= R AY”

RESEARCH, INC.

— Any shipment to a country outside of the
United Stated requires a U.S. Government
~ export license.

CRAY COMPUTER SYSTEMS

CRAY-2 COMPUTER SYSTEM
FUNCTIONAL DESCRIPTION

HR-2000

Copyright® 1985 by CRAY RESEARCH, INC. This manual or
- parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

R ANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER HR-2000

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an aiphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. hanges t_odpart of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northland Drive,

Mendota Heights, Minnesota 55120

Revision Description
May 1985 - Original printing.

e
[

HR-2000

" PREFACE

This publication describes the functions of the CRAY-2 Computer System
and the CRAY Assembly Language (CAL) Version 2 symbolic machine
instructions specifically used with this machine. It is written to
assist programmers and engineers and assumes a familiarity with digital
computers and assemblers.

The manual describes the overall computer system including its
configuration and characteristics. It also describes the operation of
the Common Memory, Foreground Processor, and Background Processors. Both
the machine code and the associated symbolic machine instructions are
explained.

Site planning information for the CRAY-2 Computer System is available in
the CRAY-2 Site Planning Reference Manual, publication HR-2001.

Additional information on the CRAY Assembly Language (CAL) Version 2 is
available in the CAL Assembler Version 2 Reference Manual, publication
SR-2003.

1177777777777 7777777777/7777/7777777777777777777777777777
WARNING

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in
accordance with the instructions manual, may cause
interference to radio communications. It has been
tested and found to comply with the limits for a Class
A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a
commercial environment. Operation of this equipment in
a residential area is likely to cause interference in
which case the user at his own expense will be required
to take whatever measures may be required to correct
the interference.

1177777777777 77

HR-2000 iii

CONTENTS

PREFACE

1. INTRODUCTION

. - .

.

1.1 CRAY-2 FEATURES+ « « « .« .
1.1.1 Physical characteristics . . .
1.1.2 Architecture and design . . .
1.2 CONVENTIONS« . « + + . . .
1.3 MANUAL DESCRIPTION +« v « & o« .
2. BACKGROUND PROCESSOR . . . + . ¢ ¢ ¢ « « &
2.1 CONTROL SECTION . . &+ 4 & & o o « o &
2.1.1 Instruction issue and control .
Program Address register . .
Instruction buffers .
Instruction issue
2.1.2 Real-time clock
2.1.3 Semaphore flags
2.1.4 Common Memory field protection
Base Address register
Limit Address register
Memory range error
2.2 OPERATING REGISTERS . . + + « v &« « o &
2.2.1 Address registers . . e .
2.2.2 Scalar registers . . o . .
2.2.3 Vector registers . e e e .
2.3 VECTOR CONTROL REGISTERS
2.3.1 Vector Length register . .
2.3.2 Vector Mask register
2.4 FUNCTIONAL UNITS . . . ¢ ¢ ¢« +v « « & @

HR-2000

2.4.1

.
.

NNDNNNNDNDNDN
L S A
= O 0 N0k wN

.

.

Address Add functional

unit
Address Multiply functional uni

Scalar Integer functional unit

Scalar Shift functional unit

-

Scalar Logical functional unit
Vector Integer functional unit
Vector Logical functional unit

Floating-point Add functional unit

.

Floating-point Multiply functional

Local Memory

.

. .

unit

iii

i I 1] 1 I | |] | 1 i |
(SN

I N N N I R
o
o o

NN NNNNNDNNNNNNNNMODNONNRNNNENNNNNDRNODNNNORNRNDNNDNDNDNDN
| |

S O WO WWWWONITITOOTTOLU OO D R WWWW

o

2. BACKGROUND PROCESSOR (continued)

2.5

ARITHMETIC OPERATIONS « ¢« ¢« « « .« .

2.5.1 Integer ari

2.5.2 Floating-po
Normalizing
Range error
Floating-po
Floating-po
Floating-po
Integer to
Floating-po
Reciprocal
Reciprocal
Reciprocal
Reciprocal

thmetic « « . . .
int arithmetic

S o ¢ + e e s s 4 e e s »

int addition
int subtraction . . .

int to integer conversion
floating-point conversion

int product
approximation
iteration
square root approximation

square root iteration . .

3. BACKGROUND PROCESSOR SYMBOLIC MACHINE INSTRUCTIONS

3.1 SYMBOLIC INSTRUCTION FORMAT
3.2 MACHINE INSTRUCTION FORMAT
3.3 INSTRUCTION DESCRIPTIONS « « « .« .
4. COMMON MEMORY e e e e e . . e .
4.1 MEMORY ADDRESSING+« « « « ¢ o o « o &
4.2 MEMORY ACCESS . . e e e e e e e e e e e
4.3 MEMORY CONFLICTS . . . « . ¢ o ¢ ¢« o o « o &
4.4 MEMORY BACKUP + + ¢« v ¢« « o o o« o« .
4.5 MEMORY ERROR CORRECTION
5. FOREGROUND SYSTEM« +« « & « « « .
5.1 FOREGROUND COMMUNICATION CHANNELS .
5.2 FOREGROUND CHANNEL PORTS
5.2.1 Common Memory ports
5.2.2 Background Processor ports .
5.3 DISK STORAGE UNITS« . .
5.3.1 Disk system organization . .
5.4 FRONT-END INTERFACE
5.5 FOREGROUND PROCESSOR
5.6 MAINTENANCE CONTROL CONSOLE

HR-2000

vi

2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-14
2-14
2-14
2-16
2-17
2-17
2-19

[S2NNS RGBS IS, BN G, IS NS, IS
|
O E W WWNNN P

APPENDIX SECTION

A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY

A
A,

HR-2000

1
2

SYMBOLIC NOTATION . . . ¢ « o o o o o o o o o &
BRANCH INSTRUCTIONS . . o + o ¢ o o « o o o o &
A.2.1 Conditional branches
A.2.2 Unconditional jumps . . « . « « + « o+ .
A.2.3 EXIES & v v v v v e e e e e e e e e e
PASS INSTRUCTIONS . . . ¢ v v o ¢ o o o o o« o .
SEMAPHORE INSTRUCTIONS« . ¢ ¢ ¢ « « « .
REGISTER ENTRY INSTRUCTIONS + ¢ « « « &
A.5.1 Entries into A registers
A.5.2 Entries into S registers e e e e e e
INTER-REGISTER TRANSFER INSTRUCTIONS o e e e e

-A.6.1 Transfers to A registers

A.6.2 Transfers to S registers
A.6.3 Transfers to V registers
A.6.4 Transfer to Vector Mask register
A.6.5 Transfer to Vector Length register . . .
MEMORY TRANSFER INSTRUCTIONS
A.7.1 Stores .« v ¢ v v v e e e e e e e e e

A.T7.2 Loads . . « ¢ v v ¢ ¢« ¢ 4 v e e e e e
INTEGER ARITHMETIC OPERATION INSTRUCTIONS . . .
A.8.1 Integer SUMS . . v « ¢ o o & o o o o + &
A.8.2 Integer differences
A.8.3 Integer products
FLOATING-POINT ARITHMETIC OPERATION INSTRUCTIONS
A.9.1 Floating-point sums
.9. Reciprocal iterations
. 9. Reciprocal approximations
.9. Floating-point differences

Integer to floating-point conversions .
Floating-point to integer conversions .
Floating-point products
Square root iterations
Square root approximations
0 Floating-point errors
LOGICAL OPERATION INSTRUCTIONS
A.10.1 Logical products

.
.

-

.

i i A
[To RV Yo J¥o Vo Ve BV RVS Ve
© N U W

A.10.2 Logical sums . . « « « ¢ & & &+ o o o
A.10.3 Vector streaming . . . « « + .« o« . .
A.10.4 Logical differences
A.10.5 Vector mask« « o « . .
A.10.6 Compressed iota

BIT COUNT INSTRUCTIONS« .« « « « . .

SHIFT OPERATION INSTRUCTIONS
A.12.1 Left shifts « « « « « « .« .
A.12.2 Right shifts o . .

vii

T
[

| T A R O R B |

|
b= = = O O 00NN NN DR DR W W

I
=R e
DD DWW WwR

g - i A S - i g ? - i i A O A g

A-15
A-16
A-16
A-16
A-17
A-17
A-17
A-18
A-18
A-19
A-19
A-19
A-20
A-20
A-21
A-22
A-22
A-22

FIGURES

N B WNNNNNP R
R
R NRPROD NP N R

CRAY-2 Mainframe « « « « « . .
CRAY-2 Mainframe Configuration
Control and Data Paths in a Background Processor .
Floating-point Data Format

48-by-48 Bit Matrix Used for Floating-point Product
48-by-48 Bit Matrix Used for Reciprocal Iteration
48-by-48 Bit Matrix Used for Square Root Iteration

Instruction Parcel Format . . . « ¢ « « o « &« « &
Memory Address for Common Memory
Error Correction Matrix . . + ¢ &« &« v o o o o o &
Channel LOOP . « &« « v ¢ ¢ « o o o o o o o o o o &

HR-2000 viii

.

| [L
=N W
[@ 2N -RNE, I N

D B WNNNNN R
| | |
N RN R e

1. INTRODUCTION

The CRAY-2 computer is a powerful, general-purpose computer system with
extremely high processing rates. Scalar and vector capabilities in a
multiprocessing environment combined with integrated foreground
processing achieve these high rates.

1.1 CRAY-2 FEATURES

The CRAY-2 mainframe contains four independent Background Processors,
each more powerful than a CRAY-1 processor. Featuring a clock-cycle time
faster than any other computer system available, each of these processors
offers exceptional scalar and vector processing capabilities. The four
Background Processors can operate independently on separate jobs or
concurrently on a single problem. The very high speed Local Memory
integral to each Background Processor is available for temporary storage
of vector and scalar data.

Common Memory is one of the most important features of the CRAY-2. It
consists of 256 million 64-bit words randomly accessible from any of the
four Background Processors and from any of the high-speed and common data
channels. The memory is arranged in quadrants with 128 interleaved
banks. All memory access is performed automatically by the hardware.

Any user may use all or part of the memory not being used by the
operating system,

Control of network access equipment and the high-speed disk drives is
integral to the CRAY-2 mainframe hardware. A single Foreground Processor
coordinates the data flow between the system's Common Memory and all the
external devices across four high-speed I/0 channels. The synchronous
operation of the Foreground Processor with the four Background Processors
and the external devices provides a significant increase in data
throughput.
The most important CRAY-2 features are:

. Extremely large directly addressable Common Memory

. Fastest cycle time available in a computer system

. Scalar, vector, and multiprocessing combined in one system

. Integral Foreground Processor

HR-2000 1-1

. Elegant architecture
. Extremely high reliability
. High density memory chips and extremely fast silicon logic chips

. Liquid immersion cooling

1.1.1 PHYSICAL CHARACTERISTICS
The CRAY-2 mainframe is elegant in appearance as well as in architecture
(see figure 1-1). The memory, computer logic, and DC power supplies are
integrated into a compact mainframe composed of 14 vertical columns
arranged in a 300° arc.
The upper part of each column contains a stack of modules and the lower
part contains power supplies for the system. Total cabinet height,
including the power supplies, is 45 inches; the diameter of the mainframe
is 53 inches. Thus, the "footprint" of the mainframe is a mere 16 square
feet of floor space.
An inert fluorocarbon liquid circulates in the mainframe cabinet in
direct contact with the integrated circuit packages. This liquid
immersion cooling technology allows for the small size of the CRAY-2
mainframe and is thus largely responsible for the high computation rates.
Significant CRAY-2 physical characteristics are:

. Occupies only 16 sq ft of floor space

. Stands 45 inches high (diameter is 53 inches)

. Contains 14 columns arranged in a 300° arc

. Contains 3-dimensional modules

. Contains liquid immersion cooling

. Contains chilled water heat exchange

HR-2000 1-2

HR-2000

S

L

Figure 1-1.

1353

CRAY-2 Mainframe

1.1.2 ARCHITECTURE AND DESIGN
In addition to the cooling technology, the extremely high processing
rates are achieved by a balanced integration of scalar and vector

capabilities and a large Common Memory in a multiprocessing environment.

Significant architectural components of the CRAY-2 Computer System
include the following:

. Four independent Background Processors capable of vector and
scalar operation. Synchronization of the Background Processors is
achieved through the Foreground Processor and semaphore flags in
the Background Processors.

. 256 megawords of dynamic Common Memory

. A foreground system that controls and monitors system operation,
including:

- A Foreground Processor for system supervision

- Four high-speed synchronous communication channels

- Up to 40 I/O Devices

- Disk controllers to control up to 36 disk storage units
- Four Common Memory ports for data transfer

- Four Background Processor ports to allow Foreground
Processor control

- Front-end Interfaces (from one to as many as four per
channel)

The four identical Background Processors each contain registers and
functional units to perform both vector and scalar operations. The
single Foreground Processor supervises the four Background Processors.
The large Common Memory complements the processors and provides
architectural balance, thus assuring extremely high throughput rates (see
figure 1-2),

On-site maintenance 1is possible via the maintenance control console.

HR-2000 1-4

Common Memory

Common Common Common Common
Memory Memory Memory Memory
Port Port Port Port
Background Background Background Background
Processor Processor Processor Processor
Background Background Background Background
— Processor Processor | | Processor Processor
Port Port Port Port
Disk Disk Disk Disk
Controllers Controllers | Controllers Controllers
Front-end Front-end Front-end Front-end
[~ | Interface Interface — Interface Interface
Foreground Processor
Figure 1-2. CRAY-2 Mainframe Configuration
HR-2000 1-5

1.2

CONVENTIONS

The following conventions are used in this manual.

Convention

lowercase
italics

CP
(Sl)l(SZ)l etc.
A, a, SI s,

V, v register
designators

Register bit
designators

Description

Variable information

Clock period
The contents of registers S1, S2, etc.

For example, "Transmit (ay) to s;'" means
“Transmit the contents of the A register
specified by the k designator to the S register
specified by the I designator”.

Numbered right to left as powers of 2, starting
with 20, Bit 263 of an S or Vv register value
represents the most significant bit. Bit 231

of an A register value represents the most
significant bit. The Vector Mask register has 64
bits, each corresponding to a word element in a
Vector register. Bit 263 corresponds to

element 0, bit 20 corresponds to element 63.

Unless otherwise indicated, numbers in this manual are decimal numbers.

Octal numbers are indicated with an 8 subscript.

numbers, channel numbers, instruction parcels in instruction buffers, and

Exceptions are register

instruction forms which are given in octal without the subscript.

1.3

MANUAL DESCRIPTION

Section 1

Section 2

Contains the introduction to this manual

Describes the CRAY-2 Background Processor. The

registers, functional units, and algorithms used are
described.

HR-2000

Section 3

Section 4

Section 5

Appendix A

HR-2000

Provides detailed information on the CAL instructions
that operate on the CRAY-2. Each machine instruction
can be represented symbolically in CRAY Assembly
Language (CAL) Version 2. The instructions are listed
octally in a box format that provides the CRAY Assembly
Language (CAL) Version 2 syntax format, an operand if
required, a brief description of each instruction, and
the machine instruction.

Following the boxed information is a detailed
description of the instruction and an example using the
instruction.

Describes the CRAY-2 Common Memory, phased memory
access, and single error correction/double error
detection (SECDED)

Describes the CRAY-2 foreground system, which handles
the I/0

Lists the symbolic machine instructions by function.
The octal machine code may be used as an index to refer
to section 3 for a detailed description of the
instruction.

2. BACKGROUND PROCESSOR

The CRAY-2 computer contains four identical Background Processors. Each
Background Processor contains operating and vector control registers and
functional units to perform both vector and scalar operations. The
Foreground Processor supervises the four Background Processors.

A Background Processor performs arithmetic and logical calculations.
These operations, and the other functions of a Background Processor, are

coordinated through the control section.

Control and data paths for one Background Processor are shown in
figure 2-1.

2.1 CONTROL SECTION

Each Background Processor contains an identical, independent control
section of registers and instruction buffers for instruction issue and
control. The following control mechanisms are described in this section.

. Instruction issue and control

. Real-time clock

. Semaphore flags to provide interlocks for Common Memory access
. Common Memory field protection

2.1.1 INSTRUCTION ISSUE AND CONTROL
Each Background Processor contains a Program Address register, an

instruction buffer with eight fields, and an instruction issue control
mechanism to implement instruction issue and control.

Program Address register

Each Background Processor has a 32-bit Program Address (P) register
indicating the address of the program instruction parcel currently in the
issue position during normal operation. The Foreground Processor loads
the P register with data at the beginning of a computation period. As
each parcel issues from the instruction queue, the content of the P
register advances by 1.

The P register content is reset to the branch destination address when a
jump instruction is executed.

HR-2000 2-1

FLOATING POINT FUNCTIONAL UNITS
ADD

FOREGROUND ———————»§ RECIPROCAL

SQUARE ROQT
LOOK-UP TABLE

MULTIPLY

v7
vé
v5

va
v3
ve2

vi

Vi

(MULTIPLY,
RECIPROCAL,
SQUARE ROOT)

Sivi

Sj Sk Vkl

Vip

VECTOR Fi IONAL UNITS
I LOGICAL

INTEGER

er j

yar

Vi

PARITY, L.Z,10TA)

Sﬂ. (ADD, SHIFT, POP/

COMMON

MEMORY

VECTOR CONTROL 4—@-‘
A R oy

INTEGER

Si Sj Sk

Si (ADD, POP/PARITY

LEADING ZERO)

sivil Ysisjvi

LOCAL MEMORY

A Akh A
ADDRESS FUNCTIONAL UNITS

MULTIPLY
ADD

A Ak

A

VECTOR CONTROL

QUEUE

INSTRUCTION
ISSUE

+

BACKGROUND CPU B

BACKGROUND CPU C

BACKGROUND CPU D

B.G.
STATUS

P (SSUE

L] o] []
STATUS BASE LIMIT
T] \

CPU A-D
SEMAPHORE FLAGS
0-7

Y I

FOREGROUND

Figure 2-1.

HR-2000

| PROCESSOR

170 INTERFACES

[———— EXTERNAL DEVICES

Control and Data Paths in a Background Processor

1321

Instruction buffers

Each Background Processor has a buffer with eight independent fields to
allow program loops to execute without additional Common Memory
references. Programs can loop within the instruction buffer using any of
the branch instructions.

Each independent field contains 16 words. The total instruction buffer
size is 128 words.

The next sequential instruction out of the instruction buffer or a branch

out of the instruction buffer discards the oldest data field and replaces
it with 16 words of new data.

Instruction issue

Background instructions are translated in several steps and are allowed
to issue sequentially by an instruction issue control mechanism. The
words are disassembled into 16-bit parcels that are placed in a queue
where the translation occurs. The instruction issue process involves
checking the reservation flags for the registers and functional unit
involved in the instruction sequence. The parcel waits in issue position
in the instruction queue until all required resources are free.

Instruction parcels and 16-bit constants are intermixed in the instruction
queue. The constant parcels are passed through the instruction queue
without test.

2.1.2 REAL-TIME CLOCK

Each Background Processor has a 64-bit register that counts continuously
at the clock period rate. This count value is used to determine the
passage of real time to an accuracy of 1 clock period. The real-time
clocks in the Background Processors are synchronized at deadstart.
Instruction 115 reads the real-time clock.

2.1.3 SEMAPHORE FLAGS

To synchronize Common Memory references, eight semaphore flags in the
background system interlock Common Memory references when multiple
Background Processors are executing a single job. One semaphore flag is
assigned to each currently active job in the background system. A
Background Processor assigned to a job is assigned a semaphore flag at
the same time.

HR-2000 2-3

The Background Processor uses four instructions in synchronizing its
Common Memory references: 004, 005, 006, and 007. A 004 or 005
instruction requests the semaphore flag when the Background Processor
program is accessing a Common Memory area that can interfere with other
processors assigned to the job. The branch instruction results determine
when the processor has exclusive access to this Common Memory area. The
program must clear the semaphore flag to release the Common Memory area
to another processor assigned to the same job.

