Ry

A

Engineer’s Handbook
Uncle Art’s Big Book of Irix

May 5, 1994

install the information tools software (only need to do this o

when the tools change)

% su

inst -f dis
exit

% rehash

% echo “make

handbook always acces

to find out what chapte
% handbook

to find out what chapte
% handbook <cl]

to print a chapter on y«
% handbook -o

to get a copy of the actu
% handbook -o

see the man page for fu

How to access the han

sure /usr/

TS exist

rs exist

1al data

t.wpd:/sgi

iSes most cul

hapter_nan

pur default p
- <chapte

<file_nan
irther handb

dbook commar

L/infotools

'local/bin is in pat

rrent version of the data

ne>

rinter
r_name> | 1p

1e> <chapter_name>

)ook options

nce or

th" .

d

|
|

I
|
i
i

B EEEN W W W E OO NN O h -

I

Uncle Art’s Big Book of IRIX

Document Version 1.2

Document Number

Written by Arthur Evans and Jeffrey B. Zurschmeide

Edited by

Production by

Engineering contributions by: Ana Maria De Avare, Nelson Bolyard.
Paul Close. Ellen Desmond, Dave Higgen, Bill Kawakami. Sue Liu.
Paul Mielke. Sandra Romero, Casey Schaufler. Aaron Schuman,
Mike Thompson, Chris Wagner

© Copyright 1990,1991,1992 Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc.. and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Shoreline Road, Mountain View, CA 94039-7311.

Uncle Art's Big Book of IRIX
Document Version 1.2
Document Number

Silicon Graphics, Inc.
Mountain View, California

IRIX is a trademark of Silicon Graphics, Inc.

IRIS is a registered trademark of Silicon Graphics, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

NFS is a trademark of Sun Microsystems, Inc.

Contents

1. Introduction to the IRIX system

1.1

1.2

1.3

The IRIX Environment

1.1.1 Processes

1.1.2 Files

The Kernel . .

1.2.1 Interrupts and Exceptlons
1.2.2 Processor Execution Levels
The Shell

1.4 IRIX Documentation

1.5

2.1

2.2

2.3

2.4

2.5

Typographical Conventions

. Overview of the Kernel

Process Subsystem .

2.1.1 System Calls

2.1.2 Process Regions

2.1.3 Creating Processes ..
2.1.4 Sessions and Process Groups .
2.1.5 Signals

2.1.6 Job Control

File Subsystem .

2.2.1 The File System Swutch

2.2.2 Using Multiple File Systems
Memory Management

2.3.1 Vintual Addresses

2.3.2 PageFaults . .

2.3.3 Integrated Data Cache
Input/Output Subsystem

2.4.1 Kernel-Driver Interface

2.4.2 Device Special Files
Interprocess Communication Mechamsms
2.5.1 Spinlocks

2.5.2 Semaphores

1-6

2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-13
2-14
2-14
2-14
2-15

2.6

2.5.3 Message Queues and Shared Memory
254 Sockets

Multiprocessor Systems

2.6.1 Kernel Locking Protocols

3. The File Subsystem

3.1

3.2

3.3

File System Interface

3.1.1 Opening a File

3.1.2 Reading File Data .

3.1.3 Writing File Data .
3.1.4 Adjusting the Read/Write Pomter .
3.1.5 Closing a File .
3.1.6 Making a New Directory .
3.1.7 Removing a Directory

3.1.8 Reading Directories .
3.1.9 Changing Current Directory .
3.1.10 Changing the Root Directory
3.1.11 Changing File Ownership
3.1.12 Changing File Access Modes
3.1.13 Getting File Status

3.1.14 Creating Pipes . .
3.1.15 Duplicating File Descrlptors
3.1.16 Linking Files

3.1.17 Unlinking Files

3.1.18 Mounting File Systems
3.1.19 Unmounting File Systems
3.1.20 Creating Symbolic Links .
3.1.21 Other System Calls

File System Data Structures

3.2.1 The Inode Table

3.2.2 Accessing Inodes .

3.2.3 Releasing Inodes

3.2.4 The File Table

3.2.5 The Mount Table

3.2.6 The File System Switch

File System Switch Operations

3.3.1 Reading reguiar file data

2-16
2-16
2-17
2-17

3-10
3-10
3-10
3-13
3-15
3-16
3-17
3-19
3-21
3-22

34

3.5

4. The
4.1

4.2

4.3
44

3.3.2 Writing Regular File Data
3.3.3 Reading Directories
3.3.4 Writing Directories

3.3.5 Path Name Lookup

3.3.6 Pipes . .

The Extent File System

3.4.1 The Superblock

3.4.2 The Bitmap

3.4.3 On-Disk Inodes

3.4.4 Regular file structure .
3.4.5 EFS Directory Structure .
3.4.6 Disk Block Allocation .
3.4.7 File Creation

Chapter Summary

Process Subsystem .

Process System Calls

4.1.1 Creating New Processes
4.1.2 Executing Programs
4.1.3 Resizing the Data Region
4.1.4 Sending Signals

4.1.5 Catching Signals

4.1.6 Terminating a Process

4.1.7 Waiting for a Process to Terminate

4.1.8 Other system calls

Process Data Structures

4.2.1 The Process Table .
4.2.2 Process States and Transitions
4.2.3 Run Queue e e e .
4.2.4 Sessions and Process Groups .
4.25 The UserBlock .

426 Process Regions

Process Context .

Process Scheduling .

4.4.1 Process Priority

4.4.2 The Dispatcher .

4.4.3 Context Switches

3-23
3-24
3-24
3-24
3-27
3-29
3-30
3-31
3-32
3-32
3-33
3-35
3-35
3-37

4-10
4-11
4-13
4-14
4-14
4-16
4-16

4.5 Process Creation and Termination

4.51 Creating a New Process .

4.5.2 Terminating a Process

4.5.3 Awaiting Process Termination .
4.6 Signals . e

4.6.1 Handling Signals .o
4.7 Manipulating Process Address Space .

4.7.1 Executing Another Program

4.7.2 Changing the Size of a Process

4.7.3 Mapping Files into Process Address

Space .

5. Memory Management . .
5.1 Memory Management Data Structures
5.2 Integrated Data Cache .

5.3 Duplicating Processes Regions
5.4 Running New Programs
5.5 Maintaining Free Pages
5.5.1 Summary of Page Swapplng
5.5.2 Process Swapping
5.6 Page Faults .
5.6.1 Validity Faults
5.6.2 Protection Faults
5.7 Chapter Summary

6. The Input/Output Subsystem

6.1 Device Drivers for Multiprocessor Machlnes .

7. Interprocess Communication
7.1 Spinlocks
7.2 Sockets .

8. Networking

4-17
4-18
4-19
4-22
4-24
4-25
4-26
4-28
4-29

4-30

5-10
5-14
5-15
5-15
5-16
5-17
5-19

1. Introduction to the IRIX system

The IRIX operating system is a multi-user, multi-tasking operating system
based on the UNIX system developed by AT&T. IRIX is in many respects
identical to System V UNIX, as described by Maurice J. Bach in his book,
The Design of the UNIX Operating System. IRIX also includes
enhancements from the Berkley Software Distribution (BSD) version of
UNIX, which is described in The Design and Implementation of the 4.3BSD
UNIX Operating System, by Samuel J. Leffler, Marshall Kirk McKusick,
Michael J. Karels, and John S. Quarterman. Both of these books will be
referenced throughout this book.

The major differences between IRIX and System V UNIX are:

« IRIX supports multiple file system types. The native IRIX file system is
the Extent File System (EFS) which provides improved performance over
the standard AT&T file system. Chapter 3 of this book describes both the
Extent File System and the file system abstraction that allows IRIX to
support multiple file system types.

o IRIX supports the BSD socker abstraction for interprocess communication.
This is described in Leffier, et al., Chapter 10. A few differences between
the BSD implementation and the IRIX implementation are discussed in
Chapter 7.

¢ IRIX features BSD UNIX derived networking facilities, including support
for the DARPA Internet network protocols. These facilities are described
in Leffler, et al., Chapters 11 and 12.

o IRIX supports the Sun Network File Systern (NFS). NFS is described in
TCP/IP and NFS: Internetworking in a UNIX Environment by Michael
Santifaller.

Uncle Art's Big Book of IRIX Section 1.0.0 1-1

1.1 The IRIX Environment

Two of the basic concepts in the IRIX system are file and process. A file
contains data. A process is an instance of an executable file being run.

1.1.1 Processes

As noted above, a process is an instance of a program being executed.
Under IRIX, a large number of processes may run simultaneously. The IRIX
system manages the system resources—CPU, memory, and peripheral
devices—in such a way that many processes can share these resources. The
system allows many process to use one CPU by switching between
processes. The system allows many processes to run in limited amount of
physical memory by implementing a virtual memory scheme. Memory
addresses in compiled programs are interpreted as virtual addresses, which
are mapped to physical memory addresses by the system. In this way, a
process is prevented from accidentally accessing another process’s memory.
IRIX features demand paged memory management, which means that the
system can cache pages of text and data which are not immediately needed
on disk. This allows the system to run programs which are larger than
physical memory.

Each process has a user file descriptor table which contains references to
“‘open’’ files. System calls which perform file I/O take an integer file
descriptor as an argument, which is used to find the correct entry in the user
file descriptor table. Usually, a process will start out with three open files,
standard input, standard output, and standard error output, which by
convention are represented by file descriptors 0, 1 and 2. In a normal
interactive process, standard input, standard output, and standard error
output all refer to the user’s terminal.

The IRIX system provides a number of system calls which provide for the
creation and termination of processes, the manipulation of process address
space, interprocess communication, and other important operations. The
fork system call creates a new process by making a copy of the calling
process. This new process is referred to as the child of the calling, or parent,
process. Unless otherwise specified, the child inherits the parent’s file
descriptors. This property has important implications, as will be seen in the
section on the shell, below.

1-2 Section 1.1.1 IRIS-4D Series

1.1.2 Files

As far as IRIX is concerned, file data consist of unformatted streams of
bvtes. User programs may impose their own structure on data that they read
or write, but the operating system imposes no structure of its own. A file
can be simply a set of data stored on disk. in which case it is referred to as a
regular file. A file can also be an I/O device, such as a tape drive or
terminal (such a file is called a device special file). Certain other types of
files exist, and will be described as they come up.

Files are organized into a hierarchical file system. This file system may be
represented as a tree, with nodes representing files. All non-leaf nodes are
directories. special files which contain references to other files. The root of
the tree is called the roor directory. and is represented by a slash (/). Any
file in the hierarchy can be identified by its path name. Path names are
constructed from the names of all the individual nodes on the path between
the root directory and the file being identified. Thus, in the file system
pictured in figure 1-1, *‘/dev/tape,’” ‘‘/etc,”” and ‘‘/usr/people/arthur/poem’’
are all valid path names. In this example, the files pictured as folders are
directories, /dev/tape is a device special file representing a tape drive, and
/etc/passwd and /usr/people/arthur/poem are regular files.

Uncle Art’s Big Book of IRIX Section 1.1.2 1-3

=

arthur
poem

Figure 1-1. Example File System

In addition to the type of path name described above, called an absolute
path name, files can be referred to by relative path names. Each IRIX
process has a current directory, and path names which do not begin with a
slash are interpreted relative to the current directory. The special file names
‘.’ and *‘.."” are used to refer to the current directory, and the parent of the
current directory, respectively. Therefore, if a process’s current directory
was /usr, it would interpret the path names people/arthur or
J/people/arthur as equivalent to /usr/people/arthur, and interpret the path
name ../etc/passwd as equivalent to /etc/passwd.

IRIX files are protected by a discretionary access control system. Under this
system a file’s owner may set the file’s access modes to either prevent or
allow access by other users. IRIX recognizes three kinds of access: read,
write, and execute. Permission for each of these kinds of access can be

1-4 Section 1.1.2 IRIS4D Series

controlled for each of three classes of users: the owner of the file, users in
the same group as the file's owner. and all other users.

While directories use the same access modes as other files. they are treated
slightly differently. A process must have execute permission for a directory
in order to make that directory its current directory. or to access files in that
directory (the process must still have access permission for the files
themselves). Write permission for a directory allows a process to create or
delete files in that directory—it is not necessary to own a file. or have write
permission for it, to delete it.

User programs access the file system through system calls. Some of the
most common system calls for the file system are creat. open, close, read,
write and mknod. creat creates a new file, and opern opens a file for reading
or writing. creating it if necessary. Both creat and open return an integer file
descriptor, which is used to identify the file to other system calls. read
reads data from an open file. and write writes data to an open file. close
closes an open file, so that its file descriptor can be reused. mknod is used to
create special files, such as device files and directories.

Pipes

One kind of special file deserving mention at this point is the pipe, which
provides one means of interprocess communication. Pipes can be read from
and written to like other files; however, data written to a pipe can only be
read once. Data written to the pipe is held in a circular buffer until read.
Therefore the file acts like a pipeline, carrying data from one process to
another. There are two kinds of pipes, named pipes and unnamed pipes.
The named pipe exists within the regular file system hierarchy. That is to
say, it has a pathname and access permissions, and may be accessed with the
open system call. Named pipes are created with the mknod system call, like
other special files. Unnamed pipes have no place in the file system
hierarchy. They are created with the pipe system call, which returns two file
descriptors, representing the two ‘‘ends’’ of the pipe. By creating an
unnamed pipe and then forking a child process, which will also be able to
reference the pipe’s file descriptors, a process creates a channel of
communication with the child process. Communication between two child
processes can be accomplished in a similar manner. An unnamed pipe
ceases to exist when the last file descriptor referencing it is closed.

Uncle Art’s Big Book of IRIX Section 1.1.2 15

1.2 The Kernel

The kernel is the center of the IRIX system. The kemel is a collection of
routines which perform the following functions:

o divide processor time fairly among all processes.

« mediate access to data objects by processes, ensuring that data ownership
1S maintained,

« provide a consistent programmatic interface to system hardware,
o provide a file-hierarchic view of mass storage devices, and
e provide complex protocols for network communication.

The kernel routines do not run as separate processes—they are run as part of
the individual processes. When a process is executing a kernel routine, it
operates in kernel mode, meaning it can access both kernel and user virtual
memory, and use ceriain privileged instructions. When a process is not in
kernel mode, it is in user mode, and can only access its own virtual memory.
Kemel mode and user mode are implemented at the hardware level. A
process may make the transition into kernel mode voluntarily, by requesting
a service from the kernel (that is, by making a system call). A process may
also enter kernel mode if the kemnel has to service an interrupt or exception
while the process is running. This book will use the convention of
attributing various actions to *‘the kernel,”” but it should be remembered
that these actions are carried out by the current process, operating in kernel
mode.

1.2.1 Interrupts and Exceptions

IRIX uses a single mechanism to deal with the various occurrences that can
interrupt the execution of a process. These occurrences may be broken
down into two categories: interrupts and exceptions. Interrupts are
asynchronous with the execution of the current process, and are not
necessarily caused by anything that the process did—for example, an
interrupt could signal the completion of an asynchronous /O operation
requested by another process. Exceptions, on the other hand, are caused by
the process itself, when it attempts an invalid operation, such as dividing by
zero or accessing non-existent memory locations. When either an interrupt
Or an exception is received, the kernel first preserves the context of the

1-6 Section 1.2.1 IRIS-4D Series

current process (the information necessary to restart the process where it left
off), then determines the cause of interrupt or exception and calls the
appropriate handler routine. The only difference between the treatment of
interrupts and exceptions is that exceptions occur. by their nature. in the
middle of instructions, so that after returning from an exception. the system
must attempt to restart the instruction that caused the exception. Interrupts
are handled between instructions, so there is no need to restart an
instruction.

1.2.2 Processor Execution Levels

The IRIX system prioritizes interrupts so that crucial, time-critical interrupts
are not interfered with by less crucial interrupts. Interrupt routines use a
privileged instruction to set the processor execution level such that lower-
priority interrupts are blocked out. Under IRIX, the highest priority
interrupts are hardware errors (for example. bus errors).

1.3 The Shell

So far the system has been discussed in terms of its architecture and
programmatic interface. The interface that the user sees is not a part of the
kernel operating system, but rather a separate user program, referred to as
the shell. Since the shell is an ordinary program, users can write and
compile their own shells, thereby customizing their user interfaces. The
IRIX system offers two shells to chose from, the Bourne shell (named after
its author, Steven Bourne) and the C shell (so named because its syntax
resembles that of the C programming language). For the sake of simplicity,
this book will only cover the Bourne shell, so references to ‘‘the shell”’
should be understood to refer to the Bourne shell.

Commands to the shell are divided into two categories, built-in commands
and executable files. Built-in commands, as the name implies, are built into
the shell. They include commands for changing the shell’s working
directory and setting various shell parameters. The shell also provides
variables, branching and looping mechanisms, and a facility for defining
functions. Together, these built-ins allow the shell to be used as a
programming language as well as a command interpreter. Executable files
may be specified with a full pathname, or by a simple filename. In the latter

Uncle Art’s Big Book of IRIX Section 1.3.0 1-7

case, the shell searches through a series of directories to find the file. If the
shell finds a file with the correct name. it tries to execute the file; if it cannot
find the file it reports an error. For example, given the command:

$ who

The shell would find the program /bin/who, which prints a list of the users
logged on to the system (the dollar sign is the shell’s prompt, showing that it
is ready for a command). The series of directories searched by the shell is
referred to as the execution search path, and is defined by a shell variable,
so that the users can configure the path to their own needs. This path
commonly contains the directories /bin, /usr/bin, and /usr/bsd, and
/usr/sbin.

The shell also allows the user to redirect a command’s input and output. For
example, the command:

$ psroff < document

Runs the program psroff, which formats text to be printed on a PostScript
printer, taking standard input from the file document. instead of the
terminal. Standard output and standard error output can also be redirected:

$ diff prog.c prog.c.old > diff.out
$ cc prog.c 2> errors

In the first example, the program diff is being used to compare the contents
of two files, and its standard output is being redirected to the file diff.out. In
the second example, the C language compiler, cc, is being run ona C
program file, prog.c, and its standard error output is being redirected to the
file errors. In addition to redirecting input and output to files, the shell can
form “‘pipelines’’ by connecting the standard output of one process to the
standard input of the next process with a pipe:

$1s | 1p

In this example, the standard output of the Is program, which produces a list
of the files in the current directory, is being piped to the Ip command, which
sends output to a line printer.

18 Section 1.3.0 IRIS-4D Series

1.4 IRIX Documentation

A large part of the IRIX documentation consists of **manual pages’” each
documenting a single command, routine, or file format. The manual pages
that are referenced in this book are in several different places: the IRIX
Programmer's Reference Manual (3 volumes), the IRIX User’s Reference
Manual (2 volumes), the IRIX Svsiem Administrator’s Reference Manual,
and Writing Device Drivers For Silicon Graphics Computer Systems. The
manual pages are organized in sections according to content. The sections.
and the manuals in which they are located, are shown in the table below.

Section Manual

1 Commands User’s Reference. Vol. 1&2

1M System Maintainence Svstem Administrator’s Reference
Commands

2 System Calls Programmer’s Reference. Vol. |

3 Library Routines Programmer’s Reference, Vol. 2

4 File Formats Programmer’s Reference, Vol. 3

5 Miscellaneous Facilities | Programmer’s Reference, Vol. 3

6 Demos and Games User's Reference, Vol. 2

7 Special Files System Administrator’s Reference

K Kemel Functions Writing Device Drivers

Manual pages are referred to throughout the text by their name and section
number: for example, passwd(1) refers to the manual page for the passwd
command, in section 1 in the IRIX User’s Reference Manual.

Other important documents include the IRIS-4D System Administrator’s
Guide, which contains information on system administration tasks, and the
IRIS-4D Programmer’s Guide (2 volumes) which contains information on
frequently-used libraries and development tools. In addition to containing
manual pages for certain kernel functions, Writing Device Drivers for
Silicon Graphics Computer Systems, contains information on the I/O
subsystem.

Uncle Art’s Big Book of IRIX Section 1.4.0 1-9

1.5 Typographical Conventions

In this book. the the names of a kernel data structures and variables are set
in the courier typeface (for example: ‘‘“The process table is an array of
proc structures.”). Courier is also used for examples and algorithms set

apart from the main body text.

Ttalic text is used for numerous purposes. Italics are used to indicate a
system call. library routine, or anything else that has a manual page
associated with it (for example, passwd(1) above). ltalics are also used to
indicate the first use of a term. and to indicate the names of kernel routines.
Very occasionally. italics are used to place special emphasis on a word or
phrase.

1-10 Section 1.5.0 IRIS-4D Series

-

2. Overview of the Kernel

The previous chapter introduced the concept of the kernel. and some of its
functions. This chapter will describe in more detail the various components
of the kernel and the relationships between them.

Figure 2-1 is a logical diagram of the modules in the kernel.

Uncle Art’s Big Book of IRIX Section 2.00 2-1

System calls]

: Process subsystem : ‘File subsytem

Generic file system routines

Schedul Interprocess ! |
cheduter communication NFS EFS

Networking Memory management

protocols

subsystem
Device drivers
Character Block
| Hardware control j

Figure 2-1. Relationship of kernel modules

At the top of the diagram are the system calls, the user entry points into the
kernel. At the bottom of the diagram are the lowest-level hardware control
routines. In between these layers, the kernel routines have been divided into
groups: the process subsystem, the file subsystem, the memory management
subsystem, networking protocols, and device drivers.

Device drivers are modules that interact with peripheral devices, such as
disk drives, tape drives, and serial terminals. These devices are divided up
into block and character devices. Block device drivers are random access
and will only read or write fixed sized ‘‘blocks’’ of data. Character device
drivers, on the other hand, support variable-size I/O requests and may or

2-2 Section 2.0.0 IRIS-4D Series

may not support random access.

/O on block devices is buffered through the integrated data cache. The
integrated data cache is so named because the functions it serves were
originally served by two separate modules—the buffer cache, for buffering
regular I/O requests, and the page cache, for managing virtual memory. The
integrated data cache is part of the memory management subsystem.

The process subsystem deals with the control of processes: process
creation, termination, and scheduling, interprocess communication, and the
manipulation of process address space. The process subsystem interacts
with the integrated buffer cache in managing memory and virtual address
space, and the process subsystem interacts with both the integrated data
cache and the file subsystem to load a new program into memory (with the
exec system call), since the executable file must be paged into memory from
the file system. The scheduler module is responsible for fairly allocating
processor time between processes. In this simplified diagram, interprocess
communication has been shown as one module, but there are in fact two sets
of interprocess communication primitives available under IRIX: the System
V style primitives, and BSD sockets. User programs interact with the
networking protocols through the socket abstraction.

The file subsystem manages most user I/O. Diagram 2-1 shows two file
system types: EFS, the Extent File System, which IRIX uses to access file
systems that reside on local hard disks, and NFS, the Sun Network File
System, which provides for access to file systems on remote machines,
which need not run IRIX as long as they support the NFS protocol. Regular
file /O is buffered through the integrated data cache. In the case of EFS,
performing /O involves interacting with the device driver for the hard disk.
In the case of NFS, performing I/O involves interacting with the networking
protocols through the socket abstraction. The networking protocols, in turn,
interact with the network hardware device drivers. Users can also access
devices directly through the file subsystem, by opening device special files.

2.1 Process Subsystem

The process subsystem relies on a number of data structures. The process
table is an array of proc structures, each of which contains information
about a single process. Each proc structure may be linked onto one or
more of several lists maintained by the kemel. There is a free list, from

Uncle Art’s Big Book of IRIX Section 2.1.0 2-3

which the kemnel allocates unused proc structures. Processes which are
not on the free list are on the active list. In addition to these lists, there is a
list of runnable processes. a double-linked list of sleeping processes, and a
list of exiting processes.

The virtual address space of a process is divided into regions, which are
contiguous areas of virtual address space. Each region is described by a
region structure, which contains information about what kind of region it
is, how many processes reference it, and so on. The link between the
region structures and the proc structure is the pregion structure, or
per-process region structure. Each proc structure contains a pointer to a
linked list of pregion structures, each of which points to a single
region structure. Each process also has a user structure, or user block
(also called the user area or simply u area). The user block contains
information about the process which can be swapped with the process, as
opposed to the information in the proc structure, which must remain in
core at all times. Each process also has a kernel stack. which the kernel uses
when that process is running. The kernel stack is associated with the user
block, and unless otherwise noted, whatever is said of the user block is true
of the kernel stack. So a process consists of a proc structure, a user block
and kemel stack, a linked list of pregion structures and a number of
region structures.

