.

6). The bootstrap procedure calls in the loader which copies system
information to the drum, reads in the system, and enters the
DATE-TIME sequence.

247

7

8)

9)

If the selective load option is selected while loading, the mag
tape load section performs the load and continues the load process
as if it were a reload from mag tape.

Selective dump uses the mag tape dump section of the loader to
generate a tape containing specified user library entries.

The sleep process first copies all of the system tables and
sanctified files from the drum and core to the disc. Then, if
sleep or dump has been specified, the system and system tables

are dumped in their entirety to mage tape and the mag tape dump
section is entered to dump the user library. If sleep, only
entries changed since the last hibernate are dumped. If hibernate,
all entries are dumped.

248

A different version of the 2000C Loader exists for each different
type of moving head disc supported. Except for the disc driver and

several configuration options default values, these loaders are identical.

This section contains brief descriptions of minor routines in the

‘loader and flowcharts for the more complicated ones.

()
F-3
o

TTY 35

The loader teletype driver is a non-interrupt driver which provides
output and input capabilities on the console (usually an ASR 35).

On output requests, printing is completed before control is returned
to the caller. On input requests, control is not returned until

the operator has typed a carriage return. Character backup (using
the left arrow) and line cancellation {using the escape key) are
handled internally to the driver.

DRUMP

The loader drum driver is a non-interrupt driver which provides
output and input capabilities on drums. The driver decodes the
specified drum address into the proper select code, track, and
sector numbers using the 7TBL part of the equipment table. Any
drum errors are retried by the driver up to 100 times. Continued
failure causes a halt (if DISC8 is zero) or a skip return (if DISC8
is an RSS) with an error message printed.

DiIscCz

This routine provides the necessary environment for the moving

head disk driver and transfers input/output/seek requests to the actual
driver. '

Since the interrupt system must be enabied for the disk driver, this
is done in DISCZ.

In conjunction with the GMQBD routine, DISCZ provides a buffer for disk
driver generated error messages and prints any such errors that occur.

250

Enter with the first character in (A). routine finds a two digit octal
number in the range [SELCD,I, SELCD+1,1]. errors are printed, exit
to P+3. otherwise return to P+4 with the integer in (B) and the next

character in (A).
GTDNO

This routine searches the input record for '-" followed by a disk
number folldwed by a comma. If A = -1 when called, a check is made
to ensure that the specified unit exists. Errors are printed; exit
to P+1. Otherwise, return with number in (A) to p+2.

SETDS

The SETDS routine updates the drum table and trax tables given the

logical drum number and the new select code.

STDIS

This routine updates the disk table and interrupt locations given the

logical disk number and the new select code and unit number.

GTTRK

This routine searches the ADT for a full drum track. The starting
location is given in (A) (0 sez full search). No find causes an

error (insufficient drum space) and loading is terminated. The entry

is removed from the ADT.

351

FAPD

This routine searches the ADT for a ﬁloce»of drum space of specified
size. No find causes no skip return. On find, the space is removed
and the return is single skip. ‘

FNZSC

This routine advances TEMP3 to-thavn§8t entry in the disk EQT

that contains a valid disk. No find sets pointer to first entry,
no skip return. A find sets other polnters and gives a single skip
return.

RDLBL and WTLBL

These routines calculate the address of a specified disk label and
call DISCZ to read or write the label.

SDADT
This routine is called by FSDAD- to remove space from the ADT in core.
CDATE

This routine is used to allocate disk spaéé for the tables. 8K is
allocated for each track of a table.

GNDAT

GNDAT is used when system space is being allocated. It writes out the
current disk ADT and reads In another. If no other exists, exit is to
the out of storage error and loading is terminated.

BUADT

BUADT uses the trax table to generate the ADT for all of the drum
space.

RTADT

This routine Is used by CLDT to return any unused quarter tracks to
the in core ADT.

RCOP

RCOP asks ''configuration options' and waits for an answer of yes or
no. The variable COFLG is set to 0 for no and non-zero for yes. Return
is single skip for yes.

RQINT

This routine packs a one or two digit decimal integer in a specified
range. An invalid Input prints WILLEGAL MPUT" and returns to P+1.

A simple CR returns to P+2. Otherwise, return to P+3 with the integer
in (A).

CFFW

CFFW converts the first 4 words of a directory entry (1D and NAME)
into printable ascii format.in a specified buffer.

GMQBD

This routine provides a placebg for ‘the disk driver when it asks for
an error message buffer. Either this routine or DISCZ will print out

the message.

WOLTD

i
This routine asks the qucétiongyDlSK OPERATING SYSTEM PRESENT?"
(unless no configuration aptions) and uses this bit of information
to place the two drum bootstraps énto the drum. If a properly
configures DOS exists, igiiﬁﬁ,i strap will not be affected; however,
it is still the operatorls'résS%hs!blllty to lock any other

tracks used by DOS.