2.1.4 COMMON MEMORY FIELD PROTECTION

At execution time each object program has a designated field of Common
Memory holding instructions and data. Field limits are specified by the
foreground functions when the object program is loaded and initiated.
Field limits are contained in the Base Address (BA) register and the
Limit Address (LA) register.

All memory addresses contained in the object program code are relative to
the base address beginning the defined field. An object program cannot
read or alter any Common Memory location with an absolute address lower
than the base address. Each object program reference to Common Memory is
checked against the limit and base addresses to determine if the address
is within the assigned bounds.

Base Address register

Each Background Processor has a 32-bit BA register. The BA register
defines the lower boundary of the Common Memory address field. The
Foreground Processor enters data into this register while the Background
Processor is in idle mode. The data remains in the register for the
duration of the Background Processor computation period.

Each Common Memory reference from the Background Processor includes the
addition of the BA register content to the other parts of the memory
reference base address. All Background Processor references to Common
Memory are relative to the base address boundary.

Limit Address register

Each Background Processor has a 32-bit LA register. The LA register
defines the upper boundary of the Common Memory address field. The
Foreground Processor enters data into this register while the Background
Processor is in idle mode. The data remains in this register for the
duration of the Background Processor computation period.

HR-2000 2-4

Memory range error

When a memory reference exceeds the range limits, a memory range error
occurs. Each Common Memory reference from the Background Processor
includes a test of the resulting absolute Common Memory address against
the contents of the BA and LA registers. An error signal is sent to the
status register if the resulting absolute Common Memory address is less
than the base address or equal to, or greater than, the limit address. A
read reference results in zero data for this case. A write reference is
aborted.

2.2 OPERATING REGISTERS

Each Background Processor contains the following independent set of
operating registers.

. Address
. Scalar
. Vector

Operating registers, a primary programmable resource of the Background
Processor, enhance the speed of the system by satisfying heavy demands
-for data made by functional units. Different functional units can be
used concurrently.

2.2.1 ADDRESS REGISTERS

Eight 32-bit Address (A) registers are used primarily to calculate memory
locations for Local Memory and Common Memory references. A registers are
used for 32-bit integer calculations and moving data directly from Local
Memory. Data is also transferred between Address and Scalar registers.

2.2.2 SCALAR REGISTERS

Eight 64-bit Scalar (S) registers serve as source and destination for
operands executing scalar arithmetic and logical instructions. S
registers can furnish one operand in vector instructions.

The eight 64-bit S registers in a Background Processor support Vector
registers in operations when one element of the computation is a constant
value. The S registers function as computational way stations between
Common Memory and the functional units where vector implementation of the
work is not possible.

HR-2000 2-5

2.2.3 VECTOR REGISTERS

The major computational registers of the Background Processor are eight
Vector (V) registers, each having 64 elements. Each V register element
has 64 bits. When associated data is grouped into successive elements of
a V register, the register quantity is treated as a vector. Examples of
vector quantities are rows or columns of a matrix, and elements of a
table.

Computational efficiency is achieved by identically processing each
element of a vector. Vector instructions provide for the iterative
processing of successive V register elements. A vector operation begins
by obtaining operands from the first element of one or more V registers
and delivering the result to the first element of a V register.
Successive elements are provided during each clock period, and as each
operation is performed the result is delivered to successive elements of
the result V register. Vector operation continues until the number of
operations performed by the instruction equals a count specified by the
content of the Vector Length register (described later in this section).

Since many vectors exceed 64 elements, longer vectors are processed as
one or more 64-element segments and a possible remainder of less than 64
elements.

The instruction issue control mechanism reserves the V registers that are
involved in a functional unit operation. One, two, or three Vector
registers can be involved, depending on the specific instruction. The
functional unit is reserved at the same time as the V registers. The
instruction sequence can then proceed to the next instruction and
initiate concurrent activity as long as the resources reserved are not
required.

The i, j, and k designators in a vector instruction can have the

same value; it is advised, however, that the I designator always has a
unique value. In the case of identical source operands, the data is
streamed from the same V register to both data paths. In the case of a
Destination register that is the same as a Source register, the V
register writing function takes priority over reading. When this occurs,
the reading vector delivers all zero words to the functional unit,

2.3 VECTOR CONTROL REGISTERS

The Vector Length register and the Vector Mask register provide control
information needed in the performance of vector operations.

HR-2000 2-6

2.3.1 VECTOR LENGTH REGISTER

The Vector Length (VL) register is a 6-bit special purpose register
explicitly referenced in the Background Processor instructions. The VL
register holds the vector length during a portion of the background
computation. All vector operations capture the vector length at the time
of instruction issue from the VL register.

Vector registers always begin a read or write operation at the zero
element position in the V register. Elements are read or written
sequentially for the length of the current vector data. A short vector
after a long vector leaves the old vector data in those positions not
replaced with new data.

Values allowed in the VL register are 0 through 63. A zero value is
interpreted as 64. Background instructions 025 and 036 communicate
explicitly with the VL register.

2.3.2 VECTOR MASK REGISTER

The Vector Mask register (VM) is a 64-bit special purpose register
explicitly referenced by the Background Processor instructions. The VM
register merges vector data according to a set of precomputed Element
flags. In effect, it provides a vehicle for implementing vector branch
operations.

One bit of the VM register is associated with each element in the
64-element vector registers. The high-order bit (263) of the vector
mask corresponds to element 0 of the vector data. The bits of the mask
then proceed in order to represent the following vector elements.

The vector mask data can be formed by a vector operation in which each
element is evaluated for a specific criterion. Instructions 030 through
033 perform these tests. The VM register is cleared at the beginning of
these instruction sequences and then bits are entered one at a time as
the vector stream passes the test station.

The vector mask data can be used to merge two vector streams into a
single result stream. Instructions 146 and 147 are used for this
purpose. Elements of the j operand are selected when the mask contains
1 bits. Elements of the k operand are selected when the mask contains
0 bits.

Instructions 034 and 114 move data between the VM register and an S
register.

HR-2000 2-7

2.4 FUNCTIONAL UNITS

Each Background Processor has a set of functional units to implement
algorithms for the instruction set. A number of functional units can
operate simultaneously. Each functional unit produces one result per
clock period. No information is retained in a functional unit for
reference by subsequent instructions.

A functional unit receives operands from registers and delivers the
result to a register when the function has been performed. Functional
units operate essentially in three-address mode. Nonvector functional
units can accept operands as fast as the instructions can issue.

A functional unit engaged in a vector operation remains busy for the
duration and cannot participate in other operations. 1In this state, the
functional unit is reserved. Other instructions requiring the same
functional unit will not issue until the previous operation is
completed. Only one functional unit of each type is available to the
vector instruction hardware. When the vector operation completes, the
reservation is dropped and the functional unit is then available for
another operation.

Each Background Processor has the following set of functional units.

. Address Add

. Address Multiply

. Scalar Integer

. Scalar Shift

. Scalar Logical

. Vector Integer

. Vector Logical

. Floating-point Add

. Floating-point Multiply

In addition, a Background Processor contains a Local Memory which is a
buffer for the A, S, and V register data.

2.4.1 ADDRESS ADD FUNCTIONAL UNIT

The Address Add unit performs 32-bit integer addition and subtraction of
two A register operands. (Instruction 020 performs integer sums and 021
performs integer differences.) This unit can accept address operands as
fast as the instructions can issue.

HR-2000 2-8

2.4.2 ADDRESS MULTIPLY FUNCTIONAL UNIT

The Address Multiply unit performs 32-bit integer multiplication of two A
register operands. (Instructions 022 and 023 perform integer products.)
This unit can accept address operands as fast as the instructions can
issue.

2.4.3 SCALAR INTEGER FUNCTIONAL UNIT

The Scalar Integer unit performs 64-bit integer addition and subtraction
of S register operands. (Instruction 104 performs integer sums and 105
performs integer differences.) It also performs population count
(instruction 1061j0), population count parity (instruction 106ij1),

and leading zero (instruction 107). This unit can accept scalar operands
as fast as the instructions can issue.

2.4.4 SCALAR SHIFT FUNCTIONAL UNIT

The Scalar Shift unit shifts the entire 64-bit contents of an S register
(instruction 110 left or 111 right) or the double 128-bit contents of two
concatenated S registers (instruction 112 left or 113 right). This unit
can accept scalar operands as fast as the instructions can issue.

2.4.5 SCALAR LOGICAL FUNCTIONAL UNIT

The Scalar Logical unit manipulates bit-by-bit the 64-bit quantities
obtained from S registers. (Instruction 100 performs logical products,
101 performs logical products complemented, 102 performs logical
differences, and 103 performs logical sums.) This unit can accept scalar
operands as fast as the instructions can issue.

2.4.6 VECTOR INTEGER FUNCTIONAL UNIT

The Vector Integer unit performs vector shifts (150 for left single, 151
for right single, 152 for left double, and 153 for right double), vector
integer arithmetic (160 and 161 for integer sums and 162 and 163 for
integer differences), vector population count (164ijO0 for population
count and 1641ijl for population parity), vector leading zero count
(165), and compressed iota (176). The unit can accept operand data each
clock period, and after a transit time delay, can deliver a result each
clock period.

HR-2000 2-9

2.4.7 VECTOR LOGICAL FUNCTIONAL UNIT

The Vector Logical unit manipulates bit-by-bit the 64-bit quantities from
two V registers or from V registers and S registers (140 and 141 logical
products, 142 and 143 for logical differences, and 144 and 145 for
logical sums). The unit can accept operand data each clock period, and
after a transit time delay, can deliver a result each clock period.

2.4.8 FLOATING-POINT ADD FUNCTIONAL UNIT

The Floating-Point Add unit performs addition or subtraction of 64-bit
operands in floating-point format for both scalar and vector operations.
It also performs the conversion between integer and floating-point.
Refer to discussion of floating-point arithmetic for a description of
the instructions that use this unit.

The unit is reserved for the time of a vector stream during execution of
vector addition instructions. The unit can accept vector operand data
each clock period, and after a transit time delay, can deliver a result
each clock period. The unit can accept scalar references as fast as they
issue if the unit is not processing vector data.

2.4.9 FLOATING-POINT MULTIPLY FUNCTIONAL UNIT

The Floating-Point Multiply unit performs full multiplication of 64-bit
operands in floating-point format for both scalar and vector operations.
It also performs reciprocal approximation, reciprocal square root
approximation, reciprocal iteration, and reciprocal square root
iteration. Refer to discussion of floating-point arithmetic for a
description of the instructions that use this unit.

The unit is reserved for the time of a vector stream during execution of
vector addition instructions. The unit can accept vector operand data
each clock period, and after a transit time delay, can deliver a result
each clock period. The unit can accept scalar references as fast as they
issue if the unit is not processing vector data.

2.4.10 LOCAL MEMORY

Each Background Processor contains 16,384 64-bit words of Local Memory.
This memory holds scalar operands during a computation period. The Local
Memory can also be used for temporary storage of vector elements when
these elements are used more than once in a computation in the V
registers. Instructions that use Local Memory are:

HR-2000 2-10

. 044 and 046 read from Local Memory to A register

. 045 and 047 write to Local Memory from A register

. 054 and 056 read from Local Memory to S register

. 055 and 057 write to Local Memory from S register
074 read from Local Memory to V register

. 075 write to Local Memory from V register

2.5 ARITHMETIC OPERATIONS

Functional units in the Background Processor perform either twos
complement integer arithmetic or floating-point arithmetic.

2.5.1 INTEGER ARITHMETIC

All integer arithmetic, whether 32 bits or 64 bits, is twos complement.
The Address Add and Address Multiply units perform 32-bit arithmetic.
The Scalar Integer unit performs scalar 64-bit arithmetic and the Vector
Integer unit performs vector 64-bit arithmetic.

Integer representations of the integers 0, +1, and -1 in 32-bit and
64-bit format are illustrated using octal notation.

Integer 32-bit Format 64-bit Format
0 00000000000 0000000000000000000000
+1 00000000001 0000000000000000000001
-1 37777777777 1777777777777777777777

Multiplication of two scalar integer operands is accomplished by using
the floating-point multiply instruction. Division is done by algorithm;
the particular algorithm used depends on the number of bits in the
quotient.

2.5.2 FLOATING-POINT ARITHMETIC

Floating-point numbers are represented in a standard format throughout
the Background Processor. This format is a packed representation of a
binary coefficient and an exponent. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient as shown in figure 2-2. Since the coefficient is signed
magnitude, it is not complemented for negative values.

HR-2000 2-11

Binary point

563 ;62 248l247 50

Sign Exponent Coefficient

Figure 2-2. Floating-point Data Format

The exponent portion of the floating-point format is represented as a
biased integer in bits 2062 through 2%48. The bias that is added to
the exponents is 40000g. The positive range of exponents is 40000g
through 57777g. The negative range of exponents is 37777g through
20000g. Thus, the unbiased range of exponents is the following (note
the negative range is one larger):

2-20000g through 2+17777g

In terms of decimal values, the floating-point format of the Background
Processor allows the accurate expression of numbers to about 15 decimal
digits in the approximate decimal range of 10-2466 tnrough 10+2466,

A floating-point representation of the integers 0, +1, and -1 in
normalized form is illustrated using octal notation for each of the three

fields.

Integer Floating-point representation

0 0 00000 0000000000000000

+1 0 40001 4000000000000000

-1 1 40001 4000000000000000
Normalizing

A nonzero flcating-point number is normalized if the most significant bit
of the coefficient is nonzero. This condition implies the coefficient
has been shifted as far left as possible and the exponent adjusted
accordingly. Therefore, the floating-point number has no leading zeros
in the coefficient. The exception is that a normalized floating-point
zero is all zeros.

When a floating-point number is created by inserting an exponent of
40060g into a 48-bit integer word, the result should be normalized
before being used in a floating-point operation. Normalization can be
accomplished by adding the unnormalized floating-point operand to 0 (see
integer to floating-point conversion in this section).

HR-2000 2-12

Range errors

Exponent values of 60000g and greater are considered to have overflowed
the exponent range. Hardware tests are performed for these values to
indicate floating-point range error. Exponent values less than 20000g
are considered to have underflowed the floating-point range. Such values
are treated as if they had a zero value. The hardware does not indicate
when a computation underflows the floating-point range.

Whether or not range errors are enabled, when an overflow condition is
detected by the hardware the result exponent is forced to an overflow
value. Each floating-point operation forces a signature exponent as
follows:

Floating-point add/subtract 60000g
Floating-point multiply 600014
Floating-point reciprocal approximation 60002¢g
Floating-point square root approximation 60004g

Floating-point addition

The Floating-point Add unit forms the sum of two operands in
floating-point format and delivers a result in floating-point format.
The result is always normalized regardless of source operand status.
Instructions 120, 170, and 171 use the Floating-point Add sequence.

In the process of adding two floating-point operands, one operand
coefficient is shifted right for exponent matching. The coefficient from
this shifting operation is rounded up.

A special test is made for all 0 bits in the result coefficient. When
this occurs the exponent field in the result is also cleared. A word of
all zeros is delivered to the destination register.

A special test is made for one or both operands with an overflow
exponent. An error signal is sent to the Background Port Status register
(refer to section 5) if range errors are enabled, and an overflow
exponent (60000g) is forced in the result delivered to the destination
register.

Floating-point subtraction

The Floating-point Add unit forms the difference of two operands in
floating-point format and delivers a result in floating-point format.
Instructions 121, 172, and 173 use the floating-point subtraction
sequence.

HR-2000 2-13

Floating-point to integer conversion

The Floating-point Add unit forms an integer representation of a
floating-point operand. This process is accomplished by adding the
operand to a constant integer. Instructions 122 and 174 use this form of
the floating-point add sequence.

The maximum size of the resulting integer value is 48 bits. A positive
or negative result is sign extended to form a 64-bit integer result.

An operand with a floating-point value greater than a 48-bit integer is
an error condition. An error signal is sent to the Background Port
Status register if floating-point range errors are enabled, and a zero
result is delivered to the destination register.

Integer to floating-point conversion

The Floating-point Add unit forms a floating-point representation of an
integer operand. This process is accomplished by adding the operand to a
constant and using the floating-point normalize hardware to form the
proper floating-point result. Instructions 123 and 175 use this form of
the floating-point add sequence.

The maximum allowable size of the integer operand is 48 bits; if greater,

no error is flagged. The bits above 48 bits are discarded during the
operation.

Floating-point product

The Floating-point Multiply unit forms the product of two operands in
floating-point format and delivers a result in floating-point format. If
both operands are normalized, the result is also normalized.

Instructions 124, 154, and 155 use this sequence.

The 48-by-48 matrix of logical product bits is truncated 8 bit positions
below the low-order result coefficient bit (see figure 2-3). Round bits
are added to this lower field to give an equal population of high and low
round errors for random operands. A round bias exists over narrow ranges
of operands because of the 1l-bit correction shift after the round
operation.

The following special cases are treated in floating-point multiplication
for operands out of range.

1. One or both operands have overflow exponent.
2. Sum of operand exponents is an overflow.

3. Sum of exponents is an underflow.

4. Both exponents are all zeros.

HR-2000 2-14

48 bits >t 48 bits— 3

—q————-

For instructions 124, 132, 133, 154, 166, and 167, bits 249 through
2756 are used for rounding. Bits 2-50 ang 2-51 are the round bits
and bits 2-°3 through 2-56 compensate for truncation.

2-1 through 2-48 2-49 ,-50 2—51 2-52 ,-53 ,-54 ,-55 2-56

Figure 2-3. 48-by-48 Bit Matrix Used for Floating-point Product

HR-2000 2-15

Cases 1 and 2 cause a Floating-point Error signal to be sent to the
Background Port Status register if the floating-point range errors are
enabled. The result delivered to the Destination register is forced to
an overflow exponent value (60001g). Case 3 results in an all-zero

word sent to the Destination register. Case 4 computes the coefficients
with no normalize correction. The resulting exponent for this case is 0,
which aids multiple-precision and integer calculations.

Reciprocal approximation

The Floating-point Multiply unit forms an approximation to the reciprocal
of a floating-point operand value. Instructions 132 and 166 use this
sequence.

The values from the table are used in a linear interpolation

computation. The form of this computation is illustrated in the
following example.

Example:
In this example, A is a reciprocal approximation for the high-order 12
bits of operand coefficient; B is the operand coefficient; and R is the
better reciprocal approximation.
Then the iteration step for interpolation is:

R = 2A - A*A*B
The two approximations read from the table are 2A and -A*A. The normal
multiply mechanism is then used to form the product with the additional
term included in the summing process.

Two special cases occur in the reciprocal approximation sequence.

. Operand exponent has overflow value.
. Operand exponent has underflow value.

Both cases cause an error signal to be sent to the Background Port Status
register if the floating-point range error is enabled and cause the
computational result exponent to be forced to an overflow value

(60002g).

HR-2000 2-16

Reciprocal iteration

e de Jo e K K K g do de ke ke K K de Fo de e he ke K T K g de de de KoK K de do de de ke ek Ko K K de de T de K K KoK de ke de ke ke ke K

CAUTION

The reciprocal iteration instructions (126 and 156)
should be used only with the reciprocal approximation
instructions (132 and 166) and should only be used for
one additional iteration. Operands not generated by
the reciprocal approximation instructions may not
deliver the expected result.

g Je de e Kk e e ok e e e e ke ke e e e ke e ke ke e e de e e e e e ke e e e K e e de e ke e Je Sk ke e ke ke ok e de ke de e e ke ke

The Floating-point Multiply unit forms a floating-point number that is
used in a second iteration for the reciprocal of a full-precision
operand. The first iteration is formed in the reciprocal approximation
described above. The second iteration uses the same process to form a
reciprocal approximation with 46 bits of coefficient accuracy.
Instructions 126 and 156 use this sequence (see figure 2-4).