2-4 Section2.1.0 IRIS-4D Series

kernel memory : user memory

proc structure

block | :
[pregion I._{ region } process A
: data
| :
[pregior}__l region IL process A
I hared stack
[pregion region l— :exztreregion
proc structure
user
block
|
: B
L prelgion }_l region l____ :::&
- - 1 process B
l pregion }_{ region | : ke

Figure 2-2. Process data structures

Figure 2-2 shows the data structures for two processes with one shared
region. To simplify the figure, only the two proc structures are shown,
not the entire process table. In the figure, the processes are sharing a text
region, so each process has a pregion structure which points to the
region structure controlling the text region. This could happen as the
result of a fork system call—the child must be given its own data and stack
regions, so it will not overwrite its parent’s data. However, since program
text is read-only, there is no need for the child to duplicate the text region.

The structures on the left of the dotted line exist within the kernel’s virtual
address space. The structures on the right of the dotted line exist in memory

Uncle Art’s Big Book of IRIX Section2.1.0 2-5

managed by the integrated data cache, and are subject to swapping. The
“‘region’’ blocks on the right of the dotted line are simply collections of
pages in the integrated data cache. The pages of memory which make up a
region need not be physically contiguous: they are mapped to contiguous
virtual addresses by the memory management subsystem.

2.1.1 System Calls

How system calls are accomplished deserves some mention at this point. To
make a system call, a process loads the system call number into one of the
processor’s registers, then generates a special Kind of exception to make the
switch into kernel mode. This invokes an exception handler called syscall,
which executes the appropriate system call. Of course, the programmer
does not need to know system call numbers. The standard library contains
“‘front-end’’ routines for all the system calls, so that the programmer can
call them from a C program. The C language calling conventions for all of
the system calls are documented in the IRIX Programmer’s Reference
Manual, Volume 1. The arguments to the system call are copied from user
address space into the user block. There are a number of variables in the
user block which are simply used for storing arguments to system calls, so
that kernel routines need not pass them on the stack. For example, during
the read system call, which reads data from a file into a buffer in the user’s
address space, the address of the buffer is stored in the user block variable
u_base, the number of bytes to read is stored in u_count, and the
logical offset in the file is stored in u_offset.

When the system encounters an error during the execution of a system call,
it sets the global variable errno to indicate the cause of the error. These
error numbers are listed on the intro(2) manual page. The perror(3C)
library routine may be used to print out a message describing the error.

2.1.2 Process Regions

The virtual address space of a process is divided up into regions. Each
process has at least three regions: a text region, containing machine
instructions; a data region; and a stack region. In addition to text, data, and
stack, a process can have one or more shared memory regions, which it can
share with other processes (shared memory regions are covered in Bach,
Chapter 11). A final sort of region is the mapped file region, which

2-6 Section 2.1.2 IRIS-4D Series

~

represents a file which has been mapped into memory through the mmap(2)
system call.

2.1.3 Creating Processes

Processes are created through the fork(2) system call. The fork system call
is executed, the kemel allocates a new proc structure (off the proc
structure free list) for the new process, and assigns it a unique process ID
number. The new process inherits the parent process’s file descriptors. The
new process also has a set of regions which appear to be an exact copy of
the old process’s regions at the time of the fork call.

IRIX links parent and child processes together on a list called the parent-
child-sibling chain. Each process has a pointer to its parent process. and if it
has children, a pointer to a child process. If the process has more than one
child. the first child has a pointer to a second child. and so forth. Each
parent process is considered to be the head of its own parent-child-sibling
chain.

2.1.4 Sessions and Process Groups

IRIX also links related processes together on session and process group lists.
A session is a set of processes related to a single login session. A process
group is a set of processes which constitute a single logical *‘job.”” For
example, if a user issues the following command:

1s | 1p

The shell will start two programs, /s, which lists the files in the current
directory, and /p, which sends output to the line printer. Since these two
programs were issued together, they are considered a single logical job.
Therefore, they are both put in the same process group. This allows them to
be manipulated as a unit, where appropriate.

Uncle Art’s Big Book of IRIX Section 2.1.4 2-7

2.1.5 Signals

Processes can be notified of various conditions through the use of signals.
Signals can be generated either by the kernel. in response to various errors
(attempts to access illegal addresses. bus errors, etc.). by other processes,
using the kill(2) system call, or by the process itself, which can request a
signal at a pre-arranged time through the alarm(2) system call.

By default. a process will terminate when it receives a signal. A process can
specify alternate behavior through the signal(2) system call. The process
can opt to either ignore a given signal. or to call a specified subroutine when
the signal is received. The proc structure contains fields defining the
process’s response to different signals. and a pointer to a queue of pending
signals.

2.1.6 Job Control

A special set of signals is defined for job control. These signals can be used
to suspend execution of an active process, and to resume execution of a
suspended process. The shell uses these signals to control its child
processes. For example, when the shell receives a certain character (usually
control-Z), it suspends the process currently running in the foreground.

Shell commands can then be used to continue the process in the background,
or to resume its execution in the foreground.

2.2 File Subsystem

The most important kernel data structures for the file subsystem are the file
table, the inode table, and the file system switch table. On the user side,
each process has a user file descriptor table in its user block. The inode
table, or inode pool, is the center of all file activity. The inode table is an
array of inode structures, which contain information about files. Each
inode uniquely identifies a file, and contains such information as the type
of file (for example, regular, directory, or device), the access modes, and the
length of the file. Inode structures also contain pointers to other inode
structures which allow them to be linked onto lists. The kernel maintains a
free list, containing all inodes which are not currently in use, and a

2-8 Section 2.2.0 IRIS-4D Series

number of hash lists. onto which inodes may be linked to simplify the
process of searching for a specific inode.

The file table is an array of £ile structures, which contain inforrmation
specific to each open file. Each file structure contains:

 a set of flags which show the mode with which the file was opened (read,
write, or both),

 an offset into the file (often referred to as the read/write pointer), and,

¢ a pointer to an CWinode structure.

The reason that this information is separate from the inode is that many
processes can access a given file at the same time. If two processes open the
same file at the same time, each process is allocated its own entry in the file
table, but both file table entries point to the same inode. There is a free
list of file structures analogous to the inode free list. so that the kernel
can quickly locate unused entries to allocate.

The file descriptor, described in Chapter 1, is simply an index into the user
file descriptor table in the process’s user block. Each entry in the user file
descriptor table is a pointer to an entry in the kemel file table. Figure 2-3
shows the relationship between the user file descriptor table, file table, and
inode table. In this example, two of the process’s file descriptors refer to
different file structures, but refer to the same CWinode (and hence, the
same file). All of the structures in this figure are in kernel virtual address

space.

inode table file table

user file
descriptor
table
el [
N -

Figure 2-3. File data structures

IRIX uses two principal file systems: the Extent File System (EFS) and the
Network File System (NFS). The Extent File System is a disk file system,

Uncle Art’'s Big Book of IRIX Section 2.2.0 2-9

and gets its name from the fact that data is stored in variable-length
“*extents’” on disk. The Network File System allows IRIX users to
transparently access file systems on remote machines over a network.

2.2.1 The File System Switch

As mentioned in Chapter 1, IRIX supports multiple file system types. For
this reason, each inode has a field identifying its file system type, a
pointer to a separate file system specific data structure, and a pointer to a file
system switch structure. The file system switch (£stypsw) structure
contains a set of pointers to file system specific routines. When the kernel
has to perform a file system specific operation on an inode, such as read
file data, it makes an indirect call through the file system switch. The file
system switch structures make up an array called the file system switch
table, which contains one file system switch structure for each type of file
system supported. Figure 2-4 shows these data structures for a sample
inode.

file system
switch
structure

inode

1le system
specific
inode data

Figure 2-4. File system switch and related data structures

2.2.2 Using Multiple File Systems

So far, we have only discussed the case in which all of a system’s files exist
on a single file system. In practice, most IRIX systems have a logical file
system consisting of several physical file systems. New file systems are
grafted on to the file system tree with the mount(2) system call. The mount
system call takes as arguments a device which contains the new file system,
and a directory to be ‘‘mounted on.’’ After the call returns, references to the

2-10 Section 2.2.2 IRIS-4D Series

mounted on directory access the root directory of the mounted file system.
The original contents of the mounted on directory are hidden until the
mounted file system is unmounted with the umount(2) system call.
Mounted file systems are recorded in a kernel data structure called the
mount table. A field in the "*'mounted-on’" inode contains a pointer to the
mount table entry for the mounted file system, and flags are set in the
mounted-on inode and the root inode of the mounted file system to indicate
their special status.

The first file system to be mounted when the system is initialized is called
the roor file system, since it contains the root directory of the logical file
system.

2.3 Memory Management

Memory under IRIX is divided up into 4Kbyte pages. The page is the basic
unit used by the memory management subsystem. All virtual addresses
under IRIX take the form of a virtual page number and an offset into the
page. A virtual page number represents a logical page, either in a process’s
virtual address space, or in the kernel’s virtual address space. Virtual pages
are usually represented by page descriptor entries. Each process region
contains one or more pages of page descriptor entries, with each page
descriptor entry corresponding to a single virtual page within the region.

The memory management subsystem maps virtual page numbers to physical
page numbers, representing actual locations in memory. The system
maintains a pool of physical pages, represented by the page frame data
table. The page frame data table is an array of pfdat structures, each
representing a page of physical memory. The maintains several lists of
pfdat structures which represent available pages—these list are
collectively referred to as the free page pool.

Virtual pages do not necessarily have physical pages associated with them.
For example, the data on a given virtual page can be temporarily written out
to disk, or ‘‘paged out,”’ in order to reclaim system memory. And the text
of a process is only ‘‘paged in’” (read in from the file system) as it is needed.
In the case of virtual pages which exist on disk (either because they have
been swapped out, or because they contain program text that has not yet
been paged in), the page descriptor entry (or pde) which describes the
virtual page contains the information necessary to locate the page on disk.

Uncle Art’s Big Book of IRIX Section 2.3.0 2-11

2.3.1 Virtual Addresses

IRIX uses four types of virtual addresses, referred to as kuseg, kOseg. k1seg.
and k2seg. The kuseg addresses are user virtual addresses. A process.
running in user mode. can only access user addresses. Furthermore, the
interpretation of kuseg addresses is different for each process, so that each
process has its own virtual address space. Addresses in kOseg, k1seg, and
k2seg are kernel virtual addresses. These addresses are only accessible
while a process is in kernel mode.

The different types of kernel virtual address are distinguished by whether or
not they utilize the hardware cache(s), and whether they are mapped to
physical addresses directly, or through the memory management hardware.
kOseg and k1seg addresses are direct mapped, so that a given kOseg address
always refers to the same physical address. k2seg addresses are mapped
through the memory management hardware, so that a given k2seg address
may refer to different physical addresses at different times. kOseg and klseg
addresses actually access the exact same physical address space—the
difference being that kOseg addresses use the hardware cache(s), while
klseg addresses do not. Thus, kOseg addresses are used for kernel text and
static data structures, so that these may be accessed most efficiently. klseg
addresses are used, for example, for I/O registers, which should not be
cached. Since the structures in kOseg and k1seg are static, the pages on
which they reside are not part of the system page pool. k2seg addresses are
generally used for dynarnically allocated kemel data structures. For this
purpose, pages are borrowed from the page pool, and assigned k2seg
addresses.

Al the pages in a process have kuseg virtual addresses, which refer to pages
in the system page pool.

2.3.2 Page Faults

Virtual pages which are not resident in memory are brought into memory
through page faults. When a process attempts to access a page which is not
in memory, it receives an exception called a page fault. The page fault
handler determines where the page is stored on the file system (by
examining the page’s pde), allocates a page of memory from the free page
pool, and reads the data into memory. This kind of page fault is called a
validity fault. There is another kind of page fault, called a protection fault,

2-12 Section 2.3.2 IRIS-4D Series

which occurs when a process tries to access a page it does not have
permission to access.

2.3.3 Integrated Data Cache

As mentioned above, some pages, such as pages of program text, are copies
of pages from the file system. Pages that represent file system data are
placed on hash lists, so they can be located quickly. If two processes are
running the same executable file, they may be using the same set of pages.
When one of them accesses a given page for the first time, it is faulted into
memory (necessitating a slow /O operation). If the second process tries to
access the same page somewhat later, it may find the page in memory. The
page fault handler. mentioned earlier, checks the appropriate hash list to see
if a given page is already in memory before it tries to read it from the file
system.

2.4 Input/Output Subsystem

Input and output are handled through device drivers. When a process
attempts to read or write a device special file, the appropriate device driver
is called to handle the operation. Each device driver handles a particular
type of device. Many physical devices may be handled by the same device
driver. For example, if a workstation has several hard drives of the same
type, they all use the same device driver. If there are two types of disk in
use (for example, ESDI and SCSI), each type will have a separate device
driver. As mentioned before, device drivers fall into two categories:
character and block device drivers.

2.4.1 Kernel-Driver Interface

IRIX can be made to support new types of devices by writing new device
driver modules. The driver module must define a set of routines which can
be invoked by the kernel to perform various operations on the device. These
routines form the kernel-driver interface. Writing Device Drivers for
Silicon Graphics Computer Systems contains details about the kernel-driver
interface and information about writing device drivers.

Uncle Art’s Big Book of IRIX Section 2.4.1 2-13

2.4.2 Device Special Files

Device special files are accessed like other files in the file system. Each
device special file has a major device number and a minor device number
associated with it. The major device number identifies the type of device
(that is, what device driver it uses), and the minor device number identifies
the device unit (for example, which disk drive). The kernel maintains
character and block device switch tables, not unlike the file system switch
table. Each device switch table entry contain pointers to the kernel-driver
interface routines for a given device driver. These entries are indexed by
major device number. So, when a process opens a character device. the
kernel makes an indirect call through the character device switch table in
order to call the device-specific open routine.

2.5 Interprocess Communication Mechanisms

IRIX supports a number of mechanisms for communication between
processes. The lowest-level mechanism is the spinlock, used for
synchronization between processes. The implementation of spinlocks in
IRIX is not common to other UNIX systems. IRIX also supports System V
UNIX style interprocess communication mechanisms, semaphores, message
queues, and shared memory. Semaphores are usually used for
synchronization, like spinlocks. Message queues are used to exchange
discrete data objects between processes. Shared memory, as the name
implies, is a facility which allows two or more processes to access the same
area in memory. Finally, IRIX supports BSD UNIX sockets. Sockets may be
used to exchange discrete data objects (*‘datagrams’’) among multiple
processes, or to create full-duplex communications channels between
processes. The IRIX networking facilities are built on top of the socket
abstraction.

2.5.1 Spinlocks

Spinlocks are simple test and set locks used for low-level process
synchronization. IRIX provides routines to allocate and initialize spinlocks,
to lock and unlock them, and to test their status. Spinlocks are ‘ ‘busy-wait’’
locks, meaning that a process will keep trying to acquire the lock

2-14 Section 2.5.1 IRIS-4D Series

continuously until it succeeds. IRIX also has conditional locking routines.
which only lock a spinlock if they can do so immediately.

Multi-processor machines have special hardware to support the spinlock
primitive. On other machines, spinlocks are implemented using Dijkstra’s
algorithm for cooperating sequential processes.!

The IRIX kernel uses its own versions of the spinlock routines to insure
consistency of kernel data structures in a multiprocessor environment.

2.5.2 Semaphores

Semaphores are synchronization objects similar to spinlocks. However,
they are somewhat more flexible and have involve greater overhead.
Semaphores are objects with an integer value. The two basic operations
used on semaphores are psema and vsema operations. The psema operation
decrements the value of the semaphore if it is greater than zero. If it is not
greater than zero, the psema operation sleeps until it is greater than zero. and
then decrements it. The vsema operation increments the value of a
semaphore. Both psema and vsema are atomic operations—they are
implemented so that no other process may modify the semaphore while
these operations are being performed. (These operations are actually
generalizations of the semaphore operations used in the Dijkstra algorithm
mentioned above.)

Typically, when a semaphore is used to protect a resource, it is initiatized to
a value of 1. The first process that tries to use the resource performs a
psema operation on the semaphore, reducing its value to zero (the process is
said to ‘‘acquire’’ the semaphore). If a second process then attempts to
acquire the semaphore, by performing a psema operation, it is put to sleep.
When the first process is finished with the resource, it ‘‘releases’’ the
semaphore by performing a vsema operation. This increments the value of
the semaphore to 1, and wakes up the second process.

Like spinlocks, semaphores are used in the kemnel for synchronization, and
there are both kernel and user versions of the routines.

1. Dijkstra, E. W., “‘Cooperating Sequential Processes,”’ in Programming Languages, ed. F.
Genuys, Academic Press, New York, 1968.

Uncle Art’s Big Book of IRIX Section2.5.2 2-15

2.5.3 Message Queues and Shared Memory

Message queues and shared memory both allow processes to exchange data.
With message queues, data is exchanged explicitly, through system calls.
The msgsnd system call is used to send messages, and the msgrcv system
call is used to receive messages. The message queue bears some
resemblance to a pipe, in that it allows processes to exchange data in a
sequential fashion. However, unlike pipe data, messages are discrete units.
The msgrcv call reads exactly one message, unlike the read call, which
simply reads a specified amount of data. Also, processes can define
different ‘‘types’” of messages, and can request the first message of a given
type off the queue.

Shared memory allows processes to exchange data in a more implicit
fashion. The shared memory routines allow multiple processes to map the
same region of memory into their virtual address space. These processes
may then access this memory like any other memory in their address space.

Message queues and shared memory are not used in the kernel.

2.5.4 Sockets

Sockets are data objects representing the endpoints of communications
channels. The combine some of the functionality of pipes and message
queues, in that they can be used to exchange either unformatted streams of
data or discrete messages (sockets which exchange streams of data are
referred to as stream sockets, while sockets that exchange discrete messages
are referred to as datagram sockets).

The socker system call creates a new socket. The socket descriptor returned
by socket is identical to a file descriptor. It identifies an entry in the user file
descriptor table, which points to a file table entry, which points to an
inode structure. This inode structure has a special file system type
which identifies it as a socket inode.

There are two basic ways of sending data through sockets. I/O can be
performed using the regular read and write system calls, or through a set of
special-purpose system calls. Stream sockets are ‘‘connected’’ in pairs,
forming full-duplex communication channels which may be written to using
the write system call and read from using the read system call, much like a
pipe (except that a pipe is a one-way channel). In addition to read and

2-16 Section 2.5.4 IRIS-4D Series

write, there is a special set of system calls for performing I/O on sockets.
Some of these system calls are used only on stream sockets. while others
can be used for any type of socket.

2.6 Multiprocessor Systems

IRIX is designed to run on machines with more than one CPU. Tasks under
IRIX are not delegated by a master processor; rather. each processor runs
independently. When a processor is idle, it selects a new process to run
from a system-wide list of runnable processes. A process can only be
running on one processor at a time. for obvious reasons.

Having multiple processors complicates many of the kernel algorithms.
Some protocol must be followed to ensure that only one processor is
accessing a given data structure at one time. Different data structures are
protected in different ways. Some process data structures are only modified
by the process itself, and since the process can only be current on one
processor at a time, these structures are only modified in a single threaded
fashion. Some code is ‘‘bound’’ to a single processor such that it will only
run on on that one processor. Data structures used by this code will only be
accessed by that processor. The last and most general way that data
structures are protected is through the use of spinlocks and semaphores, as
mentioned above. Device drivers may either be bound to run on a single
processor, or semaphored for multi-processor operation.

2.6.1 Kernel Locking Protocols

The IRIX kernel uses a large set of locking routines to ensure the
consistency of data structures. In general, spinlocks are used to protect
resources which will only be held for a very short period of times—for
example, a list of free structures might be protected by a spinlock, since
processes will only need to hold the lock for long enough to remove a
structure from the list. On the other hand, for resources which may be
locked for comparatively long periods of time—for example, inodes,
which may be held for the duration of an I/O operation—a semaphore is
used for protection. Processes waiting for a semaphore will be put to sleep,
and free up the processor, while processes waiting for a spinlock will
monopolize the processor until they succeed.

Uncle Art’s Big Book of IRIX Section 2.6.1 2-17

In addition to the regular locking routines (psema and vsema for
semaphores, and the corresponding spsema and svsema for spinlocks), IRIX
uses a number of other primitives for manipulating spinlocks and
semaphores. There are conditional routines, such as cpsema. which acquires
a semaphore only if this can be done without sleeping. cpsema’s
complement, cvsema increments a semaphore only if it is negative (that is,
only if there is a process currently waiting on it).

There are also routines which atomically exchange locks. That is, they
release one lock and acquire the other in a single operation. There are
routines for exchanging one semaphore for another, one spinlock for
another, a spinlock for a semaphore, and so forth. Finally, there are locking
routines which allow the process to specify a processor execution level to
operate at while holding the lock. These routines are used to bracket
particularly critical regions of code, to block out interrupts while the lock is
being held.

2-18 Section 2.6.1 IRIS-4D Series

3. The File Subsystem

This chapter discusses the way files are stored under IRIX. As mentioned
previously, the inode is the focus of file activity under IRIX. Each file on an
IRIX system is associated with a unique inode. These inodes are file system,
or ‘‘disk’’ inodes, and are uniquely identified by a pair of numbers: the
inode number and the device number. The inode number is unique within a
given file system, and the device number identifies the file system on which
the inode resides. Thus, on a system with many file systems mounted, there
may be several inodes with a given inode number, but only one inode with a
given inode/device number pair. When a file is opened, its file system inode
is read into an in-core inode structure.!

Note that although a file is associated with only one inode, any number of
path names may refer to that inode, so that a file may have many names.
Each path name which refers to a given file is said to be a *‘link’’ to that file.

IRIX is capable of dealing with a number of different file system types
transparently. This chapter describes the programmatic interface to the file
subsystem, and the kernel routines and data structures used with all file
system types. This chapter also covers two file system types: the Extent File
System, and the Common File System.

The primary file system type under IRIX is the Extent File System, which
provides for file systems stored on disk. The Extent File System (EFS) is so
called because it stores files on disk in ‘‘extents,”’ variable-sized groups of
contiguous disk blocks.

1. As in the rest of the book, courier type is used to designate data structure names.
Thus, **inode’’ refers to the kernel data structure, while ‘‘inode’’ is refers to the abstract
unit which the structure represents (thus, for example: *‘the inode data is read into the
in-core inode’’). Hopefully, this practice clarifies more than it obscures.

Uncle Art’s Big Book of IRIX Section 3.0.0 3-1

The Common File System is sometimes referred to as a pseudo file system
type. because it does not provide any permanent storage. Rather, it provides
routines to deal with pipes and other unusual ‘*file’” objects. It also
provides a number of utility routines which may be utilized when
implementing a new file system type, provided that the new file system type
follows certain conventions.

3.1 File System Interface

The following section discusses the most frequently used system calls for
the file subsystem. Each system call is more thoroughly described in the
IRIX Programmer’s Reference Manual, Vol. 1.

3.1.1 Opening a File

The open(2) system call is used to gain access to a file. It returns a file
descriptor which can be used for future /O. The user can specify whether
opening a non-existent file should cause an error. or simply cause the file to
be created. The calling sequence for open is:

int open(const char *path, int oflag{, int mode]);

The path argument is the path name of the file to be opened; oflag
contains a number of bitfields which can be set to indicate how the file
should be opened (for reading, writing, or both), whether the file should be
created if it does not already exist, and several other options. The optional
mode argument determines the permission mode for a newly created file,
and is therefore only relevant when the ‘‘create’’ flag is set. The return
value is a valid file descriptor if the call succeeds, -1 if it fails.

Files can also be created with the crear(2) system call.

3-2 Section 3.1.1 IRIS-4D Series

-

3.1.2 Reading File Data

The read(2) system call is used for reading data from a file. The data is
copied into the user’s address space at a specified location. The calling
sequence for read is:

int read(int £d4, void *buf, unsigned nbyte):;

The £d argument should be a valid file descriptor, such as that returned by
open. The nbyte argument indicates the number of bytes to read, and the
buf argument indicates the destination for the data to be copied to.
Normally, read returns the number of bytes actually read. This may not
equal nbyte if there are fewer than nbyte bytes left in the file. Usually
a return value of zero indicates that the end of the file has been reached
(when reading from a communications channel, such as a pipe, socket, or
communications device, a return value of zero may simply indicate that
there is no data available at the moment). A return value of -1 indicates an
error. The data is usually read from the current position in the file, as
defined by the read/write pointer in the file structure associated with fd.
Some devices, however, are incapable of seeking (for example, serial
terminals), and in these cases the read/write pointer is ignored.