WOLTE

This routine writes the final disk hootstfip onto each of the mov ing
head disks.

B8SBSO

BSBSO is the standard RTE, DOS and TSB.bootstrap for drum sector zero.
If switch @ is up when it is run, It reads in sector 2, otherwise
sector 1, and Jumps to the first location of that sector.

BSLDR

BSLDR is the TSB bootstrap ihat resides on sector 1 (sector 2, also,

if no DBS). It reads thaé¥§nal disk bootstrap from block 1 of the
moving head disk in se¥ code 17 unit §. The code in this loader was
originally meant to be read in at an.origin of 1008. (BSORG EQU 1008) .
Later versions of the Ioﬁaer load It at 14600B but the special construc-
tion remains. | e AR

P

-~ & . 3 e
. . . . T

RESU

This section of code is used for the resusitation process. It
reads in the system segment table and the DAT and calls the sleep

section.
EOTCH

This routine checks for an &ad of tape (during Mag Tape Sleep
operations). It is called when end of tape is not allowable
(before first file mark). An end of tape prints a tape too short
message and halts. Pressing run restarts the dump.

DREN - ENSU

The DREN routine is used to Insert a 12 word directory entry into
the directory. |If the proper directory track is full, ENSU is
called to redistribute the dir. tracks. See the system documentation
for supersave for a description of its operatian.

285

MLS

jrorveces st
addregs .
20008 &

L Pmnsfor Kore

P .

#Ais parh 73
For paper
tape ypdate

a /ot

- 1LDRE
ik
i
read Fron dig k

SST, £Q7, DIREC

,ar:a..‘!

I’,”g'a,./ r'afv{"‘

@ More . m)
””"H‘l"sﬁ*:‘ . ‘

set oflier . AF
locations _& PR

in 4":(MT

¥
et MPrELe &)
to Jedieate

aper fapg opoat

1kDsc

e o oo THRF Fhe dak
=3 R R (71 L7 P S
ky | " h ; I"‘{’?q‘

'

pead the DINEC
Pable From #Hua
2) &
* f: vowt Ao Aowy

ity

e

L

Ved

+f ‘RcopP
: “‘. “k abow +
3 Gndf" Wa {va‘

; 5»;:: o s
é

<

_ recs*' PrT I a—
rl,‘/
R P S alig gl mew Io,
Mecal r-’of Sy‘frﬂ' D fy"4 g (la-ck/ﬁj "»H
' a blawks duwo.
onl
LDRIS” N
{‘ifs 80
reload
. z : A
] 3¢5 (jCS
opfiams wo
wawtes o
?
@ ("

ask For
disk or

CONH"‘J‘,

cR

dr vay

prisat "hegen >
foin disd 4 other WY :
rio Arvs -

MLS

- s

fo precess
a DPRunM
cohmand,

pick «p
the Arue
wormber

SE(CD
prek vp

the select
code

prist
K p Na‘f be
ins 1Y 4

3

9

SETOA
set up H'NL

appropria fe
'\\ Fubfes .

fo process
a Drsc
\ : commanel .,
@ CB - - .
GTDwm v
pick vp
\disk wonbesr [
S s
ﬂ't—k vp
LDRT e <
b the seleet
“ade
?e{. *l.l Pem b
vait avmber, ',‘Iky:/ vait
. womber

yes

prin T j
vdisk £ rest
be i~ 120’

et
rgise alrea sy

dv(”cd(Sel
Coo’c/uﬂl*
?

e ute

STDIS
cet al/

appre fﬂ'dg
fakleg ,

259

check disks
for val s labels

\l/

u-n'":’a f:-

L0101

FN2SC
advince Fo
vext disk with
Va"'d f.C.

‘pd

S~ sk T
awd g it
‘dgk v . wet

fadeled Fv 7.{«“

privt fabelled

[7F Tabelted o :;s’]
For Dos’

3010 NIz 3 Fhg ,
badFrax tuble HQ— ok

Do

weF op AT
awd rurde fm _

voace du
o gk, . Yemgee ik
fro., EQT.