The division algorithm that computes S1/S2 to full precision requires
four operations.

1. 83 = 1/82 Half-precision reciprocal

2. S4 = 2 - 82 * S3 Correction factor

3. S5 = 83 * 54 Reciprocal = Half-precision reciprocal *
correction factor

4, S6 = S1 * S5 Quotient = numerator * reciprocal

Reciprocal square root approximation

The Floating-point Multiply unit forms an approximation to the reciprocal
square root of a floating-point operand value. Instructions 133 and 167
use this sequence.

The values from the table are used in a linear interpolation

computation. The form of this computation is illustrated in the
following example.

HR-2000 2-17

—?i-_'—-—i_——_—__—"_—____——“—

For instructions 126 and 156, bits 2-49 through 256 are used for
rounding. Bits 2750 and 2-51 are the round bits and bits 2-53
through 2-56 compensate for truncation.

2-1 through 2-48 2-49 2-50 ,-51 5-52 ,-53 ,-54 ,-55 ,-56

Figure 2-4. 48-by-48 Bit Matrix Used for Reciprocal Iteration

HR-2000 2-18

}

N |

bits ,

e |

|

48 bits >l 48 bits >
|

Example:

In this example, A is a reciprocal square root approximation for the
operand coefficient, B is the operand coefficient, and R is the better
reciprocal square root approximation.

The iteration step for interpolation is:

R = (3A/2) - (A*A*A%*B/2)
The two approximations read from the table are 3A/2 and -A*A*A/2. The
normal multiply mechanism is then used to form the product with the

additional term included in the summing process.

Three special cases occur in the reciprocal square root approximation
sequence.

1. Operand exponent has overflow value.
2. Operand exponent has value of 0 through 3.
3. Operand is a negative value.

Cases 1 and 3 cause an error signal to be sent to the Background Port

Status register. All three cases cause the computational result exponent
to be forced to an overflow value (60004g).

Reciprocal square root iteration

de g Je Je Je g e e ke ke g de e e ke e g de e e ke e e e K e e ke e ke e e e e e e e e e e e ke e e ke ke e e ke e ke ke ok ke ok

CAUTION

The square root iteration instructions (127 and 157)
should be used only with the reciprocal square root
approximation instructions (133 and 167) and should
only be used for one additional iteration. Operands
not generated by the reciprocal square root
approximation instructions may not deliver the expected
result.

g g e Jo s e K e de ke de e e e o e e de e K e e e Tk e e ke e e ke e ok ke ke e ke de e e e ok de e e e o e e e e ok de ke ke Kk

The Floating-point Multiply unit fcrms a floating-point number which is
used in a second iteration for the reciprocal square root of an operand.
The first iteration is formed in the reciprocal square root approximation
described above. The second iteration uses the same process to form a
reciprocal square root with 46 bits of coefficient accuracy.

Instructions 127 and 157 use this sequence (see figure 2-5).

HR-2000 2-19

A

48 bits 3 48 bits

-Y_

For instructions 127 and 157, bits 2-49 through 2756 are used for
rounding. Bits 2-50 and 2-51 are the round bits and bits 2-53
through 2-56 compensate for truncation.

2-1 through 2-48 2-49 5-50 ,-51 5,-52 ,-53 ,-54 -55 ,-56

Figure 2-5. 48-by-48 Bit Matrix Used for Square Root Iteration

HR-2000 2-20

The square root algorithm that computes the square root of S1 requires
four operations.

1. Ss2 = 1/ S1 Half-precision reciprocal square root
approximation

2. S3 = 8S1 * S2 Half-precision square root

3. S4 = (3 - S2 * §83)/2 Correction factor

4, 85 = 83 * 54 Square root = half-precision square

root * correction factor

HR-2000 2-21

3. BACKGROUND PROCESSOR SYMBOLIC MACHINE INSTRUCTIONS

This section contains detailed information about individual instructions
or groups of related instructions. Each instruction begins with boxed
information consisting of the CRAY-2 Assembly Language (CAL) Version 2
syntax format, an operand (if required), a brief description of each
instruction, and the machine instruction (octal code sequence defined by
the £ field).

Following the boxed information is a more detailed decscription of the
instruction and an example using the instruction.

3.1 SYMBOLIC INSTRUCTION FORMAT

The following special characters can appear in the operand field of
symbolic machine instructions and are used by the assembler in
determining the operation to be performed.

+ Integer sum of adjoining registers

+F, +f Floating-point sum of adjoining registers

- Integer difference of adjoining registers
-F,-f Floating-point difference of adjoining registers
* Integer product of adjoining registers

*F , % f Floating-point product of adjoining registers
*T, %] Reciprocal iteration of adjoining registers
*Q, *q Floating-point square root approximation

*Q, *q Square root iteration of adjoining registers
/H,/h Floating-point reciprocal approximation

Use ones complement

> Shift value or form mask from left to right
< Shift value or form mask from right to left
& Logical product of adjoining registers

! Logical sum of adjoining registers

\ Logical difference of adjoining registers
CI,ci Compressed iota

F,f Full load (64-bits)

FIX, fix Convert from floating-point to integer

FLT, flt Convert from integer to floating-point

H,h Half load (32-bits)

L,1 Left load (32-bits)

M, m Negative

N,n Nonzero

HR-2000 3-1

P Parcel load (16-bits)
o) Population count
;P Positive

q Parity count

s Short load (6-bits)

2z Leading-zero count

Z Zero

3.2 MACHINE INSTRUCTION FORMAT

The Background Processors translate instructions in 16-bit parcels of
data. These parcels are packed four-per-word in the Common Memory. The
parcels are addressed as if the Common Memory had four times as many
locations and the data were 16 bits long.

Figure 3-1 illustrates the format of a 16-bit instruction parcel.

Figure 3-1. Instruction Parcel Format

As shown in figure 3-1, the f designator is the operation code. The

i, j, and k designators generally refer to V, S, or A registers in

a three-address format. Uppercase or lowercase designators for the
registers are allowed in CAL; both will be used in the symbolic
instruction descriptions. The mnemonics may be entered in all uppercase
or all lowercase. The I designator generally specifies the Destination
register for the functional computation. The j and k designators
generally specify the source operands.

Some instructions include additional parcels of constant data. There can
be the following parcels of constant data depending on the specific
instruction:

.1 (ml)
. 2 (m1 and mp)
. 4 (ml' mp, m3, and m4)

Single parcel constants are generally used to address the Local Memory.
Two parcel constants are generally used to address Common Memory. Four
parcel constants are used to enter 64-bit values in the S registers.

When instructions read constants from the following parcels in the
instruction stream, the Program address is advanced over these data
parcels to point to the next instruction. The high-order data parcel is
read first for those cases of multiparcel data.

HR-2000 3-2

3.3 INSTRUCTION DESCRIPTIONS

The instruction descriptions begin with the octal code for the high-order
7 bits of the parcel (f designator). The three octal register
designators (I, j, and k) then follow. An X appears in the

description where a register's designator is ignored. CAL will insert a
zero for every X.

HR-2000 3-3

INSTRUCTIONS 000 - 001

]	I		
Result I Operand	Description I Machine		
			Instruction
E]]	
' I	_		
er?		Error ex1F	000x00
exit		Normal exit	000x01
exit exp Normal exit 000xjk			
I l l Executes as 000xjk ' 001xjk :
I | | I

Instructions 000 and 001 stop the current program sequence, place the
Background Processor in idle mode, and set the Exit Mode and Idle Mode
flags in the Background Port Status register. The 6-bit jk value is
entered into the Background Port Status register.

Example:

fCode generated [Locatioanesult [Operand [Comment
! 11 l10 120 135

! ! i |

| 000000 | lerr | |

| I

| 000001 ! |exit ! !

HR-2000 3-4

INSTRUCTION 002

in ay erased

I] !
| Result | Operand | Description Machine
' | | Instruction |
] | |]
[T I 1 {
[r,aj | 2k Register jump to (ay) with | 002ixk
return address to aj | |
| j ag Register jump to (ag)., value | 002kxk
I |

|
l |
I

Instruction 002 stops the current program sequence and begins a new
sequence at a computed parcel address read from the Ap register. The
parcel address for the next instruction in the current program sequence
is entered into the Aj; register.

Example:

[Code generated |LocationIResult IOEgrand Tﬁomment

| 11 :10 ;20 135
T

| |

| 002ixk | | | |

| kxk | | | l

002kx

I | | I I

I | | I I

HR-2000 3-5

INSTRUCTION 003

[] ! I L
Result	Operand	Description	Machine
			Instruction
I I | | |
I . I | L . l !
' j Iexp IUncond1t10na1 Jump |003xxx mjy; mp I
[1 1 1 1

Instruction 003 stops the current program sequence and begins a new
sequence at a specified constant parcel address read from the next
2 parcels in the instruction queue.

Example:
[code generated lLocationIResult lOperand |Comment
I (1 110 120 |35
t =
| [| | |
I

003xxx
I | | I

HR-2000 3-6

INSTRUCTIONS 004 - 005

|Semaphore set; set Semaphore.

l

Instructions 004 and 005 conditionally stop the current instruction
sequence and begin a new sequence at a specified constant parcel address
read from the next 2 parcels in the instruction queue.

| Result | Operand | Description | Machine |
| | | | Instruction |
| i] | 1
i T T Li 1
{ jcs :exp :Jump to constant parcel if : 004xxx m; mp :
Semaphore clear; set Semaphore.

: jss :exp Jump to constant parcel if : 005xxx my mp !

I
l | | |

The branch is conditional on the state of the Semaphore flag assigned to
this Background Processor. The Background Port Status register points to
the Semaphore flag. The Semaphore flag is set for either instruction if
it was not previously set. The Semaphore flag bit in the Background Port
Status register is set if either instruction alters the state of the flag
from 0 to 1.

Example:

[code generated]LocationIResult |Operand IComment
= il i10 | 20 135
IOO4XXX ' | l |

I | | | |

| 005xxx | | | |

HR-2000 3-7

INSTRUCTION 006

| I | | |
| Result | Operand | Description | Machine |
[[| ' Instruction |
| | 1 I]
L T] I '
| ssm l ISet Semaphore i 006xxXx {
I l l .

Instruction 006 sets the Semaphore flag assigned to this Background
Processor without regard to its previous state. The Semaphore flag bit in
the Background Port Status register is set if the previous state of the
Semaphore flag was a 0. The operating system program uses this
instruction to restore Semaphore flag values at the time of job restart.

Example:

| Code generated lLocatioanesult lOperand]Comment
| £1 110 !20 !35

| | | l l

I |

006xxx
l | I

HR-2000 3-8

INSTRUCTION 007

l | | | B
| Result | Operand | Description | Machine
| | l | Instruction |
| | 1 | 1|
La— 1 l v 1
l csm : :Clear Semaphore 007xxx

|

|
I
Instruction 007 clears the Semaphore flag assigned to this Background
Processor without regard to its previous value. When this instruction
executes, the semaphore bit in the Background Port Status register is
cleared. A Background Processor program may use this instruction to

release access to a privileged area of Common Memory for other processors
assigned to this job.

This instruction issues without delay. Execution of the function,
however, may be delayed by activity in the Common Memory port. The
following instruction does not issue until the Common Memory quadrant
buffers are clear. The delay ensures that any Common Memory write
operations have been completed before another processor is allowed access
to the privileged area.

Example:

!Code generated LLocationlBesult IOperand TEomment
L {l |10 120 |35

| T T v
|007xxx | | '

!

HR-2000 3-9

INSTRUCTIONS 010 - 013

[f | ! I
| Result Operand Description Machine

I I Instruction l
| 1 ! | 1
) T ¥ T 1
| jz |ak,exp |Branch if (ag) is zero ! 010xxk m; mp |
| jn | ak-exp Branch if (ay) is nonzero | 0l11xxk my mp |

jp ajy,exp Branch if (ay) is positive 012xxk m; my

: jm lay, exp Branch if (ag) is negative | 013xxk m; my |

Instructions 010 through 013 conditionally stop the current instruction
sequence and begin a new sequence at a specified constant parcel address

read from the next 2 parcels in the instruction queue.

The content of the Ap register determines the condition of the
branch. The current program sequence is continued if the branch criterion

is not met.

Example:

ICode generated

ILocationIResult

|Operand

[Comment

1

(10
T

20
i

.35

i
| 010xxk
I
IOllxxk
|012xxk

|013xxk
|

HR-2000

L

INSTRUCTIONS 014 - 017
| Result | Operand | Description | Machine
' I | I Instruction |
F i I f |
I jz ISj,exp IBranch if (Sj) is zero | 0l4xjx my mp
I jn Sj.exp Branch if (sj) is nonzero I 015xjx my my
| jp ISj,exp Branch if (Sj) is positive | 016xjx my; mp
| jm ISj,eXp |Branch if (s5) is negative | o17xjx m; my
L I I I |
Instructions 014 through 017 conditionally stop the current instruction

sequence and begin a new sequence at a specified constant parcel address

read from the next 2 parcels in the instruction queue.

The content of the S; register determines the condition of the branch
as indicated above.
branch criterion is not met.

Example:

The current program sequence is continued if the

Mcoge generated

ILocation

Result

Operand

Comment

11

10

20

35

|
| 014xjx
I
| 015x7x
I016xjx

I017xjx

HR-2000

—_— ——— —— —— ——]

I
I
I
I
!
I
I
|

—— s —— — —— — et

INSTRUCTIONS 020 - 021

- I l I !
| Result | Operand | Description | Machine |
‘ | | | Instruction |
L] i 1]
I ¥ L)] |
: aj {aj+ak =Integer sum of (aj) and (ag) : 020ijk :
to aj
I aj |aj—ak IInteger difference of (aj) and | 021ijk I
| | |(ak) to aj | I
L] | | I

Instructions 020 and 021 perform 32-bit integer arithmetic in the A
registers. The operands are obtained from registers Aj and Ag,
and the result is delivered to register Aj.

Instruction 020 forms the 32-bit integer sum,

Instruction 021 forms the 32-bit integer difference.

Example:

rbode generated Location[Besult [Operand Comment
I 1 110 120 35

I I] I

| 020ijk I | I |

I | I I [

| 0215k | I I !

HR-2000 3-12

INSTRUCTIONS 022 - 023

I

I |

I I
I Result | Operand | Description I Machine I
I | I | Instruction I
I i l I I
| aj Iaj*ak IInteger product of (aj) and I 022ijk I
| | (ag) to aj I I
{ I |Executes the same as 022ijk | 023ijk {

|

Instruction 022 forms the integer product of two 32-bit integer operands.

The operands are obtained from the Aj and Ay registers. The
low-order 32-bits of the result data are delivered to the A; register.

Example:
ICode;ggnerated ILocationIResult IOperand IComment
L Il 110 IZO I35
| I I I [

0221jk
| 4] 1 | | |
I0231‘jk I I I |

I | | I

HR-2000 3-13

INSTRUCTION 024

] I] |
| Result ; Operan Description i Machine l
| | | Instruction :
|

[1 I |
| aj I's; Copy (sj) to a; l 024ijx [
L I |

Instruction 024 reads a 64-bit word from the Sj register and enters
the low-order 32 bits into the A; register.

Example:
ICode;generated Location|Result]Operand |Comment
1 10 [20 135
[|
|024ijx | |
| I |
HR-2000 3-14

INSTRUCTION 025

| [!
| Result | Operand Description : Machine :
| l Instruction

| | | | |
I | T | L
[a; lvi Copy (vl) to aj | 025ixx :
I |

|
J I

Instruction 025 forms a 32-bit word from the data in the VL register.
The low-order 6 bits are copied from the VL data. The high-order 24 bits
are 0. The result data is delivered to the A; register.

Example:

[coge generated Location|{Result IOperand Comment
1 10 120 35

| | l | l

| 025ixx | | | |

HR-2000 3-15

INSTRUCTIONS 026 - 027

r I I I '
I Result : Operand i Description : Machine :
I Instruction

| I | | |
I I | I I
| aj | exp |Load aj with a value | 026ijk |
' aj | exp.s 'Load aj with a 6-bit value ' 0261ijk |
| aj | €XP.s.p Load a; with a 6-bit positive | 026ijk I
I I lvalue | I

aj exp Load aj with a value 027ijk

I aj Iexp,s |Load aj with a 6-bit value I 027ijk I
I aj Iexp,s,m Load a; with a 6-bit negative I 0271ijk I
I I |value |

L | I | I

Instructions 026 and 027 form a 32-bit word from the jk data in the
instruction parcel. The low-order 6 bits are copied from the instruction
parcel. For instruction 026, the high-order 26 bits are zeros. For
instruction 027, the high-order 26 bits are ones. The result data is
delivered to the A; register.

The Aj; exp instruction will map into either an 026, 027, 040, 041,

or an 042 opcode. If all symbols within the expression have been
previously defined within the currently enabled qualifier then CAL will
map this instruction into the proper opcode with the fewest number of
parcels into which the expression will fit. Otherwise, this instruction
will be mapped into the 042 opcode.

CAL will map the A; exp,S instruction into the 027 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 026 opcode.

Instruction 026 loads the A; register with positive jk.

Instruction 027 loads the A; register with negative jk.

Example:

. Code generated |LocationIResult IOperand IComment

[l
r 11 110 120 135
I L] nE 1

HR-2000 3-16

INSTRUCTIONS 030 - 033

[I l T l
Result	Operand	Description	Machine
		I Instruction	
	!		
L T 1 T '			
I vm	vk,z 'Set vin from zero elements	030xxk :	
I	'of (Vk)		
l vm lvk,n Set vm from nonzero elements ' 031xxk '			
l lof (vg)			
I vm [vg.p	Set vm from positive elements	032xxk l	
l lof (vg)			
vm	V. m Set vm from negative elements	033xxk	
	of (vi)		
L, Il Il 1 i

Instructions 030 through 033 create a vector mask in the VM register
based on the results of testing the contents of the elements of register
Vg. The VM register is initially cleared, and a bit is entered in

the VM register where elements of the vector stream meet the test
criterion. The high-order bit position in the VM register corresponds to
the first element of the vector. The bit positions are then assigned in
order for the remainder of the vector stream.

These instructions are performed in the vector logical unit.

Example:

! Code generated lLocation‘Result [aéerand Algomment
L 11 110 120 135

| |

| l l l

| | f |

| | | I

032xxk I | | |
l l | I

| [|

| I | |

HR-2000 3-17

INSTRUCTION 034

a I I |

| Result | Operand | Description | Machine

l | | | Instruction
| Il] |

F L) 1 L]

| I .

| vm :Sj !Copy (Sj) to vm | 034xjx

{] |

I

Instruction 034 enters the VM register with a 64-bit word from the Sj
register.

Example:
|Code generated lLocation[Result IOperand |Comment
] 11 110 120 |35
r I — T
| I l

| o3 |
I034x_7x | | | '
I | | | |

HR-2000 3-18

INSTRUCTION 035

I | I I 1
| Result | Operand | Description | Machine

| | | | Instruction

- | | | J
T 1 T T 1
| dri ! lDisable halt on memory field | 035xx0

l | lrange error ' '
| eri | Enable halt on memory field ' 035xx1 |
I I Irange error | |
I dafi I |Disable halt on floating-point | 035xx2

		Jerror	
efi	IEnable halt on floating-point	035xx3	
		error I	
1 ! 1 I			

Instruction 035 alters 2 status bits (bits 21 and 22) in the Background
Port Status register depending on the value of the k designator in the
instruction parcel.

Example:

[Code generated ILocatioanesult IOperand Ttomment

{1 |10 120 135

k

| I I | I

I 035xx0 | |
035xx1 | I

|035xx2

| 035xx3 II I'

I

I I
I I
I I
I I

HR-2000 3-19

INSTRUCTIONS 036 - 037

I l I | |

Result Operand | Description Machine |

|

| | [| Instruction |
L { | I]
| 1 T 1
| vl Ia ICopy (ag) to vi ! 036xxk I
| | ok | x l |
Lﬁ I lExecutes the same as 036xxk ' 037xxk I

Instruction 036 enters the low-order 6 bits of data from the Ap

register into the VL register.