3.1.3 Writing File Data

The write(2) system call is the logical complement of the read system call.
It copies data from user space to a file. The calling sequence for the write
system call is identical to that for the read system call:

int write(int £d4, void *buf, unsigned nbyte);

write returns the number of bytes written, or -1 if an error is encountered.
The data is written beginning at the current position in the file (as defined by
the file’s read/write pointer) unless the device is incapable of seeking.

Uncle Art's Big Book of IRIX Section 3.1.3 3-3

3.1.4 Adjusting the Read/Write Pointer

As mentioned above, the read/write pointer determines where /O will occur
in a file. Random access can be achieved by adjusting the read/write pointer
with the Iseek(2) system call. The calling sequence for iseek is:

off_t lseek(int fd4, off_t offset, int whence);

The file to be operated on is indicated by its file descriptor, £d. The

of fset argument is an offset to be applied to the file, and the whence
argument indicates how it should be applied. The whence argument can
be set to one of three symbolic constants: If whence is SEEK_SET, the
pointer is set to offset bytes: if whence is SEEK_CUR, the pointer is
set to its current location plus offset bytes; if whence is SEEK_END,
the pointer is set to the size of the file plus of fset bytes. Iseek returns the
new value for the read/write pointer, or -1 if an error is encountered.

3.1.5 Closing a File

Open files can be closed, logically enough, with the close(2) system call.
The calling sequence for close is:

int close(int £4);

close returns a value of O if successful, -1 if an error is encountered.

3.1.6 Making a New Directory

New directories can be created with the mkdir(2) system call. The calling
sequence for mkdir is:

int mkdir(const char *path, mode_t mode);

Where path is the path name for the new directory and mode contains
the access modes for the new directory. To create a new directory, a process
must have write permission for the parent directory. mkdir returns a value
of 0 if it succeeds, and a value of -1 if it encounters an error.

3-4 Section 3.1.6 IRIS-4D Series

3.1.7 Removing a Directory

Directories can be removed using the rmdir(2) system call. The calling
sequence for rmdir is:

int rmdir(const char *path);

Where path is the path name for the directory to be removed. The process
must have write permission for the parent directory. rmdir returns a value
of 0 if it succeeds, and a value of -1 if it encounters an error.

3.1.8 Reading Directories

The getdents(2) system call allows processes to read directories without
having to know the directory format of the file system on which the
directory resides. gerdents behaves much like read, except that instead of
returning unformatted data, it returns a series of dirent structures. each
containing information pertaining to a single directory entry (the format of a
dirent structure is declared in the /usr/include/sys/dirent.h header file).
The calling sequence for geidents is:

int getdents(int f£d, char *buf, unsigned nbyte);

The arguments and return value are the same as for the read system call.

3.1.9 Changing Current Directory

A process can change its current directory with the chdir(2) system call.
The calling sequence for chdir is:

int chdir(const char *path);

The path argument contains the path name of the new directory. If
successful, chdir sets the current directory (a variable in the user block) and
returns a value of 0. In case of error, chdir returns a value of -1.

Uncle Art's Big Book of IRIX Section3.19 3-5

3.1.10 Changing the Root Directory

In addition to their current directory, processes keep track of their root
directory. While this is usually the same as the root directory of the logical
file system, a process can change its effective root directory with the
chroot(2) system call. After making a chroor system call. a process cannot
access any files above its new root directory. A process must have the
effective user ID of the super-user in order to change its root directory. The
calling sequence for chroot is:

int chroot(const char *path);

The meaning of the argument and return value are the same as for chdir.

3.1.11 Changing File Ownership

The chown(2) system call can be used to change the ownership of a file. For
a process to chown a file, the user id of the process must be the same as the
user id of the file’s owner, or the user id of the superuser (user id 0). The
calling sequence for chown is:

int chown(const char *path, uid_t uid, gid_t gid);

If successful, chown changes the user id of the indicated file to uid and the
group id to gid, and returns a value of 0. If unsuccessful, chown returns a
value of -1. The fchown(2) system call is nearly identical to chown, except
that the file is specified by file descriptor instead of by path name.

3.1.12 Changing File Access Modes

The access modes of a file may be changed with the chmod system call.
Like chown, chmod may only be performed by the owner of the file or the
superuser. The calling sequence for chmod is:

int chmod(const char *path, mode_t mode);

chmod returns a value of 0 on success, -1 if it encounters an error. The
Jchmod(2) system call is nearly identical to chmod, except that the file is
specified by file descriptor instead of by path name.

3-6 i Section 3.1.12 IRIS-4D Series

3.1.13 Getting File Status

The star system call can be used to obtain information about a file. A
process need not have read permission on a file to get information about it.
but it must have search (execute) permission on the directory that contains
the file. The information is placed in a special szat structure. declared in the
/usr/include/sys/star.h header file. The information contained in the stat
structure includes: the device that the file’s parent directory resides on, the
file’s inode number, access modes, user id, group id, and size, the number of
links to the file, and three time values: the last time the file was accessed,
the last time the file was modified, and the last time the file’s inode was
modified. The calling sequence for star is:

int stat(const char *path, struct stat *buf);

On successful completion, szar places the file status information in buf,
and returns a value of 0. In case of an error, stat returns a value of -1.
Again, star has a parallel, fszar, which takes a file descriptor instead of a path
name.

3.1.14 Creating Pipes

Unnamed pipes can be created with the pipe(2) system call, as was
mentioned in Chapter 2. The calling sequence for pipe is:

int pipe(int *fds);

The £ds argument should be a pointer to enough space for two integers—
usually, it is simply declared as an array containing two integers. When
pipe completes successfully, £ds[0] and fds[1] are file descriptors for
the pipe. £ds[0] is opened for reading, and £ds[1] is opened for
writing.

3.1.15 Duplicating File Descriptors

The dup(2) system call duplicates a file descriptor—that is, a produces a
second file descriptor which references the same file structure as the
original. Any time a new file descriptor is allocated, it uses the first
available slot in the user file descriptor table. This is useful for input

Uncle Art’s Big Book of IRIX Section 3.1.15 3-7

redirection. Take the example of a shell process redirecting the standard
input of a child process to come from a file, instead of from the terminal.
The process dups file descriptor O (standard input), closes file descriptor O,
then opens a new file. The new file is assigned file descriptor O, which has
just been freed. If the process then forks, the child process (like the parent)
will be reading standard input from the file. The parent then closes file
descriptor 0, and dups the file descriptor that was returned by the original
dup call, above. Thus the parent gets back its original standard input. The
calling sequence for dup is:

int dup(int £4);

dup returns a non-negative number (the new file descriptor) if it succeeds. It
returns a value of -1 if it encounters an error.

3.1.16 Linking Files

The link(2) system call can be used to add a new *‘link’’ to an existing file:
that is, to add a new path name which refers to the same file. The calling
sequence for link is:

int link(const char *pathl, const char *path2);

pathl is the path name of the existing file to be linked to, and path?2 is
the path name of the new link. In order to execute link, a process must have
execute permission for all directory components of both path names, and
have write permission for the directory containing the new link. In addition,
both pathl and path2 must be on the same file system. link returns a
value of 0 if successful, or a value of -1 if an error is encountered.

3.1.17 Unlinking Files

The unlink(2) system call removes a link to an existing file. If the link being
removed is the last link to the file, the file is removed. The calling sequence
for unlink is:

int unlink(const char *path);
To unlink a file, a process must have write permission on the directory

containing the file. unlink returns a value of 0 if successful, or a value of -1

3-8 Section 3.1.17 IRIS-4D Series

if an error is encountered.

3.1.18 Mounting File Systems

The mount(2) system call adds a new physical file system to the logical file
system. The calling sequence for mount is:

int mount (const char *spec, const char *dir[, int mflag, int fstypl):

The spec argument is the path name of a block device special file, and the
dir argument is the directory on which to mount the new file system. If the
mount call succeeds. future references to dir access the root directory of
the file system on spec. The original contents of dir become
inaccessible until the file system has been unmounted again (with the
umount(2) system call). mount returns a value of 0 if successful, or a value
of -1 if it encounters an error.

3.1.19 Unmounting File Systems

The umount(2) system call is used to unmount a file system, removing it
from the logical file system. The calling sequence for umount is:

int umount (const char *file);

The file argument can be either the path name of the device special file
containing the file system, or the path name of the directory on which the
file system is mounted. umount returns a value of 0 if successful, or a value
of -1 if an error is encountered.

3.1.20 Creating Symbolic Links

The symlink(2) system call creates a symbolic link to a file somewhere in
the logical file system. The symbolic link is simply a special file containing
a path name to another file. The calling sequence for symlink is identical to
the sequence for link:

int symlink(const char *pathl, const char *path2);

symlink returns a value of 0 if it succeeds, or a value of -1 if an error is

Uncle Art’'s Big Book of IRIX Section 3.1.20 3-9

encountered.

3.1.21 Other System Calls

Other system calls which affect the file system include access(2), for testing
the access modes of a file; fcntl(2), for setting flags associated with open
files and performing file and record locking; mknod(2), for creating named
pipes and other special files; mmap(2), for mapping pages of files into user
address space (covered in chapter 3): and rename(2), for moving files.

3.2 File System Data Structures

The following section discusses the major file system data structures, the
inode table, the file sysiem switch, and the mount table. Some of the
general routines used to manipulate these data structures are also covered.

3.2.1 The Inode Table

When IRIX accesses a file, it reads the file’s inode information into an
inode structure in core memory. The in-core inode structures make up
the inode table, or inode pool, described in Chapter 2. An in-core inode
must be allocated from the pool for each open file or pipe. In addition,
inodes must be allocated for each directory which is either the current
directory or root directory of some process, for each mount point, and for
the root directory of each file system. The in-core inode structures have
the following fields:

¢ inode number,
o the device the inode resides on,
o type of file system the inode resides on,

o the type of file (regular file, named pipe, symbolic link, or a character or
block device special file),

o the file’s permission modes,

3-10 Section 3.2.1 IRIS-4D Series

» number of links to the file (the number of path names which refer to this
inode),

e the owner’s user id.

e the owner’s group id,

o the number of bytes in the file,

« the last time the file was accessed,

« the last time the file was modified,

o the last time the inode was changed,

« areference count (indicating how many processes are using the inode),

« Pointers to other inodes. The kernel uses these pointers to link the
inode structures onto hash queues and/or the free list.

¢ a pointer to the mount-table entry for the file system the inode resides on,

« a pointer to the mount-table entry for the file system that is mounted on
the inode,

» a semaphore used for locking the inode,

The complete declaration for the inode structure can be found in the
/usr/include/sys/inode.h header file.

Inodes are cached according to a least-recently used algorithm. The kernel
maintains a free list of in-core inode structures which are not in use. The
free list is a circular, double-linked list, with its beginning and end marked
by the free list head. When the kernel needs a free inode structure, it takes
one off the head of the free list. When it is finished with an inode, it
returns it to the tail of the free list. When the system is booted, all the
inode structures are on the free list.

When the kemnel receives a request for a given file system inode, it does not
immediately allocate an inode from the free list. First, it checks to see
whether the file system inode is already represented by an in-core inode.
To make it easier to find a given inode in the in-core inode pool,

inodes are sorted onto hash queues. The hash queues are also double
linked circular lists. The kernel maintains a number of these queues, and
which queue an inode is placed on is determined by a hashing function
based on the its device and inode numbers. Thus, when processing a request
for a given file system inode, the kernel first determines the value of the

Uncle Art’s Big Book of IRIX Section 3.2.1 3-11

hashing function for that device/inode number pair, and checks the
appropriate hash queue. If the inode is not represented on the hash queue, it
is not in memory, so the kernel takes a free inode from the head of the
free list, reads the inode information from disk into the inode structure,
and places the inode on the correct hash queue.

Each inode is protected by a semaphore. The inode semaphore is only
held while a process is in the course of a system call involving that inode:
inodes are never locked across system calls. Likewise. both the free list
and the hash list are protected by semaphores. Before a process traverses or
manipulates either of these lists. it must acquire the appropriate semaphore.
Like the inode semaphores, the hash list and free list semaphores are never
held across system calls. They are only held for short periods of time while
the process searches or manipulates the list. These practices ensure the
consistency of the inode pool.

At any one time, an inode is one of four states:

« referenced: there are active references to the inode (it represents either
an open file, the text file of a running program, a memory mapped file, a
current directory, a root directory, or a mounted-on directory). The inode
has a reference count greater than zero, is on a hash list, and is not on the
free list.

« checked out: the inode is being used to represent some entity which
does not have a normal file system inode number: an unnamed pipe is an
example of one such entity. In this case, the inode is not on the free
list or the hash list.

e cached: the inode is not currently in use, but contains inode data for a
file on disk. The inode is not locked, and is linked onto both the free
list and the hash list.

o free: the inode is not currently in use, and does not contain any useful
data. All inodes start out in this state, and inodes enter this state after
being checked out or used by a file system which does not support
caching. The inode is unlocked, is linked onto the free list, and is not on
any hash list.

Processes must lock inodes before operating on them. In all cases,
inodes are locked when they are being changed from one state to another
(for example, when changing a cached inode to a referenced inode). In
addition, inodes which are ‘‘referenced’’ or ‘‘checked out’’ are locked by
processes performing /O and other operations on them.

3-12 Section 3.2.1 IRIS-4D Series

3.2.2 Accessing Inodes

Inodes are commonly accessed through the iger routine. The iget routine
takes as input a device number and an inode number. and returns a pointer
to a locked, in-core inode structure. The kermel uses device number and
inode number to compute a hash value, and searches the appropriate hash
queue. If an inode structure representing the requested file system inode
is already present on the hash queue (that is, it is cached), the routine locks
the inode by acquiring its semaphore. Since the it might sleep while
acquiring the inode’s semaphore, and the inode might be re-used in the
meantime, the routine must check after locking the inode to see if it is
still represents the desired device/inode number pair the process is looking
for. If not, the routine must release the inode and start over again. If,
however, the inode has not been re-used, iger increments its reference
count, and returns the inode to the calling routine.

Uncle Art’s Big Book of IRIX Section 3.2.2 3-13

algorithm iget
inputs: device ané inode number
output: locked inode structure

determine which hash list to search
lock hash list
if (inode is on hash list)
{
uniock hash list
lock inode !
if (inode is on free list) , i
lock free list
remove inode from free list
unlock free list
}
increment inode’'s reference count
returr. inode i

}

locate an inode on free list

lock inode

remove inode from free list

if (inode is on a hash list)
remove from old hash list

place inode on new hash list

unlock hash list

read in inode data from disk

return inode

Figure 3-1. Accessing an Inode

If the inode is not represented on the hash queue, the kemnel gets an inode
off the free list and fills in the inode data by reading it in from the file
system. This is done by calling the file system dependent iread routine.

Once the file system inode has been read into an in-core inode structure,
the calling routine can access the data in the file through file system
dependent routines. In the case of the open system call, a pointer to the
inode will be stored in a file table entry, and a pointer to the file table entry
will be stored in the opening process’s user file descriptor table. Future read
or write system calls will follow these pointers back to the inode. inodes
are never locked across system calls, so an inode must be locked near the
beginning of any system call that will modify the inode or the file it

3-14 Section 3.2.2 IRIS-4D Series

identifies. The inode must then be unlocked before the system call
returns. Since the iger routine returns a locked inode. the calling routine
must unlock the inode before returning.

3.2.3 Releasing Inodes

The iput routine is called to release an inode that is no longer needed. For
example, iput is called when a process closes a file. When releasing an
inode the kernel checks the inode’s reference count. If the reference
count is one (i.e., the releasing process is the only process referencing the
inode), then file system dependent code is called to write the inode date out
to the file system, and the inode is put on the free list and unlocked. If
the reference count is greater than one, the kernel merely decrements the
reference count and unlocks the inode.

algorithm iput
input: locked inode structure
output: none

{
if (reference count == 1)
write out inode
if (the file system inode resides
on does not use inode caching)
lock hash list
remove inode from hash list
unlock hash list
lock free list
put inode on free list
unlock free list

else
decrement reference count
unlock inode

Figure 3-2. Reieasing an inode

Note that some file system types do not use the inode cache. For example,
with a remote file system, caching inodes might cause consistency
problems. Therefore, when releasing an inode, the iput routine checks
whether the file system in question uses inode caching. If the file system
does use caching, then the inode is left on its hash list, where it may be

Uncle Art's Big Book of IRIX Section 3.23 3-15

located by another process looking for the same file. If the file system does
not use caching, the inode is removed from its hash list. In this way, the
next process that requires the inode will not find it on the hash list, and will
be forced to read the inode data in from the file system.

3.2.4 The File Table

The file table may be thought of as an intermediate level of indirection
between the user file descriptor table and the inode table. The file table
consists of an array of f£ile structures, each representing an open file.
One file structure is allocated each time a process executes a open, creat,
or pipe system call. Note that there may be several opens on the same
file—for example, two processes may independently open a file, in which
case a separate file structure is allocated for each process. However, more
than one process can refer to the same file structure. For example, if a
process forks, its child process will inherit its file descriptors, and will
therefore refer to the same file table entries. The file structure contains
the following fields:

e apointer to an inode

e areference count

o the current offset into the file (also called the read/write pointer)
o file status flags (set by the open and fcnil system calls)

Allocation of file structures is simplified by the use of a free list, which
contains all the currently unused file table entries. The entire file table is
protected by a spinlock, which processes must acquire before accessing the
file table. When a process opens a file, it acquires the process table
spinlock, takes a file structure off the free list, fills it in with the
appropriate data, and releases the spinlock. The first free slot in the user file
descriptor table (in the process’s user block) is then filled in with a pointer
tothe file structure. The open system call returns an integer file
descriptor, indicating which slot in the user file descriptor table was used.

The reference count in the file structure is used to keep track of the
number of file descriptors which refer to the file structure. When a new
file descriptor is allocated to refer to an existing f£ile structure, the file
structure’s reference count is incremented (this happens when a file
descriptor is duplicated explicitly, through the dup system call, or implicitly,

3-16 Section 3.2.4 IRIS-4D Series

during the course of a fork system call). When a file descriptor is closed, the
cormresponding f1ile structure has its reference count decremented. When
a file structure’s reference count reaches zero, the file structure is placed
on the free list. and the ipur routine is called to release the inode that the
£11le structure referred 0.

3.2.5 The Mount Table

The use of multiple physical file systems as a single logical file system is
facilitated by the mount table. The mount table is an array of mount
structures, or mount table entries, each of which contains information about
a single file system. A single mount table entry contains the following
information:

o the status of the file system,

o the type of file system,

« the device the file system resides on,

e a pointer to the mounted-on inode,

e a pointer to the root inode of the file system,
 a pointer to some file-system specific data,

o a semaphore for locking the mountltable entry.

In addition to the semaphores in each mount table entry, there is a single
semaphore, the mount table lock, used to single-thread mounting and
unmounting procedures. When the system is initialized, the mount table
entry for the root file system is set up. Since the root file system is not
mounted on any other file system, the pointer to the mounted-on inode in its
mount table entry is a null pointer.

When mounting a file system, the kernel does several things to ensure
consistency. First, it must lock the mounted-on inode, so it can be
modified. Second, it must acquire the mount table lock, so no other process
can modify the mount table at the same time. Then it must lock the mount
table entry to be used for the new file system, and finally, the root inode
of the new file system. The IMOUNT flag is set in the mounted-on inode,
and the ISROOT flag is set in the root inode of the new file system. Each
mounted-on inode contains a pointer to the mount table entry for the file
system that is mounted on it, and every inode contains a pointer to the

Uncle Art’s Big Book of IRIX Section 3.2.5 3-17

mount table entry for the file system it resides on. These flags and pointers
make it possible for IRIX to resolve path names that traverse mount points.
A file system specific mount routine is called during the mounting process.
to initialize any special data structures the file system may need. Figure 3-3
depicts the data structures involved with mounting a filc system, showing
the connections between the mounted-on inode. the root inode of the
new file system. and the mount table.

mount table

i_mntdev|mount table entry for

root file system root file system

e . oo " - i mntdev
; L able entry for _eg——
:l —a moun Y

: mounted file system
mounted-on i_mntoni
inode | -

H mounted file system
(IMOUNT set)| g PB_ABOAP| | e,)

root inode

i——-—-'-’ (IISROOT set)

Figure 3-3. Mount table and associated inodes

The procedure for unmounting a file system is complicated by the fact that
other processes could be referencing files on the file system. If there are any
active references to files on the file system, it may not be unmounted.
Furthermore, the unmounting process must make sure that no process tries
to reference a file on the file system while it is working. Therefore, after
locking the mounted-on inode, the mount table and the mount table entry,
the process locks the inode free list, preventing any new inodes from
being allocated, and flushes the inode cache of inodes referring to the
system by calling the iflush routine. iflush examines all the inodes in the
inode table. If it finds cached inodes belonging to the file system being
unmounted, it uncaches them by removing them from their hash lists. It
also readies each inode that it uncaches for recycling by deallocating the
file system specific portion, and zeroing out the file system type and mount
device fields of the inode. If it encounters an inode belonging to the
file system which is currently referenced (besides the root inode, which
should have exactly one reference—from the mount table), it returns a code
indicating that the file system is busy, and umount returns an error to the

3-18 Section 3.2.5 IRIS-4D Series

calling process.

Once the inode cache has been flushed. umounr sets the MOFFLINE flag in
the mount table entry status word and releases the free list lock. Next it
locks the root inode of the mounted file system, makes sure that any
outstanding IO requests are written to the file system, trees the root
inode. and writes out the file system data (the superblock and bitmap).
Finally, the process clears out the mount table entry, clears the mounted-on
flag in the (formerly) mounted-on inode. and releases all the remaining

locks it holds.

The structure of the mount table entry is declared in the
/usr/include/sys/mount.h header file.

3.2.6 The File System Switch

The in-core inode is a ‘*generic’’ structure which can be used with many
types of file systems. So. for example, the Extent File System and the
Network File System use the same pool of inode structures. To facilitate the
use of different types of file systems, the in-core inode has a field
indicating the type of file system that the file it represents resides on, a
pointer to a structure containing file system dependent inode data (such as
the extent descriptors for an EFS inode), and a pointer to a file system switch
structure.

The file system switch structure contains function pointers to file system
dependent functions (such as iread, which is used to read in inode data from
the file system). When the kernel has to execute a file system dependent
function, it does so indirectly, by calling the correct entry in the file system
switch structure that the inode points to. The kemel maintains an array of
these file system switch structures, one for each type of file system in use,
referred to as ‘‘the file system switch table,”” or simply, *‘the file system
switch.”” The file system switch structure, £stypsw, is defined in the
/usr/include/sys/conf.h header file. Some of the routines that are accessed
through the file system switch are:

fs_iput Called by ipur when releasing an inode, it synchronizes the
disk inode with the in-core inode. Called by iget when
recycling an inode, it deallocates the file system specific
portion of the inode.

Uncle Art’s Big Book of IRIX : Section 3.26 3-19

fs_iread

Jfs_iupdat

fs_readi

fs_writei

fs_namei

Js_mount

fs_umount

Js_openi

Jfs_closei

fs_update

Js_statfs

Jfs_access

fs_getdents

Reads inode data from the file system into the in-core inode.

The complement of f5_iread, this routine writes out the in-core
inode to the file system.

This routine is called when a process performs a read system
call. It gets the appropriate data and copies it out to an address
supplied by the user.

This routine is the complement of f5_readi. Called when a
process performs a write system call.

This routine is called by the namei routine when resolving path
names. It tries to find a path name component in a specified
directory, and if it can. returns a locked inode corresponding
to that component. f5_namei is also called at the end of the
namei routine to perform a specified operation—creating,
opening, or removing a file.

Gets a file system ready for access, initializes its mount table
entry and any per-file system data structures it may need.

Removes a file system from the mount table, purges references
to the file system from system caches, and makes sure all
pending write requests are written out to the file system.

This routine performs initialization for special files (devices and
pipes). It is called when a process opens a named pipe or
device special file, or when a process executes a pipe system
call.

This routine is the complement of f5_openi, and is called when
a process closes a device special file or pipe.