RUPRT
get M

wusher oF

BuA>T

hotld Ha
drva; ADT

e
i

0

bl

R enpfy ,;'ﬂts

e 'm = o lenve assOC Gt

poatbers alow,
$hic oarsvides

defavlt valves
orr P'T. /0‘4 A

‘ruwc"u-’el on

My fead

rMes

7

there ar
more diske
N

get & “dlr e
drack For the

féalevlak the
M Fiest avalbble

f nd the ~ex 7
-} duaitobte block &
chreqa inve AD7,

write A/sk
ADT +o dresm .

cLDT
clain afy
wvecesgary
divq fvaek‘_

wWDLTD
write ovt

the Boofs f"'f:
+o dreq

write ouft a
;uu/[dl'f!tfav]

alteccate
alocatro,
op $iom,

-y

P~ ¥
://@9 ., "”’v' 2

Dcls € -1

MLS

KDscF

¥

#‘t SEeH o
Yo tofy the
directery From

Vphe M7, Fo the

drom /'S
virefuelly dewtial

“i i wet

°‘.P“d here ,

r; ""‘3‘ C ’(,!
For (2 £1%]
o

yes

(8

read o
AT recovd

'rnpf
v 4 “ L4
caD COF Ase " '7’
or¢

SYSTEM
LMK

validate address
fo ensure Ovigen
i~ bovwdyg

" SYS(B
Wrt"‘t c‘"‘u‘
//!"""_7 roufrve
vt ho Stk

- SYI(E el
wired

L3

iF re
L Me 8¢ 8

MCS

CPB
alfocate o sk
‘r«‘ M P
‘Ylha’i
“r' R
[
e " FE

y

faritra l,‘Bq

CD8
chiim disk

SYSLRB
write eysten
l,'hary rouhiae
W disk

MCS

‘.’ Io-wl'av} of
the secfion o

load the wger

- - Il“fdfy rov,
N - "‘-’ ‘- Pni:nx_~.- .

£

gince eack disk

ROT has =

- apaari Mo Ny toibred

read /i~ A 03¢ detersined
of the disk sy tha cize

Cof - the Jocked

blox fn&k, f‘cy

are reta ek /v
core M =

Joad

ADT s

MTRD :
cof read @ ﬁ .
@ wpe recod Pae '

warsth

DIRLK
s Dhis ey no
i The cvvvest

divects ry

yes

DReN
phace u-&

wn directery

a$

@ s H been
- recoveved
yet 2

defefe the
selective foad

f

tzbfe

l

Mes

HLT 38

gu"' -F <;{!Sl(thig »
range prece 1§ o,

g ADTs

)

advance poluters
4o wext ADT
(o follews ’,

yes

alfec~ate
affocat: m

optiog

Tave = prior disk
a fdresg For
search

Fivd «hat

c}mq;(ADT =

3'1‘¢ ra fe » o/ sterg
fo Ju cove ADT

read [~ the
apprepriate ADTr

Tracle

I~vdleafg Fhat
Phe 40?‘ boirerm

toag 2stvoy ed

Teteh o ntay
4+ .Luﬁ’“elf

<

MCS

.

O

FSDAP wide
vt concve Fhe
spice on flis

BT/

tettia lige.

QI/chl.;.
g'((mf

priv?
#pO Room ‘
Fok 4/l & tatne?

[pdate & orle

ot the currev?
directery #rack

'rp’u" error
am Fevemirafe
B load /n

& direc table

MLS

save the disk

QJC-"." f‘lq +
FSDAD g0t

read /o currest
dt'lrg(MJ M,
engune tvd-r),
roF sanctified,

selectin

Y((Oﬂ 4,

replace the
divectory extr,
vt the shhF
From the

Maa TAPE

oF coveect

weite ouvf the

Cereant recavd

MTRD
5;/’ fhe
Mmext Fupe

recerd,

Fhig
recard of

coreec ¥

?
s-3¢ ,

MLS - B -

b B

i vz

i

' the divects 1.
Sil doas 'If‘-”!

ot Fhe bigiawicy

- m e o Fhis emtries

toailiag, Ty has

_Fremaéived /i cove

‘ : Ji‘w"nj Flot laadlag,

H) h Xy l!;&i &-"Ufi

i ::?H savse the

| Jaader o vse the
Son~ v.“ﬁhd verss

{ it o FHe L3k,

corw
Pv‘f ovt fhe
goot dinchryy

track

Selccf“! vz

loed 7
ESPRD is called
FSDAD with rhe sSane
. - .- Farnneﬁ': cwgsed
" o €
resove 5P eavlice, This
Tevmm L fime, hoever, "
read i N *h& R -d«.ﬂr rvArVOS
appropriate ADT L the space,
awnd Feli DIRLE
i+t has wo ?oeJ
hvfFer] :
- -
-~ - -
wr’
- -

FS PAD

reowove 3 Pl.“
Yion. +he
ADT

v iFe back
the “neodiFrad

nyT. .,‘

MLS

4+ vwevpecked
end of fFfile
was difcevered,
p”r cart r“‘*
"mﬂcfrJ EOF, v
Kid PCromed log” "'df(Gvvor.
Cid P mane » lost
1'7 T
tell dirge aot ‘
o use the de¥ dl""e 207
div treck fo use the
Cl"r(a""‘y i’ ar up Lafed J;rcgky
core & vpanfes, track wmow [foft
' . v cave,

a 7‘4,(erver

hag occured
oM a vsersy
C’:f"] .