Example:
ICode generated lLocationIResult IOperand]Comment
L |1 110 120 135
' : ¢
'O36xxk | ! ! |

| I | |
| 037xxk | | | I
| I | | |

| | 1 1
HR-2000 3-20

INSTRUCTIONS 040 - 041

I lnegative value
1 1

[I I | |
| Result | Operand | Description | Machine |
[| | | Instruction |
l { | ! N
|y J L T 1
: aj ;exp }Load aj with a value : 040ixx mg :
aj exp,p Load aj with a 16-bit value 040ixx mj
| aj exp.p.p ILoaa aj with a 16-bit | 040ixx mg l
positive value			
aj	exp	Load a; with a value	041ixx mg
aj lexp,p [Load aj with a 16-bit value	041ixx my		
aj	exp.p,m	Load a; with a 16-bit	04lixx mj
I I |
{ L |

Instructions 040 and 041 enter a 32-bit constant into the A; register.

The low-order 16 bits are read from the following parcel in the
instruction queue.

The A; eXp instruction will map into either an 026, 027, 040, 041,
or an 042 opcode. If all symbols within the expression have been

previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be

mapped into the 042 opcode.

CAL will map the A; exp,P instruction into the 041 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 040 opcode.

For instruction 040, the high-order 16 bits are zero-filled.

For instruction 041, the high-order 16 bits are set to ones.

Example:

[EBde generated

ILocatidﬁ]Result |Operand IComment

L 11 110 120 §35
L

040ixx
040ixx
'O40ixx

| T I I
|

| 041ixx
| 041ixx

I
| | I
I | I
| I I
| I I
, | |
| I I

|
I
|
I
| 041ixx I
I
I

HR-2000 3-21

INSTRUCTIONS 042 - 043

Executes the same as 042ixx 043ixx my my

| Result | Operand | Description | Machine

| | | | Instruction I
L 1 | | |
I 1 o v [}

I

| aj Iexp 'Load aj with a value : 042ixx my my }
| aj Iexp,h Load a; with a 32-bit value 042ixx my my

| ! | l : I I
I l I |

Instruction 042 loads the A; register with a 32-bit constant read from
the next 2 parcels in the instruction queue.

The A; exp instruction will map into either an 026, 027, 040, 041, or

042 opcode. If all symbols within the expression have been previously
defined within the currently enabled qualifier, CAL will map this
instruction into the proper opcode with the fewest number of parcels into
which the expression will fit. Otherwise, this instruction will be
mapped into the 042 opcode.

Example:
lCode generated]Locatioanesult IOperand [Comment
! |1 |10 120 135
l

|042ixx ; |] |
|O42ixx | | | |
| | I
| 043ixx | | | |

| I | |

HR-2000 3-22

INSTRUCTION 044

in Local Memory to aj

[I I |

| Result | Operand | Description | Machine

| | | | Instruction
L : L !

: aj :[exp] :Read from location exp : 0441ixx mj

Instruction 044 enters the Aj; register with the low-order 32 bits of a

data word in Local Memory. The Local Memory address is obtained from the

following parcel in the instruction queue.

If the expression has a relative attribute of relocatable,

relative to a Local Memory section.

it must be

Example:

iCode generated ILocation[Result IOEg;and TComment
! !1 110 120 !35
I0441‘xx | | | |

| | J l l
HR-2000 3-23

INSTRUCTION 045

in Local Memory

I [l l I
| Result | Operand | Description I Machine |
|] ! l Instruction I
|]])
’ N 1 |

: [exp] :ak :Write (ag) to location exp : 045xxk mj
[
! l | | 1

Instruction 045 writes one 64-bit word in Local Memory. The Local Memory
address is obtained from the following parcel in the instruction queue.
The data word is obtained by sign extending the content of the Ajp
register through the high-order 32 bit positions of the 64-bit word.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:
[Code generated ILocationIResult |Operand [Comment
L |1 }10 120 |35

I l |

|
I
| I |

HR-2000 3-24

INSTRUCTION 046

in Local Memory to aj

[I] !

| Result | Operand | Description] Machine

| | | | Instruction I
| | | 1 '
| | | . e |
l aj I[ak] IRead from location ag | 0461xk

l l I l

Instruction 046 enters the A; register with the low-order 32 bits of a

data word in Local Memory.

Ap register.

The Local Memory address is obtained from the

Example:
Code generated ILocationIResult IOperand lComment
{1 [10 Lgp 135

l
L
|
|

HR-2000

l
|

| |
| |

I
|

INSTRUCTION 047

-

ar in Local Memory

I I I I
| Result | Operand | Description | Machine
| | | Instruction
|
| | s , ;
: [ag] :aj :Write (aj) to location : 047xjk |
I I [I |

Instruction 047 writes one 64-bit word in Local Memory. The Local Memory
address is obtained from the Ay register. The write data word is
obtained by sign extending the content of the Aj register through the
high-order 32 bit positions of the 64-bit word.

Example:

ICode generated ILocation[Result IOEerand IComment
| 11 110 120 135

I } + +

| oerns | | | |

| 047xjk I

| l I

HR-2000 3-26

INSTRUCTIONS 050 - 052

I I | l '
| Result | Operand | Description | Machine |
| | | | Instruction |
.L : | | |
: sj :exp }Load sj with a value : 050ixx m; my]
sj exp,h Load sj with a 32-bit value 050ixx my my |
l Sj Iexp,h,p |Loaa sj with a 32-bit | 050ixx mp mp
l positive value |
| Sj | exp | Load sj with a value | 051ixx my mp I
] s | exp,h |Load sj with a 32-bit value | 0SLlixx my mp I
[sj |exp,h,m |Load s; with a 32-bit | 051ixx m; my |
| negative value | |
| sj lexp,l lLoad sj left side with a 32-bit 052ixx m; my |
| value : [

The S; exp instruction will map into either a 050, 051, 052, 053, 116,

or 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

CAL will map the S; exp,H instruction into the 051 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 050 opcode.

Instructions 050 through 052 load a 64-bit value into the S; register.

Instruction 050 reads the low-order 32 bits from the next 2 parcels in
the instruction queue. The high-order 32 bits are zero-filled.

Instruction 051 reads the low-order 32 bits from the next 2 parcels in
the instruction queue. The high-order 32 bits are filled with ones.

Instruction 052 reads the high-order 32 bits of a constant from the next

2 parcels in the instruction queue. The low-order 32 bits are
zero-filled.

HR-2000 3-27

Example:

ICode generated [Locatioanesult IOEerand IComment

| |1 |10 [20 |35

| I [
'050ixx |
|0501'xx I
l0501'xx '
| 051ixx |
| 051ixx I
| 051ixx |

|

I

IOSZixx

|
I
|
|
|
|
|
I

HR-2000 3-28

INSTRUCTION 053

my mz m3 mg

| I I] |
| Result | Operand | Description | Machine |
| | | | Instruction |
| ! |]]
f T LN 1
|
| sj :exp :Load s; with a value : 0531ixx :
| | | | obsiee > |
Sj exp, £ Load s; with a 64-bit value 053ixx
I A | |
| l | |

L

The S; eXp instruction will map into either an 050, 051, 052, 053,

116, or a 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

Instruction 053 loads the S; register with a 64-bit constant read from
the following 4 parcels in the instruction queue.

Example:

|Code generated lLocationIResult [Operand [Comment
| 11 110 120 |35

l _ l I | l
10531xx

0531Ixx | | I |
| | | |
| | | |

HR-2000 3-29

INSTRUCTION 054

in Local Memory

l | I

| Result Operand | Description | Machine

| | | Instruction
| 1 |

v l 1

: s [exp] lRead from location exp { 0541ixx mj

I l

DN | S ————

Instruction 054 enters the S; register with a 64-bit data word from the
Local Memory. The Local Memory address is obtained from the following
parcel in the instruction queue.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:

[Code generated lLocation[Result Operand [Comment
| L1 110 20 .35

I i]] 1

I 054 ixx I | ! '

l l I I |
HR-2000 3-30

INSTRUCTION 055

|exp in Local Memory

I I I | |
| Result | Operand | Description | Machine

| | | | Instruction |
| | | | |
r T T T 1
: [exp] :Sj]Write (Sj) to location : 055xjx my :
I | I |

Instruction 055 writes one 64-bit word into the Local Memory. The Local

Memory address is obtained from the following parcel in the instruction
queue. The 64-bit word is obtained from the Sj register.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:

[Code generated [Locatioanesult |Operand IComment
L |1 {10 |20 |35

| I | | I

I

055xjx ' | | |

HR-2000 3-31

INSTRUCTION 056

l l [I l
Result	Operand	Description	Machine
			Instruction
		1	
I I | I I
] sj | [ag] | Read from location (ay) | 056ixk |
] | | in Local Memory | |
L | I | J

Instruction 056 enters the S; register with a 64-bit data word from
Local Memory. The Local Memory address is obtained from the Ay
register.

Example:

ICode generated ILocation]Result IOperand IComment
| |1 110 120 135

I I | | I

|0561ixk | | | |

HR-2000 3-32

INSTRUCTION 057

(ag) in Local Memory

I | [I |
| Result | Operand | Description | Machine |
I | I | Instruction |
]]]] |
I I I I I
| [ag] | sj | Write (sj) to location | 057ixk

I I I | I
L L | | |

Instruction 057 stores one 64-bit word in Local Memory.

address is obtained from the Ay register.
from the S; register.

Example:

The Local Memory

The 64-bit word is obtained

ICode generated ILocationIResult

IOperand

|Comment

| 11 [10

120

{35

| | [
|057ixk | |

HR-2000 3-33

INSTRUCTION 060

(aj)+(ak) to sj

I I | I |
| Result | Operand | Description I Machine |
| | | | Instruction |
- | | | z
; s i(aj,ak) :Read from Common Memory location : 060ijk :
1 | l I

Instruction 060 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative Common Memory location is determined
by adding the content of register Aj to the content of register

Ay.

Example:

LCode generated |Location]Resu1t lOperand lComment
| |1 110 120 135

. 1

l060"k | | |

| 06047 I | | !

!

! | I |

HR-2000 3-34

INSTRUCTION 061

| |

at location (aj)+(ag)

l | I I |
| Result | Operand | Description | Machine |
[| | | Instruction |
| —+ ' |

|y s lwrie (e to c osiik |
I (a],ak) Isl rite (sj) to Common Memory | 06117 l
l |

Instruction 061 stores one 64-bit word into Common Memory from the §j
register. The relative Common Memory location is determined by adding

the content of register Aj to the content of register Ayg.

Example:

‘Code generated ILocationIResult 410perand [Comment
| |1 110 [20 135

F T I v T

| 06117k | | | |

l 1 | | I
HR-2000 3-35

INSTRUCTION 062

location (ag) to sj

! ! | I !
| Result | Operand | Description | Machine

| | | | Instruction |
| I
| sj :(ak) lRead from Common Memory at : 0621ixk |
| | |
J -

I
1 I

Instruction 062 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative Common Memory location is obtained from
the Ap register.

Example:
[Code generated ‘LocationIResult Taierand lComment
1 11 110 120 135
| T— —1 + T
:O6Zixk I l I :

|

HR-2000 3-36

INSTRUCTION 063

! | l | |
| Result | Operand : Description | Machine

| | | | Instruction I
L] |

! | I N l
l (ag) |'s |Write (sj) to Common Memory at | 063ixk

[| | location (ag) |

| l L | I

Instruction 063 writes one 64-bit word in the Common Memory. The relative
Common Memory location is obtained from the Ay register. The 64-bit
word is obtained from the S; register.

Example:

LCode;generated [;ocation[Result [Operand lComment
L L1 110 |20 135

F T H T T
|O63ixk | I | |

| | | l I

HR-2000 3-37

INSTRUCTION 064

[

| Result
|

—

Operand

Description

Machine
Instruction

b e e} — — —

.
|
|

—

(ak,exp) lRead from Common Memory at

location (ay)+exp to sj

I
|
!
|
|
|

064ixk my; my

|
I
|
|
I
i

Instruction 064 reads one 64-bit word from Common Memory and enters it in
The relative Common Memory location is determined by
adding the content of register Ap to a 32-bit constant from the next 2
parcels in the instruction queue.

the S; register.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

lCode generated ATLocation]Result |Operand JComment
I 11 |10 120 135

F i J ' |

| o6aixk | l |

| I l I I
HR-2000 3-38

INSTRUCTION 065

|location (ay)+exp

I |

Result ' Operand | Description | Machine [
| ' | Instruction |

! N

| l] 1
(ak,exp)'si Iwrite (sj) to Common Memory at | 065ixk m; mp |
| l

| |

Instruction 065 writes one 64-bit word into Common Memory. The relative
Common Memory location is determined by adding the content of the 2j
register to a 32-bit constant from the next 2 parcels in the instruction
queue. The 64-bit word is obtained from the S; register.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

ICode generated ILocationIResult IOperand [Comment
l 11 110 |20 135

f 1 T N 1
{0651xk | | | |

| | | |

HR-2000 3-39

INSTRUCTION 066

|location exp to sj

l l f T I
Result | Operand | Description ! Machine |

| | ! | Instruction
|], l I —]
| | | | |
| S :(exp) |Read from Common Memory | 066ixx m; mzl
l |
| I 1

L

Instruction 066 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative memory location is obtained from the
next 2 parcels in the instruction queue.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

[Code generated ILocationTResult IOperand |Comment
= [1 110 120 - 135

| | | l I

l

066ixx |

| I I

HR-2000 3-40

INSTRUCTION 067

[l l
! Result I Operand [Description I Machine W
l ' | | Instruction |
f = = 1
' (exp) si [write (sj) to Common Memory at ' 067ixx my my :
I |
l I I

|
|
| |1ocation exp
l

|

Instruction 067 writes one 64-bit word in the Common Memory. The relative
Common Memory location is obtained from the next 2 parcels in the
instruction queue. The data word is obtained from the S; register.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

Code generated ocation]Result [Qperand AlComment

'10 120 135
T

R 1

| l l
[I l

067ixx

L
Ll
11
T
|
|

HR-2000 3-41

INSTRUCTION 070

| I I |
I Result | Operand l Description I Machin? |
I I I | Instruction '
L 1 N L 3
i | 1 | |
| \2 l(aj,ak) IRead from Common Memory l 070ijk |
I I location (aj) incremented I I
I I Iby (ag) to vj | I
l | | |

Instruction 070 reads a vector stream of 64-bit words from Common Memory
and enters it into the V; register. The content of the VL register

determines the length of the stream.

The first address for the Common Memory reference is formed
content of the Aj register to the Background Processor base
The following addresses for the Common Memory reference are
constant increments or decrements (strides). The stride is

by adding the
address.
separated by
read from

register Ayx. Aj may contain positive, zero, or negative values.

Example:

LCode;generated Location|Result IOperand Comment
L 1 10 120 35

r I [

| 070ijk | I | |

I I I I

HR-2000 3-42

INSTRUCTION 071

Ib
]

y (ag)

llocation (aj) incremented

r I I I |
| Result I Operand ' Description | Machine |
| | | | Instruction |
l 1 ' } I
r I I i =
{ (aj,ak) :Vl |Write (vj) to Common Memory } 071ijk :
l I I |
l | | |

Instruction 071 writes a vector stream of 64-bit words from the \'F

register into Common Memory.

the length of the stream.

The content of the VL register determines

The first address for the Common Memory reference is formed by adding the
content of the Aj register to the Background Processor base address.

The following addresses for the Common Memory reference are separated by

constant increments.

Example:

The increment is read from register Ag.

Code generated

ocatioanesult

AAIOperand

[Comment

1 20

071ijk

— — ey (e

HR-2000

!L
1 1
f
l
l

110
l
|

!15

INSTRUCTION 072

[[

I ['

‘ Result | Operand l Description [Machine :
Instruction

| | | | |
f T f 4 —
I vi l(ak,Vj) |Gather from Common Memory l 072ijk |
I I locations (ak)+(Vj) | |
| l Ito vi I |
l l | I

Instruction 072 reads a vector stream of 64-bit words from Common Memory
into the V; register. The content of the VL register determines the
length of the stream.

The relative Common Memory location is computed separately for each
element of the vector. The content of the Ay register is read at the
beginning of instruction execution and held in the Common Memory port.
The content of the V; register is then streamed to the Common Memory
port. The high-order 32 bits of this data are discarded. The low-order
32 bits are used as components in the address calculation.

The first address for the Common Memory reference is formed by adding the
first element of V5 data to Ax data and the Background Processor

base address. The following addresses for the Common Memory reference
are formed by adding the following elements of Vj data to the Ajp data

and the Background Processor base address.

Example:
Code generated |Location Result Operand lComment
11 10 20 {35
I | | | |
‘0721]k I | | ,

HR-2000 3-44

INSTRUCTION 073

l1ocations (ag) +(v4)

1

I I | I }
| Result | Operand [Description ' Machine I
| | | ' Instruction |
| \ N |
{ I I i |
| (ak,Vj) :Vi |Scatter (vj) to Common Memory | 073ijk '
l I

| | | |

Instruction 073 stores a vector stream of 64-bit words into Common Memory
from the V; register. The content of the VL register determines the
length of the stream.

The relative Common Memory location is computed separately for each
element of this vector stream. The content of the Aj register is read
at the beginning of instruction execution and held in the Common Memory
port. The content of the Vi register is then streamed to the Common
Memory port. The high-order 32 bits of this data stream are discarded.
The low-order 32 bits are used as components in the address calculation.

The first address for the Common Memory reference is formed by adding the
first element of Vj data to Ayx data and the Background Processor

base address. The following addresses for the Common Memory reference are
formed by adding the following elements of Vj data to the Aj data

and the Background Processor base address.

Example:

LCode generated Location|Result raperand Comment
i 1 10 120 35

| [T [

| 07315k | | [|

| I ! |

HR-2000 3-45

INSTRUCTION 074

| |1ocation (ag) to vj

I Result Operand Description Machine {
I I I l I
‘ | | | Instruction |
t 2 4+]
P { 1 ! 1
| Vi l[ak] |Read from Local Memory { 0741ixk

I

I I |

Instruction 074 reads a stream of 64-bit words from Local Memory at
consecutive locations. The initial Local Memory address is obtained from
the Ay register. The data stream is entered into the V;

register. The content of the VL register determines the length of the
stream.

Example:
Code generated LocationIResult [Operand 1Comment
1 [10 120 135
| I I | I
| 0741ixk | | | |

HR-2000 3-46

INSTRUCTION 075

|1ocation (ag)

|
|
|
|
|
|
l l

|
|
l
o
|
|
l

L

! Result Operand ' Description Machine

| | Instruction
| T

: [ag] vi lWrite (vj) to Local Memory 0751ixk

e e e e — e]

Instruction 075 stores a vector stream of 64-bit words into Local Memory
is obtained

at consecutive locations. The initial Local Memory address

from the Ay register. The V; register contains the data stream,

and the content of the VL register determines the length of the stream.

Example:
[Code generated Location|Result IOEerand Comment
[1 10 120 35
I I o ! [
|

| 075ixk | [I
I | | I

HR-2000 3-47

INSTRUCTIONS 076 - 077

I I [I
| Result | Operand | Description | Machine

I ’ | [Instruction |
L. Il T L 1
r I T | J
I pass l IPass I 076xxxX I
‘ pass 'exp Pass [076ijk |
| | |Executes same as 076xxx | 077xxx |
I I I |

Instructions 076 and 077 issue without functional activity.