‘‘Update’’ the file system—for a disk file system, this means to
synchronize the on-disk representation of the file system with
the in-core data structures.

Returns file system statistics—free space, number of free
inodes, and so on.

Checks whether a process has access to a given file.

Called when the user makes a getdents system call. Returns a
number of file system independent directory entry structures.

3-20 Section 3.2.6 IRIS-4D Series

fs_readmap Used by the memory management code when paging data in
from the file system.

fs_setartr Used by chown and chmod 1o set the attributes of a file.
fs_fenil Used to pass various fcnit/ flags to the file system.
fs_bmap Map /O request to file system block number(s).

The file system specific routine corresponding to a given file system switch
entry usually has the same name as the file system switch entry, but with a
different prefix. For example. the Common File System routine com_readi
is accessed through the fs_readi switch entry. Likewise. the Extent File
System version of fs_bmap is named efs_bmap.

A few words are in order here about the Common File System. The
Common File System routines may be used by other file systems—for
example, EFS uses some of the common file system routines. In addition,
Common File System routines are used for some special *‘files’” such as in-
core pipes, which require an inode but are not part of any “‘file system’’
per se. The next section examines the file system switch routines in more
detail, with particular attention to the facilities provided by the Common
File System.

3.3 File System Switch Operations

The Common File System provides routines for dealing with special files,
such as devices, and pipes. The Common File System also provides utility
routines which may be used by other file system types. The Extent File
System, for example, relies upon the Common File System routines
com_readi, com_writei, and com_namei. The following section covers the
functions of some of the more important file system switch routines, with
special attention to the Common File System routines and their interaction
with other file system specific routines.

Uncle Art's Big Book of IRIX Section 3.3.0 3-21

3.3.1 Reading regular file data

As noted above, read requests on regular files end up calling the appropriate
readi routine through the file system switch table. The readi routine is
passed a pointer to a locked, in-core inode structure. The arguments to
the read system call are placed in the u-block, as follows:

u_base destination address
u_offset byte offsetin file
u_count number of bytes to read

So, for example. if a read request is done on a file on an EFS file system with
the call:

read(£fd, buf, 128);

The kemel copies the value of buf (a pointer into the process’s virtual
address space) into u_base and sets u_count equal to 128. It uses the
file descriptor to locate the file table entry, and from the file table entry it
finds the inode pointer and tries to lock the inode by acquiring its
semaphore. When it has locked the inode, it copies the current offset in
the file into u_offset. (It must copy the offset after locking the

inode, because the process will sleep if it cannot acquire the semaphore at
once, and another process using the same file table entry might modify the
offset while the first process is asleep.) At this point, the file system specific
readi routine is called.

As mentioned above, EFS actually uses the Common File System routine,
com_readi. When dealing with a regular file, com_readi calls a file system
specific routine bmap, to map the read request to physical block numbers on
the device. The bmap routine is passed the inode pointer, a flag
indicating whether it is reading or writing, and two bmapval structures
(defined in /usr/include/sys/fstyp.h). The first bmapval structure is filled
in with the physical location of the requested data on the device (we will
deal with the second bmapval structure in a moment). Both bmapval
structures are then passed to the chunkread routine, which looks for the
requested data in the integrated data cache, reading it in from disk if it is not
in the data cache. The second bmapval structure contains the physical
location of the logical block(s) immediately following the block(s)
requested. This allows the chunkread routine to perform ‘‘read ahead’’ by
starting an asynchronous read on these blocks, thus pre-loading the buffer

3-22 Section 3.3.1 IRIS-4D Series

cache with the blocks that the process is likely to want next. Obviously,
read ahead is only valuable if the process is accessing a file sequentially.
The chunkread routine returns a buffer header, and the com_readi routine
copies the appropriate data from the buffer to the location specified in the
read call. For large read requests, com_readi may have to repeat the bmap -
chunkread - copy out process many times to satisfy the request.

3.3.2 Writing Regular File Data

The procedure for writing regular file data, com_writei. is similar to the
procedure for reading. First, the file system specific bmap routine is called
to map the request. If a process tries to write out a logical block of the file
for which no physical storage has been allocated, the bmap routine is
responsible for allocating storage space.

After calling bmap, the com_writei passes the two bmapval structures to
the getchunk routine. The getchunk routine searches for the appropriate
buffer in the integrated data cache. If the buffer is found in the cache,
getchunk returns it. If the buffer is not in the cache, getchunk simply returns
a free buffer. com_writei then determines whether the write request will
completely overwrite the buffer. If so, there is no need to worry about the
data currently in the buffer. But if not, com_writei must call the pread
routine to read the data in from the file system. (pread does not always need
to read the data in. If the buffer was found in the cache, it probably contains
valid data. In this case it is marked as valid, and pread simply returns. If
the buffer was allocated off the free list, however, it will be marked as
invalid, and pread will request the data from the IO subsystem, and wait for
the request to finish before returning the buffer.) The mechanics of the
integrated data cache are covered in Chapter 5.

Once com_wrizei has the appropriate buffer, it copies the data from user
address space into the buffer. It then calls either pdwrite, or pwrite 10 write
the buffer. pdwrite, which is called most of the time, is a ‘‘delayed
write”’—it simply marks the buffer so that it will be written at some future
time, and releases it. pwrite actually passes the buffer to the /O subsystem,
and waits for the /O to complete before returning. pwrite is only called if
the file’s synchronous write flag is set (this flag may be set either when the
file is opened, or through the fcntl system call).

Uncle Art’s Big Book of IRIX Section 3.3.2 3-23

3.3.3 Reading Directories

Each file system has its own directory format. however, for most UNIX type
file systems reading a directory works much like reading a regular file. The
main difference is that com_readi uses a different set of routines to interface
with the integrated data cache. This is because the integrated data cache
divides data up into two categories: regular file data. and everything else.
These types of data are cached differently. The difference between the
caching mechanisms is covered in Chapter 5.

A process could simply read a directory using the read system call.
However, since different file system types may have different directory
formats, IRIX provides a consistent directory interface through the
getdents(2) system call. The gerdents system call is much like the read
system call, except that it fills the user’s buffer with a number of dirent
structures, each containing information about a single directory entry. This
service is provided by the file system specific getdents routine.

3.3.4 Writing Directories

The actual writing of directory data works much like the writing of regular
file data, except that it uses different routines to interact with the integrated
data cache.

However, it is not practical to use the write system call to write directory
entries. Instead, there are several system calls for manipulating directories.
creat, mkdir, mknod, link open, unlink, rmdir, and rename all manipulate
directory entries. All of these system calls end up calling the namei routine,
described below.

3.3.5 Path Name Lookup

The namei routine is used to locate the file corresponding to a path name.
namei is utilized by all system calls that specify a path name—for example,
chdir, open, and link. By default, namei finds an existing file and returns a
locked inode structure, representing it. To specify behavior other than
the default, namei can be passed an argnamei structure, filled in with a
command flag and appropriate arguments. The possible values for the
command flag, and the functions they specify, are listed below:

3-24 Section 3.3.5 IRIS-4D Series

Flag value Function

NI_DEL unlink specified file

. NI_CREAT open file. creating it if it doesn’t exist
NI_XCREAT create this file, return error if it already exists

' NI_LINK make a link

i NI_MKDIR make a directory

NI_RMDIR remove a directory

NI_MKNOD make a special file

NI_SYMLINK make a symbolic link

NI_RENAME rename a file

For commands which involve two files, such as NI_LINK or NI_RENAME,
the source file (the file being renamed or linked to) is specified in the
argnamei structure. For files being created, access modes. ownership and
(for device special files) device number are specified in the argnameil
structure. The argnamei structure is declared in the
/usr/include/svs/nami.h header file.

namei keeps the path name it is trying to resolve in a buffer. It breaks the
path name up into components, or individual directory entries. It maintains
pointers to the current component, and the next component in the path
name. namei also keeps track of its current directory (not to be confused
with the process’s current directory) as it works its way through the path
name. namei begins its search with a directory inode. If the path name is
relative, the search begins at the process’s current directory, and if the path
name is absolute, the search begins at the root directory (the process’s user
block contains pointers to the in-core inodes representing the current
directory and the root directory, so these need not be looked up). This
directory is namei’s current directory. namei then iteratively carries out the
following steps for each non-terminal component in the path name: first, it
checks the current directory for access permission. It passes the current
directory’s inode, the current path name component, and the argnamei
structure to the file system specific fs_namei routine. The fs_namei routine
tries to find the inode matching the component, and passes back a success
code and the inode for the component, if it was found. This new inode
should represent a directory, since it is a non-terminal component of the
path name. If it is not a directory, namei returns an error. If it is a directory,
namei makes it the current directory and proceeds to 1ook up the next path
name component.

Uncle Art’s Big Book of IRIX Section 3.35 3-25

In this way namei locates the parent directory of the target file, and calls
Js_namei one final time. with an argument specifying the requested
operation—< reating a new link, removing an existing link. or simply
locking the inode. The fs_namei routine takes care of manipulating the
directory entries, and allocating an inode for newly created files (an example
of how this is done under EFS is presented in section 3.4.7, *‘File
Creation’’).

There are, however, several complications that namei has to deal with. It
has to deal with mount points, and it has to deal with symbolic links. When
namei encounters a ‘‘mounted-on’’ inode. it follows a pointer in the
inode structure to the mount-table entry for the mounted file system. This
mount-table entry has a pointer to the root inode of the mounted file
system, and namei makes this inode the starting directory for its next call
10 fs_namei. Similarly, namei must be able to traverse a mount point in the
other direction. For example, if the current directory, /usr is the root
directory of a mounted file system, ‘‘../etc’’ should be interpreted as the /ezc
directory of the root file system. Therefore, namei accords special treatment
to the *“..”" path name component. If namei’s working directory is the
process’s root directory, then the **..” component is ignored; if namei’s
working directory is the root directory of a mounted file system, then namei
can follow the pointer to the mount table entry, and from there back to the
parent of the mounted-on inode. (An inode representing the root directory
of a file system will have the IISROOT flag set. If the file system is a
mounted file system, as opposed to the root file system, its mount table entry
will have a pointer to the mounted-on inode).

Symbolic links present another problem for namei. When a symbolic link is
encountered, it is opened, and the path name it contains is read into the path
name buffer in front of the next component of the path name. If the new
path name starts with a **/,”’ (that is, it is an absolute path name), namei
changes its current directory to the process’s root directory—otherwise,
namei’s current directory remains unchanged. namei then begins resolving
the new path name, one component at a time. To guard against endless
loops, namei keeps track of the number of symbolic links it has encountered,
and if this number exceeds a configurable maximum (normally 8), namei
gives up and returns an error.

File system types which utilize the Common File System’s namei routine
must support several extra file system switch routines for examining and
modifying directories. The advantage of using the com_namei routine is
that the Common File System maintains a path name component cache 1o

3-26 Section 3.3.5 IRIS-4D Series

speed up path name conversion. This cache works much like other caches
maintained by the kernel. The kernel has a pool of ncblock structures,
each linked onto a least-recently-used (LRU) list and one of a number of
hash lists. Each ncblock structure contains information on a single path
name component, which may be uniquely identified by three pieces of
information: the device on which its parent directory resides. the inode
number of its parent directory, and its name. The hashing function which
determines which hash list an ncblock structure will be placed on is
based on these three pieces of information. Each time the Common File
System searches for a path name component. it searches the cache first. If
the path name component is found in the cache, it is moved to the tail of the
LRU list. If the path name component is not in the cache, a file system
specific lookup routine is called. If this routine finds the component, an
ncblock structure is taken off the head of the LRU list, filled in with the
information for the new component. and placed on the tail of the LRU list.
The ncblock structure is also moved to a new hash list, unless its new
hash value happens to be the same as its previous one. Since cache
operations take little time, the entire cache is protected by a single spinlock.
The cache routines acquire the lock before searching or modifying the
cache, thus ensuring cache consistency.

3.3.6 Pipes

The Common File System code is used for both named pipes and unnamed
pipes. When a pipe system call is made, an inode is allocated off the free
list (‘‘checked out’’). A pipe_inode structure is allocated as the file
system specific portion of the inode. This structure contains a pointer to
a 10 Kbyte buffer used for storing data written to the pipe, a read pointer
and a write pointer, and four semaphores. Two file structures are allocated
for the two ends of the pipe. Both file structures point to the inode
representing the pipe, and each file structure is in turn pointed to by a
new entry in the user’s file descriptor table. Figure 3-4 shows the data
structures associated with a pipe created by the pipe system call.

Uncle Art’s Big Book of IRIX Section 3.3.6 3-27

user file

descriptor file table inode table

table pipe_inode
structure

T

write

pointer
read

pointer

1 pipe buffer 1

Figure 3-4. Data structures associated with a pipe

Two of the semaphores in the pipe_inode structure are used to keep
track of the number of processes which have the pipe open for reading and
writing. These semaphores are called the reader count and the writer count.
When a pipe is created with the pipe system call, both of these semaphores
are incremented (with a vsema operation). The other two semaphores in the
pipe_inode are the empty semaphore and the full semaphore. These
semaphores are used by routines waiting to read data, and waiting to write
data, respectively.

When a named pipe is opened, it is treated much like any other file. The
path name is passed to the namei routine, which eventually calls iger to
access the inode. If the inode is already in core, iget simply locks it,
increments its reference count and returns it. If it is not in core, iget
allocates an inode structure off the free list, and calls the file system
specific iread routine to fill in the inode data. The iread routine gets various
information from the file system (such as the file type, access modes, and
ownership), then, finding that the file is a pipe, calls a Common File System
routine to allocate the pipe_inode structure, as above.

The buffer used by the pipe is not allocated until the first read or write
request on the pipe. The buffer is used in a “‘circular’’ fashion: as data is
written to the buffer, the write pointer is incremented by the number of bytes
written, and when the write pointer reaches the end of the buffer, it wraps

3-28 Section 3.3.6 IRIS-4D Series

-

around to the beginning of the buffer. The write pointer may not, however.
wrap around past the read pointer—if enough data is written to the pipe that
the write pointer would wrap past the read pointer. the pipe is full, and the
writing process will block until the pipe empties (in some cases, mentioned
below, a write on a full pipe will return immediately, either with an error or
with a short write count). As data is read, the read pointer is advanced by
the number of bytes read. but the read pointer is not allowed to pass the
write pointer. When the read pointer is equal to the write pointer, the pipe is
empty. When the pipe is initialized, the read and write pointers are both
Zero.

The behavior of read and write system calls on pipes depends upon the file
status flags (set by the open or fcnil system calls). Normally, if process does
aread call on an empty pipe. it will simply wait until there is data available
by waiting on the empty semaphore. The process must unlock the inode
at the same time (otherwise no process would be able to lock the inode to
write to it), so the atomic vpsema(K) operation is used to release the

inode semaphore and perform a psema operation on the empty semaphore.
When the vpsema operation returns, the pipe is no longer empty, so the
process relocks the inode and reads the data. The process will not wait if
one of the following is true: there are no writers on the pipe, or if the
O_NONBLOCK or O_NDELAY flags is set in the file structure. If there
are writers on the pipe, but the O_NONBLOCK flag is set, the read call will
return an error. Otherwise, it will simply return a short read (that is, it will
return fewer bytes than requested, possibly none). The write system call
behaves similarly, blocking when the pipe is full. However, if a process
attempts to write to a pipe which has no readers, the writing process will
receiving a SIGPIPE signal and the write call will return an error.

The pipe_inode structure is declared in the
/usr/include/sys/fs/pipe_inode.h header file.

3.4 The Extent File System

An Extent File System file consists of an on-disk inode, and zero or more
‘‘extents’’—variable length, contiguous groups of disk blocks. An instance
of the Extent File System on disk consists of the following components:

« the superblock, which holds important information about the file system,

Uncle Art’s Big Book of IRIX Section 3.4.0 3-29

e the bitmap, which is used to keep track of which disk blocks in the file
system are in use.

e a variable number of cylinder groups, each consisting of a set number of
inode blocks followed by a set number of data blocks.

In addition to these components. the file system contains a variable amount

of unused space, for alignment reasons, and a copy of the superblock. in

case the original should become corrupted.

The layout of a regular file system is pictured below:

unused unused cylinder groups unused
P AV N
\ N e 1 T~ \
bitmap
/ // : \\ 5 /\/ f /\/ /,
superblock inode list data blocks duplicate superblock

Figure 3-5. Layout of a regular file system

The first block, or ‘‘boot block’’ is historically left free for system-boot
procedures. The second block of the file system is the superblock. This is
followed by the bitmap, which contains one bit for each data block in the
file system. After the bitmap there is (usually) some unused space, followed
by the cylinder groups. After the last cylinder group, there is usually more
alignment space, followed by the replicated superblock, which is the last
block of the file system.

3.4.1 The Superblock

As mentioned above, the superblock contains important information about
the file system. When a file system is mounted, the superblock is read into
memory. The following information is read in from disk:

o the size of the file system (in blocks),
« the offset of the first cylinder group (in blocks),

o the number of blocks in a cylinder group,

3-30 Section 3.4.1 ' IRIS-4D Series

(]

o the number of blocks devoted to inodes in a cylinder group.
» a flag indicating whether the file system is **dirty'" or “"clean.”’

the last time the superblock was written to disk.

« the name of the file system,

the size of the bitmap in bytes,

« the total number of free disk blocks,

o the total number of free inodes.

o the offset to the beginning of the bitmap (in blocks?).
o the location of the replicated superblock.

In addition to this information, the superblock contains a number of fields
which are initialized at mount time. For example, there are flags indicating
whether the file system is mounted read-only, and whether the superblock
has been modified since it was last written out to disk. When an EFS file
system is mounted, the superblock is read into memory. these flags are
initialized, and memory is dynamically allocated for a cylinder group
summary table, which maintains a count of the number of free inodes and
data block in a given cylinder group. The cylinder group summary table is
built at mount time, and is kept up to date by routines which allocate and
deallocate resources. The structure of the superblock and the cylinder group
summary structures is declared in the /usr/include/sys/fs/efs_sb.h header file.

3.4.2 The Bitmap

The bitmap is used to find free data blocks for allocation. Each bit in the
bitmap represents a block in some cylinder group (therefore, some of the
bits in the bitmap represent blocks used for inodes, and these bits are never
consulted). The bits representing unallocated blocks are set. When
searching for a chunk of free space, the kernel can call a bitmap routine,
which will search the bitmap for a series of set bits of the appropriate length.
Rather than keep the whole bitmap in memory at all time, IRIX accesses it
through the buffer cache, using the bread routine.

Uncle Art’s Big Book of IRIX Section3.42 3-31

3.4.3 On-Disk Inodes

The on-disk EFS inode contains the following information:
o the type of file

o the file’s permission modes,

o number of links to the file

¢ the owner’s uid,

o the owner’s gid.

« the number of bytes in the file,

o the last time the file was accessed,

o the last time the file was modified.

o the last time the inode was changed,
« the number of extents,

« space for twelve extent descriptors, or (for device special files) the major
and minor device numbers.

Except for the information about the file’s extents, the information in an EFS
disk inode is a subset of the information in an in-core inode.

The EFS inode as it appears on disk is exactly 128 bytes long. Disk blocks,
or ‘‘basic blocks’’ as they are sometimes called, are 512 bytes long, so 4
inodes can be stored in a single disk block. The structure of an EFS disk
inode is declared in the /usr/include/sys/fs/efs_ino.h header file.

3.4.4 Regular file structure

As has been mentioned, IRIX files are viewed as unformatted streams of
bytes. In the case of a regular file, these bytes are stored on disk. In the
Extent File System, a regular file’s data is stored in one or more ‘‘extents,”’
variable-sized groups of contiguous disk blocks. The EFS inode has space
for 12 extent descriptors, each containing the following information:

o offset in the file system of the first blbck in the extent,

3-32 Section 3.44 IRIS-4D Series

« the number of blocks in the extent.
e the logical offset into the file at which the extent starts.

Each extent can be up to 248 blocks long. so most files can be contained in
12 extents. However, if more than 12 extents are needed. the kernel will
allocate a new extent, copy all of the inode’s extent descriptors into this
new, ‘‘indirect’’ extent, and change the inode’s first extent descriptor to
point to the indirect extent. To extend the file, more extent descriptors can
be stored in the indirect extent. If the indirect extent fills up. a second
indirect extent can be allocated. and pointed to by the inode’s second extent
descriptor. In this manner very large files can be addressed.

When an EFS inode is read in (by the efs_iread routine), all of the extent
descriptors are read into memory as part of the file system dependent inode
data. (The EFS version of the file system dependent inode data structure is
declared in the /usr/include/sys/fs/efs_inode.h header file.) If the inode has
any indirect extents, the kernel dynamically allocates enough memory to
hold all the inode’s extent descriptors and reads in the indirect extents. To
locate a given block in the file, the efs_bmap routine does a binary search
through the array of extent descriptors. Note that a binary search requires
that all logical blocks in the file be included in one of the extents, which
means that they must be represented by actual disk blocks. Thus, IRIX does
not support *‘holes’’ in files.

3.4.5 EFS Directory Structure

Basically, a directory is a file whose data consists of a number of
filename/inode number pairs describing each file in the directory. In
practice, it is somewhat more complicated because of the use of variable-
length names. The first four bytes of each directory block are occupied by a
header, which contains the following information:

« a magic number to identify the block as a directory block (two bytes)
e an offset to the beginning of the first used directory entry (one byte)
o the number of slots in the directory (one byte)

After the header are a series of one-byte offsets, each indicating the

beginning of a variable-length directory entry. Note that since it actually
takes nine bits to represent all the possible offsets in a 512 byte directory
block (972=512), the offsets are compacted by shifting them right one bit,

Uncle Art’'s Big Book of IRIX Section 3.4.5 3-33

eliminating the least-significant bit. Because of the way the offsets are
stored, each directory entry must begin at an even byte offset. An offset
with a value of zero is an unused slot, and may be reused for a new directory
entry. The offset to the first used directory entry in the directory block
header is also stored in the compacted format.

The directory entries contain the following information:
« the inode number (four bytes)

« the length of the filename (one byte)

« the filename (from one to 255 bytes)

Directory entries are added at the end of the directory block. so that the
directory entries grow backward while the offsets grow forward. When a
new directory entry is added, the kernel first makes sure that there is enough
space in the directory block. It then searches through the offsets, looking for
an unused one. If there are no unused offsets, a new offset is allocated after
the last one currently in use. and the number of slots in the directory block
header is incremented. The offset of the new directory entry is calculated by
taking the offset of the first used directory entry (from the block header) and
subtracting the length of the new directory entry (if necessary, an extra byte
is subtracted to locate the new directory entry at an even offset). The first
used offset and the offset allocated for the new directory entry are then
updated to point to the new directory entry’s offset, and the directory entry
itself is written.

If there is not enough room in the current block for a new directory entry,
the kernel tries again in the next directory block, and so on until it has
checked every block in the directory. If the kernel reaches the last block in
the directory without finding space for the new entry, it will attempt to
allocate new blocks for the directory in the same way it would for a regular
file, first attempting to expand the current extent, then attempting to allocate
anew extent.

When a directory entry is removed, the kernel zeros out the offset
corresponding to the directory entry and compacts the remaining directory
entries in the block. If the directory entry is the first used slot in the block,
then the first used offset is merely set to start of the next directory entry. and
the old directory entry is zeroed out. If the removed entry is not in the first
used slot, then all of the directory entries before the removed entry are
moved up to fill in its slot, and the offsets and the first used slot offset are
updated accordingly.

3-34 Section 3.4.5 IRIS-4D Series

The directory block and directory entry structures for EFS are declared in the
/usr/include/svs/fs/efs_dir.h header file.

3.4.6 Disk Block Allocation

When a file is extended beyond the last logical block for which there is a
disk block allocated in some extent. IRIX must allocate more disk space to
hold the new data. This occurs when the efs_bmap routine is called upon to
map a write request to a logical block for which no corresponding disk
block has been allocated. The first thing that the kernel must do is to
acquire the file system’s semaphore to prevent other processes from
allocating blocks at the same time. Next, the kernel attempts to enlarge the
current extent by allocating a set of adjacent disk blocks. It checks the
status of these blocks by consulting the bitmap. Each basic block in the file
system is represented by a bit in the bitmap. If the bit corresponding to a
given basic block is set, the block is unallocated.