MLS

F':~F ,

, ”?C’ Vo id

rewiad
anf read
i the frirst

recch.

rn‘u'"
“8AD TwIE
e ”

15 the date
of this set
prior fo the
lost sets ?

Co’y 'f“-ﬂe—
label, (Hhis
late! becomes

the wext greviors
rne

)

[d

Fives acte orsee”

MLS

- un;c;:. mtt * /\‘
, emivieg b4
SPRBEF - -~~~ Tlae Focther ooty grnd

".,[pf ‘4114

privT

e i oty
e oY M

;
)

read fo fha
,".} fra(k .

m“l‘y

).

l rtewivd and

Y s Hial R

for sveccly

delete extry
and privt
1ts Cidy ~—d
Cneme >, Fl
track altered

wr ifg oot
“Pd‘*‘d jrack A
Fix divec table,

[
!

MLS

MAC

s&t up
poivters, sef

Fivat veers Fonl g

¥ 3Zero

and sef vp
‘he Q“*'J
covat

- store ¢ urvent

dip ru'nf‘f“_

get this dx
eifries D

rMLs

‘.

write ook #his
TOT teach

Sava a poiafer
‘o th.s entrieg
Fotd o Jere

dixk sgpace wsed,

,‘4!' ;‘—'Tf dl},
eslfries si3e avd
add > this
PT e~Fries

MLS

%bﬂ(ﬂ’ "r
“,}1{7 ceetion

g

7 R
e bowtstvon.

1 foadey comes to

Firvich the
M"Q P'“‘;“

; DIR &E
fgat the

b
emtries Je
and “"“‘ev

For ah,
oo

1

LS

ge b Aren wo peor

gpare For
Jhig QU*"

read ,~ fhe
enfry . tell dinge
akovt Fraghed befe

wrl'/((‘\l
p,\,*r: eatn
*he Arvm

mpdade Tt
‘,,I,Ch-rs dren
L-f_:fduy

e

clear fhe
d drem addvess
swovd
orint
“¢idyemarme>
desccrated *

write back
updafed dir.
track

aduvaxed
¥ Fhe
."‘."C .‘.‘(I"

hf"'y

advancc
F +he,
nevt direchory

"‘Pa(‘"..

werite out tle
‘NEia Av r

MCS

wrifes ‘&"’
1'% ’ref'ﬂh te

J &
e gl

addresses .

C{\P;'Cq
all sypsteq
{ibrar

Ny ? 7 ,

&)

» ;'4_,:""’"3’ all

Mser vomber

wr fe ouF

his seap

areq

MLES

far

S ask

J ”,DATf ?h "iﬂf

.

":'//e,:f Aale”

N\

Covver ¥ days
te i~ LDRTE
save yoae v LYERR

hevrs

|

rivt

comves T Aqimsles
do Yo secondy
fe LTIME

add have
Lun

te

e

i .’/.’.:/’as" \\
<

en, Time
ths
N, fime

“flegel Fine “

| NSRS e

hovrs .'i”cﬂ&f

|

"z

Sef d/sk Ariwe
nessage hufor
getier & pover

Eal ks

[&

Copy Tade Fhe —]

i

EQRT
se * ’y steny

wot slept f/ay

wes te ouf

€QT

TPLRA

. Rewivd the

mnac ™Pe

|

ReAD FIRSt
RECORD o~ THFE

THIS ROUTINE
CHecks FoR IHE
FIRST REEL OF
A mAS THPE SET,

Fhis reed

Dum bev e

?

282,

'hn‘

'}.wpr eeet 3] '
PRESS Lur’

i

HALT

l
&

ASK TH&
oPE kAT FoR

A fp6-TrPE
SECECT <DE

B

-/

‘0A6 Tase
SEWCYT copEr”

.?el Ft 2

N 4 l.‘.,(

No skip

reform

(‘/ ~\

get iwfeger wo sucH .
v prepes remge ———HINTEG_EQ CHTS!"

d
TwEcAl sgiecr
wceng

chavacte.-

—

save

P— mui"v'ywe
drver

2/‘»7/0. ;k,"
RETURNM

[RouTrs F 7o

GET DIsK SPAe
Purrsic 1m2 TEAY

Lond.