Example:

LCode generated Location|{Result Operand Comment

. 1 10 120 __'35

{ ! I | 1

|076xxx I I | |

| 07617k | | I |

I | [I : I

| 077xxx | | | |

HR-2000 3-48

INSTRUCTIONS 100 - 103

I I I T R
Result Operand Description Machine |
| !
| | | | Instruction |
l | — — I
I
| Sj :Sj&sk :Logical product of (sj) and : 100ijk |
(sy) to sj
I | Sk i o |
Sj I#s &s 5 Logical product of (s;) and | 101ijk
I i k>Sj J |
I I complement (sy) to sj |
| s ISj\Sk | Logical difference of (Sj) and | 102ijk I
I | (sg) to sj |
: sj |sj'sk | Logical sum of (Sj) and | 103ijk |
, I | (sk) to s; . . |
S { ISj 'S register copy (Jj=k) | 1031ijj |
L 1 1 i J

Instructions 100 through 103 perform scalar logical operations. The
operands are obtained from registers Sj and Sk, and the result is
returned to register S;.

Instructions 100 and 101 read two 64-bit scalar operands and form the

bit-by-bit logical product.

before the logical product is formed.

Instruction 101 complements the Sj data

Instruction 102 reads two 64-bit scalar operands and forms the bit-by-bit

logical difference.

Instruction 103 reads two 64-bit scalar operands and forms the bit-by-bit

logical sum.

Example:

I code generated

l;ocationrResult

lOQerand

igpmment

L

11

110

!20

135

100ijk
101ijk

102ijk

| 103ijk
| 103ijj

HR-2000

I
|
I
I
|
I
I
I

I
!
|
|
l
I
|
I

INSTRUCTIONS 104 - 105

| : |

(Result { Operand | Description | Machine l

Instruction |

| I | | |

I | | I i

' sj |5j+sk lInteger sum of (sj)+(sg) | 104ijk '
| | |to sj I

| s |Sj—Sk |Integer difference of (s5)-(sg) | 105ijk I

| | Ito s | !

| 1 |] I

Instructions 104 and 105 perform integer arithmetic. The operands are
obtained from registers Sj and Sy, and the result is returned to
register Sj.

Instruction 104 reads two 64-bit scalar operands and forms the integer
sum.

Instruction 105 reads two 64-bit scalar operands and forms the integer
difference.

Example:
fCode generated LocationIResult]0perand |Comment
r 1 |10 120 |35
r ! | | |
|1041]k | | | |
I [l |

.. |
| 1051ijk |) f |

HR-2000 3-50

INSTRUCTIONS 106 - 107

I
| Instruction

I Result I Operand Description Machine

l]] |

i I ¥ i

I Sj |p5j lPopulation count of (Sj) : 106170 l
to sj;

S i qs+ Population count parity of (s) I 106ij1
i j P 4 j J

to sj |

| S IZSj lLeading zero count of (Sj) [107ijx I
to sy

’ I

| ai |

Instruction 106ij0 reads a 64-bit operand from the S5 register and
forms a count of the number of 1 bits in the operand. This count is
delivered as a positive integer to the S; register.

Instruction 106ijl counts the number of bits set to 1 in the S5
register. Then the low-order bit, showing the odd/even state of the
result, is transferred to the low-order bit position of the §;
register. The high-order 63 bits are cleared. The actual population
count is not transferred. .

Instruction 107 reads a 64-bit operand from the Sj register and forms
a count of the number of leading zeros in the operand. The operand is

considered a field of 64 individual bits in this operation. The resulting

count can have the values 0 through 64. The result is delivered to the
S; register as a positive integer.

Example:
ICode generated ILocatioanesult IOperand lggmment
, 1 10 20 .35
[a I '
I 106130 | ' l
106171 '
| |
| 107ijx | | [

HR-2000 3-51

INSTRUCTIONS 110 - 111

|places to sj |

l 1 I

r l l I !
| Result | Operand | Description | Machine |
[|] | Instruction |
| 1 1 i]
o ! T I |
| sj Isj<exp |Shift (s;) left exp=64-jk | 110ijk
| | lplaces to sj |

sj s j>exp Shift (sj) right exp=jk 111ijk
I I
I

Instructions 110 and 111 shift 64-bit values in an S register by an
amount specified by jk.

Instruction 110 reads a 64-bit operand from the S; register, shifts

the data to the left, and returns it to the S; register. The number

of bit positions in the shift count is a constant from the instruction
parcel. This constant has a value 64 minus the low-order 6 bits in the
parcel. The range of this constant is 1 through 64.

The data is shifted left in an open-ended manner. That is, zero bits are
inserted from the right as bits shift off to the left. A shift count of
64 results in a word of all zeros.

Instruction 111 reads a 64-bit operand from the S; register, shifts

the data to the right, and returns it to the S; register. The number
of bit positions in the shift count is a constant from the instruction
parcel. This constant has a value equal to the low-order 6 bits in the
parcel. The range of this constant is O through 63.

The data is shifted right in an open-ended manner. That is, zero bits
are inserted from the left as bits shift off to the right.

Example:
réode generated |Location[ReSu1t AAlOperand JComment
1 L 10 .20 .35
= l l I |
,1101jk | | | '
b 11117k | I I |
l

HR-2000 3-52

INSTRUCTIONS 112 - 113

I [I |

Result Operand | Description | Machine I
| Instruction
N L l | 1
| f ‘ | !
I S lsi,5j<ak !Shift (sj and sj) left (ag) | 112ijk '
places to §;
I Si [Sj-si>ak |Shift (s; and Sj) right (ag) | 113ijk [

places to sj

L | | 1

Instructions 112 and 113 shift 128-bit values formed from two

S registers. The data is shifted in an open-ended manner. That is, as
bits shift off one end of the register, zeros are inserted in the other
end.

Instruction 112 reads two 64-bit operands from registers S; and
Si. The data is concatenated in a 128-bit field with the low-order
bit of S; next to the high-order bit of Sj data.

Instruction 113 reads two 64-bit operands from registers S; and
Si. The data is concatenated in a 128-bit field with the low-order
bit of Sj next to the high-order bit of S; data.

The result field is taken from the 64-bit window corresponding to the
original S; data. The shift count is read from the Ajp register.

The A register content is treated as a 32-bit positive integer. Shift
counts greater than or equal to 128 result in a zero data field; a shift
count of 64 results in the Sj data; and a shift count of 0 results in
the original S; data.

Example:
!Code generated !LocationIResult Alopg;and lComment
L 1 10 .20 1 35
! l l l l
112ijk
| 11245 | | | |
| 11315k | | | |

HR-2000 3-53

INSTRUCTION 114

l I | l

I Result I Operand | Description I Machine |
Instruction |

L | | |

| s |vm 'Transmit (vm) to sj : 114ixx |

L I | |

Instruction 114 reads the 64-bit mask from the VM register and enters it
into the S; register.

Example:

[Code generated ILocationIResult [Operand IComment
' 1 10 ,20 .35

| [! I |

| 114ixx | | | |

HR-2000 3-54

INSTRUCTION 115

| 1 I I |

I Result I Operand I Description I Machin? I
Instruction

| | | | |

| | I | |

| sj rt | Transmit real-time count to Sj | 115ixx |

I I L |

I

Instruction 115 reads the 64-bit real-time clock and enters the count into
the S; register.

Example:

LCode generated ILocation Result Operand IComment
| i1 10 20 135

l I I l

I

I

115ixx | | | |
I

I I I

HR-2000 3-55

INSTRUCTIONS 116 - 117

| |negative value

[|] 1
| Result | Operand | Description | Machine !
P
I l | | Instruction |
	I I		
l			
S	exp	Load sj with a value	1161jk
Sj exp,s	Load sj with a 6-bit value	1161ijk	
Sj Iexp,s,p	Load s; with a 6-bit	1161ijk	
I,positive value I
I sj Iexp Load s; with a value | 1171ijk
l sj exp,s |Load sj with a 6-bit value | 117ijk I
' S |exp,s,m Load s; with a 6-bit positive | 117ijk I
I | I
l | I

The S; eXp instruction will map into either a 050, 051, 052, 053,

116, or 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

CAL will map the S; exp,S instruction into the 117 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 116 opcode.
Instructions 116 and 117 form a 64-bit word from the jk data in the
instruction parcel. The low-order 6 bits are copied from the instruction
parcel. The result is delivered to the S; register.

For instruction 116, the high-order bits are zeros.

For instruction 117, the high-order bits are ones.

Example:

Code generated lLocation[Result Operand Comment
H1 110 20 35

— e —

| [
| 11617k | |
| 11615k I |
} 116ijk | I
|
| 11745k I :
117ijk | |
| 11747k | |

HR-2000 3-56

INSTRUCTIONS 120 - 121

T

| I |
| Result Operand Description Machine
' I l Instruction l
F L 4 -+ |
! s |5j+fsk |Floating—point sum of I 120ijk l
l (sj) and (sg) to sj

sj lSj—fSk IFlgating—point difference of I 121ijk l
' | :(Sj) and (sy) to s; I l
L

Instructions 120 and 121 perform floating-point arithmetic operations.

Instruction 120 forms the 64-bit floating-point sum of two 64-bit
floating-point operands read from registers Sj and Syi. The result is
delivered to the S; register.

Instruction 121 forms the 64-bit floating-point difference of two 64-bit
floating-point operands. The minuend is read from the Sj register

and the subtrahend from the Si register. The result is delivered to

the S; register.

Special case treatment of instructions 120 and 121 is described under
Floating-point Add unit in the Background Processor section of this
manual.

Example:
[Code generated lLocatioﬁTResult IOperand lComment
. 41 110 120 _]35
' T LE L T
:1zoijk | | I |
I121"k | ‘ l I

17
I | I I l
HR-2000 3-57

INSTRUCTIONS 122 - 123

| | I | |
| Result | Operand | Description | Machine I
I | | | Instruction

L | | |]
I) 1 L 1
| s Ifix,sk :Convert (sg) from floating-point | 122ixk

| I to integer and enter into sj | I
| S j Iflt,s IConvert (sg) from integer to | 123ixk I

i k k

I | Ifloating—point and enter into sj | |
L I | I |

Instructions 122 and 123 perform conversions between floating-point and
integer (fixed-point) formats.

Instruction 122 reads a floating-point operand from the Sy register

and delivers an integer result to the S; register. The conversion

from floating-point to integer is accomplished by adding the operand to a
constant in the Floating-point Add unit. The result is then sign extended
to form a 64-bit integer.

Instruction 123 reads an integer operand from the Sj register and
delivers a floating-point result to the S; register. The conversion

from integer to floating-point is accomplished by adding the operand to a
constant in the Floating-point Add unit.

Special case treatment of instructions 122 and 123 is described under
Floating-point Add unit in the Background Processor section of this manual.

Example:
Code generated ILocation Result Operand Comment
11 10 20 35
| N 1 T
| 122ixk I I | |
I I I | |
| 123ixk | | | |

HR-2000 3-58

INSTRUCTIONS 124 - 125

[I | |]
| Result | Operand | Description | Machine |
| | | | Instruction |
L 4 4 |
I i { [!
: sj =Sj*fsk :Floating—point product of (Sj) : 124ijk }
and (sy) to sj
| ! |Executes same as 1241ijk | 125ijk]
I | | 1

Instruction 124 forms the 64-bit floating-point product of two 64-bit

floating-point operands.

Sk- The result is delivered to the S; register.

Special case treatment of instruction 124 is described under
Floating-point Multiply unit in the Background Processor section of this

The operands are read from registers S; and

manual.
Example:
Code generated ALLocation Result Operand Comment
11 10 20 35
IN [

124ijk

125ijk

—_——_——

HR-2000

|

INSTRUCTIONS 126 - 127

| | | [

Result Operand Description Machine

| | l Instruction I
L | 1 |]
F T T 1 1
| sj |Sj*isk ‘Reciprocal iteration of | 126ijk [
| |2-(Sj)*(8k) to sj I '
s { sj*gsk Reciprocal square root iteration 1271ijk
| lof [3-(sj)*(sx)1/2 to s; : :
I

I I

Instruction 126 forms the 64-bit floating-point quantity used in the
reciprocal iteration algorithm., The operands are read from registers
§j and Sg. The result is delivered to the S; register.

Instruction 127 forms a floating-point quantity used in the reciprocal
square root iteration algorithm. The operands are read from registers
Sj and Sk. The result is delivered to the S; register.

See the description of Floating-point Multiply unit in the Background

Processor section of this manual for details of this sequence.

ek e Je e do ke Kk e de Je kK ek de de de de de Ko g Kk e e ke e de e e e ke e de de g e dede do de de de K ke k ke ke kek kK k

CAUTION

Instruction 126 should be used only with the reciprocal
approximation instruction (132), and instruction 127
should be used only with the reciprocal square root
approximation instruction (133).

% de g e Je do & Je K de de e e e de e e Je e de K de de de e T e de de e ek e de e Je de de K e de K e de de e de g de g K Je Kk Kk

Example:
!Code generated ILocation[Result lpperand lComment
f 1 (10 .20 35
F T H I |
| 126ijk | | | |
|127ijk ' | | |

|

HR-2000 3-60

INSTRUCTIONS 130 - 131

| [l l B

| Result | Operand | Description | Machine [

| | | | Instruction |

. E ; | + 4
l sj Iak :Transmit (ag) to sj with ; 1301ixk l

| l lno sign extension |

- | sj l+ak Transmit (ag) to sj with ' 131ixk |
| | sign extension l |

| | | 1 |

Instructions 130 and 131 read a 32-bit operand from the Aj register
and transmit it to the S; register.

Instruction 130 zero fills the high-order 32 bits, creating a 64-bit
result.

Instruction 131 fills the high-order 32 bits with copies of bit 231,
creating a 64-bit result,

Example:
[Code generated lLocatioanesult lOQgrand lComment
o l |1 110 120 |35
I I l | |
130ixk
I l l | |
’13lixk | | | |
1]] !

HR-2000 3-61

INSTRUCTIONS 132 - 133

Ito sj

| I I I l

I Result | Operand | Description | Machine

I | | | Instruction |

- ! : j 1

: Sj t/th |Floatinq—point reciprocal : 132ijx
approximation of (Sj) to sj |

‘ sj |*q5j Floating-point reciprocal square | 133ijx

| | root approximation of (Sj) | I

I I | |

I I | I

Instruction 132 forms a floating-point first approximation to the
reciprocal of a floating-point operand. The operand is read from the
Sy register, and the result is delivered to the S; register.

Instruction 133 forms a floating-point first approximation to the
reciprocal square root of a floating-point operand. The operand is read
from the S; register, and the result is delivered to the §j

register.

See the description of Floating-point Multiply unit in the Background
Processor section of this manual for details of the sequence.

Example:
|Code generated [Location|Result LQperand AlComment
| 11 |10 {20 135
Lo I I I |
| 13217x | | | |
| . I I I I
13317x

| I I I

HR-2000 3-62

INSTRUCTIONS 134 - 137

r [I I I
| Result | Operand | Description | Machine I
| | | | Instruction |
F + + : .
I | | | |
I I lPass | 134xxx |
Pass 135xxx
I | IPass I 136xxx I
I | IPass I 137xxx I
| | 1 1 |

Instructions 134 through 137 issue without functional activity.

Example:

rCode generated

TiocationIResult

[Operand

AlComment

11

110

120

135

134xxx

L

I

!
:l35XXX
| 136xxx
I
I

137xxx

HR-2000

I
I
I
I
I
I
I

3-63

|
I
I
I
I
I
I

|
I
|
I
|
|
|

INSTRUCTIONS 140 and 141

l l [T !

| Result | Operand | Description | Machine

| | | | Instruction |

L 1 1] |

F + = =+]

: vj :Sj&Vk :Logical products of (Sj) : 1401ijk |
and (vg) to vj |

l v |Vj&Vk lLogical products of (Vj) ' 141ijk

l | and (vg) to vj ' |

L | | | |

Instruction 140 reads a stream of vector elements from the Vy

register, processes the data in the vector logical unit, and delivers a
stream of result elements to register V;. Data is read from the

Sj register and is held in the vector logical unit during the

streaming operation.

Instruction 141 reads two sets of vector elements, processes them in the
vector logical unit and delivers result elements to register Vj;. The
source streams are from the Vj and Vg registers.

For both instructions, the VL register determines the number of operations
performed. Each element of the vector is processed independent of the
other elements in the stream. A bit-by-bit logical product is formed
between the two source operands. The resulting 64 logical products are
then delivered as one element to the destination stream.

Example:
ICode generated [Locatioanesult LOEerand [Comment
L 441 g}o _1.20 |35
' l | | |
140ijk
| 50 | | | |
V1414 | | ‘ '
[| 1 ! i

HR-2000 3-64

INSTRUCTIONS 142 and 143

| land (vg) to vj
| I

| | | | |
Result Operand Description Machine |
I I l l
| | l | Instruction |
. o .]
| 1 I T '
: vi :Sj\vk 'Logical differences of (s5) : 142ijk |
and (vg) to vj
| v |Vj\Vk ILogical differences of (Vj) | 143ijk '
I [|
| 1

Instruction 142 reads a stream of vector elements from register Vg
processes the data in the vector logical unit, and delivers a stream of
result elements to the V; register. Data is read from the Sj

register and is held in the vector logical unit during the streaming
operation.

Instruction 143 reads two streams of vector elements, processes them in
the vector logical unit, and delivers a stream of result elements to
register Vj. The source streams are from registers Vj and V.

For both instructions, the VL register determines the length of the
operation. Each element of the vector stream is processed independent of
the other elements in the stream. A bit-by-bit logical difference is
formed between the two source operands. The resulting 64 logical
differences are delivered as one element to the destination stream.

Example:
)Code generated lLocationIResult IOQgrand]Comment
L 41 ilO %ZQ 135
I | I I |
142ijk
| 54 | | n |
| .. | | l |
1431ijk
| J | | [!

HR-2000 3-65

INSTRUCTIONS 144 and 145

| l l | I
| Result | Operand | Description | Machine
| l [| Instruction |
1 1 1 L |
f T T T =
: \Z IsJ'vk ILogical sums of (Sj) | 144ijk |
| |and (vg) to vj | I
' v 'Vj!Vk Logical sums of (Vj) | 145ijk '
! l land (vg) to vj | |
| Vi IVj |v register copy (j=k) | 145177 |
L | I |

Instruction 144 reads a stream of vector elements from register Vy,
processes the data in the Vector Logical unit, and delivers a stream of
result elements to the V; register. Data is read from the Sj

register and is held in the Vector Logical unit during the streaming
operation.

Instruction 145 reads two streams of vector elements, processes them in
the Vector Logical unit, and delivers a stream of result elements to
register Vj. The source streams are from registers Vj and V.

For both instructions, the VL register determines the length of the
operation. Each element of the vector stream is processed independent of
the other elements in the stream. A bit-by-bit logical sum is formed
between the two source operands. The resulting 64 logical sums are
delivered as one element to the destination stream.

Example:
rtode generated rEocatioanesult [Qgerand |Comment
L 11 110 120 135
L L T T T
I : I | | |
1441ijk
| 55 l | | l
l1451’]‘k | I | |
| 145i57 | I | |
1 i | | I

HR-2000 3-66

INSTRUCTION 146

(Vk) if vm bit=0 to \Z

l

Instruction 146 reads a stream of vector elements in sequence from the

“““““ Vy register, processes the data in the Vector Logical unit, and
delivers a stream of result elements to the V; register. Data is read
from the Sj register and is held in the Vector Logical unit during the
streaming operation. The content of the VL register determines the length
of the vector stream.

- - 1 | I]
| Result | Operand | Description | Machine |
| ' | | Instruction |
F 3 ; =t =
: Vi :Sj!Vk&Vm ITransmit (s5) if vm bit=1; : 1461ijk :
l I l |

The VM register works as a control mechanism to select either the S
register data or the vector element data as each element arrives at the
Vector Logical functional unit. A bit of VM register data is associated
with each element. The high-order bit of VM data is associated with the
first vector element. The following bits of VM register data correspond
with the following vector elements. The S register data is selected as a
result element if the VM register contains a 1 in the designated element
position. The Vj register element is selected as a result element if

the VM register contains a 0 in the designated element position.