If it proves impossible to enlarge the current extent, the file system will
attempt to allocate a new extent. There are three reasons the attempt to
enlarge the current extent might fail:

1. the disk blocks immediately following the extent are already allocated to
another extent,

2. the extent is at the end of the cylinder group, or
3. the extent has reached the maximum allowable size.

When IRIX allocates a new extent, it tries to allocate one large enough to
hold all the data being written, and preferably locate it in the same cylinder
group as the last extent in the file, to keep the file’s data close together. If
the extent being allocated is the first extent in the file, IRIX attempts to place
it in the same cylinder group that the file’s inode is located in.

3.4.7 File Creation

When a new file is created (with the open, creat, mkdir, or mknod system
calls), an inode must be allocated to represent it. As mentioned above, all of
these calls utilize the namei routine. When the namei routine has located
the parent directory of the file to be created, it calls the file system specific
namei routine once more to perform the requested operation. In the case of

Uncle Art’s Big Book of IRIX Section 3.4.7 3-35

EFS. the com_namei routine is used. com_namei it checks to see whether
there is already an entry for the new file in the parent directory. If so, the
inode for the file is simply returned. Otherwise, the file system specific
ialloc routine is called to allocate a new inode.

When called to allocate a new inode. efs_ialloc first acquires the file system
semaphore, then searches for an unallocated inode by scanning the inode
portions of the file system’s cylinder groups. It begins by trying to place the
new inode in the same cylinder group as the parent directory’s inode. If
there are no free inodes in this cylinder group, efs_ialloc will try to find
another suitable cylinder group to place the inode in. Once it has found a
cylinder group, efs_ialloc reads inodes off of the disk, one buffer full at a
time, using bread, and tries to find an unallocated inode (one with a file type
of zero). efs_ialloc does not use iget to scan for free inodes so as to avoid
flushing the inode cache. However, once a free inode has been found, it
must be read into an in-core inode structure using iger. Before this can be
done, the routine must release the buffer containing the inode, so iget can
access it, and release the file system semaphore to prevent deadlocking.

When iger returns the inode, efs_ialloc re-acquires the file system
semaphore, and checks if the file type of the new inode is still zero, to make
sure that no other process has allocated it in the meantime. If the inode has
been allocated out from under the process, it starts over again searching for
a free inode.

Once an EFS inode and its corresponding in-core inode structure have
been allocated, efs_ialloc initializes the inode with the correct ownership
information, then returns the inode to the calling routine, which enters the
inode number into the parent directory. Eventually, control returns to the
system call routine. In the case of open and creat, the calling routine
allocates a file structure for the new file, and returns a file descriptor for
it. In the case of mknod or mkdir, the system call releases the inode and
simply returns a success code.

The way that IRIX chooses a suitable cylinder group when allocating an
inode depends upon the type of file being created. For a regular file,
symbolic link, or directory, it tries to select a cylinder group with a certain
number of free data blocks, so that extents may be allocated for the file in
the same cylinder group as the inode. When selecting a cylinder group,
IRIX checks for free inodes and data blocks by consulting the cylinder group
summary table. For other types of files, IRIX only looks for a cylinder group
with a free inode. Regardless of what type of file is being created, efs_ialloc
checks cylinder groups starting with those closest to the cylinder group that

3-36 Section 3.4.7 IRIS-4D Series

the parent directory’s inode was in. and moving outward in either direction,
towards higher and lower cylinder group numbers. If no cylinder group can
be found that meets the desired criteria. IRIX will select the first cylinder
group with a free inode.

3.5 Chapter Summary

The IRIX file subsystem supports multiple physical file systems, of different
file system types, and gives them the appearance of a single logical file
systemn with a hierarchical arrangement. File operations are focussed on the
inode table, which contains entries for all active files. The integration of
multiple physical file systems is made possible by mount table entries, each
of which is connected to the inode table through pointers to the mounted-on
inode and the root inode of the mounted file system. Each inode
also contains a pointer to the mount table entry for the file system which it
resides on, and each mounted-on inode also contains a pointer to the
mount table entry for the file system which is mounted on it.

The file system switch, which allows indirect function calls to file system
specific routines, makes it possible to have multiple file system types
operate transparently to the user. Each in-core inode has a pointer to the
appropriate file system switch entry, which in turn has pointers to file
system specific routines, allowing routines to perform file system specific
operations on the inode without having to know what type of file system
the inode belongs to.

namei, which might be called the workhorse routine of the file system,
converts path names to inodes, opens files, creates files, deletes files, and
manipulates directories.

The native file system, EFS, provides storage and retrieval of data by storing
data in contiguous blocks, and by trying to maintain locality between the
inode and its data extents, and between parent directories and their children.
Allocation of resources is sped up by a bitmap of allocated data blocks, and
by cylinder group summary structures which track the number of free data
blocks and inodes in each cylinder group.

Uncle Art’s Big Book of IRIX Section 3.5.0 3-37

4. The Process Subsystem

The IRIX process represents a ‘‘thread’’ of execution. This abstract entity is
defined by a collection of data. The virtual address space of a process, the
contents of its user structure and proc table entry, and the values contained
in machine registers when the process is running all constitute the conrext of
the process.

In order to support multiple processes, IRIX implements a process
scheduling algorithm which assures a fairly equitable division of processor
time between all processes. This algorithm is said to be non-preemptive.
That is, the running process can not be preempted by another process
(although it can be preempted by the kemel). The running process may
yield to another process ‘‘voluntarily,”’ by making a system call which will
cause it to sleep (such as an I/O request), in which case another process will
be selected to run, or the running process may be preempted by the kemnel in
order to handle an exception, in which case execution will return to the
process after the exception handler has finished its business. The kernel also
enforces a limit on the amount of time a process can monopolize the
processor. When this specified time has elapsed, an exception is generated,
and the exception handler selects a new process to run and executes a
context switch.

4.1 Process System Calls

Uncle Art’s Big Book of IRIX Section 4.1.0 4-1

4.1.1 Creating New Processes

The fork system call is used to create new processes. The calling sequence
for fork is:

int fork(void);

fork takes no arguments. If it succeeds, fork returns the child’s process ID
to the parent. The child process begins execution as if it were returning
from the fork call, but receives a return value of zero. If an error is
encountered, the fork call returns a value of -1 to the parent process (and no
child is created).

4.1.2 Executing Programs

There are a number of system calls for executing a program, but they are all
fundamentally similar. The calls overlay the text of the calling process with
the text of a new program. The calling sequences for two representative
system calls, execl and execv, are given below.

int execl(char *path, *arg0, argl, ..., argn, (char *)0)
int execv(char *path, *argv(]):;

execl and execv both start a new program, identified by its path name
(path). They differ in the way they handle the program’s arguments. exec!
takes a variable number of arguments, arg0 to argn, each of which is
used as a single argument to the new program. A null pointer argument
indicates the end of the variable-length argument list. execv takes two
arguments, path and argv, the latter being an array of arguments. An
unsuccessful exec call will return a value of -1. A successful exec call will
not return at all, since the text of the calling process is replaced by the text
of the new process.

4.1.3 Resizing the Data Region

The brk system call is used to change the size of a process’s data region.
This is done by adjusting the break value, which is the address of the first
location beyond the end of the data region. The calling sequence for brk is:

int brk(void *endds)

4-2 Section4.1.3 IRIS-4D Series

The endds argument specifies the new break value for the process. brk
returns a value of 0 if successful. or a value of -1 if an error is encountered.

4.1.4 Sending Signals

The kill system call is used to send signals to processes. The calling
sequence for kill is:

int kill(pid_t pid, int sig)

Where pid is the process ID of the process that the signal is intended for,
and sig is identifies the signal number to be sent (symbolic constants are
defined for the various signals, for example SIGCLD, death of child process,
is sent to a parent process when its child dies, and SIGSEGV, segmentation
violation, is sent to a process when it tries to access an illegal memory
location). kill returns a value of O if successful, or a value of -1 in an error is
encountered.

4.1.5 Catching Signals

The signal system call is used to specify a process’s behavior when
receiving a signal. A program can specify a a function to be called when a
specific signal is received. The calling sequence for signal is:

void (*signal(int sig, void (*func) (int, ...)))(int, ...);

The sig argument specifies a signal, and the func argument is a pointer
to the signal-handling function. Two symbolic constant ‘‘functions’’ are
defined, and may be used as the second argument to signal. SIG_IGN causes
IRIX to ignore the specified signal, and SIG_DFL restores the default
behavior (terminating when a signal is received). If successful, signal
returns the previous value of func. If an error is encountered, signal
returns a value of -1.

Uncle Art’s Big Book of IRIX Section4.1.5 4-3

4.1.6 Terminating a Process

The exit system call terminates the calling process. When the exir system
call finishes. the process is a ‘‘zombie’” process, no longer active. but still
taking up a slot in the process table. The zombie child remains in the
process table until the parent *‘reaps’’ it by invoking the wait system call.
For obvious reasons, the exir system call never returns. When the system
call finishes, the processor tries to schedule a new process.

void exit(int status)

The status argument specifies the value to be retumned to the parent
process through the wair system call, below.

4.1.7 Waiting for a Process to Terminate

The wait system call is used to collect information about a terminated child
process. If the wairing process already has a zombie child, then the wair
system call returns immediately. If the process does not have any zombie
children, then the wair system call will block until a child process exits. The
wait system call will return before a child exits if the waiting process
receives a signal.

int wait(int *statptr)

The statptr argument can be used to obtain information about the
terminated child process. If statptr is a valid integer pointer, wair will
store status information in the location pointed to by statptr. This
information includes the reason that the child was terminated, and if the
child process terminated itself by calling the exir system call, the status
value that the child passed to exit. The wait system call returns the process
ID of the terminated child process. If wait is interrupted by a signal, or the
statptr argument is invalid, or the calling process has no children, wait
returns a value of -1 and sets the global variable errno to indicate the reason
for the failure.

4-4 Section 4.1.7 IRIS-4D Series

4.1.8 Other system calls

Other system calls for the process subsystem include nice and schedctl,
which adjust the scheduling priority of a process. and mmap. which maps a
file into the process’s address space.

4.2 Process Data Structures

The most important data structures to consider for the purposes of
discussing processes under IRIX are the process table, the user block and
kemel stack, and the pregion and region structures. As has been
mentioned before, all the information necessary for scheduling a process
(along with other information that cannot be swapped out) is contained in a
process table entry. The process table entry contains fields identifying the
user block and kernel stack for the process, and a pointer to a linked list of
pregion structures. The user block contains information about the
process which is not necessary for scheduling, and the pregion and
region structures define the process’s virtual address space.

4.2.1 The Process Table

The process table is an array of proc structures. A proc structure is
allocated for each active process, so the number of processes which can be
active at one time is limited by the size of the process table (the process
table is compiled into the kernel, so the kernel must be reconfigured to
change the size of the process table). Each proc structure contains the
following information:

e process status (for example: running, ready to run, exiting),

o several values used for scheduling (priority, ‘‘nice’’ value, user level
priority and cpu usage),

» process ID and parent process ID,

o pointers to other proc structures (used for linking the proc structure
on to various lists),

Uncle Art’s Big Book of IRIX Section4.21 45

Structures describing the pages used for the user block and kemel stack

a pointer to a list of pregion structures
e a session identifier
» a number of semaphores and spinlocks protecting various fields

The structure of the process table is declared in the /usr/include/sys/proc.h
header file.

4.2.2 Process States and Transitions

As mentioned in Chapter 2, each proc structure may be threaded onto a
number of linked lists, depending on what state the proc structure is in.
The kemel maintains the following lists:

e the active list, containing all active processes,

« the free list, containing all the proc structures which are not being used
for active processes,

« the run queue, containing processes which are ready to be run (a subset of
the active list),

o the sleeping process list, containing processes which are sleeping (these
processes are active, but not runnable),

e the exiting process list, containing processes which have issued the exiz
system call, but have not yet been waited for.

4-6 Section 4.2.2 IRIS-4D Series

-

—

return
to user

system
call,
interrupt

preempted

exit preempt

schedule

runnable

sleeping

Figure 4-1. Process State Transitions

Figure 4-1 shows the transitions between the various process states an active
process may be in. To demonstrate how these transitions work in practice,
take the example of a process spawning a child process.

The process starts out in the ‘‘user running’’ state, and changes into the
‘‘kernel running’’ state by making a fork system call. When a process
makes a fork system call, a process table entry is allocated off the free list.
While the new process is being set up, it is in an intermediate ‘‘newly
created’’ state. When the new process is set up, it is placed in the
‘‘runable’’ state. At this point, the fork call returns, and the parent process
returns to ‘‘user running.”” Eventually, the new process will be selected to
run, and will switch to ‘‘kemel running’’ state, and eventually return to
‘‘user running.”’

At some later point, the new process can execute the exiz system call,
causing it to re-enter ‘‘kernel running’’ state. The process then enters
‘‘exiting,”” or ‘‘zombie’’ state until its parent process performs a wait

Uncle Art’s Big Book of IRIX Section 4.22 4-7

system call. When the parent performs the wair call, the wair routine
removes the zombie process from the process table, and places its process
table entry on the free list.

A number of spinlocks and semaphores are used to ensure the consistency of
the process table without unnecessarily restricting access to the table. The
free list is protected by a single spinlock—this is all that is necessary, since
free list accesses are fairly quick.

Accesses to the active list may take longer, and therefore a more complex
access mechanism is used to minimize delays. To simplify the task of
locating a given process by its process ID, active processes are linked onto
hash lists, using a hashing function based on the process IDs.

The locking protocol used with the active list is called the shared read
lock—it allows multiple processes to read the list at one time, but requires
writing processes to acquire exclusive access to the table before updating it.
Two kemel variables, pactcnt and pupdcnt, keep track of the number
of processes reading the list, and the number of processes waiting to update
it, respectively. These fields are protected by a spinlock, pactlck, which
must be acquired before modifying these fields or the active list itself. A
semaphore, pupdwait, is used to queue processes waiting to write the
list. :

Routines which modify the active list first acquire pactlck, then check if
there are any readers on the list (pactcnt > 0). If there are, the routine
must increment the writer count (pupdcnt), relase pactlck, anddo a
psema operation on the pupdwait semaphore, sleeping until another
process performs a vsema. A process sleeping on pupdwait is woken
up when the last reading process is done with the list, and must then re-
acquire pactlck in order to modify the list.

Routines which read the active list start out by acquiring pactlck,
incrementing the reader count (pactcnt), and releasing pactlck. The
routine may then scan the active list—even though the lock is not held, the
active list may not be modified while the reader count is greater than zero.
When the routine finishes, it once again locks pactlck, and decrements
the reader count. If it was the last reader (pactcnt <= 0), it checks the
writer count, and if it is greater than zero, performs a vsema operation for
each waiting writer. The process then unlocks pactlck, allowing other
processes to access the list.

4-8 Section 4.2.2 IRIS-4D Series

In addition to these global locking mechanisms, there are a number of
locking mechanisms used to protect various fields in the individual process
table entries. A spinlock, p_siglck. is used to protect fields used for
signal handling. It is also used during context switches to protect the
p_sonproc field, which indicates which processor the process is currently
running on. The p_sema semaphore is used to protect the parent-child-
sibling chain, and is important for process creation. The p_parlck
spinlock is used to protect the parent-process ID field. Finally, there is a
semaphore, p_wait, used by the wair system call.

4.2.3 Run Queue

Processes which are ready to run are kept on the run queue. Although
referred to as a single ‘‘queue,’’ the run queue is in fact implemented as two
separate priority queues, one for high priority processes and one for normal
priority processes. These queues are sorted according to priority. When a
process becomes runnable, it is added to the appropriate queue at the
appropriate level. The priorities of normal processes are recalculated once
per second, and the normal priority run queue is resorted at this time.
Special system processes are linked on the high priority queue. These
processes operate at fixed priority levels, so the queue does not need to be
resorted.

The run queue is protected by a spinlock, which must be held while
accessing or modifying the run queue. The run queue structure is defined in
the file /usr/include/sys/rung.h.

4.2.4 Sessions and Process Groups

IRIX processes are grouped into sessions and process groups. A session
represents all of the processes associated with a given login session. The
first process in a session—usually the shell—is the session leader. When
the session leader exits, all of the processes in the foreground process group
are sent a signal (SIGHUP).

Uncle Art's Big Book of IRIX Section 4.24 49

4.2.5 The User Block

The user block contains a tremendous amount of information about the
process. Some of the important fields in the user block are:

e pointers to inodes representing the process’s current directory and root
directory

o the process’s real and effective user and group IDs

e a pointer to the process’s proc structure

o the user file descriptor table

o various fields used for passing arguments between kernel routines

 various fields used for signal handling, memory management, and process
accounting

The current process’s user block is mapped into kernel virtual memory at a
known location, identified by the global kernel variable u. This mapping is
set up in the processor’s memory management hardware.! On a multi-
processor system, each processor has its own memory management
hardware, and this mapping is made on a per-processor basis. Therefore,
each processor can find the user block of its current process at the same
virtual address, u. In each case, the processor’s memory management
hardware maps this virtual address to the physical address at which the
current process’s user block resides.

The user block does not have any locking mechanisms associated with it,
since it is only manipulated when the process is being created, or when the
process is running. In both cases, the user block is protected by the process
table locking mechanisms.

1. The memory management system uses a hardware cache of virtual-to-physical address
mappings called the Translation Look-aside Buffer, or TLB. When the kernel executes a
context switch, it ‘‘wires’’ the pages for the user block and kernel stack of the new
process into the TLB. ‘‘Wired'’ entries stay in the TLB until explicitly removed, so
‘‘wiring’’ an entry into the TLB creates a constant hardware level virtual-to-physical
address mapping. As an extensive discussion of hardware issues is beyond the scope of
this book, see MIPS RISC Architecture for more information on the TLB and related
hardware issues.

4-10 Section4.25 IRIS-4D Series

4.2.6 Process Regions

The virtual address space of a process is defined by a set of per-process
region structures, O pregions. At a minimum, a process has three
pregions, representing the process’s text, data, and stack. In addition to
these, a process may have pregions representing shared memory
segments or memory mapped files. (Shared memory is covered in Bach,
Chapter 10. Memory mapped files are covered later in this chapter.)

The virtual memory layout for a process with just three regions (text, data,
and stack) is shown below.

stack

direction of
stack growth

direction of
data growth

data

e

text

Figure 4-2. Process Virtual Address Space

The text region of the process, containing the machine instructions that
comprise the program, is located near the bottom of the process’s virtual
address space (the space below the beginning of the text region is used by
the operating system). The text region is static in size, and the contents
cannot usually be altered by program.

The data region, representing both statically and dynamically allocated
memory, is above the text region. The size of the data region may be altered
by the process, either directly, through the brk system call, or indirectly,

Uncle Art’s Big Book of IRIX Section 4.2.6 4-11

through one of the library routines provided for memory allocation (for
example, malloc(3X)). The data region grows upwards (towards larger
virtual addresses).

The stack region is located at the top of the process’s virtual address space.
Like the data region, the stack region can be resized. Unlike the data region,
however, the stack region is resized automatically by the kernel. When a
process attempts to access a virtual page beyond the end of the stack region,
the process incurs a memory fault, and the memory fault handler identifies
the problem and attempts to allocate more memory for the stack (for details
on the memory fault handler, see Chapter 5, ‘‘Memory Management’’). The
stack grows downward, towards smaller virtual addresses. Theoretically, a
process could run out of virtual address space when expanding the data or
stack regions. However, since each process has a two gigabyte virtual
address space, processes will usually run out of available memory and swap
space long before they run out of virtual address space.

Access 10 a process’s pregion list is protected by a semaphore,
p_preglock, in the process’s proc structure. This lock must be
acquired before manipulating the pregion list—for example, adding a
new shared data segment.

A pregion structure contains the following fields:
e a pointer to a global region structure

o the virtual address of the region

o the type of region (for example, text, data)

e a set of flags

The region structure that the pregion refers to may be shared with
other processes. For example, two instances of the same program in
memory may use the same text region. Though both processes use the same
region, they do not necessarily access it at the same virtual address. For
example, if two processes attach to the same shared memory region, they
may locate the region at completely different virtual addresses. The
mapping of regions into process virtual address space is one of the main
function of the pregion structure. The region structure is used by the
memory management subsystem to locate the individual pages of memory
referenced by the process. The region structure is treated in more detail
later in this chapter and in Chapter 5, ‘‘Memory Management.’” The
pregion and region structures are declared in the
/usr/include/sys/region.h header file.

4-12 Section 4.2.6 IRIS-4D Series

4.3 Process Context

The context of a process is all of the information needed to run that process.
In The Design of the UNIX Operating System, Maurice Bach identifies three
discrete components of a process’s context: user-level context, register
context, and system-level context. The user-level context consists of the
memory which can be accessed by the process in user mode, that is,
anything in the virtual address space of the process. The register context
consists of the values of crucial machine registers, such as the stack pointer
and the program counter. The system-level context consists of all the
structures which define the process but which may not be accessed by the
process in user mode: for example, the process table entry, user block, the
region and pregion structures, and the kernel stack.

When the current context needs to be saved, such as when an interrupt is
received, or the process undergoes a context switch, the register context is
pushed onto the kemnel stack, followed by a new kernel stack frame. If
another interrupt is received before the interrupt handler returns, another
layer will be pushed onto the kemnel stack. Bach refers to these layers as
context layers. When a kernel is operating at a given processor execution
level, it will only handle interrupts of a higher level. Thus, the maximum
number of context layers is determined by the number of processor
execution levels.

Take as an example the case of a process making a system call. The process
pushes the arguments to the system call onto the process’s stack, stores the
system call number in a certain machine register, and executes an
instruction which causes an exception, switching it to kernel mode. The
process’s register context is pushed onto the kernel stack, along with a new
kemel stack frame. Then the system call handler is invoked. The system
call handler looks up the system call number in a table, where it finds the
address of the desired system call routine, and the number of arguments
expected. The arguments are copied from the process’s stack into the user
block, and the desired system call routine is invoked. This routine reads its
arguments from fields in the user block and writes its return value to a field
in the user block. The system call handler copies the return value from the
user block into the appropriate machine register before returning. The
system call handler also checks for errors in the system call, and if it finds
one, copies the error number from the user block into the appropriate
machine register. When the system call handler returns, the process’s
register context is restored and it returns to user mode. As far as the

Uncle Art’s Big Book of IRIX Section4.30 4-13

program is concerned, this entire procedure is identical to a simple
subroutine call.

4.4 Process Scheduling

On both single-processor and multi-processor systems, the scheduling
procedure is essentially the same. Whenever a processor becomes eligible
for a job, it executes the process dispatcher routine, disp, which searches the
run queue for a new process to run. If the dispatcher cannot locate a process
to run, the processor enters an idle loop, waiting for something to do. If the
dispatcher locates a suitable process, the processor begins execution of the
new process. The process will continue running until:

1. the process exits, or,
2. the process goes to sleep waiting for a resource, or,
3. the process exceeds a given time slice.

If the processor receives an interrupt, it may suspend execution of the
process temporarily in order to deal with the interrupt. It does this without
leaving the context of the process. When one of the three conditions listed
above occurs, the processor executes a context switch, and tries to locate a
new process to run, as described above.

4.4.1 Process Priority

The order in which processes are scheduled is determined by their priorities.
The priority of a normal process is a function of a system constant value, a
per-process variable, (the process’s nice value) and the process’s recent CPU
usage. The lower a process’s numerical priority value, the sooner it will be
chosen to ran. When normal processes become runnable, they are linked on
to the normal-priority run queue. The high priority run queue is reserved for
special system processes, which operate at fixed priority values below those
of normal processes.

The easiest way to affect the scheduling process is to adjust a process’s nice
value. Nice values can range from O to 39, with the default value being 20.
Higher nice values result in higher priority values, so processes with high

4-14 Section 4.4.1 IRIS-4D Series

nice values tend to run less often. A process can change its nice value using
the nice(2) system call. Any process can increase its nice value, but it must
have superuser privilege to lower its nice value. A process with superuser
privilege can also alter the nice value of another process using the
schedctl(2) system call.

CPU usage is recorded by the clock interrupt handler. which is called every
time a hardware clock interrupt is generated (for most IRIX machines, clock
interrupts occur at an interval of 10 milliseconds). At each clock tick, the
running process has its CPU usage incremented. Once a second, the
priorities of all active processes are recalculated. At this time, each
process’s CPU usage is divided by two, and the new CPU usage value is
added to the nice value and the system constant to produce a new priority.
Therefore. processes which have run recently receive relatively high priority
values, making them less eligible for processor time. This ensures that one
process cannot monopolize the processor while other processes are waiting
to execute. After recalculating all the process priorities, the kernel resorts
the normal-priority run queue.