-— - -

SET wP FOR
< ‘rfhn :qm"}

Feich space o _moom |6 '
wgofficicad A5
Fo Fhis Sopmes '’ T . " i o
space
3
TPACE Fo ' |
:IE::Y ';17 s~'v————"'""’" Rt % ‘Eﬁ‘e ek b f
.] ” FETC A EXT |
(sTEM ir@rngY T BBk -
rCeT seace FoR
NZIT T
RAX e THE Taaty

¥

coby PR
™ DISE

_ - teg. ~ o
sl THese,
s
"
RE TWRM

reutfive to
’-Uf"Fevg' “+ Lock,

Unrcock, meock
ad MULLOCA

Caress aw A

- - -

Save ATLOCR
allo o2 ’hq

”
Lock vacock micix

Muyw ¢ ock

coMmmande
all o ed

’,fuf]

O AN OCK
]

YIS, e
cu ks i

rwpot liae o {Y cRrR

[—

.

PN VA N ;
~ ~ 1
P -, P “ /{ns+.

Crbmands mdr ., characier

; ‘

RETLUR W

“IiLegAL rpp'

a5

rouviw 3
digk awd Area
plecement of
Sye fen /""nr:,
roxti s,

advance bath
digk and drem

add résces

o ———
.

r

| fepe load,
dartve o ¥ . X
lihear PLZI

Povaef

rus ¥ e emtd l
the I:"r.;-‘,
progren ;';‘-., -5: ‘
“alfe I ;
i
ves cet up switidl
core, dist R Jrem
poiviecs,
advance 1O
~vexd drvm
tracle,
write o o e - —]
disk or drum : wrife 15 te
disk o pper
fupe Or Mag

e

“illegal ropet”

e \

‘IDR22
L)

MLOCK - MuN . ock

+his rofire

- pe ,vf,'ru»f; Cen-a s
Mtock & Furrock
Fometiome

"v'M
“igvalrd 6/:'4, e
we ber

Cﬁk“ﬂr’»';.u? b

PRI

Ty et hlock

READ P~ THE
lLockeD? Eiocks

i

1 MRttt

¥

,'Mu/:d,

c,‘,lg‘fh o Rueng
(pomive ~F L1y

el)
/’/JA {ﬁ'"z?‘\ P
wNo , " Y .
invaid T S ko |
'/f*' —
v .

MLoCk ~ Murniec g

tovtive dees
TTT Y Al the vork

of MlockIng

LRSRM

sea.ch fer

entrieg

poosetim
4. hie

Mk
LTS5
Wit this Exry pricd -
combrug itk “ta - i
‘the rvevr‘ou‘ . - I .4
one ?
. .\"
#DRil)
.'\/‘

F\. dhe x,nuf-ed
MKl)_ o — A Tiret block alvead,
\ scg/ve am area

rer the i 'vb’c
/r(
all af the

[N R K3
~._""“‘}.7 frekad, 13
‘\\ ? / Fhe arcrd o <ol
N B estry, Compleic’.
RN
Mo f ‘_ ke
i
a /
Changa This : ye3
— i ¢ 4riey [FERPEES
';"UU?,\I b Ferron@ Ve
l\) A extrin ¢ Gug €as h-r 16,_____
o~ Seas
. * e Yhes dhe T
MLk TY X lagt OWtiry i
) “The Frile
\ 3 Lklz

TN
6[k41 —

[N

Tie

MLOCK - MuUM OCKk

- = e

- befivesay

Swec o ed
bles &

the
{ivet fres

fuee

oa-frieg,

CPR
widl <his
Combiag e ith

#Hie preceeds
~ 17

e

»e

y

ivsert A vew

entry,

cri

“ilf this ey

Conrliws hidh

te prececding
. 7

28%

Check HFor
sveslap oF
Sallow iig €« "’r:'r

£

SR

«
-
-
eﬂfry 'S
aftes a.l¢
2€ler R SO
Lo Lt

MLoCk -

MLock
Ex

does
afect

CPRB

prececivg Q'nfr’l

— o —

r ouhﬂt dees
MUas o< ‘visy

MUMLD K

this 7
The

wribe back

i~cted

talofe.

Slocks

6&21

B

-

l.“. Aoes
itoa.

[N

T CPE

Mik2y

thig
Frect

29C

7 »)._ *

MLOC k - MUrtoC £

-— - - e

the Firgdt blck
of ‘,l-lu_ reg lemm
bc.u? Myasm Lok el
chufy aw entvy

remove Flg

| extrancovs e~try,

fAave heow
"
o ctwetivg

Liloc &

291

save

atdress

N e

XA sfowifiva

A

[

L

routiee fo gef
the weyt IDOT
prack, used Ly

“|IDT cpdate rovteg

save currewt
ple. get Frack
Fw Foraatfion

tead E e

a~«d se 3

fle coua” ~F
D e foieg

RETURNM

292

Call wifl

looia— ‘tr IL‘a

28sc Febfe,
reads spectfims

c'l-'rezfuv:/ track

tF wmot alrea dJ
2t __corg

indicate whicq
track moew in,

;

read /o

this *rac,k

feteth /e -7“.
of track

rosbire searlbes
don(‘nv, s
r"hﬁ’y‘ ‘:‘"“VY

initial; 3¢ frack
poiviers Yo lag¥
tra

J"S

weo, neat end / thig drack me, ewd of table

‘,.., of table

T Ryt freck.

pnin(es For
previces Fratie

erist?