Example:

[Code generated lgpcationIResult lOperand [Comment
L 11 (10 120 135

F t i 1 f

I y | | | I

| 14617k ! | | |

HR-2000 3-67

INSTRUCTION 147

| 7

Result Operand Description Machine
! I | I ,
I | | | Instruction
= ; +

\4 |Vj!vk&vm |Transmit (Vj) if vm bit=1; 147ijk

| |

I }

I I

| (vp) if vm bit=0 to v; |
k i

l |

—— e e ——_—

Instruction 147 reads two streams of vector elements, processes them in
the Vector Logical unit, and delivers a stream of result elements to the
Vj register. The source streams are from registers V; and

Vkg. The content of the VL register determines the length of each

vector stream.

The VM register works as a control mechanism to select either the Vj
data or the Vi data as each element pair arrive at the Vector Logical
unit. A bit of VM register data is associated with each element. The
high-order bit of VM data is associated with the first vector element.
The following bits of VM register data correspond with the following
vector elements. The Vs data is selected as a result element if the
VM register contains a 1 in the designated element position. The Vg
register element is selected as a result element if the VM register
contains a 0 in the designated element position.

Example:

ICode generated]LocatioﬁTiesult [Qperand IComment
b !1 110 ng, 4435

I . I I I |

I I

1471ijk |

HR-2000 3-68

INSTRUCTIONS 150 and 151

l

zero fill, results to v;

| I
Result Operand Description Machine
| ' | l Instruction
- ; ; | |
vi vj<ak Shift (vj) left (ag) bits with 150ijk
l l lzero fill, results to vj l I
I v |Vj>ak |Shift (Vj) right (ag) bits with | 151ijk |
I

l l |

Instructions 150 and 151 read a stream of vector elements in sequence
from the Vj register, process the data in the Vector Integer unit, and
deliver a stream of result elements to the V; register. Data is read
from the Ay register and is held in the Vector Integer unit during the
streaming operation. The content of the VL register determines the
length of the vector stream.

Instruction 150 shifts data to the left and instruction 151 shifts data
to the right. Each element of the vector stream is processed independent
of the other elements in the stream. Each element is shifted by the
number of bit positions indicated by the Ay register value. Zero bits
are inserted as bits shift off.

The content of the Ap register is treated as a 32-bit positive
integer. Shift counts equal to or greater than 64 cause a zero data
field.

Example:

rCode generated !LocationJResult IOperand lComment
{ 1 110 120 35

I I I T T

| 15015k | | | |
,151ijk | l I |

HR-2000 3-69

INSTRUCTIONS 152 and 153

l
I

places to vj

L I

I I l
Result Operand l Description Machine

] Instruction |
| L | | |
F T T I 1
| v lvi,vica lDouble shift (vj) left (ay) '1521jk '

i JrVicek 7 k

| | |p1aces to V; |
| I
| I

vi IVj,Vj)ak lDouble shift (Vj) right (ay) I1531’jk
|

Instructions 152 and 153 process the elements of data from the Vj
register in pairs for this sequence. Each element is concatenated with
the following element and the resulting 128-bit field is shifted by the
number of bit positions in the Aj register data. A 64-bit field from
the original element window is then delivered to the destination vector
stream.

Instruction 152 shifts data to the left. The first element of V; data
is positioned in the high-order 64 bits of the 128-bit shift field. The
second element of V5 data is positioned in the low-order 64 bits of

the 128-bit shift field. The 128-bit field then shifts left by the
amount of the shift count. A first result element is read from that
portion of the 128-bit field originally occupied by the first element of
data.

The second element of Vj data is then positioned in the higher
portion of the 128-bit shift field. The third element of V; data is
entered in the low-order 64 bits of the field. This 128-bit field is
then shifted left by the amount of the shift count. A second result
element is read from the high-order 64 bits of the 128-bit field
originally occupied by the second element of data.

This process continues until the last element of data is entered in the
high-order 64 bits of the 128-bit shift field. A zero field is entered
in the low-order 64 bits. This 128-bit field is then shifted left by the
amount of the shift count. The last result element is read from the
upper portion of the shift field.

The Aj register content is treated as a 32-bit positive integer.

Shift counts greater than 128 result in a 2zero data field. Zero bits are
inserted at the right end of the 128-bit shift field as bits are shifted
off to the left.

HR-2000 3-70

INSTRUCTIONS 152 and 153 (continued)

Instruction 153 shifts data to the right. The first element of V3

data is positioned in the low-order 64 bits of the 128-bit shift field.
The high-order 64 bits of the 128-bit shift field is cleared. The 128-bit
field then shifts to the right by the amount of the shift count. A first
result element is read from the low-order 64 bits of the 128-bit field
originally occupied by the first element of data.

The second element of V; data is then positioned in the lower portion

of the 128-bit shift field. The first element of V; data is entered

in the high-order 64 bits of the field. This 128-bit field is then
shifted right by the amount of the shift count. A second result element
is read from the low-order 64 bits of the 128-bit field originally
occupied by the second element of data.

This process continues until the last element of data is entered in the
low-order 64 bits of the 128-bit shift field. The preceding element is
entered in the high-order 64 bits. This 128-bit field is then shifted
right by the amount of the shift count. The last result element is read
from the low-order 64 bits of the field.

The Ay register content is treated as a 32-bit positive integer.

Shift counts greater than 128 result in a zero data field. O bits are
inserted at the left end of the 128-bit shift field as bits are shifted
off to the right.

Example:

LCode generated 1Location|Resu1t IOperand AlComment
L j1 510 !20 !35
b | | I |
1521ijk

| > 1 | | l
| Jeaiq | | | l
l1531_7k , | | l

HR-2000 3-71

INSTRUCTION 154

I l I l

(sj) and (vg) to v;

| I N _

Result Operand Description | Machine
l | Instruction
| 1 | _|
I I] L
l \' |sj*fvk IFloating—point product of | 154ijk

Instruction 154 reads a stream of vector elements in sequence from the
Vy register, processes the data in the Floating-point Multiply unit,
and delivers a stream of result elements to the V; register. Data is
read from the Sj register and is held in the Floating-point Multiply
unit during the streaming operation. The content of the VL register
determines the length of the vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream. The Floating-point Multiply unit forms the
64-bit floating-point product of the arriving vector element and the
scalar operand held in the unit. The result element is delivered to the
V; register. See the description of Floating-point Multiply unit for
details and special case treatment.

Example:

FCode generated lLocationIResult IOperand [Comment
\ 11 110 ' 120 135

I | 1T | |

| 15415 | | | |

HR-2000 3-72

INSTRUCTION 155

I(Vj) and (vg) to v;

| 1

Instruction 155 reads two streams of vector elements, processes them in
the Floating-point Multiply unit, and delivers a result stream to the
V;j register. The source streams are from registers Vj and

Vg. The VL register determines the length of each vector stream.

I I I I I
| Result | Operand | Description | Machine |
| ' Instruction I
| | |

I I | I 1
: v IVj*ka IFloating—point product of : 15517k :
I | |

Each element of the vector stream is processed independent of the other
elements in the stream. The Floating-point Multiply unit forms the 64-bit
floating-point product of the arriving vector elements. The result
element is delivered to the V; register. See the description of
Floating-point Multiply unit in the Background Processor section of this
manual for details and special case treatment.

Example:

LCode generated ILocationIResult IOperand IComment
| !1 !10 Algo 135
ilssijk | | | |

I I | |

HR-2000 3-73

INSTRUCTIONS 156 and 157

lof [3-(vj)*(v)1/2 to v;

Instructions 156 and 157 read two streams of vector elements, process them
in the Floating-point Multiply unit, and deliver a result stream to the

Vi register. The source streams are from registers Vj and

Vik. The content of the VL register determines the length of each

vector stream.

' [| l I
I Result | Operand l Description | Machine

| | | Instruction

| 1 | | |
| ' | i I
| \'8 IVj*ivk IReciprocal iteration of 1561ijk I
I I 2-(vj)*(vg) to vj |

: vj :Vj*qVk |Reciprocal square root iteration : 1571ijk :
l | I |

For instruction 156, the Floating-point Multiply unit forms a 64-bit
floating-point quantity used in the reciprocal iteration algorithm from
each pair of arriving vector elements.

For instruction 157, the Floating-point Multiply unit forms a 64-bit
floating-point quantity used in the reciprocal square root iteration
algorithm from each pair of arriving elements.

See the description of Floating-point Multiply unit in section 2 for
details and special case treatment.

Example:

I Code generated ILocation Result Operand IComment
11 10 20 135

[| I I i

| 15615k | | I |

o | I I l

| 1571ijk | | | |

HR-2000 3-74

INSTRUCTIONS 160 and 161

[[I I I
| Result ! Operand I Description , Machine
I Instruction
L ! | | |
I T [I I
| vi |Sj*Vk |Integer sums of (sj) and | 1601ijk |
(vg) to vj
| v IVj+Vk |Integer sums of (vj) and | 161ijk |
(vg) to vj

I | I { I

Instruction 160 reads a stream of vector elements from the Vi

register, processes the data in the Vector Integer unit, and delivers a
stream of result elements to the V; register. Data is read from the

Sj register and is held in the Vector Integer unit during the

streaming operation.

Instruction 161 reads two streams of vector elements, processes them in
the Vector Integer unit, and delivers a stream of result elements to the
V; register. The source streams are from registers Vj and Vg.

For both instructions, the VL register determines the length of the
vector stream. Each element of the vector stream is processed
independent of the other elements in the stream. The Vector Integer unit
forms the integer sum of the two operands. The result is delivered as
one element of the destination stream.

Example:

rabde generated ILocatioanesult IOQerand IComment
| 1 10 120 135

I I 1 I |

| 16015k | | [|

| 16115k | | | |

HR-2000 3-75

INSTRUCTIONS 162 and 163

I I I ! |
| Result | Operand | Description | Machine
' | | | Instruction
| . | : '
| | . | I
I vj Sj-Vk lInteger differences of (Sj) and 162ijk
| (vg) to vj I
I v V-V IInteger differences of (v5) and t 163ijk
1 |7 k J
| I(vk) to vj I |
I | I I .

Instruction 162 reads a stream of vector elements from Vj register,
processes the data in the Vector Integer unit, and delivers a stream
result elements to the V; register. Data is read from the S5
register and is held in the Vector Integer unit during the streaming
operation.

Instruction 163 reads two streams of vector elements, processes them
the Vector Integer unit, and delivers a stream of result elements to
V; register. The source streams are from registers Vi and Vg.

For both instructions, the VL register determines the length of the
vector stream. Each element of the vector stream is processed
independent of the other elements in the stream. The Vector Integer
forms the integer difference of the two operands. The result is
delivered as one element of the destination stream.

of

in
the

unit

Example:
Code generated ILocationIResult IOperand IComment
11 |10 120 135
| [I | I
| 1621k [I | |
I1631'jk I I | |
| | I I I

HR-2000 3-76

INSTRUCTIONS 164 - 165

| 1 | I 1
| Result | Operand | Description | Machine |
| | | | Instruction |
I |] | |
T AJ T T 1
: \& =ij :Population counts of (v4) to vj : 164170 :
| Vi |qu IPopulation count parity of (Vj) | 164171 l
to vj
| vj IZVj |Leading zero count of (Vj) l 1651ijx I
| ' |t0 Vi I I
| | I | |

Instruction 164 reads a stream of vector elements in sequence from the
Vj register, processes the data in the Vector Integer unit, and
delivers a stream of result elements to the V; register. The content
of the VL register determines the length of the vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream. The Vector Integer unit counts the number of one
bits in each vector element and delivers the count as a positive integer
to the result stream.

Instruction 1641j0 counts the number of bits set to 1 in each element
of Vi and enters the results into corresponding elements of Vj;.

The results are entered into the low-order 7 bits of each V; element;
the remaining high-order bits of each V; element are zeroed.

Instruction 164ijl counts the number of bits set to 1 in each element

of Vj. The least significant bit of each result shows whether the
result is an odd or even number. Only the least significant bit of each
result is transferred to the least significant bit position of the
corresponding element of register V;. The remainder of the result is
set to zeroes. The actual population count results are not transferred.

Instruction 165ijx reads a stream of vector elements in sequence from
the Vj register, processes the data in the Vector Integer unit, and
delivers a stream of result elements to the V; register. The content
of the VL register determines the length of the vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream. The Vector Integer unit counts the number of
leading zeros in each element. The element is considered as a field of
64 individual bits in this operation. This count is delivered as a
positive integer to the result stream.

HR-2000 3-77

INSTRUCTIONS 164 - 165

Example:
rEbde generated Location|Result JOperand [Comment
X 1 10 120 135

|
| 164170
| 164171
|
| 165ijx

HR-2000

l
|
I
I
|

INSTRUCTIONS 166 - 167

' [| l 1
| Result | Operana | Description | Machine
| | | | Instruction I
L - ! L ,
: v :/hvk :Floating—point reciprocal : 1661xk l
approximations of (vg) to vj |
l Vi |*qvk IFloating-point reciprocal square I 1671xk |
' | root approximations of (vg) I |
| I lto v; | |
| l I |

I

Instruction 166 and 167 read a stream of vector elements in sequence from
the Vj register, process the data in the Floating-point Multiply unit,
and deliver a stream of result elements to the V; register. The

content of the VL register determines the length of the vector stream.
See the description of the Floating-point Multiply unit in section 2 for
details of this sequence.

For instruction 166, the Floating-point Multiply unit forms a
floating-point quantity which is a first approximation to the reciprocal
of the arriving vector element.

For instruction 167, the Floating-point Multiply unit forms a
floating-point quantity which is a first approximation to the reciprocal
square root of the arriving vector element.

Example:
LCode generated LocationLResult Operand lComment
! 1 110 20 135
I | I l
| 1661ixk | [l I
I [[| |
| 167ixk [| | |
I I l |

HR-2000 3-79

INSTRUCTIONS 170 - 171

|and (vg) to vj

I L

[| I ['
| Result | Operand | Description | Machine I
| | | | Instruction |
E ' : —
1 |

I \Z l5j+ka IFloating—point sum of (Sj) | 170ijk :
I I Iand (vg) to vj I

| vi le+ka IFloating—point sum of (Vj) : 171ijk :
| I

I I I

Instruction 170 reads a stream of vector elements in sequence from the
Vy register, processes the data in the Floating-point Add unit, and
delivers a stream of result elements to the V; register. Data is read
from the S; register and is held in the Floating-point Add unit during
the streaming operation.

Instruction 171 reads two streams of vector elements, processes them in
the Floating-point Add unit, and delivers a result stream to the V;
register. The source streams are from registers Vj and Vg.

For both instructions, the content of the VL register determines the
length of the vector stream. Each element of the vector stream is
processed independent of the other elements in the stream. The
Floating-point Add unit forms the 64-bit floating-point sum of the two
operands. The result is delivered to register V;. See the
description of Floating-point Add unit for details and special case
treatment.

Example:

!Code generated ILocationIResult IOperand IComment
L !l IlQ !;Q :35

I I I I I

1701ijk

| =70 | | | |

1711 5% | | | |

| | | | |

HR-2000 3-80

INSTRUCTIONS 172 - 173

| I

I(Vj) and (vy) to vj

! I | I l
| Result | Operand | Description | Machine

I | | | Instruction I
|]] | J
I T 1 T 1
I Vi IsJ—ka IFloating—point difference of I 1721ijk

I I I(Sj) and (vg) to vj

} vj {v]—ka Floating-point difference of : 173ijk :
L 1 I

Instruction 172 reads a stream of vector elements in sequence from the

Vy register, processes the data in

delivers a stream of result elements to the V; register.

the Floating-point Add unit, and
Data is read

from the S; register and is held in the Floating-point Add unit during

the streaming operation.

Instruction 173 reads two streams of vector elements, processes them in
the Floating-point Add unit, and delivers a result stream to the V;

register.

For both instructions, the content
length of the vector stream. Each
processed independent of the other
Floating-point Add functional unit
difference of the two operands.

The source streams are from registers Vj and Vg.

of the VL register determines the
element of the vector stream is
elements in the stream. The
forms the 64-bit floating-point

The result is delivered to register

Vj. See the description of Floating-point Add unit for details and

special case treatment.

Example:
ICode generated ILocationIResult IOperand IComment
I Il IlO IZO !35
I . I I I I
1721jk
| =74 : | | |
'17 7 g l | I

3ijk
I | I I I
HR-2000 3-81

INSTRUCTIONS 174 - 175

| |]’ []
' Result | Operand Description | Machine l
| I | | Instruction |
l \ |) |
L [L T I
I Vi Ile,Vk IInteger form of floating-point | 1741xk |

I l(vk) to vj | |
| v Iflt,vk Floating-point form of integer | 175ixk l
| | (vg) to vj | |
l I I i

Instructions 174 and 175 read a stream of vector elements in sequence
from the Vj register, process the data in the Floating-point Add unit,

and deliver a stream of result elements to the V; register. The content

of the VL register determines the length of the vector stream.

Instruction 174 performs the conversion from floating-point to integer
format by adding the operand to a constant in the Floating-point Add
unit. The result is sign extended to form a 64-bit integer.

Instruction 175 performs the conversion from integer to floating-point
format by adding the operand to a constant in the Floating-point Add
unit. The result is delivered to the V; register.

See the description of Floating-point Add unit for details and special
case treatment.

Example:
I Code generated [Location Result AglOperand [Comment
L 11 10 , 20 135
' I I ! [
:1741xk | | I '

l I l I
| 175ixk [I I [

HR-2000 3-82

INSTRUCTIONS 176 - 177

[T] | |
l Result | Operand ' Description | Machine |
| | , l Instruction]
L } { !
{ | I 1 1
l Vi Ic sj&sk lEnter vj with compressed I 1761ijk |
‘ I iota S5 and sy ' |
| | IExecutes same as 1761ijk | 177xxx |
I I L l
Instruction 176 forms a vector from two scalar operands. The first

scalar operand is a 64-bit mask from the Sj register. The second scalar
operand is a 32-bit vector stride from the Sy register. The stride is
taken from the low-order 32 bits of the Sy register data.

The Vector Integer unit forms a 64-element iota vector from the stride.
This is a vector whose first element has a zero value, and whose
subsequent elements are spaced by the stride increment. The sequence of
element values is then as follows.

0%Sy, 1*Sy, 2%Sy, 3*Sy, 4*Sp, 5%Sp, etc.

The two scalar operands are captured and held in the Vector Integer
unit. The Sj value is repeatedly added to the accumulated sum to form
the iota vector. The 64-bit mask is shifted to the left 1 bit position
per clock period. The Vector Integer unit then compresses the iota
vector, using the mask data, and delivers the resulting vector to
register Vj.

An element of the iota vector is delivered to the result vector where
there is a 1 bit in the mask. An element of the iota vector 1is skipped,
and the position compressed, where there is a 0 bit in the mask. The
resulting vector has the same number of elements as there were one bits
in the mask.

The first mask bit tested is the high-order bit. Bits are then tested in
order to the low-order bit. A zero test is made on the remaining mask
bits to stop the sequence. Execution time is then variable depending on
the mask content.

Example:
Code generated ILocation Result IOperand Comment
1 1 10 120 35
| ! I l [
| 1761k | | [|
I | | |
| 177xxx | | | |

HR-2000 3-83

4. COMMON MEMORY

Common Memory contains 256 million words of dynamic memory. The dynamic
memory consists of 128 banks with 2 million words in each bank. Each
72-bit word consists of 64-data bits and 8 error correction bits.

Common Memory is organized into quadrants with 32 banks in each

quadrant. Each memory quadrant has a data path to each of four Common
Memory ports. A Background Processor and a foreground communication
channel are connected to each Common Memory port. Total memory bandwidth
is 64 gigabits per second. Total memory capacity is 17 gigabits.

The Foreground Processor, Background Processors, and disk controllers
share Common Memory. Common Memory contains program code for the
Background Processors, data for problem solution, and Foreground
Processor system tables.