While this scheduling system ensures a more-or-less equitable distribution
of processor time, it causes processes to be run at unpredictable intervals,
causing problems for real-time applications. It is possible to a assign a
process a real-time, or non-degrading, priority value, using the schedctl
system call. The process then operates at the assigned priority value, instead
of a calculated priority value. Non-degrading priorities may be assigned in
the range of 30 to 255. Normal interactive processes have priority values in
the range of 40 to 127. Therefore, processes with non-degrading priorities
below 40 will be selected to run in preference to any normal interactive
processes. Processes with non-degrading priorities above 127 will only be
selected to run when no normally scheduled processes are runnable. If two
Or more processes are set at the same non-degrading priority, they will be
scheduled in a round-robin fashion. Non-degrading priorities may only be
assigned by processes with super-user privilege, although any process may
cancel its own non-degrading priority. Non-degrading priority processes are
linked onto the normal-priority queue along with normally scheduled
processes.

Uncle Art’s Big Book of IRIX Section4.4.1 4-15

4.4.2 The Dispatcher

The process selection algorithm, implemented by the disp routine, is fairly
simple. While holding the run queue lock, it searches the run queue for a
process to run, checking first the high-priority queue and then the normal-
priority queue. When the dispatcher finds a process on one of these queues,
it must make sure that the process is actually runnable. There are several
reasons that a process might be on the run queue even though it is not, in
fact, runnable. These include:

1. The process has been swapped out, as explained below.

2. The process is in the middle of a context switch after running on another
processor. The process has been placed on the run queue, but the other
processor has not let go of the process’s kernel stack yet. This is
explained further under *‘Context Switches,”’ below.

3. The process is bound to another processor.

As the disp routine examines each process, it holds the process’s signal lock
(p_siglck). This prevents the process from being swapped out while it is
being examined. At this point there is a race condition. If the dispatcher
acquires the signal lock first, and chooses the process to run, then when the
swapper acquires the signal lock, it will find the process running, and will
try to find another process to swap. If the swapper acquires the signal lock
first, it will swap the process out, so that when the dispatcher acquires the
signal lock it will find the process no longer in core, and therefore, not
runnable. The swapper process, sched, is covered in more detail in Chapter
5.

Once the disp routine has located a process to run, it takes the process off
the run queue, marks it as running on the processor, and releases the
process’s signal lock. disp returns a pointer to the selected process’s proc
structure, or a null pointer if no suitable process can be found.

4.4.3 Context Switches

There are three basic routines called to handle context switches. These
routines are swich, gswich, and pswich. The swich routine saves the context
of the current process, and then calls the dispatcher routine to select a new
process to run. The gswich routine places the current process back on the
run queue, and then calls the swrch routine. The pswich routine is called

4-16 Section 4.4.3 IRIS-4D Series

-

when a process is exiting, and it deallocates most of the exiting process’s
resources before selecting a new process to run.

The swich routine is called when a process goes to sleep, or from gswrch,
which is called when a process exceeds its time slice.

If, after switching out a process, the processor cannot find a new process to
run, it enters the idle routine, waiting for a process to become eligible to run.
The processor will idle until one of two things happens:

1. an interrupt occurs which has the effect of waking up a process which
was sleeping (for example, an interrupt signaling the completion of an
I/O request), or,

2. another processor places a process on the run queue (for example, it has
just executed a fork system call, creating a new process).

In both cases, the new or newly runnable process is placed on the run queue,
and the kickidle routine is called to notify all idle processors that there are

runnable processes.

4.5 Process Creation and Termination

A process can spawn a ‘‘child’’ process using the fork system call, and
terminate itself with the exir system call. The peculiarity of the fork system
call is that it returns twice—once in the parent process and once in the child
process. The child process begins its operation by returning from a system
call it didn’t make, and ends its existence by making a system call which
doesn’t return. The exit status of the child process can be retrieved by the
parent using the wait system call. Since a child’s return status must be
saved until its parent wairs for it, a child process which has exired is kept in
the process table until it is waited for. These processes which have exited
but not yet been removed from the process table are called zombie
processes.

Uncle Art’s Big Book of IRIX Section 4.5.0 4-17

4.5.1 Creating a New Process

The fork system call creates a nearly exact. logical copy of the parent
process. Nearly exact, since the processes have at least one value
different—the return value of the fork call. Logical, because the actual
regions and data pages may not be duplicated. Usually, the new process
will refer to the same text region as the old process. As for the data and
stack, new regions will be allocated for the new processes, but these
regions will continue to refer to the old data pages. These pages will be
marked ‘‘copy-on-write.”” This means that each page will only be copied
when one process or the other attempts to modify it.

algorithm fork

inputs: none

outputs: returns child process ID in parent process,
zero in child process.

allocate proc structure off free list, place on active list
if (couldn’t allocate a proc structure) return error
acquire p_sema on new proc structure

copy data from parent’s proc structure to child's

proc structure

add child process to the parent-child chain

add child process to parent’'s session and process group

for (each file descriptor)

increment reference count on file structure
increment reference count on current directory inode
increment reference count on root directory inode

duplicate parent’s user block

change u_procp in child’s user block to point to
child process

copy regions

put process on run queue

if (couldn’t duplicate process) return error
set child process return value to zero

relase cp->p_sema

return child’s process ID to parent

Figure 4-3. Algorithm for creating a new process

Figure 4-3 shows the fork algorithm. First the routine must allocate a
proc structure off the free list and place it on the active list. The routine

4-18 Section 4.5.1 IRIS-4D Series

must hold the free list lock and the active list lock while manipulating these
lists. If the free list is empty, a new process cannot be created. and the fork
system call returns a value of -1 to the calling process. Once a proc
structure has been allocated, the routine locks the structure by acquiring the
structure’s p_sema. The routine then copies data from the parent’s proc
structure to the ctgild’s proc structure—real and effective user IDs, signal
handling masks, and other inherited traits.

The proc structure is then added to the parent-child-sibling chain. First,
the routine acquires the parent’s p_sema. It then sets the child’s
p_sibling pointer to point to the parent’s previous child, locks the
child’s p_parlck, sets the child’s p_parent field to point to the parent
structure, releases the child’s p_par1lck, and finally sets the parent’s
p_child field to point to the new child process before releasing the
parent’s p_sema semaphore.

The child is then added to the parent’s session and process group. While
manipulating these lists, the routine holds the global process-group and
session semaphore, pglobal.

4.5.2 Terminating a Process

Processes may terminate their execution by using the exiz system call. The
exit routine releases most of the resources associated with a process. The
exiz algorithm is outlined in Figure 4-4. This algorithm is complicated by a
number of considerations. If the exiting process is a session leader, all of
the processes in the foreground process group should receive a signal. If the
process has any children, these must be passed on to the inir process, which
inherits all child processes. If any of these children are zombie processes,
the exiting process must send init a signal, to indicate to init that it should
wait for the zombie processes. In addition, the process must check whether
its parent process is ignoring the SIGCLD signal, which indicates the exiting
of a child process. Normally, information such as the process’s exit value is
stored in its proc structure, which is not reused until the parent process
retrieves the information through the wait system call. However, if the
parent is ignoring SIGCLD, it is assumed that the parent will never wait for
its child processes. In this case, therefore, the exiting process’s proc
structure is reused immediately. There would race condition in the exit
routine if a process changed its handling of the SIGCLD signal at the same
time that one of its children was exiting. To avoid problems, the exiting
process holds the parent’s signal lock while examining its signal handling. If

Uncle Art’s Big Book of IRIX Section4.5.2 4-19

the parent process changes its signal handling status after this point, the
signal handling code takes care of zombie children. When a process changes
its signal handling to ignore SIGCLD. the signal handling code automatically
frees any zombie child processes.

There is also a potential race condition when a process is going through the
exit code at the same time as one of its children. To prevent problems, the
exiting process holds its parent lock during the critical portion of code. The
process’s parent lock must be held when changing the process’s parent
pointer, so holding this lock prevents the parent process from giving the
child away to init.

The exiring process does three things to ensure that the parent process is
notified of its child’s demise. First, it unsets the parent’s wait-search flag
(SWSRCH). This has the effect of catching a parent process which is in the
wait routine in the process of searching its list of children for zombie
processes. The child process must hold the parent’s signal lock while
changing the SWSRCH flag. Second, the exiring process performs a
conditional vsema operation on the parent’s wait semaphore, which will
awaken the parent if it is in the wair routine, sleeping on the wait
semaphore. Lastly, the exiring process sends its parent a SIGCLD signal.
This provides asynchronous notification to the parent that one of its children
has exited and should be waired for.

4-20 Section 4.5.2 IRIS-4D Series

algorithm exit
inputs: exit value
outputs: none

{

acquire signal lock (p_siglck)
clear pending signals
set process status to "exiting” (p_£lag |= SEXIT)
set signal handling to ignore all signals
release signal lock
if (process is session leader)
send SIGHUP to all members of foreground process group
close all files
(if unblock on exec/exit is set, do unblocking now)
iput inodes for current and root directories.
deallocate interprocess communication stuff
acquire address space lock
detach regions
release address space lock
leave process group and session (lock pglobal)
give all child processes to init
if (one or more child is a “zombie")
cvsema init’'s p_wait
send init SIGCLD
acquire parent’s p_sema (semaphore locking parent-child-sibling @
acquire parent‘s signal lock
if (parent is ignoring SIGCLD)
release parent’s signal lock
remove child from active process hash table
else /* parent should wait for this process */
release parent’s signal lock
acquire process'’'s parent lock
lock process’s signal lock
change status to “zombie"
release signal lock
lock parent’s signal lock
unset parent's wait-search flag
release parent’s signal lock
cvsema parent’s p_wait semaphore
send parent SIGCLD
release process’s parent lock
switch to idle stack
free upage/kernel stack
if (parent is ignoring SIGCLD)
free proc structure
release parent’s p_sema

hain)

Figure 4-4. Terminating a Process

Uncle Art’s Big Book of IRIX Section 452 4-21

4.5.3 Awaiting Process Termination

A parent process may await the termination of a child process. or collect the
status of a child process which has already terminated, using the wait system
call. The algorithm for the wair system call is outlined in Figure 4-5. The
routine first checks to see if any of its children are already in the zombie
state. If the process has a terminated child, then the routine saves the child’s
status information, frees the child’s proc structure, and retumns
immediately. If the process has no children at all, then the routine returns
immediately with an error. If the process has one or more children and none
are terminated, the routine does a psema operation on the wait semaphore
(in the process’s proc structure), causing the process to sleep until one of
its children performs a vsema operation, as part of the exit procedure
outlined above.

When the wair routine finds a terminated child, it records the child’s process
ID, and if it has been passed a valid pointer to a status structure, it copies the
child’s status information into the structure.

4-22 Section 4.5.3 IRIS-4D Series

algorithm wait
inputs: pointer to status structure
outputs: process ID (and status) of terminated child
while (we haven’'t found a chiléd to wait for)
acquire signal lock
set wait-search flag bit
release signal lock
lock parent-child-sibling chain
search chain for zombie child
if (found zombie child)
record process ID of child
if (pointer to status structure is valid)
copy status of child to status structure
free child’s process table entry
break /* to end of while loop */
if (process has no children)
return -1
release lock on parent-child-sibling chain
acquire signal lock
if (wait-search flag has been unset)
release signal lock
continue /* A child process changed status during */
/* scan. Return to top of while loop. */
unset wait-search flag
release signal lock; psema wait semaphore
/* Process sleeps until it receives a signal */

/* or a child exits. */
if (interrupted by signal)
return -1
/* otherwise return to top of while loop, */
/* to scan for terminated child */

acquire signal lock

unset wait-search flag

release signal lock

relase p_sema

if (we actually found a terminated child process)
return process ID of terminated child

else
return -1

Figure 4-5. Awaiting Process Termination

Uncle Art’s Big Book of IRIX Section 4.53 4-23

4.6 Signals

Signals provide a mechanism by which processes may be notified
asynchronously of various conditions. These conditions include:

1. the death of a child process,
2. unexpected or unrecoverable errors encountered during system calls,

3. the expiration of a timer, set by the process using the alarm(2) system
call,

4. exceptions caused by illegal instructions (for example, attempts to use
privileged instructions or access invalid virtual addresses)

5. hardware errors

Signals may also be sent by other processes (using the kill(2) system call),
or generated by the user, by pressing a certain key. For example, the
Control-C combination is usually used to generate an ‘‘interrupt’’ signal,
used to terminate a process prematurely.

When a process receives a signal, the kernel records the fact in the pending
signal field in the process’s proc structure. This field has one bit for each
type of signal, which can be set to indicate that that type of signal has been
received. No count is kept of the number of signals received. The proc
structure also contains a mask indicating which signals the process is
ignoring. If the process is ignoring a given signal, the kernel simply doesn’t
deliver that signal. If the process is sleeping when it receives a signal, it
may be awakened, provided that it is sleeping at an interruptible priority.

The kernel handles a process’s signals just before returning from kemel to
user mode. Thus if a process incurs an exception which causes a signal to
be sent to the process, the process goes into kernel mode to handle the
exception, then handles the signal before returning to user mode. Similarly,
if a process makes a system call which generates a signal, the signal is
handled before the system call returns. Most signals cause the process to
exit by default. Some of these also cause the program to dump a core image
file, a kind of snapshot of the running process which can be helpful in
debugging programs (more information on core image files can be found on
the core(4) manual page). Most other signals are ignored by default. The
exceptions are the job control signals, SIGSTOP and SIGCONT. SIGSTOP
causes the process to suspend execution, until it receives a SIGCONT signal.

4-24 Section 4.6.0 JRIS-4D Series

.

If the process opts to catch a given signal, by specifying a signal-handling
function for it using the signal system call, the function pointer is stored in a
table in the process’s user block. There is one entry in this table for each
type of signal, so changing the handling of one signal has no effect on the
handling of any other signal.

4.6.1 Handling Signals

When the kernel recognizes that a process has received a signal, it checks to
see how the signal should be handled. If the process is ignoring the signal,
it will simply be cleared. The signal would not have been delivered if the
process was ignoring it at the time it was sent, however, a process can
receive a signal while it is in the middle of calling signal to ignore the same
signal. In this case, the signal would be posted normally, but by the time the
signal was recognized (just before the signal system call returned), the
process would be set to ignore it.

If the process is not ignoring the signal, the kernel checks whether the
process has set up a signal handling routine for it. If so, the kernel sets up
the process to execute the signal handling function. First, it makes a record
of the address of the signal handler, stored in a field in the user block, and
then clears the field, restoring the default behavior for the signal (the reason
for this will be explained shortly). Once the kernel has the address of the
signal handler, it creates a new stack frame on the top of the process’s stack,
and copies into it the return address from the process’s kernel stack. The
return address on the kernel stack is then changed to point to the beginning
of the signal handler function. When the process returns to user mode, it
“‘returns’’ to the signal handler, instead of the routine it was in when the
signal was received. When the signal handler finishes, it returns to the
original return address--that is, the address that the process would have
returned to had there been no signal. If the process was in kernel mode
because of a system call, for example, then the signal handier will return to
the next instruction after the system call.

As mentioned above, the kernel resets a process’s signal handling status
when it catches a signal. If the kernel did not do this, a steady stream of
signals would cause nested calls to the signal handler, possibly overflowing
the stack. Therefore, for the process to continue catching a signal it must
call signal each time it catches a signal. This is commonly done in the
signal handling routine itself. This solution is not foolproof, however, as a
process may receive a signal in between the time the signal handler is

Uncle Art’s Big Book of IRIX Section 4.6.1 4-25

called, and the time that the signal system call is actually performed. In this
case, the signal will have its default effect, usually causing the process to
exit.

4.7 Manipulating Process Address Space

As mentioned before, a process’s address space is divided into regions. This
section deals with the manipulation of process regions. First, we will
outline some basic algorithms— allocating and freeing region structures,
attaching a region to a process, detaching a region from a process, changing
the size of a region, loading a file into a region, and duplicating a region.

Like many other kernel data structures, region structures are allocated
from a free list. When regions are allocated by the allocreg routine, they
are placed on the active region list and assigned a type (for example text,
data, stack) and a pointer to an in-core inode. For text regions, this
inode will represent the file from which the program’s text is to be read.

In this case, the inode’s reference count will be incremented. In the case
of data and stack regions, which do not correspond to any disk file, the inode
pointer in the region structure will be null. Each region structure
contains a locking semaphore, which is used in a similar way to the inode
locking semaphore. The allocreg routine returns a locked region, and
the routines for attaching and freeing regions expect locked regions.

The antachreg routine is called to attach a region to a process. It takes four
arguments: a locked region structure, a proc structure, the virtual
address at which the region should be attached, and the type of region.
attachreg allocates a per-process region structure (pregion) and fills in
the data for the new region (type, virtual address, and a pointer to the
region structure). It then adds the new pregion structure to the
process’s pregion list, and increments the reference count in the
region structure.

The growreg routine takes as arguments a pointer to a pregion,the
number of pages to add to or remove from the region, and an argument
specifying how newly allocated pages are to be treated. growreg returns 0 if
the request is a no-op (a request to grow by zero pages), 1 if the request is
successful, and -1 if the request fails. growreg records the new size of the
region, and frees or allocates pages and page tables as necessary. When
called to increase the size of a region, growreg may fail because the request

4-26 Section4.7.0 IRIS-4D Series

would cause the process or region to exceed the maximum allowable size, or
because it would cause the region to overlap another region.

The artachreg and allocreg routines have counterparts in the detachreg and
freereg routines. The detachreg routine removes the region from the
process’s virtual address space, deallocating the pregion structure. It
also decrements the region’s reference count, and if the reference count
drops to zero, calls freereg to deallocate the region.

During the fork system call, regions are duplicated using the dupreg routine.
Depending on the type of region it is passed, dupreg may copy the region, or
simply return the original region. In the case of read-only text regions, there
is no point in duplicating the region, so dupreg simply returns the original
region. For writable regions, dupreg allocates anew region structure
and associated structures (page tables and pages). This procedure is covered
in detail in the following chapter, ‘‘Memory Management.”’

There are two routines for loading files into regions. For most executable
files, the mapreg routine is used. This routine does not actually read the file
data into memory, but sets up the kernel data structures to allow the file to
be read in on demand, a page at a time (this process is covered in Chapter
S). The loadreg routine exists for the sake of backwards compatibility with
versions of the operating system that did not support demand paging.
loadreg reads the file data into the region. This allows to run executable
files which were not designed to run in a demand paging environment. Both
loadreg and mapreg take the following arguments:

1. apointer to a pregion structure,

2. the virtual address at which the text should start in the region (which
may be different from the region’s attach address),

3. apointer to a locked in-core inode representing the executable file,
4. the offset in the file at which the program code begins, and
5. the size of the program code (in bytes).

Both routines grow the region to the appropriate size using the growreg
routine. The loadreg routine then loads the file data into the region, using
the file-system dependent readi routine. The mapreg routine sets up the
data structures necessary for demand paging. These structures are described
in Chapter 5.

Uncle Art’s Big Book of IRIX Section 4.7.0 4-27

4.7.1 Executing Another Program

The algorithm for executing a new program exercises most of the region-
manipulation routines described above. In the simple case, the exec
algorithm is executed using an executable file which is a compiled binary,
containing header information and machine instructions (the format of
executable file headers is detailed on the a.out(4) manual page). The kemel
opens the executable file and reads the header information. The header
provides such data as the size of the program’s text and the offset in the file
at which the text begins.

The kernel then unlocks the inode for the executable file, and proceeds to
detach all the process’s old regions, freeing them if necessary. It then
allocates and attaches new regions (algorithms allocreg and attachreg) and
sets them up as specified by the header information. There are two special
cases related to the text region. First, if a program is execing itself, and the
text region is read-only, the kernel does not bother to detach the text region
(debuggers may make the text region writable in order to set breakpoints in
a program—in this case, a new copy of the text would be loaded). Second,
the kernel searches the active region list to see if a copy of the text is already
loaded (that is, there is a region with type ‘‘text’’ referring to the in-core
inode for the executable file). If it finds such a region, it simply attaches
the region to the process. The stack region also receives special treatment,
since the first few pages of stack have already been allocated and filled in
with the new program’s arguments and environment variables. When the
new stack region is created, then, it will use these previously allocated pages
instead of allocating new ones.

So far, it has been assumed that the executable file being execed is a
compiled program. However, it is also possible to exec a file which contains
instructions to be executed by a command interpreter, such as the shell.
Such files are referred must begin with the string #!, followed by the path
name of the interpreter (which must be a compiled program). For example,
a file containing commands to be executed by the Bourne shell would begin
with the string:

#! /bin/sh
If the kermnel fails in its attempt to load header information from an

executable file, it checks to see whether it is an interpreter file. If so, it reads
the path name of the interpreter, and tries to exec the interpreter, passing the

4-28 Section 4.7.1 IRIS-4D Series

original file name to it as an argument.

algorithm exec

| inputs: path name of executable file to be run

optional inputs: arguments tTo program, environment variables
outputs: none

.

[get locked inode for executable file (algorithm namei)
i get setuid/setgid information for file
load header information from file
if (couldn’t load header information)
if (file is interpreter file)
load header information from interpreter
if (couldn’t load header information)
return error
else /* file can’t be executed for some reason */
return error
allocate memory for new stack
copy arguments (and environment) to new stack area
unlock inode
unlock locked regions
acquire process'’'s address space lock
for each region
lock inode corresponding to region (if any)
lock region
detach region
iput region‘s inode (if any)
load regions from executable file or interpreter
set up stack region (using previously allocated pages)
release address space lock

Figure 4-6. Executing a New Program

4.7.2 Changing the Size of a Process

User programs which need more memory can increase the size of their data
region using the brk or sbrk system calls. Both brk and sbrk invoke the
growreg routine to increase the size of the data region. As noted above,
growreg may fail if the request would make the region too large, or would
cause the region to overlap another part of the process’s virtual address
space.

Programmers do not need to use brk or sbrk directly to allocate memory.
provides a set of library routines for managing dynamic memory allocation.

Uncle Art’s Big Book of IRIX Section 4.7.2 4-29

These routines are described on the malloc(3X) manual page.

The stack region also grows, but this procedure is automatic and transparent
to the user program. When a process overflows its stack region, it incurs a
memory fault. The fault handler determines that the fault was caused by a
stack overflow, and invokes the growreg routine to allocate more stack
space.

4.7.3 Mapping Files into Process Address Space

It is possible for user programs to map files into a process’s virtual address
space using the mmap system call. The arguments to mmap specify which
portion of the file should be mapped into the process’s address space, and
the virtual address at which the mapping should begin. The mmap system
call actually creates a new region, a mapped file region, and attaches it to the
process. The file is mapped in using the mapreg routine, and it is treated
much the same as a text region, except that a mapped file region can be
either read-only or read-write. In the case of writable mapped file regions,
provisions must be made to ensure data consistency. These aspects of
mapped files are covered in Chapter 5.

4-30 Section 4.7.3 IRIS-4D Series

5. Memory Management

Memory on a multiuser computer is a limited resource. An operating
system such as IRIX cannot maintain every process in main memory at all
times. To do so would require an unreasonable amount of memory.
Therefore, the available memory must be managed to allow the greatest
number of processes to run with the greatest efficiency. Like a juggler who
controls many balls with two hands, IRIX controls many processes by
placing portions of text and data in memory as they are required, possibly
removing them to secondary storage when they are no longer needed. There
are programs, such as the IRIX kemnel itself, which are always wholly
resident in memory. Other programs are placed, in whole or part, in
memory as needed. The algorithm by which IRIX places programs in
memory is called paging or page swapping. The various regions that make
up a process are divided into pages of 4Kbytes. Each page can be
independently read into memory or written out to secondary storage (the
swap device). Pages are read into memory only when needed, so that if only
ten percent of a program’s code is executed, only ten percent need be read
into memory. This system is referred to as demand paging. Demand paging
systems have obvious advantages over swapping systems, which must read
an entire program into memory before executing it. Demand paging
systems are not only more efficient in their use of resources, they actually
allow the user to run programs which are larger than physical memory.