DIRrLM
/s the ewte,’
e °or & -

thig i tfracks

.L-——.—-———-—-—-

704- thes
divactory teock
juto cere ,

indinlize Count
avd poivtw b

Ereed h#p’ _

wvo PIND
RE Tur~n

FOund
. RETURN

‘ RETAURN]

rovting to
precess Lok

LkuNL = e amiock
commandy
>INVO
- get Fhe wo Fird
logrcak Arsk NG
wortber

TUTG R V'
. PARCK I
get valid | “8AD TRAck ="

track wontae
@ \P
v ohock

ot
P/: ' other delsmiter, couna
SAD prLsnrTER”
& cr InTo R
PARCK a s
@ 3(1‘ valed Aeliaiter
Kaw.

Frack srembar

ge~verafe ofe

fo propes wod o — compte
& bit of iF e
Teax fuble

clea-
St

n"uo,:ru#(

set aypopriik
24

- v

rovtint 9efs

prece sf disi
spo ¢ FTrewm 4o
corremt ADT,

vl ¥ 4’/'3!
pe e fovs

advarnce

Pan‘/{w

cave disk
address AF
cureet giere

%2 1¥ovea

allscatren
np*”“t

2

(eenpace O’r?iﬁ
asdress)

+his piee
forg ene vok

SDADT
Fomeve Spc
Frovn Fa

ADT eotry

Fiwel disk
boot 5 p

FBST }------{retie

suitia 11'39, For
< drie;

read i~ thig poT READY pro- !
d P —_...__....___,D, drive cvot rem‘, oo e -
riveg e e

priv ¥ TV T TN
Yo 7s& ALEL ‘D?Qiff/’

g)
T i
r £ l
> ey ez isdent . b D.th%‘ .
fabely R \

Tace ewtr
r J
ruto fadles

r' a4 ,
ﬁwtr.‘uj Sys dem 4"

SoRT Sf£LeeY cody
TATO LOGICAL waT

ORDPER

ReMd ¥ ALl

OF THWE svsren
SECMENTS Tr
rHE €sT,

[¢BST

priv?

TSysTEM w~aT SLEAT,
ﬂusv_’ RELOAD T LM
MAG THpE "

l

systfem

"”u‘- S’(’f
?

. HLT
icuv THE SORTED
i‘aear copd
wro TNE &QT
15 1% 4.3

297

%
ask Lacx onr
umtock " ond
‘wemger cF poers”

8uAaoT
bu et a e

rcor ADT

CoPy THE DISk)
ADrs T TWE
DRV

cLDT
M Fha
recmaim dev of
olves ""Iz“!

.

e

CoPY THE ID
™maces To TWE

pevn

Teory e
TRACks To T¥E

Deva

298

s

W R

Lam
RAUPAT are fhe
frvo ro.3s0eg
wged,

fvitialrze
varralbfes omd
ivt, locationg

out the
par & DIRK

write

write ouf fhe
rew EQUIPPENT

7 8¢

begivuiry of
"th cavtine fu
laaér.

299

initializg For
specif enkry

TENCH
syecial catvy
to 7EvCH P
write Flest
g faked

Duacr r™E
QT A DIREC

Talles

CHMIDR
dvn'n the
DIREC TORY

”‘f ~etic f‘\.f(
a‘/cp,s
hiberwate.

D“ﬂ V 1"‘(

Sysfea <egerents

|

dvup <t oF
He |, 5144? cout e

“TKD

300

wrife aw €of
eall YEMCH

ivifialing For
M7 domp.

gef preper MR
track I “ll(

copy ~%y]
fo Ll shost

Caleviate tha
word covwt KX resd
iu Fiest Lk

ealeclife 41g

were

;"

covvt C read

ext black

weite teeowrd Yo
fape and call
TE A CH

upm +he
disk address

vpdate
Feaarming
R

counmT

write. a fila

rmark & eadff
TE PEH

. Dir ¢vﬁj o

write Aes ﬂ’,
Fafbe an ewd of
1",'"_ K calt
TEwveH.