4.1 MEMORY ADDRESSING

A word in memory is addressed by 32 bits. The low-order 2 bits select
the quadrants and the next 5 bits select the bank. Figure 4-1
illustrates the format of the memory address for Common Memory.

531 27 26 22 51 »0

Bank Quad

Bank
ank Address Select Select

Figure 4-1. Memory Address for Common Memory

HR-2000 4-1

4.2 MEMORY ACCESS

The Background Processors are locked into a phased access time. scheme
with the memory quadrants through the Common Memory ports. Through its
Common Memory port, a Background Processor can access any given quadrant
but only in the processor's own phase time, that is, every fourth clock
period (CP). If a Background Processor requests a quadrant out of its
phase time, the request is delayed until the correct time.

For example, assume the Background Processors are A through D, and the
quadrants are 0 through 3. Also assume processor A is locked into
quadrant 0 at phase time 0. If processor A references quadrant 0 at
phase time 1, it must wait until the next phase time 0 (CP 4) to have
access to memory in that quadrant.

Memory banks in a quadrant share a data path to each Common Memory port.
Because of the phased access time between the quadrants and the Common
Memory ports, however, only one bank accesses the path in a given 4-CP
time slot. Because two banks never compete for the same data path in the
same time slot, each bank functionally has an independent path to each of
the four Common Memory ports.

4.3 MEMORY CONFLICTS

To prevent memory conflicts, each memory bank has a Bank Busy flag. If
the bank is busy, the quadrant sends a rejected signal to the requesting
memory port. The requesting port retries the data.

4.4 MEMORY BACKUP

Memory backup occurs when too many memory references arrive at a single
memory quadrant. Each Common Memory port has four quadrant buffers, one
for each quadrant, each buffer can hold two memory references for its
memory quadrant. Therefore, references can continue to the memory port
when the reference is not in the proper phase time. When a quadrant
buffer in a memory port is filled, and another reference to that quadrant
is made, the memory port begins a backup procedure.

The memory port backup procedure stops instruction issue for the
associated Background Processor if that processor is making a memory
reference. Vector streams initiated in the Background Processor and
associated with a Common Memory reference are held.

HR-2000 4-2

After all references have been submitted for retry, a stop issue is
released allowing additional references to issue. A conflict during the
retry process causes the backup procedure to begin again at the point the
conflict occurred; which could be the original backup references or
additional new references filling buffer positions that became empty
during retry.

NOTE

A special timing problem exists for execution of
Background Processor instruction 072 (the gather
instruction). This instruction allows addresses in any
sequence with respect to the low-order 2 bits, quadrant
select. Without special treatment of this instruction,
the data could arrive at the Vector Destination
register out of order. Therefore, the hardware forces
a maximum memory reference pattern of four references
and 12 null references which averages to one reference
every 4 clock periods.

4.5 MEMORY ERROR CORRECTION

A single error correction/double error detection (SECDED) network is used
between the Background Processors and memory. SECDED assures that data
written into memory is returned to the Background Processors with
consistent precision.

Using SECDED, the single error alteration is automatically corrected if a
single bit of a data word is altered before the data word is passed to
the computer. If 2 bits of the same data word are altered, the double
error is detected but not corrected. In either case, the Background
Processors can be interrupted, depending on interrupt options selected,
to allow processing of the error. For 3 or more bits in error, results
are ambiguous.

The 8 check bits and the data word are stored in memory at the same
location. When read from memory, the 64-bit matrix, illustrated in
figure 4-2, is used to generate a new set of check bits, which are
compared with the old check bits that were stored in memory. The
resulting 8 comparison bits are called syndrome bits (S bits). The
states of these S bits are symptomatic of any error that occurred (1 = no
compare). If all syndrome bits are 0, no memory error is assumed.

HR-2000 4-3

The matrix is designed so that:

If all syndrome bits are 0, no error is assumed.

If only

If more

-bits is
occurred. The syndrome bits can be decoded to identify the bit in

error.

If 3 or
bits is

If more
bits SO

1 syndrome bit is 1, the associated check bit is in error.

than 1 syndrome bit is 1 and the parity of all syndrome
odd, then a single correctable error is assumed to have

more memory bits are in error, the parity of all syndrome
odd and results are ambiguous.

than 1 syndrome bit is 1 and the périty of all syndrome
through S7 is even, then a double error (or an even number

of bit errors) occurred within the data bits or check bits.

check bit o
check bit 1
check bit 2
check bit 3
check bit 4
check bit s
check bit e
check bit 7

CHECK BYTE
271 270 269 268 267 266 265 ;64 263 262 361 360 359 358 357 356 255 254 353 352 551 550 49 yu48
X X X x x X x x x
X X X X x X X X X
X X x X X x x X X X x X X X x X X
X x x X X x X X X x x X X X x X
X X X X X X x x X
X X X X x X X x X
b4 x X b x x X x x
X X X X X X X X X
247 246 Q45 Jlh H43 H42 541 540 239 238 237 236 535 534 533 532 231 530 529 28 27 26 525 324
x x X x x x X X x X x x X x X X x X X x
X x X x X x x x X x X X b X X X X X X X
x x x X x x x X x X x X
x X X x x X X b b x X X
X X X X X X X X
x X x x X X x X X x x X x x X x
x x x X X X X X X X b X X X X X
X x X X X X x x b X X b x x X X
223 222 21 220 319 518 517 516 215 214 213 512 511 510 29 58 27 26 25 2% 23 22 31 L0
x X x x b x X X X X x X
x x X x X X X X X X X X
X x x X X X X X X X x x
X X X x X x X X X X X X
x X X x x x X x x x x X x x X x X X x x x X x X
X X X X X X X X X X X X X x X X
X X X X x x X x x X X X X X X X
X X X X X x X X X X X X X X X X
1270

HR-2000

Figure 4-2. Error Correction Matrix

5. FOREGROUND SYSTEM

The CRAY-2 computer contains a foreground system to control and monitor
system operations. The Foreground Processor contains the following:

. Four high-speed synchronous communication channels to interconnect
the Background Processors, Foreground Processor, disk controllers,
and Front-end Interfaces (FEIs)

. Foreground channel ports

- Four Common Memory ports to control data transfer between
Common Memory and the Foreground Processor, disk storage

units, and the FEI modules

- Four Background Processor ports to allow the Foreground
Processor to monitor and control the Background Processors

. Up to 40 I/O devices can be attached
- Disk controllers to control up to 36 disk storage units
- Interfaces to connect the CRAY-2 mainframe to the 6 Mbyte per
second channels or Network Systems Corporation (NSC)

HYPERchannels

. A Foreground Processor to supervise overall system activity and
respond to requests for interaction among the system members

. A maintenance control console to deadstart the CRAY-2 mainframe
and monitor system operation

5.1 FOREGROUND COMMUNICATION CHANNELS

Four high-speed communication channels in the foreground system link the
Common Memory, Background Processors, Foreground Processor, disk
controllers, and FEIs. The Foreground Processor supervises the four
channels. Data blocks are generally 512 Common Memory words.

Each channel accesses one Common Memory port and one Background Processor
port. Each channel in the system can have up to four Front-end
Interfaces. Disk controllers are generally divided equally among the
channels. The disk controller configuration, however, can be adjusted
for special system requirements.

HR-2000 5-1

A channel interconnects the Foreground Processor,

disk controllers,

modules, a Background Processor port, and a Common Memory port in a

continuous channel loop.

shown in figure 5-1.

A configuration of a single channel loop is

FEI

Disk Disk Front-end

Controller —.++» Controller Interface
n 0 n
Foreground !
Processor :
Y

Common Background Front-end

< Memory Processor Interface
Port Port 0

1159
Figure 5-1. Channel Loop

Each member of the loop is called a channel node. Each channel node
receives data on the path during each clock period and transmits that
data to the next node in the following clock period. Data can then move
about the loop from any transmitting node to any receiving node.

5.2 FOREGROUND CHANNEL PORTS

Two independent sets of channel ports exist in the Foreground Processor:
Common Memory ports and Background Processor ports. The Common Memory
ports contain controls and status information for transfer of data to and
from Common Memory. The Background Processor ports contain controls and
status information used by the Foreground Processor to control the
Background Processors.

5.2.1 COMMON MEMORY PORTS

The foreground system contains four Common Memory ports. One Common
Memory port is associated with each of the four Background Processors. A
foreground channel is associated with each of the Common Memory ports.
The Foreground Processor makes Common Memory requests through the Common
Memory port for those foreground devices on the same channel. Background

HR-2000 5-2

Processor Common Memory requests have priority over foreground system
requests. There is one exception; the refresh has priority over the
background operand references. The Common Memory port accepts requests
according to the following priority scheme, from highest to lowest
priority:

1. Background Processor operand references
2. Background Processor instruction references
3. Foreground channel transfer references

5.2.2 BACKGROUND PROCESSOR PORTS

Each Background Processor has a Background Processor port connecting it
to one of the four channels in the foreground system. This port allows
the Foreground Processor to control the operation of the Background
Processor.

5.3 DISK STORAGE UNITS

The Foreground Processor spends considerable time transferring data
between the disk storage units and Common Memory. The system has
provision for 36 disk storage units. Control for these units is on an
individual disk unit basis so that all 36 units can operate concurrently.

5.3.1 DISK SYSTEM ORGANIZATION

The disk storage units can be addressed as individual storage units, but
problems arise with this approach: the data transfer rate for individual
files, the rotational latency of the disk units, and the reliability of
mechanical devices.

The disk storage system on the CRAY-2 computer has the option of
operating in a synchronous mode with all disk units running in parallel
in a lockstep mode. For this approach to be practical, the buffer size
for individual disk references must be about 100,000 words.

A system configuration with 16 disk storage units can illustrate the
synchronous mode of operation. The Foreground Processor is given a Disk
address consisting of a pseudo-track number. This number is the cylinder
and head group for a disk file with no flaws. A table look-up converts
this pseudo-track into a physical track for each disk unit. All disk
storage units are positioned in parallel.

HR-2000 5-3

The Foreground Processor reads angular position for each disk surface to
determine the sector currently under the recording head. It then begins
a data stream from Common Memory to disk surfaces, choosing the portion
of the Common Memory buffer appropriate for the current angular position
of each disk storage unit. Data to 15 of the disk storage units is
directly from the Common Memory buffer. Data for the 16th disk storage
unit is a logical difference data stream using the word-by-word data from
the desired file. All 16 disk storage units write one track of data as
the basic reservation unit.

On data readback, the 16th disk is read concurrently with the other 15
disks. If the fire code detectors indicate no data errors, the 16th disk
data is discarded. If an error has occurred, it can be corrected without
time loss in the data stream.

The overhead introduced by this arrangement is one disk storage unit for
every 15 disks required. The following three benefits occur:

. The data rate is 525 megabits per second instead of 35 megabits
per second.

. The disk storage unit rotational latency has gone to 1/2 of a
sector time for Foreground Processor single disk I/0.

. A disk storage unit can fail completely due to a head crash or
motor failure with no loss of data or time.

A disk failure in this system can be corrected during system operation by
removing the defective file and replacing it with another unit. The new
unit can then be brought on line by running a background job that takes
2.5 minutes of disk system time to record the faulty unit data from the
data on the other 15 files.

5.4 FRONT-END INTERFACE

The CRAY-2 mainframe is connected to a front-end computer system through
an interface in the foreground system. The FEI can support a 6 Mbyte per
second channel or an NSC HYPERchannel. Each channel loop can hold up to
four interfaces.

Each interface contains a 512 64-bit word buffer. The data block can be
of arbitrary word length up to this limit.

HR-2000 5-4

5.5 FOREGROUND PROCESSOR

The Foreground Processor supervises system operation by responding to
Background Processor requests and sequencing Channel Communication
signals. The user programs reside in the Common Memory in a protected
area and are executed in Background Processors.

The Foreground Processor code is loaded at deadstart from a diskette at
the maintenance control console. (The maintenance control console is
described later in this section.) The code is firmware and is not
altered during the operation of the system.

% e de ke de e e de de de de e o e e de ek K K de e e ke de de de e e e e de e ke de e e de e de e de e e ok de e de de ke ke ke ok ok

CAUTION

A Foreground Processor program code error is as fatal
to system operation as a hardware failure.

khkkhkkhkhhkhhkhkhkhhhkhhkhhkhkhkhkhkhkhkhkhkhkhkhhhkhhkhhhkhkhkhhhkhhkhkhkkkkkkkk

The primary functions of the Foreground Processor program are real-time
response to various signals from a variety of sources in the foreground
system. As many as 50 simultaneous real-time sequences can be operating
in an interleaved manner in the Foreground Processor. Many of these
responses must be of the order of a microsecond or less.

The Foreground Processor contains the following sections:

. Instruction Memory

. Local Data Memory

. Arithmetic functions

. Real-time clock
Error checking
Instruction issue mechanism
Instruction set

The Foreground Processor performs arithmetic functions on 32-bit
integers. The following functions are performed.

. Add

. Subtract

. Shift left, open ended

. Shift right, open ended

. Logical product

. Logical difference
Logical sum

HR-2000 5-5

A detailed description of the Foreground Processor and its functional
units is beyond the scope of this manual. The Foreground Processor is
transparent to the user of the CRAY-2 Computer System.

5.6 MAINTENANCE CONTROL CONSOLE

The maintenance control console is used to deadstart the system and to
exchange data with the Foreground Processor. Instructions for execution
in the Foreground Processor are loaded into the Foreground Instruction
Memory at deadstart from a diskette at the maintenance control console.
This memory is a Read-only Memory during system operation. Data for
supervision of the system is maintained in Common Memory and is moved to
the Foreground Processor Local Memory as required.

HR-2000 5-6

APPENDIX SECTION

A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY

A.1 SYMBOLIC NOTATION

This appendix lists the symbolic machine instructions by functionality.
Instructions are described in the following functional categories:

. Branch instructions

. Pass instructions

. Semaphore instructions

. Register entry instructions

. Inter-register transfer instructions

. Memory transfer instructions

. Integer arithmetic operation instructions

. Floating-point arithmetic operation instructions

. Logical operation instructions

. Bit count instructions

. Shift operation instructions
Instructions are listed in numerical order and explained in section 3 of
this manual. The octal machine code may be used to cross-reference

instructions in this appendix to their descriptions in section 3. For
descriptions of functional units, refer to section 2 of this manual.

HR-2000 A-1

Register Entry Instructions

Integer Arithmetic Operations

ay exp 177 exp ay agtay aj aj-ag aj aj‘ak
aj exp,s s3 exp,s si sj+sk -3} S3}-Sk
aj exp,s,p Si exp,s,p vi sjtvk vi S3-Vk
ajg exp,s,m 3] exp,s,m vi VJ#vk \/1 Vy§-Vk \Z1 Ci.s,&sk
ag exp.p S exp.h
ag exp.p.p £ exp,h,p
ay exp.p.m s3 exp,h,m Floating Point Operations
aj exp,h E1) exp,1
s3 exp,f
s3 sy+fsyk 7] sy-fsg sj sy*fsk
vi sytfvy vi sy-fvx vi sy*fvyg
Inter Register Transfers vi vytEvg vi vy-fvg vy vi*Evk
ay sy ET ax N sy*isy Sj £ix,8) Sy Sy*qsk
s +ak vi vi*ivk vi fix, vk vi vi*qvk
sy sy vy vy sy /hsy sy flt, sk LN *gqs
vi /hvk vi fit, vk vy *quk
ajy vl vl ax
sy vm vm sy
s re afi efi
Bit Count Instructions Logical Operations
sy psy v pvy Sy sjy&sk s syisg sy sy\sk
s qs} vy qvy vy sy&vk vi sj!vk vi s3\vk
sy zsj Vi zvy vy VsV Vi vyiivg Vi vi\vg
sy lsk&sj vm Vi Z
Shift Instructions vm Vi.n
vi sj!viavm vm Vk.P
7% sj<exp 7] s3>exp \7] v,!vk&vm vm Vi.m
vy vy<ag vi vi>ag
Sy S3.8y<ay Sy Sj.5y>a Pass Instructions Semaphore Instructions
vi Vj,vy<ag vy Vj.Vy>ak
pass pass exp csm | ssm
Memory Transfers Branch Instructions
ay [exp] [exp] ax Jz ay,exp jz s3.exp
aj fak] [ak] aj in ak,exp in sj.,exp
sy {exp] [exp] sy i a, exp i sj.exp
3] {ax] [ak]) S3 jm ak,exp Jm sj.exp
vy {ak] [ak] vy
jes exp b] ax
sy (exp) (exp) sy iss exp r,ay ax
s (ak) (ak) sy
sy (ax,exp) (ak,exp) s3 b] exp
sy (ay,ax) (aj,ax) E7]
vi (ay,ax) (ajy,ak) vy err exit
vi (ak,vy) (ak,vy) vy exit exp
dri eri
1
1342
HR-2000 A-2

A.2 BRANCH INSTRUCTIONS

A.2.1 CONDITIONAL BRANCHES

I I I |

| Result | Operand | Description | Machine
| | | | Instruction
| | | |

I I I !

| Iz | ag.exp | Branch if (ay) is zero | 010xxk
I I I I

| Jn | ag,exp | Branch if (ag) is nonzero | 011xxk
I I I I

| Jp | ag.exp | Branch if (ap) is positive | 012xxk
I ! I I

| Jm | ag,exp | Branch if (ag) is negative | 013xxk
[I | I

| j= | Sj,exp | Branch if (Sj) is zero | 014xjx
I I I I

| In | S j,exp | Branch if (Sj) is nonzero | 015xjx
[| [|

| jp | sj. exp | Branch if (sj) is positive | 0l6xjx
| I ! I

| jm | S j.€xXp | Branch if (Sj) is negative | 017xjx
| | I |

| Jcs | exp | Jump to constant parcel if | 004 xxx
| | | Semaphore clear; set Semaphore |

| I | I

| Jjss | exp | Jump to constant parcel if | 005xxx
| | | Semaphore is set; set Semaphore |

I 1 I |

A.2.2 UNCONDITIONAL JUMPS

| | | |

| Result |} Operand | Description | Machine
] | | | Instruction
I | |]

I I I I

I 3 | exp | Unconditional jump | 003xxx
I I I I

| r,aj | ag | Register jump to (ay) with | 0021ixk
| | | return address to aj |

I I I |

I 3 | ag | Register jump to (ay)., value | 002kxk
| | | 1is ay erased |

I [[|

HR-2000 A-3

A.2.3 EXITS

I I I I

| Result | Operand | Description | Machine
| | | | Instruction
|]]] :
I | I I

| err | | Error exit | 000x00
I I I I

| exit | | Normal exit | 000x01
I I | I

| exit | exp | Normal exit | 000xjk
I I [I

A.3 PASS INSTRUCTIONS

I | I |

| Result | Operand | Description | Machine
| | | | Instruction
I I |]

| I | I

| pass | | Pass | 076xxx
I I I I

| pass | exp | Pass | 0761ijk
| | | |

A.4 SEMAPHORE INSTRUCTIONS

I I I I

| Result | Operand | Description | Machine
| I I | Instruction
| |] |

| | I I

| ssm | | Set Semaphore | 006xxx
I I I |

| csm | | Clear Semaphore | 007xxx
I l I l

HR-2000

A.5 REGISTER ENTRY INSTRUCTIONS

A.5.1 ENTRIES INTO A REGISTERS

| I I
Result | Operand | Description | Machine
| | | Instruction
| |]
| | |
aj | exp | Load aj with a value | 026ijk or
| | | 027ijk or
| | | 040ijk or
| | | 041ijk or
| | | oa2ijkttt
I | |
aj | exp,s | Load aj; with a 6-bit value | 026ijk+ or
| | | 027ijkT
| | |
aj | exp,s.p | Load aj with a 6-bit | 026ijkf*
| | positive value |
I I I
aj | exp,s,m | Load aj with a 6-bit | 027ijkTTt
| | negative value |
| | |
aj | exp,p | Load aj with a 16-bit value | 040ixxT or
| | | 041ixxt
I I I
aj | exp,p,p | Load a; with a 16-bit | o040ixxtTt
| | positive value |
I I |
aj | exp,p,m | Load a; with a 16-bit | o4a1ixxTt
| | negative value]
| I |
aj | exp | Load aj with a value | 042ixX or
| | [
aj | exp.h | Load aj with a 32-bit value | 042ixxt or
|

-'.
+

Forces one of two opcodes
Forces a single opcode
+++ Forces one of five opcodes

HR-2000

A.5.2 ENTRIES INTO S REGISTERS

¥+ Forces a single opcode
+++ Forces one of six opcodes

HR-2000

[| R I

| Result | Operand | Description [Machine

| | | | Instruction
| L | |

I | I |

| sj | exp | Load sj with a value | 050ixx or
| | | | 051ixxX or
! I I | 052ixx or
| | | | 0531Ixx or
I | I | 116ijk or
| I I | 117ijk¥tt
| | I |

| sj | exp,s | Load s; with a 6-bit value | 116ijkf or
| | | | 117ijkt

! | I |

| s | exp,s,p | Load s; with a 6-bit | 116ijktt
| | | positive value |

| I I |

| s; | exp,s,m | Load sj with a 6-bit | 117ijktt
| | | negative value |

| | I I

| sj | exp,h | Load s; with a 32-bit value | o050ixxt

I [I | os1ixxt

I | | I

| sj | exp,h,p | Load s; with a 32-bit | os0ixxTt
| | | positive value |

I | | |

| s; | exp,h,m | Load s; with a 32-bit | os1ixxtt
| | | negative value |

| I | I

| s | exp,1 | Load s; left side with a | os2ixxt

|] | 32-bit value |

| | I - |

| sj | exp,f | Load s; with a 64-bit value | os3ixxTt
| | I [

L | l I |
+ Forces one of two opcodes

A.6 INTER-REGISTER TRANSFER INSTRUCTIONS

Instructions in this group provide for transferring the contents of one

register to another register.

a function of the transfer.