The IRIS hardware provides mechanisms for mapping virtual pages to
physical addresses, and controlling access to physical memory. The
hardware maintains a cache of virtual to physical address mappings, called
the translation look-aside buffer, or TLB. For the most part, the TLB entries
are loaded from user page tables. These entries are transient, and may be
replaced at any time (when a new entry is loaded, it is dropped into a
random slot in the TLB, replacing an old entry). A few TLB entries are
semi-permanent, or ‘‘wired.”” These entries stay in the TLB until explicitly
removed, and are used by the kemel for mapping certain pages into virtual
memory (for example, the user block of the running process is ‘‘wired”’ into

Uncle Art’s Big Book of IRIX Section 500 5-1

a certain virtual address).

The IRIS hardware provides two privilege modes, user and supervisor.
These correspond to the user and kernel modes discussed earlier. Thus,
when a program performs a system call, it executes a special command
which causes it to enter supervisor mode. In user mode, the memory
management hardware will only allow a process to access its own address
space—that is, only the pages mapped by its own page tables. This is
because there is a context field in the TLB that must match the process’s ID
for the hardware to consider it a valid mapping. Kemel pages have the
global bit set in their TLB entries. This bit means that the page may be
accessed by any process, but only if the process is in supervisor mode.

The IRIX system keeps a pool of physical pages, which may be dynamically
allocated to store data. Each process region has a set of page tables
associated with it, representing a set of virtual pages. Each page table entry
represents a virtual page in the process’s address space, which may be, for
example, in core, on the filesystem, or on the swap device. If a page is in
core, then the page table entry will contain the page number of a physical
page from the aforementioned page pool.

Free memory is maintained by a daemon, the page stealer, which removes
virtual pages from core. IRIX keeps track of the number of times a given
virtual page is accessed, and uses this information to determine which pages
can safely be removed.

When a process attempts to access an invalid or protected virtual page, it
will incur an exception. These exceptions, or page faults, fall into two
categories: validity faults and protection faults. A validity fault occurs when
a process tries to reference an invalid page. There are three usual reasons
for a validity fault:

1. The referenced page is part of the process’s address space, and is in
memory, but has been marked as invalid to detect a reference. In this
case, the kemnel simply notes that the page has been referenced, and
marks it as valid.

2. The referenced page is part of the process’s virtual address space, but is
not in memory (that is, there is no physical page representing the virtual
page). In this case, the kernel loads the page into memory. If the page
needs to be read in from disk, the process will be put to sleep until the
I/O is complete.

5.2 Section 5.0.0 IRIS-4D Series

3. The referenced page is not part of the process’s virtual address space. In
this case, the kernel sends the process a signal to indicate that it has tried
to access an illegal address.

A protection fault is caused when a process attempts to modify a page that
1s locked or protected. There are several reasons that this might occur:

1. The process attempts to write a page which is marked copy-on-write (for
example, the data region of a process which has just forked).

2. The process attempts to write a page which has been marked read-only
to detect a modification (the reasons for this are described later).

3. The process attempts to write a page that is marked read-only (for
example, a page of of the process’s text region).

4. The process attempts to access a page of kemel data. In the first case,
the fault handler makes a new, private copy of the page for the process
that incurred the fault. In the other two cases, the kernel sends the
process a signal to indicate that it has attempted to access an invalid
address.

5.1 Memory Management Data Structures

IRIX uses many data structures in its memory management system. The
main data structures used are:

1. page frame data table
2. page descriptor entries
3. swap-use table

The page frame data table is an array of pfdat structures, each
corresponding to a single page of physical memory. Each pfdat indicates
what state the corresponding page is in—for example, whether it is locked,
whether it is the target of a pending I/O operation, and so forth. Only pages
which may be dynamically allocated are represented in the page frame data
table. Pages used for kernel text and static kernel data structures, for
example, are not represented in the page frame data table.

The pages that are represented in the page frame data table are said to be in
the system page pool. Pages are dynamically allocated from this pool to

Uncle Art’s Big Book of IRIX Section 5.1.0 5-3

hold user and kernel data. Each page in the system page pool will have a
corresponding pfdat structure in the page frame data table. The kernel
code uses macros for locating the pfdat that corresponds to a given
physical page, and vice versa. Physical pages are identified by their page
[frame number, or physical page number. IRIX creates that page frame data
table at boot time, after determining the number of pages available for the
system page pool.

The kemnel maintains a free list and a number of hash lists of pfdat
structures. These lists work much like the free and hash lists discussed for
inodes in Chapter 3. Only pages representing file data are hashed. The
hashing function is based on two values: the in-core inode associated
with the page, and its logical page number (that is, its offset into the file, in
pages).

The fields in a pfdat structure include:

1. A set of flags, detailing the status of the page—whether the page is on
the free list and/or the hash lists, whether there is pending I/O on the
page and whether there is a copy of the page on the swap device. There
is also a flag that indicates that the page is being manipulated. This is
used to prevent two processes from manipulating the same page at the
same time.

2. The current number of processes using the page. The reference count
equals the number of running processes (as determined by page table
entries) that are using the page.

3. Thein-core inode of the file containing the page (if there is a copy of
the page on the file system), or an index into the swap table, indicating
which swap file the page is stored in (if there is a copy of the page on the
swap device).

4. The pages logical page number within the file (if there is a copy of the
page on the file system or swap device).

5. Pointers to other pfdat structures, used for linking the pfdat onto
the free list and hash lists.

The pfdat structure is defined in the /usr/include/sys/pfdat.h header file.

All user virtual addresses and some kernel virtual addresses are mapped by
means of page tables. A page table is nothing more than a set of page
descriptor entries, or pdes each mapping a page of virtual memory to a
physical page represented by a pfdat. Page tables are themselves stored

5-4 Section 5.1.0 IRIS-4D Series

on pages dynamically allocated from the system page pool. The memory
addressed by one page of page descriptor entries is referred to as a segment.
A segment corresponds to 2 megabytes of memory. (A page descriptor
entry is eight bytes long, therefore 512 pdes fit into a 4K page. 512 4K
pages are equal to 2 megabytes of memory.)

Each region of memory maintains a page table that maps the parts of a
process to the actual physical memory locations where the information is
stored. In this way, the virtual addresses that a process uses are translated
into physical addresses that the hardware uses to access the memory. The
format of the page table is somewhat convoluted: the region structure
contains a pointer to an array of pdes. These pdes describe the set of
pages that make up the page table. That is, each pde in the array describes
a page containing a number of pdes which describe the region’s data
pages. Therefore, each pde in the list pointed to by the region structure
maps one segment (2 megabytes) of memory.

Figure 5-1, below, shows a process region with one of its associated page
tables.

page table

pde|pde|pde|pde

pde|pde|pde|pde

pde|pde|pde|pde

region -
pde pde|pde|pde|pde
pde ’_,.\J ':,.\}
pde
pde pde|pde|pde|pde
pde|pde|pde|pde

Figure 5-1. Region structure

The page descriptor entry consists of two components, the page table entry
and the disk block descriptor. The page table entry is the hardware-specific
portion of the page descriptor entry. It contains information about the page
in the format required by the memory management hardware. The disk
block descriptor contains additional information significant to the kernel.

Each page table entry contains the physical address of a page, permission
information stored in bits indicating whether processes can read or write the
page, and certain bits that are set to indicate various states relevant to the

Uncle Art’s Big Book of IRIX Section 5.1.0 5-5

paging system. The paging bits are called:

o valid and referenced (also called hardware valid)
o software valid

o modify

e COpy On write

e age bits

e global

¢ global swappable

The kernel manipulates all these bits as the system runs. When a page is
read in, or a new process starts, the kernel changes the fields in these data
structures to reflect the usage of each page of memory. The format of the
page table entry structure is different for different processors. The various
formats are defined in the header file /usr/include/sys/immu.h.

The valid and referenced bit indicates that the page is valid. If this bit is
cleared, any process attempting to access the page will incur a validity fault.
This bit is used in conjunction with the age bits to determine if the page is
eligible for swapping.

The software valid bit indicates whether the page is actually valid. It is
examined when a process incurs a validity fault on a page (because the valid
and referenced bit is clear). If the software valid bit is set, the page is
actually valid, and the valid and referenced bit has simply been cleared to
detect a reference. If the software valid bit is clear, the page is not valid,
and must be loaded into memory.

The modify bit indicates whether the page is writable or not. Any attempt to
write a page for which the modify bit is cleared will result in a protection
fault.

The copy on write bit indicates that the page must be copied the next time a
process needs to modify it. This bit is set when a fork system call is made.
Because two processes will be using the same page of memory, if one writes
new information, the other will see incorrect information the next time it
accesses that page. So, when a write operation is about to take place, the
writing process will be forced to copy the page and disassociate itself from
the original page. When the copy on write bit is set, the modify bit is
cleared, so that the next attempt to write the page will cause a fault.

5-6 Section 5.1.0 IRIS-4D Series

The three age bits indicate how recently the page has been used. These bits
are treated as a single field, with a value from zero to seven. When a page is
accessed, the age field is set to seven. This value is decremented
periodically by a system process. When the age value drops below a
configurable threshold value, the page becomes eligible for swapping.

The global and global swappable bits are related to kernel memory. The
global bit indicates that a page is part of kernel, rather than user, virtual
address space. Global pages may be accessed by any process. but only
while operating in kernel mode. The global swappable bit indicates that a
page of kernel memory may be swapped out. If the global swappable bit is
clear, the page must be kept in memory at all times.

The disk block descriptor contains two important fields: dbd_type,
which determines how the system treats the page when it is being swapped
in or out, and dbd_pgno, which holds the location of the page on disk. If
there is a copy of the page on the file system, the value of dbd_type is
DBD_FILE and the value of dbd_pgno is the logical page number of the
page within the file. Recall from the previous chapter that if a region is
associated with a file, the region structure contains a pointer to the file’s in-
core inode. Therefore, between the region structure and the disk block
descriptor, the kernel has all the data it needs to locate a page on disk. If
there is a valid copy of the page on the swap device, dbd_type is
DBD_SWAP, and the value of dbd_pgno is the offset of the page in the
swap file. Another field in the disk block descriptor, dbd_swpi, contains
an offset into the swap-use table, indicating which swap file the page is
stored in. Using these two data, the kernel can locate a swapped page on
disk.

Other possible values for dbd_type include DBD_NONE, and
DBD_DZERO. DBD_NONE indicates that there is no valid copy of the page,
either on the swap device or the file system. DBD_NONE pages are usually
working pages of data or stack. DBD_DZERO indicates a blank page. When
a DBD_DZERO page is faulted in, a page of memory is allocated and zeroed
out, and its type is changed to DBD_NONE. Demand zero pages are used to
represent uninitialized data, and stack pages which have not yet been
accessed.

The swap-use table keeps track of swap space. Each entry describes a single
area of secondary storage—a ‘‘swap file.”” The swap-use table entry
contains a use count for each page in the swap file, indicating how many
processes are using the page in question. If the use count of a page is zero,
no process is using it and it may be safely overwritten.

Uncle Art’s Big Book of IRIX Section 5.1.0 5-7

5.2 Integrated Data Cache

The integrated data cache can be thought of as two interrelated caches: the
page cache and the buffer cache. The difference between these caches lies
in the type of data they handle. It was mentioned previously that pfdat
structures may be placed on a hash list. Only pfdats which represent
pages of regular file data are hashed. This includes not only pages from
executable files, but also pages accessed using normal file system I/O
functions (open(2), read(2), and so forth), and pages of memory mapped
files. These pages are said to be in the page cache.

Other forms of data are cached slightly differently. The kernel maintains a
table of buf structures, or buffer headers. Each buffer header is associated
with one or more blocks of data from a given device. These buffer headers
are hashed like the pfdat structures, except that the hashing functions is
based on the device number and physical block number of the associated
data (as opposed to in-core inode number and logical page number).
Examples of data that might be hashed in this buffer cache include chunks
of EFS bitmaps, blocks from a tape device, and so forth. In short, all
filesystem data except regular file data. This data is actually stored on pages
from the system page pool.

Buffer headers are used by the I/O subsystem as handles for pages of data
being read from or written to peripheral devices. When dealing with a page
of regular file data, a buffer header is simply ‘‘borrowed’’ from the buffer
cache (that is, the first available buffer is taken and removed from any hash
list it may be on). This ‘‘borrowed’’ buffer header is then associated with
the page for the duration of the I/O operation.

5.3 Duplicating Processes Regions

The fork system call creates an exact duplicate of the calling process. The
new process is called the child process and runs exactly as the parent
process does. On receipt of the fork call the IRIX kernel copies the process’s
regions, using the dupreg routine, as mentioned in Chapter 4. For shared
read-only regions, dupreg simply increments the region reference count of
the shared regions.

5-8 Section 5.3.0 IRIS-4D Series

For regions with read and write permission such as data and stack, the
kemnel makes a copy of the region structure and page tables and then
examines each parent table entry: if a page is valid for the parent process, it
increments the reference count in the pfdat table entry. indicating that the
number of regions that share the page has grown sets the page’s copy on
write bit, and clears the page’s modify bit. If there is a copy of the page on
the swap device, the kemel increments the swap-use table reference count
for the page.

When a page is made copy on write during a fork system call, it can be
referenced through both the parent and child regions, which share the page
until one process writes to it. If either process writes the page, it incurs a
protection fault on that page (because the page’s modify bit has been
cleared). The protection fault handler will determine that the page’s copy
on write bit is set, and then check the reference count on the page. If the
reference count is one, then the other process must have called exiz or exec,
and is no longer using the page. In this case, the protection fault handler
will simply clear the copy on write bit, and make the page writable. If the
reference count is greater than one, the protection fault handler will make a
private, writable copy of the page for the process incurring the fault, and
decrement the reference count on the original page. The physical copying
of the page is thus deferred until it becomes necessary.

5.4 Running New Programs

The memory management subsystem works closely with the process
subsystem when execing a new program, since an entirely new process
image has to be created—which requires the manipulation of pregion
and region structures, page tables, and all the associated memory
management data structures.

Logically, the exec routine does the following: detaches all of the process’s
old memory regions, attaches new regions for the new program’s text, data,
and stack, and allocates page tables. The exec routine also sets up the disk
block descriptors in the new page tables so that the fault hander will know
how to fault the pages in (for example, dbds in the text region will be
marked DBD_FILE, to indicate that they should be read in from the
filesystem).

Uncle Art’s Big Book of IRIX Section 5.4.0 5-9

IRIX does perform some optimizations to speed up the exec routine. In
particular, if one of the old process regions is not shared with any other
process, IRIX doesn’t detach the region. Instead, it shrinks the region to
zero, thus getting rid of any pages and page tables associated with the
region, then resizes the region to the size required by the new process. In
this way, the kernel saves the steps of detaching and deallocating the old
region, and allocating and attaching a new one. These operations are
particularly expensive on a multiprocessor machine, where the kernel must
lock the region list in order to locate a new region, and move it from the free
list to the active list. .

5.5 Maintaining Free Pages

The page stealer, vhand, is a special system process that maintains a supply
of free pages for the system. The page stealer swaps out memory pages that
have not been accessed by any process for a given amount of time. The
page stealer also trims processes which are using too much memory. The
number of pages a process has in memory at any one point is called its
resident set size. When process’s resident set size exceeds a certain limit,
the page stealer swaps out pages from that process until the process’s
resident set size is reduced below the limit.

The kemel creates the page stealer during system initialization and wakes it
up periodically to check for memory hogs and low free memory. Like
several other system daemons, the page stealer runs in kernel mode, so that
it can manipulate kemnel data structures, and it runs at high priority, so that it
will take precedence over all ordinary user programs. When the page stealer
is woken, it first scans the active process list for processes which have
exceeded the allowable resident set size. If it finds any, it trims their resident
sets by swapping out pages. Then, if the amount of free memory is below a
certain point, the page stealer goes through the process of ‘‘aging’” pages
and swapping out pages which haven’t been used recently. To do this, the
page stealer examines every active unlocked region, skipping locked regions
in expectation of examining them during its next pass through the region
list. For each region, the page stealer calls the routine ageregion, which
decrements the age fields of all valid pages. Whenever a page is accessed, its
age field is set to all ones (for a value of 7).

5-10 Section 5.5.0 IRIS-4D Series

There are three states for a page in memory:

1. The page is valid and referenced.

2. The page is aging and is not yet eligible for swapping.
3. The page is eligible for swapping.

The pages in the first two states have been recently accessed, and are
therefore presumably likely to be needed again in the near future. These
pages are said to be in a process’s working set. When a page is in the first
state, its valid and referenced bit and its software valid bit are set, and its
age field is set to 7.

A page in the second state has the valid and referenced bit cleared. and the
value of its age field is less than seven, but greater than a certain threshold
value. (This value of is a tuneable parameter, which may be changed by the
system administrator using the syssgi(2) system call.)

When the value of the age field drops to the threshold value or below, it
enters the third state, eligible for swapping.

The ageregion routine clears the valid and referenced bit and decrements the
age field. Thus, when a page in the first state is aged, it goes into the second
state. If it is aged several more times without being referenced, ageregion
will place it in the third state, eligible for swapping.

If two or more processes share a region, they all update the same reference
bits of the pfdat. Pages can thus be part of the working set of more than one
process, but the page stealer ignores this. If a page has been accessed
recently enough to be in the working set of one or more processes, it will not
be removed from memory; if it has not been accessed, it does not matter
how many processes reference it, it will be made eligible for removal. Also,
the page stealer makes no attempt to remove equal numbers of pages from
every region of memory. All decisions are based on the last reference of a
page.

The page stealer starts aging pages when the number of pages on the free list
falls below a certain point. This number is a tunable parameter, which may
be changed by the system administrator using the syssgi system call. The
page stealer then removes pages that have not been used until the number of
free pages rises above another configurable number. These thresholds are
used to prevent the page stealer from running constantly. If the page stealer
were to use only one threshold, it would remove enough pages to turn itself

Uncle Art’s Big Book of IRIX Section5.50 5-11

off and the kernel would then begin faulting pages back into memory. The
number of free pages would soon drop below the threshold again. The page
stealer would constantly be orbiting around the threshold number of free
pages and would cause considerable system overhead. By swapping out
pages until the number of free pages exceeds a high threshold, the supply of
free pages will remain good for some time. This limits the time that the
page stealer is running and reduces system overhead.

When the page stealer has to select pages for swapping, it does so by
selecting pages from low priority processes first. It does this by building a
sorted binary tree, where each node of the tree contains a process ID, a
priority number, and pointers to two other nodes. This tree is sorted by
priority, and the page stealer ‘‘walks’’ it in order, from low priorities to high
priorities, stealing eligible pages from each process until the amount of free
memory exceeds the upper threshold. Thus, the page stealer does not need
to swap pages from high priority processes unless memory use is very
heavy.

When the page stealer decides to swap a page, it examines the page’s disk
block descriptor to determine how to swap it out:

1. If there is no copy of the page on the swap device or file system
(DBD_NONE), the page stealer places the page on a list of pages to be
swapped and the page stealer goes on to other regions. This effectively
completes the swap except for the actual mechanics of copying. The
page state goes from DBD_NONE to DBD_SWAP.

2. If there is already an exact copy of the page on a swap device
(DBD_SWAP), the kernel places the page on the free list and updates the
disk block descriptor and the swap-use table. In this case the page is
already marked DBD_SWAP, and this does not change.

3. If there is a copy of the page on the file system (DBD_FILE), the page
stealer will free the page and update the data structures to retrieve the
page from the file system if it is needed. In this case the page state
remains DBD_FILE.

When a page is removed from memory, the software valid bit in its page
table entry is cleared, so that the kernel knows that it is truly invalid (as
opposed to a page for which the valid and referenced bit has been cleared to
detect a reference). The pfdat that represents the page is placed on the
free list, but is effectively locked until the page has actually been swapped.
(The pfdat is marked busy until the data on the page has been written out.

5-12 Section 5.5.0 IRIS-4D Series

This prevents the page from being reused before the data on it has been
written to disk.)

For an example of the above rules, consider a page that exists only on a
swap device and is copied into memory after a process incurs a validity
fault. IRIX does not automatically remove the swap copy. If the page is not
used for some time, it will be swapped again. If the page was not modified
while it was in memory, the memory copy will be identical to the swap copy
and the page can simply be placed on the free list and the swap-use table
updated. If the page was written and changed, its association with the copy
on the swap device has been broken. In this case, a new copy of the page
must be written to the swap device.

Not every page of a process is swapped out when the page stealer identifies
removable pages. If a page is currently in use, it is not swapped out. The
page stealer makes no attempt to remove pages evenly between processes.
It is part of the nature of the system that only rarely does one process hog
memory to the detriment of others.

IRIX makes every transfer between memory and swap as large as possible.
If the hardware cannot transfer all the queued pages in one operation, the
software must iteratively transfer the pages in blocks. The exact rate of data
transfer and the physical actions taken depend on the individual machine
and usage. For instance, since IRIX memory is organized in pages, the data
to be swapped out is not likely to be contiguous in physical memory. IRIX
gathers the page addresses of data t0 be swapped out, and the disk driver
uses the collection of page addresses to set up the operation. IRIX waits for
each swap operation to complete before swapping out other data. If no swap
device contains enough contiguous space to hold the block of pages, the
kernel swaps out one page at a time. This is clearly more costly in terms of
system overhead. There is also more fragmentation of swap space under the
IRIX paging scheme than in a process swapping scheme, because IRIX
swaps out blocks of pages but swaps in only one page at a time.

IRIX does not write the entire virtual address space of a process to a swap
device. Instead it copies physical memory pages assigned to a process to the
allocated space on the swap device, ignoring portions of the program that
have never been read into main memory. When IRIX copies the pages back
into memory, it reassigns the pages to the correct kernel virtual addresses.
This scheme is transparent outside the kerel. The physical addresses of
memory are thus completely malleable with no visible change to the user.

Uncle Art’s Big Book of IRIX Section 5.5.0 5-13

The page stealer doesn’t keep the region locked any longer than it has to, so
the region lock is released once the page stealer is through manipulating its
page tables.

In theory, all non-kemnel pages. and some dynamically allocated kemnel
pages, may be swapped out by the page stealer. In addition, if available
memory becomes very low, the system may swap out entire processes,
including their user blocks and kernel stacks. This is performed by a
different daemon, called the memory scheduler (not to be confused with the
process scheduling routine described in Chapter 4). The memory scheduler
is described in more detail in the section on ‘‘Process Swapping,’’ below.

When IRIX swaps a page out, the software valid bit in the page table entry is
turned off and the reference count in its pfdat is decremented. If no more
processes reference the page, the page is added to the free list, to be saved
until it can be used again. If the count is positive, at least one process is still
using the page, but the kernel still swaps the page out. But the pfdat entry is
not added to the free list. Finally, the kemnel allocates space on the swap
device to receive the page, places the address of the allocated space in the
disk block descriptor, and adds 1 to the swap use table count for the page. If
a process needs the page while it is on the free list, IRIX can pull the page
from the free list instead of having to read it from the swap device. Still, the
page is always swapped if it is on the swap list.

It is important to note that if the page stealer is unable to allocate swap
space to store a page, then the process owning the page will be killed. This
may result in the ‘‘innocent’’ processes being killed, but it only happens
under extreme circumstances.

5.5.1 Summary of Page Swapping

There are two phases involved when a page is swapped. First, the page
stealer finds the page has not been used recently and places it on a list of
pages that can be swapped. Next, IRIX copies the page to a swap device
when convenient, zeros the valid bit in the page table entry, decrements the
pfdat reference count, and places the pfdat entry at the end of the free list if
its reference count is 0. The contents of the physical page in memory are
unchanged until the page is reassigned. This allows the page to be retrieved
if it is needed before it is reused.

5-14 Section 5.5.1 IRIS-4D Series

5.5.2 Process Swapping

Under some conditions, the demand for memory will become great enough
that it is worthwhile to swap out entire processes. As mentioned above, the
memory scheduler is responsible for these transactions. When memory is
needed, the memory scheduler, sched, will find processes which are
sleeping and swap out their user blocks, kernel stacks, and page tables. The
memory scheduler will swap processes back in when memory become
available. If memory continues to be congested, the memory scheduler will
make sure that processes don’t spend to much time swapped out, by
swapping more sleeping processes out, and swapping processes back in on a
first-in, first-out basis.

5.6 Page Faults

IRIX has two types of page faults: validity faults and protection faults.