-

302

privt
”DGN e ’

Y

HLT 778

{ vautine 4o ram
. Y= Py

1 drvm res/dest
tables back #»

oisk

/u#m{;; ,niulcg

for §O Directery
tracks -

Cipy Teeghh Fron
pIREC fv AT

read i~ gucessFil
a e Fory dicectory Frecek
*rack .

ceed kag :
5o, e eeror
aterpt Ir recd

chi 4 precer

/'ulhql"l..

varialleg

aaleviate woed { A .
covwt | core add, | 'V‘¢sg£‘
avd read plece

SORT pase 2

<

Convert previess
srRec ety for

begiv in mesFpe.

Fhe Flest
DPIR tveck

Mmove Fake

k(s“,"-
begin iar messagh

replace psevdo -
CN""] FZ7ERE 1. - 74
& add L cerds

Covvert N Hhq
FiegT good <nfs7
fov ressage end

f""':l ;i message)

e clear g
sfrovy Fl.,

&)

304

SDRT‘ Pa?¢

~vext DINEC

extry S
psewde avfry

Mowe .- L L)
erd psevdo- ¢ vhy

a(’d [o
courrenmt
[./‘r(. Lrul.lr

;

erecs Ag;"?C

szr PIR <~d

!

privt ereoy

Mmass a9‘

ﬁv/ 7‘4\& s
/cuy H For t+h

DaT A vpdete
tha DIEEC mulle

22

306

SOorT

,0»3 Y

wrife ¥his
pre track fo

gef Ic-an; P
| rezd From
oAver

write oaut
ﬂ‘ ‘Fi"

SDRT

f)u

L,

Copy all of
tle DT #recks
+= /’72 flglc

C.’Jﬂy all of
the dick ADTs

> 4he disk,
..

RE Turpy

S D

I

-

TENCH

,od;nz
rMi-fg e -
ha~dle ena oF
- trpe erhile
L-rrif‘.‘,,; .
) ﬂ!"; -I; Forv ar g
o Me & —a.&rh
5% ere po o LS
vhick the
wrile pasgy
emCauntere 7he) QET“ RM
f Pagpe
ver/ J
‘mfk) trailes
lale! a.f
Felivi 2y
';‘I/(«.ﬂdk
NoTe : RE ruehﬁ FRO”M IS Rou~2r kL ARE
AL AYS 70 THE ADDRESS PRESEMTLY IN 7R
CAVE 2cRo rRER, STMCE THRIS SAVE
ARE A MAY &F CHAW 6D gY 7HI< rourTI L
Re 11 BM 2 ARE noT Aew 4ys el THE
PRECEEDING CALL,

309

TMPMEDIATELY

TENCH peare

(aﬂ, vere o
area. Fo FavC

Xrea, oM

wrife eud
of Filk)

fra,'fgr .'lﬂ élc)
art Alouiy

4
\Frle wmavk

Spece tor pe.
Forernd (Kivke
so 3 i

‘ privt
3 ¥ shavd ‘])

ilegal mpt”

Sef drivesc '
ﬁ ve rl'f7 @
i Ay
TerBRY
J
recw ind
tape

resfore. varialfes
from SAVE ATEA

(RETURN)

310

REwsrD ANMD
‘ STHAD 8Y

Advance vel
womber awd prout

”,uauﬂr RE€€C
AMER XX,
recss gaw

1

HLT "8

'

coPy CURRE~ST
SAVE MMER TD
cAue ARER orE

AaD TwO

I

cef drivevs for
er'f(and

rewind tla fepe
wri"{ +“¢

y 7L Xe fﬂfa
Ia bt

311

rovtime vl
read s~ 107
~ DIR A
R P2 S it
CMIDR rag T pe
\
y“) wrift oot A

Pt 102y coced bloclc

£oTcH
Fcleck Fov
Fadat oA

AF Ao

['7& req 4".”':&)
rmove. Aat=

rema /&"”? rfa
corg 7 short
-F Lo ey

{vptate cors
pallthfi L

coaetec s

(ulv"fln'-w’

read ~<xt track

et cond T
! 1{(:(- \
.
7
MTIWA

(eMalinins
vord coew?
zevo 2

RETURN

rcnu»lvy
word ccunt

<12
?

write st
record & check
end of fape
RETU RN

312

LoAd

ivikia /3¢

£ JQumpe

tovtine clecks
for LOAD
o Dume

Cotmae. d¢

ast Fee

(oa:’ EX

domp conments

Ve \ o
[E T arA } 20 e
/ R

LDFLG

g’cg' alf of *“‘l
'host be recovtred
Flags (word 16)
iu the

drectory

l

prirt (ngtrveting
to operafor

c.y“'wfpy QD’,
or (w’)‘ vaAMED

linae

&

313

rn'Nf

 tiltegal oyt

RETURN

/: ANE 24

toads & Dumr

pack asg

print

”r'//v:; +f ,'.,',94 4

ervors

ID From

the [linme,

search

pack a
o 'Efvﬁ
tha liwg, chek

(E NTIL

for (nd:,-ﬁ, R

set rugr
he recovered”
f/aq

update couvat
oF -e~1‘y;¢s

prim?