A.6.1 TRANSFERS TO A REGISTERS

In some cases, the register contents can
be complemented, converted to floating-point format, or sign extended as

| Result | Operand | Description | Machine

| | | | Instruction |
|] | | |
I I I I I
: aj : S : Copy (Sj) to aj : 0241ijx :
| aj | v1 | Copy (vl) to aj | 0251ixx

| | | 1]
A.6.2 TRANSFERS TO S REGISTERS

| Result | Operand | Description | Machine |
i | | | Instruction |
| | | 1 |
I I I [I
I sj | s5 | Copy (sj) to sj (j=k) | 103ijj I
I I I I |
| sj | ag | Copy (ag) to s; with no | 130ixk |
| | | sign extension | |
I I I I |
| sj | +ag | Copy (ag) to s; with | 131ixk

| | | sign extension | |
| ! ! | |
| sj; | wvm | Copy (vm) to sj | 114ixx

I I | | I
| sj | rt | Copy real-time count to sj | 115ixx

L i | |]

HR-2000

A.6.3 TRANSFERS TO V REGISTERS

(j=k)

[I l l |
Result	Operand	Description	Machine
			Instruction
]	i		
	I I		
vi vy	Copy (vj) to vj	145ijj [
I	I		

A.6.4 TRANSFER TO VECTOR MASK REGISTER

The following syntax and its special form transmit the contents of
register Sj to the VM register. The VM register is zeroed if the j
designator is 0; the special form accommodates this case.

This instruction may be used in conjunction with the vector merge
instructions where an operation is performed depending on the contents of
the VM register.

| | | | 7
Result	Operand	Description	Machine
			Instruction
]		
I	I		
vm	sj : Copy (sj) to vm : 034xjx :		
L |

A.6.5 TRANSFER TO VECTOR LENGTH REGISTER

The following syntax and its special form enters the low-order 7 bits of
the contents of register Ap into the VL register.

The contents of the VL register determines the number of operations
performed by a vector instruction. Since a Vector register has 64
elements, from 1 to 64 operations can be performed. The number of
operations is (VL) modulo 64. A special case exists such that when (VL)
modulo 64 is 0, then the number of operations performed is 64.

HR-2000 A-8

In this publication, a reference to register V; implies operations
involving the first n elements where n is the vector length unless a
single element is explicitly noted as in the instructions §Sj Vi,

Ay and Vj, Ay Sj.

[

I | I
| Result | Operand | Description | Machine
| | | | Instruction
I | | |
| I I I
| vl | ag | Copy (ag) to vl | 036xxk
[| I |

Vector operations controlled by the contents of VL begin with element 0
of the Vector registers.

A.7 MEMORY TRANSFER INSTRUCTIONS

This category includes instructions that transfer data between registers
and memory.

A.7.1 STORES

Several instructions store data from registers into memory.

HR-2000 A-9

Local Memory writes

| Result | Operand | Description | Machine |
| | | | Instruction |
| | | | _
I	I		
[exp]	ag	Write (ap) to location exp	045xxk
		in Local Memory	
I		I I	
I [agl	aj	Write (aj) to location ay] 047xjk	
		in Local Memory]	
[I I !		
[exp]	S	Write (s;) to location exp	055xjx
		in Local Memory	
I	I I I		
[ag]	sj	Write (sj) to location ay	057ixk

| | | in Local Memory | |
I I I | |
| [ag] | v; | Write (v;) to Local Memory | 0751ixk [
| | | location (ag) | [
L L I l]
Common Memory writes

| Result | Operand | Description | Machine |
| | | | Instruction |
I L |] |
| I I I |
| (exp) | s; | Write (s;) to Common Memory | 067 1ixx

| | | at location exp | |
| | I I I
| (ag) | sj | Write (sj) to Common Memory | 063ixk |
| | | at location (ay) | |
I I I | I
| (ag.exp) | sj | Write (s;) to Common Memory | 0651ixk

| | | at location (ay)+exp | [
I I I | I
| (aj,ak) | s; | Write (s;) to Common Memory | 061ijk |
| | | at location (aj)+(ak) | |
I | I I |
] (aj,ak) | v; | Write (v;) to Common Memory | 071ijk |
| | | 1location (aj) incremented by | |
| | | (ag) | |
I | I I |
[(ak,Vj) | vji | Scatter (vj) to Common Memory | 073ijk |
| | | locations (ak)+(Vj) | |
L l [| 1

HR-2000

A.7.2 LOADS

Several instructions can be used to load data from memory into registers.

Local Memory reads

location (ag) to vj

| Result | Operand | Description | Machine |
] | | | Instruction |
|] | | |
I | I I |
| aj | [exp] | Read from location exp in | 044ixx
| | | Local Memory to aj | |
I | I I I
| aj I [ag] | Read from location to ag in | 0461ixk |
| | | Local Memory to aj | |
I | I | |
| sj; | [expl] | Read from location exp in | 054ixx
| | | Local Memory to sj | |
[| I I |
| sj | [agl | Read from location to ajg in | 056ixk
| | | Local Memory to sj | |
[| | I I
| vj I [agl | Read from Local Memory | 0741ixk |
| | | ! [
| | I 1

HR-2000

Common Memory

reads

| Result | Operand | Description | Machine |
| | | | Instruction |
L | | | |
I I I | I
| sj | (exp) | Read from Common Memory | 066 1xx |
| | | location exp to sj | |
I I I | I
| sj | (ag) | Read from Common Memory at | 062ixk

[| | location (ag) to sj | |
I I I I I
| sj | (ag.,exp) | Read from Common Memory at | 064ixk

| | | location (ay)+exp to sj I !
I I I I I
| sj | (aj,ak) | Read from Common Memory | 0601ijk |
| | : location (aj)+(ak) to sj | |
I | ! !
| v; | (aj,ak) | Read from Common Memory | 070ijk |
| | | location (aj) incremented] |
I | [by ag I [
| I I I I
| vj | (ak,Vj) | Gather from Common Memory | 072ijk |
| | | locations (ak)+(Vj) to vj] |
L | l l 1
Memory Range Error flags

] Result | Operand | Description | Machine |
| | | | Instruction |
L |] | |
I | | I I
| dri | | Disable halt on memory field | 035xx0 |
| | | range error | |
I | I I I
| eri | | Enable halt on memory field | 035xx1 |
| | | range error | |
L | l | J

A.8 INTEGER ARITHMETIC OPERATION INSTRUCTIONS

Integer arithmetic operations obtain operands from registers and return

results to registers.

HR-2000

No direct memory references are allowed.

A.8.1 INTEGER SUMS

[I I I I
| Result | Operand | Description | Machine |
| | | | Instruction |
L] | |]
| | | | I
| aj | aj+ag | Integer sum of (aj) and | 020ijk [
| I | (ag) to aj | I
| | | | I
| sj | Sj+sk | Integer sum of (Sj) and | 1041ijk |
! I | (sg) to sj | |
[| I | |
| vj | Sj+vk | Integer sums of (Sj) and] 160ijk]
I | | (vy) to vj | [
I ! I I I
| vj | VitV | Integer sums of (Vj) and | 161ijk |
[| | (vg) to vj | |
L | | L]
A.8.2 INTEGER DIFFERENCES

I | [[|
| Result | Operand | Description | Machine i
[| | | Instruction |
| | | | J
[| | I I
| aj | aj-ag | Integer difference of | 021ijk |
| : : (aj) and (ag) to aj : :
I

I sj [sj-Sk | Integer difference of | 1051ijk |
: : : (Sj) and (sy) to sj : :
| vj | Sj-Vk | Integer differences of | 162ijk

| : : (Sj) and (vg) to vj | |
| I |
| vj | Vj-Vk | Integer differences of | 163ijk |
I I | (vj) and (vg) to vj | [
L | | 1]

HR-2000 A-13

A.8.3 INTEGER PRODUCTS

| 1 | | I
Result	Operand	Description	Machine
			Instruction
		1	
I I I			
aj	aj*ay	Integer product of (aj)	022ijk
		and (ag) to aj	
[I | |]
A.9 FLOATING-POINT ARITHMETIC INSTRUCTIONS

All floating-point arithmetic operations use registers as the source of
operands and return results to registers.

A.9.1 FLOATING-POINT SUMS

I 1 I I]
| Result | Operand | Description | Machine |
| | | | Instruction |
L L] | |
| I | I |
| sj | 5j+fsk | Floating-point sum of | 120ijk |
I | | (sj) and (sg) to sj I I
I | I | |
| v; i Sj+ka | Floating-point sums of | 170ijk |
| | | (Sj) and (vy) to vj | |
| | | I I
| v; | Vj+ka | Floating-point sums of | 171ijk |
| | | (vj) and (vg) to vj | |
L [| | |

HR-2000 A-14

A.9.2 RECIPROCAL ITERATIONS

| Result | Operand | Description | Machine |
| | } | Instruction |
L |] | |
I I I I |
| s; | Sj*iSk | Reciprocal iteration step, | 126ijk |
: : : 2—(Sj)*(Sk) to sj; | |
I I
| vj | Vj*in | Reciprocal iteration step, | 156ijk |
I | | 2-(vj)*(vg) to s; | |
[| | l 1
A.9.3 RECIPROCAL APPROXIMATIONS
[I I I |
| Result | Operand | Description | Machine |
| | | | Instruction |
L | 1]]
| | I | |
| sj | /th | Floating-point reciprocal | 132ijx |
: : : approximation of (Sj) to sj : . |
I
wvj	/th	Floating-point reciprocal	166ixk
		approximation of (vg) to vj	
I]		
A.9.4 FLOATING-POINT DIFFERENCES			
Result	Operand	Description	Machine
			Instruction [
L 1 L			
I		I I	
sj	Sj—fsk	Floating-point difference	121ijk
		of (Sj) and (sg) to sj	
vj	Sj—ka	Floating-point difference	172ijk
[of (sj) and (vg) to v;		
	I	I	
vj	Vj—ka	Floating-point difference	173ijk
		of (Vj) and (vg) to vj	
L | | 1 1

HR-2000 A-15

A.9.5 INTEGER TO FLOATING-POINT CONVERSIONS

[| I | I
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | | |
I I I | |
| sj | fix,sg | Convert (sy) from floating- | 1221ixk |
[| | point to integer and enter | |
| | | into sj | |
| ! | | I
| vj | fix, vy | Integer form of floating- | 1741ixk |
| | | point (vg) to vj | |
L | L 1 |
A.9.6 FLOATING-POINT TO INTEGER CONVERSIONS

I I I l |
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | | |
I ! I I I
| s; | flt,sy | Convert (sy) from integer | 123ixk

| | | to floating-point and enter | |
[| | into sj] |
I I I | |
| vj | flt,vg | Floating-point form of { 175ixk |
| | | integer (vy) to v; | |
L | | | N
A.9.7 FLOATING-POINT PRODUCTS

I | | I |
| Result | Operand | Description | Machine |
| | | | Instruction |
[] | | H]
[| | I |
| sj | sj*Esg | Floating-point product | 1241ijk |
: : : of (sj) and (sg) to sj : :
| vj | Sj*ka | Floating-point products | 154ijk

| : : of (Sj) and (vg) to v; [|
| I |
| vi | Vj*ka | Floating-point products | 1551ijk |
| | | of (Vj) and (vg) to vj] |
L | | l |

HR-2000 A-16

A.9.8 SQUARE ROOT ITERATIONS

I I [I |
| Result | Operand | Description | Machine]
| | | | Instruction |
L | | 1 |
| I I I I
| sj | sj*qsk | Square root iteration of | 127ijk i
| | | [3—(5j)*(sk)]/2 to sj | |
I I I I I
| vj | Vj*qvk | Square root iteration of | 157ijk |
| | I [3-(vj)*(vg)1/2 to v; | |
I l l l |
-
A.9.9 SQUARE ROOT APPROXIMATIONS
| | I I I
| Result | Operand | Description | Machine |
| I | | Instruction |
|]]]]
| | | | !
| sj | *qu | Square root approximation of | 133ijx |
| | I (sj) to sj | I
| | | | |
| vi | *qvy | Square root approximation of | 167ixk
I I I (vg) to vj | I
L | | | |
A.9.10 FLOATING-POINT ERRORS
[I I I
| Result | Operand | Description | Machine !
| | | | Instruction |
| L |] |
I | I I |
| dafi | | Disable halt on floating-point | 035xx2 |
I I | error | I
I I I | [
| efi | | Enable halt on floating-point | 035xx3 i
| | | error | |
L_ | 1 | AJ

HR-2000

A.10 LOGICAL OPERATION INSTRUCTIONS

A.10.1 LOGICAL PRODUCTS

| Result | Operand | Description | Machine |
[| [| Instruction |
l | |]]
| I I I I
| sj | s j&sk | Logical product of (Sj) and | 100ijk [
I I | (sg) to sj : I
I I I I
| sj | #sp&s5 | Logical product of (s) and | 101ijk |
1 k&S5
| | | complement of (sg) to sj | |
| I | I !
| vj | sj&vg | Logical product of (Sj) and | 1401ijk |
| I | (vg) to v; | I
I I | | I
| vj | vi&v | Logical product of (vi) and | 41ijk |
1 J*Vk J

| I | (vg) to vj | I
[| | | |
A.10.2 LOGICAL SUMS

| Result | Operand | Description | Machine |
| | | | Instruction |
L |] | il
| I | | |
| sj | Sj!sk | Logical sum of (Sj) and | 103ijk]
| I | (sg) to sj I !
| I I | !
| vj | Sj!vk | Logical sums of (Sj) and | 144ijk

I : : (vg) to vj I I
I | I
| vj | vilvk | Logical sums of (Vj) and | 145ijk

| I | (vg) to vj | !
L I I L 1

HR-2000

A.10.3 VECTOR STREAMING

[l J l N
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | | J
I I I | I
| vj | Sj!vk&vm | Transmit (s5) if vm bit=1; | 1461ijk |
| | | (vg) if vm bit=0 to v; | |
| I I I I
| vj | Vj!vk&vm | Transmit (v5) if vm bit=1; | 147ijk |
| | | (vg) if vm bit=0 to v; | |
L | | 1 |
A.10.4 LOGICAL DIFFERENCES
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | L J
s;	sj\sk	Logical difference of	102ijk
		(Sj) and (sg) to sj	
	I I I		
vj	Sj\Vk	Logical difference of	142ijk
: :	(Sj) and (vg) to v;		
I I			
vj	Vj\Vk	Logical difference of	1431ijk
I I | (vj) and (vg) to vj I l
L l | I |

HR-2000

A.10.5 VECTOR MASK

[| I | i
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | |]
| I | | |
| wvm | vig.2 | Set vm from zero elements of | 030xxk |
I I I (vg) I !
| | ! I I
| wvm | vg.n | Set vm from nonzero elements | 031xxk |
I | | of (vg) I |
I | | I |
| wvm | vg.p | Set vm from positive elements | 032xxk |
I I | of (vg) I I
| I | I I
| wvm | Vg.m | Set vm from negative elements | 033xxk |
I | | of (vg) I I
L [I | _
A.10.6 COMPRESSED IOTA

[| | | |
| Result | Operand | Description | Machine |
| | | | Instruction |
L |] | |
I I | I |
| vj | ci,Sj&sk | Enter v; with compressed | 176ijk |
I I | iota (sj) and (sg) I |
L l | I _J

HR-2000

A.11 BIT COUNT INSTRUCTIONS

I T I |]
| Result | Operand | Description | Machine |
| | | | Instruction |
(- | | [|
| |] | |
| sj | Psj | Population count of (Sj) to | 106130 |
I | | sj I |
| | | I |
| vj | PVj | Population count of (Vj) to | 164130 |
I | Iovi | |
I | | I I
| sj | as; | Population count of parity of | 1061ij1 |
| | | (sj) to sj | [
I | | I I
vi	qv;	Population count of parity of	1641ij1
		(Vj) to vj	
sj;	zsj	Leading zero count of (Sj) to	1071ijx

| [| sj | I
| I [| I
| wv; | zvj | Leading zero count Of;(Vj) to | 165ijx

I | | vj | |
(i | I | |

HR-2000

A.12 SHIFT INSTRUCTIONS

A.12.1 LEFT SHIFTS

[I I | |
Result	Operand	Description] Machine	
			Instruction
]	
	I [!		
sj	sj<exp	Shift (sj) left exp=64-jk	110ijk]
		places to sj	
.	I	I	
vj	vj<ag	Shift (Vj) left (ay)	150ijk
		bits with zero fill. Results	
I		to vj	I
I I		I	
sj	sj-Sj<ak	Shift (s; and Sj) left	112ijk
		ax places to sj	
I I I I !			
vj	Vj.vj<ag	Double shift (Vj) left	152ijk
		ag places to vj	
L	[
A.12.2 RIGHT SHIFTS			
I I [I			
Result	Operand	Description	Machine
			Instruction
L]			
I I		I	
sj	sj>exp	Shift (sj;) right exp=jk	111ijk [
		places to sj	
I I I I I			
vj	vjrag	Shift (Vj) right (ag)	151ijk
		bits with zero fill. Results	
I I	to vj		
I I I I I			
sj	sjrsj>ag	Shift (Sj and s;) right	113ijk
		ag places to sj	
I I I I I			
[vj	vj,vjragr	Double shift (vj) right	153ijk
		ax places to vj	
L | | l _I

HR-2000

READER COMMENT FORM

CRAY-2 Computer System Functional Description HR-2000

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME
JOB TITLE

FIRM R AY

ADDRESS
CITy STATE ZIP

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO 6184 ST PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CRRAANY

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

US.A

STAPLE

[NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

—_—

——

3NIT SIHL ONOTV 1ND

READER COMMENT FORM

CRAY-2 Computer System Functional Description HR-2000

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME
JOB TITLE

FIRM =

ADDRESS
cIty STATE ZIP

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO 6184 ST PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

R ANY

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

USA

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

———————

—— e

3ANIT SIHL ONOTV 11D