Since these mechanisms are closely related to address translation, we should
briefly review how address translation works under IRIX. As mentioned in
Chapter 2, there are four different classes of virtual addresses: kOseg, klseg,
k2seg, and kuseg. The first two classes are direct-mapped, meaning that the
the addresses map directly to virtual addresses (kOseg and k1seg addresses
may be translated to physical addresses by subtracting a constant). k2seg
and kuseg addresses are mapped via the memory management hardware (the
TLB). Addresses in k2seg may be mapped using either ‘‘wired’’ TLB
entries, or page tables. K2seg addresses are used for such data structures as
page tables, user blocks, and so forth. The kernel maintains a special region
structure, the system region, which holds page tables mapping k2seg pages.
All kuseg addresses are mapped using page tables.

As was mentioned in Chapter 4, the TLB acts as a cache of virtual to
physical address translations. However, the exact mechanics of the TLB are
not crucial to this discussion, and it is sufficient to pretend that the memory
management hardware consults the page tables directly.

Uncle Art’s Big Book of IRIX Section 5.6.0 5-15

5.6.1 Validity Faults

A validity fault occurs when the system tries to access a virtual page which
has been marked as invalid (that is, valid and referenced bit has been
cleared). There are several reasons that this might happen:

1. The page table entry has been marked invalid to detect a reference. In
this case, the valid and referenced bit is cleared, but the software valid
bit is set, indicating that the page table entry contains a valid virtual to
physical page mapping.

2. The page table entry has been marked invalid because the page is not in
core. In this case, the software valid bit has been cleared, to indicate
that there is no valid physical page mapped by the page table entry.
Pages which fall into this category are either demand zero, on the
filesystem, or swapped (DBD_DZERO, DBD_FILE, or DBD_SWAP).

3. The page table entry represents an unassigned page. This may occur
because page tables entries are allocated one segment at a time (a page
worth of page tables, mapping 2 megabytes of memory). If a process
region doesn’t end conveniently on a segment boundary, the remainder
of its last segment may be filled with this type of page table entry, with
the software valid bit cleared and the dbd flagged DBD_NONE.

When a validity fault occurs, the fault handler obtains the faulting address
from the IRIS hardware and finds the corresponding page table entry. The
fault handler then locks the region containing the page table entry to prevent
other processors from manipulating it, and determines why the page was
marked invalid.

If the software valid bit in the page table entry is set, then the page has
merely been marked invalid to detect a reference, as described in the section
on page swapping, above. In this case, the fault handler simply resets the
age bits and the valid and referenced bit, and returns.

If the page table entry represents an unassigned page, then the fault handler
simply returns an error, and the process is sent a segmentation violation
signal.

If neither of the above cases is true, then the fault handler may have to do
some actual work. The page is demand zero, or else there is a copy of it on
disk, either on the swap device or on the file system. If the page is demand
zero, there are no two ways of going about it—a page must be allocated off
the free list and zeroed out, and the page table entry and disk block

5-16 Section 5.6.1 IRIS-4D Series

descriptor filled in to reflect the fact that a page has been allocated. If,
however, the page is marked DBD_SWAP or DBD_FILE, there is a chance
that it is still in the page cache, on the free list awaiting reuse. So the fault
handler checks the appropriate hash list, and if it finds the page, simply
removes it from the free list, sets the software valid bit in the page table
entry, and returns.

If the page is DBD_FILE or DBD_SWAP and can’t be found in the page
cache, then the fault handler will really have to go to disk. A page is
allocated and locked down, the ‘‘no shrink’’ flag is set in the region
structure to prevent the region from shrinking while file I/O is taking place,
and the I/O operation is initiated. The faulting process is put to sleep until
the /O is finished, and the fault handler returns (at which point the kernel
must find another process to run). The newly allocated page is placed on the
appropriate hash list before the /O operation begins with a special I/O wait
flag set in its pfdat structure. This way, if another process tries to fault in
the page, the fault handler will find that the page is on the hash list, but is
waiting for I/O. The fault handler can then put the process to sleep until the
page is ready. When the file /O completes, all the processes waiting for it
will be woken up.

The kemel does not always have to read in a page to handle a validity fault,
even though the disk block descriptor indicates that the page has been
swapped. It is possible that the kernel had not yet reassigned the page after
writing the contents of out to the swap device, or that another process had
faulted the same page into another physical page. In either case, IRIX finds
the page in the page cache by searching the appropriate hash list. It
reassigns the page table entry to point to the copy of the page just found in
memory, increments the page reference count, and removes the page from
the free list, if necessary. For example, a process faults on a page.
Searching the hash list, the kernel finds a copy of the correct page. It resets
the page table entry for the virtual address to point to the valid page, sets the
software valid bit, and returns.

5.6.2 Protection Faults

The second kind of memory fault that a process can incur is a protection
fault, meaning that the process tried to write to an out-of-range virtual
address, or to a page with the modify bit set in its page table entry. There
are several reasons for a page to have its modify bit set:

Uncle Art’s Big Book of IRIX Section 5.6.2 5-17

1. The page has been marked copy-on-write.

2. The page has had its modify bit set to catch attempts at modifying it.
This is used, for example, when there is a copy of the page on the swap
device. If the page is modified, it will no longer be identical to the copy
on the swap device, so the association with the swap copy must be
broken. This is performed by the protection fault handler.

3. The page is actually read-only (for example, a page in a text region).

The IRIS hardware supplies the protection fault handler with the virtual
address where the fault occurred, and the fault handler finds the appropriate
region and page table entry. It locks the region so that the page stealer
cannot swap the page while the protection fault is handled.

If the region in which the protection fault occurred is marked read-only,
then the protection fault handler simply sends a signal to the faulting
process, to indicate that it has tried to write to a read-only page.

If the fault handler determines that the fault was caused because the copy on
write bit was set, and if the page is shared with other processes, the kernel
allocates a new page and copies the contents of the old page to it; the other
processes retain their references to the old page. After copying the page and
updating the page table entry with the new page number, the kemel
decrements the reference count of the old pfdat table entry. For example,
assume two processes share page 375. Process B attempts to write the page
but fails because the copy on write bit is set. The protection fault handler
allocates page 400, copies the contents of page 375 to the new page,
decrements the reference count of page 375 because process B will now be
using page 400, and updates the page table entry accessed by process B to
point to page 400.

If the copy on write bit is set but no other processes share the page, there is
no need to make the copy. This may occur because a process has forked,
and then exired or execed another program, thus disassociating itself from its
old process image. In this case the protection fault handler simply clears the
copy on write bit. If there is a copy of the page on the swap device, it
disassociates the page from the swap copy, since the page is being modified
and will no longer be identical to the swap copy. Then, it decrements the
swap-use count for the page, and if the count drops to 0, frees the swap
space.

As noted, the modify bit is also used to detect modification in order to break
the association between a page and a swap copy. For this purpose, the

5-18 Section 5.6.2 IRIS-4D Series

modify bit is set when pages are swapped. If the protection fault handler
finds that the page is marked DBD_SWAP, it will disassociate the page from
the swap copy by changing it to DBD_NONE, and decrementing the use
count on the swap copy. If the use count on the swap copy drops to zero,
swap space is freed.

5.7 Chapter Summary

This chapter has outlines the methods used under IRIX for memory
management. The implementation of demand paging allows processes to
execute even though their entire virtual address space is not loaded into
memory; therefore the virtual size of a process can exceed the amount of
physical memory available in the system. When the kernel runs low on free
pages, the page stealer goes through the active pages of every region, marks
pages eligible for swapping if they have aged sufficiently, and eventually
copies them out to a swap device. When a process addresses a virtual page
that is currently swapped out, it incurs a validity fault. The kemel invokes
the validity fault handler to assign a new physical page to the region and
copies the contents of the virtual page (0 main memory.

With the implementation of the demand paging algorithm, several features
improve system performance. First, the kernel uses the copy on write bit for
forking processes, eliminating the need to make physical copies of pages in
most cases. Second, the kernel can read in pages of an executable file from
the file system, eliminating the need for exec to read the file into memory
immediately. This helps performance because such pages may never be
needed during the lifetime of a process, and it eliminates the extra thrashing
that would be caused if the page stealer were to swap such pages from
memory before they were used.

Uncle Art’s Big Book of IRIX Section 5.7.0 5-19

6. The Input/Output Subsystem

The IRIX input/output subsystem is very similar to that used by System V.
Except as specified below, the IRIX IO subsystem conforms to the model
described in Chapter 10 of Bach’s Design of the UNIX Operating System.

6.1 Device Drivers for Multiprocessor
Machines

The driver kernel interface used by IRIX is essentially the same as the driver
kemel interface described by Bach. However, writing a device driver for
IRIX is more complicated because IRIX machines may have more than one
processor. There are two ways to make a normal device driver work on a
multiprocessor machine. The driver may be bound to a particular processor,
or it may use locks and semaphores to maintain data integrity.

When a device driver is bound to a particular processor, the device driver
code will only run on that processor. This allows a device driver to work on
a multiprocessor machine without modification. If a process running on
another processor tries to access the device, it will be put to sleep until it can
be scheduled on the appropriate processor.

The other way to make a device driver work on a multiprocessor system is
to implement a locking protocol like that used in other parts of the kernel,

using spinlocks and semaphores to make sure that critical code regions are
single threaded.

Uncle Art’s Big Book of IRIX Section 6.1.0 6-1

7. Interprocess Communication

IRIX supports System V style interprocess communication mechanisms
(semaphores, message queues, and shared memory) as well as BSD sockets.
The System V facilities are described in Bach, Chapter 11. Sockets are
described in Leffler, et al., Chapter 10.

In addition to these facilities, IRIX provides low-level synchronization
primitives called spinlocks.

7.1 Spinlocks

Spinlocks are simple busy-wait locks. A process attempting to acquire a
spinlock continuously tries to acquire the lock until it succeeds.

On multiprocessor IRIX machines, spinlocks are implemented in hardware.
These hardware spinlocks are used throughout the kernel to protect vital
data structures and code regions, including the data structures for the other
IPC facilities. This allows the System V facilities, as described in Bach, to
function normally in a multiprocessor environment.

On sincle processor IRIX machines, spinlocks are implemented in software,
using the same algorithm normally used for semaphores.

7.2 Sockets

The IRIX implementation of BSD sockets corresponds in most details to the
implementation described in The Design and Implementation of the 4.3 BSD
UNIX Operating System. The main difference between the two is the
manner in which sockets are integrated into kernel. In BSD, extra data is

Uncle Art’s Big Book of IRIX Section 7.2.0 7-1

added to the kernel open file table. Each file structure has a flag indicating
whether or not it represents a socket, and a pointer to a socket data
structure. Under IRIX, sockets are implemented as a file system type (as
described in Chapter 3 of this book). Each socket is associated with an in-
core inode, and this generic inode contains a pointer to the socket
structure (recall from Chapter 3 that each inode structure contains a
pointer to a file system dependant data structure). Thus, operations on
sockets are switched through the file system switch table, just like regular
file system operations.

7-2 Section 7.2.0 IRIS-4D Series

8. Networking

IRIX networking functions exactly like BSD networking, as described in
Leffler, et al., Chapters 11 and 12. The only differences lie in the
implementation of sockets, as described in the previous chapter. On
multiprocessor systems, the networking device drivers are constrained to run
on a specific processor. Therefore, they do not need to implement any
special locking protocol to operate in the multiprocessor environment.

IRIX also implements the Sun Network File System (NFS). This system is
described in TCP/IP and NFS: Internetworking in a UNIX Environment, by
Michael Santifaller. IRIX implements NFS as a file system type, so that
operations on NFS mounted file systems pass through the File System
Switch, as described in Chapter 3.

Uncle Art’s Big Book of IRIX Section 8.00 8-1

Index

A

Absolute path name, 1-4
Access modes,
changing, 3-6
defined, 1-4
directories, 1-5
ageregion routine, 5-11
alarm system call, 2-8 4-24
allocreg routine, 4-28
argnamei structure, 3-24, 3-25 3-26
attachreg routine, 4-26, 4-28

B

Bitmap, EFS, 3-31

bmap routine, 3-22, 3-23 3-24
bmapval structure, 3-22, 3-23 3-24
Boume shell, 1-7

bread routine, 3-31, 3-36

brk system call, 4-11, 4-2, 4-29

C

C shell, 1-7
chdir system call, 3-5
chmod system call, 3-6
chown system call, 3-6
chroot system call, 3-6
chunkread routine, 3-22
Clock interrupt handler, 4-15
close system call, 1-5 3-4
Common File System, 3-21
Common File System,

path name cache, 3-26

pipes, 3-27

utility routines, 3-21
Context switch, 4-13 4-14, 4-16
Core image file, 4-24

Uncle Art’s Big Book of IRIX

cpsema routine, 2-18
creat system call, 1-5 3-35
cvsema routine, 2-18

D

Datagrams, 2-16
dbd structure, 5-5 5-7, 5-7
Demand paging, 5-1
detachreg routine, 4-27
Device drivers,
defined, 2-2
kernel-driver interface, 2-13
Device special files, 1-3 2-14, 2-3
Device switch table, 2-14
Directories,
access modes, 1-5
changing root, 3-6
changing, 3-5
creating, 3-4
defined, 1-3
EFS, 3-33
reading, 3-24, 3-5
removing, 3-5
writing, 3-24
Discretionary access control, 1-4
Disk block descriptor, 5-5 5-7, 5-7
disp routine, 4-14, 4-16, 4-16
dup system call, 3-7
dupreg routine , 4-27, 5-8

E

EFS—see Extent File System, 3-29
efs_bmap routine, 3-33 3-35
errno variable, 2-6
Exceptions,
and system calls, 2-6

index-1

defined, 1-6
page faults, 5-15

processor execution level, 1-7
exec system calls, 4-2, 4-28 4-29 5-9
Execution search path, defined, 1-8
exit system call, 4-17, 4-19, 4-20, 4-21,

4-4 4-7

Extent File System,
bitmap, 3-31
defined, 2-9
directory structure, 3-33
disk block allocation, 3-35
extent allocation, 3-35
extent structure, 3-32
file creation, 3-35
inode allocation, 3-36
inode structure, 3-32
regular file structure, 3-32
structure, 3-29
superblock, 3-30

F

fchmod system call, 3-6
fchown system call, 3-6
File descriptors,
and file table, 3-16, 3-16
defined, 2-9
duplicating, 3-7
inheritance, 2-7
file structure, 2-9 3-16, 3-16
File subsystem, 2-3
File system switch, 2-1Q, 3-19
File systems,
access modes, 1-4
defined, 1-3
directories, 1-3

discretionary access control, 1-4

EFS, 2-9 3-29

mount table, 2-11
mounted, 3-26
mounting, 2-1Q, 3-17, 3-9

Index-2

NFS, 2-¢
path names, 1-3
root directory, 1-3 3-6
symbolic links, 3-26 3-9
unmounting, 3-18
File table, 3-16, 3-16
Files,
changing access modes, 3-6
changing ownership, 3-6
closing, 3-4
creation, 3-35
defined, 1-3
device special, 1-3 2-14, 2-3
EFS, 3-32
linking, 3-8
mapping into memory, 4-30
opening, 3-2
reading, 3-22 3-22, 3-3
regular, 1-3
seeking, 3-4
status, 3-7
symbolic links, 3-26 3-9
unlinking, 3-8
writing, 3-23 3-3
fork system call, 1-2 2-5 2-7, 4-17, 4-
18 4-18 4-2 4-27, 4-7
freereg routine, 4-27
fstat system call, 3-7
fstypsw structure, 2-1Q, 3-19

G

getchunk routine, 3-23
getdents system call, 3-24, 3-5
growreg routine, 4-26, 4-27, 4-29

Version 1.2

idle routine, 4-17
iget routine, 3-13
init process, 4-19
inodes,
accessing, 3-13
allocation under EFS, 3-36
allocation, 3-11
cache flushing, 3-18
caching, 3-11, 3-15
contents, 3-10
defined, 2-8
EFS, 3-32
free list, 3-11
hash queues, 3-11
locking, 3-12
mount points, 2-11, 3-17
pipes, 3-27
releasing, 3-15
Input redirection, 1-8 3-7
Integrated data cache,
defined, 2-13 2-3
reading directory data, 3-24
reading file data, 3-22
writing file data, 3-23
Interprocess communication. , 2-3
Interrupts,
defined, 1-6
processor execution level, 1-7
iput routine, 3-15
iread routine, 3-14

J
Job control, 2-8 4-24

Uncle Art’s Big Book of IRIX

K

Kernel mode, 1-6
Kernel stack, 2-4, 4-13
Kemel,
defined, 1-6
subsystems, 2-1
Kernel-driver interface, 2-13
kickidle routine, 4-17
Kill system call, 2-8 4-24, 4-3

L

link system call, 3-8

Link, defined, 3-1

loadreg routine , 4-27, 4-27
Iseek system call, 3-4

M

mallioc library, 4-12 4-30

mapreg routine, 4-27, 4-27
Message queues, defined, 2-16
mkdir system call, 3-35 3-4
mknod system call, 1-5 3-35
mmap system call, 2-7, 4-30, 4-5
mount structure, 3-17, 3-19
mount system call, 2-1Q 3-17, 3-9
Mount table, 2-11, 3-17, 3-19

N

namei routine, 3-24, 3-25 3-26
ncblock structure , 3-26

Network File System, defined, 2-9
nice system call, 4-14, 4-5
Non-degrading priorities, 4-15

Index-3

0

open system call, 1-5 2-9, 3-2 3-28§
3-35
Output redirection, 1-8

P

Page descriptor entry,
components, 5-5
defined, 5-4
Page fault, 5-15 5-2
Page faults, 2-12
Page frame data table, 5-3 5-4
Page stealer,
defined, 5-10
page aging, 5-11
page swapping, 5-12
Page swapping, 5-1
Page table entry,
defined, 5-5 5-7
software valid bit, 5-12
valid and referenced bit, 5-12
Page tables, defined, 5-4
Path name component cache, 3-26
Path names,
absolute, 1-4
and inodes, 3-1
defined, 1-3
link, 3-8
lookup, 3-24, 3-25 3-26
relative, 1-4
symbolic links, 3-26 3-9
traversing mount points, 3-26
pde structure—see Page descriptor
entry, 5-4
pdwrite routine, 3-23
perror routine, 2-6
pfdat structure, 5-3 5-4
Physical page number, 2-11
pipe system call, 3-7
Pipes,
creating, 3-7

Index—4

defined, 1-5
implementation, 3-27, 3-28 3-29
named, 1-5
on command line, 1-8
unnamed, 1-5
pipe_inode structure, 3-27
pread routine, 3-23
pregion structure, 2-4, 4-12 4-12
proc structure,
allocating, 4-18
allocation, 2-7
contents, 4-5
defined, 2-3
signal handling, 2-8 4-24
states, 4-6
Proces subsystem, 2-3
Process groups, 2-7
Process regions,
allocating, 4-26, 4-26 4-28
attaching, 4-12, 4-26
data, 4-11
detaching, 4-27
duplicating, 4-27, 5-8
freeing, 4-27
loading, 4-27
page tabies, 5-5
resizing, 4-2, 4-26 4-29
stack, 4-12
structure, 4-11
text, 4-11
Process table,
defined, 2-3
shared read lock, 4-8
Process table—see also proc structure,
4-5
Processes,
awaiting termination, 4-19, 4-2Q,
4-22 4-4 4-7
changing current directory, 3-5
changing root directory, 3-6
context, 4-13
creating, 2-7, 4-17, 4-18 4-18 4-2
4-7
defined, 1-2

Version 1.2

*

kernel stack, 2-4
memory regions, 2-6
nice value, 4-14
non-degrading priorities , 4-15
parent-child-sibling chain, 2-7,
4-19
pregion structure, 2-4
priority, 4-14, 4-9
proc structure, 2-3
region structure, 2-4
running new programs, 4-2 4-28
4-29
scheduling—see Scheduling, 4-14
signal handling, 2-8
states, 4-6
terminating, 4-4, 4-7
termination, 4-17, 4-19, 4-20, 4-21
user block, 2-4
zombie, 4-4, 4-7
Processor execution level, 1-7, 4-13
Programs,
executing, 4-2 4-28 4-29
interpreted, 4-28
Protection fault, 2-12 5-17, 5-18 5-3
psema routine, 2-18
pswich routine, 4-16
pte structure, 5-7
pte structure—see Page table entry,
5-5
pwrite routine, 3-23

Q

gswich routine, 4-16

R

read system call, 1-5 2-16 2-6 3-22
3-29, 3-3

Redirecting I/0 from the shell, 1-8
region structure, 2-4

Uncle Art's Big Book of IRIX

region structure,
allocation, 4-26
defined, 4-11
page tables, 5-5
region structure—see also Process
regions, 4-11
Register context, 4-13
Regular files, 1-3
Relative path name, 1-4
rmdir system call, 3-5
Root directory, defined, 1-3
Run queue, 4-16 4-9

S

sbrk system call, 4-2 4-29
sched process, 5-15
schedct! system call, 4-14, 4-15 4-5
Scheduling,
dispatcher, 4-14, 4-16, 4-16
idle loop, 4-17
kickidle, 4-17
nice value, 4-14
non-degrading priorities, 4-15
priorities, 4-14, 4-15
Segment, defined, 5-5
Semaphores,
defined, 2-15
exchanging, 2-18
kemnel, 2-17
Sessions, 2-7
Shared memory, defined, 2-16
Shell,
Bourne, 1-7
C,1-7
defined, 1-7
execution search path, 1-8
job control, 2-8
pipes, 1-8
redirecting I/0, 1-8
signal system call, 4-25 4-3
Signals,

Index-5

defined, 2-8
handiing, 4-25 4-3
job control, 2-8
sending, 4-24, 4-3
SIGPIPE, 3-29
uses, 4-24
Sockets, 2-16 2-3
Software valid bit, 5-12
Spinlocks,
defined, 2-14
exchanging, 2-18
kernel, 2-17
spsema routine, 2-18
stat system call, 3-7
Stream sockets, 2-16
Superblock, EFS, 3-30
svsema routine, 2-18
Swap device, 5-1
Swap use table, 5-7
swtch routine, 4-16
Symboilic links, 3-26, 3-9
symiink system call, 3-9
System calls,
alarm, 2-8 4-24
and process context, 4-13
brk, 4-11, 4-2, 4-29
chdir, 3-5
chmod, 3-6
chown, 3-6
chroot, 3-6
close, 1-5 3-4
common, 1-5
creat, 1-§ 3-35
defined, 1-2
dup, 3-7
errors, 2-6
exec, 4-2 4-28 4-29 5-9
exit, 4-17, 4-19 4-20, 4-21, 4-4, 4-7
fchmod, 3-6
fchown, 3-6
fork, 1-2 2-5 2-7, 4-17, 4-18 4-18
4-2 4-27, 4-7
from C programs, 2-6
fstat, 3-7

Index—6

getdents, 3-5

kill, 2-8 4-24 4-3

link, 3-8

Iseek, 3-4

mechanism, 2-6

mkdir, 3-35 3-4

mknod, 1-5 3-35

mmap, 2-7, 4-30, 4-5

mount, 2-10, 3-9

nice, 4-14 4-5

open, 1-5 2-9 3-2 3-28 3-35

pipe, 3-7

read, 1-5 2-16 2-6 3-29, 3-3

rmdir, 3-5

sbrk, 4-2 4-29

schedctl, 4-14, 4-15 4-5

signal, 4-25 4-3

stat, 3-7

symlink, 3-9

umount, 2-11, 3-9

unlink, 3-8

wait, 4-19, 4-2Q 4-22 4-4, 4-7, 4-9

write, 1-5 2-16, 3-29, 3-3
System page pool, 5-3
System-level context, 4-13

U

umount system call, 2-11, 3-18 3-9
unlink system call, 3-8

User block, 2-4, 3-22, 4-10

User mode, 1-6

user structure—see User block, 2-4
User-level context, 4-13

v

Valid and referenced bit, 5-12

Validity fault, 2-12, 5-16, 5-2 5-2

vhand process—see page stealer, 5-10
Virtual addresses,

Version 1.2

defined, 2-11, 2-12
process regions, 4-11, 4-12
wired, 4-10
Virtual page number, 2-11
vsema routine, 2-18

w

wait system call, 4-19, 4-20, 4-22 4-4,
4-7,4-9

Working set, defined, 5-11

write system call, 1-5 2-16, 3-29 3-3

Uncie Art’s Big Book of IRIX Index-7

.

HR R BN N N "R N _ S _ NR_FER__SN NN _=BR_NR_=Nn_NR N .__NN..005