‘entry alreas

Present”
H

314

1D i"‘tx"g prict —'
Fow ‘i).fé.h w0 Sooy -'D‘ I
Id ;
£~ PAR
\

i

Lomd & Dumr R

priA :
| e <ven commy*

pri~vt a
wrl.,g retfuvas

315

confijare the
drivee R rewiud
the *{-fc .

L oad

Copy The
rodlf:ed
dfrcc‘fﬂf:[Lo
the digk

ke cotry
Yo slep a+
MDs €

TPLR

Lonp o puMmp

demand ~

reef

Aumbor

A IV~

this roviine
Futeveests exnd
of fape leleks
"‘tl Areses fs

a cCewtlwyeug
me divm te g
calling pouti e

N

et Aﬁty o
fay po r€covd
prese~t .

?;VQ Qf".’"‘
RETURN

read
wert recovd

frem “'ﬂft

317

\/

vcrement

reel wap bey

rew i~ 4
ard §fand L,

;

telf Opere o

fr mMeunt pext

reel.

l

Her 778

read
. as.d vevr.'{-}
/2 bel +hig v aely

L‘&’ aust
Go_/u.J Fo Fhig
setr &K be the

o e— e -— N0+ rﬂ-e’
wumber .

voutrirc "'}/«‘U’MS \

all »Ff The

S A.!éC'i'SiJ"]‘ 182
T Lm%z-__.m .

“Gai Fial3e

P4

ta bes
poi-tes

3

cLpTi

| dronr

a

fro.- k

e

N

~

e
A

e+ =

-

[
L

Ts
the
reviovs
fwlm"kv € Mo

wesr

‘[‘-. a?
P T
L+

I aac TY VI \

&

[‘e

refvv

let*
trecks

auur

J

qv efe
ihe

AD T

D

3

9 ot

sy § brer

Fracks ftor
DI ﬁl and
for the

Lhrary

T/
deock <

RETURN

319

Bootstrap procedure

start BBDL at 77760B

BBDL reads in drum sector @
Sector ¢ reads in drum sector 1
Sector | ‘reads in disc blocks 1 & 2

NOTE: this loader is configured to read from unit @

of the disc controller in select code 17B.

Disc block | § 2 this block scans all disc drives and builds a

table of drives vs. logical unit number. This bootstrap
contains the system segment table and uses it to read in

the system.

320

Sleep Tape Format

The following lists the records on a sleep tape In order starting
from the load point marker. '

Tape Label

The tape label is a se?en word record and appears at the beginning
and end of each sleep tape. The words are:

0 ASC 1,LB
1 _ (ASC 1,TSB
2 (unused)
3 (reel number)
4 (year e.g. 71)
5 (hour of year)
6 (tenth of seconds)

EQT

~~ 120B words

DIREC
" 560 words

ioT
1024 word blocks, the IDT and Directory are packed into 1024
word blocks as they are read in, without regard to track or
entry boundaries.

Directory

1024 word blocks
see IDT format

321

System Segment Table

System

The system is written out according to the information in the

System Segment Table.

System Library

Each system library program is dumped in a separate record.

This end of file ends the system information. It must be on
the first reel of tape.

USER Library

Programs and Files are written out in 1024 word records (4 blocks.
Files remain interleaved. i.e. the first tape record of a 2n
block long File contains records 1, n+ 1, 2, n + 2). The First
tape record contains the 12 word directory entry at its beginning
and may be up to 1036 words long. A File mark is written after

the last tape record of each program or File.

An EOF in place of an initial record of a program or File
indicates the end of the sleep set.

1. When an end of tape marker is detected, the mag tape dump will
write an EOF, a label record, and another EOF and ask for
another reel. During reading, the sequence of an EOF followed
by a label (7 word) record will indicate the end of a reel.

No other test for end of reel is possible.

322

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	082A
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	103A
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	131A
	132
	133
	133A
	133B
	134
	134A
	135
	136
	136A
	137
	138
	138A
	139
	140
	140A
	141
	141A
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154A
	154B
	154C
	154D
	154E
	155
	156A
	156B
	156C
	156D
	157A
	157B
	157C
	158A
	158B
	158C
	158D
	158E
	159A
	159B
	159C
	159D
	159E
	159F
	159G
	159H
	159I
	160A
	160B
	160C
	160D
	160E
	160F
	161A
	161B
	161C
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322

